WorldWideScience

Sample records for total power radiometer

  1. A cost effective total power radiometer package for atmospheric research

    International Nuclear Information System (INIS)

    Lyons, B.N.; Kelly, W.M.; Vizard, D.R.; Lidholm, U.S.

    1993-01-01

    Millimeter wave radiometers are being increasingly used for plasma diagnostics and remote sensing applications. To date however the widespread use of such systems, particularly for applications requiring frequency coverage above 100 GHz, have been inhibited by the lack of availability of an appropriately specified commercial package. This paper outlines the design and construction of such a radiometer package and gives details of results obtained to date

  2. Total ozone retrieval from satellite multichannel filter radiometer measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Sullivan, T.J.; Weichel, R.L.; Ellis, J.S.; Huebel, J.G.; Korver, J.; Weidhaas, P.P.; Phelps, F.A.

    1978-01-01

    A total ozone retrieval model has been developed to process radiance data gathered by a satellite-mounted multichannel filter radiometer (MFR). Extensive effort went into theoretical radiative transfer modeling, a retrieval scheme was developed, and the technique was applied to the MFR radiance measurements. The high quality of the total ozone retrieval results was determined through comparisons with Dobson measurements. Included in the report are global total ozone maps for 20 days between May 12 and July 5, 1977. A comparison of MFR results for 13 days in June 1977 with Dobson spectrophotometer measurements of ozone for the same period showed good agreement: there was a root-mean-square difference of 6.2% (equivalent to 20.2 m.atm.cm). The estimated global total ozone value for June 1977 (296 m.atm.cm) was in good agreement with satellite backscatter ultraviolet data for June 1970 (304 m.atm.cm) and June 1971

  3. Determination of total ozone from DMSP multichannel filter radiometer measurements

    International Nuclear Information System (INIS)

    Luther, F.M.; Weichel, R.L.

    1992-01-01

    The multichannel filter radiometer (MFR) infrared sensor was first flown in 1977 on a Defense Meteorological Satellite Program (DMSP) Block 5D series satellite operated by the US Air Force. The first four satellites in this series carried MFR sensors from which total atmospheric column ozone amounts may be derived. The MFR sensor was the first cross-track scanning sensor capable of measuring ozone. MFR sensor infrared measurements are taken day and night. The satellites are in polar sun-synchronous orbits providing daily global coverage. The series of four sensors spans a data period of nearly three years. The MFR sensor measures infrared radiances for 16 channels. Total ozone amounts are determined from sets of radiance measurements using an empirical relationship that is developed using linear regression analysis. Total ozone is modeled as a linear combination of terms involving functions of the MFR radiances for four channels (1, 3, 7 and 16) and the secant of the zenith angle. The MFR scans side to side in discrete steps of 40. The MFR sensor takes infrared radiance measurements at 25 cross-track scanning locations every 32 seconds. The instrument could take a theoretical maximum of 67,500 measurements per day, although typically 35,000 - 45,000 measurements are taken per day

  4. Total column water vapor estimation over land using radiometer data from SAC-D/Aquarius

    Science.gov (United States)

    Epeloa, Javier; Meza, Amalia

    2018-02-01

    The aim of this study is retrieving atmospheric total column water vapor (CWV) over land surfaces using a microwave radiometer (MWR) onboard the Scientific Argentine Satellite (SAC-D/Aquarius). To research this goal, a statistical algorithm is used for the purpose of filtering the study region according to the climate type. A log-linear relationship between the brightness temperatures of the MWR and CWV obtained from Global Navigation Satellite System (GNSS) measurements was used. In this statistical algorithm, the retrieved CWV is derived from the Argentinian radiometer's brightness temperature which works at 23.8 GHz and 36.5 GHz, and taking into account CWVs observed from GNSS stations belonging to a region sharing the same climate type. We support this idea, having found a systematic effect when applying the algorithm; it was generated for one region using the previously mentioned criteria, however, it should be applied to additional regions, especially those with other climate types. The region we analyzed is in the Southeastern United States of America, where the climate type is Cfa (Köppen - Geiger classification); this climate type includes moist subtropical mid-latitude climates, with hot, muggy summers and frequent thunderstorms. However, MWR only contains measurements taken from over ocean surfaces; therefore the determination of water vapor over land is an important contribution to extend the use of the SAC-D/Aquarius radiometer measurements beyond the ocean surface. The CWVs computed by our algorithm are compared against radiosonde CWV observations and show a bias of about -0.6 mm, a root mean square (rms) of about 6 mm and a correlation of 0.89.

  5. Total solar irradiance as measured by the SOVAP radiometer onboard PICARD

    Directory of Open Access Journals (Sweden)

    Meftah Mustapha

    2016-01-01

    Full Text Available From the SOlar VAriability PICARD (SOVAP space-based radiometer, we obtained a new time series of the total solar irradiance (TSI during Solar Cycle 24. Based on SOVAP data, we obtained that the TSI input at the top of the Earth’s atmosphere at a distance of one astronomical unit from the Sun is 1361.8 ± 2.4 W m−2 (1σ representative of the 2008 solar minimum period. From 2010 to 2014, the amplitude of the changes has been of the order of ± 0.1%, corresponding to a range of about 2.7 W m−2. To determine the TSI from SOVAP, we present here an improved instrument equation. A parameter was integrated from a theoretical analysis that highlighted the thermo-electrical non-equivalence of the radiometric cavity. From this approach, we obtained values that are lower than those previously provided with the same type of instrument. The results in this paper supersede the previous SOVAP analysis and provide the best SOVAP-based TSI-value estimate and its temporal variation.

  6. Development of an improved Newtonian total radiometer, its evaluation and calibration

    International Nuclear Information System (INIS)

    Castrejon G, R.; Morales, A.

    1998-01-01

    Measuring of radiant energy by optical non intrusive means is an important topic of research in many areas of science and technology. Precise evaluation of thermal energy emitted by hot bodies leads to a better understanding of the energy interchange phenomena between the body and its surroundings. To this end, a wide spectrum optical radiometer was developed. In this article we describe the construction and evaluation of this instrument and the physical principles involved in its design and operation. Among other advantages, the linear response of the instrument allows easily a precise calibration. Additionally, we give a procedure to obtain a known source of radiation that was used to calibrate the radiometer. (Author)

  7. Microwave Radiometry and Radiometers for Ocean Applications

    DEFF Research Database (Denmark)

    Skou, Niels

    2008-01-01

    The microwave radiometer system measures, within its bandwidth, the naturally emitted radiation – the brightness temperature – of substances within its antenna’s field of view. Thus a radiometer is really a sensitive and calibrated microwave receiver. The radiometer can be a basic total power....../antenna size, and the problem: scanning antenna/space- craft stability. In many cases good compromises have been reached, as evident recalling the many successful missions throughout the recent 30 years. But in some cases the situation calls for special solutions, like the push-broom system or the synthetic...

  8. Measuring GNSS ionospheric total electron content at Concordia, and application to L-band radiometers

    Directory of Open Access Journals (Sweden)

    Vincenzo Romano

    2013-06-01

    Full Text Available In the framework of the project BIS - Bipolar Ionospheric Scintillation and Total Electron Content Monitoring, the ISACCO-DMC0 and ISACCO-DMC1 permanent monitoring stations were installed in 2008. The principal scope of the stations is to measure the ionospheric total electron content (TEC and to monitor the ionospheric scintillations, using high-sampling-frequency global positioning system (GPS ionospheric scintillation and TEC monitor (GISTM receivers. The disturbances that the ionosphere can induce on the electromagnetic signals emitted by the Global Navigation Satellite System constellations are due to the presence of electron density anomalies in the ionosphere, which are particularly frequent at high latitudes, where the upper atmosphere is highly sensitive to perturbations coming from outer space. With the development of present and future low-frequency space-borne microwave missions (e.g., Soil Moisture and Ocean Salinity [SMOS], Aquarius, and Soil Moisture Active Passive missions, there is an increasing need to estimate the effects of the ionosphere on the propagation of electromagnetic waves that affects satellite measurements. As an example, how the TEC data collected at Concordia station are useful for the calibration of the European Space Agency SMOS data within the framework of an experiment promoted by the European Space Agency (known as DOMEX will be discussed. The present report shows the ability of the GISTM station to monitor ionospheric scintillation and TEC, which indicates that only the use of continuous GPS measurements can provide accurate information on TEC variability, which is necessary for continuous calibration of satellite data.

  9. Optical power calibrator based on a stabilized green He-Ne laser and a cryogenic absolute radiometer

    International Nuclear Information System (INIS)

    Varpula, T.; Seppa, H.; Saari, J.M.

    1989-01-01

    This paper describes an optical power calibrator whose overall calibration uncertainty is less than 10 -4 for an optical power of 0.13 mW. The laser light source of the system operates at a wavelength of 543.5 nm, being close to the wavelength at which the candela is defined, 555 nm. A stable optical power is achieved by stabilizing the intensity and the frequency of a green He-Ne laser. The optical power is detected by a cryogenic absolute radiometer based on the principle of electrical substitution radiometry. It can be employed to measure optical power up to 0.5 mW in the visible and near infrared region

  10. NILU-UV multi-filter radiometer total ozone columns: Comparison with satellite observations over Thessaloniki, Greece.

    Science.gov (United States)

    Zempila, Melina Maria; Taylor, Michael; Koukouli, Maria Elissavet; Lerot, Christophe; Fragkos, Konstantinos; Fountoulakis, Ilias; Bais, Alkiviadis; Balis, Dimitrios; van Roozendael, Michel

    2017-07-15

    This study aims to construct and validate a neural network (NN) model for the production of high frequency (~1min) ground-based estimates of total ozone column (TOC) at a mid-latitude UV and ozone monitoring station in the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki (LAP/AUTh) for the years 2005-2014. In the first stage of model development, ~30,000 records of coincident solar UV spectral irradiance measurements from a Norsk Institutt for Luftforskning (NILU)-UV multi-filter radiometer and TOC measurements from a co-located Brewer spectroradiometer are used to train a NN to learn the nonlinear functional relation between the irradiances and TOC. The model is then subjected to sensitivity analysis and validation. Close agreement is obtained (R 2 =0.94, RMSE=8.21 DU and bias=-0.15 DU relative to the Brewer) for the training data in the correlation of NN estimates on Brewer derived TOC with 95% of the coincident data differing by less than 13 DU. In the second stage of development, a long time series (≥1 million records) of high frequency (~1min) NILU-UV ground-based measurements are presented as inputs to the NN model to generate high frequency TOC estimates. The advantage of the NN model is that it is not site dependent and is applicable to any NILU input data lying within the range of the training data. GOME/ERS-2, SCIAMACHY/Envisat, OMI/Aura and GOME2/MetOp-A TOC records are then used to perform a precise cross-validation analysis and comparison with the NILU TOC estimates over Thessaloniki. All 4 satellite TOC dataset are retrieved using the GOME Direct Fitting algorithm, version 3 (GODFIT_v3), for reasons of consistency. The NILU TOC estimates within ±30min of the overpass times agree well with the satellite TOC retrievals with coefficient of determination in the range 0.88≤R 2 ≤0.90 for all sky conditions and 0.95≤R 2 ≤0.96 for clear sky conditions. The mean fractional differences are found to be -0.67%±2.15%, -1

  11. Assessing the beginning to end-of-mission sensitivity change of the PREcision MOnitor Sensor total solar irradiance radiometer (PREMOS/PICARD

    Directory of Open Access Journals (Sweden)

    Ball William T.

    2016-01-01

    Full Text Available The switching of the total solar irradiance (TSI backup radiometer (PREMOS-B to a primary role for 2 weeks at the end of the PICARD mission provides a unique opportunity to test the fundamental hypothesis of radiometer experiments in space, which is that the sensitivity change of instruments due to the space environment is identical for the same instrument type as a function of solar-exposure time of the instruments. We verify this hypothesis for the PREMOS TSI radiometers within the PREMOS experiment on the PICARD mission. We confirm that the sensitivity change of the backup instrument, PREMOS-B, is similar to that of the identically-constructed primary radiometer, PREMOS-A. The extended exposure of the backup instrument at the end of the mission allows for the assessment, with an uncertainty estimate, of the sensitivity change of the primary radiometer from the beginning of the PICARD mission compared to the end, and of the degradation of the backup over the mission. We correct six sets of PREMOS-B observations connecting October 2011 with February 2014, using six ratios from simultaneous PREMOS-A and PREMOS-B exposures during the first days of PREMOS-A operation in 2010. These ratios are then used, without indirect estimates or assumptions, to evaluate the stability of SORCE/TIM and SOHO/VIRGO TSI measurements, which have both operated for more than a decade and now show different trends over the time span of the PICARD mission, namely from 2010 to 2014. We find that by February 2014 relative to October 2011 PREMOS-B supports the SORCE/TIM TSI time evolution, which in May 2014 relative to October 2011 is ~0.11 W m−2, or ~84 ppm, higher than SOHO/VIRGO. Such a divergence between SORCE/TIM and SOHO/VIRGO over this period is a significant fraction of the estimated decline of 0.2 W m−2 between the solar minima of 1996 and 2008, and questions the reliability of that estimated trend. Extrapolating the uncertainty indicated by the

  12. [Radiometers performance attenuation and data correction in long-term observation of total radiation and photosynthetically active radiation in typical forest ecosystems in China].

    Science.gov (United States)

    Zhu, Zhi-Lin; Sun, Xiao-Min; Yu, Gui-Rui; Wen, Xue-Fa; Zhang, Yi-Ping; Han, Shi-Jie; Yan, Jun-Hua; Wang, Hui-Min

    2011-11-01

    Based on the total radiation and photosynthetically active radiation (PAR) observations with net radiometer (CNR1) and quantum sensor (Li-190SB) in 4 ChinaFLUX forest sites (Changbaishan, Qianyanzhou, Dinghushan, and Xishuangbanna) in 2003-2008, this paper analyzed the uncertainties and the radiometers performance changes in long-term and continuous field observation. The results showed that the 98% accuracy of the total radiation measured with CNR1 (Q(cNR1)) could satisfy the technical criterion for the sites except Xishuangbanna where the Q(CNR1) was averagely about 7% lower than Q(CM11), the radiation measured with high accuracy pyranometer CM11. For most sites, though the temperature had definite effects on the performance of CNR1, the effects were still within the allowable range of the accuracy of the instrument. Besides temperature, the seasonal fog often occurred in tropical rain forests in Xishuangbanna also had effects on the performance of CNR1. Based on the long-term variations of PAR, especially its ratio to total radiation in the 4 sites, it was found that quantum sensor (Li-190SB) had obvious performance attenuation, with the mean annual attenuation rate being about 4%. To correct the observation error caused by Li-190SB, an attempt was made to give a post-correction of the PAR observations, which could basically eliminate the quantum sensor's performance attenuation due to long-term field measurement.

  13. PHOCUS radiometer

    Directory of Open Access Journals (Sweden)

    O. Nyström

    2012-06-01

    Full Text Available PHOCUS – Particles, Hydrogen and Oxygen Chemistry in the Upper Summer Mesosphere is a Swedish sounding rocket experiment, launched in July 2011, with the main goal of investigating the upper atmosphere in the altitude range 50–110 km. This paper describes the SondRad instrument in the PHOCUS payload, a radiometer comprising two frequency channels (183 GHz and 557 GHz aimed at exploring the water vapour concentration distribution in connection with the appearance of noctilucent (night shining clouds. The design of the radiometer system has been done in a collaboration between Omnisys Instruments AB and the Group for Advanced Receiver Development (GARD at Chalmers University of Technology where Omnisys was responsible for the overall design, implementation, and verification of the radiometers and backend, whereas GARD was responsible for the radiometer optics and calibration systems.

    The SondRad instrument covers the water absorption lines at 183 GHz and 557 GHz. The 183 GHz channel is a side-looking radiometer, while the 557 GHz radiometer is placed along the rocket axis looking in the forward direction. Both channels employ sub-harmonically pumped Schottky mixers and Fast Fourier Transform Spectrometers (FFTS backends with 67 kHz resolution.

    The radiometers include novel calibration systems specifically adjusted for use with each frequency channel. The 183 GHz channel employs a continuous wave CW pilot signal calibrating the entire receiving chain, while the intermediate frequency chain (the IF-chain of the 557 GHz channel is calibrated by injecting a signal from a reference noise source through a directional coupler.

    The instrument collected complete spectra for both the 183 GHz and the 557 GHz with 300 Hz data rate for the 183 GHz channel and 10 Hz data rate for the 557 GHz channel for about 60 s reaching the apogee of the flight trajectory and 100 s after that. With lossless data compression using variable

  14. Validation of the uncertainty budget for soft X-ray radiant power measurement using a cryogenic radiometer

    International Nuclear Information System (INIS)

    Rabus, H.; Klein, R.; Scholze, F.; Thornagel, R.; Ulm, G.

    2002-01-01

    The cryogenic radiometer SYRES, a thermal detector based on the electrical substitution principle, has been used as the primary detector standard for radiant power measurement in the ultraviolet, vacuum ultraviolet and soft X-ray spectral ranges. In order to investigate the possibility of radiant energy being deposited in its absorber cavity without being transformed into heat when detecting soft X-rays, SYRES has been directly compared with the electron storage ring BESSY 1, a primary radiometric source standard of calculable spectral radiant power. To this end, the integral radiant power emitted by the storage ring,into a solid angle defined by a high-precision aperture was measured with SYRES. The experiments were conducted at two nominal energies of the circulating electrons, 800 MeV and 340 MeV, to study the influence of the different spectral distributions of the synchrotron radiation. For the original graphite-coated cavity absorber, significant discrepancies were found which could be traced back to the ablation of the graphite coating from the copper cavity body. In the case of the new gold-coated cavity absorber, the calculated and measured values of the radiant power agreed in all experiments within the combined relative uncertainties of typically 2.5 x 10 -3 (k = 1). (author)

  15. LAMMR: A new generation satellite microwave radiometer - Its concepts and capabilities. [Large Antenna Multichannel Microwave Radiometer

    Science.gov (United States)

    Walton, W. T.; Wilheit, T. T.

    1981-01-01

    Definition studies and baseline design are summarized for the proposed, and now discontinued, LAMMR. The instrument is an offset parabolic reflector with Cassegrain feeds. The three-meter aperture reflector, to be constructed using graphite-epoxy technology, rotates continuously at 0.833 rps. The scan drive subsystem includes momentum compensation for the rotating mass which includes the reflector, the support arm and Cassegrain subreflector, feed horns and radiometer. Two total power radiometers are recommended for each frequency, one each for horizontal and vertical polarizations. The selection plan, definition study specifications, LAMMR performance specifications, and predicted accuracies and resolutions after processing are shown.

  16. Validation of the uncertainty budget for soft X-ray radiant power measurement using a cryogenic radiometer

    CERN Document Server

    Rabus, H; Scholze, F; Thornagel, R; Ulm, G

    2002-01-01

    The cryogenic radiometer SYRES, a thermal detector based on the electrical substitution principle, has been used as the primary detector standard for radiant power measurement in the ultraviolet, vacuum ultraviolet and soft X-ray spectral ranges. In order to investigate the possibility of radiant energy being deposited in its absorber cavity without being transformed into heat when detecting soft X-rays, SYRES has been directly compared with the electron storage ring BESSY 1, a primary radiometric source standard of calculable spectral radiant power. To this end, the integral radiant power emitted by the storage ring,into a solid angle defined by a high-precision aperture was measured with SYRES. The experiments were conducted at two nominal energies of the circulating electrons, 800 MeV and 340 MeV, to study the influence of the different spectral distributions of the synchrotron radiation. For the original graphite-coated cavity absorber, significant discrepancies were found which could be traced back to th...

  17. Comparison of global observations and trends of total precipitable water derived from microwave radiometers and COSMIC radio occultation from 2006 to 2013

    Directory of Open Access Journals (Sweden)

    S.-P. Ho

    2018-01-01

    Full Text Available We compare atmospheric total precipitable water (TPW derived from the SSM/I (Special Sensor Microwave Imager and SSMIS (Special Sensor Microwave Imager/Sounder radiometers and WindSat to collocated TPW estimates derived from COSMIC (Constellation System for Meteorology, Ionosphere, and Climate radio occultation (RO under clear and cloudy conditions over the oceans from June 2006 to December 2013. Results show that the mean microwave (MW radiometer – COSMIC TPW differences range from 0.06 to 0.18 mm for clear skies, from 0.79 to 0.96 mm for cloudy skies, from 0.46 to 0.49 mm for cloudy but non-precipitating conditions, and from 1.64 to 1.88 mm for precipitating conditions. Because RO measurements are not significantly affected by clouds and precipitation, the biases mainly result from MW retrieval uncertainties under cloudy and precipitating conditions. All COSMIC and MW radiometers detect a positive TPW trend over these 8 years. The trend using all COSMIC observations collocated with MW pixels for this data set is 1.79 mm decade−1, with a 95 % confidence interval of (0.96, 2.63, which is in close agreement with the trend estimated by the collocated MW observations (1.78 mm decade−1 with a 95 % confidence interval of 0.94, 2.62. The sample of MW and RO pairs used in this study is highly biased toward middle latitudes (40–60° N and 40–65° S, and thus these trends are not representative of global average trends. However, they are representative of the latitudes of extratropical storm tracks and the trend values are approximately 4 to 6 times the global average trends, which are approximately 0.3 mm decade−1. In addition, the close agreement of these two trends from independent observations, which represent an increase in TPW in our data set of about 6.9 %, are a strong indication of the positive water vapor–temperature feedback on a warming planet in regions where precipitation from extratropical

  18. Comparison of global observations and trends of total precipitable water derived from microwave radiometers and COSMIC radio occultation from 2006 to 2013

    Science.gov (United States)

    Ho, Shu-Peng; Peng, Liang; Mears, Carl; Anthes, Richard A.

    2018-01-01

    We compare atmospheric total precipitable water (TPW) derived from the SSM/I (Special Sensor Microwave Imager) and SSMIS (Special Sensor Microwave Imager/Sounder) radiometers and WindSat to collocated TPW estimates derived from COSMIC (Constellation System for Meteorology, Ionosphere, and Climate) radio occultation (RO) under clear and cloudy conditions over the oceans from June 2006 to December 2013. Results show that the mean microwave (MW) radiometer - COSMIC TPW differences range from 0.06 to 0.18 mm for clear skies, from 0.79 to 0.96 mm for cloudy skies, from 0.46 to 0.49 mm for cloudy but non-precipitating conditions, and from 1.64 to 1.88 mm for precipitating conditions. Because RO measurements are not significantly affected by clouds and precipitation, the biases mainly result from MW retrieval uncertainties under cloudy and precipitating conditions. All COSMIC and MW radiometers detect a positive TPW trend over these 8 years. The trend using all COSMIC observations collocated with MW pixels for this data set is 1.79 mm decade-1, with a 95 % confidence interval of (0.96, 2.63), which is in close agreement with the trend estimated by the collocated MW observations (1.78 mm decade-1 with a 95 % confidence interval of 0.94, 2.62). The sample of MW and RO pairs used in this study is highly biased toward middle latitudes (40-60° N and 40-65° S), and thus these trends are not representative of global average trends. However, they are representative of the latitudes of extratropical storm tracks and the trend values are approximately 4 to 6 times the global average trends, which are approximately 0.3 mm decade-1. In addition, the close agreement of these two trends from independent observations, which represent an increase in TPW in our data set of about 6.9 %, are a strong indication of the positive water vapor-temperature feedback on a warming planet in regions where precipitation from extratropical storms is already large.

  19. Monitored background radiometer

    International Nuclear Information System (INIS)

    Ruel, C.

    1988-01-01

    This radiometer accurately measures IR and solar spectrum radiation in a vacuum, and accounts for radiation loss from its sensing plate by measuring the housing temperature. Calibration is performed by measuring the temperature of the sensing plate and housing while power to a heater attached to the sensing plate is varied. The square of the difference between the measured power dissipation of the heater and the heat absorbed by the sensing plate as determined from the heat balance equation of the sensing plate is minimized to obtain calibration factors for the heat balance equation

  20. The JET ECE heterodyne radiometer and investigations of fast phenomena

    International Nuclear Information System (INIS)

    Bartlett, D.V.; Porte, L.

    1993-01-01

    In this paper, the design and performance characteristics of the JET heterodyne radiometer are reviewed, and some novel aspects of the instrument are described. Areas where the radiometer could benefit from further improvement are highlighted, and those improvements currently in progress are discussed. Some measurements which demonstrate the radiometer's power as a diagnostic of fast phenomena are presented. (orig.)

  1. Power plant project success through total productive generation

    Energy Technology Data Exchange (ETDEWEB)

    Kaivola, R.; Tamminen, L.

    1996-11-01

    The Total Productive Generation concept (TPG) defines the lines of action adopted by IVO Generation Services Ltd (IGS) for the operation and maintenance of power plants. The TPG concept is based on procedures tested in practice. The main idea of TPG is continuous development of quality, which is a joint effort of the entire staff. Its objective is to benefit IGS`s own staff and, in particular, the company`s customers. (orig.)

  2. Monitored background radiometer

    International Nuclear Information System (INIS)

    Ruel, C.

    1988-01-01

    A monitored background radiometer is described comprising: a thermally conductive housing; low conductivity support means mounted on the housing; a sensing plate mounted on the low conductivity support means and spaced from the housing so as to be thermally insulated from the housing and having an outwardly facing first surface; the sensing plate being disposed relative to the housing to receive direct electromagnetic radiation from sources exterior to the radiometer upon the first surface only; means for controllably heating the sensing plate; first temperature sensitive means to measure the temperature of the housing; and second temperature sensitive means to measure the temperature of the sensing plate, so that the heat flux at the sensing plate may be determined from the temperatures of the housing and sensing plate after calibration of the radiometer by measuring the temperatures of the housing and sensing plate while controllably heating the sensing plate

  3. Total life cycle cost model for electric power stations

    International Nuclear Information System (INIS)

    Cardullo, M.W.

    1995-01-01

    The Total Life Cycle Cost (TLCC) model for electric power stations was developed to provide a technology screening model. The TLCC analysis involves normalizing cost estimates with respect to performance standards and financial assumptions and preparing a profile of all costs over the service life of the power station. These costs when levelized present a value in terms of a utility electricity rate. Comparison of cost and the pricing of the electricity for a utility shows if a valid project exists. Cost components include both internal and external costs. Internal costs are direct costs associated with the purchase, and operation of the power station and include initial capital costs, operating and maintenance costs. External costs result from societal and/or environmental impacts that are external to the marketplace and can include air quality impacts due to emissions, infrastructure costs, and other impacts. The cost stream is summed (current dollars) or discounted (constant dollars) to some base year to yield a overall TLCC of each power station technology on a common basis. While minimizing life cycle cost is an important consideration, it may not always be a preferred method for some utilities who may prefer minimizing capital costs. Such consideration does not always result in technology penetration in a marketplace such as the utility sector. Under various regulatory climates, the utility is likely to heavily weigh initial capital costs while giving limited consideration to other costs such as societal costs. Policy makers considering external costs, such as those resulting from environmental impacts, may reach significantly different conclusions about which technologies are most advantageous to society. The TLCC analysis model for power stations was developed to facilitate consideration of all perspectives

  4. Total Magnetic Field Signatures over Submarine HVDC Power Cables

    Science.gov (United States)

    Johnson, R. M.; Tchernychev, M.; Johnston, J. M.; Tryggestad, J.

    2013-12-01

    Mikhail Tchernychev, Geometrics, Inc. Ross Johnson, Geometrics, Inc. Jeff Johnston, Geometrics, Inc. High Voltage Direct Current (HVDC) technology is widely used to transmit electrical power over considerable distances using submarine cables. The most commonly known examples are the HVDC cable between Italy and Greece (160 km), Victoria-Tasmania (300 km), New Jersey - Long Island (82 km) and the Transbay cable (Pittsburg, California - San-Francisco). These cables are inspected periodically and their location and burial depth verified. This inspection applies to live and idle cables; in particular a survey company could be required to locate pieces of a dead cable for subsequent removal from the sea floor. Most HVDC cables produce a constant magnetic field; therefore one of the possible survey tools would be Marine Total Field Magnetometer. We present mathematical expressions of the expected magnetic fields and compare them with fields observed during actual surveys. We also compare these anomalies fields with magnetic fields produced by other long objects, such as submarine pipelines The data processing techniques are discussed. There include the use of Analytic Signal and direct modeling of Total Magnetic Field. The Analytic Signal analysis can be adapted using ground truth where available, but the total field allows better discrimination of the cable parameters, in particular to distinguish between live and idle cable. Use of a Transverse Gradiometer (TVG) allows for easy discrimination between cable and pipe line objects. Considerable magnetic gradient is present in the case of a pipeline whereas there is less gradient for the DC power cable. Thus the TVG is used to validate assumptions made during the data interpretation process. Data obtained during the TVG surveys suggest that the magnetic field of a live HVDC cable is described by an expression for two infinite long wires carrying current in opposite directions.

  5. BETA digital beta radiometer

    International Nuclear Information System (INIS)

    Borovikov, N.V.; Kosinov, G.A.; Fedorov, Yu.N.

    1989-01-01

    Portable transportable digital beta radiometer providing for measuring beta-decay radionuclide specific activity in the range from 5x10 -9 up to 10 -6 Cu/kg (Cu/l) with error of ±25% is designed and introduced into commercial production for determination of volume and specific water and food radioactivity. The device specifications are given. Experience in the BETA radiometer application under conditions of the Chernobyl' NPP 30-km zone has shown that it is convenient for measuring specific activity of the order of 10 -8 Cu/kg, and application of a set of different beta detectors gives an opportunity to use it for surface contamination measurement in wide range of the measured value

  6. Millimeter radiometer system technology

    Science.gov (United States)

    Wilson, W. J.; Swanson, P. N.

    1989-07-01

    JPL has had a large amount of experience with spaceborne microwave/millimeter wave radiometers for remote sensing. All of the instruments use filled aperture antenna systems from 5 cm diameter for the microwave Sounder Units (MSU), 16 m for the microwave limb sounder (MLS) to 20 m for the large deployable reflector (LDR). The advantages of filled aperture antenna systems are presented. The requirements of the 10 m Geoplat antenna system, 10 m multified antenna, and the MLS are briefly discussed.

  7. Hurricane Imaging Radiometer

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; hide

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.

  8. A Multifrequency Radiometer System

    DEFF Research Database (Denmark)

    Skou, Niels

    1977-01-01

    A radiometer system having four channels: 5 GHz, l7 GHz, 34 GHz, all vertical polarization, and a 34 GHz sky horn, will be described. The system which is designed for collecting glaciological and oceanographic data is intended for airborne use and imaging is achieved by means of a multifrequency...... conically scanning antenna. Implementation of the noise-injection technique ensures the high absolute accuracy needed for oceanographic purposes. The collected data can be preprocessed in a microcomputer system and displayed in real time. Simultaneously, the data are recorded digitally on tape for more...

  9. The development of the advanced cryogenic radiometer facility at NRC

    Science.gov (United States)

    Gamouras, A.; Todd, A. D. W.; Côté, É.; Rowell, N. L.

    2018-02-01

    The National Research Council (NRC) of Canada has established a next generation facility for the primary realization of optical radiant power. The main feature of this facility is a new cryogenic electrical substitution radiometer with a closed-cycle helium cryocooler. A monochromator-based approach allows for detector calibrations at any desired wavelength. A custom-designed motion apparatus includes two transfer standard radiometer mounting ports which has increased our measurement capability by allowing the calibration of two photodetectors in one measurement cycle. Measurement uncertainties have been improved through several upgrades, including newly designed and constructed transimpedance amplifiers for the transfer standard radiometers, and a higher power broadband light source. The most significant improvements in uncertainty arise from the enhanced characteristics of the new cryogenic radiometer including its higher cavity absorptance and reduced non-equivalence effects.

  10. Wideband filter radiometers for blackbody temperature measurements

    Science.gov (United States)

    Boivin, L. P.; Bamber, C.; Gaertner, A. A.; Gerson, R. K.; Woods, D. J.; Woolliams, E. R.

    2010-10-01

    The use of high-temperature blackbody (HTBB) radiators to realize primary spectral irradiance scales requires that the operating temperature of the HTBB be accurately determined. We have developed five filter radiometers (FRs) to measure the temperature of the National Research Council of Canada's HTBB. The FRs are designed to minimize sensitivity to ambient temperature fluctuations. They incorporate air-spaced colored glass filters and a Si photodiode detector that are housed in a cell whose temperature is controlled to ±0.1°C by means of annular thermoelectric elements at the front and rear of the cell. These wideband filter radiometers operate in four different wavelength bands. The spectral responsivity measurements were performed in an underfill geometry for a power-mode calibration that is traceable to NRC's cryogenic radiometer. The spectral temperature sensitivity of each of these FRs has been measured. The apertures for these FRs were cold-formed by swaging machine-cut apertures onto precision dowel pins. A description of the filter radiometer design, fabrication and testing, together with a detailed uncertainty analysis, is presented. We derive the equations that relate the spectral irradiance measured by the FRs to the spectral radiance and temperature of the HTBB, and deal specifically with the change of index of refraction over the path of the radiation from the interior of the HTBB to the FRs. We believe these equations are more accurate than recently published derivations. Our measurements of the operating temperature of our HTBB working at temperatures near 2500 K, 2700 K and 2900 K, together with measurements using a pyrometer, show agreement between the five filter radiometers and with the pyrometer to within the estimated uncertainties.

  11. Development of a Compact High Altitude Imager and Sounding Radiometer (CHAISR)

    Science.gov (United States)

    Choi, R. K. Y.; Min, S.; Cho, Y. J.; Kim, K. H.; Ha, J. C.; Joo, S. W.

    2017-12-01

    Joint Civilian-Military Committee, under Advisory Council on Science and Technology, Korea, has approved a technology demonstration project for developing a lightweight HALE UAV (High-Altitude, Long Endurance). It aims to operate at lower stratosphere, i.e. altitude of 16 20 km, offering unique observational platform to atmospheric research community as pseudo-satellite. NIMS (National Institute of Meteorological Sciences, Korea) is responsible for a payload for atmospheric science, a Compact High Altitude Imager and Sounding Radiometer (CHAISR) to demonstrate scientific observations at lower stratosphere in the interest of improving numerical weather prediction model. CHAISR consists of three microwave radiometers (MWR) with 16 channel, and medium resolution cameras operating in a visible and infrared spectrum. One of the technological challenges for CHAISR is to accommodate those instruments within 50 W of power consumption. CHAISR will experience temperature up to -75°C, while pressure as low as 50 hPa at operational altitude. It requires passive thermal control of the payload to keep electronic subsystems warm enough for instrument operation with minimal power available. Safety features, such as payload power management and thermal control, are considered with minimal user input. Three radiometers measure atmospheric brightness temperature at frequency at around 20, 40, and 50 GHz. Retrieval process yields temperature and humidity profiles with cross track scan along the flight line. Estimated total weight of all radiometer hardware, from the antennas to data acquisition system, is less than 0.8 kg and a maximum power consumption is 15.2 W. With not enough power for blackbody calibration target, radiometers use zenith sky view at lower stratosphere as an excellent calibration target for a conventional tipping-curve calibration. Spatial distributions of clouds from visible and surface temperature from thermal cameras are used as additional information for

  12. Total energy analysis of nuclear and fossil fueled power plants

    International Nuclear Information System (INIS)

    Franklin, W.D.; Mutsakis, M.; Ort, R.G.

    1971-01-01

    The overall thermal efficiencies of electrical power generation were determined for Liquid Metal Fast Breeder, High Temperature Gas Cooled, Boiling Water, and Pressurized Water Reactors and for coal-, oil-, and gas-fired systems. All important energy consuming steps from mining through processing, transporting, and reprocessing the fuels were included in the energy balance along with electrical transmission and thermal losses and energy expenditures for pollution abatement. The results of these studies show that the overall fuel cycle efficiency of the light water nuclear fueled reactors is less than the efficiency of modern fossil fuel cycles. However, the nuclear fuel cycle based on the fast breeder reactors should produce power more efficiently than the most modern supercritical fossil fuel cycles. The high temperature gas cooled reactor has a cycle efficiency comparable to the supercritical coal fuel cycle

  13. Cost Savings of Nuclear Power with Total Fuel Reprocessing

    International Nuclear Information System (INIS)

    Solbrig, Charles W.; Benedict, Robert W.

    2006-01-01

    The cost of fast reactor (FR) generated electricity with pyro-processing is estimated in this article. It compares favorably with other forms of energy and is shown to be less than that produced by light water reactors (LWR's). FR's use all the energy in natural uranium whereas LWR's utilize only 0.7% of it. Because of high radioactivity, pyro-processing is not open to weapon material diversion. This technology is ready now. Nuclear power has the same advantage as coal power in that it is not dependent upon a scarce foreign fuel and has the significant additional advantage of not contributing to global warming or air pollution. A jump start on new nuclear plants could rapidly allow electric furnaces to replace home heating oil furnaces and utilize high capacity batteries for hybrid automobiles: both would reduce US reliance on oil. If these were fast reactors fueled by reprocessed fuel, the spent fuel storage problem could also be solved. Costs are derived from assumptions on the LWR's and FR's five cost components: 1) Capital costs: LWR plants cost $106/MWe. FR's cost 25% more. Forty year amortization is used. 2) The annual O and M costs for both plants are 9% of the Capital Costs. 3) LWR fuel costs about 0.0035 $/kWh. Producing FR fuel from spent fuel by pyro-processing must be done in highly shielded hot cells which is costly. However, the five foot thick concrete walls have the advantage of prohibiting diversion. LWR spent fuel must be used as feedstock for the FR initial core load and first two reloads so this FR fuel costs more than LWR fuel. FR fuel costs much less for subsequent core reloads ( 6 /MWe. The annual cost for a 40 year licensed plant would be 2.5 % of this or less if interest is taken into account. All plants will eventually have to replace those components which become radiation damaged. FR's should be designed to replace parts rather than decommission. The LWR costs are estimated to be 2.65 cents/kWh. FR costs are 2.99 cents/kWh for the first

  14. Assessment of Radiometer Calibration with GPS Radio Occultation for the MiRaTA CubeSat Mission

    Science.gov (United States)

    Marinan, Anne D.; Cahoy, Kerri L.; Bishop, Rebecca L.; Lui, Susan S.; Bardeen, James R.; Mulligan, Tamitha; Blackwell, William J.; Leslie, R. Vincent; Osaretin, Idahosa; Shields, Michael

    2017-01-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). The science payload on MiRaTA consists of a tri-band microwave radiometer and Global Positioning System (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the Compact TEC (Total Electron Content) and Atmospheric GPS Sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (∼20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, (2) the application of a commercial off the shelf (COTS) GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective (3), developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise. Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 K and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K. PMID:28828144

  15. Controlling total spot power from holographic laser by superimposing a binary phase grating.

    Science.gov (United States)

    Liu, Xiang; Zhang, Jian; Gan, Yu; Wu, Liying

    2011-04-25

    By superimposing a tunable binary phase grating with a conventional computer-generated hologram, the total power of multiple holographic 3D spots can be easily controlled by changing the phase depth of grating with high accuracy to a random power value for real-time optical manipulation without extra power loss. Simulation and experiment results indicate that a resolution of 0.002 can be achieved at a lower time cost for normalized total spot power.

  16. Double-polarizating scanning radiometer

    International Nuclear Information System (INIS)

    Mishev, D.N.; Nazyrski, T.G.

    1986-01-01

    The double-polarizating single-channel scanning radiometer comprises the following serial connected parts: a scanning double-polarizating aerial, a block for polarization separation, a radiometer receiver, an analog-to-digit converter and an information flow forming block. The low frequency input of the radiometer receiver is connected with a control block, which is also connected with a first bus of a microprocessor, the second bus of which is connected with the A-D converter. The control input of the scanning double-polarizating aerial is connected with the first microprocessor bus. The control inputs of the block for polarization separation are linked by an electronic switch with the output of the forming block, the input of which is connected to the first input of the control block. The control inputs of the block for polarization separation are connected with the second and the third input of the information flow forming block. 2 cls

  17. Radiometer Testbed Development for SWOT

    Science.gov (United States)

    Kangaslahti, Pekka; Brown, Shannon; Gaier, Todd; Dawson, Douglas; Harding, Dennis; Fu, Lee-Lueng; Esteban-Fernandez, Daniel

    2010-01-01

    Conventional altimeters include nadir looking colocated 18-37 GHz microwave radiometer to measure wet tropospheric path delay. These have reduced accuracy in coastal zone (within 50 km from land) and do not provide wet path delay over land. The addition of high frequency channels to Jason-class radiometer will improve retrievals in coastal regions and enable retrievals over land. High-frequency window channels, 90, 130 and 166 GHz are optimum for improving performance in coastal region and channels on 183 GHz water vapor line are ideal for over-land retrievals.

  18. Resistive vs. total power depositions by Alfven modes in pre-heated low aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Cuperman, S.; Bruma, C.; Komoshvili, K.

    2004-01-01

    The power deposition of fast waves launched by a LFS located antenna in a pre-heated, strongly non-uniform low aspect ratio tokamak (START) is investigated. The rigorous computational results indicate a total power deposition by far larger than that predicted for Alfven continuum eigenmodes in cylindrical plasmas. For toroidal wave numbers |N| > 1, the resistive and total power depositions are almost equal. (author)

  19. Microwave Radiometer Systems, Design and Analysis

    DEFF Research Database (Denmark)

    Skou, Niels; Vine, David Le

    Two important microwave remote sensors are the radar and the radiometer. There have been a number of books written on various aspects of radar, but there have been only a few written on microwave radiometers, especially on subjects of how to design and build radiometer systems. This book, which...

  20. Microwave Radiometer Linearity Measured by Simple Means

    DEFF Research Database (Denmark)

    Skou, Niels

    2002-01-01

    Modern spaceborne radiometer systems feature an almost perfect on-board calibration, hence the primary calibration task to be carried out before launch is a check of radiometer linearity. This paper describes two ways of measuring linearity of microwave radiometers only requiring relatively simple...

  1. When the test of mediation is more powerful than the test of the total effect.

    Science.gov (United States)

    O'Rourke, Holly P; MacKinnon, David P

    2015-06-01

    Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase power has not been investigated. To address this deficit, in a first study we compared the analytical power values of the mediated effect and the total effect in a single-mediator model, to identify the situations in which the inclusion of one mediator increased statistical power. The results from this first study indicated that including a mediator increased statistical power in small samples with large coefficients and in large samples with small coefficients, and when coefficients were nonzero and equal across models. Next, we identified conditions under which power was greater for the test of the total mediated effect than for the test of the total effect in the parallel two-mediator model. These results indicated that including two mediators increased power in small samples with large coefficients and in large samples with small coefficients, the same pattern of results that had been found in the first study. Finally, we assessed the analytical power for a sequential (three-path) two-mediator model and compared the power to detect the three-path mediated effect to the power to detect both the test of the total effect and the test of the mediated effect for the single-mediator model. The results indicated that the three-path mediated effect had more power than the mediated effect from the single-mediator model and the test of the total effect. Practical implications of these results for researchers are then discussed.

  2. A computerized total-radiation management system for Shikoku Electric Power's Ikata nuclear-power plant

    International Nuclear Information System (INIS)

    Hirao, Toshiyuki; Sakakihara, Tetsuro; Tanabe, Shozo; Kano, Mamoru; Hoshi, Jun-ichi.

    1985-01-01

    This system allows on-line, real-time radiation management at nuclear-power plants. It increases management precision, decreases management workloads, and saves labor in operations that previously required specialized technicians to expend great amounts of time and effort on radiation management at facilities and their environments, environmental radiation evaluation, and control of radioactive waste. The article outlines the already installed system. (author)

  3. Research on prediction of agricultural machinery total power based on grey model optimized by genetic algorithm

    Science.gov (United States)

    Xie, Yan; Li, Mu; Zhou, Jin; Zheng, Chang-zheng

    2009-07-01

    Agricultural machinery total power is an important index to reflex and evaluate the level of agricultural mechanization. It is the power source of agricultural production, and is the main factors to enhance the comprehensive agricultural production capacity expand production scale and increase the income of the farmers. Its demand is affected by natural, economic, technological and social and other "grey" factors. Therefore, grey system theory can be used to analyze the development of agricultural machinery total power. A method based on genetic algorithm optimizing grey modeling process is introduced in this paper. This method makes full use of the advantages of the grey prediction model and characteristics of genetic algorithm to find global optimization. So the prediction model is more accurate. According to data from a province, the GM (1, 1) model for predicting agricultural machinery total power was given based on the grey system theories and genetic algorithm. The result indicates that the model can be used as agricultural machinery total power an effective tool for prediction.

  4. MCM Polarimetric Radiometers for Planar Arrays

    Science.gov (United States)

    Kangaslahti, Pekka; Dawson, Douglas; Gaier, Todd

    2007-01-01

    A polarimetric radiometer that operates at a frequency of 40 GHz has been designed and built as a prototype of multiple identical units that could be arranged in a planar array for scientific measurements. Such an array is planned for use in studying the cosmic microwave background (CMB). All of the subsystems and components of this polarimetric radiometer are integrated into a single multi-chip module (MCM) of substantially planar geometry. In comparison with traditional designs of polarimetric radiometers, the MCM design is expected to greatly reduce the cost per unit in an array of many such units. The design of the unit is dictated partly by a requirement, in the planned CMB application, to measure the Stokes parameters I, Q, and U of the CMB radiation with high sensitivity. (A complete definition of the Stokes parameters would exceed the scope of this article. In necessarily oversimplified terms, I is a measure of total intensity of radiation, while Q and U are measures of the relationships between the horizontally and vertically polarized components of radiation.) Because the sensitivity of a single polarimeter cannot be increased significantly, the only way to satisfy the high-sensitivity requirement is to make a large array of polarimeters that operate in parallel. The MCM includes contact pins that can be plugged into receptacles on a standard printed-circuit board (PCB). All of the required microwave functionality is implemented within the MCM; any required supporting non-microwave ("back-end") electronic functionality, including the provision of DC bias and control signals, can be implemented by standard PCB techniques. On the way from a microwave antenna to the MCM, the incoming microwave signal passes through an orthomode transducer (OMT), which splits the radiation into an h + i(nu) beam and an h - i(nu) beam (where, using complex-number notation, h denotes the horizontal component, nu denotes the vertical component, and +/-i denotes a +/-90deg phase

  5. Review of the total system related to operation of nuclear-powered ship

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Miyashita, Kunio

    2000-01-01

    It is essential to establish a marine reactor having excellent safety and reliability, which is capable of competing economically with conventional ships, and which can be accepted by international society, in order to be prepared for practical application of future nuclear-powered ships. For this purpose, it is important not only to demonstrate a marine reactor using a model or test device to simulate actual operation, but also to establish the environmental requirements for operation of a nuclear-powered ship, such as safety standards that are operationally and internationally common for ships, and to establish a repair base for nuclear-powered ships. Systems research for the practical application of nuclear-powered ships was conducted for five years, fiscal years 1992 through 1996, by a group in the Japan Atomic Energy Research Institute (JAERI), under the project title 'Review of the total system related to operation of nuclear-powered ships.' The project sought to summarize requirements for the practical application of nuclear-powered ships from the standpoint of the need side, e.g., what nuclear-powered ships will be requested, and what functions will be provided under the expected future social environment; to show a complete system concept for the operation of nuclear-powered ships; and to clarify the situations creating demand for nuclear-powered ships, as well as the system and environmental conditions to be established for operation of practical nuclear-powered ships. Study considerations included the size of the operation system for a nuclear-powered ship, a scenario for introducing a nuclear-powered container ship, and economic evolution from the effects on the whole shipping system, based on container ships, of introducing a nuclear-powered ship. The results of these considerations were made the framework for constructing an entire system and evaluating its economy. The treatment and disposal of radioactive waste from a nuclear-powered ship, and the

  6. Total Quality Education: Profiles of Schools That Demonstrate the Power of Deming's Management Principles.

    Science.gov (United States)

    Schmoker, Michael J.; Wilson, Richard B.

    This book presents profiles of schools that have demonstrated the power of Deming's Total Quality Management (TQM) principles. It describes schools that have successfully applied those strategies for change. The book explores what public education needs most--a compelling but flexible action plan for improvement. Chapter 1 offers a rationale for…

  7. A Scanning Microwave Radar and Radiometer

    DEFF Research Database (Denmark)

    Skou, Niels

    1995-01-01

    The Scanning Microwave Radar and Radiometer (SMRR) is a line scanner featuring a combined radar and radiometer system operating around 35 and 94 GHz. The layout of the SMRR is shown. The 2 offset antenna parabolas scan in synchronism, the receiver antenna has the highest gain in order to ensure...

  8. CAMEX-3 POLARIMETRIC SCANNING RADIOMETER (PSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Polarimetric Scanning Radiometer (PSR) is a versatile airborne microwave imaging radiometer developed by the Georgia Institute of Technology and the NOAA...

  9. Total gamma activity measurements for determining the radioactivity of residual materials from nuclear power stations

    International Nuclear Information System (INIS)

    Auler, I.; Meyer, M.; Stickelmann, J.

    1995-01-01

    Large amounts of residual materials from retrofitting measures and from decommissioning of nuclear power stations shows such a weak level of radioactivity that they could be released after decision measurements. Expenses incurred with complex geometry cannot be taken with common methods. NIS developed a Release Measurement Facility (RMF) based on total gamma activity measurements especially for these kind of residual materials. The RMF has been applied for decision measurements in different nuclear power plants. Altogether about 2,000 Mg of various types of materials have been measured up to now. More than 90 % of these materials could be released 0 without any restriction after decision measurements

  10. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target.

    Science.gov (United States)

    Dubey, P K; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  11. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    Science.gov (United States)

    Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  12. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    International Nuclear Information System (INIS)

    Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-01-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique

  13. Comparison of isokinetic peak force and power in adults with partial and total blindness.

    Science.gov (United States)

    Horvat, Michael; Ray, Christopher; Nocera, Joe; Croce, Ron

    2006-08-01

    For many populations the ability to move efficiently is compromised by an impaired muscular functioning. Strength development is necessary to overcome the effects of gravity to maintain posture and generate movement responses for mobility. The strength and power capabilities of individuals with total blindness (n = 12) were compared to those with partial vision (n = 12) to evaluate effects of vision on performance. Results indicate that (1) no significant differences were apparent between total blindness and partial vision, (2) significant sex differences were evident in each group, and (3) better performance was apparent at lower velocities. It was concluded that physical performance in individuals with blindness and partial vision are equally deficient.

  14. Analysis of Power Network for Line Reactance Variation to Improve Total Transmission Capacity

    Directory of Open Access Journals (Sweden)

    Ikram Ullah

    2016-11-01

    Full Text Available The increasing growth in power demand and the penetration of renewable distributed generations in competitive electricity market demands large and flexible capacity from the transmission grid to reduce transmission bottlenecks. The bottlenecks cause transmission congestion, reliability problems, restrict competition, and limit the maximum dispatch of low cost generations in the network. The electricity system requires efficient utilization of the current transmission capability to improve the Available Transfer Capability (ATC. To improve the ATC, power flow among the lines can be managed by using Flexible AC Transmission System (FACTS devices as power flow controllers, which alter the parameters of power lines. It is important to place FACTS devices on suitable lines to vary the reactance for improving Total Transmission Capacity (TTC of the network and provide flexibility in the power flow. In this paper a transmission network is analyzed based on line parameters variation to improve TTC of the interconnected system. Lines are selected for placing FACTS devices based on real power flow Performance Index (PI sensitivity factors. TTC is computed using the Repeated Power Flow (RPF method using the constraints of lines thermal limits, bus voltage limits and generator limits. The reactance of suitable lines, selected on the basis of PI sensitivity factors are changed to divert the power flow to other lines with enough transfer capacity available. The improvement of TTC using line reactance variation is demonstrated with three IEEE test systems with multi-area networks. The results show the variation of the selected lines’ reactance in improving TTC for all the test networks with defined contingency cases.

  15. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ramsden, T.

    2013-04-01

    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  16. Full-sky formulae for weak lensing power spectra from total angular momentum method

    International Nuclear Information System (INIS)

    Yamauchi, Daisuke; Taruya, Atsushi; Namikawa, Toshiya

    2013-01-01

    We systematically derive full-sky formulae for the weak lensing power spectra generated by scalar, vector and tensor perturbations from the total angular momentum (TAM) method. Based on both the geodesic and geodesic deviation equations, we first give the gauge-invariant expressions for the deflection angle and Jacobi map as observables of the CMB lensing and cosmic shear experiments. We then apply the TAM method, originally developed in the theoretical studies of CMB, to a systematic derivation of the angular power spectra. The TAM representation, which characterizes the total angular dependence of the spatial modes projected along a line-of-sight, can carry all the information of the lensing modes generated by scalar, vector, and tensor metric perturbations. This greatly simplifies the calculation, and we present a complete set of the full-sky formulae for angular power spectra in both the E-/B-mode cosmic shear and gradient-/curl-mode lensing potential of deflection angle. Based on the formulae, we give illustrative examples of non-vanishing B-mode cosmic shear and curl-mode of deflection angle in the presence of the vector and tensor perturbations, and explicitly compute the power spectra

  17. Calibration of IR test chambers with the missile defense transfer radiometer

    Science.gov (United States)

    Kaplan, Simon G.; Woods, Solomon I.; Carter, Adriaan C.; Jung, Timothy M.

    2013-05-01

    The Missile Defense Transfer Radiometer (MDXR) is designed to calibrate infrared collimated and flood sources over the fW/cm2 to W/cm2 power range from 3 μm to 28μ m in wavelength. The MDXR operates in three different modes: as a filter radiometer, a Fourier-transform spectrometer (FTS)-based spectroradiometer, and as an absolute cryogenic radiometer (ACR). Since 2010, the MDXR has made measurements of the collimated infrared irradiance at the output port of seven different infrared test chambers at several facilities. We present a selection of results from these calibration efforts compared to signal predictions from the respective chamber models for the three different MDXR calibration modes. We also compare the results to previous measurements made of the same chambers with a legacy transfer radiometer, the NIST BXR. In general, the results are found to agree within their combined uncertainties, with the MDXR having 30 % lower uncertainty and greater spectral coverage.

  18. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  19. GRIP HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Hurricane Imaging Radiometer (HIRAD) V1 dataset contains measurements of brightness temperature taken at 4, 5, 6 and 6.6 GHz, as well as MERRA 2 m wind...

  20. Microwave Radiometry and Radiometers for Ocean Applications

    DEFF Research Database (Denmark)

    Skou, Niels

    2008-01-01

    aperture radiometer technique, both yielding imaging capability without scanning. Typical applications of microwave radiometry concerning oceans are: sea salinity, sea surface temperature, wind speed and direction, sea ice detection and classification. However, in an attempt to measure properties...

  1. Characterization of a Compact Water Vapor Radiometer

    Science.gov (United States)

    Gill, Ajay; Selina, Rob

    2018-01-01

    We report on laboratory test results of the Compact Water Vapor Radiometer (CWVR) prototype for the Karl G. Jansky Very Large Array (VLA), a five-channel design centered around the 22 GHz water vapor line. Fluctuations in perceptible water vapor cause fluctuations in atmospheric brightness emission, which are assumed to be proportional to phase fluctuations of the astronomical signal seen by an antenna. The design is intended to support empirical radiometric phase corrections for each baseline in the array.The dynamic range, channel isolation, and gain stability of the device were characterized. The device has a useful dynamic range of order 18 dB after calibration, and the CWVR channel isolation requirement of test, the diode detectors were operated in the square-law region, and a K-band noise diode was used as the broadband input power source to the CWVR over a period of 64 hours. Results indicate that the fluctuations in output counts are negatively correlated to the CWVR enclosure ambient temperature, with a change of ~ 405 counts per 1° C change in temperature.A correction for the CWVR ambient temperature makes a considerable improvement in stability for τ > 102.6 sec. With temperature corrections, the single channel and channel difference gain stability per channel is test results indicate that the CWVR meets required specifications for dynamic range, channel isolation, and gain stability in order to proceed with testing on a pair of VLA antennas.

  2. Precipitation from the GPM Microwave Imager and Constellation Radiometers

    Science.gov (United States)

    Kummerow, Christian; Randel, David; Kirstetter, Pierre-Emmanuel; Kulie, Mark; Wang, Nai-Yu

    2014-05-01

    total precipitable water. One year of coincident observations, generating 20 and 80 million database entries, depending upon the sensor, are used in the retrieval algorithm. The remaining areas such as sea ice and high latitude coastal zones are filled with a combination of CloudSat and AMSR-E plus MHS observations together with a model to create the equivalent databases for other radiometers in the constellation. The most noteworthy result from the Day-1 algorithm is the quality of the land products when compared to existing products. Unlike previous versions of land algorithms that depended upon complex screening routines to decide if pixels were precipitating or not, the current scheme is free of conditional rain statements and appears to produce rain rate with much greater fidelity than previous schemes. There results will be shown.

  3. Total quality control: the deming management philosophy applied to nuclear power plants

    International Nuclear Information System (INIS)

    Heising, C.D.; Wetherell, D.L.; Melhem, S.A.; Sato, M.

    1987-01-01

    In recent years, a call has come for the development of inherently safe nuclear reactor systems that cannot have large-scale accidents. In the search for the perfect inherently safe reactor system, some are calling for the institution of computerized automated control of reactors eliminating most human operators from the control room. A different approach to the problem of the control of inherently safe reactors is that both future and present nuclear power plants need to institute total quality control (TQC) to plant operations and management. The Deming management philosophy of TQC has been implemented in a wide range of industries - particularly in Japan and the US. Specific attention is given, however, to TQC implementation in the electric power industry as applied to nuclear plants. The Kansai Electric Power Company and Florida Power and Light Company have recently implemented TQC. Statistical quality control methods have been applied to monitor and control reactor variables (for example, to the steam generator water level important to start-up operations of pressurized water reactors)

  4. Eddy current and total power loss separation in the iron-phosphate-polyepoxy soft magnetic composites

    International Nuclear Information System (INIS)

    Taghvaei, A.H.; Shokrollahi, H.; Janghorban, K.; Abiri, H.

