WorldWideScience

Sample records for total plant uptake

  1. Radioactive uptake by plants

    Energy Technology Data Exchange (ETDEWEB)

    Horak, O

    1986-01-01

    The fundamentals of radionuclide uptake by plants, both by leaves and roots are presented. Iodine, cesium, strontium and ruthenium are considered and a table of the measured concentrations in several agricultural plants shortly after the Chernobyl accident is presented. Another table gives the Cs and Sr transfer factors soil plants for some plants. By using them estimates of future burden can be obtained.

  2. Total and Bioaccessible Soil Arsenic and Lead Levels and Plant Uptake in Three Urban Community Gardens in Puerto Rico

    Directory of Open Access Journals (Sweden)

    John Misenheimer

    2018-01-01

    Full Text Available Arsenic (As and lead (Pb are two contaminants of concern associated with urban gardening. In Puerto Rico, data currently is limited on As and Pb levels in urban garden soils, soil metal (loid bioaccessibility, and uptake of As and Pb in soil by edible plants grown in the region. This study examined total and bioaccessible soil As and Pb concentrations and accumulation in 10 commonly grown garden plants collected from three urban community gardens in Puerto Rico. Bioavailability values were predicted using bioaccessibility data to compare site-specific bioavailability estimates to commonly used default exposure assumptions. Total and bioaccessible As levels in study soils ranged from 2 to 55 mg/kg and 1 to 18 mg/kg, respectively. Total and bioaccessible Pb levels ranged from 19 to 172 mg/kg and 17 to 97 mg/kg, respectively. Measured bioaccessibility values corresponded to 19% to 42% bioaccessible As and 61% to 100% bioaccessible Pb when expressed as a percent of total As and Pb respectively. Predicted relative percent bioavailability of soil As and Pb based on measured bioaccessibility values ranged from 18% to 36% and 51% to 85% for As and Pb respectively. Transfer factors (TFs measuring uptake of As in plants from soil ranged from 0 to 0.073 in the edible flesh (fruit or vegetable of plant tissues analyzed and 0.073 to 0.444 in edible leaves. Pb TFs ranged from 0.002 to 0.012 in flesh and 0.023 to 0.204 in leaves. Consistent with TF values, leaves accumulated higher concentrations of As and Pb than the flesh, with the highest tissue concentrations observed in the culantro leaf (3.2 mg/kg dw of As and 8.9 mg/kg dw of Pb. Leaves showed a general but not statistically-significant (α = 0.05 trend of increased As and Pb concentration with increased soil levels, while no trend was observed for flesh tissues. These findings provide critical data that can improve accuracy and reduce uncertainty when conducting site-specific risk determination of

  3. Total and Bioaccessible Soil Arsenic and Lead Levels and Plant Uptake in Three Urban Community Gardens in Puerto Rico

    Science.gov (United States)

    Arsenic (As) and lead (Pb) are two contaminants of concern associated with urban gardening. In Puerto Rico, data currently is limited on As and Pb levels in urban garden soils, soil metal (loid) bioaccessibility, and uptake of As and Pb in soil by edible plants grown in the regio...

  4. Toxicity of arsenic (III) and (V) on plant growth, element uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina).

    Science.gov (United States)

    Mokgalaka-Matlala, Ntebogeng S; Flores-Tavizón, Edith; Castillo-Michel, Hiram; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2008-01-01

    The effects of arsenite [As(III)] and arsenate [As(V)] on the growth of roots, stems, and leaves and the uptake of arsenic (As), micro- and macronutrients, and total amylolytic activity were investigated to elucidate the phytotoxicity of As to the mesquite plant (Prosopis juliflora x P. velutina). The plant growth was evaluated by measuring the root and shoot length, and the element uptake was determined using inductively coupled plasma optical emission spectroscopy. The root and leaf elongation decreased significantly with increasing As(III) and As(V) concentrations; whereas, stem elongation remained unchanged. The As uptake increased with increasing As(III) or As(V) concentrations in the medium. Plants treated with 50 mg/L As(III) accumulated up to 920 mg/kg dry weight (d wt) in roots and 522 mg/kg d wt in leaves, while plants exposed to 50 mg/L As(V) accumulated 1980 and 210 mg/kg d wt in roots and leaves, respectively. Increasing the As(V) concentration up to 20 mg/L resulted in a decrease in the total amylolytic activity. On the contrary, total amylolytic activity in As(III)-treated plants increased with increasing As concentration up to 20 mg/L. The macro- and micronutrient concentrations changed in As-treated plants. In shoots, Mo and K were reduced but Ca was increased, while in roots Fe and Ca were increased but K was reduced. These changes reduced the size of the plants, mainly in the As(III)-treated plants; however, there were no visible sign of As toxicity.

  5. Cadmium uptake by plants

    Energy Technology Data Exchange (ETDEWEB)

    Haghiri, F.

    1973-01-01

    Absorption of /sup 115m/Cd by soybean (Gylcine max l.) plants via foliar and root systems and translocation into the seed was determined. The uptake of /sup 115m/Cd by soybeans via the root system was more efficient than that of the foliar placement. Growth and Cd concentrations of soybean and wheat (Triticum aestivum l.) tops were influenced by soil-applied Cd. In both crops, the Cd concentration of plant tops increased while yield decreased with increasing levels of applied Cd. Cadmium toxicitiy began to occur in both crops at the lowest level of soil applied Cd (2.5 ppM). With soybean plants, Cd toxicity symptoms resembled fe chlorosis. For wheat plants there were no visual symptoms other than the studied growth. The relative concentration of Cd found in several vegetable crops varied depending on the plant species. The relative Cd concentration in descending order for various vegetables was lettuce (Lactuca sativa l.) > radish top (Raphanus sativus l.) > celery stalk (Apium graveolens l.) > celery leaves greater than or equal to green pepper (Capsicum frutescens l.) > radish roots.

  6. Uptake of nuclides by plants

    International Nuclear Information System (INIS)

    Greger, Maria

    2004-04-01

    This review on plant uptake of elements has been prepared to demonstrate how plants take up different elements. The work discusses the nutrient elements, as well as the general uptake and translocation in plants, both via roots and by foliar absorption. Knowledge of the uptake by the various elements within the periodic system is then reviewed. The work also discusses transfer factors (TF) as well as difficulties using TF to understand the uptake by plants. The review also focuses on species differences. Knowledge necessary to understand and calculate plant influence on radionuclide recirculation in the environment is discussed, in which the plant uptake of a specific nuclide and the fate of that nuclide in the plant must be understood. Plants themselves determine the uptake, the soil/sediment determines the availability of the nuclides and the nuclides themselves can interact with each other, which also influences the uptake. Consequently, it is not possible to predict the nuclide uptake in plants by only analysing the nuclide concentration of the soil/substrate

  7. Uptake of nuclides by plants

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria [Stockholm Univ. (Sweden). Dept. of Botany

    2004-04-01

    This review on plant uptake of elements has been prepared to demonstrate how plants take up different elements. The work discusses the nutrient elements, as well as the general uptake and translocation in plants, both via roots and by foliar absorption. Knowledge of the uptake by the various elements within the periodic system is then reviewed. The work also discusses transfer factors (TF) as well as difficulties using TF to understand the uptake by plants. The review also focuses on species differences. Knowledge necessary to understand and calculate plant influence on radionuclide recirculation in the environment is discussed, in which the plant uptake of a specific nuclide and the fate of that nuclide in the plant must be understood. Plants themselves determine the uptake, the soil/sediment determines the availability of the nuclides and the nuclides themselves can interact with each other, which also influences the uptake. Consequently, it is not possible to predict the nuclide uptake in plants by only analysing the nuclide concentration of the soil/substrate.

  8. Total Logistic Plant Solutions

    Directory of Open Access Journals (Sweden)

    Dusan Dorcak

    2016-02-01

    Full Text Available The Total Logistics Plant Solutions, plant logistics system - TLPS, based on the philosophy of advanced control processes enables complex coordination of business processes and flows and the management and scheduling of production in the appropriate production plans and planning periods. Main attributes of TLPS is to create a comprehensive, multi-level, enterprise logistics information system, with a certain degree of intelligence, which accepts the latest science and research results in the field of production technology and logistics. Logistic model of company understands as a system of mutually transforming flows of materials, energy, information, finance, which is realized by chain activities and operations

  9. Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants.

    Science.gov (United States)

    He, Jie; Austin, Paul T; Lee, Sing Kong

    2010-09-01

    Effects of elevated root zone (RZ) CO(2) and air temperature on photosynthesis, productivity, nitrate (NO(3)(-)), and total reduced nitrogen (N) content in aeroponically grown lettuce plants were studied. Three weeks after transplanting, four different RZ [CO(2)] concentrations [ambient (360 ppm) and elevated concentrations of 2000, 10,000, and 50,000 ppm] were imposed on plants grown at two air temperature regimes of 28 degrees C/22 degrees C (day/night) and 36 degrees C/30 degrees C. Photosynthetic CO(2) assimilation (A) and stomatal conductance (g(s)) increased with increasing photosynthetically active radiation (PAR). When grown at 28 degrees C/22 degrees C, all plants accumulated more biomass than at 36 degrees C/30 degrees C. When measured under a PAR >or=600 micromol m(-2) s(-1), elevated RZ [CO(2)] resulted in significantly higher A, lower g(s), and higher midday leaf relative water content in all plants. Under elevated RZ [CO(2)], the increase of biomass was greater in roots than in shoots, causing a lower shoot/root ratio. The percentage increase in growth under elevated RZ [CO(2)] was greater at 36 degrees C/30 degrees C although the total biomass was higher at 28 degrees C/22 degrees C. NO(3)(-) and total reduced N concentrations of shoot and root were significantly higher in all plants under elevated RZ [CO(2)] than under ambient RZ [CO(2)] of 360 ppm at both temperature regimes. At each RZ [CO(2)], NO(3)(-) and total reduced N concentration of shoots were greater at 28 degrees C/22 degrees C than at 36 degrees C/30 degrees C. At all RZ [CO(2)], roots of plants at 36 degrees C/30 degrees C had significantly higher NO(3)(-) and total reduced N concentrations than at 28 degrees C/22 degrees C. Since increased RZ [CO(2)] caused partial stomatal closure, maximal A and maximal g(s) were negatively correlated, with a unique relationship for each air temperature. However, across all RZ [CO(2)] and temperature treatments, there was a close correlation between

  10. Uptake of organic nitrogen by plants

    Science.gov (United States)

    Torgny Nasholm; Knut Kielland; Ulrika. Ganeteg

    2009-01-01

    Languishing for many years in the shadow of plant inorganic nitrogen (N) nutrition research, studies of organic N uptake have attracted increased attention during the last decade. The capacity of plants to acquire organic N, demonstrated in laboratory and field settings, has thereby been well established. Even so, the ecological significance of organic N uptake for...

  11. Total and bioavailable arsenic concentration in arid soils and its uptake by native plants from the pre-Andean zones in Chile.

    Science.gov (United States)

    Díaz, O; Tapia, Y; Pastene, R; Montes, S; Núñez, N; Vélez, D; Montoro, R

    2011-06-01

    Arsenic is the most important contaminant of the environment in northern Chile. Soil samples and plant organs from three native plant species, Pluchea absinthioides, Atriplex atacamensis and Lupinus microcarpus, were collected from arid zones in order to determine the total and bioavailable arsenic concentrations in soils and to assess the bioconcentration factor (BCF) and transport index (Ti) of arsenic in the plants. Total arsenic concentrations in soils (pH 8.3-8.5) where A. atacamensis and P. absinthioides were collected, reached levels considered to be contaminated (54.3 ± 15.4 and 52.9 ± 9.9 mg kg⁻¹, respectively), and these values were approximately ten times higher than in soils (pH 7.6) where L. microcarpus was collected. Bioavailable arsenic ranged from 0.18 to 0.42% of total arsenic concentration. In the three plant species, arsenic concentration in leaves were significantly (p ≤ 0.05) higher than in roots. L. microcarpus showed the highest arsenic concentration in its leaves (9.7 ± 1.6 mg kg⁻¹) and higher values of BCF (1.8) and Ti (6.1), indicating that this species has a greater capacity to accumulate and translocate the metalloid to the leaf than do the other species.

  12. Radioiodine uptake by plants from soils

    International Nuclear Information System (INIS)

    Sabova, T.

    1976-01-01

    The uptake and accumulation of radioiodine by wheat, maize and peas from various types of soil have been studied. The uptake depends on the type of soil, on its content of organic matter and on the amount of fertilizer. Radioiodine is mainly accumulated in the roots. Accumulation in above-ground plant parts decreases in the following order: wheat, maize, peas. Uptake was highest from humus and clay soils and lowest from black and meadow soils. Application of chloride fertilizer or carrier iodine lead to an increase of radioiodine uptake in the whole plant. (author)

  13. The uptake of radionuclides by plants

    International Nuclear Information System (INIS)

    Cawse, P.A.; Turner, G.S.

    1982-02-01

    A review of the literature, since 1970, on the research into the uptake of radionuclides by plants, with references to earlier soil and plant studies on the fate of nuclear weapons fallout. Experimental data on the uptake of plutonium isotopes, americium 241, cesium 137, radium 226, curium 244 and neptunium 237 and details of the chemical form of the radionuclide, soil type and plant growth period are tabulated. (U.K.)

  14. Uptake and transport of chromium in plants

    International Nuclear Information System (INIS)

    Ramachandran, V.; D'souza, T.J.; Mistry, K.B.

    1980-01-01

    The uptake of chromium, an important soil and water pollutant, by five different plant species was examined in nutrient culture experiments using chromium-51 as a tracer. The concentration in aerial tissues of both trivalent and hexavalent forms of chromium was the greatest in peas followed by beans, tomato and the cereals over identical uptake periods. The uptake of 51 Cr 3+ was, in general, greater than 51 CrO 4 2- . Studies with bean plants indicated that shoot uptake of both forms of chromium decreased with increasing pH and salt concentration of the external solution. Concentrations of 10 -4 M and 10 -5 M DNP inhibited 51 Cr uptake by bean shoots. (author)

  15. Uptake of mineral elements by plants

    International Nuclear Information System (INIS)

    Ven Babu, P.

    2008-01-01

    Scientific investigations into the mineral nutrition of plants, date back to the late 17th century and vast amount of literature has accumulated since then, encompassing the occurrence of mineral elements, their interaction in soil and within plants, kinetics of their uptake, role in metabolism, toxicity to plants and animals and so on. Despite great advances made in the fields of plant physiology, plant biochemistry and genetic engineering and application of sophisticated analytical and biochemical techniques, many aspects of nutrient uptake by plants, their movement within roots and the long distance transport to shoots remain yet to be fully answered and a combination of hypothesis and assumptions are taken into account, for understanding the phenomena. This write up deals with the subject in a brief and narrative manner, so as to enable the reader to get an insight into the field

  16. Uranium uptake by hydroponically cultivated crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Soudek, Petr; Petrova, Sarka [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Benesova, Dagmar [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Faculty of Environment Technology, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Dvorakova, Marcela [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Vanek, Tomas, E-mail: vanek@ueb.cas.cz [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic)

    2011-06-15

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC{sub 50} value about 0.1 mM. Cucumis sativa represented the most resistant plant to uranium (EC{sub 50} = 0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1 mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1 mM or 0.5 mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. - Highlights: > The uranium accumulation in twenty different plant species varied from 0.160 to 0.011 mg/g DW. > Uranium is mainly localized in the root system. > Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba. > The phosphates deficiency increase the uranium uptake.

  17. Uranium uptake by hydroponically cultivated crop plants

    International Nuclear Information System (INIS)

    Soudek, Petr; Petrova, Sarka; Benesova, Dagmar; Dvorakova, Marcela; Vanek, Tomas

    2011-01-01

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC 50 value about 0.1 mM. Cucumis sativa represented the most resistant plant to uranium (EC 50 = 0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1 mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1 mM or 0.5 mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. - Highlights: → The uranium accumulation in twenty different plant species varied from 0.160 to 0.011 mg/g DW. → Uranium is mainly localized in the root system. → Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba. → The phosphates deficiency increase the uranium uptake.

  18. Plant uptake of radionuclides and rhizosphere factors

    Energy Technology Data Exchange (ETDEWEB)

    Arie, Tsutomu; Gouthu, S.; Ambe, Shizuko; Yamaguchi, Isamu [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Hirata, Hiroaki

    1999-03-01

    Influence of soil factors such as nuclide availability, pH, organic carbon, cation exchange capacity (CEC), exchangeable cations (Ca{sup 2+}, Mg{sup 2+}, and K{sup +}), phosphate absorption coefficient (PAC), physical composition of soil (coarse sand, fine sand, silt, and clay), soil texture, and rhizosphere microbes on uptake of radionuclides by plants are studied. (author)

  19. Plant uptake of radionuclides and rhizosphere factors

    International Nuclear Information System (INIS)

    Arie, Tsutomu; Gouthu, S.; Ambe, Shizuko; Yamaguchi, Isamu; Hirata, Hiroaki

    1999-01-01

    Influence of soil factors such as nuclide availability, pH, organic carbon, cation exchange capacity (CEC), exchangeable cations (Ca 2+ , Mg 2+ , and K + ), phosphate absorption coefficient (PAC), physical composition of soil (coarse sand, fine sand, silt, and clay), soil texture, and rhizosphere microbes on uptake of radionuclides by plants are studied. (author)

  20. Arsenic Uptake and Translocation in Plants.

    Science.gov (United States)

    Li, Nannan; Wang, Jingchao; Song, Won-Yong

    2016-01-01

    Arsenic (As) is a highly toxic metalloid that is classified as a non-threshold class-1 carcinogen. Millions of people worldwide suffer from As toxicity due to the intake of As-contaminated drinking water and food. Reducing the As concentration in drinking water and food is thus of critical importance. Phytoremediation of soil contaminated with As and the reduction of As contamination in food depend on a detailed understanding of As uptake and transport in plants. As transporters play essential roles in As uptake, translocation and accumulation in plant cells. In this review, we summarize the current understanding of As transport in plants, with an emphasis on As uptake, mechanisms of As resistance and the long-distance translocation of As, especially the accumulation of As in grains through phloem-mediated transport. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Soil As and Pb Levels and Plant Uptake in Three Gardens in Puerto Rico

    Data.gov (United States)

    U.S. Environmental Protection Agency — Total and bioaccessible arsenic and lead levels and plant uptake in garden plants from Puerto Rico. This dataset is not publicly accessible because: EPA cannot...

  2. Numerical Modeling for the Solute Uptake from Groundwater by Plants-Plant Uptake Package

    OpenAIRE

    El-Sayed, Amr A.

    2006-01-01

    A numerical model is presented to describe solute transport in groundwater coupled to sorption by plant roots, translocation into plant stems, and finally evapotranspiration. The conceptual model takes into account both Root Concentration Factor, RCF, and Transpiration Stream Concentration Factor, TSCF for chemicals which are a function of Kow. A similar technique used to simulate the solute transport in groundwater to simulate sorption and plant uptake is used. The mathematical equation is s...

  3. New concepts for dynamic plant uptake models

    DEFF Research Database (Denmark)

    Rein, Arno; Legind, Charlotte Nielsen; Trapp, Stefan

    2011-01-01

    Models for the prediction of chemical uptake into plants are widely applied tools for human and wildlife exposure assessment, pesticide design and for environmental biotechnology such as phytoremediation. Steady-state considerations are often applied, because they are simple and have a small data...... need. However, often the emission pattern is non-steady. Examples are pesticide spraying, or the application of manure and sewage sludge on agricultural fields. In these scenarios, steady-state solutions are not valid, and dynamic simulation is required. We compared different approaches for dynamic...

  4. Differences in root uptake of radiocaesium by 30 plant taxa

    Energy Technology Data Exchange (ETDEWEB)

    Broadley, M R; Willey, N J [University of the West of England, Bristol (United Kingdom). Faculty of Applied Sciences

    1998-12-31

    The concentration of Cs was measured in the shoots of 30 taxa of plants after exposing the roots for 6 h to 0.1 {mu}g radiolabelled Cs g{sup -1} soil. There were maximum differences between Chenopodium quinoa and Koeleria macrantha of 20-fold in Cs concentration and 100-fold in total Cs accumulated. There was a weak relationship between Rb(K) and Cs concentration across the 30 taxa, but a strong relationship within the Gramineae and Chenopodiaceae. Taxa in the Chenopodiaceae discriminated approximately nine times less between Rb and Cs during uptake than did those in the Gramineae. The lowest Cs concentrations occurred in slow growing Gramineae and the highest in fast growing Chenopodiaceae. If radiocaesium uptake by the Chenopodiaceae during chronic exposures shows similar patterns to those reported here after acute exposure, then the food contamination implications and the potential for phytoremediation of radiocaesium contaminated soils using plants in this family may be worth investigating. (author).

  5. Differences in root uptake of radiocaesium by 30 plant taxa

    International Nuclear Information System (INIS)

    Broadley, M.R.; Willey, N.J.

    1997-01-01

    The concentration of Cs was measured in the shoots of 30 taxa of plants after exposing the roots for 6 h to 0.1 μg radiolabelled Cs g -1 soil. There were maximum differences between Chenopodium quinoa and Koeleria macrantha of 20-fold in Cs concentration and 100-fold in total Cs accumulated. There was a weak relationship between Rb(K) and Cs concentration across the 30 taxa, but a strong relationship within the Gramineae and Chenopodiaceae. Taxa in the Chenopodiaceae discriminated approximately nine times less between Rb and Cs during uptake than did those in the Gramineae. The lowest Cs concentrations occurred in slow growing Gramineae and the highest in fast growing Chenopodiaceae. If radiocaesium uptake by the Chenopodiaceae during chronic exposures shows similar patterns to those reported here after acute exposure, then the food contamination implications and the potential for phytoremediation of radiocaesium contaminated soils using plants in this family may be worth investigating. (author)

  6. Differences in root uptake of radiocaesium by 30 plant taxa

    Energy Technology Data Exchange (ETDEWEB)

    Broadley, M.R.; Willey, N.J. [University of the West of England, Bristol (United Kingdom). Faculty of Applied Sciences

    1997-12-31

    The concentration of Cs was measured in the shoots of 30 taxa of plants after exposing the roots for 6 h to 0.1 {mu}g radiolabelled Cs g{sup -1} soil. There were maximum differences between Chenopodium quinoa and Koeleria macrantha of 20-fold in Cs concentration and 100-fold in total Cs accumulated. There was a weak relationship between Rb(K) and Cs concentration across the 30 taxa, but a strong relationship within the Gramineae and Chenopodiaceae. Taxa in the Chenopodiaceae discriminated approximately nine times less between Rb and Cs during uptake than did those in the Gramineae. The lowest Cs concentrations occurred in slow growing Gramineae and the highest in fast growing Chenopodiaceae. If radiocaesium uptake by the Chenopodiaceae during chronic exposures shows similar patterns to those reported here after acute exposure, then the food contamination implications and the potential for phytoremediation of radiocaesium contaminated soils using plants in this family may be worth investigating. (author).

  7. Radiolabeling as a tool to study uptake pathways in plants

    Energy Technology Data Exchange (ETDEWEB)

    Schymura, Stefan; Hildebrand, Heike; Franke, Karsten [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactive Transport; Fricke, T. [Vita34 BioPlanta, Leipzig (Germany)

    2017-06-01

    The identification of major uptake pathways in plants is an important factor when evaluation the fate of manufactured nanoparticles in the environment and the associated risks. Using different radiolabeling techniques we were able to show a predominantly particulate uptake for CeO{sub 2} nanoparticles (NPs) in contrast to a possible uptake in the form of ionic cerium.

  8. The mechanisms of caesium uptake by plants

    International Nuclear Information System (INIS)

    White, P.; Bowen, H.; Broadley, M.; Hammond, J.; Hampton, C.; Payne, K.

    2004-01-01

    Persistent radioactive isotopes of caesium ( 134 Cs and 137 Cs) in the environment are of concern because they impact on both health and commerce. They enter the terrestrial food chain through plants. Plant roots take up Cs + from the soil solution. To reach the shoot via the xylem, Cs + must cross the plasma membranes of root cells at least twice. This is catalysed by transport proteins. Since Cs is an alkali metal with chemical properties similar to potassium (K), it has been suggested that the same proteins that transport K + also transport Cs + . However, the Cs:K ratio in the shoots of different plant species grown under identical conditions varies widely. Since different transport proteins have contrasting abilities to discriminate between Cs + and K + , this varying Cs:K ratio suggests that a different complement of transport proteins operates in different plant species. In the plasma membrane of root cells inward-rectifying K + channels (KIRCs), outward-rectifying cation channels (KORCs and NORCs), voltage-independent cation channels (VICCs) and voltage-dependent Ca 2+ channels (HACCs and DACCs) are all permeable to Cs + and K + . In addition, the 'high-affinity' K + /H + symporters (KUPs) and 'low affinity' transporters, such as the wheat TaLCT1 protein, may also transport Cs + and K + . The relative abundance and selectivity of these transport proteins in the root plasma membrane will determine the relative fluxes of Cs + and K + to the shoot. Theoretical models describing Cs + fluxes across the plasma membrane of root cells predict that, under natural conditions, VICCs mediate most (30 to 90%) of the Cs + influx, with KUPs mediating the remainder, Cs + influx through KIRCs is negligible, and stelar KORCs load Cs + into the xylem. These predictions are consistent with the identical pharmacology of VICCs and Cs + uptake by plants, which are both partially inhibited by La 3+ , Ba 2+ or Ca 2+ at millimolar concentrations, and the phenotypes of Arabidopsis

  9. Plant Growth and Phosphorus Uptake of Three Riparian Grass Species

    Science.gov (United States)

    Riparian buffers can significantly reduce sediment-bound phosphorus (P) entering surface water, but control of dissolved P inputs is more challenging. Because plant roots remove P from soil solution, it follows that plant uptake will reduce dissolved P losses. We evaluated P uptake of smooth bromegr...

  10. A mechanistic compartmental model for total antibody uptake in tumors.

    Science.gov (United States)

    Thurber, Greg M; Dane Wittrup, K

    2012-12-07

    Antibodies are under development to treat a variety of cancers, such as lymphomas, colon, and breast cancer. A major limitation to greater efficacy for this class of drugs is poor distribution in vivo. Localization of antibodies occurs slowly, often in insufficient therapeutic amounts, and distributes heterogeneously throughout the tumor. While the microdistribution around individual vessels is important for many therapies, the total amount of antibody localized in the tumor is paramount for many applications such as imaging, determining the therapeutic index with antibody drug conjugates, and dosing in radioimmunotherapy. With imaging and pretargeted therapeutic strategies, the time course of uptake is critical in determining when to take an image or deliver a secondary reagent. We present here a simple mechanistic model of antibody uptake and retention that captures the major rates that determine the time course of antibody concentration within a tumor including dose, affinity, plasma clearance, target expression, internalization, permeability, and vascularization. Since many of the parameters are known or can be estimated in vitro, this model can approximate the time course of antibody concentration in tumors to aid in experimental design, data interpretation, and strategies to improve localization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Plant uptake of radiocesium from contaminated soils

    International Nuclear Information System (INIS)

    Pipiska, M.; Lesny, J.; Hornik, M.; Augustin, J.

    2004-01-01

    Phytoextraction field experiments were conducted on soil contaminated with radiocesium to determine the capacity of autochthonous grasses and weeds to accumulate 137 Cs. The aim of the study was to evaluate the potential of spontaneously growing vegetation as a tool for decontamination of non-agricultural contaminated land. As a test field, the closed monitored area of the radioactive wastewater treatment plant of the Nuclear Power Plant in Jaslovskie Bohunice, Slovakia was used. contamination was irregularly distributed from the level of background to spots with maximal activity up to 900 Bq/g soil. Sequential extraction analysis of soil samples showed the following extractability of radiocesium (as percent of total): water 2 = 0.3-1.1%; 1M CH 3 COONa = 0.3-0.9%; 0.04 M NH 4 Cl (in 25% CH 3 COOH) = 0.9-1.4% and 30% H 2 O 2 - 0.02 M HNO 3 = 4.5-9.0%.Specific radioactivity of the most efficiently bioaccumulating plant species did not exceed 4.0 BqKg -1 (dry weight biomass). These correspond to the soil-to-plant transfer factor (TF) values up to 44.4x10 -4 BqKg -1 crop, d.w.)/(BqKg -1 soil d.w). Aggregated transfer factor (T ag ) of the average sample of the whole crop harvested from defined area was 0.5x10 -5 (Bqkg -1 d.w. crop)/(Bqm -2 soil). It can be concluded that low mobility of radiocesium in analysed soil type, confirmed by sequential extraction analyses, is the main hindrance for practical application for autochthonous plants as a phytoremediation tool for aged contaminated area of non-cultivated sites. Plant cover can efficiently serve only as a soil surface-stabilising layer, mitigating the migration of radiocesium into the surrounding environment. (author)

  12. The Uptake by Plants of Diethylstilboestrol and of Its Glucuronide

    DEFF Research Database (Denmark)

    Gregers Hansen, B.

    1964-01-01

    The uptake of diethylstilboestrol and its glucuronide by plants could, under certain circumstances, present a potential health hazard. The relative uptake of the two compounds has therefore been studied in rye grass, red clover, mushrooms, and maize in pot and water culture experiments. It is con......The uptake of diethylstilboestrol and its glucuronide by plants could, under certain circumstances, present a potential health hazard. The relative uptake of the two compounds has therefore been studied in rye grass, red clover, mushrooms, and maize in pot and water culture experiments...