    2009-01-01

    This work investigates the magnetic properties of iron-phosphate-polyepoxy soft magnetic composite materials. FTIR spectra, EDX analysis, distribution maps, X-ray diffraction pattern and density measurements show that the particles surface layer contains a thin layer of nanocrystalline/amorphous phosphate with high coverage of powders surface. In this paper, a formula for calculating the eddy current loss and total loss components by loss separation method is presented and finally the different parts of power losses are calculated. The results show that, the contribution of eddy current in the bulk material for single coating layer (k b = 0.18) is higher in comparison with double coating layer (k b = 0.09). Moreover, iron-phosphate-polyepoxy composites (P = 0.000004f 2 ) have lower power loss in comparison with iron-phosphate composites (P = 0.00002f 2 ).

  5. Distributed Flexibility Management Targeting Energy Cost and Total Power Limitations in Electricity Distribution Grids

    DEFF Research Database (Denmark)

    Bessler, Sanford; Kemal, Mohammed Seifu; Silva, Nuno

    2018-01-01

    Demand Management uses the interaction and information exchange between multiple control functions in order to achieve goals that can vary in different application contexts. Since there are several stakeholders involved, these may have diverse objectives and even use different architectures...... to actively manage power demand. This paper utilizes an existing distributed demand management architecture in order to provide the following contributions: (1) It develops and evaluates a set of algorithms that combine the optimization of energy costs in scenarios of variable day-ahead prices with the goal...... to improve distribution grid operation reliability, here implemented by a total Power limit. (2) It evaluates the proposed scheme as a distributed system where flexibility information is exchanged with the existing industry standard OpenADR. A Hardware-in-the-Loop testbed realization demonstrates...

  6. Total diffusing power of perturbed lattices and dissymmetry of reflections. Case of groups of defects

    International Nuclear Information System (INIS)

    Tournarie, Max

    1959-01-01

    The total diffusing power for a crystallite of any form containing a centrosymmetric defect has been established. The antisymmetrical part of the deformation potential only contributes very slightly to the primary dissymmetry. We then go on to study the case of a group of defects of the same type. The calculation converges sufficiently to describe the thermal agitation of an infinite crystal. Reprint of a paper published in 'Comptes Rendus des Seances de l'Academie des Sciences', t. 248, p. 2103-2105, sitting of April 6, 1959 [fr

  7. An energy harvesting converter to power sensorized total human knee prosthesis

    International Nuclear Information System (INIS)

    Luciano, V; Sardini, E; Serpelloni, M; Baronio, G

    2014-01-01

    Monitoring the internal loads acting in a total knee prosthesis (TKP) is fundamental aspect to improve their design. One of the main benefits of this improvement is the longer duration of the tibial inserts. In this work, an electromagnetic energy harvesting system, which is implantable in a TKP, is presented. This is conceived for powering a future implantable system that is able to monitor the loads (and, possibly, other parameters) that could influence the working conditions of a TKP in real-time. The energy harvesting system (EHS) is composed of two series of NdFeB magnets, positioned into each condyle, and a coil that is placed in a pin of the tibial insert and connected to an implantable power management circuit. The magnetic flux variation and the induced voltage are generated by the knee's motion. A TKP prototype has been realized in order to reproduce the knee mechanics and to test the EHS performance. In the present work, the experimental results are obtained by adopting a resistive load of 2.2 kΩ, in order to simulate a real implanted autonomous system with a current consumption of 850 µA and voltage of 2 V. The tests showed that, after 7 to 30 s of walking with a gait cycle frequency of about 1.0 Hz, the EHS can generate an energy of about 70 μJ, guaranteeing a voltage between 2 and 1.4 V every 7.6 s. With this prototype we can verify that it is possible to power for 16 ms a circuit having a power consumption of 1.7 mW every 7.6 s. The proposed generator is a viable solution to power an implanted electronic system that is conceived for measuring and transmitting the TKP load parameters. (paper)

  8. Studies on total polyphenols and reducing power of aqueous extracts from selected lamiaceae species

    Directory of Open Access Journals (Sweden)

    Maria Cioroi

    2010-08-01

    Full Text Available Certain phytochemicals in species are attracting increased attention because of a wide range of biological activities especially the possible cancer preventive properties. Polyphenols, the naturalantioxidants are present in plant extracts and they play a key role in antioxidative defence mechanisms in biological systems and they act as free radicals scavenging agents. Polyphenols might thereforeinhibit development of coronary heart disease and cancers. Basil, oregano and sage are highly fragrant plants whose leaves are used as a seasoning herb for many different types of foods. Aqueous extractswere prepared from basil (Ocimum basilicum L., oregano (Origanum vulgare L. and sage (Salvia officinalis L.. To check the phenols presence, the UV-VIS spectrum was made. The amount of polyphenolic compounds from selected Lamiaceae species was determined by spectrophotometry method using the Folin - Ciocalteau reagent and gallic acid as standard. The range of polyphenols total was between 516,352 mg/100g dried species and 859,617 mg/100g dried species.Reducing power has been established by measuring the redox potential of aqueous extracts. Antioxidant activity was directly correlated with the total amount of polyphenols in the species extracts.The free reducing sugars in aqueous extracts from species were analyzed and correlated to the total content of polyphenols.

  9. The total release of xenon-133 from the Fukushima Dai-ichi nuclear power plant accident

    International Nuclear Information System (INIS)

    Stohl, Andreas; Seibert, Petra; Wotawa, Gerhard

    2012-01-01

    The accident at the Fukushima Dai-ichi nuclear power plant (FD-NPP) on 11 March 2011 released large amounts of radioactivity into the atmosphere. We determine the total emission of the noble gas xenon-133 ( 133 Xe) using global atmospheric concentration measurements. For estimating the emissions, we used three different methods: (i) using a purely observation-based multi-box model, (ii) comparisons of dispersion model results driven with GFS meteorological data with the observation data, and (iii) such comparisons with the dispersion model driven by ECMWF data. From these three methods, we have obtained total 133 Xe releases from FD-NPP of (i) 16.7 ± 1.9 EBq, (ii) 14.2 ± 0.8 EBq, and (iii) 19.0 ± 3.4 EBq, respectively. These values are substantially larger than the entire 133 Xe inventory of FD-NPP of about 12.2 EBq derived from calculations of nuclear fuel burn-up. Complete release of the entire 133 Xe inventory of FD-NPP and additional release of 133 Xe due to the decay of iodine-133 ( 133 I), which can add another 2 EBq to the 133 Xe FD-NPP inventory, is required to explain the atmospheric observations. Two of our three methods indicate even higher emissions, but this may not be a robust finding given the differences between our estimates. - Highlights: ► We determine the total release of xenon-133 from the Fukushima nuclear accident. ► We used global measurements and a box model, as well as dispersion model estimates. ► Total 133 Xe release is about 14.2-19 EBq, more than Fukushima 133 Xe inventory. ► Additional release of iodine-133 and decay into 133 Xe needed to explain results.

  10. Novel Cyclotron-Based Radiometal Production

    International Nuclear Information System (INIS)

    DeGrado, Timothy R.

    2013-01-01

    Accomplishments: (1) Construction of prototype solution target for radiometal production; (2) Testing of prototype target for production of following isotopes: a. Zr-89. Investigation of Zr-89 production from Y-89 nitrate solution. i. Defined problems of gas evolution and salt precipitation. ii. Solved problem of precipitation by addition of nitric acid. iii. Solved gas evolution problem with addition of backpressure regulator and constant degassing of target during irradiations. iv. Investigated effects of Y-89 nitrate concentration and beam current. v. Published abstracts at SNM and ISRS meetings; (3) Design of 2nd generation radiometal solution target. a. Included reflux chamber and smaller target volume to conserve precious target materials. b. Included aluminum for prototype and tantalum for working model. c. Included greater varicosities for improved heat transfer; and, (4) Construction of 2nd generation radiometal solution target started

  11. The Hurricane Imaging Radiometer: Present and Future

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Biswas, S. K.; Cecil, D.; Jones, W. L.; Johnson, J.; Farrar, S.; Sahawneh, S.; Ruf, C. S.; hide

    2013-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave radiometer designed to provide high resolution, wide swath imagery of surface wind speed in tropical cyclones from a low profile planar antenna with no mechanical scanning. Wind speed and rain rate images from HIRAD's first field campaign (GRIP, 2010) are presented here followed, by a discussion on the performance of the newly installed thermal control system during the 2012 HS3 campaign. The paper ends with a discussion on the next generation dual polarization HIRAD antenna (already designed) for a future system capable of measuring wind direction as well as wind speed.

  12. Dual color radiometer imagery and test results

    International Nuclear Information System (INIS)

    Silver, A.; Carlen, F.; Link, D.; Zegel, F.

    1989-01-01

    This paper presents a review of the technical characteristics of the Dual Color Radiometer and recent data and test results. The Dual Color Radiometer is a state-of-the-art device that provides simultaneous pixel to pixel registered thermal imagery in both the 3 to 5 and 8 to 12 micron regions. The device is unique in terms of its spatial and temperature resolution of less than 0.10 degrees C temperature and 0.10 milliradian spatial resolution. In addition, the device is tailored for use by the Automatic Target Recognizer (ATR) community

  13. Optimal Power Allocation for Downstream xDSL With Per-Modem Total Power Constraints: Broadcast Channel Optimal Spectrum Balancing (BC-OSB)

    Science.gov (United States)

    Le Nir, Vincent; Moonen, Marc; Verlinden, Jan; Guenach, Mamoun

    2009-02-01

    Recently, the duality between Multiple Input Multiple Output (MIMO) Multiple Access Channels (MAC) and MIMO Broadcast Channels (BC) has been established under a total power constraint. The same set of rates for MAC can be achieved in BC exploiting the MAC-BC duality formulas while preserving the total power constraint. In this paper, we describe the BC optimal power allo- cation applying this duality in a downstream x-Digital Subscriber Lines (xDSL) context under a total power constraint for all modems over all tones. Then, a new algorithm called BC-Optimal Spectrum Balancing (BC-OSB) is devised for a more realistic power allocation under per-modem total power constraints. The capacity region of the primal BC problem under per-modem total power constraints is found by the dual optimization problem for the BC under per-modem total power constraints which can be rewritten as a dual optimization problem in the MAC by means of a precoder matrix based on the Lagrange multipliers. We show that the duality gap between the two problems is zero. The multi-user power allocation problem has been solved for interference channels and MAC using the OSB algorithm. In this paper we solve the problem of multi-user power allocation for the BC case using the OSB algorithm as well and we derive a computational efficient algorithm that will be referred to as BC-OSB. Simulation results are provided for two VDSL2 scenarios: the first one with Differential-Mode (DM) transmission only and the second one with both DM and Phantom- Mode (PM) transmissions.

  14. The state of the art in Japan's telecommunications energy systems - Strategy for Total Power Management -

    Energy Technology Data Exchange (ETDEWEB)

    Muroyama, Seiichi [NTT Power and Building Facilities Inc., Midori-cho, Musashino-shi, Tokyo (Japan)

    2000-07-01

    The ''strategy for total power management (STPM)'' was developed for managing problems in relation to energy for multimedia services in a comprehensive manner from the viewpoints of risk, cost, and environment. To provide integrated services based on STPM, a DC power supply system, a highly reliable UPS, and a co-generation system have been developed. (orig.)

  15. Dynamic response of the thermometric net radiometer

    Science.gov (United States)

    J. D. Wilson; W. J. Massman; G. E. Swaters

    2009-01-01

    We computed the dynamic response of an idealized thermometric net radiometer, when driven by an oscillating net longwave radiation intended roughly to simulate rapid fluctuations of the radiative environment such as might be expected during field use of such devices. The study was motivated by curiosity as to whether non-linearity of the surface boundary conditions...

  16. Calibration of aerosol radiometers. Special aerosol sources

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1988-01-01

    Problems of calibration of artificial aerosol radiometry and information-measurement systems of radiometer radiation control, in particular, are considered. Special aerosol source is suggested, which permits to perform certification and testing of aerosol channels of the systems in situ without the dismantling

  17. Balloon-borne radiometer profiler: Field observations

    International Nuclear Information System (INIS)

    Shaw, W.J.; Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.; Hubbe, J.M.; Scott, K.A.

    1995-03-01

    This project involves the development of the capability of making routine soundings of broadband radiative fluxes and radiative flux divergences to heights of 1500m AGL. Described in this document are radiometers carried on a stabilized platform in a harness inserted in the tetherline of a tethered balloon meteriological sounding system. Field test results are given

  18. Dual Microwave Radiometer Experiment Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, Roger [Univ. of Washington, Seattle, WA (United States)

    2017-09-01

    Passive microwave radiometers (MWRs) are the most commonly used and accurate instruments the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Research Facility has to retrieve cloud liquid water path (LWP). The MWR measurements (microwave radiances or brightness temperatures) are often used to derive LWP using climatological constraints, but are frequently also combined with measurements from radar and other instruments for cloud microphysical retrievals. Nominally this latter approach improves the retrieval of LWP and other cloud microphysical quantities (such as effective radius or number concentration), but this also means that when MWR data are poor, other cloud microphysical quantities are also negatively affected. Unfortunately, current MWR data is often contaminated by water on the MWR radome. This water makes a substantial contribution to the measured radiance and typically results in retrievals of cloud liquid water and column water vapor that are biased high. While it is obvious when the contamination by standing water is large (and retrieval biases are large), much of the time it is difficult to know with confidence that there is no contamination. At present there is no attempt to estimate or correct for this source of error, and identification of problems is largely left to users. Typically users are advised to simply throw out all data when the MWR “wet-window” resistance-based sensor indicates water is present, but this sensor is adjusted by hand and is known to be temperamental. In order to address this problem, a pair of ARM microwave radiometers was deployed to the University of Washington (UW) in Seattle, Washington, USA. The radiometers were operated such that one radiometer was scanned under a cover that (nominally) prevents this radiometer radome from gathering water and permits measurements away from zenith; while the other radiometer is operated normally – open or uncovered - with the radome exposed to the sky

  19. The method of the correlation and dispersion defining of the total power components in the electric transport devices

    Directory of Open Access Journals (Sweden)

    A. V. Nikitenko

    2013-04-01

    Full Text Available Purpose. Development and theoretical ground of the analytical method for the calculation of the active, reactive and total powers in the electric traction devices, taking into consideration the non-stationary character of the stochastic processes change of the voltage and current in the elements of these systems. Methodology. The mathematical methods of the random processes theory and the “discrete electrical engineering” methods are used for solving the main problem of this paper. Findings. The Method of the Correlation and Dispersion is developed for definition of the active power, the reactive power by Fryse and the total power of the devices in the elements of the electric traction system of the main-line railways. The method is based on the well-known concepts of auto- and inter-correlation functions of the random processes which govern the feeder voltages and the currents in the traction power supply subsystem as well as the currents and voltages of the electric rolling stock. The method developed in this paper allows estimating the powers of both stationary and non-stationary processes. This method can be used for the analysis of both the traction mode and the regenerative braking mode of the electric rolling stock. The total power components were calculated for the one of the feeder areas of the Prydniprovsk railway using this method. The results show the significant flow of the reactive power in the traction power supply system. This fact is also confirmed by the high values of the reactive power coefficient. Originality. Scientific novelty of the research is consisted in the following. Firstly, for defining the active and reactive powers in elements of the traction power supply system the new method (the Method of Correlation and Dispersion is created and grounded. This method is different from other existing methods because it takes into consideration the varying non-stationary character of the chance processes of the feeder and

  20. Microfluidic radiolabeling of biomolecules with PET radiometals

    International Nuclear Information System (INIS)

    Zeng Dexing; Desai, Amit V.; Ranganathan, David; Wheeler, Tobias D.; Kenis, Paul J.A.; Reichert, David E.

    2013-01-01

    Introduction: A robust, versatile and compact microreactor has been designed, fabricated and tested for the labeling of bifunctional chelate conjugated biomolecules (BFC-BM) with PET radiometals. Methods: The developed microreactor was used to radiolabel a chelate, either 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) that had been conjugated to cyclo(Arg-Gly-Asp-DPhe-Lys) peptide, with both 64 Cu and 68 Ga respectively. The microreactor radiolabeling conditions were optimized by varying temperature, concentration and residence time. Results: Direct comparisons between the microreactor approach and conventional methods showed improved labeling yields and increased reproducibility with the microreactor under identical labeling conditions, due to enhanced mass and heat transfer at the microscale. More importantly, over 90% radiolabeling yields (incorporation of radiometal) were achieved with a 1:1 stoichiometry of bifunctional chelate biomolecule conjugate (BFC-BM) to radiometal in the microreactor, which potentially obviates extensive chromatographic purification that is typically required to remove the large excess of unlabeled biomolecule in radioligands prepared using conventional methods. Moreover, higher yields for radiolabeling of DOTA-functionalized BSA protein (Bovine Serum Albumin) were observed with 64 Cu/ 68 Ga using the microreactor, which demonstrates the ability to label both small and large molecules. Conclusions: A robust, reliable, compact microreactor capable of chelating radiometals with common chelates has been developed and validated. Based on our radiolabeling results, the reported microfluidic approach overall outperforms conventional radiosynthetic methods, and is a promising technology for the radiometal labeling of commonly utilized BFC-BM in aqueous solutions.

  1. Microfluidic radiolabeling of biomolecules with PET radiometals.

    Science.gov (United States)

    Zeng, Dexing; Desai, Amit V; Ranganathan, David; Wheeler, Tobias D; Kenis, Paul J A; Reichert, David E

    2013-01-01

    A robust, versatile and compact microreactor has been designed, fabricated and tested for the labeling of bifunctional chelate conjugated biomolecules (BFC-BM) with PET radiometals. The developed microreactor was used to radiolabel a chelate, either 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) that had been conjugated to cyclo(Arg-Gly-Asp-DPhe-Lys) peptide, with both ⁶⁴Cu and ⁶⁸Ga respectively. The microreactor radiolabeling conditions were optimized by varying temperature, concentration and residence time. Direct comparisons between the microreactor approach and conventional methods showed improved labeling yields and increased reproducibility with the microreactor under identical labeling conditions, due to enhanced mass and heat transfer at the microscale. More importantly, over 90% radiolabeling yields (incorporation of radiometal) were achieved with a 1:1 stoichiometry of bifunctional chelate biomolecule conjugate (BFC-BM) to radiometal in the microreactor, which potentially obviates extensive chromatographic purification that is typically required to remove the large excess of unlabeled biomolecule in radioligands prepared using conventional methods. Moreover, higher yields for radiolabeling of DOTA-functionalized BSA protein (Bovine Serum Albumin) were observed with ⁶⁴Cu/⁶⁸Ga using the microreactor, which demonstrates the ability to label both small and large molecules. A robust, reliable, compact microreactor capable of chelating radiometals with common chelates has been developed and validated. Based on our radiolabeling results, the reported microfluidic approach overall outperforms conventional radiosynthetic methods, and is a promising technology for the radiometal labeling of commonly utilized BFC-BM in aqueous solutions. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Accurate frequency measurements on gyrotrons using a ''gyro-radiometer''

    International Nuclear Information System (INIS)

    Rebuffi, L.

    1986-08-01

    Using an heterodyne system, called ''Gyro-radiometer'', accurated frequency measurements have been carried out on VARIAN 60 GHz gyrotrons. Changing the principal tuning parameters of a gyrotron, we have detected frequency variations up to 100 MHz, ∼ 40 MHz frequency jumps and smaller jumps (∼ 10 MHz) when mismatches in the transmission line were present. FWHM bandwidth of 300 KHz, parasitic frequencies and frequency drift during 100 msec pulses have also been observed. An efficient method to find a stable-, high power-, long pulse-working point of a gyrotron loaded by a transmission line, has been derived. In general, for any power value it is possible to find stable working conditions tuning the principal parameters of the tube in correspondance of a maximum of the emitted frequency

  3. Radiometers for radon concentration in air

    International Nuclear Information System (INIS)

    Bartak, J.; Machaj, B.; Pienkos, J.P.

    2002-01-01

    Constant grow of science and technology stimulates development of new improved measuring tools. New measuring demand arise also in radon concentration measurements. Varying rock stress and rock cracks influencing radon emanation encouraged research aimed at use of this phenomenon to predict crumps of mine formation among others based on variation of radon emanation. A measuring set was developed in the Institute of Nuclear Chemistry and Technology enabling long term monitoring of radon concentration in mine bore-hole. The set consists probe and probe controller. Detection threshold of the probe is 230 Bq/m 3 . The set can operate in the environment with methane explosion hazard. A radiometer employing Lucas cell as radiation detector for radon concentration in air was also developed its detection threshold is approx. 10 Bq/m 3 . Replaceable Lucas cell of the radiometer allows for measurement of high as well as low radon concentration in short time interval. (author)

  4. Monolithic microwave integrated circuit water vapor radiometer

    Science.gov (United States)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  5. Intersatellite Calibration of Microwave Radiometers for GPM

    Science.gov (United States)

    Wilheit, T. T.

    2010-12-01

    The aim of the GPM mission is to measure precipitation globally with high temporal resolution by using a constellation of satellites logically united by the GPM Core Satellite which will be in a non-sunsynchronous, medium inclination orbit. The usefulness of the combined product depends on the consistency of precipitation retrievals from the various microwave radiometers. The calibration requirements for this consistency are quite daunting requiring a multi-layered approach. The radiometers can vary considerably in their frequencies, view angles, polarizations and spatial resolutions depending on their primary application and other constraints. The planned parametric algorithms will correct for the varying viewing parameters, but they are still vulnerable to calibration errors, both relative and absolute. The GPM Intersatellite Calibration Working Group (aka X-CAL) will adjust the calibration of all the radiometers to a common consensus standard for the GPM Level 1C product to be used in precipitation retrievals. Finally, each Precipitation Algorithm Working Group must have its own strategy for removing the residual errors. If the final adjustments are small, the credibility of the precipitation retrievals will be enhanced. Before intercomparing, the radiometers must be self consistent on a scan-wise and orbit-wise basis. Pre-screening for this consistency constitutes the first step in the intercomparison. The radiometers are then compared pair-wise with the microwave radiometer (GMI) on the GPM Core Satellite. Two distinct approaches are used for sake of cross-checking the results. On the one hand, nearly simultaneous observations are collected at the cross-over points of the orbits and the observations of one are converted to virtual observations of the other using a radiative transfer model to permit comparisons. The complementary approach collects histograms of brightness temperature from each instrument. In each case a model is needed to translate the

  6. A radiometer for stochastic gravitational waves

    International Nuclear Information System (INIS)

    Ballmer, Stefan W

    2006-01-01

    The LIGO Scientific Collaboration recently reported a new upper limit on an isotropic stochastic background of gravitational waves obtained based on the data from the third LIGO science run (S3). Here I present a new method for obtaining directional upper limits on stochastic gravitational waves that essentially implements a gravitational wave radiometer. The LIGO Scientific Collaboration intends to use this method for future LIGO science runs

  7. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability.

    Science.gov (United States)

    Wang, Jake X; Smith, Joshua R; Bonde, Pramod

    2014-04-01

    Left ventricular assist device therapy has radically improved congestive heart failure survival with smaller rotary pumps. The driveline used to power today's left ventricular assist devices, however, continues to be a source of infection, traumatic damage, and rehospitalization. Previous attempts to wirelessly power left ventricular assist devices using transcutaneous energy transfer systems have been limited by restrictions on separation distance and alignment between the transmit and receive coils. Resonant electrical energy transfer allows power delivery at larger distances without compromising safety and efficiency. This review covers the efforts to wirelessly power mechanical circulatory assist devices and the progress made in enhancing their energy sources. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Safety and reliability in nuclear power plants operation using total range simulators for operators training

    International Nuclear Information System (INIS)

    Gleason, E.; Espinosa, G.; Rodriguez, S.

    1993-01-01

    This paper presents a methodology developed for the management of the configuration simulator, unit 1 of Laguna Verde's nucleoelectric power station. This methodology has the purchase to conclude the simulator modernization and to have interaction with the power station's administration. The validation and the application of this methodology is also presented as well as the up-to-date results. (B.C.A.). 12 refs, 01 fig

  9. Power plant allocation in East Kalimantan considering total cost and emissions

    Science.gov (United States)

    Muslimin; Utomo, D. S.

    2018-04-01

    The fulfillment of electricity need in East Kalimantan is the responsibility of State Electricity Company/Perusahaan Listrik Negara (PLN). But PLN faces constraints in the lack of generating capacity it has. So the allocation of power loads in East Kalimantan has its own challenges. Additional power supplies from other parties are required. In this study, there are four scenarios tested to meet the electricity needs in East Kalimantan with the goal of minimizing costs and emissions. The first scenario is only by using PLN power plant. The second scenario is by combining PLN + Independent Power Producer (IPP) power plants. The third scenario is by using PLN + Rented power plants. The fourth scenario is by using PLN + Excess capacity generation. Numerical experiment using nonlinear programming is conducted with the help of the solver. The result shows that in the peak load condition, the best combination is scenario 2 (PLN + IPP). While at the lowest load condition, the cheapest scenario is PLN + IPP while the lowest emission is PLN + Rent.

  10. Total-system expertise in economically efficient operation of nuclear power plants

    International Nuclear Information System (INIS)

    2000-01-01

    Siemens Nuclear Power GmbH can look back on well over 40 years of experience in developing and constructing nuclear power plants. 23 Power plant units of Siemens design are in operation in five countries, and in autumn this year, another one will start commercial operation, while yet another one is under construction. In comparative international power plant surveys, the Siemens-design systems usually rank in top positions when it comes to comparing systems availability and electric power generation, and Siemens have build a reputation in manufacturing power plants up to the highest safety standards worldwide. Our experience as a manufacturer of turnkey PWR and BWR type reactors, as well as our profound knowledge of international nuclear standardisation, engineering codes and safety guides, has been used and processed to the benefit of the services offered by Siemens, resulting in well-devised service packages, and enhancements and optimisation of our machinery and equipment. Siemens has of course obtained the relevant licenses and certification for all its services and products according to DIN ISO 9001, KTA and ASME standards [de

  11. Implementation of Active Thermal Control (ATC) for the Soil Moisture Active and Passive (SMAP) Radiometer

    Science.gov (United States)

    Mikhaylov, Rebecca; Kwack, Eug; French, Richard; Dawson, Douglas; Hoffman, Pamela

    2014-01-01

    NASA's Earth Observing Soil Moisture Active and Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 kilometer near-polar, sun-synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its three year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 revolutions per minute, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within three days. In order to make the necessary precise surface emission measurements from space, the electronics and hardware associated with the radiometer must meet tight short-term (instantaneous and orbital) and long-term (monthly and mission) thermal stabilities. Maintaining these tight thermal stabilities is quite challenging because the sensitive electronics are located on a fast spinning platform that can either be in full sunlight or total eclipse, thus exposing them to a highly transient environment. A passive design approach was first adopted early in the design cycle as a low-cost solution. With careful thermal design efforts to cocoon and protect all sensitive components, all stability requirements were met passively. Active thermal control (ATC) was later added after the instrument Preliminary Design Review (PDR) to mitigate the threat of undetected gain glitches, not for thermal-stability reasons. Gain glitches are common problems with radiometers during missions, and one simple way to avoid gain glitches is to use the in-flight set point programmability that ATC

  12. Comparative cost analyses: total flow vs other power conversion systems for the Salton Sea Geothermal Resource

    Energy Technology Data Exchange (ETDEWEB)

    Wright, G.W.

    1978-09-18

    Cost studies were done for Total Flow, double flash, and multistage flash binary systems for electric Energy production from the Salton Sea Geothermal Resource. The purpose was to provide the Department of energy's Division of Geothermal Energy with information by which to judge whether to continue development of the Total Flow system. Results indicate that the Total Flow and double flash systems have capital costs of $1,135 and $1,026 /kW with energy costs of 40.9 and 39.7 mills/kW h respectively. The Total Flow and double flash systems are not distinguishable on a cost basis alone; the multistage flash binary system, with capital cost of $1,343 /kW and energy cost of 46.9 mills/kW h, is significantly more expensive. If oil savings are considered in the total analysis, the Total Flow system could save 30% more oil than the double flash system, $3.5 billion at 1978 oil prices.

  13. A new algorithm to determine the total radiated power at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gloeggler, Stephan; Bernert, Matthias; Eich, Thomas [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Collaboration: The ASDEX Upgrade Team

    2016-07-01

    Radiation is an essential part of the power balance in a fusion plasma. In future fusion devices about 90% of the power will have to be dissipated, mainly by radiation. For the development of an appropriate operational scenario, information about the absolute level of plasma radiation (P{sub rad,tot}) is crucial. Bolometers are used to measure the radiated power, however, an algorithm is required to derive the absolute power out of many line-integrated measurements. The currently used algorithm (BPD) was developed for the main chamber radiation. It underestimates the divertor radiation as its basic assumptions are not satisfied in this region. Therefore, a new P{sub rad,tot} algorithm is presented. It applies an Abel inversion on the main chamber and uses empirically based assumptions for poloidal asymmetries and the divertor radiation. To benchmark the new algorithm, synthetic emissivity profiles are used. On average, the new Abel inversion based algorithm deviates by only 10% from the nominal synthetic value while BPD is about 25% too low. With both codes time traces of ASDEX Upgrade discharges are calculated. The analysis of these time traces shows that the underestimation of the divertor radiation can have significant consequences on the accuracy of BPD while the new algorithm is shown to be stable.

  14. A horizontal vane radiometer: experiment, theory and simulation

    OpenAIRE

    Wolfe, David; Lazarra, Andres; Garcia, Alejandro

    2015-01-01

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte C...

  15. Analyzing Non Stationary Processes in Radiometers

    Science.gov (United States)

    Racette, Paul

    2010-01-01

    The lack of well-developed techniques for modeling changing statistical moments in our observations has stymied the application of stochastic process theory for many scientific and engineering applications. Non linear effects of the observation methodology is one of the most perplexing aspects to modeling non stationary processes. This perplexing problem was encountered when modeling the effect of non stationary receiver fluctuations on the performance of radiometer calibration architectures. Existing modeling approaches were found not applicable; particularly problematic is modeling processes across scales over which they begin to exhibit non stationary behavior within the time interval of the calibration algorithm. Alternatively, the radiometer output is modeled as samples from a sequence random variables; the random variables are treated using a conditional probability distribution function conditioned on the use of the variable in the calibration algorithm. This approach of treating a process as a sequence of random variables with non stationary stochastic moments produce sensible predictions of temporal effects of calibration algorithms. To test these model predictions, an experiment using the Millimeter wave Imaging Radiometer (MIR) was conducted. The MIR with its two black body calibration references was configured in a laboratory setting to observe a third ultra-stable reference (CryoTarget). The MIR was programmed to sequentially sample each of the three references in approximately a 1 second cycle. Data were collected over a six-hour interval. The sequence of reference measurements form an ensemble sample set comprised of a series of three reference measurements. Two references are required to estimate the receiver response. A third reference is used to estimate the uncertainty in the estimate. Typically, calibration algorithms are designed to suppress the non stationary effects of receiver fluctuations. By treating the data sequence as an ensemble

  16. Specification for a total quality assurance programme for nuclear power plants

    International Nuclear Information System (INIS)

    1980-01-01

    This British Standard specifies principles for the establishment and implementation of quality assurance programmes during all phases of design, procurement, fabrication, construction, commissioning, operation, maintenance and decommissioning of structures, systems and components of nuclear power plants. These principles apply to activities affecting the quality of items, such as designing, purchasing, fabricating, handling, shipping, storing, cleaning, erecting, installing, testing, commissioning, operating, inspecting, maintaining, repairing, refuelling, modifying and, eventually decommissioning. (author)

  17. High total dose proton irradiation effects on silicon NPN rf power transistors

    International Nuclear Information System (INIS)

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana; Pushpa, N.

    2014-01-01

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods

  18. High total dose proton irradiation effects on silicon NPN rf power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana, E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore-570006, Karnataka (India); Pushpa, N. [Department of PG Studies in Physics, JSS College, Ooty Road, Mysore-570025, Karnataka (India)

    2014-04-24

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods.

  19. GPM GROUND VALIDATION DUAL POLARIZATION RADIOMETER GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual Polarization Radiometer GCPEx dataset provides brightness temperature measurements at frequencies 90 GHz (not polarized) and 150 GHz...

  20. Precipitation and total power consumption in the ionosphere: Global MHD simulation results compared with Polar and SNOE observations

    Directory of Open Access Journals (Sweden)

    M. Palmroth

    2006-05-01

    Full Text Available We compare the ionospheric electron precipitation morphology and power from a global MHD simulation (GUMICS-4 with direct measurements of auroral energy flux during a pair of substorms on 28-29 March 1998. The electron precipitation power is computed directly from global images of auroral light observed by the Polar satellite ultraviolet imager (UVI. Independent of the Polar UVI measurements, the electron precipitation energy is determined from SNOE satellite observations on the thermospheric nitric oxide (NO density. We find that the GUMICS-4 simulation reproduces the spatial variation of the global aurora rather reliably in the sense that the onset of the substorm is shown in GUMICS-4 simulation as enhanced precipitation in the right location at the right time. The total integrated precipitation power in the GUMICS-4 simulation is in quantitative agreement with the observations during quiet times, i.e., before the two substorm intensifications. We find that during active times the GUMICS-4 integrated precipitation is a factor of 5 lower than the observations indicate. However, we also find factor of 2-3 differences in the precipitation power among the three different UVI processing methods tested here. The findings of this paper are used to complete an earlier objective, in which the total ionospheric power deposition in the simulation is forecasted from a mathematical expression, which is a function of solar wind density, velocity and magnetic field. We find that during this event, the correlation coefficient between the outcome of the forecasting expression and the simulation results is 0.83. During the event, the simulation result on the total ionospheric power deposition agrees with observations (correlation coefficient 0.8 and the AE index (0.85.

  1. Patient outcomes using Wii-enhanced rehabilitation after total knee replacement - the TKR-POWER study.

    Science.gov (United States)

    Negus, J J; Cawthorne, D P; Chen, J S; Scholes, C J; Parker, D A; March, L M

    2015-01-01

    Home-based rehabilitation following total knee replacement surgery can be as effective as clinic-based or in-patient rehabilitation. The use of the Nintendo Wii has been postulated as a novel rehabilitation tool that adds an additional focus on balance and proprioception into the recovery protocol. The aim of the proposed clinical trial is to investigate the effectiveness of this novel rehabilitation tool, used at home for three months after total knee replacement surgery and to assess any lasting improvements in functional outcome at one year. This will be a randomised controlled trial of 128 patients undergoing primary total knee replacement. The participants will be recruited preoperatively from three surgeons at a single centre. There will be no change to the usual care provided until 6 weeks after the operation. Then participants will be randomised to either the Wii-Fit group or usual rehabilitative care group. Outcomes will be assessed preoperatively, a 6-week post surgery baseline and then at 18 weeks, 6 months and 1 year. The primary outcome is the change in self-reported WOMAC total score from week 6 to 18 weeks. Secondary outcomes include objective measures of strength, function and satisfaction scores. The results of this clinical trial will be directly relevant for implementation into clinical practice. If beneficial, this affordable technology could be used by many patients to rehabilitate at home. Not only could it optimize the outcomes from their total knee replacement surgery but decrease the need for clinic-based or outpatient therapy for the majority. (ACTRN12611000291987). Copyright © 2014 Elsevier Inc. All rights reserved.

  2. THREE-PHASE ENERGY SUPPLY SYSTEMS SIMULATION FOR THE TOTAL POWER LOSSES COMPONENTS ASSESSMENT

    Directory of Open Access Journals (Sweden)

    D.V. Tugay

    2016-09-01

    Full Text Available Purpose. The goal is to optimize a structure of Matlab-model of the three-phase energy supply system with power active filter. The mathematical model that describes the energy supply system modes of operation which contains additional losses is proposed. Methodology. We have applied concepts of the electrical circuits theory, mathematical modeling elements based on linear algebra and vector calculus, mathematical simulation in Matlab package. Results. We have developed two models of three-phase energy supply system. The first one is based on a vector representation, and the second one on the matrix representation of energy processes. Using these models we have solved the problem of maintaining unchanged the average useful power for 279 cases of energy supply system modes of operation. Originality. We have developed methods of mathematical analysis of a three-phase energy supply systems with polyharmonic voltages and currents in the symmetric and asymmetric modes. Practical value. We have created Matlab-model of a three-phase energy supply system with automated calculation of a correction factor. It allows reducing more than one order the time for energy processes elucidation in multiphase systems.

  3. Microfluidic Radiometal Labeling Systems for Biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, D E; Kenis, P J. A.

    2011-12-29

    In a typical labeling procedure with radiometals, such as Cu-64 and Ga-68; a very large (~ 100-fold) excess of the non-radioactive reactant (precursor) is used to promote rapid and efficient incorporation of the radioisotope into the PET imaging agent. In order to achieve high specific activities, careful control of reaction conditions and extensive chromatographic purifications are required in order to separate the labeled compounds from the cold precursors. Here we propose a microfluidic approach to overcome these problems, and achieve high specific activities in a more convenient, semi-automated fashion and faster time frame. Microfluidic reactors, consisting of a network of micron-sized channels (typical dimensions in the range 10 - 300¼m), filters, separation columns, electrodes and reaction loops/chambers etched onto a solid substrate, are now emerging as an extremely useful technology for the intensification and miniaturization of chemical processes. The ability to manipulate, process and analyze reagent concentrations and reaction interfaces in both space and time within the channel network of a microreactor provides the fine level of reaction control that is desirable in PET radiochemistry practice. These factors can bring radiometal labeling, specifically the preparation of radio-labeled biomolecules such as antibodies, much closer to their theoretical maximum specific activities.

  4. Calculations of total fusion power and spatial distribution of emissivity for a D-T thermal plasma

    International Nuclear Information System (INIS)

    Batistoni, P.; Pillon, M.

    1987-01-01

    The preliminary project of a diagnostic tool to measure the neutron emissivity profile for NET (Next European Torus) with an array of collimators is presented. With the help of a neutron transport code the maximum possible number of collimators, compatible with the crosstalk noise and the space available in the NET 2.2.B is determined within these constraints. An array of 17 collimators can be used, and some experimental results are simulated using a Monte Carlo code. These results are analyzed and an inversion procedure is used to obtain the emissivity profile and evaluate the total fusion power. The results show that the total fusion power can be measured within 10% for different emission profiles

  5. ATSR - The Along Track Scanning Radiometer For ERS-1

    Science.gov (United States)

    Llewellyn-Jones, David T.; Mutlow, C. T.

    1990-04-01

    The ATSR instrument is an advanced imaging radiometer designed to measure global sea surface temperature to an accuracy of the order of 0.3C from the ESA's ERS-1 satellite, due to be launched in late 1990. The instrument is designed to achieve a very precise correction for atmospheric effects through the use of carefully selected spectral bands, and a new "along-track" scanning technique. This involves viewing the same geophysical scene at two different angles, hence using two different atmospheric paths, so that the difference in radiative signal from the two scenes is due only to atmospheric effects, which can then be quantitatively estimated. ATSR is also a high performance radiometer, and embodies two important technological features; the first of these is the use of closed-cycle coolers, especially developed for space applications, and which were used to cool the sensitive infrared detectors. The radiometer also incorporates two purpose-designed on-board blackbody calibration targets which will also be described in detail. These two features enable the instrument to meet the stringent requirements of sensitivity and absolute radiometric accuracy demanded by this application. ATSR also incorporates a passive nadir-viewing two-channel microwave sounder. Measurements from this instrument will enable total atmospheric water vapour to be inferred, which will not only lead to improved SST retrievals, but will also considerably improve the atmospheric range correction required by the ERS-1 radar altimeter. ATSR is provided by a consortium of research institutes including the University of Oxford, Department of Atmospheric Oceanic and Planetary Physics, who are primarily responsible for scientific calibration of the instrument; University College London's Mullard Space Science Laboratory, who are responsible for the development of the blackbodies; the UK Meteorological Office, whose contributions include the focal plane assembly; the French laboratory CRPE, who are

  6. Normalized knee-extension strength or leg-press power after fast-track total knee arthroplasty

    DEFF Research Database (Denmark)

    Aalund, Peter K; Larsen, Kristian; Hansen, Torben Bæk

    2013-01-01

    OBJECTIVE: (s): To investigate which of the two muscle-impairment measures for the operated leg, normalized knee extension strength or leg press power, is more closely associated to performance-based and self-reported measures of function shortly following total knee arthroplasty (TKA). DESIGN...... and dynamic leg presses to determine their body-mass normalized knee extension strength and leg press power, respectively. The 10-m fast speed walking and 30-s chair stand tests were used to determine performance-based function, while the Western Ontario McMaster University Osteoarthritis Index (WOMAC......) and Oxford Knee scores were used to determine self-reported function. RESULTS: Normalized leg press power was more closely associated to both performance-based (r=.82, P...

  7. The power of cross-functional teams in driving total quality

    Science.gov (United States)

    Mcclung, Tim M.; Mcmaster, Tom J.

    1992-01-01

    Garrett Canada, a Division of Allied-Signal Aerospace Canada, has been a member of the Canadian aerospace industry for 40 years. Although Garrett Canada has always been a profitable division with a solid market share, the changing and turbulent business environment and globalization of the aerospace industry has created new demands and challenges. The marketplace is demanding faster introduction of new products, as well as shorter leadtimes for repairs and spares. It was recognized that reducing cycle times for new products and for ongoing production would not only satisfy our customers, it would also enhance our business performance through reduced inventories, lower past due, and more responsiveness to change. It was evident that drastic function changes were required if we were to maintain our position as a premier aerospace supplier. The challenge was to convert a stable, somewhat slow-paced work environment with strong functional boundaries into a boundaryless world class team functioning in a total quality environment and focused on customer satisfaction. Complete and uncompromised customer satisfaction has become our driving force, with Total Quality being our engine to continuously improve our processes and increase our speed. The way in which this transition has been brought about is the subject of this presentation.

  8. Calibration of the TUD Ku-band Synthetic Aperture Radiometer

    DEFF Research Database (Denmark)

    Laursen, Brian; Skou, Niels

    1995-01-01

    The TUD Synthetic Aperture Radiometer is a 2-channel demonstration model that can simulate a thinned aperture radiometer having an unfilled aperture consisting of several small antenna elements. Aperture synthesis obtained by interferometric measurements using the antenna elements in pairs, follo...

  9. The DC-8 Submillimeter-Wave Cloud Ice Radiometer

    Science.gov (United States)

    Walter, Steven J.; Batelaan, Paul; Siegel, Peter; Evans, K. Franklin; Evans, Aaron; Balachandra, Balu; Gannon, Jade; Guldalian, John; Raz, Guy; Shea, James

    2000-01-01

    An airborne radiometer is being developed to demonstrate the capability of radiometry at submillimeter-wavelengths to characterize cirrus clouds. At these wavelengths, cirrus clouds scatter upwelling radiation from water vapor in the lower troposphere. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in scattering due to crystal size to be distinguished from changes in cloud ice content. Measurements at dual polarizations can also be used to constrain the mean crystal shape. An airborne radiometer measuring the upwelling submillimeter-wave flux should then able to retrieve both bulk and microphysical cloud properties. The radiometer is being designed to make measurements at four frequencies (183 GHz, 325 GHz, 448 GHz, and 643 GHz) with dual-polarization capability at 643 GHz. The instrument is being developed for flight on NASA's DC-8 and will scan cross-track through an aircraft window. Measurements with this radiometer in combination with independent ground-based and airborne measurements will validate the submillimeter-wave radiometer retrieval techniques. The goal of this effort is to develop a technique to enable spaceborne characterization of cirrus, which will meet a key climate measurement need. The development of an airborne radiometer to validate cirrus retrieval techniques is a critical step toward development of spaced-based radiometers to investigate and monitor cirrus on a global scale. The radiometer development is a cooperative effort of the University of Colorado, Colorado State University, Swales Aerospace, and Jet Propulsion Laboratory and is funded by the NASA Instrument Incubator Program.

  10. L-Band Polarimetric Correlation Radiometer with Subharmonic Sampling

    DEFF Research Database (Denmark)

    Rotbøll, Jesper; Søbjærg, Sten Schmidl; Skou, Niels

    2001-01-01

    A novel L-band radiometer trading analog complexity for digital ditto has been designed and built. It is a fully polarimetric radiometer of the correlation type and it is based on the sub-harmonic sampling principle in which the L-band signal is directly sampled by a fast A to D converter...

  11. Novel multi-beam radiometers for accurate ocean surveillance

    DEFF Research Database (Denmark)

    Cappellin, C.; Pontoppidan, K.; Nielsen, P. H.

    2014-01-01

    Novel antenna architectures for real aperture multi-beam radiometers providing high resolution and high sensitivity for accurate sea surface temperature (SST) and ocean vector wind (OVW) measurements are investigated. On the basis of the radiometer requirements set for future SST/OVW missions...

  12. A novel L-band polarimetric radiometer featuring subharmonic sampling

    DEFF Research Database (Denmark)

    Rotbøll, J.; Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    A novel L-band radiometer trading analog components for digital circuits has been designed, built and operated. It is a fully polarimetric radiometer of the correlation type, and it is based on the subharmonic sampling principle in which the L-band signal is directly sampled by a fast A to D...

  13. Total-Factor Energy Efficiency (TFEE Evaluation on Thermal Power Industry with DEA, Malmquist and Multiple Regression Techniques

    Directory of Open Access Journals (Sweden)

    Jin-Peng Liu

    2017-07-01

    Full Text Available Under the background of a new round of power market reform, realizing the goals of energy saving and emission reduction, reducing the coal consumption and ensuring the sustainable development are the key issues for thermal power industry. With the biggest economy and energy consumption scales in the world, China should promote the energy efficiency of thermal power industry to solve these problems. Therefore, from multiple perspectives, the factors influential to the energy efficiency of thermal power industry were identified. Based on the economic, social and environmental factors, a combination model with Data Envelopment Analysis (DEA and Malmquist index was constructed to evaluate the total-factor energy efficiency (TFEE in thermal power industry. With the empirical studies from national and provincial levels, the TFEE index can be factorized into the technical efficiency index (TECH, the technical progress index (TPCH, the pure efficiency index (PECH and the scale efficiency index (SECH. The analysis showed that the TFEE was mainly determined by TECH and PECH. Meanwhile, by panel data regression model, unit coal consumption, talents and government supervision were selected as important indexes to have positive effects on TFEE in thermal power industry. In addition, the negative indexes, such as energy price and installed capacity, were also analyzed to control their undesired effects. Finally, considering the analysis results, measures for improving energy efficiency of thermal power industry were discussed widely, such as strengthening technology research and design (R&D, enforcing pollutant and emission reduction, distributing capital and labor rationally and improving the government supervision. Relative study results and suggestions can provide references for Chinese government and enterprises to enhance the energy efficiency level.

  14. Etched track radiometers in radon measurements: a review

    CERN Document Server

    Nikolaev, V A

    1999-01-01

    Passive radon radiometers, based on alpha particle etched track detectors, are very attractive for the assessment of radon exposure. The present review considers various devices used for measurement of the volume activity of radon isotopes and their daughters and determination of equilibrium coefficients. Such devices can be classified into 8 groups: (i) open or 'bare' detectors, (ii) open chambers, (iii) sup 2 sup 2 sup 2 Rn chambers with an inlet filter, (iv) advanced sup 2 sup 2 sup 2 Rn radiometers, (v) multipurpose radiometers, (vi) radiometers based on a combination of etched track detectors and an electrostatic field, (vii) radiometers based on etched track detectors and activated charcoal and (viii) devices for the measurement of radon isotopes and/or radon daughters by means of track parameter measurements. Some of them such as the open detector and the chamber with an inlet filter have a variety of modifications and are applied widely both in geophysical research and radon dosimetric surveys. At the...

  15. Design considerations of a total energy power system for a rural health centre in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Chendo, M A.C. [Lagos Univ. (NG). Dept. of Physics; Salawu, R I [Lagos Univ. (NG). Dept. of Electrical Engineering

    1989-01-01

    A conceptual total energy (hybrid) system design considerations are presented for a Rural Health Centre in a remote village in Nigeria. The design uses a spectrally selective beam splitting technique. The system provides both electrical and thermal energy with electrical needs of the centre being provided by the photoquantum convertor while the hot water and sterilization requirements are met by the spectrally selective heat transfer liquid in the thermally decoupled loop. A critical analysis of the electrical and thermal energy requirements of the health centre including its laboratories, water supply, refrigeration, lighting, etc. and its technoeconomic aspects is also discussed. With appropriate sizing of panels, storage, choice of the spectrally selective heat transfer liquid and other accessories, the PV/PT system using moderately concentrated sunlight is attractive for such application in areas with no national grid lines and normally considered uneconomical for electrification by the extension of the national grid or by the provision of generators which require constant supply of fuel and servicing. (author).

  16. First TSI observations of the new Compact Lightweight Absolute Radiometer (CLARA)

    Science.gov (United States)

    Walter, B.; Finsterle, W.; Koller, S.; Levesque, P. L.; Pfiffner, D.; Schmutz, W. K.

    2017-12-01

    Continuous and precise Total Solar Irradiance (TSI) measurements are indispensable to evaluate the influence of short- and long-term solar radiative emission variations on the Earth's energy budget. The existence of a potentially long-term trend in the suns activity and whether or not such a trend could be climate effective is still a matter of debate. The Compact Lightweight Absolute Radiometer (CLARA) is one of PMOD/WRC's future contributions to the almost seamless series of space borne TSI measurements since 1978. CLARA is one of three payloads of the Norwegian micro satellite NORSAT-1, along with Langmuir probes for space plasma research and an Automatic Identification System (AIS) receiver to monitor maritime traffic in Norwegian waters. NORSAT-1 was launched July 14th 2017 and the nominal operation of CLARA will start after the instrument commissioning beginning August 21st2017. We present the design, calibration and first TSI observations of CLARA, a new generation of active cavity Electrical Substitution Radiometers (ESR) comprising the latest radiometer developments of PMOD/WRC: i) A three-cavity design for degradation tracking and redundancy, ii) a digital control loop with feed forward system allowing for measurement cadences of 30s, iii) an aperture arrangement to reduce internal scattered light and iv) a new cavity and heatsink design to minimize non-equivalence, size and weight of the instrument. CLARA was end-to-end calibrated against the SI traceable cryogenic radiometer of the TSI Radiometer Facility (TRF) in Boulder (Colorado). The absolute measurement uncertainties for the three SI-traceable TSI detectors of CLARA are 567, 576 and 912 ppm (k = 1).

  17. Microwave integrated circuit radiometer front-ends for the Push Broom Microwave Radiometer

    Science.gov (United States)

    Harrington, R. F.; Hearn, C. P.

    1982-01-01

    Microwave integrated circuit front-ends for the L-band, S-band and C-band stepped frequency null-balanced noise-injection Dicke-switched radiometer to be installed in the NASA Langley airborne prototype Push Broom Microwave Radiometer (PBMR) are described. These front-ends were developed for the fixed frequency of 1.413 GHz and the variable frequencies of 1.8-2.8 GHz and 3.8-5.8 GHz. Measurements of the noise temperature of these units were made at 55.8 C, and the results of these tests are given. While the overall performance was reasonable, improvements need to be made in circuit losses and noise temperatures, which in the case of the C-band were from 1000 to 1850 K instead of the 500 K specified. Further development of the prototypes is underway to improve performance and extend the frequency range.

  18. Applying Advances in GPM Radiometer Intercalibration and Algorithm Development to a Long-Term TRMM/GPM Global Precipitation Dataset

    Science.gov (United States)

    Berg, W. K.

    2016-12-01

    The Global Precipitation Mission (GPM) Core Observatory, which was launched in February of 2014, provides a number of advances for satellite monitoring of precipitation including a dual-frequency radar, high frequency channels on the GPM Microwave Imager (GMI), and coverage over middle and high latitudes. The GPM concept, however, is about producing unified precipitation retrievals from a constellation of microwave radiometers to provide approximately 3-hourly global sampling. This involves intercalibration of the input brightness temperatures from the constellation radiometers, development of an apriori precipitation database using observations from the state-of-the-art GPM radiometer and radars, and accounting for sensor differences in the retrieval algorithm in a physically-consistent way. Efforts by the GPM inter-satellite calibration working group, or XCAL team, and the radiometer algorithm team to create unified precipitation retrievals from the GPM radiometer constellation were fully implemented into the current version 4 GPM precipitation products. These include precipitation estimates from a total of seven conical-scanning and six cross-track scanning radiometers as well as high spatial and temporal resolution global level 3 gridded products. Work is now underway to extend this unified constellation-based approach to the combined TRMM/GPM data record starting in late 1997. The goal is to create a long-term global precipitation dataset employing these state-of-the-art calibration and retrieval algorithm approaches. This new long-term global precipitation dataset will incorporate the physics provided by the combined GPM GMI and DPR sensors into the apriori database, extend prior TRMM constellation observations to high latitudes, and expand the available TRMM precipitation data to the full constellation of available conical and cross-track scanning radiometers. This combined TRMM/GPM precipitation data record will thus provide a high-quality high

  19. TOKMINA, Toroidal Magnetic Field Minimization for Tokamak Fusion Reactor. TOKMINA-2, Total Power for Tokamak Fusion Reactor

    International Nuclear Information System (INIS)

    Hatch, A.J.

    1975-01-01

    1 - Description of problem or function: TOKMINA finds the minimum magnetic field, Bm, required at the toroidal coil of a Tokamak type fusion reactor when the input is beta(ratio of plasma pressure to magnetic pressure), q(Kruskal-Shafranov plasma stability factor), and y(ratio of plasma radius to vacuum wall radius: rp/rw) and arrays of PT (total thermal power from both d-t and tritium breeding reactions), Pw (wall loading or power flux) and TB (thickness of blanket), following the method of Golovin, et al. TOKMINA2 finds the total power, PT, of such a fusion reactor, given a specified magnetic field, Bm, at the toroidal coil. 2 - Method of solution: TOKMINA: the aspect ratio(a) is minimized, giving a minimum value for Bm. TOKMINA2: a search is made for PT; the value of PT which minimizes Bm to the required value within 50 Gauss is chosen. 3 - Restrictions on the complexity of the problem: Input arrays presently are dimensioned at 20. This restriction can be overcome by changing a dimension card

  20. Potential of Future Hurricane Imaging Radiometer (HIRAD) Ocean Surface Wind Observations for Determining Tropical Storm Vortex Intensity and Structure

    Science.gov (United States)

    Atlas, Robert; Bailey, M. C.; Black, Peter; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Ruf, Christopher; Uhlhorn, Eric

    2008-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development, which offers the potential of new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation from either UAS or satellite platforms. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven aircraft remote sensing technique for observing tropical cyclone ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by the NASA's Instrument Incubator Program. A brassboard version of the instrument is complete and has been successfully tested in an anechoic chamber, and development of the aircraft instrument is well underway. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean vector winds and rain during hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered. Preliminary studies show that HIRAD will have a significant positive impact on analyses as either a new aircraft or satellite sensor.

  1. Weight estimates and packaging techniques for the microwave radiometer spacecraft. [shuttle compatible design

    Science.gov (United States)

    Jensen, J. K.; Wright, R. L.

    1981-01-01

    Estimates of total spacecraft weight and packaging options were made for three conceptual designs of a microwave radiometer spacecraft. Erectable structures were found to be slightly lighter than deployable structures but could be packaged in one-tenth the volume. The tension rim concept, an unconventional design approach, was found to be the lightest and transportable to orbit in the least number of shuttle flights.

  2. Mapping global precipitation with satellite borne microwave radiometer and infrared radiometer using Kalman filter

    International Nuclear Information System (INIS)

    Noda, S.; Sasashige, K.; Katagami, D.; Ushio, T.; Kubota, T.; Okamoto, K.; Iida, Y.; Kida, S.; Shige, S.; Shimomura, S.; Aonashi, K.; Inoue, T.; Morimoto, T.; Kawasaki, Z.

    2007-01-01

    Estimates of precipitation at a high time and space resolution are required for many important applications. In this paper, a new global precipitation map with high spatial (0.1 degree) and temporal (1 hour) resolution using Kalman filter technique is presented and evaluated. Infrared radiometer data, which are available globally nearly everywhere and nearly all the time from geostationary orbit, are used with the several microwave radiometers aboard the LEO satellites. IR data is used as a means to move the precipitation estimates from microwave observation during periods when microwave data are not available at a given location. Moving vector is produced by computing correlations on successive images of IR data. When precipitation is moved, the Kalman filter is applied for improving the moving technique in this research. The new approach showed a better score than the technique without Kalman filter. The correlation coefficient was 0.1 better than without the Kalman filter about 6 hours after the last microwave overpasses, and the RMS error was improved about 0.1 mm/h with the Kalman filter technique. This approach is unique in that 1) the precipitation estimates from the microwave radiometer is mainly used, 2) the IR temperature in every hour is also used for the precipitation estimates based on the Kalman filter theory

  3. Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals

    Directory of Open Access Journals (Sweden)

    Sebastián Pantoja

    2009-08-01

    Full Text Available The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers’ outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called “baseline errors” associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver’s output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network.

  4. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    Science.gov (United States)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  5. Special aerosol sources for certification and test of aerosol radiometers

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Y.E.; Kuznetsov, Y.V.; Rizin, A.I.; Fertman, D.E.

    1991-01-01

    The results are presented of the development and practical application of new radionuclide source types (Special Aerosol Sources (SAS)), that meet the international standard recommendations, which are used for certification and test of aerosol radiometers (monitors) using model aerosols of plutonium-239, strontium-yttrium-90 or uranium of natural isotope composition and certified against Union of Soviet Socialist Republics USSR national radioactive aerosol standard or by means of a reference radiometer. The original technology for source production allows the particular features of sampling to be taken into account as well as geometry and conditions of radionuclides radiation registration in the sample for the given type of radiometer. (author)

  6. Special aerosol sources for certification and test of aerosol radiometers

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, S.K.; Zalmanzon, Y.E.; Kuznetsov, Y.V.; Rizin, A.I.; Fertman, D.E. (Union Research Institute of Instrumentation, Moscow (USSR))

    1991-01-01

    The results are presented of the development and practical application of new radionuclide source types (Special Aerosol Sources (SAS)), that meet the international standard recommendations, which are used for certification and test of aerosol radiometers (monitors) using model aerosols of plutonium-239, strontium-yttrium-90 or uranium of natural isotope composition and certified against Union of Soviet Socialist Republics USSR national radioactive aerosol standard or by means of a reference radiometer. The original technology for source production allows the particular features of sampling to be taken into account as well as geometry and conditions of radionuclides radiation registration in the sample for the given type of radiometer. (author).