  13. Phosphorus deficiency enhances molybdenum uptake by tomato plants

    International Nuclear Information System (INIS)

    Heuwinkel, H.; Kirkby, E.A.; Le Bot, J.; Marschner, H.

    1992-01-01

    Water culture experiments are described which provide conclusive evidence that Mo uptake by tomato plants is markedly enhanced by P deficiency. In a longterm experiment, which ran for 11 days, in marked contrast to the uptake of other nutrients, a three fold higher Mo uptake rate was observed after only four days of withdrawal of P from the nutrient medium. In contrast to the gradual increase in pH of the nutrient medium of the plants supplied with P, the pH in the medium of the -P plants fell. Throughout the growth of these plants net H+ efflux could be accounted for by excess cation over anion uptake, indicating that organic acid extrusion plays no major role in the observed fall in pH. Further evidence that Mo uptake is enhanced in P deficient tomato plants is provided in short-term nutrient solution experiments (1h and 4h) using radioactive molybdenum (99Mo). Compared with P sufficient plants, the uptake rates of 99Mo by P deficient plants were three to five times higher after 1h and nine to twelve times higher after 4h. Resupplying P during the uptake periods to deficient plants reduced the uptake rate of 99Mo to values similar to those of P sufficient plants. It is concluded that the uptake of molybdate occurs via phosphate binding/ transporting sites at the plasma membrane of root cells. Further support for this conclusion comes from exchange experiments with non-labelled molybdenum, which show a much larger amount of 99Mo exchangeable from the roots of P deficient plants

  14. Influence of plant root morphology and tissue composition on phenanthrene uptake: Stepwise multiple linear regression analysis

    International Nuclear Information System (INIS)

    Zhan, Xinhua; Liang, Xiao; Xu, Guohua; Zhou, Lixiang

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that reside mainly in surface soils. Dietary intake of plant-based foods can make a major contribution to total PAH exposure. Little information is available on the relationship between root morphology and plant uptake of PAHs. An understanding of plant root morphologic and compositional factors that affect root uptake of contaminants is important and can inform both agricultural (chemical contamination of crops) and engineering (phytoremediation) applications. Five crop plant species are grown hydroponically in solutions containing the PAH phenanthrene. Measurements are taken for 1) phenanthrene uptake, 2) root morphology – specific surface area, volume, surface area, tip number and total root length and 3) root tissue composition – water, lipid, protein and carbohydrate content. These factors are compared through Pearson's correlation and multiple linear regression analysis. The major factors which promote phenanthrene uptake are specific surface area and lipid content. -- Highlights: •There is no correlation between phenanthrene uptake and total root length, and water. •Specific surface area and lipid are the most crucial factors for phenanthrene uptake. •The contribution of specific surface area is greater than that of lipid. -- The contribution of specific surface area is greater than that of lipid in the two most important root morphological and compositional factors affecting phenanthrene uptake

  15. Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils

    International Nuclear Information System (INIS)

    Vinichuk, M.; Mårtensson, A.; Ericsson, T.; Rosén, K.

    2013-01-01

    The potential use of mycorrhiza as a bioremediation agent for soils contaminated by radiocesium was evaluated in a greenhouse experiment. The uptake of 137 Cs by cucumber, perennial ryegrass, and sunflower after inoculation with a commercial arbuscular mycorrhizal (AM) product in soils contaminated with 137 Cs was investigated, with non-mycorrhizal quinoa included as a “reference” plant. The effect of cucumber and ryegrass inoculation with AM fungi on 137 Cs uptake was inconsistent. The effect of AM fungi was most pronounced in sunflower: both plant biomass and 137 Cs uptake increased on loamy sand and loamy soils. The total 137 Cs activity accumulated within AM host sunflower on loamy sand and loamy soils was 2.4 and 3.2-fold higher than in non-inoculated plants. Although the enhanced uptake of 137 Cs by quinoa plants on loamy soil inoculated by the AM fungi was observed, the infection of the fungi to the plants was not confirmed. - Highlights: ► Effect of soil inoculation on 137 Cs uptake by crops was studied in greenhouse. ► 137 Cs uptake by inoculated sunflower plants was most pronounced. ► The higher 137 Cs uptake by inoculated sunflower due to presence of mycorrhiza. ► Studies suggest potential for use of mycorrhiza on contaminated sites.

  16. Uptake and translocation of 109Cd and stable Cd within tobacco plants (Nicotiana sylvestris)

    International Nuclear Information System (INIS)

    Rosén, K.; Eriksson, J.; Vinichuk, M.

    2012-01-01

    The availability, uptake, and translocation of recently added ( 109 Cd) and naturally occurring (stable) soil Cd within tobacco plants were compared. 109 Cd was added to soil in two treatments, A (0.25 MBq kg soil −1 DW) and B (eight-fold dose): stable Cd was measured in both treatments. Both the added and the stable Cd were higher in leaves and reproductive structures of the plant than in stalks and roots. The uptake of 109 Cd was 5.3 kBq plant −1 for treatment A and 36.7 kBq plant −1 for treatment B, and about 26 μg plant −1 for stable Cd. Leaves of the tobacco plants accumulated 40–45% of the total 109 Cd and about 50% of total stable Cd taken up by the plant. Cadmium concentration in the plant was three times higher than in roots and two times higher than the concentration in soil: the concentration in roots was lower than in the soil. - Capsule: The availability, uptake, and translocation of recently added ( 109 Cd) and naturally occurring (stable) soil Cd within tobacco plants (Nicotiana sylvestris) were investigated. - Highlights: ► We compared uptake recently added and naturally occurring soil Cd by tobacco plant. ► Both added and stable Cd display similar uptake and translocation within the plant. ► Leaves of tobacco plants accumulate half of the total Cd taken up by the plant. ► Recently added 109 Cd to soil is more available than naturally occurring cadmium.

  17. Estimating plant root water uptake using a neural network approach

    DEFF Research Database (Denmark)

    Qiao, D M; Shi, H B; Pang, H B

    2010-01-01

    but has not yet been addressed. This paper presents and tests such an approach. The method is based on a neural network model, estimating the water uptake using different types of data that are easy to measure in the field. Sunflower grown in a sandy loam subjected to water stress and salinity was taken......Water uptake by plant roots is an important process in the hydrological cycle, not only for plant growth but also for the role it plays in shaping microbial community and bringing in physical and biochemical changes to soils. The ability of roots to extract water is determined by combined soil...... and plant characteristics, and how to model it has been of interest for many years. Most macroscopic models for water uptake operate at soil profile scale under the assumption that the uptake rate depends on root density and soil moisture. Whilst proved appropriate, these models need spatio-temporal root...

  18. Plant water relations I: uptake and transport

    Science.gov (United States)

    Plants, like all living things, are mostly water. Water is the matrix of life, and its availability determines the distribution and productivity of plants on earth. Vascular plants evolved structures that enable them to transport water long distances with little input of energy, but the hollow trach...

  19. Uptake by plants of radionuclides from FUSRAP waste materials

    International Nuclear Information System (INIS)

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables

  20. Uptake by plants of radionuclides from FUSRAP waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables.

  1. Uranium uptake by hydroponically cultivated crop plants

    Czech Academy of Sciences Publication Activity Database

    Soudek, Petr; Petrová, Šárka; Benešová, Dagmar; Dvořáková, Marcela; Vaněk, Tomáš

    2011-01-01

    Roč. 102, č. 6 (2011), s. 598-604 ISSN 0265-931X R&D Projects: GA MŠk OC09082; GA MŠk 2B06187; GA MŠk 2B08058 Institutional research plan: CEZ:AV0Z50380511 Keywords : Uranium * Uptake * Sinapis alba Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 1.339, year: 2011

  2. Coupling of Groundwater Transport and Plant Uptake Models

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer-Gottwein, Peter; Trapp, Stefan

    2010-01-01

    in environmental systems at different scale. Feedback mechanisms between plants and hydrological systems can play an important role, however having received little attention to date. Here, a new model concept for dynamic plant uptake models applying analytical matrix solutions is presented, which can be coupled...

  3. Dynamic plant uptake modelling and mass flux estimation

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer-Gottwein, Peter; Trapp, Stefan

    2011-01-01

    in environmental systems at different scales. Feedback mechanisms between plants and hydrological systems can play an important role. However, they have received little attention to date. Here, a new model concept for dynamic plant uptake models applying analytical matrix solutions is presented, which can...

  4. Effect of organic matter on the uptake of phosphorus by rice plants under different moisture conditions

    International Nuclear Information System (INIS)

    Ghosh, Geetanjali

    1974-01-01

    In studies on the effect of three levels of moisture and two levels of organic matter in two alluvial soils, the uptake of P by rice plant both from soil and fertilizer sources was the highest and Eh the lowest under submerged conditions. No marked difference in total uptake of P was observed in upland and alternate submerged condition; organic matter application showed an appreciable effect under submerged condition. (author)

  5. Plant-uptake of uranium: Hydroponic and soil system studies

    Science.gov (United States)

    Ramaswami, A.; Carr, P.; Burkhardt, M.

    2001-01-01

    Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.

  6. PAH plant uptake prediction: Evaluation of combined availability tools and modeling approach

    OpenAIRE

    Ouvrard, Stéphanie; DUPUY, Joan; Leglize, Pierre; Sterckeman, Thibault

    2015-01-01

    Transfer to plant is one of the main human exposure pathways of polycyclic aromatic hydrocarbons (PAH) from contaminated soils. However existing models implemented in risk assessment tools mostly rely on i) total contaminant concentration and ii) plant uptake models based on hydroponics experiments established with pesticides (Briggs et al., 1982, 1983). Total concentrations of soil contaminants are useful to indicate pollution, however they do not necessarily indicate risk. Me...

  7. Total phenolics and total flavonoids in selected Indian medicinal plants.

    Science.gov (United States)

    Sulaiman, C T; Balachandran, Indira

    2012-05-01

    Plant phenolics and flavonoids have a powerful biological activity, which outlines the necessity of their determination. The phenolics and flavonoids content of 20 medicinal plants were determined in the present investigation. The phenolic content was determined by using Folin-Ciocalteu assay. The total flavonoids were measured spectrophotometrically by using the aluminium chloride colorimetric assay. The results showed that the family Mimosaceae is the richest source of phenolics, (Acacia nilotica: 80.63 mg gallic acid equivalents, Acacia catechu 78.12 mg gallic acid equivalents, Albizia lebbeck 66.23 mg gallic acid equivalents). The highest total flavonoid content was revealed in Senna tora which belongs to the family Caesalpiniaceae. The present study also shows the ratio of flavonoids to the phenolics in each sample for their specificity.

  8. 134cs uptake by plants from soil applying different absorbents

    International Nuclear Information System (INIS)

    Oncsik, M.

    1998-01-01

    A study of isotope uptake by plants using different zeolite clay minerals (montmorillonite, mordenite, clinoptilolite) was started with a view to reducing the rate of isotope uptake by plants by applying additives given to the soil. In pot experiments, the 134 Cs activity of green peas was reduced by 16% in average as compared to the control in the soils enriched with zeolite (mordenite type). Under field conditions, the radioactivity of millet and carrot yields were investigated in soils ameliorated with montmorillonite clay mineral. The radioactive contamination of the yield in soil treated with zeolite was in average 10% lower for millet and 24% for carrot roots as compared to the control

  9. Mechanism of Uptake of Trace Elements by Plants

    International Nuclear Information System (INIS)

    Broda, E.

    1965-01-01

    MECHANISM OF UPTAKE OF TRACE ELEMENTS BY PLANTS (EXPERIMENTS WlTH RADIOZINC). Some authors have assumed that the uptake of (essential or non-essential) trace elements by plants is due to active transport, and therefore needs metabolic energy. In our laboratory it has been found that the uptake of zinc (“6”5Zn) by chlorella and barley roots is, in the main, a passive process, and is based largely on ion exchange. In these experiments the Zn system contrasted sharply with actively transporting systems, e. g. the K system, although the extent of accumulation may be similar: (1) decouplers (DNP, azide) or anaerobiosis do not depress the uptake of Zn: (2) plants killed by grinding, freezing or alcohol treatment take up more Zn than living plants: (3) the temperature coefficient of the Zn uptake is small: (4) many ions compete with Zn, i.e. the uptake is unspecific. We have measured - primarily with dead cells, where equilibria are reached easily - the competition of several foreign ions with radiozinc at fixed pH (usually 6). These values have been compared with analogous values obtained with radiozinc (and verified with radiocopper) in respect to cation exchange resins. It is concluded from the sequence of the different ions that the active sites in the cells are mainly carboxyl groups. Probably most of the ‘exchanger’ consists of carbohydrate derivatives in the cell wall, i.e. in the ‘free space’, However, both by Langmuir analysis of the observed ‘uptake isotherm’ and by radiochemical work with partly blocked material, sites with anomalous affinity to Zn have been demonstrated. These may be imidazol groups in the proteins known to bind zinc strongly by complexation. (author)

  10. Diurnal variations of tritium uptake by plants

    International Nuclear Information System (INIS)

    Hettinger, M.; Diabate, S.; Strack, S.

    1991-02-01

    The influence of the diurnal cycle is important for the behaviour of environmental tritium in the vegetation. A mathematical model has been used to calculate the deposition of tritium in plants as a function of diurnal variations of climatic parameters. The necessary physiological parameters (relationship of net photosynthesis and growth) were derived from growth experiments for tomatoes and maize. In chamber experiments, tomato and maize plants were exposed to tritium with natural diurnal variations of the climatic conditions. Within the range of standard deviations the measured concentrations of tritium in tissue free water of tomatoes correspond well to the estimated values. Furthermore, the incorporation into non-exchangeable organically bound tritium (OBT nx) can be sufficiently modelled and explained. There are deviations from the estimated concentrations in some parts of maize leaves. (orig.) [de

  11. Uptake and distribution of mercury within higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Beauford, W; Barber, J; Barringer, A R

    1977-04-15

    The uptake and distribution of inorganic mercury (HgCl/sub 2/) within higher plants (Pisum sativum and Mentha spicata) was examined using solution culture and radiotracer techniques. Plants were found to tolerate an external level of 1 mgHg/kg of solution but both physiological and biochemical processes were affected at 5 mgHg/kg and 10 mgHg/kg. The uptake of Hg into plants grown in hydroponic solution was a function of external concentration. Over the concentration range considered the accumulation of Hg in the roots was linear on a log-log basis although the uptake of the element into the shoots appeared to be two-phased. The distribution of Hg in plants was asymmetrical with much greater amounts of the element in the roots than the shoots. Although the level of Hg increased generally in plant tissues with increasing external levels, the proportion retained in the roots, relative to the shoots, was constant (approximately 95%). Two binding characteristics of the Hg within plant tissue were detected. A major proportion of Hg was tightly bound, being unaffected by treatment with ethanol and hydrochloric acid. The remaining Hg in the tissue was removed by either water or hydrochloric acid treatment. Cell fractionation indicated that the major binding component of Hg in plant tissues was the cell wall.

  12. Plant uptake and transport of 241Am

    International Nuclear Information System (INIS)

    Wallace, A.; Romney, E.M.; Mueller, R.T. Sr.; soufi, S.M.

    1981-01-01

    We conducted several experiments with 241 Am to obtain a more complete understanding of how this transuranium element is absorbed and transported in plants. In a plant species (Tamarix pentandra Pall.) that has salt glands in the leaves excreting NaCl and other ions, 241 Am was not pumped through these glands. Cyanide, which forms complexes with any metals, when applied to a calcareous soil, greatly increased the transport of 241 Am into stems and leaves of bush bean plants. Radioactive cyanide ( 14 C) was also transported to leaves and stems. When radish was grown in both calcareous and noncalcareous soils, 241 Am appeared to be fixed on the peel so firmly that it was resistant to removal by HNO 3 washing. The chelating agent DTPA induced increased transport of 241 Am to leaves and into the fleshy roots of the radish. Data for Golden Cross hybrid corn grown in solution culture showed at least seven times as much 241 Am transport to the xylem exudatields are corrected by recovery of added tracers

  13. Cesium and potassium uptake by plants from soils

    International Nuclear Information System (INIS)

    Schaller, G.; Leising, C.; Krestel, R.; Wirth, E.

    1990-11-01

    The aim of the investigation was the reliable estimation of the Cs-137 root uptake by agricultural crops using the 'observed ratio model' (OR model) for the determination of transfer factors: Cs (plant)/K (plant) = OR x Cs (soil)/K (soil). For model validation representative soil (arable land, grass land, organic substrates from forests and peat) and plant samples from Bavaria were taken. These 4 parameters varied within a sufficiently wide range. In addition some samples from forest sites were taken. Soil and plant samples were taken at the same locations within 1 m 2 . (orig./HP) [de

  14. Uptake of Plutonium-238 into Solanum tuberosum L. (potato plants) in presence of complexing agent EDTA.

    Science.gov (United States)

    Tawussi, Frank; Gupta, Dharmendra K; Mühr-Ebert, Elena L; Schneider, Stephanie; Bister, Stefan; Walther, Clemens

    2017-11-01

    Bioavailability and plant uptake of radionuclides depend on various factors. Transfer into different plant parts depends on chemical and physical processes, which need to be known for realistic ingestion dose modelling when these plants are used for food. Within the scope of the present work, the plutonium uptake by potato plants (Solanum tuberosum L.) was investigated in hydroponic solution of low concentration [Pu] = 10 -9  mol L -1 . Particular attention was paid to the speciation of radionuclides in the solution which was modelled by the speciation code PHREEQC. The speciation, the solubility and therefore the plant availability of radionuclides mainly depend on the pH value and the redox potential of the solution. During the contamination period, the redox potential did not change significantly. In contrast, the pH value showed characteristic changes depending on exudates excreted by the plants. Plant roots took up high amounts of plutonium (37%-50% of the added total amount). In addition to the uptake into the roots, the radionuclides can also adsorb to the exterior root surface. The solution-to-plant transfer factor showed values between 0.03 and 0.80 (Bq kg -1 / Bq L -1 ) for the potato tubers. By addition of the complexing agent EDTA (10 -4  mol L-1), the plutonium uptake from solution increased by 58% in tubers and by 155% in shoots/leaves. The results showed that excreted substances by plants affect bioavailability of radionuclides at low concentration, on the one hand. On the other hand, the uptake of plutonium by roots and the accumulation in different plant parts can lead to non-negligible ingestion doses, even at low concentration. We are aware of the limited transferability of data obtained in hydroponic solutions to plants growing in soil. However, the aim of this study is twofold: First we want to investigate the influence of Pu speciation on plant uptake in a rather well defined system which can be modelled using available thermodynamic data

  15. About methodology to study plant uptake of radionuclides from soil

    International Nuclear Information System (INIS)

    Tuleubaev, B.A.; Ptitskaya, L.D.

    2000-01-01

    This paper presents methodology for studying particular features of radionuclides uptake by plants from contaminated soil as applied to the use of the former Semipalatinsk tet site territory, which are dependent upon physical-chemical and physical-mechanical properties of soil and biological peculiarities of meadow-pasture vegetation. (author)

  16. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria

    DEFF Research Database (Denmark)

    Battini, Fabio; Grønlund, Mette; Agnolucci, Monica

    2017-01-01

    availability of soil P. This study investigated whether biofertilizers and bioenhancers, such as arbuscular mycorrhizal fungi (AMF) and their associated bacteria could enhance growth and P uptake in maize. Plants were grown with or without mycorrhizas in compartmented pots with radioactive P tracers and were...

  17. Co-60 uptake in some young cereal plants

    International Nuclear Information System (INIS)

    Dumitru, R.O.

    1998-01-01

    The measure of Co-60 uptake by young cereal plants is dependent on the type of soil, plant and growth conditions. Depending on the size of the uptake, a plant can be used for industrial purposes, fodder, foodstuff or for possible decontamination of the soil. Although the requirement for cobalt in higher plants is little, their contamination with Co-60 can be of interest because this radionuclide belongs to the class of the radionuclides with a great radiotoxicity. The soil-to-plant transfer factor (TF) is a measure of the radionuclide uptake in the plant. In this paper the soil-to-plant TFs for Co-60 were determined for the whole aerial part of some young plants in the cereal class that, in this stage of the development, may be used as fodder. To determine soil-to-plant TFs, plants cultivated in pots in laboratory conditions were used. The method used is similar with the plantlet method of Neubauer and Schneider. We have determined some physical, chemical and mineralogical properties of the studied soil, a brown-reddish forest type soil. The soil-to-plant TFs were calculated on the basis of the Co-60 activities determined in plant and soil dried samples. For the vegetal samples the whole aerial part of the plants was measured in millet, wheat, barley and triticale. At harvest, only a few millet plants where flowered. The results of the measurements of soil-to-plant TFs of Co-60 are the following: 0.0315±0.0017 for millet, 0.0260±0.0014 for barley, 0.0140±0.0008 for wheat and 0.0491±0.0022 for triticale. These TFs were corrected for standard conditions and were compared with data from literature. The soil-to-plant TFs for Co-60 found in the aerial part of young cereals are close to those recommended for the fodder. The obtained values prove the strong dependence of the soil-to-plant TFs for Co-60 on the type of soil and plant. (author)

  18. Effects of sewage sludge on Di-(2-ethylhexyl) phthalate uptake by plants

    International Nuclear Information System (INIS)

    Aranda, J.M.; O'Connor, G.A.; Eiceman, G.A.

    1989-01-01

    Di-(2-ethylhexyl) phthalate (DEHP) is a priority organic pollutant frequently found in municipal sludges. A greenhouse study was conducted to determine the effect of sludge on plant uptake of 14 C-DEHP (carbonyl labeled). Plants grown included three food chain crops, lettuce (Lactuca sativa L.), carrot (Daucus carota L.) and chile pepper (Capsicum annuum L.) and tall fescue (Festuca arundinacea Schreb.). Net 14 C concentration in plants grown in soil amended with 14 C-DEHP-contaminated sludge was independent of sludge rate (at the same DEHP loading) for lettuce, chile fruit, and carrot roots. Net 14 C concentration, however, was inversely related to sludge rate in carrot tops, fescue, and chile plants. Intact DEHP was not detected in plants by gas chromatography/mass spectrometry analysis. Calculated plant DEHP concentrations (based on measured net 14 C concentrations and DEHP specific activities) were generally correlated better with DEHP soil solution concentrations than with total DEHP soil concentrations. Net 14 C-DEHP bioconcentration factors were calculated from initial soil DEHP concentration and plant fresh weights. Bioconcentration factors ranged from 0.01 to 0.03 for fescue, lettuce, carrots, and chile, suggesting little DEHP uptake. Additionally, because intact DEHP was not detected in any plants, DEHP uptake by plants was of minor importance and would not limit sludge additions to soils used to grow these crops

  19. Assessment of community led total sanitation uptake in rural Kenya ...

    African Journals Online (AJOL)

    Background: Community Led Total Sanitation (CLTS) is an innovative community led drive to set up pit latrines in rural Kenya with an aim of promoting sustainable sanitation through behaviour change. It's a behaviour change approach based on social capital that triggers households to build pit latrines without subsidy.

  20. Modelling 137Cs uptake in plants from undisturbed soil monoliths

    International Nuclear Information System (INIS)

    Waegeneers, Nadia; Smolders, Erik; Merckx, Roel

    2005-01-01

    A model predicting 137 Cs uptake in plants was applied on data from artificially contaminated lysimeters. The lysimeter data involve three different crops (beans, ryegrass and lettuce) grown on five different soils between 3 and 5 years after contamination and where soil solution composition was monitored. The mechanistic model predicts plant uptake of 137 Cs from soil solution composition. Predicted K concentrations in the rhizosphere were up to 50-fold below that in the bulk soil solution whereas corresponding 137 Cs concentration gradients were always less pronounced. Predictions of crop 137 Cs content based on rhizosphere soil solution compositions were generally closer to observations than those based on bulk soil solution composition. The model explained 17% (beans) to 91% (lettuce) of the variation in 137 Cs activity concentrations in the plants. The model failed to predict the 137 Cs activity concentration in ryegrass where uptake of the 5-year-old 137 Cs from 3 soils was about 40-fold larger than predicted. The model generally underpredicted crop 137 Cs concentrations at soil solution K concentration below about 1.0 mM. It is concluded that 137 Cs uptake can be predicted from the soil solution composition at adequate K nutrition but that significant uncertainties remain when soil solution K is below 1 mM

  1. Uptake of antibiotics from irrigation water by plants

    DEFF Research Database (Denmark)

    Azanu, David; Mortey, Christiana; Darko, Godfred

    2016-01-01

    The capacity of carrot (Daucus corota L.) and lettuce (Lactuca sativa L.), two plants that are usually eaten raw, to uptake tetracycline and amoxicillin (two commonly used antibiotics) from irrigated water was investigated in order to assess the indirect human exposure to antibiotics through...... tested concentrations of 0.1-15 mg L(-1). Tetracycline was detected in all plant samples, at concentrations ranging from 4.4 to 28.3 ng/g in lettuce and 12.0-36.8 ng g(-1) fresh weight in carrots. Amoxicillin showed absorption with concentrations ranging from 13.7 ng g(-1) to 45.2 ng g(-1) for the plant...

  2. Foliar uptake of zinc by vascular plants. Radiometric study

    International Nuclear Information System (INIS)

    Maresova, J.; Remenarova, L.; Hornik, M.; Pipiska, M.; Augustin, J.; Lesny, J.

    2012-01-01

    The aim of this paper was to obtain quantitative data of foliar uptake kinetics and long distance transport of zinc in tobacco (Nicotiana tabacum L.) and hop (Humulus lupulus L.) plants. Zinc was used as a model of microelement and toxic metal, tobacco and hop as a representatives of agriculturally important plants. A tip of leaf blade was immersed in the solution spiked with 65 ZnCl 2 and foliar uptake and translocation to other parts of the plant grown in nutrient solution was measured by gamma-spectrometry and autoradiography. We found that foliar zinc uptake by both plants is dependent on the initial metal concentration within the range C 0 = 10-100 μmol dm -3 ZnCl 2 . Zinc is immobilized mainly in immersed part of the contact leaf and only 0 = 0.1 mmol dm -3 ZnCl 2 concentrations >2.5 mg/g Zn and 4.8 mg/g Zn (dry wt.) in immersed part of tobacco and hop leaf plant, respectively were found after 5 days of exposure. Low mobility of zinc entering the plant via the leaf surface can be attributed to the immobilization of zinc into Zn-ligand complexes with high stability constants log K at pH 6.0-8.0, such as the reaction products of Zn 2+ ions with citric acid, histidine or phosphates. Zinc can be extracted from dried leaves by the solutions of inorganic salts, carboxylic acids, amino acids and synthetic complexing ligands such as EDTA. Anionic (SDS) and non-ionic (Tween 40) surfactants causes the decrease of the Zn foliar uptake, but not translocation of Zn from the contact leaf area. Obtained data are discussed from the point of view of possible limited efficiency of liquid formulations designed for practical applications as Zn foliar fertilizers. (author)

  3. Plant uptake of pentachlorophenol from sludge-amended soils

    International Nuclear Information System (INIS)

    Bellin, C.A.; O'Connor, G.A.

    1990-01-01

    A greenhouse study was conducted to determine the effects of sludge on plant uptake of 14 C-pentachlorophenol (PCP). Plants included tall fescue (Festuca arundinacea Schreb.), lettuce (Latuca sativa L.), carrot (Daucus carota L.), and chile pepper (Capsicum annum L.). Minimal intact PCP was detected in the fescue and lettuce by gas chromatography/mass spectrometry (GC/MS) analysis. No intact PCP was detected in the carrot tissue extracts. Chile pepper was not analyzed for intact PCP because methylene chloride extracts contained minimal 14 C. The GC/MS analysis of soil extracts at harvest suggests a half-life of PCP of about 10 d independent of sludge rate or PCP loading rate. Rapid degradation of PCP in the soil apparently limited PCP availability to the plant. Bioconcentration factors (dry plant wt./initial soil PCP concentration) based on intact PCP were < 0.01 for all crops, suggesting little PCP uptake. Thus, food-chain crop PCP uptake in these alkaline soils should not limit land application of sludge

  4. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: A review.

    Science.gov (United States)

    Madikizela, Lawrence Mzukisi; Ncube, Somandla; Chimuka, Luke

    2018-04-27

    Sizeable amount of research has been conducted on the possible uptake of pharmaceuticals by plants from contaminated soil and water used for irrigation of crops. In most cases, pharmaceuticals are taken by roots and translocated into various tissues by transpiration and diffusion. Due to the plant uptake, the occurrence of pharmaceuticals in food sources such as vegetables is a public concern. Few review papers focusing on the uptake of pharmaceuticals, in particular antibiotics, and their translocation in plant tissues have been published. In the current review paper, the work conducted on the uptake of pharmaceuticals belonging to different therapeutic groups such as antibiotics, non-steroidal anti-inflammatory drugs, β-blockers and antiepileptics is reviewed. Such work includes the occurrence of pharmaceuticals in plants, translocation once taken by plants, toxicity studies as well as implications and future studies. Furthermore, the advantages and drawbacks associated with the detection and uptake of these pharmaceuticals by plants are discussed. In addition, the physico-chemical properties that could influence the plant uptake of pharmaceuticals are deliberated. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Mercury uptake and accumulation by four species of aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Kathleen [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)]. E-mail: skinnk@sage.edu; Wright, Nicole [NEIWPCC-NYSDEC, 625 Broadway, 4th Floor, Albany, NY 12233-3502 (United States)]. E-mail: ndwright@gw.dec.state.ny.us; Porter-Goff, Emily [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)

    2007-01-15

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water.

  6. Mercury uptake and accumulation by four species of aquatic plants

    International Nuclear Information System (INIS)

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water

  7. Factors affecting heavy metal uptake in plant selection for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Anton, A.; Mathe-Gaspar, G. [Research Inst. for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, Budapest (Hungary)

    2005-04-01

    The heavy metal uptake of ten plant species was studied under different soil and climatic conditions. Effects of soil pH, temperature, plant species and phenophase on the heavy metal content of stems and leaves were determined in pot experiments. Plants and soil samples were collected from a lead/zinc mine ore (Gyoengyoesoroszi, Hungary) and characterised by high contents of Pb, Zn, As, Cd, Cu. The possibility of an adapted phytoremediation technology was indicated by different bioconcentration factors (BCF). The BCF depended markedly (10- to 100-fold) on plant species and environmental conditions. Based on our results a ''season-adapted'' phytoextraction technology with different plant species (utilising their different temperature requirements and/or harvest time) is suggested. (orig.)

  8. Natural colloidal P and its contribution to plant P uptake.

    Science.gov (United States)

    Montalvo, Daniela; Degryse, Fien; McLaughlin, Mike J

    2015-03-17

    Phosphorus (P) bioavailability depends on its concentration and speciation in solution. Andisols and Oxisols have very low soil solution concentration of free orthophosphate, as they contain high concentrations of strongly P-sorbing minerals (Al/Fe oxyhydroxides, allophanes). Free orthophosphate is the form of P taken up by plants, but it is not the only P species present in the soil solution. Natural colloidal P (P associated with Al, Fe, and organic matter of sizes ranging from 1 to 1000 nm) constitutes an important fraction of soil solution P in these soils; however, its availability has not been considered. We measured the uptake of P by wheat (Triticum aestivum) from radiolabeled nonfiltered (colloid-containing) and 3-kDa filtered (nearly colloid-free) soil-water extracts from Andisols and Oxisols. In the Andisol extracts, P uptake was up to 5-fold higher from the nonfiltered solutions than the corresponding 3-kDa filtered solutions. In the Oxisol extract, no difference in P uptake between both solutions was observed. Also the diffusional flux of P as measured with the DGT technique was larger in the nonfiltered than in the 3-kDa filtered solutions. Our results suggest that colloidal P from Andisols is not chemically inert and contributes to plant uptake of P.

  9. Uptake and transport of positron-emitting tracer in plants

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu; Matsuhashi, Shinpei; Shimazu, Masamitsu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; and others

    1997-03-01

    The transport of a positron-emitting isotope introduced into a plant was dynamically followed by a special observation apparatus called `Positron-Emitting Tracer Imaging System`. In the system, annihilation {gamma}-rays from the positron emitter are detected with two planer detectors (5 x 6 cm square). The water containing ca. 5 MBq/ml of {sup 18}F was fed to the cut stem of soybean for 2 min and then the images of tracer activity were recorded for 30 - 50 min. When the midrib of a leaf near the petiole was cut just before measurement, the activity in the injured leaf was decreased but detected even at the apex. This result suggests that the damaged leaf recovered the uptake of water through the lamina. Maximum tracer activities in leaves of unirradiated plant were observed within 10 min, whereas those of irradiated plant at 100 Gy were observed after over 25 min. The final activity of irradiated plant after 30 min was lower than that of unirradiated plant. In case of beans, there was a difference in the absorption behavior of the {sup 18}F-labeled water between unirradiated and irradiated samples. These results show that the system is effective to observe the uptake and transportation of water containing positron emitting tracer for the study of damage and recovery functions of plants. (author)

  10. Selenium uptake, translocation, assimilation and metabolic fate in plants.

    Science.gov (United States)

    Sors, T G; Ellis, D R; Salt, D E

    2005-12-01

    The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.

  11. Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils.

    Science.gov (United States)

    Vinichuk, M; Mårtensson, A; Ericsson, T; Rosén, K

    2013-01-01

    The potential use of mycorrhiza as a bioremediation agent for soils contaminated by radiocesium was evaluated in a greenhouse experiment. The uptake of (137)Cs by cucumber, perennial ryegrass, and sunflower after inoculation with a commercial arbuscular mycorrhizal (AM) product in soils contaminated with (137)Cs was investigated, with non-mycorrhizal quinoa included as a "reference" plant. The effect of cucumber and ryegrass inoculation with AM fungi on (137)Cs uptake was inconsistent. The effect of AM fungi was most pronounced in sunflower: both plant biomass and (137)Cs uptake increased on loamy sand and loamy soils. The total (137)Cs activity accumulated within AM host sunflower on loamy sand and loamy soils was 2.4 and 3.2-fold higher than in non-inoculated plants. Although the enhanced uptake of (137)Cs by quinoa plants on loamy soil inoculated by the AM fungi was observed, the infection of the fungi to the plants was not confirmed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Composition of hydroponic medium affects thorium uptake by tobacco plants

    Czech Academy of Sciences Publication Activity Database

    Soudek, Petr; Kufner, Daniel; Petrová, Šárka; Mihaljevič, M.; Vaněk, Tomáš

    2013-01-01

    Roč. 92, č. 9 (2013), s. 1090-1098 ISSN 0045-6535 R&D Projects: GA MŠk LH12162; GA MŠk(CZ) LD13029; GA MPO FR-TI3/778 Institutional research plan: CEZ:AV0Z50380511 Keywords : Thorium * Plant uptake * Polyamines Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.499, year: 2013

  13. Plant traits related to nitrogen uptake influence plant-microbe competition.

    Science.gov (United States)

    Moreau, Delphine; Pivato, Barbara; Bru, David; Busset, Hugues; Deau, Florence; Faivre, Céline; Matejicek, Annick; Strbik, Florence; Philippot, Laurent; Mougel, Christophe

    2015-08-01

    Plant species are important drivers of soil microbial communities. However, how plant functional traits are shaping these communities has received less attention though linking plant and microbial traits is crucial for better understanding plant-microbe interactions. Our objective was to determine how plant-microbe interactions were affected by plant traits. Specifically we analyzed how interactions between plant species and microbes involved in nitrogen cycling were affected by plant traits related to 'nitrogen nutrition in interaction with soil nitrogen availability. Eleven plant species, selected along an oligotrophic-nitrophilic gradient, were grown individually in a nitrogen-poor soil with two levels of nitrate availability. Plant traits for both carbon and nitrogen nutrition were measured and the genetic structure and abundance of rhizosphere. microbial communities, in particular the ammonia oxidizer and nitrate reducer guilds, were analyzed. The structure of the bacterial community in the rhizosphere differed significantly between plant species and these differences depended on nitrogen availability. The results suggest that the rate of nitrogen uptake per unit of root biomass and per day is a key plant trait, explaining why the effect of nitrogen availability on the structure of the bacterial community depends on the plant species. We also showed that the abundance of nitrate reducing bacteria always decreased with increasing nitrogen uptake per unit of root biomass per day, indicating that there was competition for nitrate between plants and nitrate reducing bacteria. This study demonstrates that nitrate-reducing microorganisms may be adversely affected by plants with a high nitrogen uptake rate. Our work puts forward the role of traits related to nitrogen in plant-microbe interactions, whereas carbon is commonly considered as the main driver. It also suggests that plant traits related to ecophysiological processes, such as nitrogen uptake rates, are more

  14. Plant Uptake of Atmospheric Carbonyl Sulfide in Coast Redwood Forests

    Science.gov (United States)

    Campbell, J. E.; Whelan, M. E.; Berry, J. A.; Hilton, T. W.; Zumkehr, A.; Stinecipher, J.; Lu, Y.; Kornfeld, A.; Seibt, U.; Dawson, T. E.; Montzka, S. A.; Baker, I. T.; Kulkarni, S.; Wang, Y.; Herndon, S. C.; Zahniser, M. S.; Commane, R.; Loik, M. E.

    2017-12-01

    The future resilience of coast redwoods (Sequoia sempervirens) is now of critical concern due to the detection of a 33% decline in California coastal fog over the 20th century. However, ecosystem-scale measurements of photosynthesis and stomatal conductance are challenging in coast redwood forests, making it difficult to anticipate the impacts of future changes in fog. To address this methodological problem, we explore coastal variations in atmospheric carbonyl sulfide (COS or OCS), which could potentially be used as a tracer of these ecosystem processes. We conducted atmospheric flask campaigns in coast redwood sites, sampling at surface heights and in the canopy ( 70 m), at the University of California Landels-Hill Big Creek Reserve and Big Basin State Park. We simulated COS atmosphere-biosphere exchange with a high-resolution 3-D model to interpret these data. Flask measurements indicated a persistent daytime drawdown between the coast and the downwind forest (45 ± 6 ppt COS) that is consistent with the expected relationship between COS plant uptake, stomatal conductance, and gross primary production. Other sources and sinks of COS that could introduce noise to the COS tracer technique (soils, anthropogenic activity, nocturnal plant uptake, and surface hydrolysis on leaves) are likely to be small relative to daytime COS plant uptake. These results suggest that COS measurements may be useful for making ecosystem-scale estimates of carbon, water, and energy exchange in coast redwood forests.

  15. Plant uptake of americium, curium, and the chemical analog neodymium

    International Nuclear Information System (INIS)

    Weimer, W.C.; Laul, J.C.; Kutt, J.C.; Bondietti, E.A.

    1977-01-01

    The plant uptake from several bulk soils has been determined for neodymium, a chemical analog to the transuranium elements americium and curium, and several other native rare earth elements as well. These investigations have demonstrated that neodymium, which has very similar chemical properties to amercium and curium and should have a similar environmental behavior, does behave indistinguishably under both laboratory and field conditions. The uptake of the weathered or mobile forms of these elements from soils is expected to be governed primarily by their identical oxidation states and nearly identical ionic radii. This hypothesis is strongly supported by the chondritic (primordial) normalized rare earth element patterns in several plants. In these samples, the entire series of rare earth elements behaves as a smooth function of the REE ionic radii, as is also seen in the contiguous soils. This behavior suggests that the plant uptake of other ions with similar chemical properties (i.e., americium and curium) would also be governed by ionic size and charge

  16. Quantitative understanding of nanoparticle uptake in watermelon plants

    Directory of Open Access Journals (Sweden)

    Ramesh Raliya

    2016-08-01

    Full Text Available The use of agrochemical-nutrient fertilizers has come under scrutiny in recent years due to concerns that they damage the ecosystem and endanger public health. Nanotechnology offers many possible interventions to mitigate these risks by use of nanofertilizers, nanopesticides, and nanosensors; and concurrently increases profitability, yields, and sustainability within the agricultural industry. Aerosol based foliar delivery of nanoparticles may help to enhance nanoparticle uptake and reduce environmental impacts of chemical fertilizers conventionally applied through a soil route. The purpose of this work was to study uptake, translocation, and accumulation of various gold nanostructures, 30 to 80 nm, delivered by aerosol application to a watermelon plant. Cellular uptake and accumulation of gold nanoparticles were quantified by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS. Observations suggested that nanoparticles could be taken up by the plant through direct penetration and transport through the stomatal opening. Observed translocation of nanoparticles from leaf to root shows evidence that nanoparticles travel by the phloem transport mechanism. Accumulation and transport of nanoparticles depend on nanoparticle shape, application method, and nature of plant tissues.

  17. Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand

    International Nuclear Information System (INIS)

    Rotkittikhun, P.; Kruatrachue, M.; Chaiyarat, R.; Ngernsansaruay, C.; Pokethitiyook, P.; Paijitprapaporn, A.; Baker, A.J.M.

    2006-01-01

    A field survey of terrestrial plants growing on Bo Ngam lead mine area, Thailand, was conducted to identify species accumulating exceptionally high concentrations of lead. Plant and soil samples were collected from five areas. Lead concentrations in surface soil ranged from 325 to 142 400 mg/kg. The highest lead concentration in soil was found at the ore dressing plant area and lowest at a natural pond area. In different areas, the concentrations of lead in plants were different when comparing various study sites. A total of 48 plant species belonging to 14 families were collected from five sampling sites. Twenty-six plant species had lead concentrations more than 1000 mg/kg in their shoots. Three species (Microstegium ciliatum, Polygala umbonata, Spermacoce mauritiana) showed extremely high lead concentrations in their shoots (12 200-28 370 mg/kg) and roots (14 580-128 830 mg/kg). - Uptake and accumulation of lead by plants

  18. Mercury uptake and accumulation by four species of aquatic plants.

    Science.gov (United States)

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively.

  19. Radiostrontium uptake by plants from different soil types in Kazakhstan

    International Nuclear Information System (INIS)

    Savinkov, A.; Semioshkina, N.; Howard, B.J.; Voigt, G.

    2007-01-01

    The transfer of 90 Sr to a range of different plant species grown on a range of different soil types in Kazakhstan, including three from the Semipalatinsk Test Site (STS), has been measured in a lysimeter experiment. 90 Sr uptake by Stipa spp was significantly higher than for other vegetation species. The uptake of 90 Sr from chernozem was significantly lower than that from the other soil types which is consistent with other literature. There was a significant negative relationship between 90 Sr uptake and calcium, humus and CEC concentration in the soil for Agropyrum spp, Artemisia spp but not for Stipa spp or Bromus spp. The transfer to vegetation from soil has been quantified using the aggregated transfer coefficients for each species. Tag values range from 0.6 to 11.9 m 2 kg -1 x 10 -3 over all measurements. The transfer of 90 Sr to plants from the Kazakh soils was low compared to previously reported data and to that given from literature reviews

  20. Radiostrontium uptake by plants from different soil types in Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Savinkov, A. [Scientific Research Agricultural Institute of the National Biotechnology Center, Ministry for Science and Higher Education of the Republic of Kazakhstan (SRAI), 480544, Gvardeiski (Kazakhstan)]. E-mail: Chebotar@srai.kz; Semioshkina, N. [GSF-Institut fuer Strahlenschutz, Ingolstaedter Land str.1, D-85764, Neuherberg (Germany)]. E-mail: semi@gsf.de; Howard, B.J. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)]. E-mail: bjho@ceh.ac.uk; Voigt, G. [Agency' s Laboratories - Seibersdorf, IAEA, Vienna (Austria)]. E-mail: g.voigt@iaea.org

    2007-02-01

    The transfer of {sup 90}Sr to a range of different plant species grown on a range of different soil types in Kazakhstan, including three from the Semipalatinsk Test Site (STS), has been measured in a lysimeter experiment. {sup 90}Sr uptake by Stipa spp was significantly higher than for other vegetation species. The uptake of {sup 90}Sr from chernozem was significantly lower than that from the other soil types which is consistent with other literature. There was a significant negative relationship between {sup 90}Sr uptake and calcium, humus and CEC concentration in the soil for Agropyrum spp, Artemisia spp but not for Stipa spp or Bromus spp. The transfer to vegetation from soil has been quantified using the aggregated transfer coefficients for each species. Tag values range from 0.6 to 11.9 m{sup 2} kg {sup -1}x 10{sup -3} over all measurements. The transfer of {sup 90}Sr to plants from the Kazakh soils was low compared to previously reported data and to that given from literature reviews.

  1. Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions

    Directory of Open Access Journals (Sweden)

    Sandra Pritzkow

    2015-05-01

    Full Text Available Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrPSc to plants. Small quantities of PrPSc contained in diluted brain homogenate or in excretory materials (urine and feces can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrPSc for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves. These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease.

  2. Grass plants bind, retain, uptake, and transport infectious prions.

    Science.gov (United States)

    Pritzkow, Sandra; Morales, Rodrigo; Moda, Fabio; Khan, Uffaf; Telling, Glenn C; Hoover, Edward; Soto, Claudio

    2015-05-26

    Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrP(Sc)) to plants. Small quantities of PrP(Sc) contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrP(Sc) for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves). These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. CHARACTERIZATION OF CADMIUM UPTAKE BY ROOTS OF DURUM WHEAT PLANTS

    Directory of Open Access Journals (Sweden)

    Lyubka Koleva

    2009-03-01

    Full Text Available Root Cd uptake of durum wheat plants (cv. Beloslava was characterized in hydroponics conditions. The uptake experiments have been performed in Cd concentration range of 0 – 2 μM adjusted by both stable Cd and radiolabeled (109Cd tracer. Cd removal from the solution over duration of 1 hour reached 50%. The part of loosely adsorbed Cd ions on root surface accounted for about 20%. Over 30% of absorbed Cd at 0.5 μM Cd treatment was retained in root cell walls. The apparent root Cd accumulation showed concentration-dependant tendency with the highest accumulation value of 7.45 nmol Cd g FW-1.

  4. Plant uptake of phosphorus from sparingly available P- sources as affected by Trichoderma asperellum T34

    Directory of Open Access Journals (Sweden)

    Ana Maria Garcia-Lopez

    2015-10-01

    Full Text Available The contribution of Trichoderma asperellum T34 to the plant uptake of phosphorus (P from sparingly phytoavailable forms such as insoluble calcium (Ca phosphates and phytates was studied. Two experiments with cucumber (Cucumis sativus L. on siliceous sand were performed involving two factors, namely: (i P source, viz., KH2PO4, phytate (Ins6P, and phosphate rock (PR, and (ii inoculation with T34. Liquid pure cultures of T34 were also used. T34 increased the total content in P of cucumber roots irrespective of the particular P form and enhanced total P uptake by plants with P supplied as Ins6P or PR. The increased phytase activity observed with T34 contributes to explain its favourable influence on the uptake of P supplied as Ins6P. Solubilization of Ca phosphates from PR was favoured by the slightly acidifying effect and the increased organic anion concentration promoted by the fungus in the plant growth media. It can be concluded that T34 can improve P nutrition in plants grown on media containing phytates or insoluble Ca phosphates as dominant P forms.

  5. Total generating costs: coal and nuclear plants

    International Nuclear Information System (INIS)

    1979-02-01

    The study was confined to single and multi-unit coal- and nuclear-fueled electric-generating stations. The stations are composed of 1200-MWe PWRs; 1200-MWe BWRs; 800-and 1200-MWe High-Sulfur Coal units, and 800- and 1200-MWe Low-Sulfur Coal units. The total generating cost estimates were developed for commercial operation dates of 1985 and 1990; for 5 and 8% escalation rates, for 10 and 12% discount rates; and, for capacity factors of 50, 60, 70, and 80%. The report describes the methodology for obtaining annualized capital costs, levelized coal and nuclear fuel costs, levelized operation and maintenance costs, and the resulting total generating costs for each type of station. The costs are applicable to a hypothetical Middletwon site in the Northeastern United States. Plant descriptions with general design parameters are included. The report also reprints for convenience, summaries of capital cost by account type developed in the previous commercial electric-power cost studies. Appropriate references are given for additional detailed information. Sufficient detail is given to allow the reader to develop total generating costs for other cases or conditions

  6. Interactions between uptake of amino acids and inorganic nitrogen in wheat plants

    Directory of Open Access Journals (Sweden)

    E. Gioseffi

    2012-04-01

    Full Text Available Soil-borne amino acids may constitute a source of nitrogen (N for plants in various terrestrial ecosystems but their importance for total N nutrition is unclear, particularly in nutrient-rich arable soils. One reason for this uncertainty is lack of information on how the absorption of amino acids by plant roots is affected by the simultaneous presence of inorganic N forms. The objective of the present study was to study absorption of glycine (Gly and glutamine (Gln by wheat roots and their interactions with nitrate (NO3 and ammonium (NH4+ during uptake. The underlying hypothesis was that amino acids, when present in nutrient solution together with inorganic N, may lead to down-regulation of the inorganic N uptake, thereby resulting in similar total N uptake rates. Amino acids were enriched with double-labelled 15N and 13C, while NO3 and NH4+ acquisition was determined by their rate of removal from the nutrient solution surrounding the roots. The uptake rates of NO3 and NH4+ did not differ from each other and were generally about twice as high as the uptake rate of organic N when the different N forms were supplied separately in concentrations of 2 mM. Nevertheless, replacement of 50% of the inorganic N with organic N was able to restore the N uptake to the same level as that in the presence of only inorganic N. Co-provision of NO3 did not affect glycine uptake, while the presence of glycine down-regulated NO3 uptake. The ratio between 13C and 15N were lower in shoots than in roots and also lower than the theoretical values, reflecting higher C losses via respiratory processes compared to N losses. It is concluded that organic N can constitute a significant N-source for wheat plants and that there is an interaction

  7. Comparative study of the radionuclide uptake and distribution within plants for barley and maize varieties

    International Nuclear Information System (INIS)

    Kostyuk, O.

    1998-01-01

    Differences in the Cs-134 and Sr-85 uptake by three barley and two maize varieties were investigated in a water culture experiment. In barley, the maximum differences were about 30% for cesium and 50% for strontium. The differences between the maize varieties were negligible. The maximum difference between the varieties of the two species of crops was approximately 30% for cesium and 1 70% for strontium with higher radionuclide uptake by maize. All barley varieties accumulated cesium nearly 3.5 times more effectively than strontium, whereas for the maize varieties, cesium was accumulated about 2 times more effectively. There is a large difference in the radionuclide distribution within the plants: the amount of radiocesium in the green part of plants of both species was approximately 30% of the total, while for radiostrontium it was about 80%. As a result, approximately the same amount of the radionuclides were present in the green part of plants, despite the large difference in the uptake of the radionuclides by the whole plants. It is concluded that crop selection as a provision to reduce radionuclide contamination of the food chain should only be applied taking into account the different radionuclide distributions within the plants

  8. Association of radionuclides with different molecular size fractions in soil solution: implications for plant uptake

    International Nuclear Information System (INIS)

    Nisbet, A.F.; Shaw, S.; Salbu, B.

    1993-01-01

    The feasibility of using hollow fibre ultrafiltration to determine the molecular size distribution of radionuclides in soil solution was investigated. The physical and chemical composition of soil plays a vital role in determining radionuclide uptake by plant roots. Soil solution samples were extracted from loam, peat and sand soils that had been artificially contaminated with 137 Cs, 90 Sr, 239 Pu and 241 Am six years previously as part of a five-year lysimeter study on radionuclide uptake to crops. Ultrafiltration of soil solution was performed using hollow fibre cartridges with a nominal molecular weight cut off of 3 and 10 kD. The association of 137 Cs, 90 Sr, 239 Pu and 241 Am with different molecular size fractions of the soil solution is discussed in terms of radionuclide bioavailability to cabbage grown in the same three soils. 137 Cs and 90 Sr were present in low molecular weight forms and as such were mobile in soil and potentially available for uptake by the cabbage. In contrast, a large proportion (61-87%) of the 239 Pu and 241 Am were associated with colloidal and high molecular weight material and therefore less available for uptake by plant roots. The contribution from low molecular weight species of 239 Pu and 241 Am to the total activity in soil solution decreased in the order loam ≥ peat ≥ sand. Association of radionuclides with low molecular weight species of less than 3 kD did not, however, automatically imply availability to plants. (author)

  9. Total quality drives nuclear plant improvements

    International Nuclear Information System (INIS)

    Richey, R.B.

    1991-01-01

    Total quality (TQ) at Carolina Power and Light (CP and L) is fulfilling a 1985 vision of Sherwood H. Smith, Jr., CP and L's chairman, president, and chief executive officer. The TQ concept has provided a way for employees to align their creative energies toward meeting the business needs of the company. Throughout CP and L, TQ has been recognized as the vehicle for reducing operating costs and improving customer satisfaction. Within the nuclear organization, application of the TQ process has helped to improve communications, resolve challenges, and provide more consistent work practices among CP and L's three nuclear plants. Total quality was introduced from the top down, with initial benefits coming from team interactions. Senior management at CP and L defined the corporate expectations and outlined the training requirements for implementing TQ. Management staffs at each organizational level became steering committees for TQ team activities within their departments. Teams of employees most knowledgeable about a given work area were empowered to solve problems or overcome obstacles related to that work area. Employees learned to become better team players and to appreciate the quality of decisions reached through group consensus. Now, formalized methods that started TQ are becoming part of the day-to-day work ethic

  10. Effects of amendments on the uptake and distribution of DDT in Cucurbita pepo ssp pepo plants

    Energy Technology Data Exchange (ETDEWEB)

    Whitfield Aslund, Melissa L.; Lunney, Alissa I. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, K7K 7B4 (Canada); Rutter, Allison [School of Environmental Studies, Biosciences Complex, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Zeeb, Barbara A., E-mail: zeeb-b@rmc.c [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, K7K 7B4 (Canada)

    2010-02-15

    The effects of soil amendments on the phytoextraction of SIGMADDT (DDT + DDD + DDE) from soil ([SIGMADDT] approx 1500 ng/g) by a pumpkin variety of Cucurbita pepo ssp pepo were tested and the patterns of SIGMADDT storage throughout the plant shoot were examined. The soil amendments did not increase the total amount of SIGMADDT extracted into plant shoots, but new information about SIGMADDT distribution in the plants was obtained. As observed previously, the SIGMADDT concentration in plant leaves (mean 290 ng/g) was significantly lower than in plant stems (mean 2600 ng/g). Further analysis revealed that SIGMADDT composition was consistent throughout the plant shoot and that SIGMADDT concentration in leaves and stems decreased exponentially as distance from the root increased, which was previously unknown. This new information about the patterns of SIGMADDT uptake and translocation within pumpkin plants highlights the need for appropriate plant sampling strategies in future POPs phytoextraction research. - Patterns of SIGMADDT storage in a pumpkin plant are elucidated and specific surfactant and mycorrhizal soil amendments did not increase the total amount of SIGMADDT phytoextracted into plant shoots.

  11. Effects of amendments on the uptake and distribution of DDT in Cucurbita pepo ssp pepo plants

    International Nuclear Information System (INIS)

    Whitfield Aslund, Melissa L.; Lunney, Alissa I.; Rutter, Allison; Zeeb, Barbara A.

    2010-01-01

    The effects of soil amendments on the phytoextraction of ΣDDT (DDT + DDD + DDE) from soil ([ΣDDT] ∼ 1500 ng/g) by a pumpkin variety of Cucurbita pepo ssp pepo were tested and the patterns of ΣDDT storage throughout the plant shoot were examined. The soil amendments did not increase the total amount of ΣDDT extracted into plant shoots, but new information about ΣDDT distribution in the plants was obtained. As observed previously, the ΣDDT concentration in plant leaves (mean 290 ng/g) was significantly lower than in plant stems (mean 2600 ng/g). Further analysis revealed that ΣDDT composition was consistent throughout the plant shoot and that ΣDDT concentration in leaves and stems decreased exponentially as distance from the root increased, which was previously unknown. This new information about the patterns of ΣDDT uptake and translocation within pumpkin plants highlights the need for appropriate plant sampling strategies in future POPs phytoextraction research. - Patterns of ΣDDT storage in a pumpkin plant are elucidated and specific surfactant and mycorrhizal soil amendments did not increase the total amount of ΣDDT phytoextracted into plant shoots.

  12. Effects of Fertilization on Uptake of 85Sr, 60Co and 54Mn by Tomato and Phaseolus Plants

    International Nuclear Information System (INIS)

    Ramadan, A.B.; Ezz El-Din, M.R.

    2001-01-01

    The effects of N-, P-, and K- fertilizers on availability of 85 Sr, 60 Co and 54 Mn added to the soil were measured in an open field experiment. The uptake of 85 Sr, 60 Co and 54 Mn by tomato and phaseolus was lower in fertilized treatments than in unfertilized ones. The radionuclide availability under fertilized condition depends on soil and element properties. Solubilization of Ca-ions following nitrification of nitrogen in ammonium salts and the presence of stable Strontium, Cobalt and Manganese in the acidifying fertilizers are the main factors giving rise to the reduced radioisotopes uptake by plants. The relative order of uptake of the investigated radionuclides by plants appeared to be as follow 54 Mn> 60 Co> 85 Sr. The distribution pattern of the total absorbed radionuclides in the two plants shows that the shoots contained the highest percent of these radionuclides. Transfer factors for phaseolus plants were higher than those of tomato plants

  13. Iron Availability in Tropical Soils and Iron Uptake by Plants

    Directory of Open Access Journals (Sweden)

    Guilherme Furlan Mielki

    Full Text Available ABSTRACT Given the increase in crop yields and the expansion of agriculture in low fertility soils, deficiency of micronutrients, such as iron, in plants grown in tropical soils has been observed. The aim of this study was to evaluate Fe availability and Fe uptake by corn (Zea mays L. plants in 13 different soils, at two depths. Iron was extracted by Mehlich-1, Mehlich-3, and CaCl2 (Fe-CC and was fractionated in forms related to low (Feo and high (Fed crystallinity pedogenic oxyhydroxides, and organic matter (Fep using ammonium oxalate, dithionite-citrate, and sodium pyrophosphate, respectively. In order to relate Fe availability to soil properties and plant growth, an experiment was carried out in a semi-hydroponic system in which part of the roots developed in a nutrient solution (without Fe and part in the soil (the only source of Fe. Forty-five days after seeding, we quantified shoot dry matter and leaf Fe concentration and content. Fed levels were high, from 5 to 132 g kg-1, and Feo and Fe-CC levels were low, indicating the predominance of Fe as crystalline oxyhydroxides and a low content of Fe readily available to plants. The extraction solutions showed significant correlations with various soil properties, many common to both, indicating that they act similarly. The correlation between the Mehlich-1 and Mehlich-3 extraction solutions was highly significant. However, these two extraction methods were inefficient in predicting Fe availability to plants. There was a positive correlation between dry matter and Fe levels in plant shoots, even within the ranges considered adequate in the soil and in the plant. Dry matter production and leaf Fe concentration and content were positively correlated with Fep concentration, indicating that the Fe fraction related to soil organic matter most contributes to Fe availability to plants.