  7. Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook With subsections for derivative instruments: Multifilter Radiometer (MFR) Normal Incidence Multifilter Radiometer (NIMFR)

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Gary B. [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Michalsky, Joseph J. [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.

    2016-03-01

    The visible Multifilter Rotating Shadowband Radiometer (MFRSR) is a passive instrument that measures global and diffuse components of solar irradiance at six narrowband channels and one open, or broadband, channel (Harrison et al. 1994). Direct irradiance is not a primary measurement, but is calculated using diffuse and global measurements. To collect one data record, the MFRSR takes measurements at four different shadowband positions. The first measurement is taken with the shadowband in the nadir (home) position. The next three measurements are, in order, the first side-band, sun-blocked, and second side-band. The side-band measurements are used to correct for the portion of the sky obscured by the shadowband. The nominal wavelengths of the narrowband channels are 415, 500, 615, 673, 870, and 940 nm. From such measurements, one may infer the atmosphere’s aerosol optical depth at each wavelength. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Harrison and Michalsky 1994) and other atmospheric constituents.

  8. Calculus of the Power Spectral Density of Ultra Wide Band Pulse Position Modulation Signals Coded with Totally Flipped Code

    Directory of Open Access Journals (Sweden)

    DURNEA, T. N.

    2009-02-01

    Full Text Available UWB-PPM systems were noted to have a power spectral density (p.s.d. consisting of a continuous portion and a line spectrum, which is composed of energy components placed at discrete frequencies. These components are the major source of interference to narrowband systems operating in the same frequency interval and deny harmless coexistence of UWB-PPM and narrowband systems. A new code denoted as Totally Flipped Code (TFC is applied to them in order to eliminate these discrete spectral components. The coded signal transports the information inside pulse position and will have the amplitude coded to generate a continuous p.s.d. We have designed the code and calculated the power spectral density of the coded signals. The power spectrum has no discrete components and its envelope is largely flat inside the bandwidth with a maximum at its center and a null at D.C. These characteristics make this code suited for implementation in the UWB systems based on PPM-type modulation as it assures a continuous spectrum and keeps PPM modulation performances.

  9. Ozone, spectral irradiance and aerosol measurements with the Brewer spectro radiometer

    International Nuclear Information System (INIS)

    Marenco, F.; Di Sarra, A.

    2001-01-01

    In this technical report a detailed description of the Brewer spectro radiometer, a widespread instrument for ozone and ultraviolet radiation, is given. The methodologies used to measure these quantities and for instrument calibration are described in detail. Finally a new methodology, developed by ENEA to derive the aerosol optical depth from the Brewer routine total ozone measurements, is described. This methodology is based on Langley extrapolation, on the determination of the transmissivity of the Brewer neutral density filters, and on a statistically significant number of half days of measurements obtained in could-free conditions. Results of this method, obtained with the Brewer of the ENEA station for climate observations Roberto Sarao, located in the island of Lampedusa, are reported. These results confirm the validity of the method, thanks to independent measurements taken in 1999 with a Multi filter Rotating Shadow band Radiometer. This methodology allows researchers to obtain an aerosol climatology from ozone measurements obtained at several sites world-wide [it

  10. CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations

    DEFF Research Database (Denmark)

    Zribi, Mehrez; Parde, Mickael; Boutin, Jacquline

    2011-01-01

    The "Cooperative Airborne Radiometer for Ocean and Land Studies" (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed ...

  11. Construction and calibration of solar radiometers: pyranometer and pyrheliometer

    International Nuclear Information System (INIS)

    Escobedo, J.F.; Passos, E.F.; Souza, M.F. de

    1988-01-01

    This paper reports the construction and development of solar radiometers and discusses some characteristic parameters such as linearity, sensitivity and time constant, using an Eppley black-and-white pyranometer as reference. (author) [pt

  12. Hurricane Satellite (HURSAT) from Advanced Very High Resolution Radiometer (AVHRR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Huricane Satellite (HURSAT)-Advanced Very High Resolution Radiometer (AVHRR) is used to extend the HURSAT data set such that appling the Objective Dvorak technique...

  13. Effect of Chamber Wall Proximity on Radiometer Force Production (Preprint)

    National Research Council Canada - National Science Library

    Selden, N. P; Gimelshein, N. E; Gimelshein, S. F; Ketsdever, A. D

    2008-01-01

    ... on a given radiometer configuration in both the free molecule and transitional regimes. The contribution of the chamber walls to both the flowfield structure and radiometric force production were examined for helium, argon, and nitrogen test gases...

  14. Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, GB; Michalsky, JJ

    2011-02-07

    The visible Multifilter Rotating Shadowband Radiometer (MFRSR) is a passive instrument that measures global and diffuse components of solar irradiance at six narrowband channels and one open, or broadband, channel (Harrison et al. 1994). Direct irradiance is not a primary measurement, but is calculated using the diffuse and global measurements. To collect one data record, the MFRSR takes measurements at four different shadowband positions. The first measurement is taken with the shadowband in the nadir (home) position. The next three measurements are, in order, the first side-band, sun-blocked, and second side-band. The side-band measurements are used to correct for the portion of the sky obscured by the shadowband. The nominal wavelengths of the narrowband channels are 415, 500, 615, 673, 870, and 940 nm. From such measurements, one may infer the atmosphere's aerosol optical depth at each wavelength. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Harrison and Michalsky 1994) and other atmospheric constituents.

  15. Daily quality assurance software for a satellite radiometer system

    Science.gov (United States)

    Keegstra, P. B.; Smoot, G. F.; Bennett, C. L.; Aymon, J.; Backus, C.; Deamici, G.; Hinshaw, G.; Jackson, P. D.; Kogut, A.; Lineweaver, C.

    1992-01-01

    Six Differential Microwave Radiometers (DMR) on COBE (Cosmic Background Explorer) measure the large-angular-scale isotropy of the cosmic microwave background (CMB) at 31.5, 53, and 90 GHz. Quality assurance software analyzes the daily telemetry from the spacecraft to ensure that the instrument is operating correctly and that the data are not corrupted. Quality assurance for DMR poses challenging requirements. The data are differential, so a single bad point can affect a large region of the sky, yet the CMB isotropy requires lengthy integration times (greater than 1 year) to limit potential CMB anisotropies. Celestial sources (with the exception of the moon) are not, in general, visible in the raw differential data. A 'quicklook' software system was developed that, in addition to basic plotting and limit-checking, implements a collection of data tests as well as long-term trending. Some of the key capabilities include the following: (1) stability analysis showing how well the data RMS averages down with increased data; (2) a Fourier analysis and autocorrelation routine to plot the power spectrum and confirm the presence of the 3 mK 'cosmic' dipole signal; (3) binning of the data against basic spacecraft quantities such as orbit angle; (4) long-term trending; and (5) dipole fits to confirm the spacecraft attitude azimuth angle.

  16. A cryogenic electrical substitution radiometer for hard X-rays

    International Nuclear Information System (INIS)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Mueller, P.; Ulm, G.

    2007-01-01

    Cryogenic electrical substitution radiometers (ESR) are well established in radiometry to determine radiant power with low uncertainties from the infrared to the soft X-ray region. The absorbers are made of copper to achieve a small time constant. At higher photon energies, the use of copper prevents the operation of ESR due to increasing transmittance. A new absorber design for hard X-rays has been developed at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at BESSY II. In the first place, extensive simulations were performed for a variety of materials and absorber geometries using the Monte Carlo simulation code Geant4. The accuracy of the simulations was verified comparing them to scattering experiments performed at a 7 T wavelength shifter beamline at BESSY II. It was shown that Geant4 describes the photo-effect, including fluorescence as well as Compton- and Rayleigh scattering, with high accuracy. The simulations and experiments resulted in an absorber with a gold base 500 μm in thickness, inclined by 30 deg., and a cylindrical shell made of copper 80 μm in thickness to reduce losses caused mainly by fluorescence. The absorber was manufactured at PTB by means of electroforming and was implemented into an existing ESR. Monochromatized synchrotron radiation of high spectral purity was used to calibrate silicon photodiodes against the ESR for photon energies up to 60 keV with relative uncertainties below 1%

  17. A cryogenic electrical substitution radiometer for hard X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, M. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)], E-mail: Martin.Gerlach@ptb.de; Krumrey, M.; Cibik, L.; Mueller, P.; Ulm, G. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2007-09-21

    Cryogenic electrical substitution radiometers (ESR) are well established in radiometry to determine radiant power with low uncertainties from the infrared to the soft X-ray region. The absorbers are made of copper to achieve a small time constant. At higher photon energies, the use of copper prevents the operation of ESR due to increasing transmittance. A new absorber design for hard X-rays has been developed at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at BESSY II. In the first place, extensive simulations were performed for a variety of materials and absorber geometries using the Monte Carlo simulation code Geant4. The accuracy of the simulations was verified comparing them to scattering experiments performed at a 7 T wavelength shifter beamline at BESSY II. It was shown that Geant4 describes the photo-effect, including fluorescence as well as Compton- and Rayleigh scattering, with high accuracy. The simulations and experiments resulted in an absorber with a gold base 500 {mu}m in thickness, inclined by 30 deg., and a cylindrical shell made of copper 80 {mu}m in thickness to reduce losses caused mainly by fluorescence. The absorber was manufactured at PTB by means of electroforming and was implemented into an existing ESR. Monochromatized synchrotron radiation of high spectral purity was used to calibrate silicon photodiodes against the ESR for photon energies up to 60 keV with relative uncertainties below 1%.

  18. A cryogenic electrical substitution radiometer for hard X-rays

    Science.gov (United States)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Müller, P.; Ulm, G.

    2007-09-01

    Cryogenic electrical substitution radiometers (ESR) are well established in radiometry to determine radiant power with low uncertainties from the infrared to the soft X-ray region. The absorbers are made of copper to achieve a small time constant. At higher photon energies, the use of copper prevents the operation of ESR due to increasing transmittance. A new absorber design for hard X-rays has been developed at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at BESSY II. In the first place, extensive simulations were performed for a variety of materials and absorber geometries using the Monte Carlo simulation code Geant4. The accuracy of the simulations was verified comparing them to scattering experiments performed at a 7 T wavelength shifter beamline at BESSY II. It was shown that Geant4 describes the photo-effect, including fluorescence as well as Compton- and Rayleigh scattering, with high accuracy. The simulations and experiments resulted in an absorber with a gold base 500 μm in thickness, inclined by 30°, and a cylindrical shell made of copper 80 μm in thickness to reduce losses caused mainly by fluorescence. The absorber was manufactured at PTB by means of electroforming and was implemented into an existing ESR. Monochromatized synchrotron radiation of high spectral purity was used to calibrate silicon photodiodes against the ESR for photon energies up to 60 keV with relative uncertainties below 1%.

  19. Sources of errors in the measurements of underwater profiling radiometer

    Digital Repository Service at National Institute of Oceanography (India)

    Silveira, N.; Suresh, T.; Talaulikar, M.; Desa, E.; Matondkar, S.G.P.; Lotlikar, A.

    to meet the stringent quality requirements of marine optical data for satellite ocean color sensor validation, development of algorithms and other related applications, it is very essential to take great care while measuring these parameters. There are two... of the pelican hook. The radiometer dives vertically and the cable is paid out with less tension, keeping in tandem with the descent of the radiometer while taking care to release only the required amount of cable. The operation of the release mechanism lever...

  20. Measurement of radiosity coefficient by means of an infrared radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Yoshizo; Kaminaga, Fumito; Osakabe, Masahiro; Maekawa, Katsuhiro [Ibaraki Univ., Hitachi (Japan). Faculty of Engineering; Ishii, Toshimitsu; Ouoka, Norikazu; Etou, Motokuni

    1991-02-01

    An infrared radiometer has been used for measuring and visualizing the radiation temperature distribution of a surface in many fields. Measured radiation energy by the radiometer is a summation of an emitted radiation and a reflection, which is called a radiosity flux. The present paper shows the characteristics of the radiosity of tested materials. The infrared sensor in used to measure the erosion rate of the graphite by ion beam injection and the temperature distribution of a cutter. (author).

  1. Measurement of radiosity coefficient by means of an infrared radiometer

    International Nuclear Information System (INIS)

    Okamoto, Yoshizo; Kaminaga, Fumito; Osakabe, Masahiro; Maekawa, Katsuhiro; Ishii, Toshimitsu; Ouoka, Norikazu; Etou, Motokuni.

    1991-01-01

    An infrared radiometer has been used for measuring and visualizing the radiation temperature distribution of a surface in many fields. Measured radiation energy by the radiometer is a summation of an emitted radiation and a reflection, which is called a radiosity flux. The present paper shows the characteristics of the radiosity of tested materials. The infrared sensor in used to measure the erosion rate of the graphite by ion beam injection and the temperature distribution of a cutter. (author)

  2. Possibilities and consequences of the Total Cumulative Exergy Loss method in improving the sustainability of power generation

    International Nuclear Information System (INIS)

    Stougie, Lydia; Kooi, Hedzer J. van der

    2016-01-01

    Highlights: • The TCExL method can be applied to all kinds of technological systems. • All exergy losses during the lifetime of a technological system are considered. • The results of the TCExL method are independent of time and weighting factors. • Applying the TCExL method can improve the sustainability of power generation. • The system with the lowest TCExL score is not always economically favourable. - Abstract: It is difficult to decide which power generation system is the most sustainable when environmental, economic and social sustainability aspects are taken into account. Problems with conventional environmental sustainability assessment methods are that no consensus exists about the applied models and weighting factors and that exergy losses are not considered. Economic sustainability assessment methods do not lead to results that are independent of time because they are influenced by market developments, while social sustainability assessment methods suffer from the availability and qualitative or semi-quantitative nature of data. Existing exergy analysis methods do not take into account all exergy losses and/or are extended with factors or equations that are not commonly accepted. The new Total Cumulative Exergy Loss (TCExL) method is based on fundamental thermodynamic equations and takes into account all exergy losses caused by a technological system during its life cycle, i.e. internal exergy losses, exergy losses caused by emission abatement and exergy losses related to land use. The development of the TCExL method is presented as well as the application of this method and environmental, economic and social sustainability assessment methods to two case studies: power generation in combination with LNG evaporation and Fossil versus renewable energy sources for power generation. According to the results of the assessments, large differences exist between the environmental sustainability assessment and TCExL methods in the sense that different

  3. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  4. Application of total quality tools in the operational process modernization and optimization of large hydroelectric power plants; Aplicacao de ferramentas da qualidade total na modernizacao e otimizacao de processos operacionais de grandes usinas hidreletricas

    Energy Technology Data Exchange (ETDEWEB)

    Potenza, Luiz Frederico; Kassem, Faisal Ali; Medlo, Gerson Ricardo; Santos, Valdemir Chalito dos [Companhia Paranaense de Energia (COPEL), Capitao Leonidas Marques, PR (Brazil). Superintendencia de Gerencia da Manutencao. Area de Operacao e Manutencao Salto Caxias]. E-mail: potenza@mail.copel.br

    1998-07-01

    This work highlights a practical example of Total Quality tools application, and as the institutional changes advances, the necessity of being better and more competitive becomes evident. By using Total Quality Control tools in the modernization and optimization of operational processes for large hydroelectric power plants of the COPEL-Brazil this work contributes for the continuous increasing of the customers satisfaction and the profitability of the company.

  5. Optimization of procedure for calibration with radiometer/photometer

    International Nuclear Information System (INIS)

    Detilly, Isabelle

    2009-01-01

    A test procedure for the radiometer/photometer calibrations mark International Light at the Laboratorio de Fotometria y Tecnologia Laser (LAFTA) de la Escuela de Ingenieria Electrica de la Universidad de Costa Rica is established. Two photometric banks are used as experimental set and two calibrations were performed of the International Light. A basic procedure established in the laboratory, is used for calibration from measurements of illuminance and luminous intensity. Some dependent variations of photometric banks used in the calibration process, the programming of the radiometer/photometer and the applied methodology showed the results. The procedure for calibration with radiometer/photometer can be improved by optimizing the programming process of the measurement instrument and possible errors can be minimized by using the recommended procedure. (author) [es

  6. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    Science.gov (United States)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  7. Multi-angle Imaging SpectroRadiometer

    Science.gov (United States)

    Diner, David J. (Principal Investigator)

    MISR views the sunlit Earth simultaneously at nine widely spaced angles and provides ongoing global coverage with high spatial detail. Its imagery is carefully calibrated to provide accurate measures of the brightness, contrast, and color of reflected sunlight. MISR provides new types of information for scientists studying Earth's climate, such as the regional and global distribution of different types of atmospheric particles and aerosols. The change in reflection at different view angles provides the means to distinguish aerosol types, cloud forms, and land surface cover. Combined with stereoscopic techniques, this enables construction of 3-D cloud models and estimation of the total amount of sunlight reflected by Earth's diverse environments. MISR was built for NASA by the Jet Propulsion Laboratory (JPL) in Pasadena, California. It is part of NASA's first Earth Observing System (EOS) spacecraft, the Terra spacecraft, which was launched into polar orbit from Vandenberg Air Force Base on December 18, 1999. MISR has been continuously providing data since February 24, 2000. [Mission Objectives] The MISR instrument acquires systematic multi-angle measurements for global monitoring of top-of-atmosphere and surface albedos and for measuring the shortwave radiative properties of aerosols, clouds, and surface scenes in order to characterize their impact on the Earth's climate. The Earth's climate is constantly changing -- as a consequence of both natural processes and human activities. Scientists care a great deal about even small changes in Earth's climate, since they can affect our comfort and well-being, and possibly our survival. A few years of below-average rainfall, an unusually cold winter, or a change in emissions from a coal-burning power plant, can influence the quality of life of people, plants, and animals in the region involved. The goal of NASA's Earth Observing System (EOS) is to increase our understanding of the climate changes that are occurring on our

  8. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (COSMIR) MC3E dataset used the Conical Scanning Millimeter-wave Imaging Radiometer...

  9. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (COSMIR) GCPEx dataset used the Conical Scanning Millimeter-wave Imaging Radiometer...

  10. HURRICANE AND SEVERE STORM SENTINEL (HS3) HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Hurricane Imaging Radiometer (HIRAD) was collected by the Hurricane Imaging Radiometer (HIRAD), which was a multi-band...

  11. The design of an in-water optical radiometer

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Desa, B.A; De

    insights into the role playEd. by absorption and scattering processes in the optical properties of water masses. In this paper, we shall describe our design approach to current development effort on a profiling optical radiometer that will measure upwelling...

  12. Calibration of the solar UV radiometers in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, K.; Jokela, K.; Visuri, R.; Ylianttila, L. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland). Non-Ionizing Radiation Lab.

    1996-12-31

    In this report, the main emphasis is given to (1) the problems associated with the basic calibration of the spectroradiometer and (2) the year-to-year variability of the calibrations of the solar UV network radiometers. Also, the results from intercomparisons of the Brewer and OL 742 spectroradiometers are included

  13. High resolution soil moisture radiometer. [large space structures

    Science.gov (United States)

    Wilheit, T. T.

    1978-01-01

    An electrically scanned pushbroom phased antenna array is described for a microwave radiometer which can provide agriculturally meaningful measurements of soil moisture. The antenna size of 100 meters at 1400 MHz or 230 meters at 611 MHz requires several shuttle launches and orbital assembly. Problems inherent to the size of the structure and specific instrument problems are discussed as well as the preliminary design.

  14. Accurate antenna reflector loss measurements for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1996-01-01

    Antenna reflector losses may play an important role in the calibration budget for a microwave radiometer. If the losses are small they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident...

  15. Measurement of small antenna reflector losses for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1997-01-01

    Antenna reflector losses play an important role in the calibration budget for a microwave radiometer. If the losses are small, they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident radiation...

  16. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation

    Science.gov (United States)

    Akbar, Ruzbeh; Cosh, Michael H.; O'Neill, Peggy E.; Entekhabi, Dara; Moghaddam, Mahta

    2017-01-01

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithms performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

  17. Improved noise-adding radiometer for microwave receivers

    Science.gov (United States)

    Batelaan, P. D.; Stelzried, C. T.; Goldstein, R. M.

    1973-01-01

    Use of input switch and noise reference standard is avoided by using noise-adding technique. Excess noise from solid state noise-diode is coupled into receiver through directional coupler and square-wave modulated at low rate. High sensitivity receivers for radioastronomy applications are utilized with greater confidence in stability of radiometer.

  18. Calibration OGSE for a multichannel radiometer for Mars atmosphere studies

    Science.gov (United States)

    Jiménez, J. J.; Álvarez, F. J.; Gonzalez-Guerrero, M.; Apéstigue, V.; Martin, I.; Fernández, J. M.; Fernán, A. A.; Arruego, I.

    2017-09-01

    This work describes several OGSEs (Optical Ground Support Equipment) developed by INTA (Spanish Institute of Aerospace Technology - Instituto Nacional de Técnica Aeroespacial) for the calibration and characterization of their self-manufactured multichannel radiometers (Solar Irradiance Sensors - SIS) for planetary atmospheric studies in the frame of some Martian missions at which INTA is participating.

  19. Calibration of the solar UV radiometers in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, K; Jokela, K; Visuri, R; Ylianttila, L [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland). Non-Ionizing Radiation Lab.

    1997-12-31

    In this report, the main emphasis is given to (1) the problems associated with the basic calibration of the spectroradiometer and (2) the year-to-year variability of the calibrations of the solar UV network radiometers. Also, the results from intercomparisons of the Brewer and OL 742 spectroradiometers are included

  20. Characterisation of optical filters for broadband UVA radiometer

    Science.gov (United States)

    Alves, Luciana C.; Coelho, Carla T.; Corrêa, Jaqueline S. P. M.; Menegotto, Thiago; Ferreira da Silva, Thiago; Aparecida de Souza, Muriel; Melo da Silva, Elisama; Simões de Lima, Maurício; Dornelles de Alvarenga, Ana Paula

    2016-07-01

    Optical filters were characterized in order to know its suitability for use in broadband UVA radiometer head for spectral irradiance measurements. The spectral transmittance, the angular dependence and the spatial uniformity of the spectral transmittance of the UVA optical filters were investigated. The temperature dependence of the transmittance was also studied.

  1. A New Way to Demonstrate the Radiometer as a Heat Engine

    Science.gov (United States)

    Hladkouski, V. I.; Pinchuk, A. I.

    2015-01-01

    While the radiometer is readily available as a toy, A. E. Woodruff notes that it is also a very useful tool to help us understand how to resolve certain scientific problems. Many physicists think they know how the radiometer works, but only a few actually understand it. Here we present a demonstration that shows that a radiometer can be thought of…

  2. Design of a Push-Broom Multi-Beam Radiometer for Future Ocean Observations

    DEFF Research Database (Denmark)

    Cappellin, C.; Pontoppidan, K.; Nielsen, P. H.

    2015-01-01

    The design of a push-broom multi-beam radiometer for future ocean observations is described. The radiometer provides a sensitivity one order of magnitude higher than a traditional conical scanning radiometer, and has the big advantage of being fully stationary relative to the satellite platform...

  3. Design and Development of the SMAP Microwave Radiometer Electronics

    Science.gov (United States)

    Piepmeier, Jeffrey R.; Medeiros, James J.; Horgan, Kevin A.; Brambora, Clifford K.; Estep, Robert H.

    2014-01-01

    The SMAP microwave radiometer will measure land surface brightness temperature at L-band (1413 MHz) in the presence of radio frequency interference (RFI) for soil moisture remote sensing. The radiometer design was driven by the requirements to incorporate internal calibration, to operate synchronously with the SMAP radar, and to mitigate the deleterious effects of RFI. The system design includes a highly linear super-heterodyne microwave receiver with internal reference loads and noise sources for calibration and an innovative digital signal processor and detection system. The front-end comprises a coaxial cable-based feed network, with a pair of diplexers and a coupled noise source, and radiometer front-end (RFE) box. Internal calibration is provided by reference switches and a common noise source inside the RFE. The RF back-end (RBE) downconverts the 1413 MHz channel to an intermediate frequency (IF) of 120 MHz. The IF signals are then sampled and quantized by high-speed analog-to-digital converters in the radiometer digital electronics (RDE) box. The RBE local oscillator and RDE sampling clocks are phase-locked to a common reference to ensure coherency between the signals. The RDE performs additional filtering, sub-band channelization, cross-correlation for measuring third and fourth Stokes parameters, and detection and integration of the first four raw moments of the signals. These data are packetized and sent to the ground for calibration and further processing. Here we discuss the novel features of the radiometer hardware particularly those influenced by the need to mitigate RFI.

  4. Wide Dynamic Range Multiband Infrared Radiometer for In-Fire Measurements of Wildland Fire Radiant Flux Density

    Science.gov (United States)

    Kremens, R.; Dickinson, M. B.; Hardy, C.; Skowronski, N.; Ellicott, E. A.; Schroeder, W.

    2016-12-01

    We have developed a wide dynamic range (24-bit) data acquisition system for collection of radiant flux density (FRFD) data from wildland fires. The data collection subsystem was designed as an Arduino `shield' and incorporates a 24-bit analog-to-digital converter, precision voltage reference, real time clock, microSD card interface, audible annuciator and interface for various digital communication interfaces (RS232, I2C, SPI, etc.). The complete radiometer system consists of our custom-designed `shield', a commercially available Arduino MEGA computer circuit board and a thermopile sensor -amplifier daughter board. Software design and development is greatly assisted by the availability of a library of public-domain, user-implemented software. The daughter board houses a 5-band radiometer using thermopiles designed for this experiment (Dexter Research Corp., Dexter, MI) to allow determination of the total FRFD from the fire (using a wide band thermopile with a KRS-5 window, 0.1 - 30 um), the FRFD as would be received by an orbital asset like MODIS (3.95 um center wavelength (CWL) and 10.95 CWL, corresponding to MODIS bands 21/22 and 31, respectively) and wider bandpass (0.1-5.5 um and 8-14 um) corresponding to the FRFD recorded by `MWIR' and `LWIR' imaging systems. We required a very wide dynamic range system in order to be able to record the flux density from `cold' ground before the fire, through the `hot' flaming combustion stage, to the `cool' phase after passage of the fire front. The recording dynamic range required (with reasonable resolution at the lowest temperatures) is on the order of 106, which is not currently available in commercial instrumentation at a price point, size or feature set that is suitable for wildland fire investigations. The entire unit, along with rechargeable battery power supply is housed in a fireproof aluminum chassis box, which is then mounted on a mast at a height of 5 - 7 m above the fireground floor. We will report initial

  5. Low Average Sidelobe Slot Array Antennas for Radiometer Applications

    Science.gov (United States)

    Rengarajan, Sembiam; Zawardzki, Mark S.; Hodges, Richard E.

    2012-01-01

    In radiometer applications, it is required to design antennas that meet low average sidelobe levels and low average return loss over a specified frequency bandwidth. It is a challenge to meet such specifications over a frequency range when one uses resonant elements such as waveguide feed slots. In addition to their inherent narrow frequency band performance, the problem is exacerbated due to modeling errors and manufacturing tolerances. There was a need to develop a design methodology to solve the problem. An iterative design procedure was developed by starting with an array architecture, lattice spacing, aperture distribution, waveguide dimensions, etc. The array was designed using Elliott s technique with appropriate values of the total slot conductance in each radiating waveguide, and the total resistance in each feed waveguide. Subsequently, the array performance was analyzed by the full wave method of moments solution to the pertinent integral equations. Monte Carlo simulations were also carried out to account for amplitude and phase errors introduced for the aperture distribution due to modeling errors as well as manufacturing tolerances. If the design margins for the average sidelobe level and the average return loss were not adequate, array architecture, lattice spacing, aperture distribution, and waveguide dimensions were varied in subsequent iterations. Once the design margins were found to be adequate, the iteration was stopped and a good design was achieved. A symmetric array architecture was found to meet the design specification with adequate margin. The specifications were near 40 dB for angular regions beyond 30 degrees from broadside. Separable Taylor distribution with nbar=4 and 35 dB sidelobe specification was chosen for each principal plane. A non-separable distribution obtained by the genetic algorithm was found to have similar characteristics. The element spacing was obtained to provide the required beamwidth and close to a null in the E

  6. New Approach for Monitoring Seismic and Volcanic Activities Using Microwave Radiometer Data

    Science.gov (United States)

    Maeda, Takashi; Takano, Tadashi

    Interferograms formed from the data of satellite-borne synthetic aperture radar (SAR) enable us to detect slight land-surface deformations related to volcanic eruptions and earthquakes. Currently, however, we cannot determine when land-surface deformations occurred with high time resolution since the time lag between two scenes of SAR used to form interferograms is longer than the recurrent period of the satellite carrying it (several tens of days). In order to solve this problem, we are investigating new approach to monitor seismic and vol-canic activities with higher time resolution from satellite-borne sensor data, and now focusing on a satellite-borne microwave radiometer. It is less subject to clouds and rainfalls over the ground than an infrared spectrometer, so more suitable to observe an emission from land sur-faces. With this advantage, we can expect that thermal microwave energy by increasing land surface temperatures is detected before a volcanic eruption. Additionally, laboratory experi-ments recently confirmed that rocks emit microwave energy when fractured. This microwave energy may result from micro discharges in the destruction of materials, or fragment motions with charged surfaces of materials. We first extrapolated the microwave signal power gener-ated by rock failures in an earthquake from the experimental results and concluded that the microwave signals generated by rock failures near the land surface are strong enough to be detected by a satellite-borne radiometer. Accordingly, microwave energy generated by rock failures associated with a seismic activity is likely to be detected as well. However, a satellite-borne microwave radiometer has a serious problem that its spatial res-olution is too coarse compared to SAR or an infrared spectrometer. In order to raise the possibility of detection, a new methodology to compensate the coarse spatial resolution is es-sential. Therefore, we investigated and developed an analysis method to detect local

  7. PHyTIR - A Prototype Thermal Infrared Radiometer

    Science.gov (United States)

    Jau, Bruno M.; Hook, Simon J.; Johnson, William R.; Foote, Marc C.; Paine, Christopher G.; Pannell, Zack W.; Smythe, Robert F.; Kuan, Gary M.; Jakoboski, Julie K.; Eng, Bjorn T.

    2013-01-01

    This paper describes the PHyTIR (Prototype HyspIRI Thermal Infrared Radiometer) instrument, which is the engineering model for the proposed HyspIRI (Hyperspectral Infrared Imager) earth observing instrument. The HyspIRI mission would be comprised of the HyspIRI TIR (Thermal Infrared Imager), and a VSWIR (Visible Short-Wave Infra-Red Imaging Spectrometer). Both instruments would be used to address key science questions related to the earth's carbon cycle, ecosystems, climate, and solid earth properties. Data gathering of volcanic activities, earthquakes, wildfires, water use and availability, urbanization, and land surface compositions and changes, would aid the predictions and evaluations of such events and the impact they create. Even though the proposed technology for the HyspIRI imager is mature, the PHyTIR prototype is needed to advance the technology levels for several of the instrument's key components, and to reduce risks, in particular to validate 1) the higher sensitivity, spatial resolution, and higher throughput required for this focal plane array, 2) the pointing accuracy, 2) the characteristics of several spectral channels, and 4) the use of ambient temperature optics. The PHyTIR telescope consists of the focal plane assembly that is housed within a cold housing located inside a vacuum enclosure; all mounted to a bulkhead, and an optical train that consists of 3 powered mirrors; extending to both sides of the bulkhead. A yoke connects the telescope to a scan mirror. The rotating mirror enables to scan- a large track on the ground. This structure is supported by kinematic mounts, linking the telescope assembly to a base plate that would also become the spacecraft interface for HyspIRI. The focal plane's cooling units are also mounted to the base plate, as is an overall enclosure that has two viewing ports with large exterior baffles, shielding the focal plane from incoming stray light. PHyTIR's electronics is distributed inside and near the vacuum

  8. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols.

    Science.gov (United States)

    Gillman, I G; Kistler, K A; Stewart, E W; Paolantonio, A R

    2016-03-01

    The study objective was to determine the effect of variable power applied to the atomizer of refillable tank based e-cigarette (EC) devices. Five different devices were evaluated, each at four power levels. Aerosol yield results are reported for each set of 25 EC puffs, as mass/puff, and normalized for the power applied to the coil, in mass/watt. The range of aerosol produced on a per puff basis ranged from 1.5 to 28 mg, and, normalized for power applied to the coil, ranged from 0.27 to 1.1 mg/watt. Aerosol samples were also analyzed for the production of formaldehyde, acetaldehyde, and acrolein, as DNPH derivatives, at each power level. When reported on mass basis, three of the devices showed an increase in total aldehyde yield with increasing power applied to the coil, while two of the devices showed the opposite trend. The mass of formaldehyde, acetaldehyde, and acrolein produced per gram of total aerosol produced ranged from 0.01 to 7.3 mg/g, 0.006 to 5.8 mg/g, and acrolein from EC aerosols from specific devices, and were compared to estimated exposure from consumption of cigarettes, to occupational and workplace limits, and to previously reported results from other researchers. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Rotating shadowband radiometer development and analysis of spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L.; Min, Q. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    Our goals in the Atmospheric Radiation Measurement (ARM) Program are improved measurements of spectral shortwave radiation and improved techniques for the retrieval of climatologically sensitive parameters. The multifilter rotating shadowband radiometer (MFRSR) that was developed during the first years of the ARM program has become a workhorse at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, and it is widely deployed in other climate programs. We have spent most of our effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, we have had some success in calculating shortwave surface diffuse spectral irradiance. Using the surface albedo and the global irradiance, we have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, we have calculated effective liquid cloud particle radii. The rest of the text will provide some detail regarding each of these efforts.

  10. Narrow Field of View Zenith Radiometer (NFOV) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C; Marshak, A; Hodges, G; Barnard, JC; Schmelzer, J

    2008-11-01

    The two-channel narrow field-of-view radiometer (NFOV2) is a ground-based radiometer that looks straight up and measures radiance directly above the instrument at wavelengths of 673 and 870 nm. The field-of-view of the instrument is 1.2 degrees, and the sampling time resolution is one second. Measurements of the NFOV2 have been used to retrieve optical properties for overhead clouds that range from patchy to overcast. With a one-second sampling rate of the NFOV2, faster than almost any other ARM Climate Research Facility (ACRF) instrument, we are able, for the first time, to capture changes in cloud optical properties at the natural time scale of cloud evolution.

  11. Effect of a spacer moiety on radiometal labelled Neurotensin derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Mascarin, A.; Valverde, I.E.; Mindt, T.L. [Univ. of Basel Hospital (Switzerland). Div. of Radiopharmaceutical Chemistry

    2013-07-01

    The binding sequence of the regulatory peptide Neurotensin, NT(8-13), represents a promising tumour-specific vector for the development of radiopeptides useful in nuclear oncology for the diagnosis (imaging) and therapy of cancer. A number of radiometal-labelled NT(8-13) derivatives have been reported, however, the effect of the spacer which connects the vector with the radiometal complex has yet not been investigated systematically. Because a spacer moiety can influence potentially important biological characteristics of radiopeptides, we synthesized three [DOTA({sup 177}Lu)]-X-NT(8-13) derivatives and evaluated the effect of a spacer (X) on the physico-chemical properties of the conjugate including lipophilicity, stability, and in vitro receptor affinity and cell internalization. (orig.)

  12. The Along Track Scanning Radiometer (ATSR) for ERS1

    Science.gov (United States)

    Delderfield, J.; Llewellyn-Jones, D. T.; Bernard, R.; de Javel, Y.; Williamson, E. J.

    1986-01-01

    The ATSR is an infrared imaging radiometer which has been selected to fly aboard the ESA Remote Sensing Satellite No. 1 (ERS1) with the specific objective of accurately determining global Sea Surface Temperature (SST). Novel features, including the technique of 'along track' scanning, a closed Stirling cycle cooler, and the precision on-board blackbodies are described. Instrument subsystems are identified and their design trade-offs discussed.

  13. Determination of total tritium in urine from residents living in the vicinity of nuclear power plants in Qinshan, China.

    Science.gov (United States)

    Shen, Bao-Ming; Ji, Yan-Qin; Tian, Qing; Shao, Xiang-Zhang; Yin, Liang-Liang; Su, Xu

    2015-01-16

    To estimate the tritium doses of the residents living in the vicinity of a nuclear power plant, urine samples of 34 adults were collected from residents living near the Qinshan nuclear power plant. The tritium-in-urine (HTO plus OBT) was measured by liquid scintillation counting. The doses of tritium-in-urine from participants living at 2, 10 and 22 km were in a range of 1.26-6.73 Bq/L, 1.31-3.09 Bq/L and 2.21-3.81 Bq/L, respectively, while the average activity concentrations of participants from the three groups were 3.53 ± 1.62, 2.09 ± 0.62 and 2.97 ± 0.78 Bq/L, respectively. The personal committed effective doses for males were 2.5 ± 1.7 nSv and for females they were 2.9 ± 1.3 nSv. These results indicate that tritium concentrations in urine samples from residents living at 2 km from a nuclear power plant are significantly higher than those at 10 km. It may be the downwind direction that caused a higher dose in participants living at 22 km. All the measured doses of tritium-in-urine are in a background level range.

  14. Optimum Image Formation for Spaceborne Microwave Radiometer Products.

    Science.gov (United States)

    Long, David G; Brodzik, Mary J

    2016-05-01

    This paper considers some of the issues of radiometer brightness image formation and reconstruction for use in the NASA-sponsored Calibrated Passive Microwave Daily Equal-Area Scalable Earth Grid 2.0 Brightness Temperature Earth System Data Record project, which generates a multisensor multidecadal time series of high-resolution radiometer products designed to support climate studies. Two primary reconstruction algorithms are considered: the Backus-Gilbert approach and the radiometer form of the scatterometer image reconstruction (SIR) algorithm. These are compared with the conventional drop-in-the-bucket (DIB) gridded image formation approach. Tradeoff study results for the various algorithm options are presented to select optimum values for the grid resolution, the number of SIR iterations, and the BG gamma parameter. We find that although both approaches are effective in improving the spatial resolution of the surface brightness temperature estimates compared to DIB, SIR requires significantly less computation. The sensitivity of the reconstruction to the accuracy of the measurement spatial response function (MRF) is explored. The partial reconstruction of the methods can tolerate errors in the description of the sensor measurement response function, which simplifies the processing of historic sensor data for which the MRF is not known as well as modern sensors. Simulation tradeoff results are confirmed using actual data.

  15. A new real time infrared background discrimination radiometer (BDR)

    International Nuclear Information System (INIS)

    Kopolovich, Z.; Cabib, D.; Buckwald, R.A.

    1989-01-01

    This paper reports on a new radiometer (BDR) that has been developed, which discriminates small differences between an object and its surrounding background, and is able to measure an object's changing contrast when the contrast of a moving object is to be measured against a changing background. The difference in radiant emittance of a small object against its background or of two objects with respect to each other and this difference is small compared to the emittance itself. Practical examples of such measurements are contrast measurements of airplanes and missiles in flight, contrast measurements of small, weak objects on a warm background and uniformity measurements of radiant emittance from an object's surface. Previous instruments were unable to make such measurements since the process of contrast measurement with a fixed field of view radiometer is too slow for implementation on flying objects; detection of a small difference between two large DC signals is impossible in a traditional fixed field of view radiometer when the instrument itself is saturated

  16. A horizontal vane radiometer: Experiment, theory, and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, David; Larraza, Andres, E-mail: larraza@nps.edu [Department of Physics, Naval Postgraduate School, Monterey, California 93940 (United States); Garcia, Alejandro [Department of Physics and Astronomy, San Jose State University, San Jose, California 95152 (United States)

    2016-03-15

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article, we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte Carlo (DSMC) method. The qualitative agreement between the three methods of investigation is good except for a dependence of the force on the width of the vane even when the temperature gradient is narrower than the vane which is present in the DSMC method results but not in the theory. The experimental results qualitatively resemble the theory in this regard. The quantitative agreement between the three methods of investigation is better than an order of magnitude in the cases examined. The theory is closer to the experimental values for narrow vanes and the simulations are closer to the experimental values for the wide vanes. We find that the thermal creep force acts from the hot side to the cold side of the vane. We also find the peak in the radiometer’s angular speed as a function of pressure is explained as much by the behavior of the drag force as by the behavior of the thermal creep force.

  17. A horizontal vane radiometer: Experiment, theory, and simulation

    International Nuclear Information System (INIS)

    Wolfe, David; Larraza, Andres; Garcia, Alejandro

    2016-01-01

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article, we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte Carlo (DSMC) method. The qualitative agreement between the three methods of investigation is good except for a dependence of the force on the width of the vane even when the temperature gradient is narrower than the vane which is present in the DSMC method results but not in the theory. The experimental results qualitatively resemble the theory in this regard. The quantitative agreement between the three methods of investigation is better than an order of magnitude in the cases examined. The theory is closer to the experimental values for narrow vanes and the simulations are closer to the experimental values for the wide vanes. We find that the thermal creep force acts from the hot side to the cold side of the vane. We also find the peak in the radiometer’s angular speed as a function of pressure is explained as much by the behavior of the drag force as by the behavior of the thermal creep force.

  18. Manual of program operation for data analysis from radiometer system

    International Nuclear Information System (INIS)

    Silva Mello, L.A.R. da; Migliora, C.G.S.

    1987-12-01

    This manual describes how to use the software to retrieve and analyse data from radiometer systems and raingauges used in the 12 GHz PROPAGATION MEASUREMENTS/CANADA - TELEBRAS COOPERATION PROGRAM. The data retrieval and analisys is being carried out by CETUC, as part of the activities of the project Simulacao de Enlaces Satelite (SES). The software for these tasks has been supplied by the Canadian Research Centre (CRC), together with the measurement equipment. The two following sections describe the use of the data retrieval routines and the data analysis routines of program ATTEN. Also, a quick reference guide for commands that can be used when a microcomputer is local or remotely connected to a radiometer indoor unit is included as a last section. A more detailed description of these commands, their objectives and cautions that should de taken when using them can be found in the manual ''12 GHz Propagation Measurements System - Volume 1 - Dual Slope Radiometer and Data Aquisition System'', supplied by Diversitel Communications Inc. (author) [pt

  19. Source analysis of spaceborne microwave radiometer interference over land

    Science.gov (United States)

    Guan, Li; Zhang, Sibo

    2016-03-01

    Satellite microwave thermal emissions mixed with signals from active sensors are referred to as radiofrequency interference (RFI). Based on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) observations from June 1 to 16, 2011, RFI over Europe was identified and analyzed using the modified principal component analysis algorithm in this paper. The X band AMSR-E measurements in England and Italy are mostly affected by the stable, persistent, active microwave transmitters on the surface, while the RFI source of other European countries is the interference of the reflected geostationary TV satellite downlink signals to the measurements of spaceborne microwave radiometers. The locations and intensities of the RFI induced by the geostationary TV and communication satellites changed with time within the observed period. The observations of spaceborne microwave radiometers in ascending portions of orbits are usually interfered with over European land, while no RFI was detected in descending passes. The RFI locations and intensities from the reflection of downlink radiation are highly dependent upon the relative geometry between the geostationary satellite and the measuring passive sensor. Only these fields of view of a spaceborne instrument whose scan azimuths are close to the azimuth relative to the geostationary satellite are likely to be affected by RFI.

  20. The multi-filter rotating shadowband radiometer (MFRSR) - precision infrared radiometer (PIR) platform in Fairbanks: Scientific objectives

    Energy Technology Data Exchange (ETDEWEB)

    Stamnes, K.; Leontieva, E. [Univ. of Alaska, Fairbanks (United States)

    1996-04-01

    The multi-filter rotating shadowband radiometer (MFRSR) and precision infrared radiometer (PIR) have been employed at the Geophysical Institute in Fairbanks to check their performance under arctic conditions. Drawing on the experience of the previous measurements in the Arctic, the PIR was equipped with a ventilator to prevent frost and moisture build-up. We adopted the Solar Infrared Observing Sytem (SIROS) concept from the Southern Great Plains Cloud and Radiation Testbed (CART) to allow implementation of the same data processing software for a set of radiation and meteorological instruments. To validate the level of performance of the whole SIROS prior to its incorporation into the North Slope of Alaska (NSA) Cloud and Radiation Testbed Site instrumental suite for flux radiatin measurements, the comparison between measurements and model predictions will be undertaken to assess the MFRSR-PIR Arctic data quality.

  1. Closing the sky. The total dismantling of the Jose Cabrera nuclear power plant demonstrates maturity in the nuclear sector

    International Nuclear Information System (INIS)

    Rodriguez, A.

    2015-01-01

    This article aims to put the situation of the decommissioning of nuclear power plants in the world into perspective as an already consolidated activity and with an important future of industrial activity. The decommissioning project that Enresa is currently performing in the old Jose Cabrera plant is being explained in detail, by providing data of the newest and most relevant technical aspects as well as the lessons learned to be reusable in other decommissioning projects. The previous background, the project planning, the activities performed and those still to be done as well as their timing are being explained in detail. (Author)

  2. 1999-2003 Shortwave Characterizations of Earth Radiation Budget Satellite (ERBS)/Earth Radiation Budget Experiment (ERBE) Broadband Active Cavity Radiometer Sensors

    Science.gov (United States)

    Lee, Robert B., III; Smith, George L.; Wong, Takmeng

    2008-01-01

    From October 1984 through May 2005, the NASA Earth Radiation Budget Satellite (ERBS/ )/Earth Radiation Budget Experiment (ERBE)ERBE nonscanning active cavity radiometers (ACR) were used to monitor long-term changes in the earth radiation budget components of the incoming total solar irradiance (TSI), earth-reflected TSI, and earth-emitted outgoing longwave radiation (OLR). From September1984 through September 1999, using on-board calibration systems, the ERBS/ERBE ACR sensor response changes, in gains and offsets, were determined from on-orbit calibration sources and from direct observations of the incoming TSI through calibration solar ports at measurement precision levels approaching 0.5 W/sq m , at satellite altitudes. On October 6, 1999, the onboard radiometer calibration system elevation drive failed. Thereafter, special spacecraft maneuvers were performed to observe cold space and the sun in order to define the post-September 1999 geometry of the radiometer measurements, and to determine the October 1999-September 2003 ERBS sensor response changes. Analyses of these special solar and cold space observations indicate that the radiometers were pointing approximately 16 degrees away from the spacecraft nadir and on the anti-solar side of the spacecraft. The special observations indicated that the radiometers responses were stable at precision levels approaching 0.5 W/sq m . In this paper, the measurement geometry determinations and the determinations of the radiometers gain and offset are presented, which will permit the accurate processing of the October 1999 through September 2003 ERBE data products at satellite and top-of-the-atmosphere altitudes.

  3. Report on research and development achievements in fiscal 1980 in Sunshine Project. Development of a total flow electric power plant(Two-phase rotation inflator); 1980 nendo total flow hatsuden plant no kaihatsu seika hokokusho. Niso kaiten bochoki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    Out of the development of a total flow power plant in the Sunshine Project, this paper describes a two-phase rotatry inflator. It reports the achievements in fiscal 1980. It is intended to utilize effectively the energy of gas-liquid two-phase fluid (containing a great amount of hot water) often seen in geothermal resources in Japan. Therefore, development is considered on a two-phase rotary inflator as a total flow power generation technology to inflate the gas-liquid fluid as it is without performing separation thereof, and convert it to an external work to draw out output. The inflator is a volume type rotary engine, which has the highest efficiency theoretically, but has not been put into practical use worldwide. Based on the result obtained in the previous fiscal year, development is made on a most suitable seal to be applied to circumferential seal of an external rotor, apex seal, and intake port seal. A rotary inflation performance testing machine is fabricated to study inflation of the gas-liquid two-phase fluid. Setting the engine efficiency of 60% or higher as the target, detailed design, fabrication and assembly shall be completed on two-phase rotation inflators of volume type and self-rotation type of 300 kW class. (NEDO)

  4. Fiscal 1998 research report (New Sunshine Project). Research on the total system for development of superconductor power application technology; 1998 nendo seika hokokusho (new sunshine keikaku). Chodendo denryoku oyo gijutsu kaihatsu total system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This report summarizes the fiscal 1998 research promoted as a part of New Sunshine Project 'R and D project on development of superconductor power application technology.' This project is composed of R and D of superconductor power application technology (Rank 1), study on the total system (Rank 2), and study on review of introduction effects (Rank 3). The project is promoting R and D of the prototype superconducting generator model and elementary technologies based on the basic plan mainly by the research association. The combination test of the developed armature and the multi- cylindrical rotor model or slow response excitation rotor model was finished, and the test of the quick response excitation rotor model is in promotion. Together with R and D of hardware, this project is also promoting R and D of software through review of the introduction effects of superconducting power equipment. In fiscal 1998, the pre- final review was carried out by the project review sub- committee. 2 times of the committee, 12 times of the sub- committee, and several times of the working group were held until March, 1999. (NEDO)

  5. New formulas for interferometric crosstalk penalty as a function of total crosstalk power, number of crosstalk contributions and signal extinction ratio

    OpenAIRE

    Rasmussen, Christian Jørgen; Jeppesen, Palle

    2000-01-01

    Interferometric crosstalk, also called incoherent crosstalk, occurs when reception of a desired signal is disturbed by undesired crosstalk contributions having the same wavelength as the desired signal but independent amplitudes and phases. This crosstalk type is known to be among the most destructive phenomena in optical networks owing to its accumulative nature and strong impact on the transmission quality. New formulas state the crosstalk penalty as a function of the total crosstalk power,...

  6. Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5.

    Science.gov (United States)

    Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan

    2017-07-12

    An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.

  7. Updated of the events tree of total loss of power at the site, SBO, taking into account the results of stress tests and methodological updates, convolution, and hydraulic power recovery from model RCPs

    International Nuclear Information System (INIS)

    Lopez Lorenzo, M. A.; Perez Martin, F.

    2013-01-01

    In this paper, is described a tree of events to an accident loss total power at the site (SBO) considering, first the results of stress tests arising from the Fukushima accident and moreover, various methodological updates related to this initiating event.

  8. Interpretation of the cosmic microwave background radiation anisotropy detected by the COBE Differential Microwave Radiometer

    Science.gov (United States)

    Wright, E. L.; Meyer, S. S.; Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kogut, A.; Lineweaver, C.; Mather, J. C.; Smoot, G. F.

    1992-01-01

    The large-scale cosmic background anisotropy detected by the COBE Differential Microwave Radiometer (DMR) instrument is compared to the sensitive previous measurements on various angular scales, and to the predictions of a wide variety of models of structure formation driven by gravitational instability. The observed anisotropy is consistent with all previously measured upper limits and with a number of dynamical models of structure formation. For example, the data agree with an unbiased cold dark matter (CDM) model with H0 = 50 km/s Mpc and Delta-M/M = 1 in a 16 Mpc radius sphere. Other models, such as CDM plus massive neutrinos (hot dark matter (HDM)), or CDM with a nonzero cosmological constant are also consistent with the COBE detection and can provide the extra power seen on 5-10,000 km/s scales.

  9. Application of automatic gain control for radiometer diagnostic in SST-1 tokamak.

    Science.gov (United States)

    Makwana, Foram R; Siju, Varsha; Edappala, Praveenlal; Pathak, S K

    2017-12-01

    This paper describes the characterisation of a negative feedback type of automatic gain control (AGC) circuit that will be an integral part of the heterodyne radiometer system operating at a frequency range of 75-86 GHz at SST-1 tokamak. The developed AGC circuit is a combination of variable gain amplifier and log amplifier which provides both gain and attenuation typically up to 15 dB and 45 dB, respectively, at a fixed set point voltage and it has been explored for the first time in tokamak radiometry application. The other important characteristics are that it exhibits a very fast response time of 390 ns to understand the fast dynamics of electron cyclotron emission and can operate at very wide input RF power dynamic range of around 60 dB that ensures signal level within the dynamic range of the detection system.

  10. Flower elliptical constellation of millimeter-wave radiometers for precipitating cloud monitoring at geostationary scale

    Science.gov (United States)

    Marzano, F. S.; Cimini, D.; Montopoli, M.; Rossi, T.; Mortari, D.; di Michele, S.; Bauer, P.

    2009-04-01

    deploying several identical speceborne platforms). Moreover, the micro-satellite solution clearly addresses the choice of small passive sensors with small size, low weight and power consumption, features which cannot be usually satisfied by active sensors. In this respect, MMW technology is the most compatible with the specifications and constraints of micro-satellites. In this work, we will discuss the numerical results of a feasibility study aimed at designing a Flower elliptical constellation of 3 micro-satellite millimeter-wave radiometers for pseudo-geostationary atmospheric observations over the Mediterranean region. The Flower constellation will be optimized in such a way to simulate a pseudo-geostationary observation of the Mediterranean area with an observation repetition time less than 2 hours. The mission requirements request the retrieval of thermodinamical and hydrological properties of the troposphere, specifically temperature profiles, integrated water vapor and cloud liquid content, rainfall and snowfall. Several configurations of the MMW radiometer multi-band channels will be discussed, pointing out the trade-off between performances and complexity. Integrated estimation algorithms, based on a Bayesian approache, will be illustrated to retrieve the requested atmospheric parameters, discussing its sensitivity to sensor radiometric precision and accuracy within each frequency-set configuration. After this numerical study, a review of the mission requirements and specifications will be also proposed.

  11. Upgrades and Real Time Ntm Control Application of the Ece Radiometer on Asdex Upgrade

    Science.gov (United States)

    Hicks, N. K.; Suttrop, W.; Behler, K.; Giannone, L.; Manini, A.; Maraschek, M.; Raupp, G.; Reich, M.; Sips, A. C. C.; Stober, J.; Treutterer, W.; ASDEX Upgrade Team; Cirant, S.

    2009-04-01

    The 60-channel electron cyclotron emission (ECE) radiometer diagnostic on the ASDEX Upgrade tokamak is presently being upgraded to include a 1 MHz sampling rate data acquisition system. This expanded capability allows electron temperature measurements up to 500 kHz (anti-aliasing filter cut-off) with spatial resolution ~1 cm, and will thus provide measurement of plasma phenomena on the MHD timescale, such as neoclassical tearing modes (NTMs). The upgraded and existing systems may be run in parallel for comparison, and some of the first plasma measurements using the two systems together are presented. A particular planned application of the upgraded radiometer is integration into a real-time NTM stabilization loop using targeted deposition of electron cyclotron resonance heating (ECRH). For this loop, it is necessary to determine the locations of the NTM and ECRH deposition using ECE measurements. As the magnetic island of the NTM repeatedly rotates through the ECE line of sight, electron temperature fluctuations at the NTM frequency are observed. The magnetic perturbation caused by the NTM is independently measured using Mirnov coils, and a correlation profile between these magnetic measurements and the ECE data is constructed. The phase difference between ECE oscillations on opposite sides of the island manifests as a zero-crossing of the correlation profile, which determines the NTM location in ECE channel space. To determine the location of ECRH power deposition, the power from a given gyrotron may be modulated at a particular frequency. Correlation analysis of this modulated signal and the ECE data identifies a particular ECE channel associated with the deposition of that gyrotron. Real time equilibrium reconstruction allows the ECE channels to be translated into flux surface and spatial coordinates for use in the feedback loop.

  12. Boreal Inundation Mapping with SMAP Radiometer Data for Methane Studies

    Science.gov (United States)

    Kim, Seungbum; Brisco, Brian; Poncos, Valentin

    2017-04-01

    Inundation and consequent anoxic condition induce methane release, which is one of the most potent greenhouse gases. Boreal regions contain large amounts of organic carbon, which is a potentially major methane emission source under climatic warming conditions. Boreal wetlands in particular are one of the largest sources of uncertainties in global methane budget. Wetland spatial extent together with the gas release rate remains highly unknown. Characterization of the existing inundation database is poor, because of the inundation under clouds and dense vegetation. In this work, the inundation extent is derived using brightness temperature data acquired by the L-band Soil Moisture Active Passive (SMAP) satellite, which offers the L-band capabilities to penetrate clouds and vegetation at 3-day revisit. The fidelity of the SMAP watermask is assessed as a first step in this investigation by comparing with the following data sets: 3-m resolution maps derived using Radarsat synthetic aperture radar (SAR) data in northern Canada and multi-sensor climatology over Siberia. Because Radarsat coverages are limited despite its high spatial resolution, at the time and location where Radarsats are not available, we also compare with 3-km resolution SMAP SAR data that are concurrent with the SMAP radiometer data globally until July 2015. Inundation extents were derived with Radarsat, SMAP SAR, and SMAP radiometer over the 60 km x 60km area at Peace Athabasca Delta (PAD), Canada on 6 days in spring and summer 2015. The SMAP SAR results match the locations of Radarsat waterbodies. However, the SMAP SAR underestimates the water extent, mainly over mixed pixels that have subpixel land presence. The threshold value (-3 dB) applied to the SMAP SAR was determined previously over the global domain. The threshold is dependent on the type of local landcover within a mixed pixel. Further analysis is needed to locally optimize the threshold. The SMAP radiometer water fraction over Peace

  13. Miniaturized Laser Heterodyne Radiometer for Measurements of CO2 in the Atmospheric Column

    Science.gov (United States)

    Wilson, E. L.; Mclinden, M. L.; Miller, J. H.; Allan, G. R.; Lott, L. E.; Melroy, H. R.; Clarke, G. B.

    2013-01-01

    We have developed a low-cost, miniaturized laser heterodyne radiometer for highly sensitive measurements of carbon dioxide (CO2) in the atmospheric column. In this passive design, sunlight that has undergone absorption by CO2 in the atmosphere is collected and mixed with continuous wave laser light that is step-scanned across the absorption feature centered at 1,573.6 nm. The resulting radio frequency beat signal is collected as a function of laser wavelength, from which the total column mole fraction can be de-convolved. We are expanding this technique to include methane (CH4) and carbon monoxide (CO), and with minor modifications, this technique can be expanded to include species such as water vapor (H2O) and nitrous oxide (N2O).

  14. Radiometer Calibration and Characterization (RCC) User's Manual: Windows Version 4.0

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Afshin M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilcox, Stephen M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-29

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating broadband atmospheric longwave and solar shortwave radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer's response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument's responsivity. This is a user's manual and guide to the RCC software.

  15. Upgraded ECE radiometer on the Tore Supra Tokamak

    International Nuclear Information System (INIS)

    Segui, J.L.; Molina, D.; Goniche, M.; Maget, P.; Udintsev, V.S.; Kraemer-Flecken, A.

    2004-01-01

    An upgraded 32-channel heterodyne radiometer, 1 GHz spaced, is used on the Tore-Supra tokamak to measure the electron cyclotron emission (ECE) in the frequency range 78-110 GHz for the ordinary mode (O1) and 94-126.5 GHz for the extraordinary mode (X2). From now radial resolution is essentially limited by ECE relativistic effects related to electron temperature and density, not by the channels frequency spacing. For example, this leads to precise electron temperature mapping during magneto hydrodynamic activities (MHD). In the equatorial plane, we use a dual polarisation Gaussian optics lens antenna. It has low spreading and a perpendicular line-of-sight that gives ECE measurements very low refraction and Doppler effects. Assuming that the plasma is a black body and there is no overlap between ECE harmonics, one can deduce the electron temperature profile by using the first harmonic ordinary mode (O1) or the second harmonic extraordinary mode (X2). The principle radio frequency emitter (RF) has its frequencies down shifted into intermediary frequencies (IF) that span from 2 to 18 GHz in the single side band mode (SSB). It is amplified by low noise IF amplifiers before forming channels. A separate O/X mode RF front-end allows the use of an IF electronic mode selector. This gives the potentiality of simultaneous O/X mode measurements in the 94-110 GHz. RF and IF filters reject the gyrotron frequency (118 GHz) in order to perform electron temperature measurements during electron cyclotron resonance heated plasmas. A precise absolute spectral calibration is performed outside the tokamak vacuum vessel by using a 600 deg C black body hot source, a double coherent digital signal averaging (trigger, turn and clock) on the waveform generated by a mechanical chopper, and a simulated tokamak window. The use of differential electronics and strong electromagnetic shielding improves also the calibration precision. The fast and slow data acquisition systems are free of aliasing

  16. Upgraded ECE radiometer on the Tore Supra Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Segui, J.L.; Molina, D.; Goniche, M.; Maget, P.; Udintsev, V.S. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Antar, G.Y. [Center for Energy Research, UCSD, La Jolla CA (United States); Kraemer-Flecken, A. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Plasmaphysik

    2004-07-01

    An upgraded 32-channel heterodyne radiometer, 1 GHz spaced, is used on the Tore-Supra tokamak to measure the electron cyclotron emission (ECE) in the frequency range 78-110 GHz for the ordinary mode (O1) and 94-126.5 GHz for the extraordinary mode (X2). From now radial resolution is essentially limited by ECE relativistic effects related to electron temperature and density, not by the channels frequency spacing. For example, this leads to precise electron temperature mapping during magneto hydrodynamic activities (MHD). In the equatorial plane, we use a dual polarisation Gaussian optics lens antenna. It has low spreading and a perpendicular line-of-sight that gives ECE measurements very low refraction and Doppler effects. Assuming that the plasma is a black body and there is no overlap between ECE harmonics, one can deduce the electron temperature profile by using the first harmonic ordinary mode (O1) or the second harmonic extraordinary mode (X2). The principle radio frequency emitter (RF) has its frequencies down shifted into intermediary frequencies (IF) that span from 2 to 18 GHz in the single side band mode (SSB). It is amplified by low noise IF amplifiers before forming channels. A separate O/X mode RF front-end allows the use of an IF electronic mode selector. This gives the potentiality of simultaneous O/X mode measurements in the 94-110 GHz. RF and IF filters reject the gyrotron frequency (118 GHz) in order to perform electron temperature measurements during electron cyclotron resonance heated plasmas. A precise absolute spectral calibration is performed outside the tokamak vacuum vessel by using a 600 deg C black body hot source, a double coherent digital signal averaging (trigger, turn and clock) on the waveform generated by a mechanical chopper, and a simulated tokamak window. The use of differential electronics and strong electromagnetic shielding improves also the calibration precision. The fast and slow data acquisition systems are free of aliasing

  17. Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Charette, M.A.; Breier, C.F.; Henderson, P.B.; Pike, S.M.; Buesseler, K.O. [Woods Hole Oceanographic Institution, Woods Hole, MA (United States). Dept. of Marine Chemistry and Geochemistry; Rypina, I.I.; Jayne, S.R. [Woods Hole Oceanographic Institution, Woods Hole, MA (United States). Dept. of Physical Oceanography

    2013-07-01

    Radium has four naturally occurring isotopes that have proven useful in constraining water mass source, age, and mixing rates in the coastal and open ocean. In this study, we used radium isotopes to determine the fate and flux of runoff-derived cesium from the Fukushima Dai-ichi Nuclear Power Plant (FNPP). During a June 2011 cruise, the highest cesium (Cs) concentrations were found along the eastern shelf of northern Japan, from Fukushima south, to the edge of the Kuroshio Current, and in an eddy ∝ 130 km from the FNPP site. Locations with the highest cesium also had some of the highest radium activities, suggesting much of the direct ocean discharges of Cs remained in the coastal zone 2-3 months after the accident. We used a short-lived Ra isotope ({sup 223}Ra, t{sub 1/2} = 11.4 d) to derive an average water mass age (T{sub r}) in the coastal zone of 32 days. To ground-truth the Ra age model, we conducted a direct, station-by-station comparison of water mass ages with a numerical oceanographic model and found them to be in excellent agreement (model avg. T{sub r} = 27 days). From these independent T{sub r} values and the inventory of Cs within the water column at the time of our cruise, we were able to calculate an offshore {sup 134}Cs flux of 3.9-4.6 x 10{sup 13} Bq d{sup -1}. Radium-228 (t{sub 1/2} = 5.75 yr) was used to derive a vertical eddy diffusivity (K{sub z}) of 0.7 m{sup 2} d{sup -1} (0.1 cm{sup 2} s{sup -1}); from this K{sub z} and {sup 134}Cs inventory, we estimated a {sup 134}Cs flux across the pycnocline of 1.8 x 10{sup 4} Bq d{sup -1} for the same time period. On average, our results show that horizontal mixing loss of Cs from the coastal zone was ∝ 10{sup 9} greater than vertical exchange below the surface mixed layer. Finally, a mixing/dilution model that utilized our Ra-based and oceanographic model water mass ages produced a direct ocean discharge of {sup 134}Cs from the FNPP of 11-16 PBq at the time of the peak release in early April 2011

  18. Application of microwave radiometers for wetlands and estuaries monitoring

    International Nuclear Information System (INIS)

    Shutko, A.; Haldin, A.; Novichikhin, E.

    1997-01-01

    This paper presents the examples of experimental data obtained with airborne microwave radiometers used for monitoring of wetlands and estuaries located in coastal environments. The international team of researchers has successfully worked in Russia, Ukraine and USA. The data presented relate to a period of time between 1990 and 1995. They have been collected in Odessa Region, Black Sea coast, Ukraine, in Regions of Pittsville and Winfield, Maryland, USA, and in Region of St. Marks, Florida, USA. The parameters discussed are a soil moisture, depth to a shallow water table, vegetation index, salinity of water surface

  19. Prelaunch Performance of the 118 GHz Polarcube 3U Cubesat Temperature Sounding Radiometer

    Science.gov (United States)

    Periasamy, L.; Gasiewski, A. J.; Gallaher, D. W.; Sanders, B. T.; Belter, R.; Kraft, D.; Castillo, J.; Gordon, J. A.; Hurowitz, M.

    2017-12-01

    The low cost PolarCube 3U CubeSat supports a 118.75 GHz imaging spectrometer for temperature profiling of the troposphere and surface temperature. It is a demonstrator for a constellation of LEO passive microwave sensors at V-band and other frequencies using 3U/6U CubeSats. Such a satellite constellation for weather forecasting will provide data at high spatial and temporal resolution to observe rapidly evolving mesoscale weather. The satellite's payload is an eight channel, double sideband passive microwave temperature sounder with cross-track scanning and will provide 18 km surface resolution from a 400 km orbit. The radiometer implements a two-point calibration using an internal PIN switch and view of cold space. Although the instrument is based on a well established classical design, the challenges lie in developing a sensitive spectrometer that fits in a 1.5U volume, is low cost, consumes 4 W power and satisfies the CubeSat weight and envelope constraints. PolarCube is scheduled for launch on a Virgin Galactic flight in summer, 2018. The estimated radiometer sensitivity, ΔTrms varies from 0.3 to 2 K across the eight channels. The 50 MHz to 7 GHz 8-channel filter bank (designed with surface mount capacitors and inductors) fits on a 9x5 cm2 RO4350B PCB and includes 2-stage amplification and detector circuitry. The scanning reflector with an 8 cm2 main aperture uses a 3D printed corrugated feed that includes a WR8 to WC8 waveguide transition with a 17° bend. Initial performance results from the instrument using the 3D printed feed and IF/VA board obtained from airborne measurements over Antarctica on the NASA DC8 in early November 2016 indicate a well-functioning radiometer. The end-to-end characterization of the payload with the satellite bus, performance results from vibration and thermal-vacuum tests and roof-top measurements will be presented.

  20. Defense meteorological satellite measurements of total ozone

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.; Luther, F.M.; Sullivan, R.J.; Weichel, R.L.

    1992-01-01

    A multichannel filter radiometer (MFR) on Defense Meteorological Satellites (DMS) that measured total ozone on a global-scale from March 1977 - February 1980 is described. The total ozone data measured by the MFR were compared with total ozone data taken by surfaced-based Dobson spectrophotometers. When comparisons were made for five months, the Dobson spectrophotometer measured 2-5% more total ozone than the MFR. Comparisons between the Dobson spectrophotometer and the MFR showed a reduced RMS difference as the comparisons were made at closer proximity. A Northern Hemisphere total ozone distribution obtained from MFR data is presented

  1. New formulas for interferometric crosstalk penalty as a function of total crosstalk power, number of crosstalk contributions and signal extinction ratio

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen; Jeppesen, Palle

    2000-01-01

    Interferometric crosstalk, also called incoherent crosstalk, occurs when reception of a desired signal is disturbed by undesired crosstalk contributions having the same wavelength as the desired signal but independent amplitudes and phases. This crosstalk type is known to be among the most...... destructive phenomena in optical networks owing to its accumulative nature and strong impact on the transmission quality. New formulas state the crosstalk penalty as a function of the total crosstalk power, the number of contributions carrying this power and the signal extinction ratio. We consider both PIN...... and optically preamplified receivers. The authors know of no other published formulas which include the number of crosstalk contributions. The crosstalk penalty formulas are empirical, and they are based on a numerical model. This model is described briefly along with its experimental verification before...

  2. Accelerating an Ordered-Subset Low-Dose X-Ray Cone Beam Computed Tomography Image Reconstruction with a Power Factor and Total Variation Minimization.

    Science.gov (United States)

    Huang, Hsuan-Ming; Hsiao, Ing-Tsung

    2016-01-01

    In recent years, there has been increased interest in low-dose X-ray cone beam computed tomography (CBCT) in many fields, including dentistry, guided radiotherapy and small animal imaging. Despite reducing the radiation dose, low-dose CBCT has not gained widespread acceptance in routine clinical practice. In addition to performing more evaluation studies, developing a fast and high-quality reconstruction algorithm is required. In this work, we propose an iterative reconstruction method that accelerates ordered-subsets (OS) reconstruction using a power factor. Furthermore, we combine it with the total-variation (TV) minimization method. Both simulation and phantom studies were conducted to evaluate the performance of the proposed method. Results show that the proposed method can accelerate conventional OS methods, greatly increase the convergence speed in early iterations. Moreover, applying the TV minimization to the power acceleration scheme can further improve the image quality while preserving the fast convergence rate.

  3. Identification of Combined Power Quality Disturbances Using Singular Value Decomposition (SVD and Total Least Squares-Estimation of Signal Parameters via Rotational Invariance Techniques (TLS-ESPRIT

    Directory of Open Access Journals (Sweden)

    Huaishuo Xiao

    2017-11-01

    Full Text Available In order to identify various kinds of combined power quality disturbances, the singular value decomposition (SVD and the improved total least squares-estimation of signal parameters via rotational invariance techniques (TLS-ESPRIT are combined as the basis of disturbance identification in this paper. SVD is applied to identify the catastrophe points of disturbance intervals, based on which the disturbance intervals are segmented. Then the improved TLS-ESPRIT optimized by singular value norm method is used to analyze each data segment, and extract the amplitude, frequency, attenuation coefficient and initial phase of various kinds of disturbances. Multi-group combined disturbance test signals are constructed by MATLAB and the proposed method is also tested by the measured data of IEEE Power and Energy Society (PES Database. The test results show that the new method proposed has a relatively higher accuracy than conventional TLS-ESPRIT, which could be used in the identification of measured data.

  4. Validation of ocean color sensors using a profiling hyperspectral radiometer

    Science.gov (United States)

    Ondrusek, M. E.; Stengel, E.; Rella, M. A.; Goode, W.; Ladner, S.; Feinholz, M.

    2014-05-01

    Validation measurements of satellite ocean color sensors require in situ measurements that are accurate, repeatable and traceable enough to distinguish variability between in situ measurements and variability in the signal being observed on orbit. The utility of using a Satlantic Profiler II equipped with HyperOCR radiometers (Hyperpro) for validating ocean color sensors is tested by assessing the stability of the calibration coefficients and by comparing Hyperpro in situ measurements to other instruments and between different Hyperpros in a variety of water types. Calibration and characterization of the NOAA Satlantic Hyperpro instrument is described and concurrent measurements of water-leaving radiances conducted during cruises are presented between this profiling instrument and other profiling, above-water and moored instruments. The moored optical instruments are the US operated Marine Optical BuoY (MOBY) and the French operated Boussole Buoy. In addition, Satlantic processing versions are described in terms of accuracy and consistency. A new multi-cast approach is compared to the most commonly used single cast method. Analysis comparisons are conducted in turbid and blue water conditions. Examples of validation matchups with VIIRS ocean color data are presented. With careful data collection and analysis, the Satlantic Hyperpro profiling radiometer has proven to be a reliable and consistent tool for satellite ocean color validation.

  5. Modeling the frequency response of microwave radiometers with QUCS

    International Nuclear Information System (INIS)

    Zonca, A; Williams, B; Rubin, I; Meinhold, P; Lubin, P; Roucaries, B; D'Arcangelo, O; Franceschet, C; Mennella, A; Bersanelli, M; Jahn, S

    2010-01-01

    Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Laboratory Radio Frequency (RF) measurements of the instrument bandpass often require complex test setups and are subject to a number of systematic effects driven by thermal issues and impedance matching, particularly if cryogenic operation is involved. In this paper we present an approach to modeling radiometers bandpasses by integrating simulations and RF measurements of individual components. This method is based on QUCS (Quasi Universal Circuit Simulator), an open-source circuit simulator, which gives the flexibility of choosing among the available devices, implementing new analytical software models or using measured S-parameters. Therefore an independent estimate of the instrument bandpass is achieved using standard individual component measurements and validated analytical simulations. In order to automate the process of preparing input data, running simulations and exporting results we developed the Python package python-qucs and released it under GNU Public License. We discuss, as working cases, bandpass response modeling of the COFE and Planck Low Frequency Instrument (LFI) radiometers and compare results obtained with QUCS and with a commercial circuit simulator software. The main purpose of bandpass modeling in COFE is to optimize component matching, while in LFI they represent the best estimation of frequency response, since end-to-end measurements were strongly affected by systematic effects.

  6. Four-channel temperature and humidity microwave scanning radiometer

    Science.gov (United States)

    Xu, Pei-Yuan

    1994-06-01

    A compact four-channel microwave scanning radiometer for tropospheric remote sensing is being developed. A pair of 53.85 and 56.02 GHz and a pair of 23.87 and 31.65 GHz are adopted as temperature and humidity channels' frequencies respectively. For each pair of frequencies it has an offset reflector antenna and a Dicke-switching receiver. The pair of receivers is assembled in an enclosure, which is mounted on the rotating table of an azimuth mounting and the pair of antennas is connected with the rotating table of an azimuth mounting in the opposite side by a pair of elevation arms. Each antenna is composed of a 90 degree off-set paraboloid and a conical corrugated horn. Each antenna patterrn of four channels has nearly same HPBW, low side lobes, and low VSWR. The dual band humidity receiver is a time sharing type with 0.2K sensitivity at 1-sec integration time. The dual band temperature receiver is a band sharing type with 0.2K sensitivity at 10-sec integration time. The radiometer and observation are controlled by a single chip microcomputer to realize the unattended operation.

  7. Infrared fibers for radiometer thermometry in hypothermia and hyperthermia treatment

    International Nuclear Information System (INIS)

    Katzir, A.; Bowman, H.F.; Asfour, Y.; Zur, A.; Valeri, C.R.

    1989-01-01

    Hypothermia is a condition which results from prolonged exposure to a cold environment. Rapid and efficient heating is needed to rewarm the patient from 32-35 degrees C to normal body temperature. Hyperthermia in cancer treatment involves heating malignant tumors to 42.5-43.0 degrees C for an extended period (e.g., 30 min) in an attempt to obtain remission. Microwave or radio frequency heating is often used for rewarming in hypothermia or for temperature elevation in hyperthermia treatment. One severe problem with such heating is the accurate measurement and control of temperature in the presence of a strong electromagnetic field. For this purpose, we have developed a fiberoptic radiometer system which is based on a nonmetallic, infrared fiber probe, which can operate either in contact or noncontact mode. In preliminary investigations, the radiometer worked well in a strong microwave or radiofrequency field, with an accuracy of +/- 0.5 degrees C. This fiberoptic thermometer was used to control the surface temperature of objects within +/- 2 degrees C

  8. Thermal Radiometer Signal Processing Using Radiation Hard CMOS Application Specific Integrated Circuits for Use in Harsh Planetary Environments

    Science.gov (United States)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-01-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-sq cm/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  9. A Compact L-band Radiometer for High Resolution sUAS-based Imaging of Soil Moisture and Surface Salinity Variations

    Science.gov (United States)

    Gasiewski, A. J.; Stachura, M.; Dai, E.; Elston, J.; McIntyre, E.; Leuski, V.

    2014-12-01

    Due to the long electrical wavelengths required along with practical aperture size limitations the scaling of passive microwave remote sensing of soil moisture and salinity from spaceborne low-resolution (~10-100 km) applications to high resolution (~10-1000 m) applications requires use of low flying aerial vehicles. This presentation summarizes the status of a project to develop a commercial small Unmanned Aerial System (sUAS) hosting a microwave radiometer for mapping of soil moisture in precision agriculture and sea surface salinity studies. The project is based on the Tempest electric-powered UAS and a compact L-band (1400-1427 MHz) radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated sUAS/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a unique lobe-differencing correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAS above the surface while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer has been tested using analog correlation detection, although future builds will include infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction and digital sampling for radio frequency interference mitigation. This NASA-sponsored project is being developed for commercial application in cropland water management (for example, high-value shallow root-zone crops), landslide risk assessment, NASA SMAP satellite validation, and NASA Aquarius salinity stratification studies. The system will ultimately be capable of observing salinity events caused by coastal glacier and estuary fresh water outflow plumes and open ocean rainfall events.

  10. Physical, biological, and chemical data from radiometer, profiling reflectance radiometer, and CTD casts in a world-wide distribution as part of the SeaWiFS/SIMBIOS project from 13 September 1981 to 16 December 1999 (NODC Accession 0000632)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, biological, and chemical data were collected using radiometer, profiling reflectance radiometer, and CTD casts in a world-wide distribution from 13...

  11. Compact Front-end Prototype for Next Generation RFI-rejecting Polarimetric L-band Radiometer

    DEFF Research Database (Denmark)

    Jensen, Brian Sveistrup; Søbjærg, Sten Schmidl; Skou, Niels

    2009-01-01

    Realizing the need for lower noise figure and smaller physical size in todays higly sensitive radiometers, this paper presents a new compact analog front-end (AFE) for use with the existing L-band (1400-1427 MHz) radiometer designed and operated by the Technical University of Denmark. Using subha...

  12. A simple method to minimize orientation effects in a profiling radiometer

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Desa, E.; Matondkar, S.G.P.; SrinivasaKumar, T.; Lotlikar, A.

    -fall radiometer is found to be a better option for measuring underwater light parameters as it avoids the effects of ship shadow and is easy to operate, the measurements demand profiling the radiometer vertical in water with minimum tilt. Here we present...

  13. Challenges in application of Active Cold Loads for microwave radiometer calibration

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Balling, Jan E.; Skou, Niels

    2012-01-01

    Two Active Cold Loads (ACLs) for microwave radiometer calibration, operating at X-band, are evaluated with respect to important stability parameters. Using a stable radiometer system as test bed, absolute levels of 77 K and 55 K are found. This paper identifies and summarizes potential challenges...

  14. Spaceborne L-band Radiometers: Push-broom or Synthetic Aperture?

    DEFF Research Database (Denmark)

    Skou, Niels

    2004-01-01

    L-band radiometers can measure ocean salinity and soil moisture from space. A synthetic aperture radiometer system, SMOS, is under development by ESA for launch in 2007. A real aperture push-broom system, Aquarius, has been approved by NASA for launch in 2008. Pros et cons of the two fundamentally...

  15. Estimated radiological effects of the normal discharge of radioactivity from nuclear power plants in the Netherlands with a total capacity of 3500 MWe

    International Nuclear Information System (INIS)

    Lugt, G. van der; Wijker, H.; Kema, N.V.

    1977-01-01

    In the Netherlands discussions are going on about the installation of three nuclear power plants, leading with the two existing plants to a total capacity of 3500 MWe. To have an impression of the radiological impact of this program, calculations were carried out concerning the population doses due to the discharge of radioactivity from the plants during normal operation. The discharge via the ventilation stack gives doses due to noble gases, halogens and particulate material. The population dose due to the halogens in the grass-milk-man chain is estimated using the real distribution of grass-land around the reactor sites. It could be concluded that the population dose due to the contamination of crops and fruit is negligeable. A conservative estimation is made for the dose due to the discharge of tritium. The population dose due to the discharge in the cooling water is calculated using the following pathways: drinking water; consumption of fish; consumption of meat from animals fed with fish products. The individual doses caused by the normal discharge of a 1000 MWe plant appeared to be very low, mostly below 1 mrem/year. The population dose is in the order of some tens manrems. The total dose of the 5 nuclear power plants to the dutch population is not more than 70 manrem. Using a linear dose-effect relationship the health effects to the population are estimated and compared with the normal frequency

  16. Effect of Antihypertensive Therapy on SCORE-Estimated Total Cardiovascular Risk: Results from an Open-Label, Multinational Investigation—The POWER Survey

    Directory of Open Access Journals (Sweden)

    Guy De Backer

    2013-01-01

    Full Text Available Background. High blood pressure is a substantial risk factor for cardiovascular disease. Design & Methods. The Physicians' Observational Work on patient Education according to their vascular Risk (POWER survey was an open-label investigation of eprosartan-based therapy (EBT for control of high blood pressure in primary care centers in 16 countries. A prespecified element of this research was appraisal of the impact of EBT on estimated 10-year risk of a fatal cardiovascular event as determined by the Systematic Coronary Risk Evaluation (SCORE model. Results. SCORE estimates of CVD risk were obtained at baseline from 12,718 patients in 15 countries (6504 men and from 9577 patients at 6 months. During EBT mean (±SD systolic/diastolic blood pressures declined from 160.2 ± 13.7/94.1 ± 9.1 mmHg to 134.5 ± 11.2/81.4 ± 7.4 mmHg. This was accompanied by a 38% reduction in mean SCORE-estimated CVD risk and an improvement in SCORE risk classification of one category or more in 3506 patients (36.6%. Conclusion. Experience in POWER affirms that (a effective pharmacological control of blood pressure is feasible in the primary care setting and is accompanied by a reduction in total CVD risk and (b the SCORE instrument is effective in this setting for the monitoring of total CVD risk.

  17. Effect of Antihypertensive Therapy on SCORE-Estimated Total Cardiovascular Risk: Results from an Open-Label, Multinational Investigation—The POWER Survey

    Science.gov (United States)

    De Backer, Guy; Petrella, Robert J.; Goudev, Assen R.; Radaideh, Ghazi Ahmad; Rynkiewicz, Andrzej; Pathak, Atul

    2013-01-01

    Background. High blood pressure is a substantial risk factor for cardiovascular disease. Design & Methods. The Physicians' Observational Work on patient Education according to their vascular Risk (POWER) survey was an open-label investigation of eprosartan-based therapy (EBT) for control of high blood pressure in primary care centers in 16 countries. A prespecified element of this research was appraisal of the impact of EBT on estimated 10-year risk of a fatal cardiovascular event as determined by the Systematic Coronary Risk Evaluation (SCORE) model. Results. SCORE estimates of CVD risk were obtained at baseline from 12,718 patients in 15 countries (6504 men) and from 9577 patients at 6 months. During EBT mean (±SD) systolic/diastolic blood pressures declined from 160.2 ± 13.7/94.1 ± 9.1 mmHg to 134.5 ± 11.2/81.4 ± 7.4 mmHg. This was accompanied by a 38% reduction in mean SCORE-estimated CVD risk and an improvement in SCORE risk classification of one category or more in 3506 patients (36.6%). Conclusion. Experience in POWER affirms that (a) effective pharmacological control of blood pressure is feasible in the primary care setting and is accompanied by a reduction in total CVD risk and (b) the SCORE instrument is effective in this setting for the monitoring of total CVD risk. PMID:23997946

  18. MEPSOCON project: Calibration of Radiometers for High Solar Irradiance; Proyecto MEPSOCON: Calibracion de Radiometros de Alta Irradiancia Solar

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin, J.; Rodriguez-Alonso, M.

    2006-07-01

    The development of central receiver solar plants is a currently emerging field into renewable energies. For several years various receiver prototypes have been evaluated at the Plataforma Solar de Almeria (PSA). The measurement of the incident solar power on the receiver aperture is fundamental to the estimation of its efficiency. Many factors interfere with this measurement and consequently accuracy is very low. This uncertainty is transmitted to the design of the final solar plant and thereby to its price. The sensors used for this measurement are of small size in comparison with the receiver apertures, therefore different systems are necessary to obtain the incident solar power on the receiver aperture from the individual radiometer measurements. This report presents calibration procedures for the sensor used on the measurement of high solar irradiance and the analysis of the different factors affecting the incident power measurement to significantly reduce its uncertainty. (Author) 16 refs.

  19. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    and creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable....... It is thus a central point that power is not necessarily something that breaks down and represses. On the contrary, an explicit focus on the dynamics of power in relation to creativity can be productive for the organisation. Our main focus is to elaborate the implications of this for practice and theory...

  20. Soil Moisture ActivePassive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth’s surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  1. Evaluation of the Delta-T SPN1 radiometer for the measurement of solar irradiance components

    Science.gov (United States)

    Estelles, Victor; Serrano, David; Segura, Sara; Wood, John; Webb, Nick; Utrillas, Maria Pilar

    2016-04-01

    In this study we analyse the performance of an SPN1 radiometer built by Delta-T Devices Ltd. to retrieve global solar irradiance at ground and its components (diffuse, direct) in comparison with measurements from two Kipp&Zonen CMP21 radiometers and a Kipp&Zonen CHP1 pirheliometer, mounted on an active Solys-2 suntracker at the Burjassot site (Valencia, Spain) using data acquired every minute during years 2013 - 2015. The measurement site is close to sea level (60 m a.s.l.), near the Mediterranean coast (10 km) and within the metropolitan area of Valencia City (over 1.500.000 inhabitants). The SPN1 is an inexpensive and versatile instrument for the measurement of the three components of the solar radiation without any mobile part and without any need to azimuthally align the instrument to track the sun (http://www.delta-t.co.uk). The three components of the solar radiation are estimated from a combination of measurements performed by 7 different miniature thermopiles. The SPN1 pyranometer measures the irradiance between 400 and 2700 nm, and the nominal uncertainty for the individual readings is about 8% ± 10 W/m2 (5% for the daily averages). The pyranometer Kipp&Zonen CMP21 model is a secondary standard for the measurement of broadband solar global irradiance in horizontal planes. Two ventilated CMP21 are used for the measurement of the global and diffuse irradiances. The expected total daily uncertainty of the radiometer is estimated to be 2%. The pirheliometer Kipp&Zonen CHP1 is designed for the measurement of the direct irradiance. The principles are similar to the CMP21 pyranometer. The results of the comparison show that the global irradiance from the SPN1 compares very well with the CMP21, with absolute RMSD and MBD differences below the combined uncertainties (15 W/m2 and -5.4 W/m2, respectively; relative RMSD of 3.1%). Both datasets are very well correlated, with a correlation coefficient higher than 0.997 and a slope and intercept very close to 1 and 0

  2. Feasibility of power contrast injections and bolus triggering during CT scans in oncologic patients with totally implantable venous access ports of the forearm

    International Nuclear Information System (INIS)

    Goltz, Jan Peter; Machann, Wolfram; Noack, Claudia; Hahn, Dietbert; Kickuth, Ralph

    2011-01-01

    Background: Conventional totally implantable venous access ports (TIVAPs) are not approved for power contrast injections but often remain the only venous access site in oncologic patients. Therefore, these devices can play an important role if patients with a TIVAP are scheduled for a contrast-enhanced computed tomography (ceCT) as vascular access may become more difficult during the course of chemotherapy. Purpose: To evaluate the feasibility and safety of power injections in conventional TIVAPs in the forearm and to analyze the feasibility of bolus triggering during CT scans. Material and Methods: In this retrospective study we analyzed 177 power injections in 141 patients with TIVAPs in the forearm. Between October 2008 and March 2010 all patients underwent power injections (1.5 mL/s, 150 psi) via the TIVAP for ceCT because conventional vascular access via a peripheral vein had failed. Adequate functioning and catheter's tip location after injection were evaluated. Peak injection pressure and attenuation levels of aorta, liver and spleen were analyzed and compared with results of 50 patients who were injected via classical peripheral cannulas (3 mL/s, 300 psi). Feasibility of automatic scan initiation was evaluated. In vitro the port was stressed with 5 mL/s (300 psi). Results: One TIVAP showed tip dislocation with catheter rupture. Three (2.1%) devices were explanted owing to assumed infection within 4 weeks after the injection. Mean injection pressure was 121.9 ±24.1 psi. Triggering with automatic scan initiation succeeded in 13/44 (29.6%) scans. Injection via classical cannulas resulted in significantly higher enhancement (p < 0.05). In vitro the port system tolerated flow rates of up to 5 mL/s, injection pressures of up to 338 psi. Conclusion: Power injection is a safe alternative for patients with TIVAPs in the forearm if classic vascular access ultimately fails. Triggering was successful in one-third of the attempts. Image quality in the arterial phase

  3. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-07-01

    Accurate solar radiation data sets are critical to reducing the expenses associated with mitigating performance risk for solar energy conversion systems, and they help utility planners and grid system operators understand the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of calibration methodologies and the resulting calibration responsivities provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these radiometers are calibrated indoors, and some are calibrated outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The reference radiometer calibrations are traceable to the World Radiometric Reference. These different methods of calibration demonstrated 1% to 2% differences in solar irradiance measurement. Analyzing these values will ultimately assist in determining the uncertainties of the radiometer data and will assist in developing consensus on a standard for calibration.

  4. Study of total column atmospheric aerosol optical depth, ozone and ...

    Indian Academy of Sciences (India)

    Extensive observations of the columnar aerosol optical depth (AOD), total column ozone (TCO) and precipitable water content (PWC) have been carried out using the on-line, multi-band solar radiometers onboard ORV Sagar Kanya (Cruise#SK 147B) over Bay of Bengal during 11th-28th August 1999. Aerosol optical and ...

  5. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Wilcox, Stephen; Stoffel, Thomas

    2015-12-23

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  6. Application of RUB-01P beta radiometer to control contamination of milk and dairy produce

    International Nuclear Information System (INIS)

    Bachurin, A.V.; Donskaya, G.A.; Koroleva, M.S.; Titov, S.K.

    1990-01-01

    RUB-01P beta-radiometer to control radioactive contamination of milk and dairy produce characterized by a number of advantages as compared to RKB-4-1eM manufactured earlier is described. Device is designed using a new element base, simgle-action, characterized by increased reliability, can operate on-line with ELEKTRONIKA MK-64 programmed microcalculater. Radiometer output is printed out to a void operator errors and to record measurement results. Radiometer main error is maximum 50 %. Data on device sensitivity at measurements using BDZhB-05P, BDZhB-06P1, BDZhB-06P detection units are given

  7. Processor breadboard for on-board RFI detection and mitigation in MetOp-SG radiometers

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen S.; Kovanen, Arhippa

    2015-01-01

    Radio Frequency Interference (RFI) is an increasing threat to proper operation of space-borne Earth viewing microwave radiometer systems. There is a steady growth in active services, and tougher requirements to sensitivity and fidelity of future radiometer systems. Thus it has been decided...... that the next generation MetOp satellites must include some kind of RFI detection and mitigation system at Ku band. This paper describes a breadboard processor that detects and mitigates RFI on-board the satellite. Thus cleaned data can be generated in real time, and following suitable integration, downloaded...... to ground at the modest data rate usually associated with radiometer systems....

  8. An optical scanning subsystem for a UAS-enabled hyperspectral radiometer

    Data.gov (United States)

    National Aeronautics and Space Administration — Hyperspectral radiometers will be integrated with an optical scanning subsystem to measure remote sensing reflectance spectra over the ocean.  The entire scanning...

  9. GPM GROUND VALIDATION ADVANCED MICROWAVE RADIOMETER RAIN IDENTIFICATION (ADMIRARI) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Advanced Microwave Radiometer Rain Identification (ADMIRARI) GCPEx dataset measures brightness temperature at three frequencies (10.7, 21.0...

  10. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Snow Cover Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of snow cover from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument...

  11. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Smoothed Normalized Difference Vegetation Index (NDVI) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Visible Infrared Imaging Radiometer Suite (VIIRS) Smoothed Normalized Difference Vegetation Index (NDVI) from NDE is a weekly product derived from the VIIRS...

  12. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Detection Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of suspended matter from the Visible Infrared Imaging Radiometer Suite (VIIRS)...

  13. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor Data Record (SDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sensor Data Records (SDRs), or Level 1b data, from the Visible Infrared Imaging Radiometer Suite (VIIRS) are the calibrated and geolocated radiance and reflectance...

  14. Low level beta-activity radiometer with compensation of the background

    Energy Technology Data Exchange (ETDEWEB)

    Vankov, I [and others

    1996-12-31

    New type of the low level beta-activity scintillation detector system is developed. The procedure of finding the beta activity and the operation of the recording unit of the radiometer are considered. 3 refs.; 5 figs.

  15. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Mask Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains a high quality Environmental Data Record (EDR) of cloud masks from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard...

  16. Effect of vegetation on soil moisture sensing observed from orbiting microwave radiometers

    International Nuclear Information System (INIS)

    Wang, J.R.

    1985-01-01

    The microwave radiometric measurements made by the Skylab 1.4 GHz radiometer and by the 6.6 GHz and 10.7 GHz channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer were analyzed to study the large-area soil moisture variations of land surfaces. Two regions in Texas, one with sparse and the other with dense vegetation covers, were selected for the study. The results gave a confirmation of the vegetation effect observed by ground-level microwave radiometers. Based on the statistics of the satellite data, it was possible to estimate surface soil moisture in about five different levels from dry to wet conditions with a 1.4 GHz radiometer, provided that the biomass of the vegetation cover could be independently measured. At frequencies greater than about 6.6 GHz, the radiometric measurements showed little sensitivity to moisture variation for vegetation-covered soils. The effects of polarization in microwave emission were studied also. (author)

  17. Nimbus-2 Level 2 Medium Resolution Infrared Radiometer (MRIR) V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus II Medium Resolution Infrared Radiometer (MRIR) was designed to measure electromagnetic radiation emitted and reflected from the earth and its atmosphere...

  18. Scanning Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) By Prabhakara

    Data.gov (United States)

    National Aeronautics and Space Administration — SMMR_ALW_PRABHAKARA data are Special Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) data by Prabhakara.The Prabhakara Scanning...

  19. The Aquarius Ocean Salinity Mission High Stability L-band Radiometer

    Science.gov (United States)

    Pellerano, Fernando A.; Piepmeier, Jeffrey; Triesky, Michael; Horgan, Kevin; Forgione, Joshua; Caldwell, James; Wilson, William J.; Yueh, Simon; Spencer, Michael; McWatters, Dalia; hide

    2006-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius, will measure global ocean surface salinity with approx.120 km spatial resolution every 7-days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than or equal to 0.15 K over 7 days. The instrument utilizes a push-broom configuration which makes it impractical to use a traditional warm load and cold plate in front of the feedhorns. Therefore, to achieve the necessary performance Aquarius utilizes a Dicke radiometer with noise injection to perform a warm - hot calibration. The radiometer sequence between antenna, Dicke load, and noise diode has been optimized to maximize antenna observations and therefore minimize NEDT. This is possible due the ability to thermally control the radiometer electronics and front-end components to 0.1 Crms over 7 days.

  20. Next-Generation Thermal Infrared Multi-Body Radiometer Experiment (TIMBRE)

    Science.gov (United States)

    Kenyon, M.; Mariani, G.; Johnson, B.; Brageot, E.; Hayne, P.

    2016-10-01

    We have developed an instrument concept called TIMBRE which belongs to the important class of instruments called thermal imaging radiometers (TIRs). TIMBRE is the next-generation TIR with unparalleled performance compared to the state-of-the-art.

  1. The Planck-LFI Radiometer Electronics Box Assembly

    International Nuclear Information System (INIS)

    Herreros, J M; Gomez, M F; Rebolo, R; Chulani, H; Rubino-Martin, J A; Hildebrandt, S R; Bersanelli, M; Franceschet, C; Butler, R C; Miccolis, M; Pena, A; Pereira, M; Torrero, F; Lopez, M; Alcala, C

    2009-01-01

    The Radiometer Electronics Box Assembly (REBA) is the control and data processing on board computer of the Low Frequency Instrument (LFI) of the Planck mission (ESA). The REBA was designed and built incorporating state of the art processors, communication interfaces and real time operating system software in order to meet the scientific performance of the LFI. We present a technical summary of the REBA, including a physical, functional, electrical, mechanical and thermal description. Aspects of the design and development, the assembly, the integration and the verification of the equipment are provided. A brief description of the LFI on board software is given including the Low-Level Software and the main functionalities and architecture of the Application Software. The compressor module, which has been developed as an independent product, later integrated in the application, is also described in this paper. Two identical engineering models EM and AVM, the engineering qualification model EQM, the flight model FM and flight spare have been manufactured and tested. Low-level and Application software have been developed. Verification activities demonstrated that the REBA hardware and software fulfil all the specifications and perform as required for flight operation.

  2. The Planck-LFI Radiometer Electronics Box Assembly

    Science.gov (United States)

    Herreros, J. M.; Gómez, M. F.; Rebolo, R.; Chulani, H.; Rubiño-Martin, J. A.; Hildebrandt, S. R.; Bersanelli, M.; Butler, R. C.; Miccolis, M.; Peña, A.; Pereira, M.; Torrero, F.; Franceschet, C.; López, M.; Alcalá, C.

    2009-12-01

    The Radiometer Electronics Box Assembly (REBA) is the control and data processing on board computer of the Low Frequency Instrument (LFI) of the Planck mission (ESA). The REBA was designed and built incorporating state of the art processors, communication interfaces and real time operating system software in order to meet the scientific performance of the LFI. We present a technical summary of the REBA, including a physical, functional, electrical, mechanical and thermal description. Aspects of the design and development, the assembly, the integration and the verification of the equipment are provided. A brief description of the LFI on board software is given including the Low-Level Software and the main functionalities and architecture of the Application Software. The compressor module, which has been developed as an independent product, later integrated in the application, is also described in this paper. Two identical engineering models EM and AVM, the engineering qualification model EQM, the flight model FM and flight spare have been manufactured and tested. Low-level and Application software have been developed. Verification activities demonstrated that the REBA hardware and software fulfil all the specifications and perform as required for flight operation.

  3. CIRiS: Compact Infrared Radiometer in Space

    Science.gov (United States)

    Osterman, D. P.; Collins, S.; Ferguson, J.; Good, W.; Kampe, T.; Rohrschneider, R.; Warden, R.

    2016-09-01

    The Compact Infrared Radiometer in Space (CIRiS) is a thermal infrared radiometric imaging instrument under development by Ball Aerospace for a Low Earth Orbit mission on a CubeSat spacecraft. Funded by the NASA Earth Science Technology Office's In-Space Validation of Earth Science Technology (InVEST) program, the mission objective is technology demonstration for improved on-orbit radiometric calibration. The CIRiS calibration approach uses a scene select mirror to direct three calibration views to the focal plane array and to transfer the resulting calibrated response to earth images. The views to deep space and two blackbody sources, including one at a selectable temperature, provide multiple options for calibration optimization. Two new technologies, carbon nanotube blackbody sources and microbolometer focal plane arrays with reduced pixel sizes, enable improved radiometric performance within the constrained 6U CubeSat volume. The CIRiS instrument's modular design facilitates subsystem modifications as required by future mission requirements. CubeSat constellations of CIRiS and derivative instruments offer an affordable approach to achieving revisit times as short as one day for diverse applications including water resource and drought management, cloud, aerosol, and dust studies, and land use and vegetation monitoring. Launch is planned for 2018.

  4. The Planck-LFI Radiometer Electronics Box Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Herreros, J M; Gomez, M F; Rebolo, R; Chulani, H; Rubino-Martin, J A; Hildebrandt, S R [Instituto de Astrofisica de Canarias (IAC), 38200 La Laguna, Tenerife (Spain); Bersanelli, M; Franceschet, C [Universita di Milano, Dipartamento di Fisica, Via G. Celoria 16, 20133 Milano (Italy); Butler, R C [INAF-IASF Bologna, Via P. Gobetti 101, 40129 Bologna (Italy); Miccolis, M [Thales Alenia Space Italia S.p.A., IUEL - Scientific Instruments, S.S. Padana Superiore 290, 20090 Vimodrone (Italy); Pena, A; Pereira, M; Torrero, F; Lopez, M; Alcala, C, E-mail: rrl@iac.e [EADS Astrium CRISA, C/Torres Quevedo, 9, 28760 Tres Cantos (Spain)

    2009-12-15

    The Radiometer Electronics Box Assembly (REBA) is the control and data processing on board computer of the Low Frequency Instrument (LFI) of the Planck mission (ESA). The REBA was designed and built incorporating state of the art processors, communication interfaces and real time operating system software in order to meet the scientific performance of the LFI. We present a technical summary of the REBA, including a physical, functional, electrical, mechanical and thermal description. Aspects of the design and development, the assembly, the integration and the verification of the equipment are provided. A brief description of the LFI on board software is given including the Low-Level Software and the main functionalities and architecture of the Application Software. The compressor module, which has been developed as an independent product, later integrated in the application, is also described in this paper. Two identical engineering models EM and AVM, the engineering qualification model EQM, the flight model FM and flight spare have been manufactured and tested. Low-level and Application software have been developed. Verification activities demonstrated that the REBA hardware and software fulfil all the specifications and perform as required for flight operation.

  5. Regolith Formation Rates and Evolution from the Diviner Lunar Radiometer

    Science.gov (United States)

    Hayne, P. O.; Ghent, R. R.; Bandfield, J. L.; Vasavada, A. R.; Williams, J. P.; Siegler, M. A.; Lucey, P. G.; Greenhagen, B. T.; Elder, C. M.; Paige, D. A.

    2015-12-01

    Fragmentation and overturn of lunar surface materials produces a layer of regolith, which increases in thickness through time. Experiments on the lunar surface during the Apollo era, combined with remote sensing, found that the upper 10's of cm of regolith exhibit a rapid increase in density and thermal conductivity with depth. This is interpreted to be the signature of impact gardening, which operates most rapidly in the uppermost layers. Gravity data from the GRAIL mission showed that impacts have also extensively fractured the deeper crust. The breakdown and mixing of crustal materials is therefore a central process to lunar evolution and must be understood in order to interpret compositional information from remote sensing and sample analysis. Recently, thermal infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner radiometer were used to provide the first remote observational constraints on the rate of ejecta breakdown around craters L., Campbell, B. A., Allen, C. C., Carter, L. M., & Paige, D. A. (2014). Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages. Geology, 42(12), 1059-1062.

  6. Low noise 874 GHz receivers for the International Submillimetre Airborne Radiometer (ISMAR)

    Science.gov (United States)

    Hammar, A.; Sobis, P.; Drakinskiy, V.; Emrich, A.; Wadefalk, N.; Schleeh, J.; Stake, J.

    2018-05-01

    We report on the development of two 874 GHz receiver channels with orthogonal polarizations for the International Submillimetre Airborne Radiometer. A spline horn antenna and dielectric lens, a Schottky diode mixer circuit, and an intermediate frequency (IF) low noise amplifier circuit were integrated in the same metallic split block housing. This resulted in a receiver mean double sideband (DSB) noise temperature of 3300 K (minimum 2770 K, maximum 3400 K), achieved at an operation temperature of 40 °C and across a 10 GHz wide IF band. A minimum DSB noise temperature of 2260 K at 20 °C was measured without the lens. Three different dielectric lens materials were tested and compared with respect to the radiation pattern and noise temperature. All three lenses were compliant in terms of radiation pattern, but one of the materials led to a reduction in noise temperature of approximately 200 K compared to the others. The loss in this lens was estimated to be 0.42 dB. The local oscillator chains have a power consumption of 24 W and consist of custom-designed Schottky diode quadruplers (5% power efficiency in operation, 8%-9% peak), commercial heterostructure barrier varactor (HBV) triplers, and power amplifiers that are pumped by using a common dielectric resonator oscillator at 36.43 GHz. Measurements of the radiation pattern showed a symmetric main beam lobe with full width half maximum <5° and side lobe levels below -20 dB. Return loss of a prototype of the spline horn and lens was measured using a network analyzer and frequency extenders to 750-1100 GHz. Time-domain analysis of the reflection coefficients shows that the reflections are below -25 dB and are dominated by the external waveguide interface.

  7. Total protein

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  8. Icecube: Spaceflight Validation of an 874-GHz Submillimeter Wave Radiometer for Ice Cloud Remote Sensing

    Science.gov (United States)

    Wu, D. L.; Esper, J.; Ehsan, N.; Piepmeier, J. R.; Racette, P.

    2014-12-01

    Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Submillimeter wave remote sensing offers a unique capability to improve cloud ice measurements from space. At 874 GHz cloud scattering produces a larger brightness temperature depression from cirrus than lower frequencies, which can be used to retrieve vertically-integrated cloud ice water path (IWP) and ice particle size. The objective of the IceCube project is to retire risks of 874-GHz receiver technology by raising its TRL from 5 to 7. The project will demonstrate, on a 3-U CubeSat in a low Earth orbit (LEO) environment, the 874-GHz receiver system with noise equivalent differential temperature (NEDT) of ~0.2 K for 1-second integration and calibration error of 2.0 K or less as measured from deep-space observations. The Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes, Inc (VDI) to qualify commercially available 874-GHz receiver technology for spaceflight, and demonstrate the radiometer performance. The instrument (submm-wave cloud radiometer, or SCR), along with the CubeSat system developed and integrated by GSFC, will be ready for launch in two years. The instrument subsystem includes a reflector antenna, sub-millimeter wave mixer, frequency multipliers and stable local oscillator, an intermediate frequency (IF) circuit with noise injection, and data-power boards. The mixer and frequency multipliers are procured from VDI with GSFC insight into fabrication and testing processes to ensure scalability to spaceflight beyond TRL 7. The remaining components are a combination of GSFC-designed and commercial off-the-shelf (COTS) at TRLs of 5 or higher. The spacecraft system is specified by GSFC and comprises COTS components including three-axis stabilizer and sun sensor, GPS receiver, deployable solar arrays, UHF radio, and 2 GB of on-board storage. The spacecraft and instrument are integrated and flight qualified

  9. The Sun-earth Imbalance radiometer for a direct measurement of the net heating of the earth

    Science.gov (United States)

    Dewitte, Steven; Karatekin, Özgür; Chevalier, Andre; Clerbaux, Nicolas; Meftah, Mustapha; Irbah, Abdanour; Delabie, Tjorven

    2015-04-01

    It is accepted that the climate on earth is changing due to a radiative energy imbalance at the top of the atmosphere, up to now this radiation imbalance has not been measured directly. The measurement is challenging both in terms of space-time sampling of the radiative energy that is leaving the earth and in terms of accuracy. The incoming solar radiation and the outgoing terrestrial radiation are of nearly equal magnitude - of the order of 340 W/m² - resulting in a much smaller difference or imbalance of the order of 1 W/m². The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar and the outgoing terrestrial radiation with the same instrument. Based on our 30 year experience of measuring the Total Solar Irradiance with the Differential Absolute RADiometer (DIARAD) type of instrument and on our 10 year experience of measuring the Earth Radiation Budget with the Geostationary Earth Radiation Budget (GERB) instrument on Meteosat Second Generation, we propose an innovative constellation of Sun-earth IMBAlance (SIMBA) radiometer cubesats with the ultimate goal to measure the Sun-earth radiation imbalance. A first Simba In Orbit Demonstration satellite is scheduled for flight with QB50 in 2015. It is currently being developed as ESA's first cubesat through an ESA GSTP project. In this paper we will give an overview of the Simba science objectives and of the current satellite and payload development status.

  10. PERBANDINGAN PENGUKURAN RADIOMETER DAN RADIOSONDE PADA MUSIM HUJAN DI DRAMAGA BOGOR

    OpenAIRE

    Athoillah, Ibnu; Dewi, Saraswati; Renggono, Findy

    2016-01-01

    IntisariBalai Besar Teknologi Modifikasi Cuaca (BB-TMC) BPPT bekerjasama dengan Badan Meteorologi Klimatologi dan Geofisika (BMKG) melakukan kegiatan Intensive Observation Period (IOP) selama puncak musim hujan pada tanggal 18 Januari - 16 Februari 2016 di wilayah Jabodetabek. Salah satu peralatan yang digunakan untuk observasi adalah Radiometer dan Radiosonde. Pada penelitian ini akan difokuskan bagaimana perbandingan hasil dari pengukuran Radiometer dan Radiosonde selama kegiatan IOP teruta...

  11. Report on achievements in fiscal 1999 of New Sunshine Project. Development of superconductor power applied technologies. Research on total system; 1999 nendo chodendo denryoku oyo gijutsu kaihatsu gyomu seika hokokusho. Total system nado no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    To deal effectively with problems being actualized in electric power systems, it is necessary to introduce superconductor technologies into power devices, and achieve higher efficiency, density and stability in the power systems. To achieve the goal, development is being made on superconductor power applied technologies, whereas investigative researches are given on the effects of introducing the superconductor power applied devices to proceed the development effectively and smoothly. This project is also given evaluations on its research achievements. In the practical application of superconductor generators, all of the verification tests have been completed, with the model generator system linkage test as the final test. Design and fabrication technologies were established on a 200,000-kW class pilot generator after having gone through analyses made after the tests. Not only having achieved the initial technical value targets, the result presented reliability required for practical use of the superconductor generator, having exceeded the expectation. The research and development of the superconductor generator technologies under this project is concluded successful. The AC superconductor devices were developed by effectively utilizing the results of the leading researches on fundamental technologies for AC superconductor power device technologies as well as other results of the world's highest levels. (NEDO)

  12. CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations

    Directory of Open Access Journals (Sweden)

    Ernesto Lopez-Baeza

    2011-01-01

    Full Text Available The “Cooperative Airborne Radiometer for Ocean and Land Studies” (CAROLS L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer—STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera. Following initial laboratory qualifications, three airborne campaigns involving 21 flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight horizontal flights, circular flights, wing and nose wags over the ocean. Analysis of the first two campaigns in 2007 and 2008 leads us to improve the CAROLS radiometer regarding isolation between channels and filter bandwidth. After implementation of these improvements, results show that the instrument is conforming to specification and is a useful tool for Soil Moisture and Ocean Salinity (SMOS satellite validation as well as for specific studies on surface soil moisture or ocean salinity.

  13. Systems analysis in the vehicle powertrain technology VI. Dynamic behaviour of the total system of vehicle power trains; Systemanalyse in der Kfz-Antriebstechnik VI. Dynamisches Gesamtsystemverhalten von Fahrzeugantrieben

    Energy Technology Data Exchange (ETDEWEB)

    Laschet, Andreas

    2011-07-01

    The thematic issue under consideration sets new topics in the areas of vibration assessment, NVH optimization of vehicle drives as well as total system approach in the context of the tuning of power trains. Due to the continuously increasing demands on drive technical solutions in automotive technology the total analysis of the complete propulsion system shouldalways be highly valued.

  14. FY 1992 report on the results of the demonstration test on the methanol conversion at oil-fired power plant. Demonstration test on a methanol reformation type power generation total system; 1992 nendo sekiyu karyoku hatsudensho metanoru tenkan tou jissho shiken. Metanoru kaishitsu gata hatsuden total system jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    For the promotion of introduction of methanol to oil-fired power plant, based on the results of the element study, operational study was conducted of a 1,000kW class total system plant for which each of the elements was combined, and the FY 1992 results were summarized. In the operational study, data on various kinds of operational study were sampled of each of the simple cycle/regeneration cycle of liquid methanol and simple cycle/regeneration cycle of gas methanol. As to the reformed gas/water injection/regeneration cycle, all functions as a total system plant worked normally, and it was confirmed that the reformed gas/water injection/regeneration cycle operation could be made possible. Besides, the following were conducted: confirmation test on the performance of the developmental catalyst used in the operational study by bench-scale test device, trial operation for adjustment of gas turbine and combustion study such as the performance test in each cycle, manufacture/study of catalyst for the total system, study for longevity of catalyst for the total system, etc. (NEDO)

  15. Geostationary Coastal and Air Pollution Events (GeoCAPE) Filter Radiometer (FR)

    Science.gov (United States)

    Kotecki, Carl; Chu, Martha; Wilson, Mark; Clark, Mike; Nanan, Bobby; Matson, Liz; McBirney, Dick; Smith, Jay; Earle, Paul; Choi, Mike; hide

    2014-01-01

    The GeoCAPE Filter Radiometer (FR) Study is a different instrument type than all of the previous IDL GeoCape studies. The customer primary goals are to keep mass, volume and cost to a minimum while meeting the science objectives and maximizing flight opportunities by fitting on the largest number of GEO accommodations possible. Minimize total mission costs by riding on a commercial GEO satellite. For this instrument type, the coverage rate, km 2 min, was significantly increased while reducing the nadir ground sample size to 250m. This was accomplished by analyzing a large 2d area for each integration period. The field of view will be imaged on a 4k x 4k detector array of 15 micrometer pixels. Each ground pixel is spread over 2 x 2 detector pixels so the instantaneous field of view (IFOV) is 2048 X 2048 ground pixels. The baseline is, for each field of view 50 sequential snapshot images are taken, each with a different filter, before indexing the scan mirror to the next IFOV. A delta would be to add additional filters.

  16. Calibration OGSEs for multichannel radiometers for Mars atmosphere studies

    Science.gov (United States)

    Jiménez, J. J.; J Álvarez, F.; Gonzalez-Guerrero, M.; Apéstigue, V.; Martín, I.; Fernández, J. M.; Fernán, A. A.; Arruego, I.

    2018-06-01

    This work describes several Optical Ground Support Equipment (OGSEs) developed by INTA (Spanish Institute of Aerospace Technology—Instituto Nacional de Técnica Aeroespacial) for the calibration and characterization of their self-manufactured multichannel radiometers (solar irradiance sensors—SIS) developed for working on the surface of Mars and studying the atmosphere of that planet. Nowadays, INTA is developing two SIS for the ESA ExoMars 2020 and for the JPL/NASA Mars 2020 missions. These calibration OGSEs have been improved since the first model in 2011 developed for Mars MetNet Precursor mission. This work describes the currently used OGSE. Calibration tests provide an objective evidence of the SIS performance, allowing the conversion of the electrical sensor output into accurate physical measurements (irradiance) with uncertainty bounds. Calibration results of the SIS on board of the Dust characterisation, Risk assessment, and Environment Analyzer on the Martian Surface (DREAMS) on board the ExoMars 2016 Schiaparelli module (EDM—entry and descent module) are also presented, as well as their error propagation. Theoretical precision and accuracy of the instrument are determined by these results. Two types of OGSE are used as a function of the pursued aim: calibration OGSEs and Optical Fast Verification (OFV) GSE. Calibration OGSEs consist of three setups which characterize with the highest possible accuracy, the responsivity, the angular response and the thermal behavior; OFV OGSE verify that the performance of the sensor is close to nominal after every environmental and qualification test. Results show that the accuracy of the calibrated sensors is a function of the accuracy of the optical detectors and of the light conditions. For normal direct incidence and diffuse light, the accuracy is in the same order of uncertainty as that of the reference cell used for fixing the irradiance, which is about 1%.

  17. Pushbroom microwave radiometer results from HAPEX-MOBILHY

    International Nuclear Information System (INIS)

    Nichols, W.E.; Cuenca, R.H.; Schmugge, T.J.; Wang, J.R.