  14. Uptake of 32P and 86Rb as influenced by temperature, transpiration suppress and shading treatment in rice plants

    International Nuclear Information System (INIS)

    Lee, G.B.; Hong, Y.P.; Im, J.N.; Chung, K.W.

    1989-01-01

    This study was carried out to know the uptake pattern of phosphorous and potassium in rice plants using by two radioisotopes, 32P and 86Rb as tracers for two years, 1987 and 1988. Rice plants were grown in the hydroponic culture with Yoshida's solution, and treated with different temperatures, transpiration suppress, shading, and phosphorous and potassium deletions. The uptake amount of 32P and 86Rb were increased with the increasing temperature in root sphere of rice plant, particularly remarkable increase of 86Rb uptake at 35deg C. The uptake of 32P tended to be promoted at the treatment of low air-high water temperature (17-30deg C), while that of 86Rb was not significantly differenced from different temperature treatments. The effect of transpiration on the uptake of 32P and 86Rb was extremely low. This phenomenon may suggest that the absorption be depending on active uptake rather than passive one by transpiration stream. The total carbohydrate contents of rice root were decreased by shading treatment, resulting significant reduction in the uptake of 32P and 86Rb. The uptake of 86Rb was remarkably increased in the treatment of potassium deletion, but that of 32P was not significantly increased in the delection of phosphorous

  15. Uptake of 32P and 86Rb as influenced by temperature, transpiration suppress and shading treatment in rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G. B.; Hong, Y. P.; Im, J. N.; Chung, K. W.

    1989-07-01

    This study was carried out to know the uptake pattern of phosphorous and potassium in rice plants using by two radioisotopes, 32P and 86Rb as tracers for two years, 1987 and 1988. Rice plants were grown in the hydroponic culture with Yoshida's solution, and treated with different temperatures, transpiration suppress, shading, and phosphorous and potassium deletions. The uptake amount of 32P and 86Rb were increased with the increasing temperature in root sphere of rice plant, particularly remarkable increase of 86Rb uptake at 35deg C. The uptake of 32P tended to be promoted at the treatment of low air-high water temperature (17-30deg C), while that of 86Rb was not significantly differenced from different temperature treatments. The effect of transpiration on the uptake of 32P and 86Rb was extremely low. This phenomenon may suggest that the absorption be depending on active uptake rather than passive one by transpiration stream. The total carbohydrate contents of rice root were decreased by shading treatment, resulting significant reduction in the uptake of 32P and 86Rb. The uptake of 86Rb was remarkably increased in the treatment of potassium deletion, but that of 32P was not significantly increased in the delection of phosphorous.

  16. Uptake by Plants of Radiostrontium from Contaminated Soils

    DEFF Research Database (Denmark)

    Andersen, A. J.

    1965-01-01

    In a recent report from this department it was shown that the extractability of radiostrontium from contaminated soil samples was effectively reduced by heat treatment and by the addition of phosphate to the soil. It was pointed out that, under emergency conditions, heat-treatment of the contamin......In a recent report from this department it was shown that the extractability of radiostrontium from contaminated soil samples was effectively reduced by heat treatment and by the addition of phosphate to the soil. It was pointed out that, under emergency conditions, heat......-treatment of the contaminated soil surface and heavy phosphate application might thus reduce the uptake by plants of radiostrontium more efficiently than liming, which is only effective in soils of low calcium status. In the investigation reviewed here the influence of heat treatment and superphosphate application on the plant...... uptake of radiostrontium was examined in pot experiments. For comparison the effect of applying calcium carbonate to the contaminated soil surface was also determined....

  17. Plant uptake of dual-labeled organic N biased by inorganic C uptake

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Sauheitl, Leopold; Eriksen, Jørgen

    2010-01-01

    glycine or CO2-3 , but found no differences in uptake rates between these C-sources. The uptake of inorganic C to the shoot tissue was higher for maize grown in full light compared to shading, which indicates a passive uptake of inorganic C with water. We conclude that uptake of inorganic C produced...

  18. Inhibition of total oxygen uptake by silica nanoparticles in activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sibag, Mark [Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Choi, Byeong-Gyu [School of Civil, Environmental and Architectural Engineering, Korea University, 145, Anam-ro, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Suh, Changwon [Energy Lab, Environment Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Lee, Kwan Hyung; Lee, Jae Woo [Department of Environmental Engineering and Program in Environmental Technology and Policy, Korea University, Sejong 339-700 (Korea, Republic of); Maeng, Sung Kyu [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Cho, Jinwoo, E-mail: jinwoocho@sejong.edu [Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of)

    2015-02-11

    Highlights: • Silica nanoparticles (SNP) inhibit total oxygen uptake in activated sludge. • Relatively smaller SNP are inhibitorier than larger SNP. • SNP alters C15:0, C16:0 and C18:0 in activated sludge fatty acid methyl ester profile. - Abstract: Nanoparticle toxicity to biological activities in activated sludge is largely unknown. Among the widely used nanoparticles, silica nanoparticles (SNP) have a limited number of studies associated with inhibition to the activated sludge process (ASP). We demonstrated SNP inhibition of activated sludge respiration through oxygen uptake rate (OUR) measurement. Based on the percentage inhibition of total oxygen consumption (I{sub T}), we observed that smaller SNPs (12 nm, I{sub T} = 33 ± 3%; 151 nm, I{sub T} = 23 ± 2%) were stronger inhibitors than larger SNPs (442 and 683 nm, I{sub T} = 5 ± 1%). Transmission electron micrographs showed that some of the SNPs were adsorbed on and/or apparently embedded somewhere in the microbial cell membrane. Whether SNPs are directly associated with the inhibition of total oxygen uptake warrants further studies. However, it is clear that SNPs statistically significantly altered the composition of microbial membrane lipids, which was more clearly described by principal component analysis and weighted Euclidian distance (PCA-ED) of the fatty acid methyl ester (FAME) data. This study suggests that SNPs potentially affect the biological activity in activated sludge through the inhibition of total oxygen uptake.

  19. Soil availability, plant uptake and soil to plant transfer of 99Tc-- A review

    International Nuclear Information System (INIS)

    Bennett, Roy; Willey, Neil

    2003-01-01

    The fission yield of 99 Tc from 239 Pu and 235 U is similar to that of 137 Cs or 90 Sr and it is therefore an important component of nuclear weapons fall-out, nuclear waste and releases from nuclear facilities. There is particular current interest in 99 Tc transfer from soil to plants for: (a) environmental impact assessments for terrestrial nuclear waste repositories, and (b) assessments of the potential for phytoextraction of radionuclides from contaminated effluent and soil. Vascular plants have high 99 Tc uptake capacity, a strong tendency to transport it to shoot material and accumulate it in vegetative rather than reproductive structures. The mechanisms that control 99 Tc entry to plants have not been identified and there has been little discussion of the potential for phytoextraction of 99 Tc contaminated effluents or soil. Here we review soil availability, plant uptake mechanisms and soil to plant transfer of 99 Tc in the light of recent advances in soil science, plant molecular biology and phytoextraction technologies. We conclude that 99 Tc might not be highly available in the long term from up to 50% of soils worldwide, and that no single mechanism that might be easily targeted by recombinant DNA technologies controls 99 Tc uptake by plants. Overall, we suggest that Tc might be less available in terrestrial ecosystems than is often assumed but that nevertheless the potential of phytoextraction as a decontamination strategy is probably greater for 99 Tc than for any other nuclide of radioecological interest

  20. Calibration of a Plant Uptake Model with Plant- and Site-Specific. Data for Uptake of Chlorinated Organic Compounds into Radish

    DEFF Research Database (Denmark)

    Trapp, Stefan

    2015-01-01

    The uptake of organic pollutants by plants is an important process for the exposure of humans to toxic chemicals. The objective of this study was to calibrate the parameters of a common plant uptake model by comparison to experimental results from literature. Radish was grown in contaminated soil...... with default data and site-specific data were similar. Deposition from air was the major uptake mechanism into shoots. Transport from soil with resuspended particles was only relevant for the contaminated plot. The calculation results (in dry weight) were most sensitive to changes of the water content of plant...

  1. A mechanistic, globally-applicable model of plant nitrogen uptake, retranslocation and fixation

    Science.gov (United States)

    Fisher, J. B.; Tan, S.; Malhi, Y.; Fisher, R. A.; Sitch, S.; Huntingford, C.

    2008-12-01

    Nitrogen is one of the nutrients that can most limit plant growth, and nitrogen availability may be a controlling factor on biosphere responses to climate change. We developed a plant nitrogen assimilation model based on a) advective transport through the transpiration stream, b) retranslocation whereby carbon is expended to resorb nitrogen from leaves, c) active uptake whereby carbon is expended to acquire soil nitrogen, and d) biological nitrogen fixation whereby carbon is expended for symbiotic nitrogen fixers. The model relies on 9 inputs: 1) net primary productivity (NPP), 2) plant C:N ratio, 3) available soil nitrogen, 4) root biomass, 5) transpiration rate, 6) saturated soil depth,7) leaf nitrogen before senescence, 8) soil temperature, and 9) ability to fix nitrogen. A carbon cost of retranslocation is estimated based on leaf nitrogen and compared to an active uptake carbon cost based on root biomass and available soil nitrogen; for nitrogen fixers both costs are compared to a carbon cost of fixation dependent on soil temperature. The NPP is then allocated to optimize growth while maintaining the C:N ratio. The model outputs are total plant nitrogen uptake, remaining NPP available for growth, carbon respired to the soil and updated available soil nitrogen content. We test and validate the model (called FUN: Fixation and Uptake of Nitrogen) against data from the UK, Germany and Peru, and run the model under simplified scenarios of primary succession and climate change. FUN is suitable for incorporation into a land surface scheme of a General Circulation Model and will be coupled with a soil model and dynamic global vegetation model as part of a land surface model (JULES).

  2. Magnetic field effect on growth, arsenic uptake, and total amylolytic activity on mesquite (Prosopis juliflora x P. velutina) seeds

    Science.gov (United States)

    Flores-Tavizón, Edith; Mokgalaka-Matlala, Ntebogeng S.; Elizalde Galindo, José T.; Castillo-Michelle, Hiram; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2012-04-01

    Magnetic field is closely related to the cell metabolism of plants [N. A. Belyavskaya, Adv. Space Res. 34, 1566 (2004)]. In order to see the effect of magnetic field on the plant growth, arsenic uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina) seeds, ten sets of 80 seeds were selected to be oriented with the long axis parallel or randomly oriented to an external magnetic field. The external magnetic field magnitude was 1 T, and the exposition time t = 30 min. Then, the seeds were stored for three days in a plastic bag and then sown on paper towels in a modified Hoagland's nutrient solution. After three days of germination in the dark and three days in light, seedlings were grown hydroponically in modified Hoagland's nutrient solution (high PO42-) containing 0, 10, or 20 ppm of arsenic as As (III) and (V). The results show that the germination ratios, growth, elongation, arsenic uptake, and total amylolytic activity of the long axis oriented mesquite seeds were much higher than those of the randomly oriented seeds. Also, these two sets of seeds showed higher properties than the ones that were not exposed to external magnetic field.

  3. Simple physics-based models of compensatory plant water uptake: concepts and eco-hydrological consequences

    Directory of Open Access Journals (Sweden)

    N. J. Jarvis

    2011-11-01

    Full Text Available Many land surface schemes and simulation models of plant growth designed for practical use employ simple empirical sub-models of root water uptake that cannot adequately reflect the critical role water uptake from sparsely rooted deep subsoil plays in meeting atmospheric transpiration demand in water-limited environments, especially in the presence of shallow groundwater. A failure to account for this so-called "compensatory" water uptake may have serious consequences for both local and global modeling of water and energy fluxes, carbon balances and climate. Some purely empirical compensatory root water uptake models have been proposed, but they are of limited use in global modeling exercises since their parameters cannot be related to measurable soil and vegetation properties. A parsimonious physics-based model of uptake compensation has been developed that requires no more parameters than empirical approaches. This model is described and some aspects of its behavior are illustrated with the help of example simulations. These analyses demonstrate that hydraulic lift can be considered as an extreme form of compensation and that the degree of compensation is principally a function of soil capillarity and the ratio of total effective root length to potential transpiration. Thus, uptake compensation increases as root to leaf area ratios increase, since potential transpiration depends on leaf area. Results of "scenario" simulations for two case studies, one at the local scale (riparian vegetation growing above shallow water tables in seasonally dry or arid climates and one at a global scale (water balances across an aridity gradient in the continental USA, are presented to illustrate biases in model predictions that arise when water uptake compensation is neglected. In the first case, it is shown that only a compensated model can match the strong relationships between water table depth and leaf area and transpiration observed in riparian forest

  4. Influence of speciation on the radionuclide uptake of plants; Einfluss der Speziation auf die Radionuklidaufnahme von Pflanzen

    Energy Technology Data Exchange (ETDEWEB)

    Tawussi, Frank

    2017-01-25

    The bioavailability for plants and uptake of radionuclides depend on various factors. The knowledge of the chemical and physical processes serves as basis for the transfer to different plant parts and finally for the estimation of the ingestion dose after consumption by man. Within the scope of the present work, the uptake of radionuclides was investigated in pea plants (Pisum sativum), paprika plants (Capsicum annuum) and potato plants (Solanum tuberosum) at low concentration (10{sup -5} to 10{sup -7} mol l{sup -1} for uranium and 10{sup -7} to 10{sup -9} mol l{sup -1} for plutonium) in hydroponic solution. Particular attention was paid to the speciation of radionuclides within the solution which was measured by time-resolved laser-induced fluorescence spectroscopy (TRLFS), capillary electrophoresis coupled to inductively-coupled-plasma mass-spectrometry (CE-ICP-MS), and theoretically calculated by the speciation code PHREEQC. The speciation, the solubility and therefore the plant availability of radionuclides mainly depend on the pH value and the redox potential of the solution. These parameters were monitored regularly. During the contamination period, the redox potential did not chance significantly. In contrast, the pH value showed characteristic changes depending on plants species. Especially in case of potato plants, the dissolved radionuclide fraction correlated with the changes of the pH value. In the plant roots, high amounts of radionuclides (10% to 50% of the added total quantity) were measured. Besides the uptake in the roots, the radionuclides can also adsorb to the exterior root surface. The transfer factor, which describes the Pu uptake ratio from the nutrient solution into the plant parts (dry mass), showed for the potato tubers values between 0.03 and 0.80 (Bq kg{sup -1}/ Bq l{sup -1}), depending on the initial Pu concentration. In addition of the complexing agent EDTA in solution (10{sup -4} mol l{sup -1}), the plutonium uptake increases up to 58

  5. Influence of water relations and growth rate on plant element uptake and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria [Stockholm Univ. (Sweden). Dept. of Botany

    2006-02-15

    Plant uptake of Ni, Sr, Mo, Cs, La, Th, Se, Cl and I was examined to determine how plant water relations and growth rate influence the uptake and distribution of these elements in the studied plants. The specific questions were how water uptake and growth rate influenced the uptake of various nuclides and how transpiration influenced translocation to the shoot. The knowledge gained will be used in future modelling of radionuclide leakage from nuclear waste deposits entering the ecosystem via plants. The plant studied was willow, Salix viminalis, a common plant in the areas suggested for waste disposal; since there can be clone variation, two different clones having different uptake properties for several other heavy metals were used. The plants were grown in nutrient solution and the experiments on 3-month-old plants were run for 3 days. Polyethylene glycol was added to the medium to decrease the water uptake rate, a fan was used to increase the transpiration rate, and different light intensities were used to produce different growth rates. Element concentration was analysed in roots and shoots. The results show that both the uptake and distribution of various elements are influenced in different ways and to various extents by water flow and plant growth rate, and that it is not possible from the chemical properties of these elements to know how they will react. However, in most cases increased growth rate diluted the concentration of the element in the tissue, reduced water uptake reduced the element uptake, while transpiration had no effect on the translocation of elements to the shoot. The clones did not differ in terms of either the uptake or translocation of the elements, except that I was not taken up and translocated to the shoot in one of the clones when the plant water flow or growth rate was too low. Not all of the elements were found in the plant in the same proportions as they had been added to the nutrient solution.

  6. Influence of water relations and growth rate on plant element uptake and distribution

    International Nuclear Information System (INIS)

    Greger, Maria

    2006-02-01

    Plant uptake of Ni, Sr, Mo, Cs, La, Th, Se, Cl and I was examined to determine how plant water relations and growth rate influence the uptake and distribution of these elements in the studied plants. The specific questions were how water uptake and growth rate influenced the uptake of various nuclides and how transpiration influenced translocation to the shoot. The knowledge gained will be used in future modelling of radionuclide leakage from nuclear waste deposits entering the ecosystem via plants. The plant studied was willow, Salix viminalis, a common plant in the areas suggested for waste disposal; since there can be clone variation, two different clones having different uptake properties for several other heavy metals were used. The plants were grown in nutrient solution and the experiments on 3-month-old plants were run for 3 days. Polyethylene glycol was added to the medium to decrease the water uptake rate, a fan was used to increase the transpiration rate, and different light intensities were used to produce different growth rates. Element concentration was analysed in roots and shoots. The results show that both the uptake and distribution of various elements are influenced in different ways and to various extents by water flow and plant growth rate, and that it is not possible from the chemical properties of these elements to know how they will react. However, in most cases increased growth rate diluted the concentration of the element in the tissue, reduced water uptake reduced the element uptake, while transpiration had no effect on the translocation of elements to the shoot. The clones did not differ in terms of either the uptake or translocation of the elements, except that I was not taken up and translocated to the shoot in one of the clones when the plant water flow or growth rate was too low. Not all of the elements were found in the plant in the same proportions as they had been added to the nutrient solution

  7. Total skeletal uptake of diphosphonate in Paget's bone disease and rheumatoid arthritis

    International Nuclear Information System (INIS)

    Cabrejas, M.J.; Mautclen, C.A.; Fromm, G.

    1982-01-01

    Sup(99m) Technetium-diphosphonates (99m-Tc-DP) are very satifactory agents to quantify total skeletal uptake (TSU) in normal and pathological conditions. Although the intimate mechanism of skeletal localization of 99m-Tc-DP is not completely understood the test appears to be a very sensitive index of increased bone turnover. TSU can be determined by several methods: urine collection, whole body counter retention and gamma camara body retention studies. The urine collection method seems to be an easy and reliable method, having the advantage that no expensive device is needed. Further studies on the skeletal uptake of 99m-Tc-DP, in normal subjects and pathological conditions, with special emphasis on patients with rheumatoid arthritis, are reported. Correlation of these data with other tests indicating bone turnover, such as cortical bone loss determined by densitometry or urinary hydroxyproline excretion, supports previous reports that the TSU is a useful parameter to evaluate bone metabolism

  8. A review of plant-pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands

    DEFF Research Database (Denmark)

    Carvalho, Pedro N; Basto, M Clara P; Almeida, C Marisa R

    2014-01-01

    the potential impact of veterinary and human pharmaceuticals on arable land. However, plant uptake as well as phytotoxicity data are scarcely studied. Simultaneously, phytoremediation as a tool for pharmaceutical removal from soils, sediments and water is starting to be researched, with promising results....... This review gives an in-depth overview of the phytotoxicity of pharmaceuticals, their uptake and their removal by plants. The aim of the current work was to map the present knowledge concerning pharmaceutical interactions with plants in terms of uptake and the use of plant-based systems for phytoremediation...

  9. Estimation of Cadmium uptake by tobacco plants from laboratory leaching tests.

    Science.gov (United States)

    Marković, Jelena P; Jović, Mihajlo D; Smičiklas, Ivana D; Šljivić-Ivanović, Marija Z; Smiljanić, Slavko N; Onjia, Antonije E; Popović, Aleksandar R

    2018-03-21

    The objective of the present study was to determine the impact of cadmium (Cd) concentration in the soil on its uptake by tobacco plants, and to compare the ability of diverse extraction procedures for determining Cd bioavailability and predicting soil-to-plant transfer and Cd plant concentrations. The pseudo-total digestion procedure, modified Tessier sequential extraction and six standard single-extraction tests for estimation of metal mobility and bioavailability were used for the leaching of Cd from a native soil, as well as samples artificially contaminated over a wide range of Cd concentrations. The results of various leaching tests were compared between each other, as well as with the amounts of Cd taken up by tobacco plants in pot experiments. In the native soil sample, most of the Cd was found in fractions not readily available under natural conditions, but with increasing pollution level, Cd amounts in readily available forms increased. With increasing concentrations of Cd in the soil, the quantity of pollutant taken up in tobacco also increased, while the transfer factor (TF) decreased. Linear and non-linear empirical models were developed for predicting the uptake of Cd by tobacco plants based on the results of selected leaching tests. The non-linear equations for ISO 14870 (diethylenetriaminepentaacetic acid extraction - DTPA), ISO/TS 21268-2 (CaCl 2 leaching procedure), US EPA 1311 (toxicity characteristic leaching procedure - TCLP) single step extractions, and the sum of the first two fractions of the sequential extraction, exhibited the best correlation with the experimentally determined concentrations of Cd in plants over the entire range of pollutant concentrations. This approach can improve and facilitate the assessment of human exposure to Cd by tobacco smoking, but may also have wider applicability in predicting soil-to-plant transfer.

  10. Characterisation of radionuclide migration and plant uptake for performance assessment

    International Nuclear Information System (INIS)

    Mathias, S. A.; Ireson, A. M.; Butler, A. P.; Jackson, B. M.; Wheater, H. S.

    2008-01-01

    Unsaturated vegetated soils are an important component in performance assessment models used to quantify risks associated with deep engineered repositories for underground radioactive waste disposal. Therefore, experimental studies, funded by Nirex over nearly 20 years, have been undertaken at Imperial College to study the transfer of radionuclides (Cl-36, I-129, Tc-99) from contaminated groundwater into crops. In parallel to this has been a modelling programme to aid interpretation of the experimental data, obtain parameter values characterising transport in soil and plant uptake and provide new representations of near-surface processes for performance assessment. A particular challenge in achieving these objectives is that the scale of the experimental work (typically ≤1 m) is much smaller than that required in performance assessment. In this paper, a new methodology is developed for up-scaling model results obtained at the experimental scale for use in catchment scale models. The method is based on characterising soil heterogeneity using soil texture. This has the advantage of allowing hydrological and radionuclide transport parameters to be correlated in a consistent manner. An initial investigation into the calculation of effective (i.e. up-scaled) hydrological and transport parameters has been undertaken and shows the results to be potentially highly (and non-linearly) sensitive to soil properties. Consequently, they have important implications for future site characterisation programmes supporting a proposed underground waste repository. (authors)

  11. Relative importance of plant uptake and plant associated denitrification for removal of nitrogen from mine drainage in sub-arctic wetlands.

    Science.gov (United States)

    Hallin, Sara; Hellman, Maria; Choudhury, Maidul I; Ecke, Frauke

    2015-11-15

    Reactive nitrogen (N) species released from undetonated ammonium-nitrate based explosives used in mining or other blasting operations are an emerging environmental problem. Wetlands are frequently used to treat N-contaminated water in temperate climate, but knowledge on plant-microbial interactions and treatment potential in sub-arctic wetlands is limited. Here, we compare the relative importance of plant uptake and denitrification among five plant species commonly occurring in sub-arctic wetlands for removal of N in nitrate-rich mine drainage in northern Sweden. Nitrogen uptake and plant associated potential denitrification activity and genetic potential for denitrification based on quantitative PCR of the denitrification genes nirS, nirK, nosZI and nosZII were determined in plants growing both in situ and cultivated in a growth chamber. The growth chamber and in situ studies generated similar results, suggesting high relevance and applicability of results from growth chamber experiments. We identified denitrification as the dominating pathway for N-removal and abundances of denitrification genes were strong indicators of plant associated denitrification activity. The magnitude and direction of the effect differed among the plant species, with the aquatic moss Drepanocladus fluitans showing exceptionally high ratios between denitrification and uptake rates, compared to the other species. However, to acquire realistic estimates of N-removal potential of specific wetlands and their associated plant species, the total plant biomass needs to be considered. The species-specific plant N-uptake and abundance of denitrification genes on the root or plant surfaces were affected by the presence of other plant species, which show that both multi- and inter-trophic interactions are occurring. Future studies on N-removal potential of wetland plant species should consider how to best exploit these interactions in sub-arctic wetlands. Copyright © 2015 Elsevier Ltd. All rights

  12. Physiological factors into plant uptake models for pollutant

    International Nuclear Information System (INIS)

    Goncharova, N.; Kalinkevich, E.; Pytyrskaya, V.; Lopareva, E.; Suvorov, D.

    2002-01-01

    elements. The investigation was carried out in a conditions of laboratory experiment. Samples for each type of experimental measurements and biochemical investigation have been obtained from oat and pea seedlings of 12 days grow. Root and stem biomass and cell walls CEC was determined the method involved saturation of the tissues with H + ions with 1 M KCl at pH7. The quantity of H + ions displaced from the tissues by 1 M KCl being calculated from the change in pH-meter. Cell walls were extracted using the method of Stessard. The estimate the kinetic and concentration regularities of the Cs, Cu, Zn and Co absorption 'material' with concentration 10 -5 - 10 -3 . Concentration curves were plotted on the base of the family of the kinetic curves by means 'zero' rate principle so to say the rate of mineral element uptake by plants at the beginning of these processes. The results of our investigation indicate that the kinetic curves have complex structure and are combination of tree or more phases. It is well known that kinetic methods are widely used in the investigation of the compartmentalization of the macro- and trace elements in plant tissues. When each phase of the kinetic curve associates with intake of chemical elements in definite plant compartments. The first phase is reflection of superficial absorption by root and usually has duration from 5 to 15 min. The second phase corresponds to transfer of ions to free space and saturation of apoplast and has duration usually from 1 to 3 hours. The third phase corresponds to active, metabolic-dependent absorption and transfer off ions from apoplast to simplistic space The fourth phase is reflection of the ions. Modern experimental data on kinetics of the ions transfer from root to stem are very limited. At barley intact seedlings lag-phase has been observed as a long enough retention of this process. At the same time in accordance with results of other authors potassium translocation from root to the shoot has been realized

  13. Uptake and Transformation of Methylated and Inorganic Antimony in Plants.

    Science.gov (United States)

    Ji, Ying; Mestrot, Adrien; Schulin, Rainer; Tandy, Susan

    2018-01-01

    Used as a hardening agent in lead bullets, antimony (Sb) has become a major contaminant in shooting range soils of some countries including Switzerland. Soil contamination by Sb is also an environmental problem in countries with Sb-mining activities such as China and Bolivia. Because of its toxicity and relatively high mobility, there is concern over the risk of Sb transfer from contaminated soils into plants, and thus into the food chain. In particular there is very little information on the environmental behavior of methylated antimony, which can be produced by microbial biomethylation of inorganic Sb in contaminated soils. Using a new extraction and high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS) method, we investigated antimony speciation in roots and shoots of wheat, fescue, rye, and ryegrass plants exposed to trimethyl antimony(V) (TMSb), antimonite (Sb(III)), and antimonate (Sb(V)) in hydroponics. The total root Sb concentrations followed the order Sb(III) treatment > Sb(V) treatment > TMSb treatment, except for fescue. Shoot Sb concentrations, however, did not differ among the three treatments. In the Sb(V) treatment small quantities of TMSb were found in the roots, whereas no TMSb was detected in the roots of Sb(III)-treated plants. In contrast, similar concentrations of TMSb were found in the shoots in both inorganic Sb treatments. The results indicate that biomethylation of Sb may occur in plants. In the TMSb treatment TMSb was the major Sb species, but the two inorganic Sb species were also found both in shoots and roots along with some unknown Sb species, suggesting that also TMSb demethylation may occur within plant tissues. The results furthermore indicate that methylated Sb is more mobile in plants than inorganic Sb species. Knowledge about this is important in risk assessments of Sb-contaminated sites, as methylation may render Sb more toxic than inorganic Sb, as it is known for arsenic (As).

  14. Macronutrient uptake, accumulation and export by the irrigated 'vitória' pineapple plant

    Directory of Open Access Journals (Sweden)

    Rodinei Facco Pegoraro

    2014-06-01

    Full Text Available The nutritional state of the pineapple plant has a large effect on plant growth, on fruit production, and fruit quality. The aim of this study was to assess the uptake, accumulation, and export of nutrients by the irrigated 'Vitória' pineapple plant during and at the end of its development. A randomized block statistical design with four replications was used. The treatments were defined by different times of plant collection: at 270, 330, 390, 450, 510, 570, 690, 750, and 810 days after planting (DAP. The collected plants were separated into the following components: leaves, stem, roots, fruit, and slips for determination of fresh and dry matter weight at 65 ºC. After drying, the plant components were ground for characterization of the composition and content of nutrients taken up and exported by the pineapple plant. The results were subjected to analysis of variance, and non-linear regression models were fitted for the significant differences identified by the F test (p N > S > Ca > Mg > P, which corresponded to 898, 452, 134, 129, 126, and 107 kg ha-1, respectively, of total accumulation. The export of macronutrients by the pineapple fruit was in the following decreasing order: K > N > S > Ca > P > Mg, which was equivalent to 18, 17, 11, 8, 8, and 5 %, respectively, of the total accumulated by the pineapple. The 'Vitória' pineapple plant exported 78 kg ha-1 of N, 8 kg ha-1 of P, 164 kg ha-1 of K, 14 kg ha-1 of S, 10 kg ha-1 of Ca, and 6 kg ha-1 of Mg by the fruit. The nutrient content exported by the fruits represent important components of nutrient extraction from the soil, which need to be restored, while the nutrients contained in the leaves, stems and roots can be incorporated in the soil within a program of recycling of crop residues.