    1993-01-01

    The NASA C-130 remote sensing aircraft was in Toulouse, France from 25 May through 4 July 1986, for participation in the HAPEX-MOBILHY program. Spectral and radiometric data were collected by C-130 borne sensors in the visible, infrared, and microwave wavelengths. These data provided information on the spatial and temporal variations of surface parameters such as vegetation indices, surface temperature, and surface soil moisture. The Pushbroom Microwave Radiometer (PBMR) was used to collect passive microwave brightness temperature data. This four-beam sensor operates at the 21-cm wavelength, providing cross-track coverage approximately 1.2 times the aircraft altitude. Observed brightness temperatures for the period were high, ranging from above 240 K about 290 K. Brightness temperature images appeared to correspond well to spatial and temporal soil moisture variation. Previous research has demonstrated that an approximately linear relationship exists between the surface emissivity and surface soil moisture. For these data, however, regression analysis did not indicate a strong linear relationship (r 2 = 0.32 and r 2 = 0.42 respectively) because of the limited range of soil moisture conditions encountered and the small number of ground measurements. When results from wetter soil conditions encountered in another experiment were included, the regression improved dramatically. Based on similar research with the PBMR and an understanding of the ground data collection program, this result was examined to produce recommendations for improvements to future passive microwave research and data collection programs. Examples of surface soil moisture maps generated with PBMR data are presented which appear to be representative of the actual soil moisture conditions

  18. Calibration OGSEs for multichannel radiometers for Mars atmosphere studies

    Science.gov (United States)

    Jiménez, J. J.; J Álvarez, F.; Gonzalez-Guerrero, M.; Apéstigue, V.; Martín, I.; Fernández, J. M.; Fernán, A. A.; Arruego, I.

    2018-02-01

    This work describes several Optical Ground Support Equipment (OGSEs) developed by INTA (Spanish Institute of Aerospace Technology—Instituto Nacional de Técnica Aeroespacial) for the calibration and characterization of their self-manufactured multichannel radiometers (solar irradiance sensors—SIS) developed for working on the surface of Mars and studying the atmosphere of that planet. Nowadays, INTA is developing two SIS for the ESA ExoMars 2020 and for the JPL/NASA Mars 2020 missions. These calibration OGSEs have been improved since the first model in 2011 developed for Mars MetNet Precursor mission. This work describes the currently used OGSE. Calibration tests provide an objective evidence of the SIS performance, allowing the conversion of the electrical sensor output into accurate physical measurements (irradiance) with uncertainty bounds. Calibration results of the SIS on board of the Dust characterisation, Risk assessment, and Environment Analyzer on the Martian Surface (DREAMS) on board the ExoMars 2016 Schiaparelli module (EDM—entry and descent module) are also presented, as well as their error propagation. Theoretical precision and accuracy of the instrument are determined by these results. Two types of OGSE are used as a function of the pursued aim: calibration OGSEs and Optical Fast Verification (OFV) GSE. Calibration OGSEs consist of three setups which characterize with the highest possible accuracy, the responsivity, the angular response and the thermal behavior; OFV OGSE verify that the performance of the sensor is close to nominal after every environmental and qualification test. Results show that the accuracy of the calibrated sensors is a function of the accuracy of the optical detectors and of the light conditions. For normal direct incidence and diffuse light, the accuracy is in the same order of uncertainty as that of the reference cell used for fixing the irradiance, which is about 1%.

  19. Reduced endogenous urinary total antioxidant power and its relation of plasma antioxidant activity of superoxide dismutase in individuals with autism spectrum disorder.

    Science.gov (United States)

    Yui, Kunio; Tanuma, Nasoyuki; Yamada, Hiroshi; Kawasaki, Yohei

    2017-08-01

    Individuals with autism spectrum disorders (ASD) have impaired detoxification capacity. Investigating the neurobiological bases of impaired antioxidant capacity is thus a research priority in the pathophysiology of ASD. We measured the urinary levels of hexanoyl-lysine (HEL) which is a new oxidative stress biomarker, total antioxidant power (TAP) and DNA methylation biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG), and the plasma levels of superoxide dismutase (SOD), which is a major antioxidant enzyme. We examined whether the urinary levels of these enzymes and biomarkers may be related to symptoms of social impairment in 20 individuals with ASD (meanage,11.1±5.2years) and 12 age- and gender-matched healthy controls (meanage,14.3±6.2years). Symptoms of social impairment were assessed using the Social Responsiveness Scale (SRS). The dietary TAP of the fruit juice, chocolate, cookies, biscuits, jam and marmalade were significantly higher in the ASD group than in the control group, although the intake of nutrients was not significantly different between the groups. The urinary TAP levels were significantly lower in the ASD group than in the control group. There were no significantly differences in urinary HEL and 8-OHdG levels between the ASD and control groups. The SRS scores were significantly higher in the ASD group than in the control group. Stepwise regression analysis revealed that urinary TAP levels and plasma SOD levels can differences in the biomarkers and the SRS scores between the ASD group and the control group. The endogenous antioxidant capacity may be deficient without altered urinary HEL and 8-OHdG levels in individuals with ASD. The plasma SOD levels may be related to reduced endogenous antioxidant capacity. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  20. Total algorithms

    NARCIS (Netherlands)

    Tel, G.

    We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of

  1. Improvement of shipborne sky radiometer and its demonstration aboard the Antarctic research vessel Shirase

    Directory of Open Access Journals (Sweden)

    Noriaki Tanaka

    2014-11-01

    Full Text Available The sun-tracking performance of a shipborne sky radiometer was improved to attain accurate aerosol optical thickness (AOT from direct solar measurements on a pitching and rolling vessel. Improvements were made in the accuracy of sun-pointing measurements, field-of-view expansion, sun-tracking speed, and measurement method. Radiometric measurements of direct solar and sky brightness distribution were performed using the shipborne sky radiometer onboard the Antarctic research vessel (R/V Shirase during JARE-51 (2009-2010 and JARE-52 (2010-2011. The temporal variation of signal intensity measured by the radiometer under cloudless conditions was smooth, demonstrating that the radiometer could measure direct sunlight onboard the R/V. AOT at 500 nm ranged from 0.01 to 0.34, and values over Southeast Asia and over the western Pacific Ocean in spring were higher than those over other regions. The Angstrom exponent ranged from -0.06 to 2.00, and values over Southeast Asia and off the coast near Sydney were the highest. The improved shipborne sky radiometer will contribute to a good understanding of the nature of aerosols over the ocean.

  2. Short Wave Part of Earth's Energy Budget at Top of Atmosphere During 2009-2017 from Radiometer IKOR-M Data

    Science.gov (United States)

    Cherviakov, M.; Spiryakhina, A.; Surkova, Y.; Kulkova, E.; Shishkina, E.

    2017-12-01

    This report describes Earth's energy budget IKOR-M satellite program which has been started in Russia. The first satellite "Meteor-M" No 1 of this project was put into orbit in 2009. The IKOR-M radiometer is a satellite instrument which can measure reflected shortwave radiation (0.3-4.0 µm). It was created in Saratov University and installed on Russian meteorological satellites "Meteor-M" No 1 and No 2. IKOR-M designed for satellite monitoring of the outgoing short-wave radiation at top-of-atmosphere (TOA), which is one of the components of Earth's energy budget. Such measurements can be used to derive albedo and absorbed solar radiation at TOA. The basic products of data processing are given in the form of global maps of distribution outgoing short-wave radiation, albedo and absorbed solar radiation (ASR). Such maps were made for each month during observation period. The IKOR-M product archive is available online at all times. A searchable catalogue of data products is continually updated and users may search and download data products via the Earth radiation balance components research laboratory website (www.sgu.ru/structure/geographic/metclim/balans) as soon as they become available. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October 2009 to August 2014 and second - from August 2014 to the present. Therefore, there is a period when both radiometers work at the same time. Top-of-atmosphere fluxes deduced from the "Meteor-M" No 1 measurements in August 2014 show very good agreement with the fluxes determined from "Meteor-M" No 2. It was shown that the albedo and ASR data received from the radiometer IKOR-M can be used to detect El Nino in the Pacific Ocean. During the radiometer operation, there were two significant El Nino events. Spatial-temporal distribution of the albedo in the equatorial part of the Pacific Ocean was analyzed. Region with high albedo values of 35-40 % is formed in the region 180E

  3. Does IQ explain socio-economic differentials in total and cardiovascular disease mortality? Comparison with the explanatory power of traditional cardiovascular disease risk factors in the Vietnam Experience Study

    DEFF Research Database (Denmark)

    Batty, G David; Shipley, Martin J; Dundas, Ruth

    2009-01-01

    The aim of this study was to examine the explanatory power of intelligence (IQ) compared with traditional cardiovascular disease (CVD) risk factors in the relationship of socio-economic disadvantage with total and CVD mortality, that is the extent to which IQ may account for the variance in this ......The aim of this study was to examine the explanatory power of intelligence (IQ) compared with traditional cardiovascular disease (CVD) risk factors in the relationship of socio-economic disadvantage with total and CVD mortality, that is the extent to which IQ may account for the variance...

  4. Impact of Total Ionizing Dose Radiation Testing and Long-Term Thermal Cycling on the Operation of CMF20120D Silicon Carbide Power MOSFET

    Science.gov (United States)

    Patterson, Richard L.; Scheidegger, Robert J.; Lauenstein, Jean-Marie; Casey, Megan; Scheick, Leif; Hammoud, Ahmad

    2013-01-01

    Power systems designed for use in NASA space missions are required to work reliably under harsh conditions including radiation, thermal cycling, and extreme temperature exposures. Silicon carbide devices show great promise for use in future power electronics systems, but information pertaining to performance of the devices in the space environment is very scarce. A silicon carbide N-channel enhancement-mode power MOSFET called the CMF20120 is of interest for use in space environments. Samples of the device were exposed to radiation followed by long-term thermal cycling to address their reliability for use in space applications. The results of the experimental work are presentd and discussed.

  5. Totally James

    Science.gov (United States)

    Owens, Tom

    2006-01-01

    This article presents an interview with James Howe, author of "The Misfits" and "Totally Joe". In this interview, Howe discusses tolerance, diversity and the parallels between his own life and his literature. Howe's four books in addition to "The Misfits" and "Totally Joe" and his list of recommended books with lesbian, gay, bisexual, transgender,…

  6. FY 2000 research and development of fundamental technologies for AC superconducting power devices. R and D of fundamental technologies for superconducting power cables and faults current limiters, R and D of superconducting magnets for power applications, and study on the total systems and related subjects; 2000 nendo koryu chodendo denryoku kiki kiban gijutsu kenkyu kaihatsu seika hokokusho. Chodendo soden cable kiban gijutsu no kenkyu kaihatsu, chodendo genryuki kiban gijutsu no kenkyu kaihatsu, denryokuyo chodendo magnet no kenkyu kaihatsu, total system nado no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The project for research and development of fundamental technologies for AC superconducting power devices has been started, and the FY 2000 results are reported. The R and D of fundamental technologies for superconducting power cables include grasping the mechanical characteristics associated with integration necessary for fabrication of large current capacity and long cables; development of barrier cable materials by various methods; and development of short insulated tubes as cooling technology for long superconducting cables, and grasping its thermal/mechanical characteristics. The R and D of faults current limiters include introduction of the unit for superconducting film fabrication, determination of the structures and layouts for large currents, and improvement of performance of each device for high voltages. R and D of superconducting magnets for power applications include grasping the fundamental characteristics of insulation at cryogenic temperature, completion of the insulation designs for high voltage/current lead bushing, and development of prototype sub-cooled nitrogen cooling unit for cooling each AC power device. Study on the total systems and related subjects include analysis for stabilization of the group model systems, to confirm improved voltage stability when the superconducting cable is in service. (NEDO)

  7. Descent imager/spectral radiometer (DISR) instrument aboard the Huygens probe of Titan

    Science.gov (United States)

    Tomasko, Martin G.; Doose, Lyn R.; Smith, Peter H.; Fellows, C.; Rizk, B.; See, C.; Bushroe, M.; McFarlane, E.; Wegryn, E.; Frans, E.; Clark, R.; Prout, M.; Clapp, S.

    1996-10-01

    The Huygen's probe of the atmosphere of Saturn's moon Titan includes one optical instrument sensitive to the wavelengths of solar radiation. The goals of this investigation fall into four broad areas: 1) the measurement of the profile of solar heating to support an improved understanding of the thermal balance of Titan and the role of the greenhouse effect in maintaining Titan's temperature structure; 2) the measurement of the size, vertical distribution, and optical properties of the aerosol and cloud particles in Titan's atmosphere to support studies of the origin, chemistry, life cycles, and role in the radiation balance of Titan played by these particles; 3) the composition of the atmosphere, particularly the vertical profile of the mixing ratio of methane, a condensable constituent in Titan's atmosphere; and 4) the physical state, composition, topography, and physical processes at work in determining the nature of the surface of Titan and its interaction with Titan's atmosphere. In order to accomplish these objectives, the Descent Imager/Spectral Radiometer (DISR) instrument makes extensive use of fiber optics to bring the light from several different sets of foreoptics to a silicon CCD detector, to a pair of InGaAs linear array detectors, and to three silicon photometers. Together these detectors permit DISR to make panoramic images of the clouds and surface of Titan, to measure the spectrum of upward and downward streaming sunlight from 350 to 1700 nm at a resolving power of about 200, to measure the reflection spectrum of >= 3000 locations on the surface, to measure the brightness and polarization of the solar aureole between 4 and 30 degrees from the sun at 500 and 935 nm, to separate the direct and diffuse downward solar flux at each wavelength measured, and to measure the continuous reflection spectrum of the ground between 850 and 1600 nm using an onboard lamp in the last 100 m of the descent.

  8. New improved algorithm for sky calibration of L-band radiometers JLBARA and ELBARA II

    KAUST Repository

    Dimitrov, Marin; Kostov, K. G.; Jonard, Franç ois; Jadoon, Khan; Schwank, Mike; Weihermü ller, Lutz; Hermes, Normen; Vanderborght, Jan P.; Vereecken, Harry

    2012-01-01

    We propose a new algorithm for sky calibration of the L-band radiometers JLBARA and ELBARA II, introducing the effective transmissivities of the instruments. The suggested approach was tested using experimental data obtained at the Selhausen test site, Germany. It was shown that for JLBARA the effective transmissivities depend strongly on the air temperature and decrease with increasing air temperature, while for ELBARA II such strong dependence was not observed. It was also shown that the effective transmissivities account for the antenna and feed cable loss effects, and for the variations of the radiometer gain due to air temperature changes. The new calibration algorithm reduces significantly the bias of brightness temperature estimates for both radiometers, especially for JLBARA. © 2012 IEEE.

  9. New improved algorithm for sky calibration of L-band radiometers JLBARA and ELBARA II

    KAUST Repository

    Dimitrov, Marin

    2012-03-01

    We propose a new algorithm for sky calibration of the L-band radiometers JLBARA and ELBARA II, introducing the effective transmissivities of the instruments. The suggested approach was tested using experimental data obtained at the Selhausen test site, Germany. It was shown that for JLBARA the effective transmissivities depend strongly on the air temperature and decrease with increasing air temperature, while for ELBARA II such strong dependence was not observed. It was also shown that the effective transmissivities account for the antenna and feed cable loss effects, and for the variations of the radiometer gain due to air temperature changes. The new calibration algorithm reduces significantly the bias of brightness temperature estimates for both radiometers, especially for JLBARA. © 2012 IEEE.

  10. Description and Performance of an L-Band Radiometer with Digital Beamforming

    Directory of Open Access Journals (Sweden)

    Juan F. Marchan-Hernandez

    2010-12-01

    Full Text Available This paper presents the description and performance tests of an L-band microwave radiometer with Digital Beamforming (DBF, developed for the Passive Advanced Unit (PAU for ocean monitoring project. PAU is an instrument that combines, in a single receiver and without time multiplexing, a microwave radiometer at L-band (PAU-RAD and a GPS-reflectometer (PAU-GNSS-R. This paper focuses on the PAU‑RAD beamformer’s first results, analyzing the hardware and software required for the developed prototype. Finally, it discusses the first results measured in the Universitat Politècnica de Catalunya (UPC anechoic chamber.

  11. The Along Track Scanning Radiometer (ATSR) - Orbital performance and future developments

    Science.gov (United States)

    Sandford, M. C. W.; Edwards, T.; Mutlow, C. T.; Delderfield, J.; Llewellyn-Jones, D. T.

    1992-08-01

    The Along-Track Scanning Radiometer (ATSR), a new kind of infrared radiometer which is intended to make sea surface temperature measurements with an absolute accuracy of +/- 0.5 K averaged over cells of 0.5 deg in latitude, is discussed. The ATSR employs four detectors centered at 12, 11, 3.7, and 1.6 microns. The noise performance thermal performance, and Stirling cycle cooler performance of the ATSR on ERS-1 are examined along with 3.7 micron channel results. The calibration, structure, and data handling of the ATSRs planned for ERS-2 and for the POEM mission are examined.

  12. RFI mitigating receiver back end for radiometers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal requests support for Alphacore, Inc. to design and a low power application specific integrated circuit (ASIC) RFI mitigating receiver back...

  13. Fiscal 1998 research report on the total electric power loss reduction project for Myanmer; 1998 nendo Myanmer koku denryoku soshitsu sogo teigen project chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    As a part of Japanese clean development mechanism, study was made on reduction of greenhouse effect gas emission from thermal power plants by reduction of power transmission and distribution losses of power systems in Myanmer. Study was made on technical power transmission and distribution losses for the national grid transmission system, 33kV sub- transmission system of Thaketa substation in Yangong city, and 6.6kV and 400V distribution systems of Latha and Lanmadaw townships in the downtown area of Yangong. Countermeasures for power loss reduction were considered on the basis of the study result. The loss reduction project plan includes a construction cost of 5,134,000US$, loss reduction of 7,726kW, and loss reduction of 33,213,000kWh. The project feasibility and profitability were evaluated by comparison between a financial internal rate of return (FIRR) and an opportunity cost assuming that a discount rate is the opportunity cost. As a result, FIRR was 17.36% and the discount rate was 8.89% in Myanmer. (NEDO)

  14. Surgery-induced changes and early recovery of hip-muscle strength, leg-press power, and functional performance after fast-track total hip arthroplasty

    DEFF Research Database (Denmark)

    Holm, Bente; Thorborg, Kristian; Husted, Henrik

    2013-01-01

    By measuring very early changes in muscle strength and functional performance after fast-track total hip arthroplasty (THA), post-operative rehabilitation, introduced soon after surgery, can be designed to specifically target identified deficits.......By measuring very early changes in muscle strength and functional performance after fast-track total hip arthroplasty (THA), post-operative rehabilitation, introduced soon after surgery, can be designed to specifically target identified deficits....

  15. Development of a High-Stability Microstrip-based L-band Radiometer for Ocean Salinity Measurements

    Science.gov (United States)

    Pellerano, Fernando A.; Horgan, Kevin A.; Wilson, William J.; Tanner, Alan B.

    2004-01-01

    The development of a microstrip-based L-band Dicke radiometer with the long-term stability required for future ocean salinity measurements to an accuracy of 0.1 psu is presented. This measurement requires the L-band radiometers to have calibration stabilities of less than or equal to 0.05 K over 2 days. This research has focused on determining the optimum radiometer requirements and configuration to achieve this objective. System configuration and component performance have been evaluated with radiometer test beds at both JPL and GSFC. The GSFC testbed uses a cryogenic chamber that allows long-term characterization at radiometric temperatures in the range of 70 - 120 K. The research has addressed several areas including component characterization as a function of temperature and DC bias, system linearity, optimum noise diode injection calibration, and precision temperature control of components. A breadboard radiometer, utilizing microstrip-based technologies, has been built to demonstrate this long-term stability.

  16. Updated of the events tree of total loss of power at the site, SBO, taking into account the results of stress tests and methodological updates, convolution, and hydraulic power recovery from model RCPs; Actualizacion del arbol de sucesos de perdida total de suministro electro en el emplazamiento, SBO, teniendo en cuenta los resultados de los estres tests y actualizaciones metodologicas, convolucion, recuperacion desde centrales hidraulicas y modelo de sellos de las RCPs

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Lorenzo, M. A.; Perez Martin, F.

    2013-07-01

    In this paper, is described a tree of events to an accident loss total power at the site (SBO) considering, first the results of stress tests arising from the Fukushima accident and moreover, various methodological updates related to this initiating event.

  17. On-board digital RFI and polarimetry processor for future spaceborne radiometer systems

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen Savstrup; Ruokokoski, T.

    2012-01-01

    Man-made Radio Frequency Interference (RFI) is an increasingly threatening problem for passive microwave radiometry from space. The problem is presently very evident in L-band data from SMOS, but it is realized that it is already now a problem at other traditional radiometer bands at C, X, and Ku...

  18. Inspection of feasible calibration conditions for UV radiometer detectors with the KI/KIO3 actinometer.

    Science.gov (United States)

    Qiang, Zhimin; Li, Wentao; Li, Mengkai; Bolton, James R; Qu, Jiuhui

    2015-01-01

    UV radiometers are widely employed for irradiance measurements, but their periodical calibrations not only induce an extra cost but also are time-consuming. In this study, the KI/KIO3 actinometer was applied to calibrate UV radiometer detectors at 254 nm with a quasi-collimated beam apparatus equipped with a low-pressure UV lamp, and feasible calibration conditions were identified. Results indicate that a washer constraining the UV light was indispensable, while the size (10 or 50 mL) of a beaker containing the actinometer solution had little influence when a proper washer was used. The absorption or reflection of UV light by the internal beaker wall led to an underestimation or overestimation of the irradiance determined by the KI/KIO3 actinometer, respectively. The proper range of the washer internal diameter could be obtained via mathematical analysis. A radiometer with a longer service time showed a greater calibration factor. To minimize the interference from the inner wall reflection of the collimating tube, calibrations should be conducted at positions far enough away from the tube bottom. This study demonstrates that after the feasible calibration conditions are identified, the KI/KIO3 actinometer can be applied readily to calibrate UV radiometer detectors at 254 nm. © 2014 The American Society of Photobiology.

  19. Polarimetric Signatures from a Crop Covered Land Surface Measured by an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    This paper describes preliminary results from field measurements of polarimetric azimuth signatures with the EMIRAD L-band polarimetric radiometer, performed over a land test site at the Institut National de la Recherche Agronomique in Avignon, France. Scans of 180 degrees in azimuth were carried...

  20. Design of a rocket-borne radiometer for stratospheric ozone measurements

    International Nuclear Information System (INIS)

    Barnes, R.A.; Simeth, P.G.

    1989-01-01

    A four-filter ultraviolet radiometer for measuring stratospheric ozone is described. The payload is launched aboard a Super-Loki rocket to an apogee of 70 km. The instrument measures the solar ultraviolet irradiance over its filter wavelengths as it descends on a parachute. The amount of ozone in the path between the radiometer and the sun is calculated from the attenuation of solar flux using the Beer-Lambert law. Radar at the launch site measures the height of the instrument throughout its flight. The fundamental ozone value measured by the ROCOZ-A radiometer is the vertical ozone overburden as a function of geometric altitude. Ozone measurements are obtained for altitudes from 55 to 20 km, extending well above the altitude range of balloon-borne ozone-measuring instruments. The optics and electronics in the radiometer have been designed within relatively severe size and weight limitations imposed by the launch vehicle. The electronics in the improved rocket ozonesonde (ROCOZ-A) provide essentially drift-free outputs throughout 40-min ozone soundings at stratospheric temperatures. The modest cost of the payload precludes recovery and makes the instrument a versatile tool compared to larger ozonesondes

  1. L-Band Radiometers Measuring Salinity From Space: Atmospheric Propagation Effects

    DEFF Research Database (Denmark)

    Skou, Niels; Hofman-Bang, Dorthe

    2005-01-01

    Microwave radiometers can measure sea surface salinity from space using L-band frequencies around 1.4 GHz. However, requirements to the accuracy of the measurements, in order to be satisfactory for the user, are so stringent that the influence of the intervening atmosphere cannot be neglected...

  2. Insolation measurements with a portable CuS-CdS radiometer

    Science.gov (United States)

    Windawi, H. M.

    1976-01-01

    Solar radiation measurements were carried out with a portable Cu2S-Cds radiometer. The measurements were found to be accurate to better than 5% (better than 3% when sophisticated metering is employed). Calibration to an Eppley precision pyranometer is discussed.

  3. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-06-02

    This study addresses the effect of calibration methodologies on calibration responsivities and the resulting impact on radiometric measurements. The calibration responsivities used in this study are provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides outdoor calibration responsivity of pyranometers and pyrheliometers at a 45 degree solar zenith angle and responsivity as a function of solar zenith angle determined by clear-sky comparisons to reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturers are performed using a stable artificial light source in a side-by-side comparison of the test radiometer under calibration to a reference radiometer of the same type. These different methods of calibration demonstrated 1percent to 2 percent differences in solar irradiance measurement. Analyzing these values will ultimately enable a reduction in radiometric measurement uncertainties and assist in developing consensus on a standard for calibration.

  4. Hybrid PSO-ASVR-based method for data fitting in the calibration of infrared radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sen; Li, Chengwei, E-mail: heikuanghit@163.com [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001 (China)

    2016-06-15

    The present paper describes a hybrid particle swarm optimization-adaptive support vector regression (PSO-ASVR)-based method for data fitting in the calibration of infrared radiometer. The proposed hybrid PSO-ASVR-based method is based on PSO in combination with Adaptive Processing and Support Vector Regression (SVR). The optimization technique involves setting parameters in the ASVR fitting procedure, which significantly improves the fitting accuracy. However, its use in the calibration of infrared radiometer has not yet been widely explored. Bearing this in mind, the PSO-ASVR-based method, which is based on the statistical learning theory, is successfully used here to get the relationship between the radiation of a standard source and the response of an infrared radiometer. Main advantages of this method are the flexible adjustment mechanism in data processing and the optimization mechanism in a kernel parameter setting of SVR. Numerical examples and applications to the calibration of infrared radiometer are performed to verify the performance of PSO-ASVR-based method compared to conventional data fitting methods.

  5. An RFI Detection Algorithm for Microwave Radiometers Using Sparse Component Analysis

    Science.gov (United States)

    Mohammed-Tano, Priscilla N.; Korde-Patel, Asmita; Gholian, Armen; Piepmeier, Jeffrey R.; Schoenwald, Adam; Bradley, Damon

    2017-01-01

    Radio Frequency Interference (RFI) is a threat to passive microwave measurements and if undetected, can corrupt science retrievals. The sparse component analysis (SCA) for blind source separation has been investigated to detect RFI in microwave radiometer data. Various techniques using SCA have been simulated to determine detection performance with continuous wave (CW) RFI.

  6. Mapping of the DOME-C area in Antarctica by an airborne L-band radiometer

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen Savstrup; Søbjærg, Sten Schmidl

    2014-01-01

    A 350 × 350 km area near the Concordia station on the high plateau of Dome C in Antarctica has been mapped by an airborne L-band radiometer system. The area was expected to display a rather uniform brightness temperature close to the yearly mean temperature — well suited for calibration checks...

  7. Airborne L-band radiometer mapping of the dome-C area in Antarctica

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen Savstrup; Søbjærg, Sten Schmidl

    2015-01-01

    A 350 km × 350 km area near the Concordia station on the high plateau of Dome-C in Antarctica has been mapped by an airborne L-band radiometer system. The area was expected to display a rather uniform brightness temperature (TB) close to the yearly mean temperature-well suited for calibration...

  8. InP HEMT Integrated Circuits for Submillimeter Wave Radiometers in Earth Remote Sensing

    Science.gov (United States)

    Deal, William R.; Chattopadhyay, Goutam

    2012-01-01

    The operating frequency of InP integrated circuits has pushed well into the Submillimeter Wave frequency band, with amplification reported as high as 670 GHz. This paper provides an overview of current performance and potential application of InP HEMT to Submillimeter Wave radiometers for earth remote sensing.

  9. Validation of multi-channel scanning microwave radiometer on-board Oceansat-1

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Harikrishnan, M.

    Sea surface temperature (SST), sea surface wind speed (WS) and columnar water vapour (WV) derived from Multi-frequency Scanning Microwave Radiometer (MSMR) sensor on-board IRS-P4 (Oceansat-1) were validated against the in situ measurements from ship...

  10. Thermal, Thermophysical, and Compositional Properties of the Moon Revealed by the Diviner Lunar Radiometer

    Science.gov (United States)

    Greenhagen, B. T.; Paige, D. A.

    2012-01-01

    The Diviner Lunar Radiometer is the first multispectral thermal instrument to globally map the surface of the Moon. After over three years in operation, this unprecedented dataset has revealed the extreme nature of the Moon's thermal environment, thermophysical properties, and surface composition.

  11. Ultra-portable field transfer radiometer for vicarious calibration of earth imaging sensors

    Science.gov (United States)

    Thome, Kurtis; Wenny, Brian; Anderson, Nikolaus; McCorkel, Joel; Czapla-Myers, Jeffrey; Biggar, Stuart

    2018-06-01

    A small portable transfer radiometer has been developed as part of an effort to ensure the quality of upwelling radiance from test sites used for vicarious calibration in the solar reflective. The test sites are used to predict top-of-atmosphere reflectance relying on ground-based measurements of the atmosphere and surface. The portable transfer radiometer is designed for one-person operation for on-site field calibration of instrumentation used to determine ground-leaving radiance. The current work describes the detector- and source-based radiometric calibration of the transfer radiometer highlighting the expected accuracy and SI-traceability. The results indicate differences between the detector-based and source-based results greater than the combined uncertainties of the approaches. Results from recent field deployments of the transfer radiometer using a solar radiation based calibration agree with the source-based laboratory calibration within the combined uncertainties of the methods. The detector-based results show a significant difference to the solar-based calibration. The source-based calibration is used as the basis for a radiance-based calibration of the Landsat-8 Operational Land Imager that agrees with the OLI calibration to within the uncertainties of the methods.

  12. Soil Moisture Active/Passive (SMAP) Radiometer Subband Calibration and Calibration Drift

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; De Amici, Giovanni; Mohammed, Priscilla

    2016-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007)]. The observatory was launched on Jan 31, 2015. The goal of the SMAP is to measure the global soil moisture and freeze/thaw from space. The L-band radiometer is the passive portion of the spaceborne instrument. It measures all four Stokes antenna temperatures and outputs counts. The Level 1B Brightness Temperature (L1B_TB) science algorithm converts radiometer counts to the Earths surface brightness temperature. The results are reported in the radiometer level 1B data product together with the calibrated antenna temperature (TA) and all of the corrections to the unwanted sources contribution. The calibrated L1B data product are required to satisfy the overall radiometer error budget of 1.3 K needed to meet the soil moisture requirement of 0.04 volumetric fraction uncertainty and the calibration drift requirement of no larger than 0.4 K per month.

  13. Soil Moisture Active Passive (SMAP) Radiometer Subband Calibration and Calibration Drift

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; De Amici, Giovanni; Mohammed, Priscilla N.

    2016-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007). The observatory was launched on Jan 31, 2015. The goal of the SMAP is to measure the global soil moisture and freeze/thaw from space. The L-band radiometer is the passive portion of the spaceborne instrument. It measures all four Stokes antenna temperatures and outputs counts. The Level 1B Brightness Temperature (L1B_TB) science algorithm converts radiometer counts to the Earths surface brightness temperature. The results are reported in the radiometer level 1B data product together with the calibrated antenna temperature (TA) and all of the corrections to the unwanted sources contribution. The calibrated L1B data product are required to satisfy the overall radiometer error budget of 1.3 K needed to meet the soil moisture requirement of 0.04 volumetric fraction uncertainty and the calibration drift requirement of no larger than 0.4 K per month.

  14. A brief comparison of radiometers at NSIDC and their potential to generate long ESDRs

    Science.gov (United States)

    Moth, P.; Johnston, T.; Haran, T. M.; Fowler, D. K.

    2017-12-01

    Radiometers have played a big part in Earth observing science. In this poster we compare three such instruments: the Advanced Very-High-resolution Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS). The NASA National Snow and Ice Distributed Active Archive Center (NSIDC DAAC) has archived cryospheric data from all three of these instruments. AVHRR was a 4-channel radiometer that was first launched in 1978 aboard the TIROS-N satellite. Subsequent missions launched improved versions of AVHRR with five and six channels, observing Earth in frequencies ranging from 0.58 μm to 12.5 μm with a resolution at nadir of 1.09 km. MODIS instruments fly onboard NASA's Earth Observing System (EOS) Terra and Aqua satellites. Launched in 1999 and 2002, respectively, they still produce much sought after data observed in 36 spectral bands ranging from 0.4 μm to 14.4 μm. Two bands image Earth at a nominal resolution of 250 m at nadir, five at 500 m, and the remaining 29 bands at 1 km. A ±55-degree scanning pattern at the sun-synchronous orbit of 705 km achieves a 2,330 km swath and provides global coverage every one to two days VIIRS, NOAA's latest radiometer, was launched aboard the Suomi National Polar-orbiting Partnership satellite on October 28, 2011. Working collaboratively, NASA and NOAA are producing data that is archived and distributed via NASA DAACs. The VIIRS radiometer comprises 22 bands; five for high-resolution imagery, 16 at moderate resolution, and one panchromatic day/night band. VIIRS is a whiskbroom scanning radiometer that covers the spectrum between 0.412 μm and 12.01 μm and acquires spatial resolutions at nadir of 750 m, 375 m, and 750 m, respectively. Although these instruments are configured with different spectral bands, each was designed with an eye to the future. MODIS can be thought of as a successor to the AVHRR mission, adding capabilities that yielded better data

  15. Improved characterization of scenes with a combination of MMW radar and radiometer information

    Science.gov (United States)

    Dill, Stephan; Peichl, Markus; Schreiber, Eric; Anglberger, Harald

    2017-05-01

    For security related applications MMW radar and radiometer systems in remote sensing or stand-off configurations are well established techniques. The range of development stages extends from experimental to commercial systems on the civil and military market. Typical examples are systems for personnel screening at airports for concealed object detection under clothing, enhanced vision or landing aid for helicopter and vehicle based systems for suspicious object or IED detection along roads. Due to the physical principle of active (radar) and passive (radiometer) MMW measurement techniques the appearance of single objects and thus the complete scenario is rather different for radar and radiometer images. A reasonable combination of both measurement techniques could lead to enhanced object information. However, some technical requirements should be taken into account. The imaging geometry for both sensors should be nearly identical, the geometrical resolution and the wavelength should be similar and at best the imaging process should be carried out simultaneously. Therefore theoretical and experimental investigations on a suitable combination of MMW radar and radiometer information have been conducted. First experiments in 2016 have been done with an imaging linescanner based on a cylindrical imaging geometry [1]. It combines a horizontal line scan in azimuth with a linear motion in vertical direction for the second image dimension. The main drawback of the system is the limited number of pixel in vertical dimension at a certain distance. Nevertheless the near range imaging results where promising. Therefore the combination of radar and radiometer sensor was assembled on the DLR wide-field-of-view linescanner ABOSCA which is based on a spherical imaging geometry [2]. A comparison of both imaging systems is discussed. The investigations concentrate on rather basic scenarios with canonical targets like flat plates, spheres, corner reflectors and cylinders. First

  16. Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over China Using In Situ Data

    Directory of Open Access Journals (Sweden)

    Yayong Sun

    2017-03-01

    Full Text Available The Soil Moisture Active Passive (SMAP satellite makes coincident global measurements of soil moisture using an L-band radar instrument and an L-band radiometer. It is crucial to evaluate the errors in the newest L-band SMAP satellite-derived soil moisture products, before they are routinely used in scientific research and applications. This study represents the first evaluation of the SMAP radiometer soil moisture product over China. In this paper, a preliminary evaluation was performed using sparse in situ measurements from 655 China Meteorological Administration (CMA monitoring stations between 1 April 2015 and 31 August 2016. The SMAP radiometer-derived soil moisture product was evaluated against two schemes of original soil moisture and the soil moisture anomaly in different geographical zones and land cover types. Four performance metrics, i.e., bias, root mean square error (RMSE, unbiased root mean square error (ubRMSE, and the correlation coefficient (R, were used in the accuracy evaluation. The results indicated that the SMAP radiometer-derived soil moisture product agreed relatively well with the in situ measurements, with ubRMSE values of 0.058 cm3·cm−3 and 0.039 cm3·cm−3 based on original data and anomaly data, respectively. The values of the SMAP radiometer-based soil moisture product were overestimated in wet areas, especially in the Southwest China, South China, Southeast China, East China, and Central China zones. The accuracies over croplands and in Northeast China were the worst. Soil moisture, surface roughness, and vegetation are crucial factors contributing to the error in the soil moisture product. Moreover, radio frequency interference contributes to the overestimation over the northern portion of the East China zone. This study provides guidelines for the application of the SMAP-derived soil moisture product in China and acts as a reference for improving the retrieval algorithm.

  17. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    Science.gov (United States)

    Hou, Arthur

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1

  18. Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract.

    Science.gov (United States)

    Alavi, Mehran; Karimi, Naser

    2017-12-12

    Recently, major problem related to pathogenic bacteria is augmentation of antibiotic resistance which has been changed treatment and recovery of millions of infectious patients. The present study reports an eco-friendly, rapid and easy method for synthesis of silver (Ag), copper (Cu) and titanium dioxide (TiO 2 ) nanoparticles (NPs) using Artemisia haussknechtii leaf aqueous extract with antibacterial activities against multi-drug resistance (MDR) bacteria species. Three different concentrations (0.001, 0.01 and 0.1 M) of AgNO 3 , CuSO 4 and TiO (OH) 2 were investigated for obtaining optimum NPs green synthesis. Total phenolic content, total flavonoid content of leaf extract and total antioxidant activity (DPPH) assay were determined as radical scavenging methods. UV-Visible spectroscopy, Fourier transform infrared spectroscopy analysis, X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning electron microscope and atomic force microscopy (AFM) were used due to NPs characterization. The size average of the Ag, Cu and TiO 2 NPs obtained were respectively 10.69 ± 5.55, 35.36 ± 44.4 and 92.58 ± 56.98 nm. In the case of antibacterial assay, disc diffusion assay, minimum inhibitory concentration, minimum bactericidal concentration, bacterial growth and morphology of four MDR species Staphylococcus aureus ATCC 43300, Staphylococcus epidermidis ATCC 12258, Serratia marcescens ATTC13880 and Escherichia coli ATCC 25922 were evaluated. Results of this study demonstrated that A. haussknechtii leaf extract with various groups of phytochemicals such as phenols and flavonoids had suitable ability in green synthesis of Ag, Cu and TiO 2 NPs. Also, Ag and Cu NPs had more antibacterial activities compared to TiO 2 NPs.

  19. Simulation of a scenario of total loss of external and internal power (Sbo) for different vent pressures of the containment of a BWR-5

    International Nuclear Information System (INIS)

    Cardenas V, J.; Mugica R, C. A.; Godinez S, V.

    2014-10-01

    The simulation of a Station Black Out (Sbo) was realized with intervention of the vent containment by means of a rigid vent coming from the dry-well and that discharges directly to the atmosphere, with the MELCOR code version 2.1. This scenario was carried out for a BWR-5 and containment type Mark II, with a thermal power of 2317 MWt similar to the reactor of nuclear power plant of Laguna Verde. For this scenario was considered as only available system for coolant injection to the reactor to the Reactor Core Isolation Cooling (Rcic), which remained operating 4 hours with batteries bank. The Security and Relief Valves (SR V) were considered functional (by simplicity) and that they mechanically do not exceed their capacity to liberate pressure due to the performances in their safety way. The operator maneuver to perform the SR V and to de pressurize the vessel until the pressure (13 kg/cm 2 ) to operate the low pressure systems was modeled. The results cover approximately 48 hours (172000 seconds), time in which was observed the behavior of the level and pressure in the vessel. Also the scenario evolution was analyzed to different vent pressures of the primary containment (2.0, 3.0, 4.5, 6.0, and 10.0 kg/cm 2 ), the temperature profiles of the dry-well, the hydrogen accumulation in the containment, the radio-nuclides liberation through rigid vent to the atmosphere and the inventory of these. In this work an analysis of the pressure behavior in the primary containment is presented, with the purpose of minimizing liberated fission products to the environment. (Author)

  20. Terahertz Radiometer for Outer Planet and Moon Atmospheres (TROPA)

    Science.gov (United States)

    Schlecht, E. T.; Jamnejad, V.; Jarnot, R. F.; Raffanti, R.; Lin, R.

    2012-01-01

    We are developing a prototype instrument platform to demonstrate the feasibility of a wideband spectrometer for planetary applications under a three-year NASA research program. This development focuses on three specific areas needing advancement. First, the terahertz portion consists of an optical bench with dual heterodyne Schottky-mixer based receivers, one for each band. The beams entering the horns of the two receivers are de-multiplexed from the input beam by a polarizing beam splitter. The blocks containing the 560 and 1200 GHz mixer are more highly integrated than previous space instruments to reduce mass and volume. The receivers take a fundamental pump frequency near 30 GHz and multiply up to the submillimeter range. Second, a rapid-tuning, low-phase noise, and low-power 33 GHz range LO synthesizer is being prototyped. The low phase noise requirement is needed because of the factor of 36 multiplication to reach 1200 GHz, giving a requirement that the integrated phase noise from 100 kHz up be less than 0.6 degrees. The synthesizer will require about 6 watts. Finally, we are developing an advanced polyphase filter back-end spectrum analyzer with a bandwidth of 750 MHz, and power consumption of about 3 Watts and 4096 channels. This system is based on a simple three-chip architecture, having a commercial 1.5 GS/s analog-to-digital converter, an ASIC to do the filtering and an advanced FPGA for data processing and control.

  1. Remote Sensing of Surface Soil Moisture using Semi-Concurrent Radar and Radiometer Observations

    Science.gov (United States)

    Li, L.; Ouellette, J. D.; Colliander, A.; Cosh, M. H.; Caldwell, T. G.; Walker, J. P.

    2017-12-01

    Radar backscatter and radiometer brightness temperature both have well-documented sensitivity to surface soil moisture, particularly in the microwave regime. While radiometer-derived soil moisture retrievals have been shown to be stable and accurate, they are only available at coarse spatial resolutions on the order of tens of kilometers. Backscatter from Synthetic Aperture Radar (SAR) is similarly sensitive to soil moisture but can yield higher spatial resolutions, with pixel sizes about an order of magnitude smaller. Soil moisture retrieval from radar backscatter is more difficult, however, due to the combined sensitivity of radar scattering to surface roughness, vegetation structure, and soil moisture. The algorithm uses a time-series of SAR data to retrieval soil moisture information, constraining the SAR-derived soil moisture estimates with radiometer observations. This effectively combines the high spatial resolution offered by SAR with the precision offered by passive radiometry. The algorithm is a change detection approach which maps changes in the radar backscatter to changes in surface soil moisture. This new algorithm differs from existing retrieval techniques in that it does not require ancillary vegetation information, but assumes vegetation and surface roughness are stable between pairs of consecutive radar overpasses. Furthermore, this method does not require a radar scattering model for the vegetation canopy, nor the use of a training data set. The algorithm works over a long time series, and is constrained by hard bounds which are defined using a coarse-resolution radiometer soil moisture product. The presentation will include soil moisture retrievals from Soil Moisture Active/Passive (SMAP) SAR data. Two sets of optimization bounds will constrain the radar change detection algorithm: one defined by SMAP radiometer retrievals and one defined by WindSat radiometer retrievals. Retrieved soil moisture values will be presented on a world map and will

  2. A Radar/Radiometer Instrument for Mapping Soil Moisture and Ocean Salinity

    Science.gov (United States)

    Hildebrand, Peter H.; Hilliard, Laurence; Rincon, Rafael; LeVine, David; Mead, James

    2003-01-01

    The RadSTAR instrument combines an L-band, digital beam-forming radar with an L-band synthetic aperture, thinned array (STAR) radiometer. The RadSTAR development will support NASA Earth science goals by developing a novel, L-band scatterometer/ radiometer that measures Earth surface bulk material properties (surface emissions and backscatter) as well as surface characteristics (backscatter). Present, real aperture airborne L-Band active/passive measurement systems such as the JPUPALS (Wilson, et al, 2000) provide excellent sampling characteristics, but have no scanning capabilities, and are extremely large; the huge JPUPALS horn requires a the C-130 airborne platform, operated with the aft loading door open during flight operation. The approach used for the upcoming Aquarius ocean salinity mission or the proposed Hydros soil mission use real apertures with multiple fixed beams or scanning beams. For real aperture instruments, there is no upgrade path to scanning over a broad swath, except rotation of the whole aperture, which is an approach with obvious difficulties as aperture size increases. RadSTAR will provide polarimetric scatterometer and radiometer measurements over a wide swath, in a highly space-efficient configuration. The electronic scanning approaches provided through STAR technology and digital beam forming will enable the large L-band aperture to scan efficiently over a very wide swath. RadSTAR technology development, which merges an interferometric radiometer with a digital beam forming scatterometer, is an important step in the path to space for an L-band scatterometer/radiometer. RadSTAR couples a patch array antenna with a 1.26 GHz digital beam forming radar scatterometer and a 1.4 GHz STAR radiometer to provide Earth surface backscatter and emission measurements in a compact, cross-track scanning instrument with no moving parts. This technology will provide the first L-band, emission and backscatter measurements in a compact aircraft instrument

  3. Total Thyroidectomy

    Directory of Open Access Journals (Sweden)

    Lopez Moris E

    2016-06-01

    Full Text Available Total thyroidectomy is a surgery that removes all the thyroid tissue from the patient. The suspect of cancer in a thyroid nodule is the most frequent indication and it is presume when previous fine needle puncture is positive or a goiter has significant volume increase or symptomes. Less frequent indications are hyperthyroidism when it is refractory to treatment with Iodine 131 or it is contraindicated, and in cases of symptomatic thyroiditis. The thyroid gland has an important anatomic relation whith the inferior laryngeal nerve and the parathyroid glands, for this reason it is imperative to perform extremely meticulous dissection to recognize each one of these elements and ensure their preservation. It is also essential to maintain strict hemostasis, in order to avoid any postoperative bleeding that could lead to a suffocating neck hematoma, feared complication that represents a surgical emergency and endangers the patient’s life.It is essential to run a formal technique, without skipping steps, and maintain prudence and patience that should rule any surgical act.

  4. A Miniaturized Laser Heterodyne Radiometer for a Global Ground-Based Column Carbon Monitoring Network

    Science.gov (United States)

    Wilson, Emily L.; Melroy, Hilary R.; Miller, J. Houston; McLinden, Matthew L.; Ott, Lesley E.; Holben, Brent

    2012-01-01

    We present progress in the development of a passive, miniaturized Laser Heterodyne Radiometer (mini-LHR) that will measure key greenhouse gases (C02, CH4, CO) in the atmospheric column as well as their respective altitude profiles, and O2 for a measure of atmospheric pressure. Laser heterodyne radiometry is a spectroscopic method that borrows from radio receiver technology. In this technique, a weak incoming signal containing information of interest is mixed with a stronger signal (local oscillator) at a nearby frequency. In this case, the weak signal is sunlight that has undergone absorption by a trace gas of interest and the local oscillator is a distributive feedback (DFB) laser that is tuned to a wavelength near the absorption feature of the trace gas. Mixing the sunlight with the laser light, in a fast photoreceiver, results in a beat signal in the RF. The amplitude of the beat signal tracks the concentration of the trace gas in the atmospheric column. The mini-LHR operates in tandem with AERONET, a global network of more than 450 aerosol sensing instruments. This partnership simplifies the instrument design and provides an established global network into which the mini-LHR can rapidly expand. This network offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern as well as an uninterrupted data record that will both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3, and ASCENDS. Currently, the only ground global network that routinely measures multiple greenhouse gases in the atmospheric column is TCCON (Total Column Carbon Observing Network) with 18 operational sites worldwide and two in the US. Cost and size of TCCON installations will limit the potential for expansion, We offer a low-cost $30Klunit) solution to supplement these measurements with the added benefit of an established aerosol optical depth

  5. Miniaturized Laser Heterodyne Radiometer (LHR) for Measurements of Greenhouse Gases in the Atmospheric Column

    Science.gov (United States)

    Steel, Emily; McLinden, Matthew

    2012-01-01

    This passive laser heterodyne radiometer (LHR) instrument simultaneously measures multiple trace gases in the atmospheric column including carbon dioxide (CO2) and methane (CH4), and resolves their concentrations at different altitudes. This instrument has been designed to operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In the LHR instrument described here, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. For a one-second integration, the estimated column sensitivities are 0.1 ppmv for CO2, and Greenhouse gases Observational SATellite). The only network that currently measures CO2 and CH4 in the atmospheric column is TCCON (Total Carbon Column Observing Network), and only two of its 16 operational sites are in the United States. TCCON data is used for validation of GOSAT data, and will be used for OCO-2 validation. While these Fourier-transform spectrometers (FTS) can measure the largest range of trace gases, the network is severely limited

  6. The Kosice meteorite fall: atmospheric trajectory and fragmentation from videos and radiometers

    Science.gov (United States)

    Borovicka, J.

    2012-01-01

    On 28 February 2010, 22h24m46s UT, a huge bolide of absolute magnitude -18 appeared over eastern Slovakia. Although this country is covered by the European Fireball Network (EN) and the Slovak Video Network, bad weather prevented direct imaging of the bolide by dedicated meteor cameras. Fortunately, three surveillance video cameras in Hungary recorded, at least partly, the event. These recordings allowed us to reconstruct the trajectory of the bolide and recover the meteorites. In addition, the light curve of the bolide was recorded by several EN camera radiometers, and sonic booms were registered by seismic stations in the region. The meteorites were classified as ordinary chondrites of type H5 (see Meteoritical Bulletin 100). I developed a model of atmospheric meteoroid fragmentation to fit the observed light curve. The model is based on the fact that meteoroid fragmentation leads to a sudden increase of a bolide's brightness, because the total meteoroid surface area increases after the fragmentation. A bright flare is produced if large numbers of small fragments or dust particles are released. I tried to model the whole light curve rigorously by setting up the mass distribution of fragments and/or dust particles released at each fragmentation point. The dust particles were allowed to be released either instantaneously or gradually. The ablation and radiation of individual particles were computed independently, and the summary light curve was computed. The deceleration at the end of the trajectory was taken into account as well. Based on the approximate calibration of the light curve, the initial mass of the meteoroid was estimated to 3500 kg (corresponding to diameter of 1.2 m). The major fragmentation occurred at a height of 39 km. Only few (probably three) large compact fragments of masses 20-100 kg survived this disruption. All of them fragmented again at lower heights below 30 km, producing minor flares on the light curve. In summary, Kosice was a weak

  7. Development of an Internally-Calibrated Wide-Band Airborne Microwave Radiometer to Provide High-Resolution Wet-Tropospheric Path Delay Measurements for SWOT (HAMMR - High-frequency Airborne Microwave and Millimeter-wave Radiometer)

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Internally-Calibrated Wide-Band Airborne Microwave Radiometer to Provide High-Resolution Wet-Tropospheric Path Delay Measurements for SWOT (HAMMR -...

  8. Measurement of synchrotron radiation from the NBS SURF II using a silicon radiometer

    International Nuclear Information System (INIS)

    Schaefer, A.R.

    1980-01-01

    A project is described in which the synchrotron radiation output from the NBS storage ring known as SURF II, is measured using a well characterized silicon based radiometer. This device consists of a silicon photodiode coupled with two interference filters to restrict the spectral response to a finite and convenient spectral region for the measurement. Considerations required for the characterization of the radiometer will be discussed. The absolute radiant flux from the storage ring is also calculable from various machine parameters. A measurement of the number of circulating electrons will be derived from electron counting techniques at low levels. This will yield an important intercomparison between the synchrotron flux measurements determined in two entirely different ways. (orig.)

  9. Design and first plasma measurements of the ITER-ECE prototype radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Austin, M. E.; Brookman, M. W.; Rowan, W. L. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Danani, S. [ITER-India/Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Bryerton, E. W.; Dougherty, P. [Virginia Diodes, Inc., Charlottesville, Virginia 22902 (United States)

    2016-11-15

    On ITER, second harmonic optically thick electron cyclotron emission (ECE) in the range of 220-340 GHz will supply the electron temperature (T{sub e}). To investigate the requirements and capabilities prescribed for the ITER system, a prototype radiometer covering this frequency range has been developed by Virginia Diodes, Inc. The first plasma measurements with this instrument have been carried out on the DIII-D tokamak, with lab bench tests and measurements of third through fifth harmonic ECE from high T{sub e} plasmas. At DIII-D the instrument shares the transmission line of the Michelson interferometer and can simultaneously acquire data. Comparison of the ECE radiation temperature from the absolutely calibrated Michelson and the prototype receiver shows that the ITER radiometer provides accurate measurements of the millimeter radiation across the instrument band.

  10. The along track scanning radiometer - an analysis of coincident ship and satellite measurements

    Science.gov (United States)

    Barton, I. J.; Prata, A. J.; Llewellyn-Jones, D. T.

    1993-05-01

    Following the successful launch of the ERS-1 satellite in July 1991 we have undertaken several geophysical validation cruises in the Coral Sea. The prime aim of these cruises was to compare the sea surface temperature (SST) derived from the Along Track Scanning Radiometer (ATSR) with that measured using precision radiometers mounted on the ships. On most occasions when simultaneous satellite and ship measurements were taken we also launched a radiosonde from one of the research vessels. The results suggest that the ATSR is able to measure the ``skin'' temperature of the sea surface with an accuracy suitable for climate research applications. A case study comparison between the AVHRR and ATSR SST products will also be presented.

  11. An in vitro analysis of the total phenolic content, antioxidant power, physical, physicochemical, and chemical composition of Terminalia Catappa Linn fruits

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues Marques

    2012-03-01

    Full Text Available This study assessed the antioxidant, total phenolic, and physicochemical properties of in vitro Terminalia Catappa Linn (locally called castanhola using the DPPH assay. The castanhola fruits had an average weight of 19.60 ± 0.00 g, combining shell, pulp, and seed weight, and a soluble solids content of 8 °Brix. The chemical composition was determined with predominance of carbohydrates (76,88 ± 0,58%.The titration method was used to determine Vitamin C content using 2,6-dichlorophenolindophenol (DCFI, known as reactive Tillmans resulting in no significant levels. Aqueous extracts of castanhola pulp showed a higher concentration of phenolics, 244.33 ± 18.86 GAE.g-1 of fruit, and alcoholic extracts, 142.84 ± 2.09 GAE.g-1 of fruit. EC50 values of the aqueous extract showed a greater ability to scavenge free radicals than the alcoholic extracts. The fruit had a significant content of phenolic compounds and high antioxidant capacity.

  12. Nimbus-2 High-Resolution Infrared Radiometer (HRIR) Imagery of Cloud Cover at Night on 70 mm Film V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HRIRN2IM data product contains scanned negatives of photofacsimile 70mm film strips from the Nimbus-2 High-Resolution Infrared Radiometer. The images contain...

  13. Wide-band Millimeter and Sub-Millimeter Wave Radiometer Instrument to Measure Tropospheric Water and Cloud ICE

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop, fabricate and test a new, multi-frequency millimeter and sub-millimeter-wave radiometer instrument to provide critically-needed measurements...

  14. NPP Visible Infrared Imager-Radiometer Suite (VIIRS) Diffuse Attenuation Coefficient for Downwelling Irradiance (KD) Global Mapped Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a multi-disciplinary instrument that is being flown on the Joint Polar Satellite System (JPSS) series of...

  15. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Near Constant Contrast (NCC) Imagery Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  16. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Base Height (CBH) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Cloud Base Heights (CBH) from the Visible Infrared Imaging Radiometer Suite...

  17. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Type and Phase Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of cloud type and phase from the Visible Infrared Imaging Radiometer Suite (VIIRS)...

  18. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Land Surface Temperature (LST) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Land Surface Temperature (LST) from the Visible Infrared Imaging Radiometer Suite...

  19. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Cover Layer (CCL) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality Environmental Data Record (EDR) of Cloud Cover Layers (CCL) from the Visible Infrared Imaging Radiometer Suite (VIIRS)...

  20. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Optical Thickness (COT) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Cloud Optical Thickness (COT) from the Visible Infrared Imaging Radiometer Suite...

  1. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Ice Thickness and Age Environmental Data Records (EDRs) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Ice Thickness and Age from the Visible Infrared Imaging Radiometer Suite (VIIRS)...

  2. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Ice Surface Temperature (IST) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  3. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Top Height (CTH) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  4. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Top Temperature (CTT) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  5. A precise narrow-beam filter infrared radiometer and its use with lidar in the ARM Program

    International Nuclear Information System (INIS)

    Platt, C.M.R.

    1992-05-01

    The first six months of the grant (December 1991--May 1992) have been taken up with the design and specification for the new narrow-beam radiometer. The radiometer will be built and tested at the Division of Atmospheric Research over the next three months. Improved algorithms for obtaining cloud extinction have also been developed. It is proposed during 1993 to use the radiometer in conjunction with a new CSIRO 3-wavelength lidar in the ARM PROBE experiment at Kavieng, New Guinea, which is a test mission under tropical conditions for the ARM CART Tropical West Pacific site, and is part of the TOGA COARE experiment. During the latter part of 1992, the radiometer will be tested thoroughly and tested at the Division of Atmospheric Research, Aspendale

  6. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Effective Particle Size (CEPS) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Cloud Effective Particle Size (CEPS) from the Visible Infrared Imaging Radiometer...

  7. JPSS NOAA Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Top Pressure (CTP) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  8. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Sea Ice Characterization (SIC) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an Environmental Data Record (EDR) of Sea Ice Characterization (SIC) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument...

  9. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Height (Top and Base) Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of cloud height (top and base) from the Visible Infrared Imaging Radiometer Suite...

  10. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Ocean Color/Chlorophyll (OCC) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Ocean Color/Chlorophyll (OCC) from the Visible Infrared Imaging Radiometer Suite...

  11. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Volcanic Ash Detection and Height Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of volcanic ash from the Visible Infrared Imaging Radiometer (VIIRS) instrument...

  12. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Imagery (not Near Constant Contrast) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  13. HURRICANE AND SEVERE STORM SENTINEL (HS3) GLOBAL HAWK HIGH ALTITUDE MMIC SOUNDING RADIOMETER (HAMSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Global Hawk High Altitude MMIC Sounding Radiometer (HAMSR) datasets include measurements gathered by the HAMSR...

  14. Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates

    NARCIS (Netherlands)

    Lievens, H.; Martens, B.; Verhoest, N.E.C.; Hahn, S.; Reichle, R.H.; Gonzalez Miralles, D.

    2016-01-01

    Active radar backscatter (σ°) observations from the Advanced Scatterometer (ASCAT) and passive radiometer brightness temperature (TB) observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated either individually or jointly into the Global Land Evaporation Amsterdam Model

  15. Global Land Surface Temperature From the Along-Track Scanning Radiometers

    Science.gov (United States)

    Ghent, D. J.; Corlett, G. K.; Göttsche, F.-M.; Remedios, J. J.

    2017-11-01

    The Leicester Along-Track Scanning Radiometer (ATSR) and Sea and Land Surface Temperature Radiometer (SLSTR) Processor for LAnd Surface Temperature (LASPLAST) provides global land surface temperature (LST) products from thermal infrared radiance data. In this paper, the state-of-the-art version of LASPLAST, as deployed in the GlobTemperature project, is described and applied to data from the Advanced Along-Track Scanning Radiometer (AATSR). The LASPLAST retrieval formulation for LST is a nadir-only, two-channel, split-window algorithm, based on biome classification, fractional vegetation, and across-track water vapor dependences. It incorporates globally robust retrieval coefficients derived using highly sampled atmosphere profiles. LASPLAST benefits from appropriate spatial resolution auxiliary information and a new probabilistic-based cloud flagging algorithm. For the first time for a satellite-derived LST product, pixel-level uncertainties characterized in terms of random, locally correlated, and systematic components are provided. The new GlobTemperature GT_ATS_2P Version 1.0 product has been validated for 1 year of AATSR data (2009) against in situ measurements acquired from "gold standard reference" stations: Gobabeb, Namibia, and Evora, Portugal; seven Surface Radiation Budget stations, and the Atmospheric Radiation Measurement station at Southern Great Plains. These data show average absolute biases for the GT_ATS_2P Version 1.0 product of 1.00 K in the daytime and 1.08 K in the nighttime. The improvements in data provenance including better accuracy, fully traceable retrieval coefficients, quantified uncertainty, and more detailed information in the new harmonized format of the GT_ATS_2P product will allow for more significant exploitation of the historical LST data record from the ATSRs and a valuable near-real-time service from the Sea and Land Surface Temperature Radiometers (SLSTRs).

  16. Microfluidic labeling of biomolecules with radiometals for use in nuclear medicine.

    Science.gov (United States)

    Wheeler, Tobias D; Zeng, Dexing; Desai, Amit V; Önal, Birce; Reichert, David E; Kenis, Paul J A

    2010-12-21

    Radiometal-based radiopharmaceuticals, used as imaging and therapeutic agents in nuclear medicine, consist of a radiometal that is bound to a targeting biomolecule (BM) using a bifunctional chelator (BFC). Conventional, macroscale radiolabeling methods use an excess of the BFC-BM conjugate (ligand) to achieve high radiolabeling yields. Subsequently, to achieve maximal specific activity (minimal amount of unlabeled ligand), extensive chromatographic purification is required to remove unlabeled ligand, often resulting in longer synthesis times and loss of imaging sensitivity due to radioactive decay. Here we describe a microreactor that overcomes the above issues through integration of efficient mixing and heating strategies while working with small volumes of concentrated reagents. As a model reaction, we radiolabel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated to the peptide cyclo(Arg-Gly-Asp-DPhe-Lys) with (64)Cu(2+). We show that the microreactor (made from polydimethylsiloxane and glass) can withstand 260 mCi of activity over 720 hours and retains only minimal amounts of (64)Cu(2+) (50 µM), yields of over 90% can be achieved in the microreactor when using a 1:1 stoichiometry of radiometal to BFC-BM. These high yields eliminate the need for use of excess amounts of often precious BM and obviate the need for a chromatographic purification process to remove unlabeled ligand. The results reported here demonstrate the potential of microreactor technology to improve the production of patient-tailored doses of radiometal-based radiopharmaceuticals in the clinic.

  17. A General Analysis of the Impact of Digitization in Microwave Correlation Radiometers

    Directory of Open Access Journals (Sweden)

    Hyuk Park

    2011-06-01

    Full Text Available This study provides a general framework to analyze the effects on correlation radiometers of a generic quantization scheme and sampling process. It reviews, unifies and expands several previous works that focused on these effects separately. In addition, it provides a general theoretical background that allows analyzing any digitization scheme including any number of quantization levels, irregular quantization steps, gain compression, clipping, jitter and skew effects of the sampling period.

  18. Atmospheric water distribution in cyclones as seen with Scanning Multichannel Microwave Radiometers (SMMR)

    Science.gov (United States)

    Katsaros, K. B.; Mcmurdie, L. A.

    1983-01-01

    Passive microwave measurements are used to study the distribution of atmospheric water in midlatitude cyclones. The integrated water vapor, integrated liquid water, and rainfall rate are deduced from the brightness temperatures at microwave frequencies measured by the Scanning Multichannel Microwave Radiometer (SMRR) flown on both the Seasat and Nimbus 7 satellites. The practical application of locating fronts by the cyclone moisture pattern over oceans is shown, and the relationship between the quantity of coastal rainfall and atmospheric water content is explored.

  19. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Zhao, H. L.; Liu, Y., E-mail: liuyong@ipp.ac.cn; Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California at Davis, Davis, California 95616 (United States)

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  20. A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer

    Science.gov (United States)

    ZáVody, A. M.; Mutlow, C. T.; Llewellyn-Jones, D. T.

    1995-01-01

    The measurements made by the along-track scanning radiometer are now converted routinely into sea surface temperature (SST). The details of the atmospheric model which had been used for deriving the SST algorithms are given, together with tables of the coefficients in the algorithms for the different SST products. The accuracy of the retrieval under normal conditions and the effect of errors in the model on the retrieved SST are briefly discussed.

  1. CORRECTION OF THE TEMPERATURE EFFECT IN 1020 NM BAND OF SUN-SKY RADIOMETER

    Directory of Open Access Journals (Sweden)

    K. Li

    2018-04-01

    Full Text Available Aerosol is an important part of the earth-atmosphere system. It can directly and indirectly influence solar radiation and then affect the energy balance of earth-atmosphere system. AERONET, as the largest ground-based observation network, provides multi-parameters of aerosol from more than 600 hundred sites using sun-sky radiometer, which contains 9 channels from 340 nm to 1640 nm. Among which, 1020 nm channel is greatly influenced by the temperature. In this paper, a new correction method of 1020 nm band is introduced. The new method transfers the temperature correction coefficient of the master radiometer to the comparative one. The filed calibration experiment shown that the temperature correction coefficient obtained by this method is close to the result from the temperature controlled chamber, and the difference is about 2.1 %. This new method is easy-to-use, and its accuracy is comparable to the standard one. It is more applicable for large-scale instrument calibration. In principle, this method is applicable to all bands of the sun-sky radiometer.

  2. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak.

    Science.gov (United States)

    Truong, D D; Austin, M E

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels' IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters' center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a "zoomed-in" analysis of a ∼2-4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, are presented.

  3. A W-Band Radiometer with the Offset Parabolic Antenna for Radiometric Measurements

    Directory of Open Access Journals (Sweden)

    Li Wu

    2016-01-01

    Full Text Available This paper deals with the development of a W-band noise-adding radiometer which combines the millimeter-wave (MMW radiometric measurements with a high-resolution imager. The offset parabolic antenna is presented to achieve an accurate measurement and a high resolution. To reduce the cross-polarization level of the antenna, a multimode feed horn with a multistep structure is proposed to match the focal region fields of the reflector. It has advantages over the corrugated horns in lower mass and easier manufacturing. In addition, due to an unavoidable settling time for the noise-adding radiometer output signal passing through the low-pass filter, a theoretical criterion for the optimum duty cycle determination to reject extraneous contributions from the transient is proposed in this paper. The appropriate duty cycle threshold is 0.33 for the developed W-band radiometer. Also, a geometric correction method is presented to correct the obtained passive image suffering from a distortion for a better image interpretation. Preliminary experimental results are given to illustrate and verify the presented techniques.

  4. PAU-SA: A Synthetic Aperture Interferometric Radiometer Test Bed for Potential Improvements in Future Missions

    Directory of Open Access Journals (Sweden)

    Merce Vall-llosera

    2012-06-01

    Full Text Available The Soil Moisture and Ocean Salinity (SMOS mission is an Earth Explorer Opportunity mission from the European Space Agency (ESA. Its goal is to produce global maps of soil moisture and ocean salinity using the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS. The purpose of the Passive Advanced Unit Synthetic Aperture (PAU-SA instrument is to study and test some potential improvements that could eventually be implemented in future missions using interferometric radiometers such as the Geoestacionary Atmosferic Sounder (GAS, the Precipitation and All-weather Temperature and Humidity (PATH and the Geostationary Interferometric Microwave Sounder (GIMS. Both MIRAS and PAU-SA are Y-shaped arrays with uniformly distributed antennas, but the receiver topology and the processing unit are quite different. The purpose of this work is to identify the elements in the MIRAS’s design susceptible of improvement and apply them in the PAU-SA instrument demonstrator, to test them in view of these future interferometric radiometer missions.

  5. Remote sensing of the lightning heating effect duration with ground-based microwave radiometer

    Science.gov (United States)

    Jiang, Sulin; Pan, Yun; Lei, Lianfa; Ma, Lina; Li, Qing; Wang, Zhenhui

    2018-06-01

    Artificially triggered lightning events from May 26, 2017 to July 16, 2017 in Guangzhou Field Experiment Site for Lightning Research and Test (GFESL) were intentionally remotely sensed with a ground-based microwave radiometer for the first time in order to obtain the features of lightning heating effect. The microwave radiometer antenna was adjusted to point at a certain elevation angle towards the expected artificially triggered lightning discharging path. Eight of the 16 successfully artificially triggered lightning events were captured and the brightness temperature data at four frequencies in K and V bands were obtained. The results from data time series analysis show that artificially triggered lightning can make the radiometer generate brightness temperature pulses, and the amplitudes of these pulses are in the range of 2.0 K to 73.8 K. The brightness temperature pulses associated with 7 events can be used to estimate the duration of lightning heating effect through accounting the number of the pulses in the continuous pulse sequence and the sampling interval between four frequencies. The maximum duration of the lightning heating effect is 1.13 s, the minimum is 0.172 s, and the average is 0.63 s.

  6. Vitamin D synthesis measured with a multiband filter radiometer in Río Gallegos, Argentina

    Science.gov (United States)

    Orte, Facundo; Wolfram, Elian; Salvador, Jacobo; D'Elia, Raúl; Bulnes, Daniela; Leme, N. Paes; Quel, Eduardo

    2013-05-01

    Vitamin D plays an important role in human health. Vitamin D production from the sun is affected by UVB solar radiation. This paper presents a simple method for retrieving vitamin D-weighted UV by using a multiband filter radiometer GUV-541 installed at the Atmospheric Observatory of Southern Patagonia (OAPA) (51 ° 33' S, 69° 19' W), Río Gallegos. The methodology used combines irradiance measurements from a multiband filter radiometer with spectral irradiance modeled by the SOS radiative transfer code (developed by Lille University of Science and Technology (USTL)). The spectrum modeled is weighted with vitamin D action spectra published by the International Commission on Illumination (CIE), which describes the relative effectiveness of different wavelengths in the generation of this particular biological response. This method is validated using the vitamin D-weighted UV derived from a Brewer MKIII spectrophotometer (SN 124) belonging to the National Institute for Spatial Research (INPE), Brazil, which is able to measure solar spectra between 290 and 325nm. The method presents a good correlation between the two independent instruments. This procedure increases the instrumental capabilities of the multiband filter radiometer. Moreover, it evaluates the annual variation of vitamin D-weighted UV doses from exposure to ultraviolet radiation. These values are likely to be lower than suitable levels of vitamin D during winter and part of spring and autumn at these latitudes.

  7. Correction of the Temperature Effect in 1020 NM Band of Sun-Sky Radiometer

    Science.gov (United States)

    Li, K.; Li, Z.; Li, D.; Xie, Y.; Xu, H.

    2018-04-01

    Aerosol is an important part of the earth-atmosphere system. It can directly and indirectly influence solar radiation and then affect the energy balance of earth-atmosphere system. AERONET, as the largest ground-based observation network, provides multi-parameters of aerosol from more than 600 hundred sites using sun-sky radiometer, which contains 9 channels from 340 nm to 1640 nm. Among which, 1020 nm channel is greatly influenced by the temperature. In this paper, a new correction method of 1020 nm band is introduced. The new method transfers the temperature correction coefficient of the master radiometer to the comparative one. The filed calibration experiment shown that the temperature correction coefficient obtained by this method is close to the result from the temperature controlled chamber, and the difference is about 2.1 %. This new method is easy-to-use, and its accuracy is comparable to the standard one. It is more applicable for large-scale instrument calibration. In principle, this method is applicable to all bands of the sun-sky radiometer.

  8. Longterm and spatial variability of Aerosol optical properties measured by sky radiometer in Japan sites

    Science.gov (United States)

    Aoki, K.

    2016-12-01

    Aerosols and cloud play an important role in the climate change. We started the long-term monitoring of aerosol and cloud optical properties since 1990's by using sky radiometer (POM-01, 02; Prede Co. Ltd., Japan). We provide the information, in this presentation, on the aerosol optical properties with respect to their temporal and spatial variability in Japan site (ex. Sapporo, Toyama, Kasuga and etc). The global distributions of aerosols have been derived from earth observation satellite and have been simulated in numerical models, which assume optical parameters. However, these distributions are difficult to derive because of variability in time and space. Therefore, Aerosol optical properties were investigated using the measurements from ground-based and ship-borne sky radiometer. The sky radiometer is an automatic instrument that takes observations only in daytime under the clear sky conditions. Observation of diffuse solar intensity interval was made every ten or five minutes by once. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability in Japan area. In this study, we present the temporal and spatial variability of Aerosol optical properties at several Japan sites, applied to validation of satellite and numerical models. This project is validation satellite of GCOM-C, JAXA. The GCOM-C satellite scheduled to be launched in early 2017.

  9. Interlaboratory comparison of low energies anthropo-radiometers

    International Nuclear Information System (INIS)

    Didier, F.; Berard, Ph.; Dubiau, C.; Soulie, R.

    1999-01-01

    The radio-toxicology of actinides (U, Pu, Am) has for aim to verify the norms respect by proceeding to doses evaluations following an internal irradiation. The in vivo measure, called also pulmonary anthropo-radiometry consists in estimating the quantity of radionuclides present in lungs by the direct measurement of their low energies X and gamma rays. This technique is particularly used at the Laboratories of Medical Biology Analysis. It has the great advantage to give the totality of activity present at a given time and kept in lungs. But the low activities to measure and the strong absorption of rays in these tissues lead to a lack of sensitivity of measurement systems usually used and to a difficulty in calibrating these installations. These determinations need performing methods to detect and quantify some quantities of actinides in human body. Nine laboratories have taken part in intercomparison, the results have allowed to collect numerous and very useful information, the following objective is to realize a French standardization of practices in the anthropo-radiometry measurement. (N.C.)

  10. Spatiotemporal Variability of Earth's Radiation Balance Components from Russian Radiometer IKOR-M

    Science.gov (United States)

    Cherviakov, M.

    2016-12-01

    The radiometer IKOR-M was created in National Research Saratov State University for satellite monitoring of the outgoing reflected short-wave radiation, which is one of the components of Earth's radiation budget. Such information can be used in different models of long-term weather forecasts, in researches of climate change trends and in calculation of absorbed solar radiation values and albedo of the Earth-atmosphere system. The IKOR-M product archive is available online at all times. A searchable catalogue of data products is continually updated and users may search and download data products via the Earth radiation balance components research laboratory website as soon as they become available. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October 2009 to August 2014 and second - from August 2014 to the present. Therefore, there is a period when both radiometers work at the same time. Top-of-atmosphere fluxes deduced from the "Meteor-M" No 1 measurement in August, 2014 show very good agreement with the fluxes determined from "Meteor-M" No 2. The scale relationship of the IKOR-M radiometers on "Meteor - M" No 1 and No 2 satellites found by comparing of the global distribution maps for monthly averaged albedo values. The seasonal and interannual variations of OSR, albedo and ASR were discussed. The variations between SW radiation budget components seem to be within observational uncertainty and natural variability governed by cloudiness, water vapor and aerosol variations. It was assessed spatial and temporal variations of albedo and the absorbed solar radiation over different regions. Latitudinal distributions of albedo and ASR were estimated in more detail. Meridional cross sections over oceans and land were used separately for this estimation. It was shown that the albedo and ASR data received from the radiometer IKOR-M can be used to detect El Nino in the Pacific Ocean. The reported study was funded by

  11. Towards a long-term Science Exploitation Plan for the Sea and Land Surface Temperature Radiometer on Sentinel-3 and the Along-Track Scanning Radiometers

    Science.gov (United States)

    Remedios, John J.; Llewellyn-Jones, David

    2014-05-01

    The Sea and Land Surface Temperature Radiometer (SLSTR) on Sentinel-3 is the latest satellite instrument in a series of dual-angle optical and thermal sensors, the Along-Track Scanning Radiometers (ATSRs). Operating on Sentinel-3, the SLSTR has a number of significant improvements compared to the original ATSRs including wider swaths for nadir and dual angles, emphasis on all surface temperature domains, dedicated fire channels and additional cloud channels. The SLSTR therefore provides some excellent opportunities to extend science undertaken with the ATSRs whilst also providing long-term data sets to investigate climate change. The European Space Agency, together with the Department of Energy and Climate Change, sponsored the production of an Exploitation Plan for the ATSRs. In the last year, this been extended to cover the SLSTR also. The plan enables UK and European member states to plan activities related to SLSTR in a long-term context. Covering climate change, oceanography, land surface, atmosphere and cryosphere science, particular attention is paid to the exploitation of long-term data sets. In the case of SLSTR, relevant products include sea, land, lake and ice surface temperatures; aerosols and clouds; fires and gas flares; land surface reflectances. In this presentation, the SLSTR and ATSR science Exploitation Plan will be outlined with emphasis on SLSTR science opportunities, on appropriate co-ordinating mechanisms and on example implementation plans. Particular attention will be paid to the challenges of linking ATSR records with SLSTR to provide consistent long-term data sets, and on the international context of such data sets. The exploitation plan approach to science may prove relevant and useful for other Sentinel instruments.

  12. Estonian total ozone climatology

    Directory of Open Access Journals (Sweden)

    K. Eerme

    Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology

  13. Predicting the emissive power of hydrocarbon pool fires

    International Nuclear Information System (INIS)

    Munoz, Miguel; Planas, Eulalia; Ferrero, Fabio; Casal, Joaquim

    2007-01-01

    The emissive power (E) of a flame depends on the size of the fire and the type of fuel. In fact, it changes significantly over the flame surface: the zones of luminous flame have high emittance, while those covered by smoke have low E values. The emissive power of each zone (that is, the luminous or clear flame and the non-luminous or smoky flame) and the portion of total flame area they occupy must be assessed when a two-zone model is used. In this study, data obtained from an experimental set-up were used to estimate the emissive power of fires and its behaviour as a function of pool size. The experiments were performed using gasoline and diesel oil as fuel. Five concentric circular pools (1.5, 3, 4, 5 and 6 m in diameter) were used. Appropriate instruments were employed to determine the main features of the fires. By superimposing IR and VHS images it was possible to accurately identify the luminous and non-luminous zones of the fire. Mathematical expressions were obtained that give a more accurate prediction of E lum , E soot and the average emissive power of a fire as a function of its luminous and smoky zones. These expressions can be used in a two-zone model to obtain a better prediction of the thermal radiation. The value of the radiative fraction was determined from the thermal flux measured with radiometers. An expression is also proposed for estimating the radiative fraction

  14. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Truong, D. D., E-mail: dtruong@wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Austin, M. E. [Institute for Fusion Studies, University of Texas, Austin, Texas, 78712 (United States)

    2014-11-15

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of T{sub e}(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83–130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1–3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6–0.8 cm) resolution T{sub e} measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2–4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83–130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ∼2–4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial T{sub e} measurements, which demonstrate that the desired resolution is achieved, are presented.

  15. Maritime Aerosol optical properties measured by ship-borne sky radiometer

    Science.gov (United States)

    Aoki, K.

    2017-12-01

    Maritime aerosols play an important role in the earth climate change. We started the measurements of aerosol optical properties since 1994 by using ship-borne sky radiometer (POM-01 MK-II and III; Prede Co. Ltd., Japan) over the ocean. We report the results of an aerosol optical properties over the ocean by using Research Vessel of the ship-borne sky radiometers. Aerosol optical properties observation were made in MR10-02 to MR16-09 onboard the R/V Mirai, JAMSTEC. The sky radiometer measure the direct and diffuse solar radiance with seven interference filters (0.315, 0.4, 0.5, 0.675, 0.87, 0.94, and 1.02 µm). Observation interval was made every five minutes by once, only in daytime under the clear sky conditions. GPS provides the position with longitude and latitude and heading direction of the vessel, and azimuth and elevation angle of the sun. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability over the ocean. Aerosol optical thickness found over the near the coast (Asia and Tropical area) was high and variable. The size distribution volume have peaks at small particles at Asian coast and large particles at Tropical coast area. We provide the information, in this presentation, on the aerosol optical properties measurements with temporal and spatial variability in the Maritime Aerosol. This project is validation satellite of GCOM-C/SGLI, JAXA and other. The GCOM-C satellite scheduled to be launched in 2017 JFY.

  16. Intercomparison of stratospheric temperature profiles from a ground-based microwave radiometer with other techniques

    Directory of Open Access Journals (Sweden)

    F. Navas-Guzmán

    2017-11-01

    Full Text Available In this work the stratospheric performance of a relatively new microwave temperature radiometer (TEMPERA has been evaluated. With this goal in mind, almost 3 years of temperature measurements (January 2014–September 2016 from the TEMPERA radiometer were intercompared with simultaneous measurements from other techniques: radiosondes, MLS satellite and Rayleigh lidar. This intercomparison campaign was carried out at the aerological station of MeteoSwiss at Payerne (Switzerland. In addition, the temperature profiles from TEMPERA were used to validate the temperature outputs from the SD-WACCM model. The results showed in general a very good agreement between TEMPERA and the different instruments and the model, with a high correlation (higher than 0.9 in the temperature evolution at different altitudes between TEMPERA and the different data sets. An annual pattern was observed in the stratospheric temperature with generally higher temperatures in summer than in winter and with a higher variability during winter. A clear change in the tendency of the temperature deviations was detected in summer 2015, which was due to the repair of an attenuator in the TEMPERA spectrometer. The mean and the standard deviations of the temperature differences between TEMPERA and the different measurements were calculated for two periods (before and after the repair in order to quantify the accuracy and precision of this radiometer over the campaign period. The results showed absolute biases and standard deviations lower than 2 K for most of the altitudes. In addition, comparisons proved the good performance of TEMPERA in measuring the temperature in the stratosphere.

  17. Surgery-induced changes and early recovery of hip-muscle strength, leg-press power, and functional performance after fast-track total hip arthroplasty: a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Bente Holm

    Full Text Available By measuring very early changes in muscle strength and functional performance after fast-track total hip arthroplasty (THA, post-operative rehabilitation, introduced soon after surgery, can be designed to specifically target identified deficits.Firstly, to quantify changes (compared to pre-operative values in hip muscle strength, leg-press power, and functional performance in the first week after THA, and secondly, to explore relationships between the muscle strength changes, and changes in hip pain, systemic inflammation, and thigh swelling.Prospective, cohort study.Convenience sample of patients receiving a THA at Copenhagen University Hospital, Hvidovre, Denmark, between March and December 2011.Thirty-five patients (65.9 ± 7.2 years undergoing THA.Hip muscle strength, leg-press power, performance-based function, and self-reported disability were determined prior to, and 2 and 8 days after, THA (Day 2 and 8, respectively. Hip pain, thigh swelling, and C-Reactive Protein were also determined.Five patients were lost to follow-up. Hip muscle strength and leg press power were substantially reduced at Day 2 (range of reductions: 41-58%, P<0.001, but less pronounced at Day 8 (range of reductions: 23-31%, P<0.017. Self-reported symptoms and function (HOOS: Pain, Symptoms, and ADL improved at Day 8 (P<0.014. Changes in hip pain, C-Reactive Protein, and thigh swelling were not related to the muscle strength and power losses.Hip muscle strength and leg-press power decreased substantially in the first week after THA - especially at Day 2 - with some recovery at Day 8. The muscle strength loss and power loss were not related to changes in hip pain, systemic inflammation, or thigh swelling. In contrast, self-reported symptoms and function improved. These data on surgery-induced changes in muscle strength may help design impairment-directed, post-operative rehabilitation to be introduced soon after surgery.ClinicalTrials.gov NCT01246674.

  18. Usefulness of the infrared heterodyne radiometer in remote sensing of atmospheric pollutants.

    Science.gov (United States)

    Menzies, R. T.; Shumate, M. S.

    1971-01-01

    The application of narrow-band optical receivers to the problem of sensing atmospheric pollution is discussed. The emission/absorption lines of many major atmospheric pollutant molecules overlap the operating frequency bands of CO2 laser and CO laser heterodyne receivers. Several remote pollution sensing systems which are based upon utilization of these spectral overlaps are described, and an analysis of their potential is presented. The possibility of using other lasers (e.g.: the PbSnTe tunable diode laser) as local oscillators is also considered. Results of laboratory experiments with a CO2 laser heterodyne radiometer are presented.

  19. Global silicate mineralogy of the Moon from the Diviner lunar radiometer.

    Science.gov (United States)

    Greenhagen, Benjamin T; Lucey, Paul G; Wyatt, Michael B; Glotch, Timothy D; Allen, Carlton C; Arnold, Jessica A; Bandfield, Joshua L; Bowles, Neil E; Donaldson Hanna, Kerri L; Hayne, Paul O; Song, Eugenie; Thomas, Ian R; Paige, David A

    2010-09-17

    We obtained direct global measurements of the lunar surface using multispectral thermal emission mapping with the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Most lunar terrains have spectral signatures that are consistent with known lunar anorthosite and basalt compositions. However, the data have also revealed the presence of highly evolved, silica-rich lunar soils in kilometer-scale and larger exposures, expanded the compositional range of the anorthosites that dominate the lunar crust, and shown that pristine lunar mantle is not exposed at the lunar surface at the kilometer scale. Together, these observations provide compelling evidence that the Moon is a complex body that has experienced a diverse set of igneous processes.

  20. A Model for Estimation of Rain Rate on Tropical Land from TRMM Microwave Imager Radiometer Observations

    OpenAIRE

    C., PRABHAKARA; R., IACOVAZZI; J. M., YOO; K. M., KIM; NASA Goddard Space Flight Center; Center for Research on the Changing Earth System; EWHA Womans University; Science Systems and Applications, Inc.

    2005-01-01

    Over the tropical land regions scatter plots of the rain rate (R_), deduced from the TRMM Precipitation Radar (PR) versus the observed 85GHz brightness temperature (T_) made by the TRMM Microwave Imager (TMI) radiometer, for a period of a season over a given geographic region of 3°×5°(lat×lon), indicate that there are two maxima in rain rate. One strong maximum occurs when T_ has a value of about 220K, and the other weaker one when T_ is much colder ~150K. Also these two maxima are vividly re...

  1. Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer

    Science.gov (United States)

    Little, John

    2013-01-01

    Advancements in common aperture antenna technology were employed to utilize its proprietary genetic algorithmbased modeling tools in an effort to develop, build, and test a dual-polarization array for Hurricane Imaging Radiometer (HIRAD) applications. Final program results demonstrate the ability to achieve a lightweight, thin, higher-gain aperture that covers the desired spectral band. NASA employs various passive microwave and millimeter-wave instruments, such as spectral radiometers, for a range of remote sensing applications, from measurements of the Earth's surface and atmosphere, to cosmic background emission. These instruments such as the HIRAD, SFMR (Stepped Frequency Microwave Radiometer), and LRR (Lightweight Rainfall Radiometer), provide unique data accumulation capabilities for observing sea surface wind, temperature, and rainfall, and significantly enhance the understanding and predictability of hurricane intensity. These microwave instruments require extremely efficient wideband or multiband antennas in order to conserve space on the airborne platform. In addition, the thickness and weight of the antenna arrays is of paramount importance in reducing platform drag, permitting greater time on station. Current sensors are often heavy, single- polarization, or limited in frequency coverage. The ideal wideband antenna will have reduced size, weight, and profile (a conformal construct) without sacrificing optimum performance. The technology applied to this new HIRAD array will allow NASA, NOAA, and other users to gather information related to hurricanes and other tropical storms more cost effectively without sacrificing sensor performance or the aircraft time on station. The results of the initial analysis and numerical design indicated strong potential for an antenna array that would satisfy all of the design requirements for a replacement HIRAD array. Multiple common aperture antenna methodologies were employed to achieve exceptional gain over the entire

  2. Experimental verification of self-calibration radiometer based on spontaneous parametric downconversion

    Science.gov (United States)

    Gao, Dongyang; Zheng, Xiaobing; Li, Jianjun; Hu, Youbo; Xia, Maopeng; Salam, Abdul; Zhang, Peng

    2018-03-01

    Based on spontaneous parametric downconversion process, we propose a novel self-calibration radiometer scheme which can self-calibrate the degradation of its own response and ultimately monitor the fluctuation of a target radiation. Monitor results were independent of its degradation and not linked to the primary standard detector scale. The principle and feasibility of the proposed scheme were verified by observing bromine-tungsten lamp. A relative standard deviation of 0.39 % was obtained for stable bromine-tungsten lamp. Results show that the proposed scheme is advanced of its principle. The proposed scheme could make a significant breakthrough in the self-calibration issue on the space platform.

  3. Intercomparison of characterization techniques of filter radiometers in the ultraviolet region

    International Nuclear Information System (INIS)

    Abu-Kassem, I.; Karha, P.; Harrison, N. J.; Nevas, S.; Hartree, W. S.

    2008-01-01

    Narrow-band filter radiometers at 248 nm, 313 nm, 330 nm and 368 nm wavelengths were used to compare calibration facilities of spectral (irradiance) responsivity at HUT, NPL and BNM-INM. The results are partly in agreement within the stated uncertainties. Use of demanding artefacts in the intercomparison revealed that the wavelength scales of the participating institutes deviate more than expected. Such effects cannot be seen in typical intercomparisons of spectral responsivity or spectral transmittance, where spectrally neutral samples are used.(author)

  4. An Optimal Beamforming Algorithm for Phased-Array Antennas Used in Multi-Beam Spaceborne Radiometers

    DEFF Research Database (Denmark)

    Iupikov, O. A.; Ivashina, M. V.; Pontoppidan, K.

    2015-01-01

    Strict requirements for future spaceborne ocean missions using multi-beam radiometers call for new antenna technologies, such as digital beamforming phased arrays. In this paper, we present an optimal beamforming algorithm for phased-array antenna systems designed to operate as focal plane arrays...... to a FPA feeding a torus reflector antenna (designed under the contract with the European Space Agency) and tested for multiple beams. The results demonstrate an improved performance in terms of the optimized beam characteristics, yielding much higher spatial and radiometric resolution as well as much...

  5. Measurement of radiosity coefficient by using an infrared radiometer and its application

    International Nuclear Information System (INIS)

    Okamoto, Yoshizo; Kaminaga, Fumito; Osakabe, Masahiro; Maekawa, Katsuhiro; Ishii, Toshimitsu; Ohoka, Norikazu; Eto, Motokuni.

    1989-01-01

    An infrared radiometer has been used for measuring and visualizing radiation temperature distribution of a surface in many fields as a remote sensing devices. Measured radiation flux is a summation of a emitted radiation and a reflection, which is called as a radiosity flux. The present paper shows characteristics of the radiosity of tested materials. And the infrared sensor is used to detect the small surface flaw and to measure the erosion rare of the graphite by ion beam injection and the temperature distribution of a cutter. (author)

  6. Measurement of radiosity coefficient by using an infrared radiometer and its application

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Yoshizo; Kaminaga, Fumito; Osakabe, Masahiro; Maekawa, Katsuhiro; Ishii, Toshimitsu [Ibaraki Univ., Hitachi (Japan). Faculty of Engineering; Ohoka, Norikazu; Eto, Motokuni

    1989-12-01

    An infrared radiometer has been used for measuring and visualizing radiation temperature distribution of a surface in many fields as a remote sensing devices. Measured radiation flux is a summation of a emitted radiation and a reflection, which is called as a radiosity flux. The present paper shows characteristics of the radiosity of tested materials. And the infrared sensor is used to detect the small surface flaw and to measure the erosion rare of the graphite by ion beam injection and the temperature distribution of a cutter. (author).

  7. Sentinel-3 MWR Microwave Radiometer – Our contribution to the success of the Copernicus programme

    Directory of Open Access Journals (Sweden)

    M.A. Palacios

    2014-06-01

    Full Text Available The MWR builds, together with the SRAL altimeter, the S3 topography mission. The MWR, developed by EADS CASA Espacio as prime contractor, provides information for tropospheric path correction of SRAL measurements. MWR data can also be used for determining surface emissivity and soil moisture over land, surface energy budget investigations and ice characterization. The MWR instrument is a Noise Injection Radiometer (NIR, working at two frequencies (23.8/36.5 GHz, embarking a dual frequency horn antenna pointing to the cold sky for embedded autonomous calibration.

  8. The along track scanning radiometer for ERS-1 - Scan geometry and data simulation

    Science.gov (United States)

    Prata, A. J. Fred; Cechet, Robert P.; Barton, Ian J.; Llewellyn-Jones, David T.

    1990-01-01

    The first European remote-sensing satellite (ERS-1), due to be launched in 1990, will carry the along track scanning radiometer (ATSR), which has been specifically designed to give accurate satellite measurements of sea surface temperature (SST). Details of the novel scanning technique used by the ATSR are given, and data from the NOAA-9 AVHRR instrument are used to simulate raw ATSR imagery. Because of the high precision of the onboard blackbodies, the active cooling of the detectors, 12-b digitization, and dual-angle capability, the ATSR promises to achieve higher-accuracy satellite-derived SSTs than are currently available.

  9. Construction of a radiometer for pyroelectric detector and presentation of a model for detector design

    International Nuclear Information System (INIS)

    Siqueira, C.A. de.

    1987-01-01

    An expression has been developed for the pyroelectric voltage as a function of electric and thermal parameters of the detector. It has also been developed expressions for determination of unknown parameters from the experimentally obtained pyroelectric voltage curve as function of time and some other known information. It has also been shown figures of merit for characterization of the detectors, a study showing the detector performance dependence on each electric and thermal parameter and some illustrative experimental results. The radiometer designed and built for this work, is described. (author) [pt

  10. Achievement report for fiscal 1998 on the development of superconductor power application technology. 2. Research and development of superconducting wire and superconductive power generator, research of total system, research and development of refrigeration system, and verification test; 1998 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. 2. Chodendo senzai no kenkyu kaihatsu, chodendo hatsudenki no kenkyu kaihatsu, total sytsem no kenkyu, reito system no kenkyu kaihatsu, jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The slow excitation response type power generator is studied when the rotor and stator of a 70,000kW-class model are combinedly subjected to an on-site verification test, when a good result is obtained. The rotor is disassembled for inspection, and its members are found to be sound without any problem in terms of mechanical strength. The quick excitation response type is studied when a 70,000kW model is experimentally built and subjected to an on-site verification test after a rotation and excitation test in the factory, when the pilot machine concept design is reviewed. In the study of a total system, efforts continue for the review of the model machine test method, improvement on generator design and analytical methods, development of operating methods, and the effect of its introduction into the power system. Since a He-refrigerated system is requested to exhibit high reliability for application to power equipment and to be capable of continuous long-period operation, a system having constituents with their reliability enhanced and an appropriate redundant system is developed, and a verification study is under way which will continue for more than 10,000 hours. Described also is an oil-free low-temperature turbo refrigerator. The latest quick excitation response type rotor is also tested for verification. (NEDO)

  11. Forward Model Studies of Water Vapor Using Scanning Microwave Radiometers, Global Positioning System, and Radiosondes during the Cloudiness Intercomparison Experiment

    International Nuclear Information System (INIS)

    Mattioli, Vinia; Westwater, Ed R.; Gutman, S.; Morris, Victor R.

    2005-01-01

    Brightness temperatures computed from five absorption models and radiosonde observations were analyzed by comparing them with measurements from three microwave radiometers at 23.8 and 31.4 GHz. Data were obtained during the Cloudiness Inter-Comparison experiment at the U.S. Department of Energy's Atmospheric Radiation Measurement Program's (ARM) site in North-Central Oklahoma in 2003. The radiometers were calibrated using two procedures, the so-called instantaneous ?tipcal? method and an automatic self-calibration algorithm. Measurements from the radiometers were in agreement, with less than a 0.4-K difference during clear skies, when the instantaneous method was applied. Brightness temperatures from the radiometer and the radiosonde showed an agreement of less than 0.55 K when the most recent absorption models were considered. Precipitable water vapor (PWV) computed from the radiometers were also compared to the PWV derived from a Global Positioning System station that operates at the ARM site. The instruments agree to within 0.1 cm in PWV retrieval

  12. Multichannel heterodyne radiometers with fast-scanning backward-wave oscillators for ECE measurement on HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Poznyak, V.I.; Ploskirev, G.; Kalupin, D.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Gao, X.; Wan, B.N.; Zhang, X.D.; Wang, K.J.; Kuang, G.L.

    2001-01-01

    Two sets of fast-scanning heterodyne radiometer receiver systems employing backward-wave oscillators (BWOs) in 78-118 and 118-178 GHz were developed and installed for electron cyclotron emission (ECE) measurements on HT-7 superconducting tokamak. The double sideband (DSB) radiometer in 78-118 GHz measures 16 ECE frequency points with a scanning time period of 0.65 ms. The other radiometer in 118-178 GHz consists of one independent channel of DSB heterodyne receiver with intermediate frequency (IF) of 100-500 MHz and two channels of single sideband (SSB) heterodyne receiver that are sensitive to upper sideband and lower sideband individually; the IF frequency of the SSB channels are 1.5 GHz around the local oscillator frequencies with 1 GHz bandwidth. By employing a novel design, this unique radiometer measures 3 ECE frequency points at each of the 16 local oscillator frequency points in 118-178 GHz, and the full band can be swept in 0.65 ms period, thus the radiometer measures 48 ECE frequency points in 0.65 ms in principle. Each of the local oscillators' frequency points can be preset by program to meet specific physics interests. Horizontal view of ECE was installed to measure electron temperature profiles; vertically viewing optics along a perpendicular chord was also installed to study nonthermal ECE spectra. Preliminary measurement results were presented during ohmic and pellet injection plasmas

  13. Newly devised infrared radiometer (ERI type IR ground scanner) and the surface temperature of the Mihara crater, O-shima

    Energy Technology Data Exchange (ETDEWEB)

    Shimozuru, D [Earthquake Res. Inst., Univ. of Tokyo; Kagiyama, T

    1976-10-01

    The infrared radiometer, a remote sensing tool, can be successfully used to measure the surface temperature of a volcanic or geothermal area. Many of these devices are available commercially for industrial use but their application to volcano observations is limited due to a wide field of view which prohibits detailed examination of specific points. A commercial radiometer was mounted on a balloon theodolite with an electrically driven rotating base. A telescope was attached to the radiometer to permit monitoring of the field of view. Radiometer output can be recorded either on a magnetic tape data recorder or a strip chart recorder. The device is also useful for continuous monitoring of the temperature of a vent or fumarole. The observed temperatures are dependent upon the wave length of actual spatial temperature distribution, the field of view and the scanning speed. Detailed information of both a theoretical and an experimental nature is provided. The improved radiometer was utilized to observe surface temperature in the caldera of Miharayama, Oshima in March, 1976. It was found that the vent temperature was markedly lower than had previously been recorded, as was the average surface temperature.

  14. Total and EDF invest

    International Nuclear Information System (INIS)

    Signoret, St.

    2008-01-01

    So as to prepare the future of their industrial sector,the Total company plans to invest (14 billion Euros in 2008) to increase its production capacities and strengthen in of other activities as the liquefied natural gas and the renewable energies; EDF plans to inject 35 billion Euros over three years to multiply the new projects of power plants (wind turbines, coal in Germany, gas in Great Britain and nuclear power in Flamanville). EDF wants to exploit its knowledge of leader to run more than ten E.P.R.(European pressurized water reactor) in the world before 2020, projects are in examination with China, Great Britain, South Africa and United States. (N.C.)

  15. Island based radar and microwave radiometer measurements of stratus cloud parameters during the Atlantic Stratocumulus Transition Experiment (ASTEX)

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, A.S. [Colorado State Univ., Fort Collins, CO (United States); Fairall, C.W.; Snider, J.B. [NOAA Environmental Technology Lab., Boulder, CO (United States); Lenshow, D.H.; Mayer, S.D. [National Center for Atmospheric Research, Boulder, CO (United States)

    1996-04-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, simultaneous measurements were made with a vertically pointing cloud sensing radar and a microwave radiometer. The radar measurements are used to estimate stratus cloud drizzle and turbulence parameters. In addition, with the microwave radiometer measurements of reflectivity, we estimated the profiles of cloud liquid water and effective radius. We used radar data for computation of vertical profiles of various drizzle parameters such as droplet concentration, modal radius, and spread. A sample of these results is shown in Figure 1. In addition, in non-drizzle clouds, with the radar and radiometer we can estimate the verticle profiles of stratus cloud parameters such as liquid water concentration and effective radius. This is accomplished by assuming a droplet distribution with droplet number concentration and width constant with height.

  16. The Effect of Atmospheric Scattering as Inferred from the Rocket-Borne UV Radiometer Measurements

    Directory of Open Access Journals (Sweden)

    Jhoon Kim

    1997-06-01

    Full Text Available Radiometers in UV and visible wavelengths were onboard the Korean Sounding Rocket(KSR-1 and 2 which were launched on June 4th and September 1st, 1993. These radiometers were designed to capture the solar radiation during the ascending period of the rocket flight. The purpose of the instrument was to measure the vertical profiles of stratospheric ozone densities. Since the instrument measured the solar radiation from the ground to its apogee, it is possible to investigate the altitude variation of the measured intensity and to estimate the effect of atmospheric scattering by comparing the UV and visible intensity. The visible channel was a reference because the 450-nm wavelength is in the atmospheric window region, where the solar radiation is transmitted through the atmosphere without being absorbed by other atmospheric gases. The use of 450-nm channel intensity as a reference should be limited to the altitude ranges above the certain altitudes, say 20 to 25§° where the signals are not perturbed by atmospheric scattering effects.

  17. Microwave Radiometers for Fire Detection in Trains: Theory and Feasibility Study

    Directory of Open Access Journals (Sweden)

    Federico Alimenti

    2016-06-01

    Full Text Available This paper introduces the theory of fire detection in moving vehicles by microwave radiometers. The system analysis is discussed and a feasibility study is illustrated on the basis of two implementation hypotheses. The basic idea is to have a fixed radiometer and to look inside the glass windows of the wagon when it passes in front of the instrument antenna. The proposed sensor uses a three-pixel multi-beam configuration that allows an image to be formed by the movement of the train itself. Each pixel is constituted by a direct amplification microwave receiver operating at 31.4 GHz. At this frequency, the antenna can be a 34 cm offset parabolic dish, whereas a 1 K brightness temperature resolution is achievable with an overall system noise figure of 6 dB, an observation bandwidth of 2 GHz and an integration time of 1 ms. The effect of the detector noise is also investigated and several implementation hypotheses are discussed. The presented study is important since it could be applied to the automatic fire alarm in trains and moving vehicles with dielectric wall/windows.

  18. Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements

    Science.gov (United States)

    Kazadzis, Stelios; Kouremeti, Natalia; Diémoz, Henri; Gröbner, Julian; Forgan, Bruce W.; Campanelli, Monica; Estellés, Victor; Lantz, Kathleen; Michalsky, Joseph; Carlund, Thomas; Cuevas, Emilio; Toledano, Carlos; Becker, Ralf; Nyeki, Stephan; Kosmopoulos, Panagiotis G.; Tatsiankou, Viktar; Vuilleumier, Laurent; Denn, Frederick M.; Ohkawara, Nozomu; Ijima, Osamu; Goloub, Philippe; Raptis, Panagiotis I.; Milner, Michael; Behrens, Klaus; Barreto, Africa; Martucci, Giovanni; Hall, Emiel; Wendell, James; Fabbri, Bryan E.; Wehrli, Christoph

    2018-03-01

    This study presents the results of the Fourth Filter Radiometer Comparison that was held in Davos, Switzerland, between 28 September and 16 October 2015. Thirty filter radiometers and spectroradiometers from 12 countries participated including reference instruments from global aerosol networks. The absolute differences of all instruments compared to the reference have been based on the World Meteorological Organization (WMO) criterion defined as follows: 95% of the measured data has to be within 0.005 ± 0.001/m (where m is the air mass). At least 24 out of 29 instruments achieved this goal at both 500 and 865 nm, while 12 out of 17 and 13 out of 21 achieved this at 368 and 412 nm, respectively. While searching for sources of differences among different instruments, it was found that all individual differences linked to Rayleigh, NO2, ozone, water vapor calculations and related optical depths and air mass calculations were smaller than 0.01 in aerosol optical depth (AOD) at 500 and 865 nm. Different cloud-detecting algorithms used have been compared. Ångström exponent calculations showed relatively large differences among different instruments, partly because of the high calculation uncertainty of this parameter in low AOD conditions. The overall low deviations of these AOD results and the high accuracy of reference aerosol network instruments demonstrated a promising framework to achieve homogeneity, compatibility and harmonization among the different spectral AOD networks in the near future.

  19. Development of electronics and data acquisition system for independent calibration of electron cyclotron emission radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Praveena, E-mail: praveena@ipr.res.in; Raulji, Vismaysinh; Mandaliya, Hitesh; Patel, Jignesh; Siju, Varsha; Pathak, S.K.; Rajpal, Rachana; Jha, R.

    2016-11-15

    Highlights: • Indigenous development of an electronics and data acquisition system to digitize signals for a desired time and automatization of calibration process. • 16 bit DAQ board with form factor of 90 × 89 mm. • VHDL Codes written for generating control signals for PC104 Bus, ADC and RAM. • Averaging process is done in two ways single point averaging and additive averaging. - Abstract: Signal conditioning units (SCU) along with Multichannel Data acquisition system (DAS) are developed and installed for automatization and frequent requirement of absolute calibration of ECE radiometer system. The DAS is an indigenously developed economical system which is based on Single Board Computer (SBC). The onboard RAM memory of 64 K for each channel enables the DAS for simultaneous and continuous acquisition. A Labview based graphical user interface provides commands locally or remotely to acquire, process, plot and finally save the data in binary format. The microscopic signals received from radiometer are strengthened, filtered by SCU and acquired through DAS for the set time and at set sampling frequency. Stored data are processed and analyzed offline with Labview utility. The calibration process has been performed for two hours continuously at different sampling frequency (100 Hz to 1 KHz) at two set of temperature like hot body and the room temperature. The detailed hardware and software design and testing results are explained in the paper.

  20. Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrievals and Assessment Using Dropsondes

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.

    2018-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an experimental C-band passive microwave radiometer designed to map the horizontal structure of surface wind speed fields in hurricanes. New data processing and customized retrieval approaches were developed after the 2015 Tropical Cyclone Intensity (TCI) experiment, which featured flights over Hurricanes Patricia, Joaquin, Marty, and the remnants of Tropical Storm Erika. These new approaches produced maps of surface wind speed that looked more realistic than those from previous campaigns. Dropsondes from the High Definition Sounding System (HDSS) that was flown with HIRAD on a WB-57 high altitude aircraft in TCI were used to assess the quality of the HIRAD wind speed retrievals. The root mean square difference between HIRAD-retrieved surface wind speeds and dropsonde-estimated surface wind speeds was 6.0 meters per second. The largest differences between HIRAD and dropsonde winds were from data points where storm motion during dropsonde descent compromised the validity of the comparisons. Accounting for this and for uncertainty in the dropsonde measurements themselves, we estimate the root mean square error for the HIRAD retrievals as around 4.7 meters per second. Prior to the 2015 TCI experiment, HIRAD had previously flown on the WB-57 for missions across Hurricanes Gonzalo (2014), Earl (2010), and Karl (2010). Configuration of the instrument was not identical to the 2015 flights, but the methods devised after the 2015 flights may be applied to that previous data in an attempt to improve retrievals from those cases.

  1. Hurricane Imaging Radiometer Wind Speed and Rain Rate Retrievals during the 2010 GRIP Flight Experiment

    Science.gov (United States)

    Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood; Roberts, Jason; Biswas, Sayak; Cecil, Daniel

    2014-01-01

    Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes.

  2. Capabilities and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    Science.gov (United States)

    Miller, Timothy L.; Amarin, Ruba; Atlas, Robert; Bailey, M. C.; Black, Peter; Buckley, Courtney; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in or collaborate with the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx.3 x the aircraft altitude) with approx.2 km resolution. See Figure 1, which depicts a simulated HIRAD swath versus the line of data obtained by SFMR.

  3. The advanced along track scanning radiometer (aatsr) on esa's envisat satellite - an early assessment

    Science.gov (United States)

    Llewellyn-Jones, D.; Mutlow, C.; Smith, D.; Edwards, M.

    The AATSR sensor is an imaging radiometer designed to measure top-of-the- atmosphere brightness temperature in seven thermal infrared, reflected infrared and visible wavelength channels. The main objective of the AATSR mission is to generate fields of global sea-surface temperature to the high levels of accuracy required for the monitoring and detection of climate change, and to support a broad range of associated research into the marine, terrestrial, cryospheric and atmospheric environments. An essential component of this objective is maintain continuity with the high-quality data-sets already collected form the two predecessor sensors, ATSR1 and 2 on ESA's ERS-1 and -2 satellites respectively. Following the successful launch of ENVISAT on March 1 2002, the AATSR sensor was activated and systematically brought up to full operating configuration in accordance with the agreed Switch-On and Data Acquisition Plan (SODAP). The early images form AATSR are of a quality that is consistent with its objective of effective data continuity. Since the instrument has been returning data, a programme of quality assessment has been taking place. This has included a systematic assessment of instrumental aspects such as signal-to-noise performance and image stability as well as the initial observations in the AATSR validation programme. In this programme, AATSR data-products are compared with correlative observations from other sources, which include, sea-borne radiometers, meteorological analysis fields and data from other satellites. This paper reports early results from some of the activities.

  4. Precision, accuracy and linearity of radiometer EML 105 whole blood metabolite biosensors.

    Science.gov (United States)

    Cobbaert, C; Morales, C; van Fessem, M; Kemperman, H

    1999-11-01

    The analytical performance of a new, whole blood glucose and lactate electrode system (EML 105 analyser. Radiometer Medical A/S. Copenhagen, Denmark) was evaluated. Between-day coefficients of variation were glucose and lactate, respectively. Recoveries of glucose were 100 +/- 10% using either aqueous or protein-based standards. Recoveries of lactate depended on the matrix, being underestimated in aqueous standards (approximately -10%) and 95-100% in standards containing 40 g/L albumin at lactate concentrations of 15 and 30 mmol/L. However, recoveries were high (up to 180%) at low lactate concentrations in protein-based standards. Carry-over, investigated according to National Clinical Chemistry Laboratory Standards EP10-T2, was negligible (alpha = 0.01). Glucose and lactate biosensors equipped with new membranes were linear up to 60 and 30 mmol/L, respectively. However, linearity fell upon daily use with increasing membrane lifetime. We conclude that the Radiometer metabolite biosensor results are reproducible and do not suffer from specimen-related carry-over. However, lactate recovery depends on the protein content and the lactate concentration.

  5. Ozone, spectral irradiance and aerosol measurements with the Brewer spectro radiometer; Misure di ozono, irradianza spettrale ultravioletta e aerosol con lo spettroradiometro Brewer

    Energy Technology Data Exchange (ETDEWEB)

    Marenco, F.; Di Sarra, A. [ENEA, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    In this technical report a detailed description of the Brewer spectro radiometer, a widespread instrument for ozone and ultraviolet radiation, is given. The methodologies used to measure these quantities and for instrument calibration are described in detail. Finally a new methodology, developed by ENEA to derive the aerosol optical depth from the Brewer routine total ozone measurements, is described. This methodology is based on Langley extrapolation, on the determination of the transmissivity of the Brewer neutral density filters, and on a statistically significant number of half days of measurements obtained in could-free conditions. Results of this method, obtained with the Brewer of the ENEA station for climate observations Roberto Sarao, located in the island of Lampedusa, are reported. These results confirm the validity of the method, thanks to independent measurements taken in 1999 with a Multi filter Rotating Shadow band Radiometer. This methodology allows researchers to obtain an aerosol climatology from ozone measurements obtained at several sites world-wide. [Italian] In questo rapporto tecnico viene fornita la descrizione dettagliata di uno strumento comunemente utilizzato per le misure di ozono e radiazione ultravioletta: lo spettroradiometro Brewer. Le metodologie usate per la misura di queste grandezze e per la calibrazione dello strumento vengono descritte in dettaglio. Infine, viene descritto una nuova metodologia, messa a punto dall'ENEA, per ricavare lo spessore ottico degli aerosol a partire dalle misure di ozono fatte normalmente dal Brewer. Questa metodologia si basa su di una calibrazione effettuata con il metodo dell' estrapolazione di Langley, sulla misura della trasmissivita' dei filtri a densita' neutra dello strumento, e su un numero statisticamente grande di mezze giornate di misure effettuate in assenza di nuvole. Sono riportati alcuni risultati della metodologia, ottenuti con il Brewer della Stazione per le

  6. ESTAR: The Electronically Scanned Thinned Array Radiometer for remote sensing measurement of soil moisture and ocean salinity

    Science.gov (United States)

    Swift, C. T.

    1993-01-01

    The product of a working group assembled to help define the science objectives and measurement requirements of a spaceborne L-band microwave radiometer devoted to remote sensing of surface soil moisture and sea surface salinity is presented. Remote sensing in this long-wavelength portion of the microwave spectrum requires large antennas in low-Earth orbit to achieve acceptable spatial resolution. The proposed radiometer, ESTAR, is unique in that it employs aperture synthesis to reduce the antenna area requirements for a space system.

  7. Project subsidized by the Sunshine Project in fiscal 1982. Report on achievements in the project commissioned from NEDO for development of a total flow power generation plant (Two-phase rotation inflator); 1982 nendo total flow hatsuden plant no kaihatsu seika hokokusho. Niso kaiten bochoki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-07-01

    Developmental research has been performed on a two-phase rotation inflator in the total flow power generation technology to inflate gas-liquid two-phase fluid containing a great amount of hot water in the form as it is to draw out output. Subsequently from the previous fiscal year, the present fiscal year has improved the performance of a 300-kW class two-phase rotation inflator. The factory test data acquired in the previous fiscal year were analyzed, and an investigation was given on the cause of leakage loss and machine loss which were greater than what has been expected initially. The result revealed leakage from the circumferential seal grooves and leakage due to increase in the side seal clearance as a result of deformation of the external rotor flange. In addition, the static pressure bearing was found to have small displacement in the shaft center, but have large loss. Small modifications on these deficiencies raised the engine efficiency by about 44% at a rotation speed of 1,200 rpm, proving the effect of the improvement. However, the inflator showed a trend that, at the rotation speed higher than 1,600 rpm, air intake amount has increased, and the output has decreased. Therefore, analyses and investigations were carried out on water film loss, bearing loss and machine loss, and total modification was given on the inner and outer rotors, the inner wheel chamber, the sealing device, and the bearings. (NEDO)

  8. Lidar-Radiometer Inversion Code (LIRIC) for the Retrieval of Vertical Aerosol Properties from Combined Lidar Radiometer Data: Development and Distribution in EARLINET

    Science.gov (United States)

    Chaikovsky, A.; Dubovik, O.; Holben, Brent N.; Bril, A.; Goloub, P.; Tanre, D.; Pappalardo, G.; Wandinger, U.; Chaikovskaya, L.; Denisov, S.; hide

    2015-01-01

    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code)algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar radiometric input data we use measurements from European Aerosol Re-search Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data by the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height-dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Inter-comparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLNET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

  9. Power program and nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Yu.F.

    1990-01-01

    Main points of the USSR power program and the role of nuclear power in fuel and power complex of the country are considered. Data on dynamics of economic indices of electric power generation at nuclear power plants during 1980-1988 and forecasts till 2000 are presented. It is shown that real cost of 1 kW/h of electric power is equal to 1.3-1.8 cop., and total reduced cost is equal to 1.8-2.4 cop

  10. Synthesis of vitamin D and erythemal irradiance obtained with a multiband filter radiometer and annual variation analysis in Rio Gallegos, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Orte, P F [ANPCyT (Argentina); Wolfram, E A; Salvador, J; D' Elia, R; Quel, E J [CEILAP (CITEFA-CONICET) Villa Martelli, Buenos Aires (Argentina); Paes Leme, N, E-mail: porte@citefa.gov.ar [Instituto Nacional de Pesquisas Espaciais (Brazil)

    2011-01-01

    In this paper we examined the annual variability of the erythemal solar radiation (a health risk) and the solar irradiance for synthesis of vitamin D (a health benefit) in Rio Gallegos, Argentina. We use ultraviolet radiation measurements made by a multiband filter radiometer GUV-541 and a Brewer spectrophotometer located at CEILAP-RG Station (CITEFA-CONICET) (51 deg. 33' S, 69 deg. 19' W). These measurements are weighted with action spectra published by the CIE (International Commission on Illumination). An action spectrum describes the relative effectiveness of different wavelengths in the generation of a particular biological response. The analyzed data correspond to September 2008-December 2009 period. The methodology used to obtain the erythemal irradiance and synthesis of vitamin D values combines irradiance measurements of a multiband filter radiometer with modeled values (output of radiative transfer model) and measurements of a Brewer spectrophotometer. This procedure increases the instrumental capabilities of this instrument. The synthesis of vitamin D and erythema are affected by UVB solar radiation. Therefore, its effect is strongly dependent of the stratospheric ozone amount, which undergoes large variations in the Rio Gallegos city due to ozone hole passage and its influence on these sub-polar latitudes. We observed that could exist cases of sunburn for reasonable exposure in abnormal situations of low total ozone column, resulting in high levels of ultraviolet radiation. Furthermore, the synthesis of vitamin D through exposure to ultraviolet radiation would be lower than the appropriate values to the majority of the year for these latitudes. Therefore it is important to evaluate the annual variation of these quantities realizing seasonal balance between this health risk and this health benefit.