  15. Nitrogen and Phosphorus Plant Uptake During Periods with no Photosynthesis Accounts for About Half of Global Annual Uptake

    Science.gov (United States)

    Riley, W. J.; Zhu, Q.; Tang, J.

    2017-12-01

    Uncertainties in current Earth System Model (ESM) predictions of terrestrial carbon-climate feedbacks over the 21st century are as large as, or larger than, any other reported natural system uncertainties. Soil Organic Matter (SOM) decomposition and photosynthesis, the dominant fluxes in this regard, are tightly linked through nutrient availability, and the recent Coupled Model Inter-comparison Project 5 (CMIP5) used for climate change assessment had no credible representations of these constraints. In response, many ESM land models (ESMLMs) have developed dynamic and coupled soil and plant nutrient cycles. Here we quantify terrestrial carbon cycle impacts from well-known observed plant nutrient uptake mechanisms ignored in most current ESMLMs. In particular, we estimate the global role of plant root nutrient competition with microbes and abiotic process at night and during the non-growing season using the ACME land model (ALMv1-ECA-CNP) that explicitly represents these dynamics. We first demonstrate that short-term nutrient uptake dynamics and competition between plants and microbes are accurately predicted by the model compared to 15N and 33P isotopic tracer measurements from more than 20 sites. We then show that global nighttime and non-growing season nitrogen and phosphorus uptake accounts for 46 and 45%, respectively, of annual uptake, with large latitudinal variation. Model experiments show that ignoring these plant uptake periods leads to large positive biases in annual N leaching (globally 58%) and N2O emissions (globally 68%). Biases these large will affect modeled carbon cycle dynamics over time, and lead to predictions of ecosystems that have overly open nutrient cycles and therefore lower capacity to sequester carbon.

  16. Effects of biofertilizers on N-uptake (N-15) of corn (Zea mays L.) plant at early growth-stage

    International Nuclear Information System (INIS)

    Taufiq Bachtiar; Anggi Nico Flatian; Nurrobifahmi; Setiyo Hadi Waluyo

    2016-01-01

    Were studied in pot experiment at the green house in PAIR-BATAN. Broth culture of Azotobacter vinelandii (A), Bacillus cereus (B), Bacillus megaterium (C), and a mixture of those three microbes (ABC) were used as bio-fertilizers, and applied directly on plant grown in pots. Randomized Block Design (RBD) was used in this experiment with six treatments and four replicates. The measured parameters were nitrogen (N) uptake, N derived from the soil, N derived from fertilizer, and plant dry weight. These parameters were determined at 20 days after planting. N derived from bio-fertilizer and N derived from soil were determined by N-15 isotope technique. The results showed that ABC treatment most significantly increase the total N plant (142,42 %) and plant dry weight plant (129.03 %) by the control plant. Based on N-15 isotope technique analysis showed that the significantly contribution to increase N plant was found in ABC treatment (67.92 %). (author)

  17. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake

    Science.gov (United States)

    Wang, Wei-Ning; Tarafdar, Jagadish C.; Biswas, Pratim

    2013-01-01

    An aerosol process was developed for synthesis and delivery of nanoparticles for living watermelon plant foliar uptake. This is an efficient technique capable of generating nanoparticles with controllable particle sizes and number concentrations. Aerosolized nanoparticles were easily applied to leaf surfaces and enter the stomata via gas uptake, avoiding direct interaction with soil systems, eliminating potential ecological risks. The uptake and transport of nanoparticles inside the watermelon plants were investigated systematically by various techniques, such as elemental analysis by inductively coupled plasma mass spectrometry and plant anatomy by transmission electron microscopy. The results revealed that certain fractions of nanoparticles ( d p watermelon plants. The particle size and number concentration played an important role in nanoparticle translocation inside the plants. In addition, the nanoparticle application method, working environment, and leaf structure are also important factors to be considered for successful plant foliar uptake.

  18. Uptake and distributions of 90Sr and 137Cs in rice plants

    International Nuclear Information System (INIS)

    Tsukada, Hirofumi; Takeda, Akira; Hasegawa, Hidenao

    2008-01-01

    Polished rice is a staple food in Asian countries and ingestion of polished rice is one of the most important pathways of radionuclides into humans. Inedible parts of rice plants are returned to the soil as fertilizer and are used as an ingredient of feed for livestock. Strontium-90 and 137 Cs are important radionuclides for the assessment of radiation exposure to the public because of their high fission yield, long-half lives and transferability in the environment. The purpose of the present study is to obtain information on the distributions of 90 Sr and 137 Cs in rice plant components for better understanding of the fate of the radionuclides in an agricultural environment. Rice plants were cultivated in an experimental field and collected at harvest time. The concentrations of 90 Sr and 137 Cs in the soil were 5.6 and 4.4 Bq kg -1 , respectively. Rice plant samples were separated into polished rice, rice bran, hull, straw and root parts, and then the concentrations of 90 Sr and 137 Cs in the samples were determined. The concentrations of 90 Sr and 137 Cs in polished rice were 0.012 and 0.0048 Bq kg -1 dry weight, respectively. The concentrations of 90 Sr and 137 Cs varied by two and one orders of magnitudes in rice plant components, respectively. The edible component, polished rice, accounted for 32% of the total dry weight. In the entire rice plants, only 0.5% of the total 90 Sr and 10% of the total 137 Cs were found in polished rice. Contents of 90 Sr and 137 Cs in the above ground parts were 0.84 and 0.021 Bq m -2 , respectively. For each cropping, the percentages of 90 Sr and 137 Cs uptake from the upper soil layer to the aboveground biomass of rice plants were calculated as 0.094 and 0.0030% of their soil inventories, respectively. (author)

  19. Plant uptake of 134Cs in relation to soil properties and time

    International Nuclear Information System (INIS)

    Massas, I.; Skarlou, V.; Haidouti, C.

    2002-01-01

    134 Cs uptake by sunflower and soybean plants grown on seven different soils and its relation to soil properties were studied in a greenhouse pot experiment. Soil in each pot was contaminated by dripping the 134 Cs in layers, and sunflower and soybean plants were grown for three and two successive periods, respectively. 134 Cs plant uptake was expressed as the transfer factor (TF) (Bq kg -1 plant/Bq kg -1 soil) and as the daily plant uptake (flux) (Bq pot -1 day -1 ) taking into account biomass production and growth time. For the studied soils and for both plants, no consistent trend of TFs with time was observed. The use of fluxes, in general, provided less variable results than TFs and stronger functional relationships. A negative power functional relationship between exchangeable potassium plus ammonium cations expressed as a percentage of cation exchange capacity of each soil and 134 Cs fluxes was found for the sunflower plants. A similar but weaker relationship was observed for soybean plants. The significant correlation between sunflower and soybean TFs and fluxes, as well as the almost identical highest/lowest 134 Cs flux ratios, in the studied soils, indicated a similar effect of soil characteristics on 134 Cs uptake by both plants. In all the studied soils, sunflower 134 Cs TFs and fluxes were significantly higher than the respective soybean values, while no significant difference was observed in potassium content and daily potassium plant uptake (flux) of the two plants

  20. Uptake and translocation of Ti from nanoparticles in crops and wetland plants.

    Science.gov (United States)

    Jacob, Donna L; Borchardt, Joshua D; Navaratnam, Leelaruban; Otte, Marinus L; Bezbaruah, Achintya N

    2013-01-01

    Bioavailability of engineered metal nanoparticles affects uptake in plants, impacts on ecosystems, and phytoremediation. We studied uptake and translocation of Ti in plants when the main source of this metal was TiO2 nanoparticles. Two crops (Phaseolus vulgaris (bean) and Triticum aestivum (wheat)), a wetland species (Rumex crispus, curly dock), and the floating aquatic plant (Elodea canadensis, Canadian waterweed), were grown in nutrient solutions with TiO2 nanoparticles (0, 6, 18 mmol Ti L(-1) for P. vulgaris, T. aestivum, and R. crispus; and 0 and 12 mmol Ti L(-1) for E. canadensis). Also examined in E. canadensis was the influence of TiO2 nanoparticles upon the uptake of Fe, Mn, and Mg, and the influence of P on Ti uptake. For the rooted plants, exposure to TiO2 nanoparticles did not affect biomass production, but significantly increased root Ti sorption and uptake. R. crispus showed translocation of Ti into the shoots. E. canadensis also showed significant uptake of Ti, P in the nutrient solution significantly decreased Ti uptake, and the uptake patterns of Mn and Mg were altered. Ti from nano-Ti was bioavailable to plants, thus showing the potential for cycling in ecosystems and for phytoremediation, particularly where water is the main carrier.

  1. Plant iodine-131 uptake in relation to root concentration as measured in minirhizotron by video camera:

    International Nuclear Information System (INIS)

    Moss, K.J.

    1990-09-01

    Glass viewing tubes (minirhizotrons) were placed in the soil beneath native perennial bunchgrass (Agropyron spicatum). The tubes provided access for observing and quantifying plant roots with a miniature video camera and soil moisture estimates by neutron hydroprobe. The radiotracer I-131 was delivered to the root zone at three depths with differing root concentrations. The plant was subsequently sampled and analyzed for I-131. Plant uptake was greater when I-131 was applied at soil depths with higher root concentrations. When I-131 was applied at soil depths with lower root concentrations, plant uptake was less. However, the relationship between root concentration and plant uptake was not a direct one. When I-131 was delivered to deeper soil depths with low root concentrations, the quantity of roots there appeared to be less effective in uptake than the same quantity of roots at shallow soil depths with high root concentration. 29 refs., 6 figs., 11 tabs

  2. Tritium uptake in cultivated plants after short-term exposure to atmospheric tritium

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.; Paunescu, N.

    1998-01-01

    The tritium behavior in crop plants is of particular interest for the prediction of doses to humans due to ingestion. Tritium is present in plants in two forms: tritium free water tissue (TWT) and organically bound tritium (OBT). The both forms are to be considered in models calculating the ingestion dose. Potato plants belong to the major food crops in many countries and were chosen as representatives of crops whose edible parts grow under ground. Green bean were chosen as representatives of vegetables relevant in human diet. This vegetable may be consumed as green pod and it may be conserved over a long period of time. Green bean and potato plants were exposed to tritiated water vapor in the atmosphere during their generative phase of development. The uptake of tritium and the conversion into organic matter was studied under laboratory conditions at two different light intensities. The tritium concentrations in plants were followed until harvest. In leaves, the tritium uptake into tissue water under night conditions was 5-6 times lower than under day-time conditions. The initial incorporation into organic matter under night conditions was 0.7% of the tissue water concentration in leaves of both plant species. However, under light irradiation, this value increased to only 1.8% in bean leaves and 0.9% in potato leaves, which indicates a participation of processes other than photosynthesis in tritium incorporation into organic material. Organically bound tritium (OBT) was translocated into pods and tubers which represented a high percentage of the total organically bound tritium at harvest. The behavior of total OBT in all plants under study showed that OBT, once generated, is lost very slowly until harvest, in particular when storage organs of plants were in their phase of development at the time of exposure. OBT is translocated into the storage organs which may be used in the human diet and thus may contribute to the ingestion dose for a long time after the

  3. Influence of Liming and Mineral Fertilization on Plant Uptake of Radiostrontium from Danish Soils

    DEFF Research Database (Denmark)

    Andersen, A. J.

    1963-01-01

    The uptake of radioactive strontium by rye grass and red clover was studied in pot experiments, using 20 typical Danish agricultural soils. Comparisons were made between the effects of adding Ca in the form of carbonate, sulfate, and chloride, and the respective Mg compounds on Sr uptake by plant...

  4. Comparison of chromium and nickel uptake of plants grown in different soils

    Energy Technology Data Exchange (ETDEWEB)

    Vago, I. [University of Agriculture, Faculty of Agronomy, H-4015 Debrecen, P.O. Box 36 (Hungary); Gyoeri, Z. [University of Agriculture, Faculty of Agronomy, H-4015 Debrecen, P.O. Box 36 (Hungary); Loch, J. [University of Agriculture, Faculty of Agronomy, H-4015 Debrecen, P.O. Box 36 (Hungary)

    1996-03-01

    The chromium and nickel uptake of ryegrass has been examined in pot experiments in extremely different soils, poor sandy and fertile black chernozem. The effect of calcium carbonate doses and nitrogen supply on heavy metal uptake of the plant has been studied for chromium and nickel loadings (0-100 mg/kg Cr{sup 3+} or Ni{sup 2+}) applied as inorganic salts. The ability to uptake Cr{sup 3+} and Ni{sup 2+} differs significantly and is highly affected by the characteristics of soils, and depends on the metal investigated. The heavy metal uptake of the plant differs significantly in acid, colloid deficient sandy soils; while artificial chromium contamination did not modify the dry-matter production in the pots in either soil, a large quantity of nickel reduced the yields significantly. Nitrogen application did not change significantly the uptake of heavy metals. Lime application reduced the Ni{sup 2+} uptake of plants considerably, especially in sandy soil. In case of a calcium carbonate addition the dry-matter production of the plant was not affected by nickel. In chernozem soil the effect of lime application - i.e., the reduction of nickel uptake - was of a lesser degree. The significantly lesser Cr{sup 3+} uptake was further limited by a calcium carbonate application for both soils studied. A graphic presentation of these effects is given. (orig.). With 3 figs., 3 tabs.

  5. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants.

    Science.gov (United States)

    Anawar, Hossain M; Rengel, Zed; Damon, Paul; Tibbett, Mark

    2018-02-01

    High arsenic (As) concentrations in the soil, water and plant systems can pose a direct health risk to humans and ecosystems. Phosphate (Pi) ions strongly influence As availability in soil, its uptake and toxicity to plants. Better understanding of As(V)-Pi interactions in soils and plants will facilitate a potential remediation strategy for As contaminated soils, reducing As uptake by crop plants and toxicity to human populations via manipulation of soil Pi content. However, the As(V)-Pi interactions in soil-plant systems are complex, leading to contradictory findings among different studies. Therefore, this review investigates the role of soil type, soil properties, minerals, Pi levels in soil and plant, Pi transporters, mycorrhizal association and microbial activities on As-Pi interactions in soils and hydroponics, and uptake by plants, elucidate the key mechanisms, identify key knowledge gaps and recommend new research directions. Although Pi suppresses As uptake by plants in hydroponic systems, in soils it could either increase or decrease As availability and toxicity to plants depending on the soil types, properties and charge characteristics. In soil, As(V) availability is typically increased by the addition of Pi. At the root surface, the Pi transport system has high affinity for Pi over As(V). However, Pi concentration in plant influences the As transport from roots to shoots. Mycorrhizal association may reduce As uptake via a physiological shift to the mycorrhizal uptake pathway, which has a greater affinity for Pi over As(V) than the root epidermal uptake pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Nocturnal uptake and assimilation of nitrogen dioxide by C3 and CAM plants.

    Science.gov (United States)

    Takahashi, Misa; Konaka, Daisuke; Sakamoto, Atsushi; Morikawa, Hiromichi

    2005-01-01

    In order to investigate nocturnal uptake and assimilation of NO2 by C3 and crassulacean acid metabolism (CAM) plants, they were fumigated with 4 microl l(-1) 15N-labeled nitrogen dioxide (NO2) for 8 h. The amount of NO2 and assimilation of NO2 by plants were determined by mass spectrometry and Kjeldahl-nitrogen based mass spectrometry, respectively. C3 plants such as kenaf (Hibiscus cannabinus), tobacco (Nicotiana tabacum) and ground cherry (Physalis alkekengi) showed a high uptake and assimilation during daytime as high as 1100 to 2700 ng N mg(-1) dry weight. While tobacco and ground cherry strongly reduced uptake and assimilation of NO2 during nighttime, kenaf kept high nocturnal uptake and assimilation of NO2 as high as about 1500 ng N mg(-1) dry weight. Stomatal conductance measurements indicated that there were no significant differences to account for the differences in the uptake of NO2 by tobacco and kenaf during nighttime. CAM plants such as Sedum sp., Kalanchoe blossfeldiana (kalanchoe) and Aloe arborescens exhibited nocturnal uptake and assimilation of NO2. However, the values of uptake and assimilation of NO2 both during daytime and nighttime was very low (at most about 500 ng N mg(-1) dry weight) as compared with those of above mentioned C3 plants. The present findings indicate that kenaf is an efficient phytoremediator of NO2 both during daytime and nighttime.

  7. UPTAKE AND PHYTOTRANSFORMATION OF ORGANOPHOSPHORUS PESTICIDES BY AXENICALLY CULTIVATED AQUATIC PLANTS

    Science.gov (United States)

    The uptake and phytotransformation of organophosphorus (OP) pesticides (malathion, demeton-S-methyl, and crufomate) was investigated in vitro using the axenically aquatic cultivated plants parrot feather (Myriophyllum aquaticum), duckweed (Spirodela oligorrhiza L.), and elodea (E...

  8. Mapping the Metal Uptake in Plants from Jasper Ridge Biological Preserve - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Allison [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-24

    Serpentine soil originates in the Earth’s mantle and contains high concentrations of potentially toxic transition metals. Although serpentine soil limits plant growth, endemic and adapted plants at Jasper Ridge Biological Preserve, located behind SLAC National Accelerator Laboratory, can tolerate these conditions. Serpentine soil and seeds belonging to native California and invasive plants were collected at Jasper Ridge. The seeds were grown hydroponically and on serpentine and potting soil to examine the uptake and distribution of ions in the roots and shoots using synchrotron micro-focused X-ray fluorescence spectroscopy. The results were used to determine differences between serpentinetolerant plants. Rye grown on potting soil was enriched in Ni, Fe, Mn, and Cr compared to purple needlegrass grown on serpentine soil. Serpentine vegetation equally suppressed the uptake of Mn, Ni, and Fe in the roots and shoots. The uptake of Ca and Mg affected the uptake of other elements such as K, S, and P.

  9. Effects of clay mineral type and organic matter on the uptake of radiocesium by pasture plants

    International Nuclear Information System (INIS)

    D'Souza, T.J.

    1980-10-01

    Studies were undertaken to examine the influence of interaction of clay minerals and organic matter on the uptake of radiocesium by two pasture plants, namely, ryegrass (Lolium italicum L) and red clover (Trifolium pratense L). The clay minerals used were bentonite (2.1 layer type) and kaolinite (1/1 layer type). Mixtures of clay and sand were prepared with 0.5, 10, 20 and 40 per cent clay and treated with organic matter (forest turf) at 0,5 and 10 per cent of the clay-sand mixtures. Results indicated that 134 Cs uptake by plants grown on the kaolinite-clay medium was greater than that on the bentonite-clay medium at a given organic matter level. Increasing the clay content of mixtures resulted in reduction in 134 Cs uptake by both plant species. The plant uptake of 134 Cs increased with additions of organic matter at a given clay content. (author)

  10. Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.

    Science.gov (United States)

    Fares, S; Loreto, F; Kleist, E; Wildt, J

    2008-01-01

    Volatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.

  11. Appraisal of available information on uptake by plants of transplutonium elements and neptunium

    International Nuclear Information System (INIS)

    Thomas, R.L.; Healy, J.W.

    1976-07-01

    A critical review was made of reported information from laboratory studies of plant uptake of transplutonic elements plus neptunium. The available data are meager but indicate that the uptake of Np is the greatest followed by Am and Cm. The data are not sufficient to provide recommended values for use in hazard calculations but they do indicate that the actinides other than plutonium will be accumulated in plants to a greater degree than plutonium

  12. Soil P forms and P uptake under intensive plant growth in the greenhouse

    International Nuclear Information System (INIS)

    Henriquez, Carlos; Killorn, Randy

    2005-01-01

    The concentration of available soil (P) is a function of the equilibrium established among different soil P forms through numerous and different reactions in soil. The objective of this study was to examine the changes in P forms and P supply under exhaustive extraction conditions in soils from 3 different land use areas. In order to establish a greenhouse experiment, representative soil samples (0-20 cm) were taken from three fields located adjacent to one another, in a Typic Hapludands in Costa Rica. One field was a coffee plantation (Coffea arabica var Catuai), the second a sugar cane plantation (Saccarum spp. var 611721), and the third a secondary forest. Sorghum bicolor var Glazer 41) was planted in 1-liter pots and harvested 4 times consecutively. Treatments were no P and P application (100 mg kg -1 ) for each of the different land-use soil samples. Shoot and root dry matter and total P uptake were determined. Soil samples were taken before and after each of the 4 plant growth cycles and analyzed using a modified Hedley et al. (1982) soil P fractionation methodology. Labile-Pi, NaOH-Pi, HCI-Pi, extractable-Po, and residual -P were determined. Applied P increased labile-Pi, NaOH-Pi and HCI-Pi. Statistical changes were not observed in extractable organic P and residual-P due to P application. The NaOH-Pi and HCI-Pi seemed to act as a temporary pool of applied P. The possible participation of residual-P in replenishment of labile-P and NaOH-Pi was observed. The amount of plant P untake was closely related to the initial amount of labile-Pi and was higher in coffee than in forest and sugar cane soils. The labile-P was depleted by plant uptake. Rapid changes in reversibly available soil P forms (NaOH-Pi and HCI-Pi) were observed during the experiment. Our results suggest the occurrence of very rapid and dynamic changes between available and unavailable soil P forms in response to fertilizer application and plant uptake, supporting the idea of a continuum among the

  13. Studies on uptake and translocation of some nutrient elements in plant

    International Nuclear Information System (INIS)

    Aly, S.S.M.

    1985-01-01

    The main objective of this work is to study the uptake and translocation of some nutrients. In this respect, two experiments, dealing with 3 2 P and 6 5 Zn, were conducted using a sandy clay loam soil where corn plants were grown to study such influence on the uptake and translocation of P, Zn, N and K.The utilization of P and Zn fertilizers by corn plants as well as the production of dry matter yield were considered. Chemical analysis of some mineral components and assay of radioactive materials 3 2 P and 6 5 Zn of both plant and soil and the dry weight of corn plants were estimated

  14. Utilization of a Model for Uptake of Cadmium by Plants as a Phytoremediation Assessment Tool

    Science.gov (United States)

    Takahashi, M.; Furbish, D. J.; Clarke, J.

    2008-12-01

    Some traditional methods of environmental remediation, such as removal and disposal of contaminated soil, are loosing economic favor and public acceptance, while others, such as in situ phytoremediation, are being carefully examined because of their attractiveness as environmentally friendly, low-cost solutions to site clean-up. The success of phytoremediation strategies, however, hinges on the ability of selected plants, or plant communities, to effectively uptake, accumulate and tolerate targeted contaminants. Heavy metals, specifically cadmium (Cd), are not essential nutrients to plants. However, chemically similar zinc (Zn) is a micronutrient and is actively taken up by hyperaccumulators. For this reason, the mechanisms involved in uptake of Cd parallel those of Zn. Ideally, Cd would be allocated to the stem, leaf, and/or flower, where it becomes harvestable. Our modeling work simulates the uptake and the storage of Cd in a growing hyperaccumulator. After uptake, Cd is partitioned between adsorption to plant tissue and upward movement to leaves driven by transpiration. Uptake, adsorption and transport are also regulated by phytotoxicity. Simulations suggest that a young plant with small biomass can quickly reach phytotoxicity, which shuts down the normal operation of the plant. Conversely, mature plants on a mildly contaminated site, if harvested before the plants die due to phytotoxicity or natural cause, not only survive but may occasionally thrive. The immediate aim is to estimate the effectiveness and limitations of Cd uptake by hyperaccumulators. The eventual goal of this study is to expand the model in spatial and temporal scales, from individual plants to the community scale, and from one harvest interval to several generations. Understanding the interface between physical and biological processes, specifically the uptake and release of contaminants, provides scientists and engineers tools to assess whether phytoremediation is a reasonable strategy for a

  15. Vanadium uptake and an effect of vanadium treatment on 18F-labeled water movement in a cowpea plant by positron emitting tracer imaging system (PETIS)

    International Nuclear Information System (INIS)

    Furukawa, J.; Yokota, H.; Tanoi, K.; Ueoka, S.; Nakanishi, T.M.; Uchida, H.; Tsuji, A.

    2001-01-01

    Real time vanadate (V 5+ ) uptake imaging in a cowpea plant by positron emitting tracer imaging system (PETIS) is presented. Vanadium-48 was produced by bombarding a Sc foil target with 50 MeV α-particles at Takasaki Ion Accelerators for Advanced Radiation application (TIARA) AVF cyclotron. Then 48 V was added to the culture solution to investigate the V distribution in a cowpea plant. The real time uptake of the 48 V was monitored by PETIS. Distribution of 48 V in a whole plant was measured after 3, 6 and 20 hours of V treatment by Bio-imaging Analyzer System (BAS). After the 20 hour treatment, vanadate was detected at the up-ground part of the plant. To know the effect of V uptake on plant activity, 18 F-labeled water uptake was analyzed by PETIS. When a cowpea plant was treated with V for 20 hours before 18 F-labeled water uptake experiment, the total amount of 18 F-labeled water absorption ws drastically decreased. Results suggest the inhibition of water uptake was mainly caused by the vanadate already moved to the up-ground part of the plant. (author)

  16. Physiological conditions and uptake of inorganic carbon-14 by plant roots

    International Nuclear Information System (INIS)

    Amiro, B.D.; Ewing, L.L.

    1992-01-01

    The uptake of inorganic 14 C by bean plant roots was measured. The plants were grown in a nutrient solution culture at pH 6 and a NaH 14 CO 3 tracer was added to the growth medium. Photosynthesis and transpiration were varied by exposing the aerial portions of the plants to different atmospheric CO 2 concentrations, humidities and light levels in a cuvette system. Leaf concentrations of 14 C were measured at the end of the experiments using liquid scintillation counting. Plant uptake of 14 C via the roots was independent of the photosynthetic rate and, in most cases, could be predicted by knowing the transpiration rate and the nutrient solution concentration. However, when a less efficient root-medium aeration system was used, 14 C uptake was greater than that predicted using transpiration, a phenomenon observed by other researchers. This contrasted to results of another experiment where the measured uptake of iodine was much slower than that predicted using transpiration. Knowledge of transpiration rates is useful in predicting inorganic carbon uptake via the roots and in estimating 14 C transport from contaminated soils to biota. Also, the independence of the uptake from photosynthesis and ambient CO 2 concentrations suggests that future increases in atmospheric CO 2 concentrations may not have a direct effect on root uptake of soil carbon. (author)

  17. Influence of temperature and salinity on heavy metal uptake by submersed plants

    Energy Technology Data Exchange (ETDEWEB)

    Fritioff, A. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)]. E-mail: fritioff@botan.su.se; Kautsky, L. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden); Greger, M. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)

    2005-01-01

    Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 deg. C in combination with salinities of 0, 0.5, and 5%o. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants. - Metal concentrations increase with increasing temperature and decreasing salinity in two aquatic plants.

  18. Caesium Radionuclide Uptake from Wet Soil to Kangkung Plant (Ipomoea sp)

    International Nuclear Information System (INIS)

    Putu Sukmabuana; Poppy Intan Tjahaja

    2009-01-01

    Caesium radionuclide transfer from soil to kangkung plant (Ipomoea sp) generally consumed by people had been examined to obtain transfer factor value for internal radiation dose assessment via soil-plant-human pathway. The kangkung plants were cultivated on watered soil medium containing 134 Cs with concentration of about 80 Bq/g, and the 134 Cs uptake by plants, i.e root, stem, and leaves, were measured using gamma spectrometer. The 134 Cs plant uptake was expressed as transfer factor, i.e. ratio of plant 134 Cs concentration to 134 Cs concentration on soil medium. From this research it was obtained transfer factor value of 134 C from soil to plant is 0.07, and the transfer factor for root, stem, and leaves are 0.34 ; 0.05 ; 0,03 respectively, after 45 days cultivation. The transfer factor values are less than one, indicate that kangkung plant do not accumulate Cs radionuclide from soil. (author)

  19. Influence of temperature and salinity on heavy metal uptake by submersed plants

    International Nuclear Information System (INIS)

    Fritioff, A.; Kautsky, L.; Greger, M.

    2005-01-01

    Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 deg. C in combination with salinities of 0, 0.5, and 5%o. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants. - Metal concentrations increase with increasing temperature and decreasing salinity in two aquatic plants

  20. Uptake of phenolic compounds from plant foods in human intestinal ...

    Indian Academy of Sciences (India)

    Gavirangappa Hithamani

    Open-pan boiling reduced the uptake of quercetin from the onion. Among pure phenolic ... vegetable, is a major source of flavonoid in the diet (Galdón et al. 2008). ..... inflammatory and anti-atherosclerotic properties of red wine polyphenolic ... quercetin and quercetin-rich red onion extract on skeletal muscle mitochondria ...