  11. Synthesis of vitamin D and erythemal irradiance obtained with a multiband filter radiometer and annual variation analysis in Rio Gallegos, Argentina

    International Nuclear Information System (INIS)

    Orte, P F; Wolfram, E A; Salvador, J; D'Elia, R; Quel, E J; Paes Leme, N

    2011-01-01

    In this paper we examined the annual variability of the erythemal solar radiation (a health risk) and the solar irradiance for synthesis of vitamin D (a health benefit) in Rio Gallegos, Argentina. We use ultraviolet radiation measurements made by a multiband filter radiometer GUV-541 and a Brewer spectrophotometer located at CEILAP-RG Station (CITEFA-CONICET) (51 deg. 33' S, 69 deg. 19' W). These measurements are weighted with action spectra published by the CIE (International Commission on Illumination). An action spectrum describes the relative effectiveness of different wavelengths in the generation of a particular biological response. The analyzed data correspond to September 2008-December 2009 period. The methodology used to obtain the erythemal irradiance and synthesis of vitamin D values combines irradiance measurements of a multiband filter radiometer with modeled values (output of radiative transfer model) and measurements of a Brewer spectrophotometer. This procedure increases the instrumental capabilities of this instrument. The synthesis of vitamin D and erythema are affected by UVB solar radiation. Therefore, its effect is strongly dependent of the stratospheric ozone amount, which undergoes large variations in the Rio Gallegos city due to ozone hole passage and its influence on these sub-polar latitudes. We observed that could exist cases of sunburn for reasonable exposure in abnormal situations of low total ozone column, resulting in high levels of ultraviolet radiation. Furthermore, the synthesis of vitamin D through exposure to ultraviolet radiation would be lower than the appropriate values to the majority of the year for these latitudes. Therefore it is important to evaluate the annual variation of these quantities realizing seasonal balance between this health risk and this health benefit.

  12. Synthesis of vitamin D and erythemal irradiance obtained with a multiband filter radiometer and annual variation analysis in Río Gallegos, Argentina

    Science.gov (United States)

    Orte, P. F.; Wolfram, E. A.; Salvador, J.; D'Elia, R.; Paes Leme, N.; Quel, E. J.

    2011-01-01

    In this paper we examined the annual variability of the erythemal solar radiation (a health risk) and the solar irradiance for synthesis of vitamin D (a health benefit) in Río Gallegos, Argentina. We use ultraviolet radiation measurements made by a multiband filter radiometer GUV-541 and a Brewer spectrophotometer located at CEILAP-RG Station (CITEFA-CONICET) (51° 33' S, 69° 19' W). These measurements are weighted with action spectra published by the CIE (International Commission on Illumination). An action spectrum describes the relative effectiveness of different wavelengths in the generation of a particular biological response. The analyzed data correspond to September 2008-December 2009 period. The methodology used to obtain the erythemal irradiance and synthesis of vitamin D values combines irradiance measurements of a multiband filter radiometer with modeled values (output of radiative transfer model) and measurements of a Brewer spectrophotometer. This procedure increases the instrumental capabilities of this instrument. The synthesis of vitamin D and erythema are affected by UVB solar radiation. Therefore, its effect is strongly dependent of the stratospheric ozone amount, which undergoes large variations in the Río Gallegos city due to ozone hole passage and its influence on these sub-polar latitudes. We observed that could exist cases of sunburn for reasonable exposure in abnormal situations of low total ozone column, resulting in high levels of ultraviolet radiation. Furthermore, the synthesis of vitamin D through exposure to ultraviolet radiation would be lower than the appropriate values to the majority of the year for these latitudes. Therefore it is important to evaluate the annual variation of these quantities realizing seasonal balance between this health risk and this health benefit.

  13. Production of Y-86 and other radiometals for research purposes using a solution target system

    International Nuclear Information System (INIS)

    Oehlke, Elisabeth; Hoehr, Cornelia; Hou, Xinchi; Hanemaayer, Victoire; Zeisler, Stefan; Adam, Michael J.; Ruth, Thomas J.; Celler, Anna; Buckley, Ken; Benard, Francois; Schaffer, Paul

    2015-01-01

    Introduction: Diagnostic radiometals are typically obtained from cyclotrons by irradiating solid targets or from radioisotope generators. These methods have the advantage of high production yields, but require additional solid target handling infrastructure that is not readily available to many cyclotron facilities. Herein, we provide an overview of our results regarding the production of various positron-emitting radiometals using a liquid target system installed on a 13 MeV cyclotron at TRIUMF. Details about the production, purification and quality control of 89 Zr, 68 Ga and for the first time 86 Y are discussed. Methods: Aqueous solutions containing 1.35–1.65 g/mL of natural-abundance zinc nitrate, yttrium nitrate, and strontium nitrate were irradiated on a 13 MeV cyclotron using a standard liquid target. Different target body and foil materials were investigated for corrosion. Production yields were calculated using theoretical cross-sections from the EMPIRE code and compared with experimental results. The radioisotopes were extracted from irradiated target material using solid phase extraction methods adapted from previously reported methods, and used for radiolabelling experiments. Results: We demonstrated production quantities that are sufficient for chemical and biological studies for three separate radiometals, 89 Zr (A sat = 360 MBq/μA and yield = 3.17 MBq/μA), 86 Y (A sat = 31 MBq/μA and yield = 1.44 MBq/μA), and 68 Ga (A sat = 141 MBq/μA and yield = 64 MBq/μA) from one hour long irradiations on a typical medical cyclotron. 68 Ga yields were sufficient for potential clinical applications. In order to avoid corrosion of the target body and target foil, nitrate solutions were chosen as well as niobium as target-body material. An automatic loading system enabled up to three production runs per day. The separation efficiency ranged from 82 to 99%. Subsequently, 68 Ga and 86 Y were successfully used to radiolabel DOTA-based chelators while

  14. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    Science.gov (United States)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and

  15. CARS measurement of vibrational and rotational temperature with high power laser and high speed visualization of total radiation behind hypervelocity shock waves of 5-7km/s

    Science.gov (United States)

    Sakurai, Kotaro; Bindu, Venigalla Hima; Niinomi, Shota; Ota, Masanori; Maeno, Kazuo

    2010-09-01

    Coherent Anti-Stokes Raman Spectroscopy (CARS) method is commonly used for measuring molecular structure or condition. In the aerospace technology, this method is applies to measure the temperature in thermic fluid with relatively long time duration of millisecond or sub millisecond. On the other hand, vibrational/rotational temperatures behind hypervelocity shock wave are important for heat-shield design in phase of reentry flight. The non-equilibrium flow with radiative heating from strongly shocked air ahead of the vehicles plays an important role on the heat flux to the wall surface structure as well as convective heating. In this paper CARS method is applied to measure the vibrational/rotational temperature of N2 behind hypervelocity shock wave. The strong shock wave in front of the reentering space vehicles can be experimentally realigned by free-piston, double-diaphragm shock tube with low density test gas. However CARS measurement is difficult for our experiment. Our measurement needs very short pulse which order of nanosecond and high power laser for CARS method. It is due to our measurement object is the momentary phenomena which velocity is 7km/s. In addition the observation section is low density test gas, and there is the strong background light behind the shock wave. So we employ the CARS method with high power, order of 1J/pulse, and very short pulse (10ns) laser. By using this laser the CARS signal can be acquired even in the strong radiation area. Also we simultaneously try to use the CCD camera to obtain total radiation with CARS method.

  16. General report of entrustment investigation for demonstration tests of turnover from oil to methanol in the thermal power plants in fiscal 1995. Total assessment of methanol using power generation technology; 1995 nendo sekiyu karyoku hatsudensho methanol tenkan nado jissho shiken itaku gyomu hokokusho sokatsu hokokusho. Methanol riyo hatsuden gijutsu sogo hyoka chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    To promote the introduction of methanol fuel into the thermal power plants, total assessment was provided. For calculating the methanol production cost, the plant was assumed to be constructed in the Southeast Asia or Middle East. Two methods, i.e., steam reforming and gaseous phase fluid methods, were investigated. Since the price of natural gas is low in the Middle East, the methanol production cost by the gaseous phase fluid method is estimated to be about 1.5 yen per thousand kcal. The transportation cost can be reduced into one-half to one-third of current cost using a large-scale tanker. Although the heating value of methanol per weight is lower than that of LNG, the volume flow of methanol is similar to that of LNG due to its low specific gravity. Conceptual designs were conducted for some power generation systems, such as gas turbine of combined cycle, diesel engine, and fuel cell. The power generation cost was estimated to be 8 to 9 yen per kWh, which depends on the receiving price of methanol. It is nearly equivalent to that of LNG combined cycle power generation. There are no problems of air pollution and ash disposal. When considering the long-term security of energy sources, the use of methanol would be one of the selections as utilization of natural gas. 6 refs., 33 figs., 25 tabs.

  17. Forest canopy height from Multiangle Imaging SpectroRadiometer (MISR) assessed with high resolution discrete return lidar

    Science.gov (United States)

    Mark Chopping; Anne Nolin; Gretchen G. Moisen; John V. Martonchik; Michael Bull

    2009-01-01

    In this study retrievals of forest canopy height were obtained through adjustment of a simple geometricoptical (GO) model against red band surface bidirectional reflectance estimates from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped to a 250 m grid. The soil-understory background contribution was partly isolated prior to inversion using regression...

  18. Soil Moisture Active Passive (SMAP) Microwave Radiometer Radio-Frequency Interference (RFI) Mitigation: Initial On-Orbit Results

    Science.gov (United States)

    Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Aksoy, Mustafa; Bringer, Alexandra

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission, launched in January 2015, provides global measurements of soil moisture using a microwave radiometer. SMAPs radiometer passband lies within the passive frequency allocation. However, both unauthorized in-band transmitters as well as out-of-band emissions from transmitters operating at frequencies adjacent to this allocated spectrum have been documented as sources of radio frequency interference (RFI) to the L-band radiometers on SMOS and Aquarius. The spectral environment consists of high RFI levels as well as significant occurrences of low level RFI equivalent to 0.1 to 10 K. The SMAP ground processor reports the antenna temperature both before and after RFI mitigation is applied. The difference between these quantities represents the detected RFI level. The presentation will review the SMAP RFI detection and mitigation procedure and discuss early on-orbit RFI measurements from the SMAP radiometer. Assessments of global RFI properties and source types will be provided, as well as the implications of these results for SMAP soil moisture measurements.

  19. Retrieving soil moisture for non-forested areas using PALS radiometer measurements in SMAPVEX12 field campaign

    Science.gov (United States)

    In this paper we investigate retrieval of soil moisture based on L-band brightness temperature under diverse conditions and land cover types. We apply the PALS (Passive Active L-band System) radiometer data collected in the SMAPVEX12 (Soil Moisture Active Passive Validation Experiment 2012) field ex...

  20. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat

    NARCIS (Netherlands)

    Reyniers, M.; Walvoort, D.J.J.; Baardemaaker, De J.

    2006-01-01

    The objective was to develop an optimal vegetation index (VIopt) to predict with a multi-spectral radiometer nitrogen in wheat crop (kg[N] ha-1). Optimality means that nitrogen in the crop can be measured accurately in the field during the growing season. It also means that the measurements are

  1. Diagnostics of the SMOS radiometer antenna system at the DTU-ESA spherical near-field antenna test facility

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, A.; Pivnenko, Sergey

    2007-01-01

    The recently developed Spherical Wave Expansion-to-Plane Wave Expansion (SWE-to-PWE) antenna diagnostics technique is employed in an investigation of the antenna system in the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) for ESA’s Soil Moisture and Ocean Salinity (SMOS) mission...

  2. Research on Ground Motion Metal Target Based on Rocket Projectile by Using Millimeter Wave Radiometer Technology

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-06-01

    Full Text Available How to detect the ground motion metal target effectively is an important guarantee for precision strike in the process of Rocket Projectile flight. Accordingly and in view of the millimeter- wave radiation characteristic of the ground motion metal target, a mathematical model was established based on Rocket Projectile about millimeter-wave detection to the ground motion metal target. Through changing various parameters in the process of Rocket Projectile flight, the detection model was studied by simulation. The parameters variation and effective range of millimeter wave radiometer were obtained in the process of rotation and horizontal flight. So a certain theoretical basis was formed for the precision strike to the ground motion metal target.

  3. Reflectance of Antarctic surfaces from multispectral radiometers: The correction of atmospheric effects

    International Nuclear Information System (INIS)

    Zibordi, G.; Maracci, G.

    1993-01-01

    Monitoring reflectance of polar icecaps has relevance in climate studies. In fact, climate changes produce variations in the morphology of ice and snow covers, which are detectable as surface reflectance change. Surface reflectance can be retrieved from remotely sensed data. However, absolute values independent of atmospheric turbidity and surface altitude can only be obtained after removing masking effects of the atmosphere. An atmospheric correction model, accounting for surface and sensor altitudes above sea level, is described and validated through data detected over Antarctic surfaces with a Barnes Modular Multispectral Radiometer having bands overlapping those of the Landsat Thematic Mapper. The model is also applied in a sensitivity analysis to investigate error induced in reflectance obtained from satellite data by indeterminacy in optical parameters of atmospheric constituents. Results show that indeterminacy in the atmospheric water vapor optical thickness is the main source of nonaccuracy in the retrieval of surface reflectance from data remotely sensed over Antarctic regions

  4. Millimeter-wave Radiometer for High Sensitivity Water Vapor Profiling in Arid Regions

    Energy Technology Data Exchange (ETDEWEB)

    Pazmany, Andrew

    2006-11-09

    Abstract - ProSensing Inc. has developed a G-band (183 GHz) water Vapor Radiometer (GVR) for long-term, unattended measurements of low concentrations of atmospheric water vapor and liquid water. Precipitable water vapor and liquid water path are estimated from zenith brightness temperatures measured from four double-sideband receiver channels, centered at 183.31 1, 3 and 7, and 14 GHz. A prototype ground-based version of the instrument was deployed at the DOE ARM program?s North Slope of Alaska site near Barrow AK in April 2005, where it collected data continuously for one year. A compact, airborne version of this instrument, packaged to operate from a standard 2-D PMS probe canister, has been tested on the ground and is scheduled for test flights in the summer of 2006. This paper presents design details, laboratory test results and examples of retrieved precipitable water vapor and liquid water path from measured brightness temperature data.

  5. Diviner lunar radiometer observations of cold traps in the moon's south polar region

    Science.gov (United States)

    Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; Foote, M.C.; DeJong, E.; Bills, B.G.; Hartford, W.; Murray, B.C.; Allen, C.C.; Snook, K.; Soderblom, L.A.; Calcutt, S.; Taylor, F.W.; Bowles, N.E.; Bandfield, J.L.; Elphic, R.; Ghent, R.; Glotch, T.D.; Wyatt, M.B.; Lucey, P.G.

    2010-01-01

    Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.

  6. A Miniaturized Laser Heterodyne Radiometer for Greenhouse Gas Measurements in the Atmospheric Column

    Science.gov (United States)

    Steel, Emily Wilson

    2015-01-01

    Laser Heterodyne Radiometry is a technique adapted from radio receiver technology has been used to measure trace gases in the atmosphere since the 1960s.By leveraging advances in the telecommunications industry, it has been possible to miniaturize this technology.The mini-LHR (Miniaturized Laser Heterodyne Radiometer) has been under development at NASA Goddard Space flight Center since 2009. This sun-viewing instrument measures carbon dioxide and methane in the atmospheric column and operates in tandem with an AERONET sun photometer producing a simultaneous measure of aerosols. The mini-LHR has been extensively field tested in a range of locations ranging in the continental US as well as Alaska and Hawaii and now operates autonomously with sensitivities of approximately 0.2 ppmv and approximately10 ppbv, for carbon dioxide and methane respectively, for 10 averaged scans under clear sky conditions.

  7. A Tissue Propagation Model for Validating Close-Proximity Biomedical Radiometer Measurements

    Science.gov (United States)

    Bonds, Q.; Herzig, P.; Weller, T.

    2016-01-01

    The propagation of thermally-generated electromagnetic emissions through stratified human tissue is studied herein using a non-coherent mathematical model. The model is developed to complement subsurface body temperature measurements performed using a close proximity microwave radiometer. The model takes into account losses and reflections as thermal emissions propagate through the body, before being emitted at the skin surface. The derivation is presented in four stages and applied to the human core phantom, a physical representation of a stomach volume of skin, muscle, and blood-fatty tissue. A drop in core body temperature is simulated via the human core phantom and the response of the propagation model is correlated to the radiometric measurement. The results are comparable, with differences on the order of 1.5 - 3%. Hence the plausibility of core body temperature extraction via close proximity radiometry is demonstrated, given that the electromagnetic characteristics of the stratified tissue layers are known.

  8. An optimal estimation algorithm to derive Ice and Ocean parameters from AMSR Microwave radiometer observations

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Tonboe, Rasmus T.; Høyer, Jacob

    channels as well as the combination of data from multiple sources such as microwave radiometry, scatterometry and numerical weather prediction. Optimal estimation is data assimilation without a numerical model for retrieving physical parameters from remote sensing using a multitude of available information......Global multispectral microwave radiometer measurements have been available for several decades. However, most current sea ice concentration algorithms still only takes advantage of a very limited subset of the available channels. Here we present a method that allows utilization of all available....... The methodology is observation driven and model innovation is limited to the translation between observation space and physical parameter space Over open water we use a semi-empirical radiative transfer model developed by Meissner & Wentz that estimates the multispectral AMSR brightness temperatures, i...

  9. A synthetic aperture microwave radiometer to measure soil moisture and ocean salinity from space

    Science.gov (United States)

    Le Vine, D. M.; Hilliard, L. M.; Swift, C. T.; Ruf, C. S.; Garrett, L. B.

    1991-01-01

    A concept is presented for a microwave radiometer in space to measure soil moisture and ocean salinity as part of an 'Earth Probe' mission. The measurements could be made using an array of stick antennas. The L-band channel (1.4 GHz) would be the primary channel for determining soil moisture, with the S-band (2.65-GHz) and C-band (5.0-GHz) channels providing ancillary information to help correct for the effects of the vegetation canopy and possibly to estimate a moisture profile. A preliminary study indicates that an orbit at 450 km would provide coverage of better than 95 percent of the earth every 3 days. A 10-km resolution cell (at nadir) requires stick antennas about 9.5-m long at L-band. The S-band and C-band sticks would be substantially shorter (5 m and 2.7 m, respectively).

  10. Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite Polarization Sensitivity Analysis

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Waluschka, Eugene; Wang, Menghua

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (SNPP) satellite that launched from Vandenberg Air Force Base, California, on October 28, 2011. It is a whiskbroom radiometer that provides +/-56.28deg scans of the Earth view. It has 22 bands, among which 14 are reflective solar bands (RSBs). The RSBs cover a wavelength range from 410 to 2250 nm. The RSBs of a remote sensor are usually sensitive to the polarization of incident light. For VIIRS, it is specified that the polarization factor should be smaller than 3% for 410 and 862 nm bands and 2.5% for other RSBs for the scan angle within +/-45deg. Several polarization sensitivity tests were performed prelaunch for SNPP VIIRS. The first few tests either had large uncertainty or were less reliable, while the last one was believed to provide the more accurate information about the polarization property of the instrument. In this paper, the measured data in the last polarization sensitivity test are analyzed, and the polarization factors and phase angles are derived from the measurements for all the RSBs. The derived polarization factors and phase angles are band, detector, and scan angle dependent. For near-infrared bands, they also depend on the half-angle mirror side. Nevertheless, the derived polarization factors are all within the specification, although the strong detector dependence of the polarization parameters was not expected. Compared to the Moderate Resolution Imaging Spectroradiometer on both Aqua and Terra satellites, the polarization effect on VIIRS RSB is much smaller.

  11. Pre-Launch Calibration and Performance Study of the Polarcube 3u Temperature Sounding Radiometer Mission

    Science.gov (United States)

    Periasamy, L.; Gasiewski, A. J.; Sanders, B. T.; Rouw, C.; Alvarenga, G.; Gallaher, D. W.

    2016-12-01

    The positive impact of passive microwave observations of tropospheric temperature, water vapor and surface variables on short-term weather forecasts has been clearly demonstrated in recent forecast anomaly growth studies. The development of a fleet of such passive microwave sensors especially at V-band and higher frequencies in low earth orbit using 3U and 6U CubeSats could help accomplish the aforementioned objectives at low system cost and risk as well as provide for regularly updated radiometer technology. The University of Colorado's 3U CubeSat, PolarCube is intended to serve as a demonstrator for such a fleet of passive sounders and imagers. PolarCube supports MiniRad, an eight channel, double sideband 118.7503 GHz passive microwave sounder. The mission is focused primarily on sounding in Arctic and Antarctic regions with the following key remote sensing science and engineering objectives: (i) Collect coincident tropospheric temperature profiles above sea ice, open polar ocean, and partially open areas to develop joint sea ice concentration and lower tropospheric temperature mapping capabilities in clear and cloudy atmospheric conditions. This goal will be accomplished in conjunction with data from existing passive microwave sensors operating at complementary bands; and (ii) Assess the capabilities of small passive microwave satellite sensors for environmental monitoring in support of the future development of inexpensive Earth science missions. Performance data of the payload/spacecraft from pre-launch calibration will be presented. This will include- (i) characterization of the antenna sub-system comprising of an offset 3D printed feedhorn and spinning parabolic reflector and impact of the antenna efficiencies on radiometer performance, (ii) characterization of MiniRad's RF front-end and IF back-end with respect to temperature fluctuations and their impact on atmospheric temperature weighting functions and receiver sensitivity, (iii) results from roof

  12. 1D-Var temperature retrievals from microwave radiometer and convective scale model

    Directory of Open Access Journals (Sweden)

    Pauline Martinet

    2015-12-01

    Full Text Available This paper studies the potential of ground-based microwave radiometers (MWR for providing accurate temperature retrievals by combining convective scale numerical models and brightness temperatures (BTs. A one-dimensional variational (1D-Var retrieval technique has been tested to optimally combine MWR and 3-h forecasts from the French convective scale model AROME. A microwave profiler HATPRO (Humidity and Temperature PROfiler was operated during 6 months at the meteorological station of Bordeaux (Météo France. MWR BTs were monitored against simulations from the Atmospheric Radiative Transfer Simulator 2 radiative transfer model. An overall good agreement was found between observations and simulations for opaque V-band channels but large errors were observed for channels the most affected by liquid water and water vapour emissions (51.26 and 52.28 GHz. 1D-Var temperature retrievals are performed in clear-sky and cloudy conditions using a screening procedure based on cloud base height retrieval from ceilometer observations, infrared radiometer temperature and liquid water path derived from the MWR observations. The 1D-Var retrievals were found to improve the AROME forecasts up to 2 km with a maximum gain of approximately 50 % in root-mean-square-errors (RMSE below 500 m. They were also found to outperform neural network retrievals. A static bias correction was proposed to account for systematic instrumental errors. This correction was found to have a negligible impact on the 1D-Var retrievals. The use of low elevation angles improves the retrievals up to 12 % in RMSE in cloudy-sky in the first layers. The present implementation achieved a RMSE with respect to radiosondes within 1 K in clear-sky and 1.3 K in cloudy-sky conditions for temperature.

  13. Development, Capabilities, and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    Science.gov (United States)

    Miller, T.; Amarin, R.; Atlas, R.; Bailey, M.; Black, P.; Buckley, C.; Chen, S.; El-Nimri, S.; Hood, R.; James, M.; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is being designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude) with approximately 2 km resolution. This paper describes the HIRAD instrument and the physical basis for its operations, including chamber test data from the instrument. The potential value of future HIRAD observations will be illustrated with a summary of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct simulated H*Wind analyses. Evaluations will be presented on the impact on H*Wind analyses of using the HIRAD instrument observations to replace those of the SFMR instrument, and also on the impact of a future satellite-based HIRAD in comparison to instruments with more limited capabilities for observing strong winds through heavy

  14. Preclinical evaluation of somatostatin analogs bearing two macrocyclic chelators for high specific activity labeling with radiometals

    International Nuclear Information System (INIS)

    Storch, D.; Schmitt, J.S.; Waldherr, C.; Maecke, H.R.; Waser, B.; Reubi, J.C.

    2007-01-01

    Radiometallated analogues of the regulatory peptide somatostatin are of interest in the in vivo localization and targeted radiotherapy of somatostatin receptor-overexpressing tumors. An important aspect of their use in vivo is a fast and efficient labeling (complexation) protocol for radiometals along with a high specific activity. We describe in this manuscript synthetic methods for the coupling of two chelators (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid = DOTA) to the bioactive peptide [Tyr 3 ,Thr 8 ]-octreotide (TATE) in order to increase the specific activity (radioactivity in Bq per mole peptide). The full chelator-linker-peptide conjugate was assembled on solid support using standard Fmoc chemistry. Two DOTA-chelators were linked to the peptide using lysine or N,N'-bis(3-aminopropyl)-glycine (Apg); in addition, pentasarcosine (Sar 5 ) was used as a spacer between the chelators and the peptide to probe its influence on biology and pharmacology. Complexation rates with In 3+ and Y 3+ salts and the corresponding radiometals were high, the bis-DOTA-derivatives showed higher complexation rates and gave higher specific activity than DOTA-TATE. Pharmacological and biological data of the complexed molecules did not show significant differences if compared to the parent peptide [ 111/nat In-DOTA]-TATE except for [( 111/nat In-DOTA) 2 -Apg]-TATE which showed a lower binding affinity and rate of internalization into tumor cells. The biodistribution of [( 111/nat In-DOTA)-Lys( 111/nat In-DOTA)]-TATE in the rat tumor model (AR4-2J) showed a high and specific (as shown by a blocking experiment) tracer uptake in somatostatin receptor-positive tissue but a lower tumor uptake compared to [ 111/nat In-DOTA]-TATE. (orig.)

  15. Use of ground-based radiometers for L-Band Freeze/Thaw retrieval in a boreal forest site

    Science.gov (United States)

    Roy, A.; Sonnentag, O.; Derksen, C.; Toose, P.; Pappas, C.; Mavrovic, A.; El Amine, M.; Royer, A.; Berg, A. A.; Rowlandson, T. L.; Barr, A.; Black, T. A.

    2017-12-01

    The boreal forest is the second largest land biome in the world and thus plays a major role in the global and regional climate systems. The extent, timing and duration of the seasonal freeze/thaw (F/T) state influences vegetation developmental stages (phenology) and, consequently, constitutes an important control on how boreal forest ecosystems exchange carbon, water and energy with the atmosphere. Recently, new L-Band satellite-derived F/T information has become available. However, disentangling the seasonally differing contributions from forest overstory and understory vegetation, and the ground surface to the satellite signal remains challenging. Here we present results from an ongoing campaign with two L-Band surface-based radiometers (SBR) installed on a micrometeorological tower at the Southern Old Black Spruce site (53.99°N / 105.12°W) in central Saskatchewan. One radiometer unit is installed on top of the tower viewing the multi-layer vegetation canopy from above. A second radiometer unit is installed within the multi-layer canopy, viewing the understory and the ground surface only. The objectives of our study are to (i) disentangle the L-Band F/T signal contribution of boreal forest overstory from the combined understory and ground surface contribution, and (ii) link the L-Band F/T signal to related boreal forest structural and functional characteristics. Analysis of these radiometer measurements made from September to November 2016 shows that when the ground surface is thawed, the main contributor to both radiometer signals is soil moisture. The Pearson correlation coefficient between brightness temperature (TB) at vertical polarization (V-pol) and soil permittivity is 0.79 for the radiometer above the canopy and 0.74 for the radiometer below the canopy. Under cold conditions when the soil was thawed (snow insulation) and the trees were frozen (below 0°C), TB at V-pol is negatively correlated with tree permittivity. The freezing tree contribution to

  16. Application of ground-based, multi-channel microwave radiometer in the nowcasting of intense convective weather through instability indices of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Chan, P.W.; Hon, K.K. [Hong Kong Observatory, Hong Kong (China)

    2011-08-15

    A ground-based microwave radiometer gives the possibility of providing continuously available temperature and humidity profiles of the troposphere, from which instability indices of the atmosphere could be derived. This paper studies the possibility of correlating the radiometer-based instability indices with the occurrence of intense convective activity, namely, the occurrence of lightning. The correlation so established could be useful for the nowcasting of convective weather: the weather forecaster follows the evolution of the radiometer-based instability indices in order to access the chance for lightning to occur. The quality of the radiometer-based instability indices is first established by comparing with the radiosonde-based indices. Though there are biases and spreads in the scatter plots of the two datasets, the radiometer-based indices appear to follow the trend of the radiosonde-based indices in spite of the differences in measurement locations and working principles of the two instruments. The thresholds of instability indices for the occurrence of lightning (using 1 discharge) are then determined, specifically for the radiometer in use and the climatological condition in Hong Kong. It turns out that, among all the indices considered in this paper, KI has the best performance in terms of probability of detection of lightning occurrence, particularly for non-summer months, by using an optimum threshold. Finally, the correlation between the instability index and the amount of lightning strokes (within a certain distance from the radiometer) is established. It turns out that the correlation is the best using the minimum value of humidity index, with correlation coefficient of 0.55. The distance from the radiometer considered is about 30 km (having the best correlation between the number of lightning discharges and the instability index), which may be taken as the area over which the radiometer's measurement is considered to be representative of the

  17. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  18. Sea Surface Temperature Records from the Along-Track Scanning Radiometers

    Science.gov (United States)

    Mutlow, C. T.; Smith, D. L.; Delderfield, J.; Llewellyn-Jones, D.

    2006-12-01

    Since the early 1990s ESA has flown Along Track Scanning Radiometer (ATSR) instruments on its ERS-1 and -2 satellites and is currently flying the Advanced ATSR instrument (AATSR) on its very successful Envisat mission; each successive sensor has been an incremental improvement over the last. The sensors have been specifically designed to provide the information urgently needed for the debate on climate change and global warming, as well as to produce properly calibrated image data sets for use in a wide range of EO studies. The ATSR instruments are a series of second generation space radiometers which build on the long heritage of the NOAA Advanced Very High Resolution Radiometers (AVHRR). Each ATSR exploits the multi-channel method pioneered in AVHRR but also uses new technology to improve instrument stability and calibration, detector signal to noise, and to provide observations of the same surface scene at two different angles. The novel feature of each ATSR, from which the sensor is derives its name, is its use of along-track scanning to reduce the effects of the atmosphere on surface measurements. This method obtains two observations of the scene through differing amounts of atmosphere; the "along track" view passes through a longer atmospheric path so is more affected by the atmosphere than the nadir view. ATSR-1 was launched on the ESA ERS-1 satellite on 17th July 1991, as the test-bed for the along track scanning concept using infrared channels at 1.6, 3.7, 10.8 and 12.0um. ATSR-1 continued to operate until the ERS-1 spacecraft was lost some 10 years after launch. The ATSR-2 and Advanced ATSR (AATSR) instruments are developments from the original ATSR-1, which in addition to the infrared channels; carry extra visible channels at 0.55, 0.67 and 0.87um for vegetation, cloud and aerosol remote sensing. ATSR-2 has operating on the ESA ERS-2 satellite since April 1995 and has provided over 10 years of data. The current operational sensor is AATSR flying on ESA

  19. An alternative method for calibration of narrow band radiometer using a radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, J; Wolfram, E; D' Elia, R [Centro de Investigaciones en Laseres y Aplicaciones, CEILAP (CITEFA-CONICET), Juan B. de La Salle 4397 (B1603ALO), Villa Martelli, Buenos Aires (Argentina); Zamorano, F; Casiccia, C [Laboratorio de Ozono y Radiacion UV, Universidad de Magallanes, Punta Arenas (Chile) (Chile); Rosales, A [Universidad Nacional de la Patagonia San Juan Bosco, UNPSJB, Facultad de Ingenieria, Trelew (Argentina) (Argentina); Quel, E, E-mail: jsalvador@citefa.gov.ar [Universidad Nacional de la Patagonia Austral, Unidad Academica Rio Gallegos Avda. Lisandro de la Torre 1070 ciudad de Rio Gallegos-Sta Cruz (Argentina) (Argentina)

    2011-01-01

    The continual monitoring of solar UV radiation is one of the major objectives proposed by many atmosphere research groups. The purpose of this task is to determine the status and degree of progress over time of the anthropogenic composition perturbation of the atmosphere. Such changes affect the intensity of the UV solar radiation transmitted through the atmosphere that then interacts with living organisms and all materials, causing serious consequences in terms of human health and durability of materials that interact with this radiation. One of the many challenges that need to be faced to perform these measurements correctly is the maintenance of periodic calibrations of these instruments. Otherwise, damage caused by the UV radiation received will render any one calibration useless after the passage of some time. This requirement makes the usage of these instruments unattractive, and the lack of frequent calibration may lead to the loss of large amounts of acquired data. Motivated by this need to maintain calibration or, at least, know the degree of stability of instrumental behavior, we have developed a calibration methodology that uses the potential of radiative transfer models to model solar radiation with 5% accuracy or better relative to actual conditions. Voltage values in each radiometer channel involved in the calibration process are carefully selected from clear sky data. Thus, tables are constructed with voltage values corresponding to various atmospheric conditions for a given solar zenith angle. Then we model with a radiative transfer model using the same conditions as for the measurements to assemble sets of values for each zenith angle. The ratio of each group (measured and modeled) allows us to calculate the calibration coefficient value as a function of zenith angle as well as the cosine response presented by the radiometer. The calibration results obtained by this method were compared with those obtained with a Brewer MKIII SN 80 located in the

  20. Assessment of Satellite-Derived Surface Reflectances by NASA's CAR Airborne Radiometer over Railroad Valley, Nevada

    Science.gov (United States)

    Kharbouche, Said; Muller, Jan-Peter; Gatebe, Charles K.; Scanlon, Tracy; Banks, Andrew C.

    2017-01-01

    CAR (Cloud Absorption Radiometer) is a multi-angular and multi-spectral airborne radiometer instrument, whose radiometric and geometric characteristics are well calibrated and adjusted before and after each flight campaign. CAR was built by NASA (National Aeronautics and Space Administration) in 1984. On 16 May 2008, a CAR flight campaign took place over the well-known calibration and validation site of Railroad Valley in Nevada (38.504 deg N, 115.692 deg W).The campaign coincided with the overpasses of several key EO (Earth Observation) satellites such as Landsat-7, Envisat and Terra. Thus, there are nearly simultaneous measurements from these satellites and the CAR airborne sensor over the same calibration site. The CAR spectral bands are close to those of most EO satellites. CAR has the ability to cover the whole range of azimuth view angles and a variety of zenith angles depending on altitude and, as a consequence, the biases seen between satellite and CAR measurements due to both unmatched spectral bands and unmatched angles can be significantly reduced. A comparison is presented here between CARs land surface reflectance (BRF or Bidirectional Reflectance Factor) with those derived from Terra/MODIS (MOD09 and MAIAC), Terra/MISR, Envisat/MERIS and Landsat-7. In this study, we utilized CAR data from low altitude flights (approx. 180 m above the surface) in order to minimize the effects of the atmosphere on these measurements and then obtain a valuable ground-truth data set of surface reflectance. Furthermore, this study shows that differences between measurements caused by surface heterogeneity can be tolerated, thanks to the high homogeneity of the study site on the one hand, and on the other hand, to the spatial sampling and the large number of CAR samples. These results demonstrate that satellite BRF measurements over this site are in good agreement with CAR with variable biases across different spectral bands. This is most likely due to residual aerosol

  1. A low-cost, portable, laser heterodyne radiometer for validating passive satellite observations of column carbon dioxide and methane

    Science.gov (United States)

    Wilson, E. L.; DiGregorio, A.; Villanueva, G. L.; Miletti, K.; Grunberg, C.; Grunberg, M.; Floyd, M.; Menendez, A. R.

    2017-12-01

    We present a low-cost, portable, miniaturized, laser heterodyne radiometer (mini-LHR) capable of measuring column carbon dioxide (CO2) and methane (CH4) in remote locations to validate passive satellite observations. A benefit of the portability is that mini-LHR instruments can be calibrated and compared site-by-side to quantify any internal biases, or any biases in stationary column instruments such as those in the total carbon column observing network (TCCON). This is the latest iteration of an instrument that has been under development by our team since 2009. During our recent Interdisciplinary Science (IDS) effort that involved measuring carbon emissions over thawing permafrost, it became clear that our mini-LHR needed to be redesigned to be significantly smaller, lighter, and to operate from a small solar panel so that it could be easily carried to the field sites located within the Bonanza Creek Research Forest near Fairbanks, AK. The boreal peatland sites at Bonanza Creek have forests that are underlain by cold soils, permafrost, collapse scar thermokarst bogs resulting from permafrost thaw, and rich fens with various underlying sediments and gravels that are not frozen. While these sites are extremely interesting for their role in carbon storage, the practical issue with these sites is that they are very wet (the fen site for example is periodically under several inches of water) and the trails to reach these sites are extremely muddy, narrow, and populated with swarms of biting insects. The soils at these sites are delicate and easily damaged by excessive foot traffic. They are also prone to periodic wild fires - making permanent column instrument installations impractical. Here, we compare data from the permafrost field work as well as data collected as part of the Hawai'i Space Exploration Analog and Simulation (Hi-SEAS) project where crewmembers are currently testing the mini-LHR on an isolated Mars-like site on the Mauna Loa side of the saddle area on

  2. Design and First Results of an UAV-Borne L-Band Radiometer for Multiple Monitoring Purposes

    Directory of Open Access Journals (Sweden)

    Rene Acevo-Herrera

    2010-06-01

    Full Text Available UAV (unmanned Aerial Vehicle platforms represent a challenging opportunity for the deployment of a number of remote sensors. These vehicles are a cost-effective option in front of manned aerial vehicles (planes and helicopters, are easy to deploy due to the short runways needed, and they allow users to meet the critical requirements of the spatial and temporal resolutions imposed by the instruments. L-band radiometers are an interesting option for obtaining soil moisture maps over local areas with relatively high spatial resolution for precision agriculture, coastal monitoring, estimation of the risk of fires, flood prevention, etc. This paper presents the design of a light-weight, airborne L-band radiometer for deployment in a small UAV, including the hardware and specific software developed for calibration, geo-referencing, and soil moisture retrieval. First results and soil moisture retrievals from different field experiments are presented.

  3. Application of microwave radiometer and wind profiler data in the estimation of wind gust associated with intense convective weather

    International Nuclear Information System (INIS)

    Chan, P W; Wong, K H

    2008-01-01

    Estimates of the wind gusts associated with intense convective weather could be obtained using empirical relationships such as GUSTEX based on radiosonde measurements. However, such data are only available a couple of times a day and may not reflect the rapidly changing atmospheric condition in spring and summer times. The feasibility of combining the thermodynamic profiles from a ground-based microwave radiometer and wind profiles given by radar wind profilers in the continuous estimation of wind gusts is studied in this paper. Based on the results of a 4-month trial of a microwave radiometer in Hong Kong in 2004, the estimated and the actual gusts are reasonably well correlated. It is also found that the wind gusts so estimated provide better indications of the strength of squalls compared with those based on radiosonde measurements and with a lead time of about one hour

  4. GHRSST Level 2P Global Sea Surface Temperature from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a multi-disciplinary instrument that is being flown on the Joint Polar Satellite System (JPSS) series of...

  5. GHRSST Level 3P North Atlantic Regional Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on NOAA-19 (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  6. GHRSST Level 3P Global Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 3 Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A platform...

  7. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  8. GHRSST Level 2P Gridded Global Subskin Sea Surface Temperature from WindSat polarimetric radiometer on the Coriolis satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains sea surface temperature derived from observations made by the WindSat Polarimetric Radiometer developed by the Naval Research Laboratory (NRL)...

  9. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Thickness (AOT) and Aerosol Particle Size Parameter (APSP) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Aerosol Optical Thickness (AOT) from the Visible Infrared Imaging Radiometer...

  10. GHRSST Level 3U Global Subskin Sea Surface Temperature from the WindSat Polarimetric Radiometer on the Coriolis satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The WindSat Polarimetric Radiometer, launched on January 6, 2003 aboard the Department of Defense Coriolis satellite, was designed to measure the ocean surface wind...

  11. GHRSST Level 2P Global Subskin Sea Surface Temperature from the Advanced Microwave Scanning Radiometer 2 on the GCOM-W satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer 2 (AMSR2) was launched on 18 May 2012, onboard the Global Change Observation Mission - Water (GCOM-W) satellite developed...

  12. GHRSST Level 3C North Atlantic Regional Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on NOAA-19 (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  13. SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 km EASE-Grid Soil Moisture V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level-2 (L2) soil moisture product provides estimates of land surface conditions retrieved by both the Soil Moisture Active Passive (SMAP) radiometer during...

  14. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Snow Cover/Depth (SCD) Snow Fraction Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Snow Cover/Depth Fraction (SCF) from the Visible Infrared Imaging Radiometer...

  15. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Snow Cover/Depth (SCD) Binary Map Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Binary Snow Cover (BSC) from the Visible Infrared Imaging Radiometer Suite...

  16. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  17. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  18. GHRSST Level 2P 1 m Depth Global Sea Surface Temperature from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS)....

  19. An Airborne Campaign Measuring Wind Signatures from the Sea Surface using an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    A series of circle flights have been carried out over the sea surface, using the EMIRAD L-band polarimetric radiometer. Motion compensation is applied, and polarimetric azimuth signatures are generated. Single tracks show geophysical noise, typically about 2 K, but averaging decreases the noise, ......, but a comparison of the signature to the downwelling galactic background radiation indicates, that the signature may not origin from the wind driven sea surface pattern....

  20. A simple algorithm for identifying periods of snow accumulation on a radiometer

    Science.gov (United States)

    Lapo, Karl E.; Hinkelman, Laura M.; Landry, Christopher C.; Massmann, Adam K.; Lundquist, Jessica D.

    2015-09-01

    Downwelling solar, Qsi, and longwave, Qli, irradiances at the earth's surface are the primary energy inputs for many hydrologic processes, and uncertainties in measurements of these two terms confound evaluations of estimated irradiances and negatively impact hydrologic modeling. Observations of Qsi and Qli in cold environments are subject to conditions that create additional uncertainties not encountered in other climates, specifically the accumulation of snow on uplooking radiometers. To address this issue, we present an automated method for estimating these periods of snow accumulation. Our method is based on forest interception of snow and uses common meteorological observations. In this algorithm, snow accumulation must exceed a threshold to obscure the sensor and is only removed through scouring by wind or melting. The algorithm is evaluated at two sites representing different mountain climates: (1) Snoqualmie Pass, Washington (maritime) and (2) the Senator Beck Basin Study Area, Colorado (continental). The algorithm agrees well with time-lapse camera observations at the Washington site and with multiple measurements at the Colorado site, with 70-80% of observed snow accumulation events correctly identified. We suggest using the method for quality controlling irradiance observations in snow-dominated climates where regular, daily maintenance is not possible.

  1. A Fast Visible-Infrared Imaging Radiometer Suite Simulator for Cloudy Atmopheres

    Science.gov (United States)

    Liu, Chao; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Meyer, Kerry G.; Wang, Chen Xi; Ding, Shouguo

    2015-01-01

    A fast instrument simulator is developed to simulate the observations made in cloudy atmospheres by the Visible Infrared Imaging Radiometer Suite (VIIRS). The correlated k-distribution (CKD) technique is used to compute the transmissivity of absorbing atmospheric gases. The bulk scattering properties of ice clouds used in this study are based on the ice model used for the MODIS Collection 6 ice cloud products. Two fast radiative transfer models based on pre-computed ice cloud look-up-tables are used for the VIIRS solar and infrared channels. The accuracy and efficiency of the fast simulator are quantify in comparison with a combination of the rigorous line-by-line (LBLRTM) and discrete ordinate radiative transfer (DISORT) models. Relative errors are less than 2 for simulated TOA reflectances for the solar channels and the brightness temperature differences for the infrared channels are less than 0.2 K. The simulator is over three orders of magnitude faster than the benchmark LBLRTM+DISORT model. Furthermore, the cloudy atmosphere reflectances and brightness temperatures from the fast VIIRS simulator compare favorably with those from VIIRS observations.

  2. Advances in real-time millimeter-wave imaging radiometers for avionic synthetic vision

    Science.gov (United States)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.; Galliano, Joseph A., Jr.

    1995-06-01

    Millimeter-wave imaging has advantages over conventional visible or infrared imaging for many applications because millimeter-wave signals can travel through fog, snow, dust, and clouds with much less attenuation than infrared or visible light waves. Additionally, passive imaging systems avoid many problems associated with active radar imaging systems, such as radar clutter, glint, and multi-path return. ThermoTrex Corporation previously reported on its development of a passive imaging radiometer that uses an array of frequency-scanned antennas coupled to a multichannel acousto-optic spectrum analyzer (Bragg-cell) to form visible images of a scene through the acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output from the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. An application of this system is its incorporation as part of an enhanced vision system to provide pilots with a synthetic view of a runway in fog and during other adverse weather conditions. Ongoing improvements to a 94 GHz imaging system and examples of recent images taken with this system will be presented. Additionally, the development of dielectric antennas and an electro- optic-based processor for improved system performance, and the development of an `ultra- compact' 220 GHz imaging system will be discussed.

  3. The High Altitude MMIC Sounding Radiometer on the GLOBAL HAWK: From Technology Development to Science Discovery

    Science.gov (United States)

    Brown, Shannon; Denning, Richard; Lambrigtsen, Bjorn; Lim, Boon; Tanabe, Jordan; Tanner, Alan

    2013-01-01

    This paper presents results from the High Altitude MMIC Sounding Radiometer (HAMSR) during three recent field campaigns on the Global Hawk Unmanned Ariel Vehicles (UAV), focusing on the enabling technology that led to unprecedented observations of significant weather phenomenon, such as thermodynamic evolution of the tropical cyclone core during rapid intensification and the high resolution three dimensional mapping of several atmospheric river events. HAMSR is a 25 channel cross-track scanning microwave sounder with channels near the 60 and 118 GHz oxygen lines and the 183 GHz water vapor line. HAMSR was originally designed and built at the Jet Propulsion Laboratory as a technology demonstrator in 1998. Subsequent to this, HAMSR participated in three NASA hurricane field campaigns, CAMEX-4, TCSP and NAMMA. Beginning in 2008, HAMSR was extensively upgraded to deploy on the NASA Global Hawk (GH) platform and serve as an asset to the NASA sub-orbital program. HAMSR has participated on the Global Hawk during the 2010 Genesis and Rapid Intensification (GRIP) campaign, the 2011 Winter Storms and Atmospheric Rivers (WISPAR) campaign and is currently participating in the NASA Ventures Hurricane and Severe Storm Sentinel (HS3) campaign (2011-2015).

  4. Preliminary feasibility analysis of a pressure modulator radiometer for remote sensing of tropospheric constituents

    Science.gov (United States)

    Orr, H. D., III; Rarig, P. L.

    1981-01-01

    A pressure modulator radiometer operated in a nadir viewing mode from the top of a midlatitude summer model of the atmosphere was theoretically studied for monitoring the mean volumetric mixing ratio of carbon monoxide in the troposphere. The mechanical characteristics of the instrument on the Nimbus 7 stratospheric and mesospheric sounder experiment are assumed and CO is assumed to be the only infrared active constituent. A line by line radiative transfer computer program is used to simulate the upwelling radiation reaching the top of the atmosphere. The performance of the instrument is examined as a function of the mean pressure in and the length of the instrument gas correlation cell. Instrument sensitivity is described in terms of signal to noise ratio for a 10 percent change in CO mixing ratio. Sensitivity to mixing ratio changes is also studied. It is concluded that tropospheric monitoring requires a pressure modulator drive having a larger swept volume and producing higher compression ratios at higher mean cell pressures than the Nimbus 7 design.

  5. UV dosimetry in Antarctica (Baia Terranova): analysis of data from polysulphone films and GUV 511 radiometer

    Science.gov (United States)

    Mariutti, Gianni F.; Bortolin, Emanuela; Polichetti, Alessandro; Anav, Andrea; Casale, Giuseppe R.; Di Menno, Massimo; Rafanelli, Claudio

    2003-11-01

    This paper shows the results of measurements carried out in November 2002 in the Italian Antarctic Base of Baia Terranova (74.07°S, 164.08°E) to test polysulphone film badges as possible UV personal dosimeters in such extreme environmental conditions. In the Italian Antarctic Base a multichannel radiometer GUV 511 (Biospherical Inc.) is routinely used by the Italian National Research Council (CNR) for UV irradiance at sea level. This instrument measures the intensity of the solar UV spectrum at four different wavelengths: 305, 320, 340, 380 nm, respectively. Data obtained from polysulphone badges exposed in the horizontal and the vertical configurations during diverse time lapses of the day, and from polysulphone badges worn by three volunteers of the base staff during several outdoors activities, have been compared with the irradiance data calculated from the measured values of GUV 511. A preliminary analysis of the whole data, also in the light of other recorded atmospheric and climatic parameters, shows a reasonable consistency. As also shown by previous measurements, carried out in June 2002 in the locality of Ny Alesund (Svalbard -- Artic Region), the calibration of the above mentioned personal dosimeters by means of another instrument operating in the same locality is a crucial step. Further work is required to demonstrate this approach is suitable for an acceptable evaluation of personal radiant exposures.

  6. Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative feedback processes in the atmosphere, particularly the interactions among clouds and aerosols. ARM obtains continuous measurements and conducts field campaigns to provide data products that aid in the improvement and further development of climate models. All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full suite of stations in a number of ways, including troubleshooting issues that arise as part of the data-quality reviews; managing engineering changes to the standard setup; and providing calibration services and assistance to the full fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperature/relative humidity probes, multimeters, and data acquisition systems that are used in the calibrations performed at the Southern Great Plains Radiometer Calibration Facility. This paper discusses all aspects related to the support provided to the calibration of the instruments in the solar monitoring fleet.

  7. Development of the Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) Instrument

    Science.gov (United States)

    DeLand, M. T.; Colarco, P. R.; Kowalewski, M. G.; Gorkavyi, N.; Ramos-Izquierdo, L.

    2017-12-01

    Aerosol particles in the stratosphere ( 15-25 km altitude), both produced naturally and perturbed by volcanic eruptions and anthropogenic emissions, continue to be a source of significant uncertainty in the Earth's energy budget. Stratospheric aerosols can offset some of the warming effects caused by greenhouse gases. These aerosols are currently monitored using measurements from the Ozone Mapping and Profiling Suite (OMPS) Limb Profiler (LP) instrument on the Suomi NPP satellite. In order to improve the sensitivity and spatial coverage of these aerosol data, we are developing an aerosol-focused compact version of the OMPS LP sensor called Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) to fly on a 3U Cubesat satellite, using a NASA Instrument Incubator Program (IIP) grant. This instrument will make limb viewing measurements of the atmosphere in multiple directions simultaneously, and uses only a few selected wavelengths to reduce size and cost. An initial prototype version has been constructed using NASA GSFC internal funding and tested in the laboratory. Current design work is targeted towards a preliminary field test in Spring 2018. We will discuss the scientific benefits of MASTAR and the status of the project.

  8. Real-time millimeter-wave imaging radiometer for avionic synthetic vision

    Science.gov (United States)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.

    1994-07-01

    ThermoTrex Corporation (TTC) has developed an imaging radiometer, the passive microwave camera (PMC), that uses an array of frequency-scanned antennas coupled to a multi-channel acousto-optic (Bragg cell) spectrum analyzer to form visible images of a scene through acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output of the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. One application of this system could be its incorporation into an enhanced vision system to provide pilots with a clear view of the runway during fog and other adverse weather conditions. The unique PMC system architecture will allow compact large-aperture implementations because of its flat antenna sensor. Other potential applications include air traffic control, all-weather area surveillance, fire detection, and security. This paper describes the architecture of the TTC PMC and shows examples of images acquired with the system.

  9. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    Science.gov (United States)

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  10. Characterization of NPP Visible/Infrared Imager Radiometer Suite (VIIRS) Reflective Solar Bands Dual Gain Anomaly

    Science.gov (United States)

    Lee, Shihyan; McIntire, Jeff; Oudari, Hassan

    2012-01-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) contains six dual gain bands in the reflective solar spectrum. The dual gain bands are designed to switch gain mode at pre-defined thresholds to achieve high resolution at low radiances while maintaining the required dynamic range for science. During pre-launch testing, an anomaly in the electronic response before transitioning from high to low gain was discovered and characterized. On-orbit, the anomaly was confirmed using MODIS data collected during Simultaneous Nadir Overpasses (SNOs). The analysis of the Earth scene data shows that dual gain anomaly can be determined at the orbital basis. To characterize the dual gain anomaly, the anomaly region and electronic offsets were tracked per week during the first 8 month of VIIRS operation. The temporal analysis shows the anomaly region can drift 20 DN and is impacted by detectors DC Restore. The estimated anomaly flagging regions cover 2.5 % of the high gain dynamic range and are consistent with prelaunch and on-orbit LUT. The prelaunch results had a smaller anomaly range (30-50 DN) and are likely the results of more stable electronics from the shorter data collection time. Finally, this study suggests future calibration efforts to focus on the anomaly's impact on science products and possible correction method to reduce uncertainties.

  11. Atmospheric water distribution in a midlatitude cyclone observed by the Seasat Scanning Multichannel Microwave Radiometer

    Science.gov (United States)

    Mcmurdie, L. A.; Katsaros, K. B.

    1985-01-01

    Patterns in the horizontal distribution of integrated water vapor, integrated liquid water and rainfall rate derived from the Seasat Scanning Multichannel Microwave Radiometer (SMMR) during a September 10-12, 1978 North Pacific cyclone are studied. These patterns are compared with surface analyses, ship reports, radiosonde data, and GOES-West infrared satellite imagery. The SMMR data give a unique view of the large mesoscale structure of a midlatitude cyclone. The water vapor distribution is found to have characteristic patterns related to the location of the surface fronts throughout the development of the cyclone. An example is given to illustrate that SMMR data could significantly improve frontal analysis over data-sparse oceanic regions. The distribution of integrated liquid water agrees qualitatively well with corresponding cloud patterns in satellite imagery and appears to provide a means to distinguish where liquid water clouds exist under a cirrus shield. Ship reports of rainfall intensity agree qualitatively very well with SMMR-derived rainrates. Areas of mesoscale rainfall, on the order of 50 km x 50 km or greater are detected using SMMR derived rainrates.

  12. A brief history of 25 years (or more) of infrared imaging radiometers

    Science.gov (United States)

    Lyon, Bernard R., Jr.; Orlove, Gary L.

    2003-04-01

    Modern thermal imaging radiometers are infrared systems usually endowed with some means of making surface temperature measurements of objects, as well as providing an image. These devices have evolved considerably over the past few decades, and are continuing to do so at an accelerating rate. Changes are not confined to merely camera size and user interface, but also include critical parameters, such as sensitivity, accuracy, dynamic range, spectral response, capture rates, storage media, and numerous other features, options, and accessories. Familiarity with this changing technology is much more than an academic topic. A misunderstanding or false assumption concerning system differences, could lead to misinterpretation of data, inaccurate temperature measurements, or disappointing, ambiguous results. Marketing demands have had considerable influence in the design and operation of these systems. In the past, many thermographers were scientists, engineers and researchers. Today, however, the majorities of people using these instruments work in the industrial sector and are involved in highly technical skilled trades. This change of operating personnel has effectively changed the status of these devices from a 'scientific instrument', to an 'essential tool'. Manufacturers have recognized this trend and responded accordingly, as seen in their product designs. This paper explores the history of commercial infrared imaging systems and accessories. Emphasis is placed on, but not confined to, real time systems with video output, capable of temperature measurements.

  13. The Benefits of Sample Return: Connecting Apollo Soils and Diviner Lunar Radiometer Remote Sensing Data

    Science.gov (United States)

    Greenhagen, B. T.; Donaldson-Hanna, K. L.; Thomas, I. R.; Bowles, N. E.; Allen, C. C.; Pieters, C. M.; Paige, D. A.

    2014-01-01

    The Diviner Lunar Radiometer, onboard NASA's Lunar Reconnaissance Orbiter, has produced the first global, high resolution, thermal infrared observations of an airless body. The Moon, which is the most accessible member of this most abundant class of solar system objects, is also the only body for which we have extraterrestrial samples with known spatial context. Here we present the results of a comprehensive study to reproduce an accurate simulated lunar environment, evaluate the most appropriate sample and measurement conditions, collect thermal infrared spectra of a representative suite of Apollo soils, and correlate them with Diviner observations of the lunar surface. We find that analyses of Diviner observations of individual sampling stations and SLE measurements of returned Apollo soils show good agreement, while comparisons to thermal infrared reflectance under terrestrial conditions do not agree well, which underscores the need for SLE measurements and validates the Diviner compositional dataset. Future work includes measurement of additional soils in SLE and cross comparisons with measurements in JPL Simulated Airless Body Emission Laboratory (SABEL).

  14. A multispectral study of an extratropical cyclone with Nimbus 3 medium resolution infrared radiometer data

    Science.gov (United States)

    Holub, R.; Shenk, W. E.