  1. Dynamic plant uptake model applied for drip irrigation of an insecticide to pepper fruit plants.

    Science.gov (United States)

    Legind, Charlotte N; Kennedy, Coleen M; Rein, Arno; Snyder, Nathan; Trapp, Stefan

    2011-05-01

    Drip application of insecticides is an effective way to deliver the chemical to the plant that avoids off-site movement via spray drift and minimizes applicator exposure. The aim of this paper is to present a cascade model for the uptake of pesticide into plants following drip irrigation, its application for a soil-applied insecticide and a sensitivity analysis of the model parameters. The model predicted the measured increase and decline of residues following two soil applications of an insecticide to peppers, with an absolute error between model and measurement ranging from 0.002 to 0.034 mg kg fw(-1). Maximum measured concentrations in pepper fruit were approximately 0.22 mg kg fw(-1). Temperature was the most sensitive component for predicting the peak and final concentration in pepper fruit, through its influence on soil and plant degradation rates. Repeated simulations of pulse inputs with the cascade model adequately describe soil pesticide applications to an actual cropped system and reasonably mimic it. The model has the potential to be used for the optimization of practical features, such as application rates and waiting times between applications and before harvest, through the integrated accounting of soil, plant and environmental influences. Copyright © 2011 Society of Chemical Industry.

  2. Development of cesium 137 plant uptake predicting model using geographical information systems

    International Nuclear Information System (INIS)

    Lomonos, O.V.

    2002-01-01

    Soil-plant system is a critical component of food chain in processes of Cs 137 migration. In this component it is possible to decrease greatly Cs 137 uptake in food chain. Development of Cs 137 migration model in soil-plant system enable to determine amount of Cs 137 in plant uptake and evaluate agricultural produce accordance with modern ecological requirements. Also this model can help with management of agricultural production. Geographical information systems (GIS) have a wide propagation in radioecology at present time. Models using GIS have several advantages: relative simplicity of evaluation, visualization of evaluated results etc. As a result, plots with possible Cs 137 uptake increasing could be easily discovered. Physical decay, Cs 137 sorption and fixation by soil, Cs 137 vertical migration in soil profile and plant uptake are the main components of the Cs 137 migration model in soil-plant system. Content of biologically available Cs 137 calculated taking into account all of these components. Using GIS with Cs 137 migration model in soil-plant system lets efficiently discover those factors that have major influence on Cs 137 plant uptake increasing. This model improves agricultural production on territories, which polluted by Cs 137

  3. Measurement of N uptake efficiency at various age of tea plant using isotope technique

    International Nuclear Information System (INIS)

    Wibowo, Z.S.; Rachmiati, Y.

    1988-01-01

    Three months experiment to determine the efficiency of N uptake by tea plant of various age was conducted. The experiment was carried out on Andosols soil and the chosen plants were groupen in 1-5, 6-15, 16-30, 31-60 and 60 years old. The experiment used urea fertilizer enriched by 2% 15-N atom, excess. Urea of the rate of 23 kg N/ha was given in one application in the form of solution. The 15-N assay was done weekly for young shoots, old leaves, stalks, and branches. Results of the experiment showed that N uptake of tea plant increased significantly after two weeks upto five weeks of N application. The efficiency of N uptake accumulated in the plucked leaves was the highest in the plant of 6-15 years old. The N uptake efficiency of the other groups of plant was nearly equal. The uptake of N-fertilizer accumulated in pruning materials of the older plant was higher than in the younger one. It proved that the absorbed N in the older plant was mostly used for old leaves and wood development. (author). 4 refs.; 1 fig.; 3 tabs

  4. Root uptake of uranium by a higher plant model (Phaseolus vulgaris) bioavailability from soil solution

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, L.; Henner, P.; Camilleri, V.; Garnier-Laplace, J. [CEA Cadarache (DEI/SECRE/LRE), Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, 13 - Saint-Paul-lez-Durance (France)

    2004-07-01

    Uranium behaviour in soils is controlled by actions and interactions between physicochemical and biological processes that also determine its bioavailability. In soil solution, uranium(+VI) aqueous speciation undergoes tremendous changes mainly depending on pH, carbonates, phosphates and organic matter. In a first approach to identify bioavailable species of U to plants, cultures were performed using hydroponics, to allow an easy control of the composition of the exposure media. The latter, here an artificial soil solution, was designed to control the uranium species in solution. The geochemical speciation code JCHESS using a database compiled from the OECD/NEA thermochemical database project and verified was used to perform the solution speciation calculations. On this theoretical basis, three domains were defined for short-duration well-defined laboratory experiments in simplified conditions: pH 4.9, 5.8 and 7 where predicted dominant species are uranyl ions, hydroxyl complexes and carbonates respectively. For these domains, biokinetics and characterization of transmembrane transport according to a classical Michaelis Menten approach were investigated. The Free Ion Model (or its derived Biotic Ligand Model) was tested to determine if U uptake is governed by the free uranyl species or if other metal complexes can be assimilated. The effect of different variables on root assimilation efficiency and phyto-toxicity was explored: presence of ligands such as phosphates or carbonates and competitive ions such as Ca{sup 2+} at the 3 pH. According to previous experiments, uranium was principally located in roots whatever the pH and no difference in uranium uptake was evidenced between the main growth stages of the plant. Within the 3 studied chemical domains, results from short-term kinetics evidenced a linear correlation between total uranium concentration in bean roots and that in exposure media, suggesting that total uranium in soil solution could be a good predictor

  5. Root uptake of uranium by a higher plant model (Phaseolus vulgaris) bioavailability from soil solution

    International Nuclear Information System (INIS)

    Laroche, L.; Henner, P.; Camilleri, V.; Garnier-Laplace, J.

    2004-01-01

    Uranium behaviour in soils is controlled by actions and interactions between physicochemical and biological processes that also determine its bioavailability. In soil solution, uranium(+VI) aqueous speciation undergoes tremendous changes mainly depending on pH, carbonates, phosphates and organic matter. In a first approach to identify bioavailable species of U to plants, cultures were performed using hydroponics, to allow an easy control of the composition of the exposure media. The latter, here an artificial soil solution, was designed to control the uranium species in solution. The geochemical speciation code JCHESS using a database compiled from the OECD/NEA thermochemical database project and verified was used to perform the solution speciation calculations. On this theoretical basis, three domains were defined for short-duration well-defined laboratory experiments in simplified conditions: pH 4.9, 5.8 and 7 where predicted dominant species are uranyl ions, hydroxyl complexes and carbonates respectively. For these domains, biokinetics and characterization of transmembrane transport according to a classical Michaelis Menten approach were investigated. The Free Ion Model (or its derived Biotic Ligand Model) was tested to determine if U uptake is governed by the free uranyl species or if other metal complexes can be assimilated. The effect of different variables on root assimilation efficiency and phyto-toxicity was explored: presence of ligands such as phosphates or carbonates and competitive ions such as Ca 2+ at the 3 pH. According to previous experiments, uranium was principally located in roots whatever the pH and no difference in uranium uptake was evidenced between the main growth stages of the plant. Within the 3 studied chemical domains, results from short-term kinetics evidenced a linear correlation between total uranium concentration in bean roots and that in exposure media, suggesting that total uranium in soil solution could be a good predictor for

  6. The evaluation of uptake of tritiated methane to the plants

    International Nuclear Information System (INIS)

    Kakiuchi, Hideki; Andoh A, Mariko; Amano, Hikaru

    2003-01-01

    The experiment of the exposure of tritiated methane (CH 3 T) to plants was carried. Plants were put in the airtight container that CH 3 T gas was added. The amount of light that it irradiated plants was changed, and the amounts of photosynthesis as the metabolic change activities of the plants were adjusted, and processes of assimilation to the plant of CH 3 T were evaluated under a constant temperature. The leaves in the container and the inside gas were collected in every interval, and tritium concentrations in the samples were determined. It is observed that CH 3 T concentration in the container decreased under both the light and dark conditions. On changing from dark to light condition, there was no change in the decreasing tendency of the CH 3 T concentration. These show that tritiated methane would be taken in the plants without the photosynthesis process, but through the oxidation by microorganism on plants. (author)

  7. New model concepts for dynamic plant uptake and mass flux estimates in the soil-plant-air system

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer-Gottwein, Peter; Trapp, Stefan

    2010-01-01

    in environmental systems at different scales. Feedback mechanisms between plants and hydrological systems can play an important role. However, they have received little attention to date. Here, a new model concept for dynamic plant uptake models applying analytical matrix solutions is presented, which can...

  8. The influence of the chemical form of technetium on its uptake by plants

    International Nuclear Information System (INIS)

    Loon, L.R. van; Desmet, G.M.; Cremers, A.

    1986-01-01

    Spinach plants, grown on a Steiner nutrient solution containing TcO 4 - at different concentrations, show a linear relationship between the concentration in the nutrient solution and the amount of Tc in the plant (concentration range O Bq/ml-58 Bq/ml). When Tc is added to the plants as a Tc-cysteine complex, less amounts of Tc are present in the plants. The Tc present in the plants is mainly due to the uptake of TcO 4 - , formed by reoxidation of the Tc-cysteine complex in the nutrient solution. Plant tissue analysis together with a mathematical analysis of the uptake, show some evidences for TcO 4 - as the most important chemical form of Tc taken up by the plants. (author)

  9. Effects of a phospholipase A2 inhibitor on uptake and toxicity of liposomes containing plant phosphatidylinositol

    International Nuclear Information System (INIS)

    Jett, M.; Alving, C.R.

    1986-01-01

    Plant phosphatidylinositol (PI) has been shown by us to have a direct cytotoxic effect on cultured tumor cells but not on normal cells. Synthetic PI containing 14 C-linoleic acid in the sn-2 position, also showed the same pattern of selective cytotoxicity. When the metabolic fate of synthetic PI was examined with tumor cells, the radioactivity which no longer occurred as PI, was found as either products of phospholipase A 2 (93%, free fatty acids and phosphatidylcholine) or phospholipase C (7%, diglycerides). Uptake of liposomal PI was directly correlated with cytotoxicity. They tested a variety of inhibitors to see the effect on uptake and/or cytotoxicity of plant PI. General metabolic inhibitors such as metrizamide or sodium azide did not alter cellular uptake of the plant PI liposomes. Inhibitors of lipoxygenase formation, such as indomethacin, also did not alter the uptake or cytotoxicity induced by plant PI. Quinacrine, an inhibitor of phospholipase A 2 , decreased the uptake of the PI containing liposomes to 50% of that seen in the presence or absence of any other inhibitor. Although quinacrine is itself toxic to cells, at low concentrations of quinacrine, plant PI did not show the same degree of cytotoxicity as in the absence of quinacrine. These data are compatible with the hypothesis that plant PI exerts cytotoxicity by serving as a substrate for phospholipase A 2

  10. Lead uptake, tolerance, and accumulation exhibited by the plants Urtica dioica and Sedum spectabile in contaminated soil without additives

    Directory of Open Access Journals (Sweden)

    Grubor Milena

    2008-01-01

    Full Text Available Specimens of Urtica dioica and Sedum spectabile collected from plants growing at uncontaminated sites were transplanted in Pb-contaminated soil without additives (EDTA, HEDTA to identify their natural potential for hyper-tolerance and hyperaccumulation of lead. The total content of Pb in the plants was determined by atomic spectroscopy. Our research showed that the concentrated toxic levels of lead (Pb in Sedum spectabile and Urtica dioica were about 100 or more times higher than those of non-accumulator plants. It can be concluded that these plants have a high natural potential for hypertolerance and hyperaccumulation of lead, since they can hyperaccumulate it without addition of any chelating compounds (EDTA, HEDTA to enhance lead uptake. This makes them very promising plants for use in phytoremediation of Pb-contaminated sites.

  11. Vegetation structure and heavy metal uptake by plants in the mining ...

    African Journals Online (AJOL)

    This study assessed the plant species composition and the heavy metal uptake by plants in the mining-impacted and non mining-impacted areas of the southern Lake Victoria basin. The vegetation of the wetlands was stratified into riverine forest, riverine thickets, swampy grassland, open woodland and floodplain grassland ...

  12. Enhanced Iron and Selenium Uptake in Plants by Volatile Emissions of Bacillus amyloliquefaciens (BF06

    Directory of Open Access Journals (Sweden)

    Jianfei Wang

    2017-01-01

    Full Text Available Volatile organic compounds (VOCs released by plant growth-promoting rhizobacteria (PGPR are involved in promoting growth and triggering systemic resistance (ISR in plants. Importantly, the release of VOCs by some PGPR strains confers improved plant uptake of nutrient elements from the soil. However, the underlying mechanisms of VOCs-regulated nutrient acquisition remain elusive. In this study, VOCs were extracted and identified from Bacillus amyloliquefaciens (strain BF06 using gas chromatography–mass spectrometry (GC–MS. BF06 VOCs exposure significantly promoted the growth and photosynthesis of Arabidopsis plants. To explore how microbial VOCs stimulate growth in plants, gene expression profiles of Arabidopsis seedlings exposed to BF06 VOCs were examined using transcriptomic analyses. In screening differentially expressed genes (DEGs, most upregulated DEGs were found to be related to amino acid transport, iron (Fe uptake and homeostasis, and sulfate transport. Furthermore, BF06 VOCs significantly enhanced Fe absorption in plants under Fe-limited conditions. However, when nitric oxide (NO synthesis was inhibited, BF06 VOCs exposure could not substantially augment Fe acquisition in plants under alkaline stress, indicating that VOCs-mediated plant uptake of Fe was required for induction of root NO accumulation. In addition, BF06 VOCs exposure led to a marked increase in some genes encoding for sulfate transporters, and further increased Se accumulation in plants. Intriguingly, BF06 VOCs exposure failed to increase Se uptake in sultr1;2 mutants, which may indicate that high-level transcription of these sulfate transporters induced by BF06 VOCs was essential for enhancing Se absorption by plants. Taken together, our results demonstrated the potential of VOCs released by this strain BF06 to increase Fe and Se uptake in plants.

  13. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    International Nuclear Information System (INIS)

    Brown, Theresa J.; Wirth, Sharon

    1999-01-01

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here

  14. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,THERESA J.; WIRTH,SHARON

    1999-09-01

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model

  15. Investigation of titanium dioxide nanoparticles toxicity and uptake by plants

    Energy Technology Data Exchange (ETDEWEB)

    Larue, C; Carriere, M [Laboratoire de Structure et Dynamique par Resonance Magnetique UMR 9956 CEA-CNRS-IRAMIS, Gif-sur-Yvette (France); Khodja, H [Laboratoire d' Etude des Elements Legers, UMR 9956 CEA-CNRS-IRAMIS, Gif-sur-Yvette (France); Herlin-Boime, N [Laboratoire Francis Perrin URA 2453 CEA-CNRS-IRAMIS, 91191 Gif-sur-Yvette (France); Brisset, F [Institut de Chimie Moleculaire et des Materiaux d' Orsay, UMR8182 CNRS-University Paris sud, Orsay (France); Flank, A M [LUCIA beamline, SOLEIL synchrotron, Saint-Aubin (France); Fayard, B [Laboratoire de Physique du solide, Orsay, France and ID21 beamline, ESRF, Grenoble (France); Chaillou, S, E-mail: marie.carriere@cea.fr [Unite de Nutrition Azotee des Plantes, INRA, Versailles (France)

    2011-07-06

    Nanoparticles (NP) are introduced in a growing number of commercial products and their production may lead to their release in the environment. Plants may be a potential entry point for NP in the food chain. Up to now, results describing NP phytotoxical effects and plant accumulation are scarce and contradictory. To increase knowledge on titanium dioxide NP (TiO{sub 2}-NPs) accumulation and impact on plants, we designed a study on three plant species, namely wheat (Triticum aestivum), oilseed rape (Brassica napus) and Arabidopsis thaliana. These plants were exposed in hydroponics to a panel of well-characterized TiO{sub 2}-NPs, with diameters ranging from 12 to 140 nm, either anatase or rutile. Their accumulation in plant tissues is currently being assessed by complementary imaging techniques: scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-X-ray fluorescence (SR-{mu}-XRF) imaging and micro-particle induced X-ray emission ({mu}-PIXE) imaging. Moreover, the impact of TiO{sub 2}-NP exposure on germination rate, root elongation, dry biomass and evapotranspiration is evaluated. Preliminary results are presented here, with data collected on wheat plants exposed to 12 nm and 25 nm anatase TiO{sub 2}-NPs. These results show that TiO{sub 2}-NPs are taken up by plants, and do not significantly alter their germination and root elongation. These results underline the necessity of deeper evaluation of nanoparticle ecotoxicity, and particularly on their interaction with plants.

  16. Investigation of titanium dioxide nanoparticles toxicity and uptake by plants

    International Nuclear Information System (INIS)

    Larue, C; Carriere, M; Khodja, H; Herlin-Boime, N; Brisset, F; Flank, A M; Fayard, B; Chaillou, S

    2011-01-01

    Nanoparticles (NP) are introduced in a growing number of commercial products and their production may lead to their release in the environment. Plants may be a potential entry point for NP in the food chain. Up to now, results describing NP phytotoxical effects and plant accumulation are scarce and contradictory. To increase knowledge on titanium dioxide NP (TiO 2 -NPs) accumulation and impact on plants, we designed a study on three plant species, namely wheat (Triticum aestivum), oilseed rape (Brassica napus) and Arabidopsis thaliana. These plants were exposed in hydroponics to a panel of well-characterized TiO 2 -NPs, with diameters ranging from 12 to 140 nm, either anatase or rutile. Their accumulation in plant tissues is currently being assessed by complementary imaging techniques: scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-X-ray fluorescence (SR-μ-XRF) imaging and micro-particle induced X-ray emission (μ-PIXE) imaging. Moreover, the impact of TiO 2 -NP exposure on germination rate, root elongation, dry biomass and evapotranspiration is evaluated. Preliminary results are presented here, with data collected on wheat plants exposed to 12 nm and 25 nm anatase TiO 2 -NPs. These results show that TiO 2 -NPs are taken up by plants, and do not significantly alter their germination and root elongation. These results underline the necessity of deeper evaluation of nanoparticle ecotoxicity, and particularly on their interaction with plants.

  17. Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA.

    Science.gov (United States)

    Han, Fengxiang X; Su, Yi; Monts, David L; Waggoner, Charles A; Plodinec, M John

    2006-09-15

    A large amount of mercury has been discharged on the U.S. Department of Energy's Oak Ridge Site (Tennessee) as a part of the U.S. nuclear weapon program during the 1950s through the early 1960s. Increases in mercury concentration in fish and in lower East Fork Poplar Creek of Oak Ridge have been recently reported. This is an experimental study mimicking the initial stage of transformation and redistribution of mercury in soils, which are comparable to those of the Oak Ridge site. The objectives of this study were to investigate potential transformation, distribution, and plant uptake of mercury compounds in soils. Results show that the H(2)O(2)-oxidizable mercury fraction (organically bound mercury) was the major solid-phase fraction in soils freshly contaminated with soluble mercury compounds, while cinnabar fraction was the major solid phase fraction in soils contaminated with HgS. Langmuir relationships were found between mercury concentrations in plant shoots and in soil solid-phase components. Mercury in HgS-contaminated soils was to some extent phytoavailable to plants. Mercury transformation occurred from more labile fractions into more stable fractions, resulting in strong binding of mercury and decreasing its phytoavailability in soils. In addition, high mercury losses from soils contaminated with soluble mercury compounds were observed during a growing season through volatilization, accounting for 20-62% of the total initial mercury in soils.

  18. Residue behaviour of N-contained polymers and their uptake by plants

    International Nuclear Information System (INIS)

    Sotiriou, N.

    1981-01-01

    A series of synthetic, organic N-fertilizers with long-term N-fertilization effect, such as condensation products of urea and formaldehyde, croton aldehyde or isobutyl aldehyde, as well as pelleted fertilizer salts have been developed. An attempt was made to determine whether these kind of polymers can be decomposed under freeland conditions with the help of 14 C-labelled substances. The UF polymers investigated had a positive influence on the produce over a period of 6 test years following a single application. Whereas urea was fully decomposed in the year of application, the UF polymers applied remained unchanged in the first four test years at the applied site. A significant decomposition in the soil was observed in UF 2 polymers as from the 5th test year, in the UF 3 polymers a small reduction in the 6th test year observed. The total N concentration of the test soils was analogous to the measured 14 C residues. A significant increase of its proportion in the soil was seen by using UF polymers. Measurable radioactivity in the plant samples showed that certain plant uptakable products of the polymers investigated already existed in the soil, which were taken up by the plants. This contribution however, is relatively insignificant compared to the application under the present test conditions. (orig./MG) [de

  19. 32P assessed phosphate uptake by tomato plants Hebros in relation to soil nutrient substance supplies

    International Nuclear Information System (INIS)

    Stoyanova, I.; Rankov, V.; Dimitrov, G.

    1978-01-01

    The uptake of phosphates by tomato plants, cv.Hebros, was assessed by 32 P in a vegetation pot experiment. Leached meadow-cinnamon soil was used, taken from a stationary field experiment to which, for a period of eight years, various rates of NPK were applied. As a result of that significant changes occurred in the soil nutrient substance supplies (concerning total and mobile forms of nitrogen, phosphorus, potassium, pH and salts concentration). It was established that the coefficient of phasphate utilization by tomato plants was the highest (19.15%) on soil receiving a N 210 P 210 K 210 fertilizer application. Long-term fertilization with higher rates at a 1:1:1 NPK ratio increased the content of nutrient substances in the soil, but the coefficient of utilization of available phosphate diminished and was lowest (11.40%) in the case when a N 960 P 960 K 720 mineral fertilizer rate was applied. Following prolonged mineral fertilization with growing N rates (from 240 up to 720 kg/ha) at a background of P 720 K 210 , the coefficient of phosphate utilization by tomato plants also diminished from 16.16 to 12.26%. (author)

  20. The influence of the chemical form of technetium on its uptake by plants

    International Nuclear Information System (INIS)

    Van Loon, L.R.; Desmet, G.M.; Cremers, A.

    1985-01-01

    Spinach plants, grown on a Steiner nutrient solution containing TcO/sup -//sub 4/ at different concentrations, show a linear relationship between the concentration in the nutrient solution and the amount of Tc in the plant (concentration range O Bq/ml-58 Bq/ml). When Tc is added to the plants as a Tc-cysteine complex, less amounts of Tc are present in the plants. The Tc present in the plants is mainly due to the uptake of TcO/sup -//sub 4/, formed by reoxidation of the Tc-cysteine complex in the nutrient solution. Plant tissue analysis together with a mathematical analysis of the uptake, show some evidences for for TcO/sup -//sub 4/ as the most important chemical form of Tc taken up by the plants. In the case of anionic complexes, it's impossible to study only the uptake of the complex. Due to rexodization of the complexed Tc, a mixture of TcO/sup -//sub 4/ and the complex is present in the nutrient solution. In the case of cationic complexes, the TcO/sup -//sub 4/ can be removed from the nutrient solution by an anion exchange resin, so that only the complexed form of Tc is present in the nutrient solution. Its uptake by plants can be studied without interference of TcO/sup -//sub 4/. Uptake of Tc-complexes is possible, but the uptake rate (or transfer factor) is lower by two order of magnitude as compared with TcO/sup -//sub 4/

  1. Review of effect of soil on radionuclide uptake by plants

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Evenden, W.G.

    1987-03-01

    This review was undertaken to improve the understanding of, and to compile the available data concerning, the transfer of uranium (U), thorium (Th) and lead (Pb) from soils to plants. The emphasis of the review was on the absorption of these elements from the soil by plant roots, and the mechanisms underlying this process were outlined. The behaviour of U, Th and Pb in soils and plants was discussed with illustration by data from the literature. An extensive compilation of plant/soil concentration ratios (CR) was completed and the most relevant data for Canadian nuclear facilities were selected. Very few data were found for edible plants and these did not represent the range of soil types found near Canadian nuclear facilities. Recommendations of the most fruitful research directions were made. 69 refs

  2. Assessment of plant-driven uptake and translocation of clofibric acid by Scirpus validus.

    Science.gov (United States)

    Zhang, Dong Qing; Gersberg, Richard M; Hua, Tao; Zhu, Junfei; Ng, Wun Jern; Tan, Soon Keat

    2013-07-01

    Pharmaceutical compounds are now considered as emerging contaminants of environmental concern. The overall objective of this study was to evaluate the uptake and translocation of clofibric acid (CA) by the macrophyte Scirpus validus growing hydroponically. A set of the three replicates was established for each exposure time and for each CA concentration. Plants were grown in 4 L vessels (four plants per vessel corresponding to the three exposure period studies, i.e., 7, 14, 18, and 21 days) which contained an aerated modified Hoagland nutrient solution that was spiked with CA at concentrations of 0.5, 1.0, and 2.0 mg L(-1). At each exposure period, CA concentration was measured in the nutrient solutions. A sea sand disruption method was employed for the extraction of CA from plant tissues. The determination of the pharmaceutical concentration was carried out using solid phase extraction (SPE) followed by chromatographic analysis. The quantification of CA concentrations in both nutrient solutions (after SPE) and plant tissues (after extraction) was conducted by chromatographic analysis. CA concentrations of 5.4-26.8 μg g(-1) (fresh weight) were detected in the roots and 7.2-34.6 μg g(-1) (fresh weight) in the shoots after 21 days. Mass balance calculations showed that S. validus uptake alone accounted for a significant contribution (6-13% for the roots and 22-49% for the shoots) of the total loss of CA. The bioaccumulation factors (BAFs) based on fresh weight for the roots ranged from 6.6 to 23.2, while values for the shoots ranged from 9.5 to 32.1. All the BAFs for the shoots were greater than those in the roots, implying that CA has greater tendency to be translocated to the shoots, rather than the roots of S. validus. All the shoot-to-root concentration ratios were more than 1, denoting that the shoots of S. validus do preferentially accumulate CA. We demonstrated that CA can be actively taken up, subsequently translocated and accumulated by aboveground

  3. How Does Silicon Mediate Plant Water Uptake and Loss Under Water Deficiency?

    Directory of Open Access Journals (Sweden)

    Daoqian Chen

    2018-03-01

    Full Text Available In plants, water deficiency can result from a deficit of water from the soil, an obstacle to the uptake of water or the excess water loss; in these cases, the similar consequence is the limitation of plant growth and crop yield. Silicon (Si has been widely reported to alleviate the plant water status and water balance under variant stress conditions in both monocot and dicot plants, especially under drought and salt stresses. However, the underlying mechanism is unclear. In addition to the regulation of leaf transpiration, recently, Si application was found to be involved in the adjustment of root hydraulic conductance by up-regulating aquaporin gene expression and concentrating K in the xylem sap. Therefore, this review discusses the potential effects of Si on both leaf transpiration and root water absorption, especially focusing on how Si modulates the root hydraulic conductance. A growing number of studies support the conclusion that Si application improves plant water status by increasing root water uptake, rather than by decreasing their water loss under conditions of water deficiency. The enhancement of plant water uptake by Si is achievable through the activation of osmotic adjustment, improving aquaporin activity and increasing the root/shoot ratio. The underlying mechanisms of the Si on improving plant water uptake under water deficiency conditions are discussed.

  4. Comparative uptake and distribution of plutonium, americium, curium and neptunium in four plant species

    Energy Technology Data Exchange (ETDEWEB)

    Schreckhise, R E; Cline, J F [Battelle Pacific Northwest Labs., Richland, WA (USA)

    1980-05-01

    Uptake of the nitrate forms of /sup 238/Pu, /sup 239/Pu, /sup 241/Am, /sup 244/Cm and /sup 237/Np from soil into selected parts of four different plant species grown under field conditions was compared Alfalfa, barley, peas and cheatgrass were grown outdoors in small weighing lysimeters filled with soil containing these radionuclides. The plants were harvested at maturity, divided into selected components and radiochemically analyzed by alpha-energy analysis. Soil concentration did not appear to affect the plant uptake of /sup 238/Pu, /sup 239/Pu, /sup 241/Am or /sup 244/Cm for the two levels utilized. The relative plant uptake of the five different transuranics was /sup 237/Np>/sup 244/Cm approximately equal /sup 241/Am>/sup 239/Pu approximately equal/sup 238/Pu. Relative uptake values of Np for various plant parts ranged from 2200 to 45,000 times as great as for Pu, while Am and Cm values were 10-20 times as great. The values for seeds were significantly lower than those for the other aboveground plant parts for all four transuranic elements. The legumes accumulated approx. 10 times more than the grasses. A comparison of the postulated radionuclide content of plants grown in soil contaminated with material from spent liquid metal fast breeder reactor fuels indicated that concentrations of isotopes of Am, Cm and Np would exceed /sup 239/Pu values.

  5. Nitrogen Cycling in the Mycorrhizosphere: Multipartite Interactions and Plant Nitrogen Uptake Vary with Fertilization Legacy

    Science.gov (United States)

    Hestrin, R.; Lehmann, J.

    2017-12-01

    Soil microbes play an important role in rhizosphere nutrient cycling and plant productivity. In this study, the contributions of soil microbes to organic matter mineralization and plant nitrogen uptake were investigated using incubation and microcosm experiments. Microbial inocula included arbuscular mycorrhizal fungi and microbial communities sampled across a long-term gradient of nitrogen fertilization. Stable isotopes, nanoSIMS imaging, and phospholipid fatty acid analysis were used to track carbon and nitrogen movement from organic matter into microbes, mycorrhizal fungi, and plants. Results show that multipartite relationships between plants and microbes increased plant growth and access to nitrogen from organic matter, and that nitrogen fertilization history had a lasting effect on microbial contributions to fungal and plant nitrogen uptake. This research links rhizosphere ecology and land management with terrestrial biogeochemistry.

  6. Uptake and distribution of soil-applied labelled heavy metals in cereal plants and products

    International Nuclear Information System (INIS)

    Oberlaender, H.E.; Roth, K.

    1983-01-01

    In the present paper investigations are described on the uptake, distribution and translocation of mercury, cadmium, chromium and zinc by spring and winter varieties of wheat, rye and barley. Pot experiments were carried out at low concentrations of the heavy metals in order to avoid growth interference during the uptake. Using radioisotopes the pathway of the metals was traced through different organs into the milling products. An ion-exchanger was added to the soils and its efficiency of reducing the uptake of the metals by the plants was tested

  7. A mathematical model for investigating the effect of cluster roots on plant nutrient uptake

    KAUST Repository

    Zygalakis, K. C.

    2012-04-01

    Cluster roots are thought to play an important role in mediating nutrient uptake by plants. In this paper we develop a mathematical model for the transport and uptake of phosphate by a single root. Phosphate is assumed to diffuse in the soil fluid phase and can also solubilised due to citrate exudation. Using multiple scale homogenisation techniques we derive an effective model that accounts for the cumulative effect of citrate exudation and phosphate uptake by cluster roots whilst still retaining all the necessary information about the microscale geometry and effects. © 2012 EDP Sciences and Springer.

  8. Azospirillum Inoculation Alters Nitrate Reductase Activity and Nitrogen Uptake in Wheat Plant Under Water Deficit Conditions

    OpenAIRE

    N. Aliasgharzad, N. Aliasgharzad; Heydaryan, Zahra; Sarikhani, M.R

    2014-01-01

    Water deficit stress usually diminishes nitrogen uptake by plants. There are evidences that some nitrogen fixing bacteria can alleviate this stress by supplying nitrogen and improving its metabolism in plants. Four Azospirillum strains, A. lipoferum AC45-II, A. brasilense AC46-I, A. irakense AC49-VII and A. irakense AC51-VI were tested for nitrate reductase activity (NRA). In a pot culture experiment using a sandy loam soil, wheat plants (Triticum aestivum L. cv. Sardari) were inoculated with...

  9. Uptake of Total Petroleum Hydrocarbon (TPH) and Polycyclic Aromatic Hydrocarbons (PAHs) by Oryza sativa L. Grown in Soil Contaminated with Crude Oil.

    Science.gov (United States)

    Patowary, Rupshikha; Patowary, Kaustuvmani; Devi, Arundhuti; Kalita, Mohan Chandra; Deka, Suresh

    2017-01-01

    The purpose of this study was to determine whether total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbons (PAHs) present in crude oil contaminated sites are transferred to roots, shoots and finally the grains of rice crops (Oryza sativa L.) grown in those sites. Soil was artificially contaminated with crude oil at concentrations of 0, 1000, 5000, 10,000, and 15,000 mg/kg, followed by planting of rice seedlings. After harvest, TPH in plant samples were measured, and it was determined that the uptake of TPH by the plants gradually increased as the concentration of oil in soil increased. Further, from GC-MS analysis, it was observed that PAHs including naphthalene and phenanthrene bioaccumulated in rice plant parts. Vital physico-chemical properties of soil were also altered due to crude oil contamination. Our study revealed that rice plants grown in crude oil polluted sites can uptake TPH including PAHs, thus emphasising the importance of prior investigation of soil condition before cultivation of crops.

  10. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants.

    Science.gov (United States)

    Miralles, Pola; Church, Tamara L; Harris, Andrew T

    2012-09-04

    To exploit the promised benefits of engineered nanomaterials, it is necessary to improve our knowledge of their bioavailability and toxicity. The interactions between engineered nanomaterials and vascular plants are of particular concern, as plants closely interact with soil, water, and the atmosphere, and constitute one of the main routes of exposure for higher species, i.e. accumulation through the food chain. A review of the current literature shows contradictory evidence on the phytotoxicity of engineered nanomaterials. The mechanisms by which engineered nanomaterials penetrate plants are not well understood, and further research on their interactions with vascular plants is required to enable the field of phytotoxicology to keep pace with that of nanotechnology, the rapid evolution of which constantly produces new materials and applications that accelerate the environmental release of nanomaterials.

  11. Multitracer study on uptake of elements by plants

    International Nuclear Information System (INIS)

    Ambe, Shizuko

    1996-01-01

    A disk target of Au or Ag was irradiated with a 135-MeV/nucleon 12 C, 14 N, or 16 O beam accelerated by the RIKEN Ring Cyclotron. Multitracer solutions were prepared radiochemically from the targets in carrier- and salt-free states. Rice and soybean plants were cultured in a nutrient solution or on soil containing a multitracer. In the experiment of absorption of elements through leaves, either soybean plants were grown in the atmosphere where multitracer-adsorbed cellulose particles were floating in the air or two drops of a multitracer solution was applied onto leaves of Japanese radish. After cultivation, the plants were harvested and they were dried at 65degC for one day and subjected to γ-ray measurement with HPGe detectors. In the case of hydroponically cultured plants, large amounts of almost all of the metal ions in the nutrient solution were absorbed by the roots. In contrast, plants grown on the soil gave extremely low percentage distributions for all the elements examined. This difference is explained by the low distribution of metal ions in soil water and the dilution of radioisotopes with the corresponding elements in soil. When the multitracer is added to soil, adsorption of each radioisotope takes place, resulting in the small partition in soil water. Relatively large amounts of Se, Rb, and Co were accumulated in the seeds of soybean plants which were grown in the presence of floating multitracer-adsorbed cellulose particles in the air. Since the seeds were not directly exposed, the elements detected in the seeds are considered to be transported to the seeds after absorption through leaves. When the multitracer solution were applied onto the leaves, Zn, Rb, Sr, and Mn were absorbed and transported quickly compared with other elements from the application site to other parts of the plant. These results obtained demonstrate that the multitracer technique is powerful in studies on absorption and transport of trace elements in plants. (J.P.N.)

  12. Multitracer study on uptake of elements by plants

    Energy Technology Data Exchange (ETDEWEB)

    Ambe, Shizuko [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1996-12-31

    A disk target of Au or Ag was irradiated with a 135-MeV/nucleon {sup 12}C, {sup 14}N, or {sup 16}O beam. Multitracer solutions were prepared radiochemically from the targets in carrier- and salt-free states. Rice and soybean plants were cultured in a nutrient solution or on soil containing a multitracer. In the experiment of absorption of elements through leaves, either soybean plants were grown in the atmosphere where multitracer-adsorbed cellulose particles were floating in the air or two drops of a multitracer solution was applied onto leaves of Japanese radish. After cultivation, the plants were harvested and they were dried at 65degC for one day and subjected to {gamma}-ray measurement with HPGe detectors. In the case of hydroponically cultured plants, large amounts of almost all of the metal ions in the nutrient solution were absorbed by the roots. In contrast, plants grown on the soil gave extremely low percentage distributions for all the elements examined. This difference is explained by the low distribution of metal ions in soil water and the dilution of radioisotopes with the corresponding elements in soil. When the multitracer is added to soil, adsorption of each radioisotope takes place, resulting in the small partition in soil water. Relatively large amounts of Se, Rb, and Co were accumulated in the seeds of soybean plants which were grown in the presence of floating multitracer-adsorbed cellulose particles in the air. Since the seeds were not directly exposed, the elements detected in the seeds are considered to be transported to the seeds after absorption through leaves. When the multitracer solution were applied onto the leaves, Zn, Rb, Sr, and Mn were absorbed and transported quickly compared with other elements from the application site to other parts of the plant. These results obtained demonstrate that the multitracer technique is powerful in studies on absorption and transport of trace elements in plants. (J.P.N.)

  13. Selected Phytochemicals and Culinary Plant Extracts Inhibit Fructose Uptake in Caco-2 Cells.

    Science.gov (United States)

    Lee, Yurim; Lim, Yeni; Kwon, Oran

    2015-09-18

    This study compared the ability of nine culinary plant extracts containing a wide array of phytochemicals to inhibit fructose uptake and then explored the involvement of intestinal fructose transporters and phytochemicals for selected samples. The chemical signature was characterized by high performance liquid chromatography with mass spectrometry. Inhibition of [(14)C]-fructose uptake was tested by using human intestinal Caco-2 cells. Then, the relative contribution of the two apical-facing intestinal fructose transporters, GLUT2 and GLUT5, and the signature components for fructose uptake inhibition was confirmed in naive, phloretin-treated and forskolin-treated Caco-2 cells. HPLC/MS analysis of the chemical signature revealed that guava leaf contained quercetin and catechin, and turmeric contained curcumin, bisdemethoxycurcumin and dimethoxycurcumin. Similar inhibition of fructose uptake (by ~50%) was observed with guava leaf and turmeric in Caco-2 cells, but with a higher contribution of GLUT2 for turmeric and that of GLUT5 for guava leaf. The data suggested that, in turmeric, demethoxycurcumin specifically contributed to GLUT2-mediated fructose uptake inhibition, and curcumin did the same to GLUT5-mediated fructose uptake inhibition, but GLUT2 inhibition was more potent. By contrast, in guava leaf, catechin specifically contributed to GLUT5-mediated fructose uptake inhibition, and quercetin affected both GLUT5- and GLUT2-mediated fructose uptake inhibition, resulting in the higher contribution of GLUT5. These results suggest that demethoxycurcumin is an important contributor to GLUT2-mediated fructose uptake inhibition for turmeric extract, and catechin is the same to GLUT5-mediated fructose uptake inhibition for guava leaf extract. Quercetin, curcumin and bisdemethoxycurcumin contributed to both GLUT5- and GLUT2-mediated fructose uptake inhibition, but the contribution to GLUT5 inhibition was higher than the contribution to GLUT2 inhibition.

  14. Assessing soil and plant parameters affecting uranium availability and plant uptake

    International Nuclear Information System (INIS)

    Vandenhove, H.

    2009-01-01

    In the assessment of the potential impact of contaminants in soils and the requirement for the implementation of corrective actions, it is important to determine the contaminant's mobility and bioavailability and to identify the processes and parameters ruling it. Mobility and bioavailability of contaminants are among others affected by the physicochemical characteristics of the environment itself and plant properties. This is also the case for uranium (U), reported to be the most frequent radionuclide contaminant in ground and surface water and soils. The actual failure of the available transfer factor (TF) data and their broad relation to soil type to be an appropriate measure for food chain transfer in assessment models, calls for a more mechanistic understanding of the individual processes affecting bioavailability. The objectives of this study were (1) to test if Diffusive Gradient in Thin film (DGT) measured concentrations adequately assess U bioavailability and (2) to evaluate if differences in U uptake by plants can be explained by variation in root-mediated changes in selected soil properties and assess the role of organic acids in this process

  15. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake

    International Nuclear Information System (INIS)

    Wang Weining; Tarafdar, Jagadish C.; Biswas, Pratim

    2013-01-01

    An aerosol process was developed for synthesis and delivery of nanoparticles for living watermelon plant foliar uptake. This is an efficient technique capable of generating nanoparticles with controllable particle sizes and number concentrations. Aerosolized nanoparticles were easily applied to leaf surfaces and enter the stomata via gas uptake, avoiding direct interaction with soil systems, eliminating potential ecological risks. The uptake and transport of nanoparticles inside the watermelon plants were investigated systematically by various techniques, such as elemental analysis by inductively coupled plasma mass spectrometry and plant anatomy by transmission electron microscopy. The results revealed that certain fractions of nanoparticles (d p < 100 nm) generated by the aerosol process could enter the leaf following the stomatal pathway, then pass through the stem, and reach the root of the watermelon plants. The particle size and number concentration played an important role in nanoparticle translocation inside the plants. In addition, the nanoparticle application method, working environment, and leaf structure are also important factors to be considered for successful plant foliar uptake.

  16. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake

    Energy Technology Data Exchange (ETDEWEB)

    Wang Weining [Washington University in St. Louis, Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering (United States); Tarafdar, Jagadish C. [Central Arid Zone Research Institute (India); Biswas, Pratim, E-mail: pbiswas@wustl.edu [Washington University in St. Louis, Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering (United States)

    2013-01-15

    An aerosol process was developed for synthesis and delivery of nanoparticles for living watermelon plant foliar uptake. This is an efficient technique capable of generating nanoparticles with controllable particle sizes and number concentrations. Aerosolized nanoparticles were easily applied to leaf surfaces and enter the stomata via gas uptake, avoiding direct interaction with soil systems, eliminating potential ecological risks. The uptake and transport of nanoparticles inside the watermelon plants were investigated systematically by various techniques, such as elemental analysis by inductively coupled plasma mass spectrometry and plant anatomy by transmission electron microscopy. The results revealed that certain fractions of nanoparticles (d{sub p} < 100 nm) generated by the aerosol process could enter the leaf following the stomatal pathway, then pass through the stem, and reach the root of the watermelon plants. The particle size and number concentration played an important role in nanoparticle translocation inside the plants. In addition, the nanoparticle application method, working environment, and leaf structure are also important factors to be considered for successful plant foliar uptake.

  17. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia

    Energy Technology Data Exchange (ETDEWEB)

    Millett, J., E-mail: j.millett@lboro.ac.uk [Centre for Hydrological and Ecosystem Science, Department of Geography, Loughborough University, Loughborough LE11 3TU (United Kingdom); Foot, G.W. [Centre for Hydrological and Ecosystem Science, Department of Geography, Loughborough University, Loughborough LE11 3TU (United Kingdom); Svensson, B.M. [Department of Plant Ecology and Evolution, Uppsala University, Norbyvägen 18 D, SE-752 36 Uppsala (Sweden)

    2015-04-15

    Nitrogen (N) deposition has important negative impacts on natural and semi-natural ecosystems, impacting on biotic interactions across trophic levels. Low-nutrient systems are particularly sensitive to changes in N inputs and are therefore more vulnerable to N deposition. Carnivorous plants are often part of these ecosystems partly because of the additional nutrients obtained from prey. We studied the impact of N deposition on the nutrition of the carnivorous plant Drosera rotundifolia growing on 16 ombrotrophic bogs across Europe. We measured tissue N, phosphorus (P) and potassium (K) concentrations and prey and root N uptake using a natural abundance stable isotope approach. Our aim was to test the impact of N deposition on D. rotundifolia prey and root N uptake, and nutrient stoichiometry. D. rotundifolia root N uptake was strongly affected by N deposition, possibly resulting in reduced N limitation. The contribution of prey N to the N contained in D. rotundifolia ranged from 20 to 60%. N deposition reduced the maximum amount of N derived from prey, but this varied below this maximum. D. rotundifolia tissue N concentrations were a product of both root N availability and prey N uptake. Increased prey N uptake was correlated with increased tissue P concentrations indicating uptake of P from prey. N deposition therefore reduced the strength of a carnivorous plant–prey interaction, resulting in a reduction in nutrient transfer between trophic levels. We suggest that N deposition has a negative impact on D. rotundifolia and that responses to N deposition might be strongly site specific. - Highlights: • We measured nutrition of the carnivorous plant Drosera rotundifolia across Europe. • We measured tissue nutrient concentrations and prey and root N uptake at 16 sites. • Tissue N concentrations were a product of root N availability and prey N uptake. • N deposition reduced the maximum amount of N derived from prey. • N deposition reduced the strength of a

  18. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia

    International Nuclear Information System (INIS)

    Millett, J.; Foot, G.W.; Svensson, B.M.

    2015-01-01

    Nitrogen (N) deposition has important negative impacts on natural and semi-natural ecosystems, impacting on biotic interactions across trophic levels. Low-nutrient systems are particularly sensitive to changes in N inputs and are therefore more vulnerable to N deposition. Carnivorous plants are often part of these ecosystems partly because of the additional nutrients obtained from prey. We studied the impact of N deposition on the nutrition of the carnivorous plant Drosera rotundifolia growing on 16 ombrotrophic bogs across Europe. We measured tissue N, phosphorus (P) and potassium (K) concentrations and prey and root N uptake using a natural abundance stable isotope approach. Our aim was to test the impact of N deposition on D. rotundifolia prey and root N uptake, and nutrient stoichiometry. D. rotundifolia root N uptake was strongly affected by N deposition, possibly resulting in reduced N limitation. The contribution of prey N to the N contained in D. rotundifolia ranged from 20 to 60%. N deposition reduced the maximum amount of N derived from prey, but this varied below this maximum. D. rotundifolia tissue N concentrations were a product of both root N availability and prey N uptake. Increased prey N uptake was correlated with increased tissue P concentrations indicating uptake of P from prey. N deposition therefore reduced the strength of a carnivorous plant–prey interaction, resulting in a reduction in nutrient transfer between trophic levels. We suggest that N deposition has a negative impact on D. rotundifolia and that responses to N deposition might be strongly site specific. - Highlights: • We measured nutrition of the carnivorous plant Drosera rotundifolia across Europe. • We measured tissue nutrient concentrations and prey and root N uptake at 16 sites. • Tissue N concentrations were a product of root N availability and prey N uptake. • N deposition reduced the maximum amount of N derived from prey. • N deposition reduced the strength of a

  19. Uptake, transport and persistence of 14C yeast mannans in plants

    International Nuclear Information System (INIS)

    Kovalenko, A.G.; Kluge, S.

    1988-01-01

    Low-molecular branched-chain 14 C-mannan from Candida tropicalis and high-molecular linear 14 C-mannan from Rhodotorula rubra are not taken up by intact plants. Mechanical injury of plants is a prerequisite for the uptake and transport of polysaccharides in plant tissues. Mannans injected through the epidermis into the parenchyma of tobacco leaves remain mostly confined to the place of injection or to the respective intercostal field. The presence of dimethyl sulfoxide in the solution stimulates the uptake of mannans through intact roots of tobacco, thorn apple and potato plants. Mannans injected in the intercellular space of the parenchyma tissue of tobacco leaves maintain their polymeric structure for at least five days, which almost corresponds with the duration of their antiviral activity in the plants. These results suggest the antiphytoviral activity in fact to be due to the mannans or to principles stimulated by them rather than to their catabolites. (author)

  20. The uptake of TcO-4 by plants: A mathematical description

    International Nuclear Information System (INIS)

    Van Loon, L.R.; Desmet, G.M.; Cremers, A.

    1989-01-01

    A model describing the uptake of TcO-4 by spinach plants was developed. The equation relates both plant and soil parameters (e.g., growth, metabolism, concentration of TcO-4 and composition of the growth medium) to the concentration of Tc in the shoot of the plant. As the soil solution is the medium from which plants obtain nutrients and non-nutrients, the modeling parameters have been obtained from uptake experiments using nutrient solutions (= simulated soil solutions) as the growth medium. Two important model assumptions are: (1) that an equilibrium exists between TcO-4 in the plant and the growth medium and (2) that the leaf TcO-4 metabolism is a pseudofirst order reaction occurring in a non-constant volume

  1. Method to reduce contamination and uptake of lead by plants from car exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Isermann, K.

    1977-03-01

    Splashing and/or washing plants with aqueous solutions of the chelates CaEDTA (max. 5 mM/litre) or Na-polyphosphate (max. 0.5 percent) is an effective way of reducing contamination and uptake of lead by plants within regions where lead is emitted at significant levels. By chelating lead it first becomes unloaded or even negatively charged (for instance with EDTA as Pb/sub 2/EDTA or PbHEDTA/sup 1 -/ and PbEDTA/sup 2 -/). Therefore chelated lead, in contrast to normal Pb/sup 2 +/, is not absorbed, either on negatively charged surfaces of the plants (cuticula) or within the plant-tissue (mesophyll, on negatively charged cell-walls or membranes). Also, Pb-chelate has a larger diameter than bivalent Pb/sup 2 +/, resulting in a restricted lead uptake by the plant roots.

  2. Uptake of actinides and nuclear fission products in graminaceous and nongraminaceous plants

    Science.gov (United States)

    Ely, Stephanie Lynn

    Radionuclides exist within the environment naturally and also from release during nuclear power and weapons production. The ability of plants to uptake radionuclides may prove beneficial for exploitation in the field of phytoremediation and as a biomonitor within the field of nuclear forensics. The fact that plants have the ability to take up radionuclides as an unintended metabolic process is well known, however, the mechanisms through which uptake occur present large gaps within the current research. Therefore, gaining further knowledge regarding overall plant radionuclide uptake and specific mechanisms may prove as an invaluable tool to enhance phytoremediation and nuclear forensic efforts. Within this work, controlled laboratory experiments were conducted in order to determine any uptake differences between graminaceous (rye grass) and nongraminaceous (cucumber) plants. A matrix of samples were individually spiked with known amounts of Sr, Cs, Th, U as well as ligands of acetate, citrate, DFOB. Uptake was compared through the calculation and analysis of distribution coefficients within the roots and shoots of each plant sample. A variety of trends were observed throughout this study. Overall, it was determined that the cucumber plant takes up slightly higher concentrations within both the roots and the shoots, except for within the Cs set of samples. Within the Cs samples it was determined that uptake was much higher in the rye grass than in the cucumber plant. Therefore, it was concluded that it may be more beneficial to focus on the collection of grasses and other graminaceous plants when the goal is to collect a plant to determine nuclear activity within the vicinity of a facility. This is due to the fact that Cs is generally released at higher concentrations than other radionuclides during the process of nuclear power and energy production. Similarly, grasses may also be desired as the main focus for phytoremediation efforts due to the fact that Cs is a

  3. Uptake of inorganic phosphorus by the aquatic plant Isoetes australis inhabiting oligotrophic vernal rock pools

    DEFF Research Database (Denmark)

    Christiansen, Nina Høj; Pulido, Cristina; Pedersen, Ole

    2017-01-01

    The submerged aquatic freshwater macrophyte Isoetes australis S. Williams grows in rock pools situated in south-western Australia, an environment where dissolved inorganic phosphorus (Pi) availability possibly limits growth. In contrast to the two coexisting aquatic species, Glossostigma drummundii...... experiment revealed high amounts of Pi translocation internally in the plant which seemed to go from roots and oldest leaves to younger leaves. As a result of the high root to shoot ratio, high surface area, root uptake kinetics, and sediment Pi availability, roots accounted for 87% of plant Pi uptake...

  4. Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake

    Science.gov (United States)

    Hall, R.O.; Tank, J.L.; Sobota, D.J.; Mulholland, P.J.; O'Brien, J. M.; Dodds, W.K.; Webster, J.R.; Valett, H.M.; Poole, G.C.; Peterson, B.J.; Meyer, J.L.; McDowell, W.H.; Johnson, S.L.; Hamilton, S.K.; Grimm, N. B.; Gregory, S.V.; Dahm, Clifford N.; Cooper, L.W.; Ashkenas, L.R.; Thomas, S.M.; Sheibley, R.W.; Potter, J.D.; Niederlehner, B.R.; Johnson, L.T.; Helton, A.M.; Crenshaw, C.M.; Burgin, A.J.; Bernot, M.J.; Beaulieu, J.J.; Arangob, C.P.

    2009-01-01

    We measured uptake length of 15NO-3 in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO-3 uptake length. As part of the Lotic Intersite Nitrogen eXperiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO-3 concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO-3 uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (S Wtot). Uptake length increased with specific discharge (Q/w) and increasing NO-3 concentrations, showing a loss in removal efficiency in streams with high NO-3 concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO-3 removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO-3 uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO-3 uptake lengths via directly increasing both gross primary production and NO-3 concentration. Gross primary production shortened SWtot, while increasing NO-3 lengthened SWtot resulting in no net effect of land use on NO- 3 removal. ?? 2009.

  5. Effect of countermeasures on radionuclide uptake by green plants

    International Nuclear Information System (INIS)

    Goncharova, N.

    1999-01-01

    In the present paper results will be discussed in the field of countermeasures effectiveness on the radiocaesium and radiostrontium transfer to plants in relation to soil characteristics at the different sites investigated, as well as their influence on the crop yield. Refs. 4 (author)

  6. Cyclic variations in nitrogen uptake rate of soybean plants: ammonium as a nitrogen source

    Science.gov (United States)

    Henry, L. T.; Raper, C. D. Jr

    1989-01-01

    When NO3- is the sole nitrogen source in flowing solution culture, the net rate of nitrogen uptake by nonnodulated soybean (Glycine max L. Merr. cv Ransom) plants cycles between maxima and minima with a periodicity of oscillation that corresponds with the interval of leaf emergence. Since soybean plants accumulate similar quantities of nitrogen when either NH4+ or NO3- is the sole source in solution culture controlled at pH 6.0, an experiment was conducted to determine if the oscillations in net rate of nitrogen uptake also occur when NH4+ is the nitrogen source. During a 21-day period of vegetative development, net uptake of NH4+ was measured daily by ion chromatography as depletion of NH4+ from a replenished nutrient solution containing 1.0 millimolar NH4+. The net rate of NH4+ uptake oscillated with a periodicity that was similar to the interval of leaf emergence. Instances of negative net rates of uptake indicate that the transition between maxima and minima involved changes in influx and efflux components of net NH4+ uptake.

  7. PLUTONIUM UPTAKE AND BEHAVIOR IN PLANTS OF THE DESERT SOUTHWEST: A PRELIMINARY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, E.; Duff, M.; Ferguson, C.

    2011-03-01

    Eight species of desert vegetation and associated soils were collected from the Nevada National Security Site (N2S2) and analyzed for 238Pu and 239+240Pu concentrations. Amongst the plant species sampled were: atmospheric elemental accumulators (moss and lichen), the very slow growing, long-lived creosote bush and the rapidly growing, short-lived cheatgrass brome. The diversity of growth strategies provided insight into the geochemical behavior and bio-availability of Pu at the N2S2. The highest concentrations of Pu were measured in the onion moss (24.27 Bq kg-1 238Pu and 52.78 Bq kg-1 239+240Pu) followed by the rimmed navel lichen (8.18 Bq kg-1 and 18.4 Bq kg-1 respectively), pointing to the importance of eolian transport of Pu. Brome and desert globemallow accumulated between 3 and 9 times higher concentrations of Pu than creosote and sage brush species. These results support the importance of species specific elemental accumulation strategies rather than exposure duration as the dominant variable influencing Pu concentrations in these plants. Total vegetation elemental concentrations of Ce, Fe, Al, Sm and others were also analyzed. Strong correlations were observed between Fe and Pu. This supports the conclusion that Pu was accumulated as a consequence of the active accumulation of Fe and other plant required nutrients. Cerium and Pu are considered to be chemical analogs. Strong correlations observed in plants support the conclusion that these elements displayed similar geochemical behavior in the environment as it related to the biochemical uptake process of vegetation. Soils were also sampled in association with vegetation samples. This allowed for the calculation of a concentration ratio (CR). The CR values for Pu in plants were highly influenced by the heterogeneity of Pu distribution among sites. Results from the naturally occurring elements of concern were more evenly distributed between sample sites. This allowed for the development of a pattern of plant

  8. A review of phytoremediation technology: heavy metals uptake by plants

    Science.gov (United States)

    Sumiahadi, A.; Acar, R.

    2018-03-01

    Heavy metal is one of the serious environmental pollutions for now days as impact of industrial development in several countries. Heavy metals give toxic effects on human health and cause several serious diseases. Several techniques have been using for removing heavy metal contaminants from the environmental but these techniques have limitations such as high cost, long time, logistical problems and mechanical complexity. Phytoremediation can be used as an alternative solution for heavy metal remediation process because of its advantages as a cost-effective, efficient, environment- and eco-friendly technology based on the use of metal-accumulating plants. According to previous studies, several plants have a high potential as heavy metals bioaccumulator and can be used for phytoremediation process of heavy metals.

  9. Methylcyclopentadienyl manganese tricarbonyl (MMT), plant uptake and effects on metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A.R.; Lytle, C.M.; Stone, R.L.; Smith, B.N [Department of Botany and Range Science, Brigham Young University, Provo (United States); Hansen, L.D. [Department of Chemistry and Biochemistry, Brigham Young University, Provo (United States)

    2000-04-01

    In the USA and Canada, methylcyclopentadienyl manganese (MMT) is currently added to gasoline to replace tetraethyl lead as an antiknock fuel additive. Manganese concentrations in roadside soil and plants are increasing and correlated with distance from the roadway, traffic volume, plant type, and microhabitat. Radish (Raphanus sativus L.) seedlings were treated for either five or thirty-five days with different levels of manganous chloride (0-1000ppm). Metabolic heat rates (q) and respiration rates (R{sub CO{sub 2}}), measured calorimetrically, indicated severe stress at Mn concentrations between 10 and 100ppm and at temperatures above 20C. Predicted growth rates (R{sub SG}) also decreased in these circumstances.

  10. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold.

    Directory of Open Access Journals (Sweden)

    Andrew F Taylor

    Full Text Available We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake.

  11. Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold

    Science.gov (United States)

    Taylor, Andrew F.; Rylott, Elizabeth L.; Anderson, Christopher W. N.; Bruce, Neil C.