    1973-01-01

    Four registered channels (0.2 to 4, 6.5 to 7, 10 to 11, and 20 to 23 microns) of the Nimbus 3 Medium Resolution Infrared Radiometer (MRIR) were used to study 24-hr changes in the structure of an extratropical cyclone during a 6-day period in May 1969. Use of a stereographic-horizon map projection insured that the storm was mapped with a single perspective throughout the series and allowed the convenient preparation of 24-hr difference maps of the infrared radiation fields. Single-channel and multispectral analysis techniques were employed to establish the positions and vertical slopes of jetstreams, large cloud systems, and major features of middle and upper tropospheric circulation. Use of these techniques plus the difference maps and continuity of observation allowed the early detection of secondary cyclones developing within the circulation of the primary cyclone. An automated, multispectral cloud-type identification technique was developed, and comparisons that were made with conventional ship reports and with high-resolution visual data from the image dissector camera system showed good agreement.

  15. Use of radiometer to reform and repair an old living house to passive solar one

    Science.gov (United States)

    Okamoto, Yoshizo; Inagaki, Terumi; Suzuki, Takakazu; Kurokawa, Takashi

    1994-03-01

    Japanese living houses mainly consist of wooden elements in high-temperature and moist conditions. To modify the hot and humid environment, a conventional old house was partially rebuilt and repaired. Especially in the winter season, a diagnostic thermographic test was used to find deteriorated and leaking parts of interior and exterior walls. Macroscopic deteriorated parts were checked again in detail. The deteriorated element was then removed. During the reconstruction process, a new solar heat and air conditioning system using a silica-gel adsorber and underground water was installed to cool and warm up the living room. Thermography tests of this remodeled house show that room temperature is always constant and mild to human beings, especially in the winter. Temperature and heat flow distribution of flowing air in the living room was measured using thermal net and wire methods. Leaking thermal streak flow of the gap was locally visualized by the IR radiometer and a highly sensitive video camera. It was verified that IR thermography is a useful measuring instrument to check thermal defects of a house.

  16. Re-thinking the role of radiometal isotopes: Towards a future concept for theranostic radiopharmaceuticals.

    Science.gov (United States)

    Notni, Johannes; Wester, Hans-Jürgen

    2018-03-01

    The potential and future role of certain metal radionuclides, for example, 44 Sc, 89 Zr, 86 Y, 64 Cu, 68 Ga, 177 Lu, 225 Ac, and 213 Bi, and several terbium isotopes has been controversially discussed in the past decades. Furthermore, the possible benefits of "matched pairs" of isotopes for tandem applications of diagnostics and therapeutics (theranostics) have been emphasized, while such approaches still have not made their way into routine clinical practice. Analysis of bibliographical data illustrates how popularity of certain nuclides has been promoted by cycles of availability and applications. We furthermore discuss the different practical requirements for diagnostic and therapeutic radiopharmaceuticals and the resulting consequences for efficient development of clinically useful pairs of radionuclide theranostics, with particular emphasis on the underlying economical factors. Based on an exemplary assessment of overall production costs for 68 Ga and 18 F radiopharmaceuticals, we venture a look into the future of theranostics and predict that high-throughput PET applications, that is, diagnosis of frequent conditions, will ultimately rely on 18 F tracers. PET radiometals will occupy a niche in the clinical low-throughput sector (diagnosis of rare diseases), but above all, dominate preclinical research and clinical translation. Matched isotope pairs will be of lesser relevance for theranostics but may become important for future PET-based therapeutic dosimetry. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Developments in Miniaturized Laser Heterodyne Radiometer (mini-LHR) construction for groundtruth measurements of CH4 and CO2 in harsh terrain

    Science.gov (United States)

    DiGregorio, A.; Wilson, E. L.; Hoffman, C.; Grunberg, C.; Mao, J.; Ramanathan, A. K.

    2016-12-01

    We present an updated, ruggedized design of NASA Goddard Space Flight Center's Miniaturized Laser Heterodyne Radiometer (mini-LHR), and the results of testing in the Bonanza Creek Research Forest. The mini-LHR is a passive variation of typical heterodyne radiometry instruments, designed to work in tandem with the AERONET sun photometer for collection of column methane (CH4) and carbon dioxide (CO2) in harsh environments. Advancements in the development of the Cube-Sat version of the mini-LHR have allowed a more than 50% reduction in size, weight, and power usage of the mini-LHR. Now small enough to fit in a medium handbag, the mini-LHR can be run off of a small 35 Watt solar panel and backup battery for continuous measurement. Using a touch-screen control interface built off of a Raspberry Pi, the updated mini-LHR is capable of data collection and preliminary data processing, even without internet, cellular, or satellite connectivity. The improvements made to the mini-LHR were tested in a field campaign in May 2016 funded under NASA's IDS program to track CH4 and CO2 emissions above thawing permafrost. In addition to being a comprehensive study of methane release from thawing permafrost, this pilot study tested the ruggedization and functionality of the instrument in three different environments- a black spruce forest, collapsed scar bog, and fen.

  18. The total artificial heart.

    Science.gov (United States)

    Cook, Jason A; Shah, Keyur B; Quader, Mohammed A; Cooke, Richard H; Kasirajan, Vigneshwar; Rao, Kris K; Smallfield, Melissa C; Tchoukina, Inna; Tang, Daniel G

    2015-12-01

    The total artificial heart (TAH) is a form of mechanical circulatory support in which the patient's native ventricles and valves are explanted and replaced by a pneumatically powered artificial heart. Currently, the TAH is approved for use in end-stage biventricular heart failure as a bridge to heart transplantation. However, with an increasing global burden of cardiovascular disease and congestive heart failure, the number of patients with end-stage heart failure awaiting heart transplantation now far exceeds the number of available hearts. As a result, the use of mechanical circulatory support, including the TAH and left ventricular assist device (LVAD), is growing exponentially. The LVAD is already widely used as destination therapy, and destination therapy for the TAH is under investigation. While most patients requiring mechanical circulatory support are effectively treated with LVADs, there is a subset of patients with concurrent right ventricular failure or major structural barriers to LVAD placement in whom TAH may be more appropriate. The history, indications, surgical implantation, post device management, outcomes, complications, and future direction of the TAH are discussed in this review.

  19. Calibration of the degree of linear polarization measurements of the polarized Sun-sky radiometer based on the POLBOX system.

    Science.gov (United States)

    Li, Zhengqiang; Li, Kaitao; Li, Li; Xu, Hua; Xie, Yisong; Ma, Yan; Li, Donghui; Goloub, Philippe; Yuan, Yinlin; Zheng, Xiaobing

    2018-02-10

    Polarization observation of sky radiation is the frontier approach to improve the remote sensing of atmospheric components, e.g., aerosol and clouds. The polarization calibration of the ground-based Sun-sky radiometer is the basis for obtaining accurate degree of linear polarization (DOLP) measurement. In this paper, a DOLP calibration method based on a laboratory polarized light source (POLBOX) is introduced in detail. Combined with the CE318-DP Sun-sky polarized radiometer, a calibration scheme for DOLP measurement is established for the spectral range of 440-1640 nm. Based on the calibration results of the Sun-sky radiometer observation network, the polarization calibration coefficient and the DOLP calibration residual are analyzed statistically. The results show that the DOLP residual of the calibration scheme is about 0.0012, and thus it can be estimated that the final DOLP calibration accuracy of this method is about 0.005. Finally, it is verified that the accuracy of the calibration results is in accordance with the expected results by comparing the simulated DOLP with the vector radiative transfer calculations.

  20. A novel fast-scanning microwave heterodyne radiometer system for electron cyclotron emission measurements in the HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Kuang, G.L.; Gao, X.; Zhang, X.D.; Wan, B.N.; Wang, K.J.; Mao, J.S.; Gong, X.Z.; Qin, P.J.

    2000-01-01

    Two sets of fast-scanning microwave heterodyne radiometer receiver systems employing backward-wave oscillators in the 78-118 GHz and 118-178 GHz ranges were developed for electron cyclotron emission measurements (ECE) on the HT-7 superconducting tokamak. The double-sideband radiometer in the 78-118 GHz range measures 16 ECE frequency points with a scanning period of 0.65 ms. The novel design of the 2 mm fast-scanning heterodyne radiometer in the 118-178 GHz range enables the unique system to measure 48 ECE frequency points in 0.65 ms periodically. The plasma profile consistency in reproducible ohmic plasmas was used to relatively calibrate each channel by changing the toroidal magnetic field shot-by-shot. The absolute temperature value was obtained by a comparison with the results from the soft x-ray pulse height analysis measurements and Thomson scattering system. A preliminary temperature profile measurement result in pellet injection plasma is presented. (author)

  1. PAU/RAD: Design and Preliminary Calibration Results of a New L-Band Pseudo-Correlation Radiometer Concept

    Directory of Open Access Journals (Sweden)

    Enric Valencia

    2008-07-01

    Full Text Available The Passive Advanced Unit (PAU for ocean monitoring is a new type of instrument that combines in a single receiver and without time multiplexing, a polarimetric pseudo-correlation microwave radiometer at L-band (PAU-RAD and a GPS reflectometer (PAU-GNSS/R. These instruments in conjunction with an infra-red radiometer (PAU-IR will respectively provide the sea surface temperature and the sea state information needed to accurately retrieve the sea surface salinity from the radiometric measurements. PAU will consist of an array of 4x4 receivers performing digital beamforming and polarization synthesis both for PAU-RAD and PAU-GNSS/R. A concept demonstrator of the PAU instrument with only one receiver has been implemented (PAU-One Receiver or PAU-OR. PAU-OR has been used to test and tune the calibration algorithms that will be applied to PAU. This work describes in detail PAU-OR’s radiometer calibration algorithms and their performance.

  2. Design and characterization of the Large-aperture Experiment to Detect the Dark Age (LEDA) radiometer systems

    Science.gov (United States)

    Price, D. C.; Greenhill, L. J.; Fialkov, A.; Bernardi, G.; Garsden, H.; Barsdell, B. R.; Kocz, J.; Anderson, M. M.; Bourke, S. A.; Craig, J.; Dexter, M. R.; Dowell, J.; Eastwood, M. W.; Eftekhari, T.; Ellingson, S. W.; Hallinan, G.; Hartman, J. M.; Kimberk, R.; Lazio, T. Joseph W.; Leiker, S.; MacMahon, D.; Monroe, R.; Schinzel, F.; Taylor, G. B.; Tong, E.; Werthimer, D.; Woody, D. P.

    2018-05-01

    The Large-Aperture Experiment to Detect the Dark Age (LEDA) was designed to detect the predicted O(100) mK sky-averaged absorption of the Cosmic Microwave Background by Hydrogen in the neutral pre- and intergalactic medium just after the cosmological Dark Age. The spectral signature would be associated with emergence of a diffuse Lyα background from starlight during `Cosmic Dawn'. Recently, Bowman et al. (2018) have reported detection of this predicted absorption feature, with an unexpectedly large amplitude of 530 mK, centered at 78 MHz. Verification of this result by an independent experiment, such as LEDA, is pressing. In this paper, we detail design and characterization of the LEDA radiometer systems, and a first-generation pipeline that instantiates a signal path model. Sited at the Owens Valley Radio Observatory Long Wavelength Array, LEDA systems include the station correlator, five well-separated redundant dual polarization radiometers and backend electronics. The radiometers deliver a 30-85 MHz band (16 z < 34) and operate as part of the larger interferometric array, for purposes ultimately of in situ calibration. Here, we report on the LEDA system design, calibration approach, and progress in characterization as of January 2016. The LEDA systems are currently being modified to improve performance near 78 MHz in order to verify the purported absorption feature.

  3. Applications of satellite data to the studies of agricultural meteorology, 2: Relationship between air temperature and surface temperature measured by infrared thermal radiometer

    International Nuclear Information System (INIS)

    Horiguchi, I.; Tani, H.; Morikawa, S.

    1985-01-01

    Experiments were performed in order to establish interpretation keys for estimation of air temperature from satellite IR data. Field measurements were carried out over four kinds of land surfaces including seven different field crops on the university campus at Sapporo. The air temperature was compared with the surface temperature measured by infrared thermal radiometer (National ER2007, 8.5-12.5μm) and, also with other meteorological parameters (solar radiation, humidity and wind speed). Also perpendicular vegetation index (PVI) was measured to know vegetation density of lands by ho radio-spectralmeter (Figs. 1 & 2). Table 1 summarizes the measurements taken in these experiments.The correlation coefficients between air temperature and other meteorological parameters for each area are shown in Table 2. The best correlation coefficient for total data was obtained with surface temperature, and it suggests the possibility that air temperature may be estimated by satellite IR data since they are related to earth surface temperatures.Further analyses were done between air temperature and surface temperature measured with thermal infrared radiometer.The following conclusions may be drawn:(1) Air temperature from meteorological site was well correlated to surface temperature of lands that were covered with dense plant and water, for example, grass land, paddy field and rye field (Table 2).(2) The correlation coefficients and the regression equations on grass land, paddy field and rye field were almost the same (Fig. 3). The mean correlation coefficient for these three lands was 0.88 and the regression equation is given in Eq. (2).(3) There was good correlation on bare soil land also, but had large variations (Fig. 3).(4) The correlations on crop fields depend on the density of plant cover. Good correlation is obtained on dense vegetative fields.(5) Small variations about correlation coefficients were obtained for the time of day (Table 3).(6) On the other hand, large

  4. Soil moisture mapping at Bubnow Wetland using L-band radiometer (ELBARA III)

    Science.gov (United States)

    Łukowski, Mateusz; Schwank, Mike; Szlązak, Radosław; Wiesmann, Andreas; Marczewski, Wojciech; Usowicz, Bogusław; Usowicz, Jerzy; Rojek, Edyta; Werner, Charles

    2016-04-01

    The study of soil moisture is a scientific challenge. Not only because of large diversity of soils and differences in their water content, but also due to the difficulty of measuring, especially in large scale. On this field of interest several methods to determine the content of water in soil exists. The basic and referential is gravimetric method, which is accurate, but suitable only for small spatial scales and time-consuming. Indirect methods are faster, but need to be validated, for example those based on dielectric properties of materials (e.g. time domain reflectometry - TDR) or made from distance (remote), like brightness temperature measurements. Remote sensing of soil moisture can be performed locally (from towers, drones, planes etc.) or globally (satellites). These techniques can complement and help to verify different models and assumptions. In our studies, we applied spatial statistics to local soil moisture mapping using ELBARA III (ESA L-band radiometer, 1.4 GHz) mounted on tower (6.5 meter height). Our measurements were carried out in natural Bubnow Wetland, near Polesie National Park (Eastern Poland), during spring time. This test-site had been selected because it is representative for one of the biggest wetlands in Europe (1400 km2), called "Western Polesie", localized in Ukraine, Poland and Belarus. We have investigated Bubnow for almost decade, using meteorological and soil moisture stations, conducting campaigns of hand-held measurements and collecting soil samples. Now, due to the possibility of rotation at different incidence angles (as in previous ELBARA systems) and the new azimuth tracking capabilities, we obtained brightness temperature data not only at different distances from the tower, but also around it, in footprints containing different vegetation and soil types. During experiment we collected data at area about 450 m2 by rotating ELBARA's antenna 5-175° in horizontal and 30-70° in vertical plane. This type of approach allows

  5. PC-SEAPAK - ANALYSIS OF COASTAL ZONE COLOR SCANNER AND ADVANCED VERY HIGH RESOLUTION RADIOMETER DATA

    Science.gov (United States)

    Mcclain, C. R.

    1994-01-01

    PC-SEAPAK is a user-interactive satellite data analysis software package specifically developed for oceanographic research. The program is used to process and interpret data obtained from the Nimbus-7/Coastal Zone Color Scanner (CZCS), and the NOAA Advanced Very High Resolution Radiometer (AVHRR). PC-SEAPAK is a set of independent microcomputer-based image analysis programs that provide the user with a flexible, user-friendly, standardized interface, and facilitates relatively low-cost analysis of oceanographic satellite data. Version 4.0 includes 114 programs. PC-SEAPAK programs are organized into categories which include CZCS and AVHRR level-1 ingest, level-2 analyses, statistical analyses, data extraction, remapping to standard projections, graphics manipulation, image board memory manipulation, hardcopy output support and general utilities. Most programs allow user interaction through menu and command modes and also by the use of a mouse. Most programs also provide for ASCII file generation for further analysis in spreadsheets, graphics packages, etc. The CZCS scanning radiometer aboard the NIMBUS-7 satellite was designed to measure the concentration of photosynthetic pigments and their degradation products in the ocean. AVHRR data is used to compute sea surface temperatures and is supported for the NOAA 6, 7, 8, 9, 10, 11, and 12 satellites. The CZCS operated from November 1978 to June 1986. CZCS data may be obtained free of charge from the CZCS archive at NASA/Goddard Space Flight Center. AVHRR data may be purchased through NOAA's Satellite Data Service Division. Ordering information is included in the PC-SEAPAK documentation. Although PC-SEAPAK was developed on a COMPAQ Deskpro 386/20, it can be run on most 386-compatible computers with an AT bus, EGA controller, Intel 80387 coprocessor, and MS-DOS 3.3 or higher. A Matrox MVP-AT image board with appropriate monitor and cables is also required. Note that the authors have received some reports of

  6. Quantifying seasonal dynamics of canopy structure and function using inexpensive narrowband spectral radiometers

    Science.gov (United States)

    Vierling, L. A.; Garrity, S. R.; Campbell, G.; Coops, N. C.; Eitel, J.; Gamon, J. A.; Hilker, T.; Krofcheck, D. J.; Litvak, M. E.; Naupari, J. A.; Richardson, A. D.; Sonnentag, O.; van Leeuwen, M.

    2011-12-01

    Increasing the spatial and temporal density of automated environmental sensing networks is necessary to quantify shifts in plant structure (e.g., leaf area index) and function (e.g., photosynthesis). Improving detection sensitivity can facilitate a mechanistic understanding by better linking plant processes to environmental change. Spectral radiometer measurements can be highly useful for tracking plant structure and function from diurnal to seasonal time scales and calibrating and validating satellite- and aircraft-based spectral measurements. However, dense ground networks of such instruments are challenging to establish due to the cost and complexity of automated instrument deployment. We therefore developed simple to operate, lightweight and inexpensive narrowband (~10nm bandwidth) spectral instruments capable of continuously measuring four to six discrete bands that have proven capacity to describe key physiological processes and structural features of plant canopies. These bands are centered at 530, 570, 675, 800, 880, and 970 nm to enable calculation of the physiological reflectance index (PRI), normalized difference vegetation index (NDVI), green NDVI (gNDVI), and water band index (WBI) collected above and within vegetation canopies. To date, measurements have been collected above grassland, semi-arid shrub steppe, piñon-juniper woodland, dense conifer forest, mixed deciduous-conifer forest, and cropland canopies, with additional measurements collected along vertical transects through a temperate conifer rainforest. Findings from this work indicate not only that key shifts in plant phenology, physiology, and structure can be captured using such instruments, but that the temporally dense nature of the measurements can help to disentangle heretofore unreported complexities of simultaneous phenological and structural change on canopy reflectance.

  7. Nighttime Environmental Products from the Visible Infrared Imaging Radiometer Suite: Science Rationale

    Science.gov (United States)

    Roman, M. O.; Wang, Z.; Kalb, V.; Cole, T.; Oda, T.; Stokes, E.; Molthan, A.

    2016-12-01

    A new generation of satellite instruments, represented by the Suomi National Polar-Orbiting Partnership (Suomi-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS), offer global measurements of nocturnal visible and near-infrared light suitable for urban science research. While many promising urban-focused applications have been developed using nighttime satellite imagery in the past 25 years, most studies to-date have been limited by the quality of the captured imagery and the retrieval methods used in heritage (DMSP/OLS) products. Instead, science-quality products that are temporally consistent, global in extent, and local in resolution were needed to monitor human settlements worldwide —particularly for studies within dense urban areas. Since the first-light images from the VIIRS were received in January 2012, the NASA Land Science Investigator-led Processing System (Land SIPS) team has worked on maximizing the capabilities of these low-light measurements to generate a wealth of new information useful for understanding urbanization processes, urban functions, and the vulnerability of urban areas to climate hazards. In a recent case study, our team demonstrated that tracking daily dynamic VIIRS nighttime measurements can provide valuable information about the character of the human activities and behaviors that shape energy consumption and vulnerability (Roman and Stokes, 2015). Moving beyond mapping the physical qualities of urban areas (e.g. land cover and impervious area), VIIRS measurements provide insight into the social, economic, and cultural activities that shape energy and infrastructure use. Furthermore, as this time series expands and is merged with other sources of optical remote sensing data (e.g., Landsat-8 and Sentinel 2), VIIRS has the potential to increase our understanding of changes in urban form, structure, and infrastructure—factors that may also influence urban resilience—and how the increasing frequency and severity of climate

  8. Rating the Effectiveness of Fishery Closures With Visible Infrared Imaging Radiometer Suite Boat Detection Data

    Directory of Open Access Journals (Sweden)

    Christopher D. Elvidge

    2018-04-01

    Full Text Available Fishery closures are widely used to promote the sustainability of fish stocks. Fishery agencies typically have very little data relevant to planning closure enforcement actions and evaluating the effectiveness of closures, due in part to the vast expanse and remote nature of many closures. In some cases the effectiveness of closures can be evaluated using data from GPS based beacons, such as Automatic Identification System (AIS or Vessel Monitoring Systems (VMS installed on fishing boats. In fisheries where few boats are equipped with AIS or VMS, the rating of closures relies on other data sources capable of detecting or inferring fishing activity. One such source comes from low light imaging data collected by the NASA/NOAA Visible Infrared Imaging Radiometer Suite (VIIRS, which can detect fishing boats using lights to attract catch. This is a widely used practice in Asia and several other regions. NOAA has developed an automatic system for reporting the locations of VIIRS boat detections with a nominal 4 h temporal latency. VIIRS boat detection alerts are running for more than 900 fishery closures in the Philippines, with email and SMS transmission modes. These alerts are being actively used in the Philippines to plan enforcement actions and there is a growing list of apprehensions that occurred based on tip-offs from VIIRS. The VIIRS boat detection archive extends back to April 2012. A VIIRS closure index (VCI has been developed to rate the effectiveness of closures on monthly increments in terms of a percentage. The VCI analysis was performed on three types of closures: an ad hoc fishery closure associated with a toxic industrial discharge, a seasonal fishery closure and a permanent closure in restricted coastal waters. The VCI results indicate that it is possible to rank the effectiveness of different closure, year-to-year differences in compliance levels, and to identify closure encroachments which may warrant additional enforcement effort.

  9. Investigation of ground-based microwave radiometer calibration techniques at 530 hPa

    Directory of Open Access Journals (Sweden)

    G. Maschwitz

    2013-10-01

    Full Text Available Ground-based microwave radiometers (MWR are becoming more and more common for remotely sensing the atmospheric temperature and humidity profile as well as path-integrated cloud liquid water content. The calibration accuracy of the state-of-the-art MWR HATPRO-G2 (Humidity And Temperature Profiler – Generation 2 was investigated during the second phase of the Radiative Heating in Underexplored Bands Campaign (RHUBC-II in northern Chile (5320 m above mean sea level, 530 hPa conducted by the Atmospheric Radiation Measurement (ARM program conducted between August and October 2009. This study assesses the quality of the two frequently used liquid nitrogen and tipping curve calibrations by performing a detailed error propagation study, which exploits the unique atmospheric conditions of RHUBC-II. Both methods are known to have open issues concerning systematic offsets and calibration repeatability. For the tipping curve calibration an uncertainty of ±0.1 to ±0.2 K (K-band and ±0.6 to ±0.7 K (V-band is found. The uncertainty in the tipping curve calibration is mainly due to atmospheric inhomogeneities and the assumed air mass correction for the Earth curvature. For the liquid nitrogen calibration the estimated uncertainty of ±0.3 to ±1.6 K is dominated by the uncertainty of the reflectivity of the liquid nitrogen target. A direct comparison between the two calibration techniques shows that for six of the nine channels that can be calibrated with both methods, they agree within the assessed uncertainties. For the other three channels the unexplained discrepancy is below 0.5 K. Systematic offsets, which may cause the disagreement of both methods within their estimated uncertainties, are discussed.

  10. Applying the Water Vapor Radiometer to Verify the Precipitable Water Vapor Measured by GPS

    Directory of Open Access Journals (Sweden)

    Ta-Kang Yeh

    2014-01-01

    Full Text Available Taiwan is located at the land-sea interface in a subtropical region. Because the climate is warm and moist year round, there is a large and highly variable amount of water vapor in the atmosphere. In this study, we calculated the Zenith Wet Delay (ZWD of the troposphere using the ground-based Global Positioning System (GPS. The ZWD measured by two Water Vapor Radiometers (WVRs was then used to verify the ZWD that had been calculated using GPS. We also analyzed the correlation between the ZWD and the precipitation data of these two types of station. Moreover, we used the observational data from 14 GPS and rainfall stations to evaluate three cases. The offset between the GPS-ZWD and the WVR-ZWD ranged from 1.31 to 2.57 cm. The correlation coefficient ranged from 0.89 to 0.93. The results calculated from GPS and those measured using the WVR were very similar. Moreover, when there was no rain, light rain, moderate rain, or heavy rain, the flatland station ZWD was 0.31, 0.36, 0.38, or 0.40 m, respectively. The mountain station ZWD exhibited the same trend. Therefore, these results have demonstrated that the potential and strength of precipitation in a region can be estimated according to its ZWD values. Now that the precision of GPS-ZWD has been confirmed, this method can eventually be expanded to the more than 400 GPS stations in Taiwan and its surrounding islands. The near real-time ZWD data with improved spatial and temporal resolution can be provided to the city and countryside weather-forecasting system that is currently under development. Such an exchange would fundamentally improve the resources used to generate weather forecasts.

  11. A Model for Estimation of Rain Rate on Tropical Land from TRMM Microwave Imager Radiometer Observations

    Science.gov (United States)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Kim, Kyu-Myong

    2004-01-01

    Over the tropical land regions observations of the 85 GHz brightness temperature (T(sub 85v)) made by the TRMM Microwave Imager (TMI) radiometer when analyzed with the help of rain rate (R(sub pR)) deduced from the TRMM Precipitation Radar (PR) indicate that there are two maxima in rain rate. One strong maximum occurs when T(sub 85) has a value of about 220 K and the other weaker one when T(sub 85v) is much colder approx. 150 K. Together with the help of earlier studies based on airborne Doppler Radar observations and radiative transfer theoretical simulations, we infer the maximum near 220 K is a result of relatively weak scattering due to super cooled rain drops and water coated ice hydrometeors associated with a developing thunderstorm (Cb) that has a strong updraft. The other maximum is associated with strong scattering due to ice particles that are formed when the updraft collapses and the rain from the Cb is transit2oning from convective type to stratiform type. Incorporating these ideas and with a view to improve the estimation of rain rate from existing operational method applicable to the tropical land areas, we have developed a rain retrieval model. This model utilizes two parameters, that have a horizontal scale of approx. 20km, deduced from the TMI measurements at 19, 21 and 37 GHz (T(sub 19v), T(sub 21v), T(sub 37v). The third parameter in the model, namely the horizontal gradient of brightness temperature within the 20 km scale, is deduced from TMI measurements at 85 GHz. Utilizing these parameters our retrieval model is formulated to yield instantaneous rain rate on a scale of 20 km and seasonal average on a mesoscale that agree well with that of the PR.

  12. Adaptive neuro-fuzzy inference system for temperature and humidity profile retrieval from microwave radiometer observations

    Science.gov (United States)

    Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.

    2015-01-01

    The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and

  13. A 1DVAR-based snowfall rate retrieval algorithm for passive microwave radiometers

    Science.gov (United States)

    Meng, Huan; Dong, Jun; Ferraro, Ralph; Yan, Banghua; Zhao, Limin; Kongoli, Cezar; Wang, Nai-Yu; Zavodsky, Bradley

    2017-06-01

    Snowfall rate retrieval from spaceborne passive microwave (PMW) radiometers has gained momentum in recent years. PMW can be so utilized because of its ability to sense in-cloud precipitation. A physically based, overland snowfall rate (SFR) algorithm has been developed using measurements from the Advanced Microwave Sounding Unit-A/Microwave Humidity Sounder sensor pair and the Advanced Technology Microwave Sounder. Currently, these instruments are aboard five polar-orbiting satellites, namely, NOAA-18, NOAA-19, Metop-A, Metop-B, and Suomi-NPP. The SFR algorithm relies on a separate snowfall detection algorithm that is composed of a satellite-based statistical model and a set of numerical weather prediction model-based filters. There are four components in the SFR algorithm itself: cloud properties retrieval, computation of ice particle terminal velocity, ice water content adjustment, and the determination of snowfall rate. The retrieval of cloud properties is the foundation of the algorithm and is accomplished using a one-dimensional variational (1DVAR) model. An existing model is adopted to derive ice particle terminal velocity. Since no measurement of cloud ice distribution is available when SFR is retrieved in near real time, such distribution is implicitly assumed by deriving an empirical function that adjusts retrieved SFR toward radar snowfall estimates. Finally, SFR is determined numerically from a complex integral. The algorithm has been validated against both radar and ground observations of snowfall events from the contiguous United States with satisfactory results. Currently, the SFR product is operationally generated at the National Oceanic and Atmospheric Administration and can be obtained from that organization.

  14. Correlation function analysis of the COBE differential microwave radiometer sky maps

    Energy Technology Data Exchange (ETDEWEB)

    Lineweaver, Charles Howe [Univ. of California, Berkeley, CA (United States). Space Sciences Lab.

    1994-08-01

    The Differential Microwave Radiometer (DMR) aboard the COBE satellite has detected anisotropies in the cosmic microwave background (CMB) radiation. A two-point correlation function analysis which helped lead to this discovery is presented in detail. The results of a correlation function analysis of the two year DMR data set is presented. The first and second year data sets are compared and found to be reasonably consistent. The positive correlation for separation angles less than ~20° is robust to Galactic latitude cuts and is very stable from year to year. The Galactic latitude cut independence of the correlation function is strong evidence that the signal is not Galactic in origin. The statistical significance of the structure seen in the correlation function of the first, second and two year maps is respectively > 9σ, > 10σ and > 18σ above the noise. The noise in the DMR sky maps is correlated at a low level. The structure of the pixel temperature covariance matrix is given. The noise covariance matrix of a DMR sky map is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant noise covariance occurs with the ring of pixels at an angular separation of 60° due to the 60° separation of the DMR horns. The mean covariance of 60° is 0.45%$+0.18\\atop{-0.14}$ of the mean variance. The noise properties of the DMR maps are thus well approximated by the noise properties of maps made by a single-beam experiment. Previously published DMR results are not significantly affected by correlated noise.

  15. A Time Series of Mean Global Sea Surface Temperature from the Along-Track Scanning Radiometers

    Science.gov (United States)

    Veal, Karen L.; Corlett, Gary; Remedios, John; Llewellyn-Jones, David

    2010-12-01

    A climate data set requires a long time series of consistently processed data with suitably long periods of overlap of different instruments which allows characterization of any inter-instrument biases. The data obtained from ESA's three Along-Track Scanning Radiometers (ATSRs) together comprise an 18 year record of SST with overlap periods of at least 6 months. The data from all three ATSRs has been consistently processed. These factors together with the stability of the instruments and the precision of the derived SST makes this data set eminently suitable for the construction of a time series of SST that complies with many of the GCOS requirements for a climate data set. A time series of global and regional average SST anomalies has been constructed from the ATSR version 2 data set. An analysis of the overlap periods of successive instruments was used to remove intra-series biases and align the series to a common reference. An ATSR climatology has been developed and has been used to calculate the SST anomalies. The ATSR-1 time series and the AATSR time series have been aligned to ATSR-2. The largest adjustment is ~0.2 K between ATSR-2 and AATSR which is suspected to be due to a shift of the 12 μm filter function for AATSR. An uncertainty of 0.06 K is assigned to the relative anomaly record that is derived from the dual three-channel night-time data. A relative uncertainty of 0.07 K is assigned to the dual night-time two-channel record, except in the ATSR-1 period (1994-1996) where it is larger.

  16. Total parenteral nutrition - infants

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007239.htm Total parenteral nutrition - infants To use the sharing features on this page, please enable JavaScript. Total parenteral nutrition (TPN) is a method of feeding that bypasses ...

  17. Total parenteral nutrition

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000177.htm Total parenteral nutrition To use the sharing features on this page, please enable JavaScript. Total parenteral nutrition (TPN) is a method of feeding that bypasses ...

  18. Technique of total thyroidectomy

    International Nuclear Information System (INIS)

    Rao, R.S.

    1999-01-01

    It is essential to define the various surgical procedures that are carried out for carcinoma of the thyroid gland. They are thyroid gland, subtotal lobectomy, total thyroidectomy and near total thyroidectomy

  19. Total iron binding capacity

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  20. Total well dominated trees

    DEFF Research Database (Denmark)

    Finbow, Arthur; Frendrup, Allan; Vestergaard, Preben D.

    cardinality then G is a total well dominated graph. In this paper we study composition and decomposition of total well dominated trees. By a reversible process we prove that any total well dominated tree can both be reduced to and constructed from a family of three small trees....

  1. Comparison of stratospheric temperature profiles from a ground-based microwave radiometer with lidar, radiosonde and satellite data

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2015-04-01

    The importance of the knowledge of the temperature structure in the atmosphere has been widely recognized. Temperature is a key parameter for dynamical, chemical and radiative processes in the atmosphere. The cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming ( [1] and references therein). However, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. Stratospheric long-term datasets are sparse and obtained trends differ from one another [1]. Therefore it is important that in the future such datasets are generated. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. TEMPERA (TEMPERature RAdiometer) is a newly developed ground-based microwave radiometer designed, built and operated at the University of Bern. The instrument and the retrieval of temperature profiles has been described in detail in [2]. TEMPERA is measuring a pressure broadened oxygen line at 53.1 GHz in order to determine stratospheric temperature profiles. The retrieved profiles of TEMPERA cover an altitude range of approximately 20 to 45 km with a vertical resolution in the order of 15 km. The lower limit is given by the instrumental baseline and the bandwidth of the measured spectrum. The upper limit is given by the fact that above 50 km the oxygen lines are splitted by the Zeeman effect in the terrestrial magnetic field. In this study we present a comparison of stratospheric

  2. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    Science.gov (United States)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  3. L-band brightness temperature disaggregation for use with S-band and C-band radiometer data for WCOM

    Science.gov (United States)

    Yao, P.; Shi, J.; Zhao, T.; Cosh, M. H.; Bindlish, R.

    2017-12-01

    There are two passive microwave sensors onboard the Water Cycle Observation Mission (WCOM), which includes a synthetic aperture radiometer operating at L-S-C bands and a scanning microwave radiometer operating from C- to W-bands. It provides a unique opportunity to disaggregate L-band brightness temperature (soil moisture) with S-band C-bands radiometer data. In this study, passive-only downscaling methodologies are developed and evaluated. Based on the radiative transfer modeling, it was found that the TBs (brightness temperature) between the L-band and S-band exhibit a linear relationship, and there is an exponential relationship between L-band and C-band. We carried out the downscaling results by two methods: (1) downscaling with L-S-C band passive measurements with the same incidence angle from payload IMI; (2) downscaling with L-C band passive measurements with different incidence angle from payloads IMI and PMI. The downscaling method with L-S bands with the same incident angle was first evaluated using SMEX02 data. The RMSE are 2.69 K and 1.52 K for H and V polarization respectively. The downscaling method with L-C bands is developed with different incident angles using SMEX03 data. The RMSE are 2.97 K and 2.68 K for H and V polarization respectively. These results showed that high-resolution L-band brightness temperature and soil moisture products could be generated from the future WCOM passive-only observations.

  4. The Potential of Autonomous Ship-Borne Hyperspectral Radiometers for the Validation of Ocean Color Radiometry Data

    Directory of Open Access Journals (Sweden)

    Vittorio E. Brando

    2016-02-01

    Full Text Available Calibration and validation of satellite observations are essential and on-going tasks to ensure compliance with mission accuracy requirements. An automated above water hyperspectral radiometer significantly augmented Australia’s ability to contribute to global and regional ocean color validation and algorithm design activities. The hyperspectral data can be re-sampled for comparison with current and future sensor wavebands. The continuous spectral acquisition along the ship track enables spatial resampling to match satellite footprint. This study reports spectral comparisons of the radiometer data with Visible Infrared Imaging Radiometer Suite (VIIRS and Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua for contrasting water types in tropical waters off northern Australia based on the standard NIR atmospheric correction implemented in SeaDAS. Consistent match-ups are shown for transects of up to 50 km over a range of reflectance values. The MODIS and VIIRS satellite reflectance data consistently underestimated the in situ spectra in the blue with a bias relative to the “dynamic above water radiance and irradiance collector” (DALEC at 443 nm ranging from 9.8 × 10−4 to 3.1 × 10−3 sr−1. Automated acquisition has produced good quality data under standard operating and maintenance procedures. A sensitivity analysis explored the effects of some assumptions in the data reduction methods, indicating the need for a comprehensive investigation and quantification of each source of uncertainty in the estimate of the DALEC reflectances. Deployment on a Research Vessel provides the potential for the radiometric data to be combined with other sampling and observational activities to contribute to algorithm development in the wider bio-optical research community.

  5. A method to calculate Stokes parameters and angle of polarization of skylight from polarized CIMEL sun/sky radiometers

    International Nuclear Information System (INIS)

    Li, L.; Li, Z.; Li, K.; Blarel, L.; Wendisch, M.

    2014-01-01

    The polarized CIMEL sun/sky radiometers have been routinely operated within the Sun/sky-radiometer Observation NETwork (SONET) in China and some sites of the AErosol RObotic NETwork (AERONET) around the world. However, the polarization measurements are not yet widely used due to in a certain degree the lack of Stokes parameters derived directly from these polarization measurements. Meanwhile, it have been shown that retrievals of several microphysical properties of aerosol particles can be significantly improved by using degree of linear polarization (DoLP) measurements of polarized CIMEL sun/sky radiometers (CE318-DP). The Stokes parameters Q and U, as well as angle of polarization (AoP) contain additional information about linear polarization and its orientation. A method to calculate Stokes parameters Q, U, and AoP from CE318-DP polarized skylight measurements is introduced in this study. A new polarized almucantar geometry based on CE318-DP is measured to illustrate abundant variation features of these parameters. The polarization parameters calculated in this study are consistent with previous results of DoLP and I, and also comparable to vector radiative transfer simulations. - Highlights: • The CE318-DP polarized measurements are not yet widely used except DoLP. • Compared with DoLP and I, difficulty in calculating Stokes Q and U is discussed. • A new polarized almucantar observation geometry based on CE318-DP is executed. • We derive Stokes Q, U, and AoP both in principal and almucantar plane geometries. • The results are comparable with previous DoLP and I, as well as model simulations

  6. Radiometric calibration of the reflective bands of NS001-Thematic Mapper Simulator (TMS) and modular multispectral radiometers (MMR)

    Science.gov (United States)

    Markham, Brian L.; Wood, Frank M., Jr.; Ahmad, Suraiya P.

    1988-01-01

    The NS001 Thematic Mapper Simulator scanner (TMS) and several modular multispectral radiometers (MMRs) are among the primary instruments used in the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE). The NS001 has a continuously variable gain setting. Calibration of the NS001 data is influenced by drift in the dark current level of up to six counts during a mirror scan at typical gain settings. The MMR instruments are being used in their 1 deg FOV configuration on the helicopter and 15 deg FOV on the ground.

  7. Results of the systematic study of neutron dosimeters and neutron radiometers responses from Bruyeres and Valduc's experiments

    International Nuclear Information System (INIS)

    Pras, Ph.; Ledoux, X.; Patin, Y.

    1999-01-01

    This document gives the results of the systematic study of neutron dosimeters (Bubbles detectors) and neutron radiometers (Cramal, Nausicaa, EGG Lb6411) with standard sources and with the Bruyeres Van de Graaff 4MV accelerator. The dose equivalent rate response as a function of the neutron energy is parameterized. Even for low dose equivalent rate, a good reproducibility of the measurements is found in the strict respect of a given method. The response of the different systems is independent of the dose equivalent rate. (author)

  8. Simulating Visible/Infrared Imager Radiometer Suite Normalized Difference Vegetation Index Data Using Hyperion and MODIS

    Science.gov (United States)

    Ross, Kenton W.; Russell, Jeffrey; Ryan, Robert E.

    2006-01-01

    The success of MODIS (the Moderate Resolution Imaging Spectrometer) in creating unprecedented, timely, high-quality data for vegetation and other studies has created great anticipation for data from VIIRS (the Visible/Infrared Imager Radiometer Suite). VIIRS will be carried onboard the joint NASA/Department of Defense/National Oceanic and Atmospheric Administration NPP (NPOESS (National Polar-orbiting Operational Environmental Satellite System) Preparatory Project). Because the VIIRS instruments will have lower spatial resolution than the current MODIS instruments 400 m versus 250 m at nadir for the channels used to generate Normalized Difference Vegetation Index data, scientists need the answer to this question: how will the change in resolution affect vegetation studies? By using simulated VIIRS measurements, this question may be answered before the VIIRS instruments are deployed in space. Using simulated VIIRS products, the U.S. Department of Agriculture and other operational agencies can then modify their decision support systems appropriately in preparation for receipt of actual VIIRS data. VIIRS simulations and validations will be based on the ART (Application Research Toolbox), an integrated set of algorithms and models developed in MATLAB(Registerd TradeMark) that enables users to perform a suite of simulations and statistical trade studies on remote sensing systems. Specifically, the ART provides the capability to generate simulated multispectral image products, at various scales, from high spatial hyperspectral and/or multispectral image products. The ART uses acquired ( real ) or synthetic datasets, along with sensor specifications, to create simulated datasets. For existing multispectral sensor systems, the simulated data products are used for comparison, verification, and validation of the simulated system s actual products. VIIRS simulations will be performed using Hyperion and MODIS datasets. The hyperspectral and hyperspatial properties of Hyperion

  9. Connecting Returned Apollo Soils and Remote Sensing: Application to the Diviner Lunar Radiometer

    Science.gov (United States)

    Greenhagen, B. T.; DonaldsonHanna, K. L.; Thomas, I. R.; Bowles, N. E.; Allen, Carlton C.; Pieters, C. M.; Paige, D. A.

    2014-01-01

    The Diviner Lunar Radiometer, onboard NASA's Lunar Reconnaissance Orbiter, has produced the first global, high resolution, thermal infrared observations of an airless body. The Moon, which is the most accessible member of this most abundant class of solar system objects, is also the only body for which we have extraterrestrial samples with known spatial context, returned Apollo samples. Here we present the results of a comprehensive study to reproduce an accurate simulated lunar environment, evaluate the most appropriate sample and measurement conditions, collect thermal infrared spectra of a representative suite of Apollo soils, and correlate them with Diviner observations of the lunar surface. It has been established previously that thermal infrared spectra measured in simulated lunar environment (SLE) are significantly altered from spectra measured under terrestrial or martian conditions. The data presented here were collected at the University of Oxford Simulated Lunar Environment Chamber (SLEC). In SLEC, we simulate the lunar environment by: (1) pumping the chamber to vacuum pressures (less than 10-4 mbar) sufficient to simulate lunar heat transport processes within the sample, (2) cooling the chamber with liquid nitrogen to simulate radiation to the cold space environment, and (3) heating the samples with heaters and lamp to set-up thermal gradients similar to those experienced in the upper hundreds of microns of the lunar surface. We then conducted a comprehensive suite of experiments using different sample preparation and heating conditions on Apollo soils 15071 (maria) and 67701 (highland) and compared the results to Diviner noontime data to select the optimal experimental conditions. This study includes thermal infrared SLE measurements of 10084 (A11 - LM), 12001 (A12 - LM), 14259 (A14 - LM), 15071 (A15 - S1), 15601 (A15 - S9a), 61141 (A16 - S1), 66031 (A16 - S6), 67701 (A16 - S11), and 70181 (A17 - LM). The Diviner dataset includes all six Apollo sites

  10. Diviner lunar radiometer gridded brightness temperatures from geodesic binning of modeled fields of view

    Science.gov (United States)

    Sefton-Nash, E.; Williams, J.-P.; Greenhagen, B. T.; Aye, K.-M.; Paige, D. A.

    2017-12-01

    An approach is presented to efficiently produce high quality gridded data records from the large, global point-based dataset returned by the Diviner Lunar Radiometer Experiment aboard NASA's Lunar Reconnaissance Orbiter. The need to minimize data volume and processing time in production of science-ready map products is increasingly important with the growth in data volume of planetary datasets. Diviner makes on average >1400 observations per second of radiance that is reflected and emitted from the lunar surface, using 189 detectors divided into 9 spectral channels. Data management and processing bottlenecks are amplified by modeling every observation as a probability distribution function over the field of view, which can increase the required processing time by 2-3 orders of magnitude. Geometric corrections, such as projection of data points onto a digital elevation model, are numerically intensive and therefore it is desirable to perform them only once. Our approach reduces bottlenecks through parallel binning and efficient storage of a pre-processed database of observations. Database construction is via subdivision of a geodesic icosahedral grid, with a spatial resolution that can be tailored to suit the field of view of the observing instrument. Global geodesic grids with high spatial resolution are normally impractically memory intensive. We therefore demonstrate a minimum storage and highly parallel method to bin very large numbers of data points onto such a grid. A database of the pre-processed and binned points is then used for production of mapped data products that is significantly faster than if unprocessed points were used. We explore quality controls in the production of gridded data records by conditional interpolation, allowed only where data density is sufficient. The resultant effects on the spatial continuity and uncertainty in maps of lunar brightness temperatures is illustrated. We identify four binning regimes based on trades between the

  11. Surface temperatures in the polar regions from Nimbus 7 temperature humidity infrared radiometer

    Science.gov (United States)

    Comiso, Josefino C.

    1994-01-01

    Monthly surface temperatures in the Arctic and Antarctic regions have been derived from the 11.5 micrometer thermal infrared channel of the Nimbus 7 temperature humidity infrared radiometer (THIR) for a whole year in 1979 and for a winter and a summer month from 1980 through 1985. The data set shows interannual variability and provides spatial details that allow identification of temperature patterns over sea ice and ice sheet surfaces. For example, the coldest spot in the southern hemisphere is observed to be consistently in the Antarctic plateau in the southern hemisphere, while that in the northern hemisphere is usually located in Greenland, or one of three other general areas: Siberia, the central Arctic, or the Canadian Archipelago. Also, in the southern hemisphere, the amplitude of the seasonal fluctuation of ice sheet temperatures is about 3 times that of sea ice, while in the northern hemisphere, the corresponding fluctuations for the two surfaces are about the same. The main sources of error in the retrieval are cloud and other atmospheric effects. These were minimized by first choosing the highest radiance value from the set of measurements during the day taken within a 30 km by 30 km grid of each daily map. Then the difference of daily maps was taken and where the difference is greater than a certain threshold (which in this case is 12 C), the data element is deleted. Overall, the monthly maps derived from the resulting daily maps are spatially and temporally consistent, are coherent with the topograph y of the Antarctic continent and the location of the sea ice edge, and are in qualitative agreement with climatological data. Quantitatively, THIR data are in good agreement with Antarctic ice sheet surface air temperature station data with a correlation coefficient of 0.997 and a standard deviation of 2.0 C. The absolute values are not as good over the sea ice edges, but a comparison with Russian 2-m drift station temperatures shows very high correlation

  12. Long-term temporal stability of the National Institute of Standards and Technology spectral irradiance scale determined with absolute filter radiometers

    International Nuclear Information System (INIS)

    Yoon, Howard W.; Gibson, Charles E.

    2002-01-01

    The temporal stability of the National Institute of Standards and Technology (NIST) spectral irradiance scale as measured with broadband filter radiometers calibrated for absolute spectral irradiance responsivity is described. The working standard free-electron laser (FEL) lamps and the check standard FEL lamps have been monitored with radiometers in the ultraviolet and the visible wavelength regions. The measurements made with these two radiometers reveal that the NIST spectral irradiance scale as compared with an absolute thermodynamic scale has not changed by more than 1.5% in the visible from 1993 to 1999. Similar measurements in the ultraviolet reveal that the corresponding change is less than 1.5% from 1995 to 1999. Furthermore, a check of the spectral irradiance scale by six different filter radiometers calibrated for absolute spectral irradiance responsivity based on the high-accuracy cryogenic radiometer shows that the agreement between the present scale and the detector-based scale is better than 1.3% throughout the visible to the near-infrared wavelength region. These results validate the assigned spectral irradiance of the widely disseminated NIST or NIST-traceable standard sources

  13. Tomographic retrieval of cloud liquid water fields from a single scanning microwave radiometer aboard a moving platform – Part 1: Field trial results from the Wakasa Bay experiment

    Directory of Open Access Journals (Sweden)

    D. Huang

    2010-07-01

    Full Text Available Tomographic methods offer great potential for retrieving three-dimensional spatial distributions of cloud liquid water from radiometric observations by passive microwave sensors. Fixed tomographic systems require multiple radiometers, while mobile systems can use just a single radiometer. Part 1 (this paper examines the results from a limited cloud tomography trial with a single-radiometer airborne system carried out as part of the 2003 AMSR-E validation campaign over Wakasa Bay of the Sea of Japan. During this trial, the Polarimetric Scanning Radiometer (PSR and Microwave Imaging Radiometer (MIR aboard the NASA P-3 research aircraft provided a useful dataset for testing the cloud tomography method over a system of low-level clouds. We do tomographic retrievals with a constrained inversion algorithm using three configurations: PSR, MIR, and combined PSR and MIR data. The liquid water paths from the PSR retrieval are consistent with those from the MIR retrieval. The retrieved cloud field based on the combined data appears to be physically plausible and consistent with the cloud image obtained by a cloud radar. We find that some vertically-uniform clouds appear at high altitudes in the retrieved field where the radar shows clear sky. This is likely due to the sub-optimal data collection strategy. This sets the stage for Part 2 of this study that aims to define optimal data collection strategies using observation system simulation experiments.

  14. Soil Moisture Active Passive (SMAP) Project Algorithm Theoretical Basis Document SMAP L1B Radiometer Data Product: L1B_TB

    Science.gov (United States)

    Piepmeier, Jeffrey; Mohammed, Priscilla; De Amici, Giovanni; Kim, Edward; Peng, Jinzheng; Ruf, Christopher; Hanna, Maher; Yueh, Simon; Entekhabi, Dara

    2016-01-01

    The purpose of the Soil Moisture Active Passive (SMAP) radiometer calibration algorithm is to convert Level 0 (L0) radiometer digital counts data into calibrated estimates of brightness temperatures referenced to the Earth's surface within the main beam. The algorithm theory in most respects is similar to what has been developed and implemented for decades for other satellite radiometers; however, SMAP includes two key features heretofore absent from most satellite borne radiometers: radio frequency interference (RFI) detection and mitigation, and measurement of the third and fourth Stokes parameters using digital correlation. The purpose of this document is to describe the SMAP radiometer and forward model, explain the SMAP calibration algorithm, including approximations, errors, and biases, provide all necessary equations for implementing the calibration algorithm and detail the RFI detection and mitigation process. Section 2 provides a summary of algorithm objectives and driving requirements. Section 3 is a description of the instrument and Section 4 covers the forward models, upon which the algorithm is based. Section 5 gives the retrieval algorithm and theory. Section 6 describes the orbit simulator, which implements the forward model and is the key for deriving antenna pattern correction coefficients and testing the overall algorithm.

  15. Workshop 'Reducing the share of drilling in the total cost of geothermal power generation'; Workshop 'Senkung des bohrtechnischen Anteils an den geothermischen Stromgestehungskosten'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    For a further development of geothermal power generation, technological adaptations of drilling technology will be required that will reduce the specific power generation cost. This workshop discussed the options for adaptation and the resulting cost improvements. Both technical and non-technical issues were tackled. The full-text documents of the workshop (overheads) can be downloaded at http://www.ie-leipzig.de. Subjects were: (1) Downhole engine technology; (2) New drilling equipment in consideration of geothermal requirements; (3) New drilling equipment in consideration of geothermal requirements; (4) Innovative drilling concepts/ Current cost allotment; (5) Higher efficiency in drilling with flushing adapted to drilling horizons; (6) MWD/LWD technologies of the KW industry; (7) Completion technology in geothermal plants; (8) Time and cost planning in drilling plans; (9) Cost-optimized drilling from a drilling contractor's view; (10) Requirements and obstacles in the licensing of new drilling equipment. (orig.)

  16. Solar Total Energy System, Large Scale Experiment, Shenandoah, Georgia. Final technical progress report. Volume II, Section 3. Facility concept design. [1. 72 MW thermal and 383. 6 kW electric power for 42,000 ft/sup 2/ knitwear plant

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1977-10-17

    The Stearns-Roger Engineering Company conceptual design of ERDA's Large Scale Experiment No. 2 (LSE No. 2) is presented. The various LSEs are part of ERDA's Solar Total Energy Program (STES) and a separate activity of the National Solar Thermal Power Systems Program. The object of this LSE is to design, construct, test, evaluate and operate a STES for the purpose of obtaining experience with large scale hardware systems and to establish engineering capability for subsequent demonstration projects. This particular LSE is to be located at Shenandoah, Georgia, and will provide power to the Bleyle knitwear factory. The Solar Total Energy system is sized to supply 1.720 MW thermal power and 383.6 KW electrical power. The STES is sized for the extended knitwear plant of 3902 M/sup 2/ (42,000 sq-ft) which will eventually employ 300 people. The details of studies conducted for Phase II of the Solar Total Energy System (STES) for the conceptual design requirements of the facility are presented. Included in this section are the detailed descriptions and analyses of the following subtasks: facility concept design, system concept design, performance analysis, operation plan, component and subsystem development, procurement plan, cost estimating and scheduling, and technical and management plans. (WHK)

  17. FY 1996 report on the results of the development of superconductor power application technology. Study of a total system, etc. (Investigational study of the introductory effect); 1996 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. Total system nado no kenkyu (donyu koka no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Under the secondary interim assessment made in FY 1995 between the assessment committee of the energy/environment technology development sectional meeting of the Industrial Technology Deliberation Council and NEDO, in this project, the following were conducted in FY 1996: study of trial manufacture of superconductor motor model machine and R and D of element technology (conductor technology/refrigerator technology). The study was proceeded mainly with Super-GM, and as to the motor, the preparation for test on a part of the model machines was finished. Considering FY 1998 which is the final year of this project, the investigational study in FY 1996 aims at accumulating/arranging/analyzing the data which help judge how to proceed with the future R and D of superconductor power application technology continuously based on the secondary interim assessment. For superconductor motor and various superconductor power appliance, economical/technical feasibilities and methods of R and D and surveys of trends in Japan and abroad for the R and D were made important items. Further, 'R and D of the basement of superconductor power application' proposed in the secondary interim assessment (R and D of the combination of elements which become the basement of equipment technology over a stage of parallel R and D of element technology of conductor, etc.) targeted the presentation of concrete details. (NEDO)

  18. FY 1996 report on the results of the development of superconductor power application technology. Study of a total system, etc. (Investigational study of the introductory effect); 1996 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. Total system nado no kenkyu (donyu koka no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Under the secondary interim assessment made in FY 1995 between the assessment committee of the energy/environment technology development sectional meeting of the Industrial Technology Deliberation Council and NEDO, in this project, the following were conducted in FY 1996: study of trial manufacture of superconductor motor model machine and R and D of element technology (conductor technology/refrigerator technology). The study was proceeded mainly with Super-GM, and as to the motor, the preparation for test on a part of the model machines was finished. Considering FY 1998 which is the final year of this project, the investigational study in FY 1996 aims at accumulating/arranging/analyzing the data which help judge how to proceed with the future R and D of superconductor power application technology continuously based on the secondary interim assessment. For superconductor motor and various superconductor power appliance, economical/technical feasibilities and methods of R and D and surveys of trends in Japan and abroad for the R and D were made important items. Further, 'R and D of the basement of superconductor power application' proposed in the secondary interim assessment (R and D of the combination of elements which become the basement of equipment technology over a stage of parallel R and D of element technology of conductor, etc.) targeted the presentation of concrete details. (NEDO)

  19. Total phenolics and total flavonoids in selected Indian medicinal plants.

    Science.gov (United States)

    Sulaiman, C T; Balachandran, Indira

    2012-05-01

    Plant phenolics and flavonoids have a powerful biological activity, which outlines the necessity of their determination. The phenolics and flavonoids content of 20 medicinal plants were determined in the present investigation. The phenolic content was determined by using Folin-Ciocalteu assay. The total flavonoids were measured spectrophotometrically by using the aluminium chloride colorimetric assay. The results showed that the family Mimosaceae is the richest source of phenolics, (Acacia nilotica: 80.63 mg gallic acid equivalents, Acacia catechu 78.12 mg gallic acid equivalents, Albizia lebbeck 66.23 mg gallic acid equivalents). The highest total flavonoid content was revealed in Senna tora which belongs to the family Caesalpiniaceae. The present study also shows the ratio of flavonoids to the phenolics in each sample for their specificity.

  20. Power generation

    International Nuclear Information System (INIS)

    Nunez, Anibal D.

    2001-01-01

    In the second half of twentieth century, nuclear power became an industrial reality. Now the operating 433 power plants, the 37 plants under construction, near 9000 years/reactor with only one serious accident with emission of radioactive material to the environment (Chernobyl) show the maturity of this technology. Today nuclear power contribute a 17% to the global generation and an increase of 75 % of the demand of electricity is estimated for 2020 while this demand is expected to triplicate by 2050. How this requirement can be satisfied? All the indicators seems to demonstrate that nuclear power will be the solution because of the shortage of other sources, the increase of the prices of the non renewable fuels and the scarce contribution of the renewable ones. In addition, the climatic changes produced by the greenhouse effect make even more attractive nuclear power. The situation of Argentina is analyzed and compared with other countries. The convenience of an increase of nuclear power contribution to the total national generation seems clear and the conclusion of the construction of the Atucha II nuclear power plant is recommended