    2014-01-01

    We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake. PMID:24736522

  12. Variability in uptake of Cs isotopes by fenugreek plant from three soils

    Energy Technology Data Exchange (ETDEWEB)

    Pulhani, V; Dafauti, S; Dahiya, S; Hedge, A G [Environmental Studies Section, Health Physics Div., Bhabha Atomic Research Centre, Mumbai (India)

    2008-07-01

    Soil to plant transfer via root uptake is one of the major compartments in the radionuclide transfer pathways to man and can be used to assess the internal radiation dose via ingestion. The variability in the Transfer Factor (TF) of Cs isotopes was investigated in three different soils from nuclear power plant sites at Rajasthan and Narora with alkaline sandy loam alluvial and Madras with acidic coastal sandy loam alluvial soil. The soils were characterized for soil properties like texture, pH, EC, organic carbon, CaCO{sub 3} (%), CEC, silt, clay sand etc. and spiked with a mixture of 800 Bq {sup 137}Cs, 300 Bq {sup 134}Cs and 10mg of {sup 133}Cs (stable). Fenugreek (Trigonella foenum-graecum L.) from Leguminosae family an annual plant commonly used as a vegetable was grown in these soils to study the uptake of Cs. The uptake of heavy toxic elements like Pb, Cd, Ni, Cr etc. and nutrients Fe, Co, Cu, Zn, Mn, Ca, Mg, Na and K was also studied. The uptake of heavy toxic elements like Pb, Cd, Ni, Cr etc. and nutrients Fe, Co, Cu, Zn, Mn, Ca, Mg, Na and K was also studied. {sup 137}Cs and{sup 134}Cs was estimated using HPGe detector (15% Relative Efficiency, 54cc-coaxial, 2keV resolution at 1332keV of {sup 60}Co). Stable Cs, K and Na were determined by the Atomic Emission Spectrophotometry and Pb, Cd, Cr etc. by Atomic Absorption Spectrophotometry. Among the three soils the transfer factor for all the elements and Cs was highest for MAPS due to higher organic matter content and acidic pH followed by NAPS and RAPS. The {sup 137}Cs and {sup 134}Cs isotopes have been taken up to the same extent from soil and transfer factors are similar to each other. But the stable Cs uptake appears to be slightly high, probably because of excess of {sup 133}Cs (mg level) added as compared to the radioactive isotopes. In spite of this high difference in the soil concentrations of Cs isotopes, uptake of {sup 133}Cs is not very high indicating to a physiological limiting process for uptake

  13. Degradation of Total Petroleum Hydrocarbon in Phytoremediation Using Terrestrial Plants

    Directory of Open Access Journals (Sweden)

    Mushrifah Idris

    2014-06-01

    Full Text Available This study focused on the total petroleum hydrocarbon (TPH degradation in phytoremediation of spiked diesel in sand. The diesel was added to the sand that was planted with terrestrial plants. Four selected terrestrial plants used were Paspalum vaginatum Sw, Paspalums crobiculatum L. varbispicatum Hack, Eragrotis atrovirens (Desf. Trin. ex Steud and Cayratia trifolia (L. Domin since all the plants could survive at a hydrocarbon petroleum contaminated site in Malaysia. The samplings were carried out on Day 0, 7, 14, 28, 42 and 72. The analysis of the TPH was conducted by extracting the spiked sand using ultrasonic extraction. The determination of the TPH concentration in the sand was performed using GC-FID. The degradation of TPH depends on the plant species and time of exposure. The highest percentage degradation by P. vaginatum, P. scrobiculatum, E. atrovirens and C. trifolia were 91.9, 74.0, 68.9 and 62.9%, respectively. In conclusion, the ability to degrade TPH by plants were P. vaginatum > P. scrobiculatum > E. atrovirens> C. trifolia.

  14. Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency.

    Science.gov (United States)

    Kant, Surya

    2018-02-01

    The majority of terrestrial plants use nitrate as their main source of nitrogen. Nitrate also acts as an important signalling molecule in vital physiological processes required for optimum plant growth and development. Improving nitrate uptake and transport, through activation by nitrate sensing, signalling and regulatory processes, would enhance plant growth, resulting in improved crop yields. The increased remobilisation of nitrate, and assimilated nitrogenous compounds, from source to sink tissues further ensures higher yields and quality. An updated knowledge of various transporters, genes, activators, and microRNAs, involved in nitrate uptake, transport, remobilisation, and nitrate-mediated root growth, is presented. An enhanced understanding of these components will allow for their orchestrated fine tuning in efforts to improving nitrogen use efficiency in plants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. Plant uptake and soil retention of phthalic acid applied to Norfolk sandy loam

    International Nuclear Information System (INIS)

    Dorney, J.R.; Weber, J.B.; Overcash, M.R.; Strek, H.J.

    1985-01-01

    Plant uptake and soil retention of 14 C carboxyl-labeled phthalic acid were studied at application rates of 0.6, 6.0, 60.0, and 600.0 ppm (soil dry weight) to Norfolk sandy loam (Typic Paleudult, fine loamy, kaolinitic, thermic). Height and dry weight of corn (Zea mays L. Pioneer 3368A) (21 day), tall fescue (Festuca arundinacea Schreb. Kentucky 31) (45 day) immature soybean (Glycine max (L.) Merr. Altoona) (21 day) plant, mature soybean plant, and mature wheat (Triticum aestivum L. Butte) straw were not affected by phthalic acid applied to soil. In addition, soybean seed and wheat seed dry weight were unaffected. Immature wheat (40 day) height decreased at the 600 ppm rate. Plant uptake of phthalic acid ranged from 0 to 23 ppm and was significantly above background for all plants and plant materials except soybean pods. Fescue and immature plants exhibited the highest concentration of phthalic acid while mature wheat plants and wheat seeds exhibited the least. Most of the phthalic acid volatilized or was decomposed from the soil by the end of the study; an average of only 5.7% of the originally applied chemical was recovered in both soil or plants. An average of 0.02% of the originally applied phthalic acid leached out of the treated zone. Considering the low toxicity of phthalic acid and its relatively rapid disappearance from soil, it is unlikely to become a health hazard from contaminated plants. However, plant uptake of other toxic organics could potentially become a hazard on soils treated with sludge containing significant quantities of these substances

  16. Barley seeds coating with humates-phosphatase complexes in order to improve p uptake and plant growth

    International Nuclear Information System (INIS)

    Pilar, M. C.; Busto, M. D.; Ortega, N.; Perez-Mateos, M.

    2009-01-01

    Although plants may uptake some forms of organic phosphorus compounds, most of them must be first mineralized to inorganic forms to become available to plants. this hydrolysis is catalyzed by extracellular phosphatases produced by plant roots and microorganisms when plant P availability is limiting P fertilizers added to soil rapidly become unavailable to plants by forming insoluble P compounds. (Author)

  17. Influence of hydraulics on the uptake of ammonium by two freshwater plants

    NARCIS (Netherlands)

    Bal, K.D.; Brion, N.; Woule-Ebongué, V.; Schoelynck, J.; Jooste, A.; Barrón, C.; Dehairs, F.; Meire, P.; Bouma, T.J.

    2013-01-01

    1 Macrophytes are important in the biogeochemistry of flowing rivers, although most information so far has relied on measurements of nutrients in plant tissues. This yields only indirect information on the nutrient uptake fluxes by roots and shoots and about nutrient translocation between roots

  18. The contribution of plant uptake to nutrient removal by floating treatment wetlands

    NARCIS (Netherlands)

    Keizer-Vlek, H.E.; Verdonschot, P.F.M.; Verdonschot, R.C.M.; Dekkers, T.B.M.

    2014-01-01

    Floating treatment wetlands (FTWs) may provide an appealing alternative to the more conventional (sub) surface flow wetlands to solve problems associated with eutrophication in urban surface waters, because they do not claim additional land area. This study examined the contribution of plant uptake

  19. Comparative uptake of gamma-emitting fission product nuclides by plants

    International Nuclear Information System (INIS)

    D'souza, T.J.; Mistry, K.B.

    1974-01-01

    The comparative uptake of long-lived gamma-emitting fission product nuclides 106 Ru, 125 Sb, 137 Cs and 144 Ce, present in global fallout from nuclear explosions, by maize (Zea mays L) plants was examined in water culture experiments. Over identical duration of plant growth, the extent of accumulation of the radionuclides in aerial tissues was in the following decreasing order: 137 Cs >, 125 Sb >, 106 Ru > and 144 Ce. In roots, however, the retention of 144 Ce and 106 Ru was greater than that of 137 Cs and 125 Sb. Complementary studies with maize and rice (Oryza sativa L) grown on two contrasting soil types, namely, laterite and black clay loam indicated that 137 Cs uptake by plants was markedly greater than that of the other radionuclides in both soil types. Plant uptake of 106 Ru and 125 Sb was significantly higher than that of 144 Ce in the black soil. In the laterite, however, 144 Ce uptake far exceeded that of 106 Ru and 125 Sb. In general, maize removed higher amounts of the radionuclides than rice from both soil types. (author)

  20. Foliar mineral nutrient uptake in carnivorous plants: What do we know and what should we know?

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2013-01-01

    Roč. 4, č. 10 (2013), s. 1-3 ISSN 1664-462X R&D Projects: GA ČR(CZ) GAP504/11/0783 Institutional support: RVO:67985939 Keywords : terrestrial and aquatic carnivorous plant s * stimulation of root nutrient uptake * Utricularia traps Subject RIV: EF - Botanics Impact factor: 3.637, year: 2013

  1. Concentration of radionuclides in uranium tailings and its uptake by plants at Jaduguda, Jharkhand, India

    International Nuclear Information System (INIS)

    Singh, Lal; Soni, Prafulla

    2010-01-01

    Mining and processing of uranium ore was started in several parts of eastern Singhbhum, viz. Jaduguda, Bhatin and Narwapahar (Jharkhand) in 1968. Radioactivity in the mine tailings has to be consolidated so that it does not emanate in the atmosphere or enter the food chain. Hence, the area has been covered with 30 cm thick soil cover followed by development of plant species that do not have any socioeconomic relevance in the area. Seven native plant species of forestry origin, viz. Colebrookea oppositifolia, Dodonaea viscosa, Furcraea foetida, Imperata cylindrica, Jatropha gossypifolia, Pogostemon benghalense and Saccharum spontaneum have been selected for experimental trials. Distribution and concentration of radionuclides have been evaluated in a tailing pond at different depths in soil and tailings. Radionuclide uptake in each of the selected plant species has been evaluated and discussed in this article. The highest concentration of radionuclides has been found in tailings > soil cover on tailings > roots of selected plant species > shoots of all the selected species. These results show that among the seven species tried, J. gossypifolia and F. foetida have the lowest uptake (below detectable limits), while S. spontaneum and P. benghalense have comparatively higher uptake. However, radionuclide concentration in all the tried species is significantly low compared to species of natural occurrence which have higher radionuclides uptake and accumulation. (author)

  2. Concentration of radionuclides in uranium tailings and its uptake by plants at Jaduguda, Jharkhand, India

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Lal; Soni, Prafulla [Ecology and Environment Div., Forest Research Institute, Dehradun (India)

    2010-01-10

    Mining and processing of uranium ore was started in several parts of eastern Singhbhum, viz. Jaduguda, Bhatin and Narwapahar (Jharkhand) in 1968. Radioactivity in the mine tailings has to be consolidated so that it does not emanate in the atmosphere or enter the food chain. Hence, the area has been covered with 30 cm thick soil cover followed by development of plant species that do not have any socioeconomic relevance in the area. Seven native plant species of forestry origin, viz. Colebrookea oppositifolia, Dodonaea viscosa, Furcraea foetida, Imperata cylindrica, Jatropha gossypifolia, Pogostemon benghalense and Saccharum spontaneum have been selected for experimental trials. Distribution and concentration of radionuclides have been evaluated in a tailing pond at different depths in soil and tailings. Radionuclide uptake in each of the selected plant species has been evaluated and discussed in this article. The highest concentration of radionuclides has been found in tailings > soil cover on tailings > roots of selected plant species > shoots of all the selected species. These results show that among the seven species tried, J. gossypifolia and F. foetida have the lowest uptake (below detectable limits), while S. spontaneum and P. benghalense have comparatively higher uptake. However, radionuclide concentration in all the tried species is significantly low compared to species of natural occurrence which have higher radionuclides uptake and accumulation. (author)

  3. Dynamics of pesticide uptake into plants: From system functioning to parsimonious modeling

    DEFF Research Database (Denmark)

    Fantke, Peter; Wieland, Peter; Wannaz, Cedric

    2013-01-01

    Dynamic plant uptake models are suitable for assessing environmental fate and behavior of toxic chemicals in food crops. However, existing tools mostly lack in-depth analysis of system dynamics. Furthermore, no existing model is available as parameterized version that is easily applicable for use...

  4. Effect of microorganisms on the uptake of radionuclides by plant, application of the plant-microorganism complex system to the phytoremediation

    International Nuclear Information System (INIS)

    Soshi, Takayuki; Enomoto, Shuichi; Yamaguchi, Isamu

    2003-01-01

    Effects of the microorganisms to the uptake of radionuclides by host plant of endophyte (Neotyphodium lolii) to perennial ryegrass, rice pathogenic fungi Gibberella fujikuroi to rice, Fusarium species that is symbiotic to tomato was monitored using the multitracer technique. Perennial ryegrass colonized by endophyte showed lower uptake rate rather than the plant without endophyte. Gibberella fujikuroi was able to increase the uptake of radionuclides (Cs, Sr, Mn, Zn and Co) by rice via infection. Uptake rate of Mn and Co by infected rice plant was elevated to almost two times as that of non-infected plant. The effect of five nonpathogenic strains of F. oxysporum, F. spio rycopersici (N.P.F.) isolated from tomato rhizosphere was analyzed. Each strain shows uptake enhancement of some radionuclide by plant. At least one strain shows critical enhancement of the uptake of Sr and Cs both. (author)

  5. Radionuclides and heavy metal uptake by lolium italicum plant as affected by saline water irrigation

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Aly, A.I.; Helal, M.H.

    2001-01-01

    The use of saline waters to grow crops on increasingly metal polluted soils is becoming a common practice in the arid regions. Nevertheless, the effects of soil and water salinity on radionuclides and heavy metal fluxes in polluted areas are not well understood. The aim of this study was to evaluate in pot experiments the plant uptake of cesium-137, Co-60, Mn-54, Zinc, cadmium and copper from a polluted alluvial aridisol as affected by salt water irrigation. Fertilized soil material was planted in pots with L. Italicum for 18 weeks under greenhouse conditions. The plants were irrigated either with water or with salt solution of variable variable Na/Ca ratio and harvested every 5-7 weeks. In addition to elemental analysis of plants and soil extracts root length was determined by a gridline intersect method and the viable part of the roots was estimated by a root protein inex. Saline (Na) water irrigation increased cobalt-60, manganese-54 and heavy metal solubility in soil, reduced root viability and enhanced the uptake of Co-60, Mn-54, Cd, Cu, Zn and Na by L.italicum and reduced the uptake of Cs-137. Ca counteracted these effects partly. The presented results demonstrated a dual effect of salinity on radiouclides and heavy metal availability to plants and suggest a relationship between root mortality and the enhanced Co-60, Mn-54, and heavy metake ny salt stressed plants

  6. Uptake of some radionuclides by woody plants growing in the rainforest of Western Ghats in India

    International Nuclear Information System (INIS)

    Manigandan, P.K.; Chandar Shekar, B.

    2014-01-01

    Transfer of the naturally occurring radionuclides 238 U, 232 Th, and 40 K, and the fallout radionuclide 210 Po to different wild plant species in the rainforest of Western Ghats was analyzed. A number of physiologically different plants from the top storey and understorey, such as shrubs and epiphytes, were compared. The concentrations of these radionuclides in the plants and soil were measured using a gamma ray spectrometer and an alpha counter, and were found to vary widely within plants and between species. The soil-plant ratios also varied between species while Elaeocarpus oblongus and epiphytic plants exhibited preferential uptake of these radionuclides. As a result, the dust particles trapped in the root systems of epiphytes could be used as bioindicators of fallout radionuclides in the Western Ghats. - Highlights: • Predominant plants species of the region were selected for analysis. • CR Model was employed to these plants spices. • Two plants were indicated preferential uptake of these radionuclides. • Bioindicator was identified in the Western Ghats Environment

  7. Power plant project success through total productive generation

    Energy Technology Data Exchange (ETDEWEB)

    Kaivola, R.; Tamminen, L.

    1996-11-01

    The Total Productive Generation concept (TPG) defines the lines of action adopted by IVO Generation Services Ltd (IGS) for the operation and maintenance of power plants. The TPG concept is based on procedures tested in practice. The main idea of TPG is continuous development of quality, which is a joint effort of the entire staff. Its objective is to benefit IGS`s own staff and, in particular, the company`s customers. (orig.)

  8. A preliminary evaluation of some soil and plant parameters that influence root uptake of arsenic, cadmium, cooper, and zinc

    International Nuclear Information System (INIS)

    Hattemer-Frey, H.A.; Krieger, G.R.; Lau, V.

    1994-01-01

    In the absence of site-specific data, the concentration of metals in plants is typically estimated by multiplying the total concentration of metal in soil by a metal-specific soil-to-root bioconcentration factor (BCF). However, this approach does not account for various soil properties, such as pH, organic matter content, and cation exchange capacity, that are known to influence root uptake of some metals. For risk assessment purposes, a simple, predictive method for estimating root uptake of metals that is based on site-specific soil and crop data is needed so that the importance of the produce ingestion pathway and subsequent influence on human exposure can be quantitatively assessed. An easy-to-use method is necessary since collecting site-specific data on the concentration of metals in home-grown produce is often time-consuming and costly. Ideally, it should be possible to develop a statistically-reliable relationship between plant and soil metals levels that includes appropriate weighing factors for various soil properties. Multiple linear regression analyses were used to develop simple, predictive models for estimating the concentration of metals in plants via root uptake using site-specific soil data. This paper presents preliminary predictive equations for estimating root uptake of arsenic, cadmium, copper, and zinc in fruiting, root, and all vegetables combined (i.e., fruiting and root crop data were combined). Results show that by using data on additional soil parameters (other than relying solely on the concentration of metals in soil), the concentration of metals in fruiting and root vegetables can be more confidently predicted

  9. Inter-taxa differences in root uptake of 103/106Ru by plants

    International Nuclear Information System (INIS)

    Willey, N.J.; Fawcett, K.

    2006-01-01

    Ruthenium-106 is of potential radioecological importance but soil-to-plant Transfer Factors for it are available only for few plant species. A Residual Maximum Likelihood (REML) procedure was used to construct a database of relative 103/106 Ru concentrations in 114 species of flowering plants including 106 species from experiments and 12 species from the literature (with 4 species in both). An Analysis of Variance (ANOVA), coded using a recent phylogeny for flowering plants, was used to identify a significant phylogenetic effect on relative mean 103/106 Ru concentrations in flowering plants. There were differences of 2465-fold in the concentration to which plant species took up 103/106 Ru. Thirty-nine percent of the variance in inter-species differences could be ascribed to the taxonomic level of Order or above. Plants in the Orders Geraniales and Asterales had notably high uptake of 103/106 Ru compared to other plant groups. Plants on the Commelinoid monocot clades, and especially the Poaceae, had notably low uptake of 103/106 Ru. These data demonstrate that plant species are not independent units for 103/106 Ru concentrations but are linked through phylogeny. It is concluded that models of soil-to-plant transfer of 103/106 Ru should assume that; neither soil variables alone affect transfer nor plant species are independent units, and taking account of plant phylogeny might aid predictions of soil-to-plant transfer of 103/106 Ru, especially for species for which Transfer Factors are not available

  10. Transpiration effect on the uptake and distribution of bromacil, nitrobenzene, and phenol in soybean plants

    International Nuclear Information System (INIS)

    McFarlane, J.C.; Pfleeger, T.; Fletcher, J.

    1987-01-01

    The influence of transpiration rate on the uptake and translocation of two industrial waste compounds, phenol and nitrobenzene, and one pesticide, 5-bromo-3-sec-butyl-6-methyluracil (bromacil), was examined. Carbon-14 moieties of each compound were provided separately in hydroponic solution to mature soybean plants maintained under three humidity conditions. The uptake of each compound was determined by monitoring the removal of 14 C from the hydroponic solution. The extent to which 14 C was adsorbed to roots and translocated to plant shoots and leaves was examined by assaying root and shoot parts for 14 C. Bromacil was taken up slower than the other chemicals, had the most 14 C translocated to the shoot, and the amount translocated to the shoot responded directly to the rate of transpiration. In contrast, both phenol and nitrobenzene were rapidly lost from solution and bound to the roots. Less than 1.5% of the 14 C from phenol or nitrobenzene was translocated to the plant shoots. Increased transpiration rates had little influence on root binding of 14 C; however, increasing transpiration rate from low to medium was associated with an increased uptake of nitrobenzene. The three chemicals studied have similar Log K/sub ow/ values, but their interactions with soybean were not the same. Thus, despite the usefulness of the octanol/water partitioning coefficient in predicting the fate of organic chemicals in animals and in correlating with root binding and plant uptake for many pesticides, log K/sub ow/ may not be equally useful in describing uptake and binding of nonpesticide chemicals in plants

  11. Silicon in vascular plants: uptake, transport and its influence on mineral stress under acidic conditions.

    Science.gov (United States)

    Pontigo, Sofía; Ribera, Alejandra; Gianfreda, Liliana; de la Luz Mora, María; Nikolic, Miroslav; Cartes, Paula

    2015-07-01

    So far, considerable advances have been achieved in understanding the mechanisms of Si uptake and transport in vascular plants. This review presents a comprehensive update about this issue, but also provides the new insights into the role of Si against mineral stresses that occur in acid soils. Such information could be helpful to understand both the differential Si uptake ability as well as the benefits of this mineral element on plants grown under acidic conditions. Silicon (Si) has been widely recognized as a beneficial element for many plant species, especially under stress conditions. In the last few years, great efforts have been made to elucidate the mechanisms involved in uptake and transport of Si by vascular plants and recently, different Si transporters have been identified. Several researches indicate that Si can alleviate various mineral stresses in plants growing under acidic conditions, including aluminium (Al) and manganese (Mn) toxicities as well as phosphorus (P) deficiency all of which are highly detrimental to crop production. This review presents recent findings concerning the influence of uptake and transport of Si on mineral stress under acidic conditions because a knowledge of this interaction provides the basis for understanding the role of Si in mitigating mineral stress in acid soils. Currently, only four Si transporters have been identified and there is little information concerning the response of Si transporters under stress conditions. More investigations are therefore needed to establish whether there is a relationship between Si transporters and the benefits of Si to plants subjected to mineral stress. Evidence presented suggests that Si supply and its subsequent accumulation in plant tissues could be exploited as a strategy to improve crop productivity on acid soils.

  12. Root-induced decomposer growth and plant N uptake are not positively associated among a set of grassland plants

    DEFF Research Database (Denmark)

    Saj, S.; Mikola, J.; Ekelund, Flemming

    2008-01-01

    It is known that plant species can induce development of different soil decomposer communities and that they differ in their influence on organic matter decomposition and N mineralization in soil. However, no study has so far assessed whether these two observations are related to each other. Base...... that plant traits such as competitive ability for soil mineral N were more important for plant uptake of litter-N than those that directly affected the growth of soil decomposers.......It is known that plant species can induce development of different soil decomposer communities and that they differ in their influence on organic matter decomposition and N mineralization in soil. However, no study has so far assessed whether these two observations are related to each other. Based...... on the hypothesis that root-induced growth of soil decomposers leads to accelerated decomposition of SOM and increased plant N availability in soil, we predicted that (1) among a set of grassland plants the abundance of soil decomposers in the plant rhizosphere is positively associated with plant N uptake from soil...

  13. Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata.

    Science.gov (United States)

    Liu, Xue; Fu, Jing-Wei; Tang, Ni; da Silva, E B; Cao, Yue; Turner, Benjamin L; Chen, Yanshan; Ma, Lena Q

    2017-07-01

    Phytate is abundant in soils, which is stable and unavailable for plant uptake. However, it occurs in root exudates of As-hyperaccumulator Pteris vittata (PV). To elucidate its effect on As uptake and growth, P. vittata were grown on agar media (63 μM P) containing 50 μM As and/or 50 or 500 μM phytate with non As-hyperaccumulator Pteris ensiformis (PE) as a congeneric control for 60 d. Phytate induced efficient As and P uptake, and enhanced growth in PV, but had little effects on PE. The As concentrations in PV fronds and roots were 157 and 31 mg kg -1 in As 50 +phytate 50 , 2.2- and 3.1-fold that of As 50 treatment. Phosphorus uptake by PV was reduced by 27% in As treatment than the control (P vs. P+As) but increased by 73% comparing phytate 500 to phytate 500 +As, indicating that PV effectively took up P from phytate. Neither As nor phytate affected Fe accumulation in PV, but phytate reduced root Fe concentration in PE (46-56%). As such, the increased As and P and the unsuppressed Fe uptake in PV probably promoted PV growth. Thus, supplying phytate to As-contaminated soils may promote As uptake and growth in PV and its phytoremediation ability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Cyclic variations in nitrogen uptake rate of soybean plants: effects of external nitrate concentration

    Science.gov (United States)

    Tolley-Henry, L.; Raper, C. D. Jr; Granato, T. C.; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic cultures containing 0.5, 1.0 and 10.0 mol m-3 NO3- was measured daily during a 24-d period of vegetative development to determine if amplitude of maximum and minimum rates of net NO3- uptake are responsive to external concentrations of NO3-. Removal of NO3- from the replenished solutions during each 24-h period was determined by ion chromatography. Neither dry matter accumulation nor the periodicity of oscillations in net uptake rate was altered by the external NO3- concentrations. The maxima of the oscillations in net uptake rate, however, increased nearly 3-fold in response to external NO3- concentrations. The maxima and minima, respectively, changed from 4.0 and 0.6 mmol NO3- per gram root dry weight per day at an external solution level of 0.5 mol m-3 NO3- to 15.2 and -2.7 mmol NO3- per gram root dry weight per day at an external solution level of 10.0 mol m-3 NO3-. The negative values for minimum net uptake rate from 10.0 mol m-3 NO3- solutions show that net efflux was occurring and indicate that the magnitude of the efflux component of net uptake was responsive to external concentration of NO3-.

  15. Uptake of heavy metals by plants from airborne deposition and polluted soils

    Directory of Open Access Journals (Sweden)

    T. YLÄRANTA

    2008-12-01

    Full Text Available The concentrations of sulphur, zinc, copper, lead and cadmium in spring wheat grain and straw, Italian rye grass, timothy and lettuce were studied in a three-year field experiment conducted in southern Finland near a copper-nickel smelter and at nonpolluted control sites. A pot experiment with copper- and nickel-contaminated soils and with a nonpolluted soil as the control was conducted to determine the copper and nickel concentrations in soils phytotoxic for plants. Forty, 200 or 1000 mg of copper or nickel as cloride was added to 2 litres of soil. The nickel and copper concentrations in the shoots of oats were measured. The zinc, copper, lead, cadmium and nickel concentrations varied between different plant species and also between experimental years. Near the smelter, the uptake of nickel by different plant species was very effective, as was copper uptake by lettuce, timothy and Italian rye grass. The same applied to the zinc and cadmium uptake of plants grown on plots. Nickel, cadmium and copper were easily accumulated by plants from air deposition. In the pot experiment, high nickel concentrations in soil were more phytotoxic for oats than were high copper concentrations. In acidic soil, nickel and copper concentrations lower than 20 and 100 mg/kg of soil, respectively, decreased the dry matter yield of oats shoots. Liming clearly decreased copper and nickel phytotoxity. In the most highly contaminated soil, the addition of Cu 20 mg/kg of soil decreased the yield of oats shoots.;

  16. Effect of Calcium Levels on Strontium Uptake by Canola Plants Grown on Different Texture Soils

    International Nuclear Information System (INIS)

    El-Shazly, A.A.; Rezk, M. A.; Abdel-Sabour, M.F.; Mousa, E.A.; Mostafa, M.A.Z.; Lotfy, S.M.; Farid, I.M.; Abbas, M.H.H.; Abbas, H.H.

    2016-01-01

    Canola is considered aphytoremediator where, it can remove adequate quantities of heavy metals when grown on polluted soils.This study aimed to investigate growth performance of canola plants grown on clayey non-calcareous, sandy non-calcareous and sandy clay loam calcareous soils with different CaCO 3 contents. These soils were artificially contaminated with 100 mg Sr kg -1 and cultivated with canola plants under three levels of applied calcium i.e. 0, 60 and 85 mg Ca kg -1 in the form of CaCl 2 . The grown plants were kept under the green house conditions until (pot experiment) maturity. Afterwards, plants were harvested, separated into shoots, roots and seeds, and analyzed for their contents of calcium and strontium. Application of calcium to the sandy soil increased Ca uptake by canola plants whereas, Sr uptake, plant growth and seed yield were reduced. In the other soils, Ca and Sr uptake values were increased with minimized Ca rate. Such increases were associated with significant increases in the plant biomass and crop yield in the clayey soil; whereas, in the sandy clay loam calcareous soil, such increases were insignificant. Increasing the dose of the applied Ca (its higher rate) was associated with significant reduction in the plant growth and seed yield in these two soils. Both the biological concentration factor and the biological accumulation factors were relatively high (>1). The biological transfer factor was also high indicating high translocation of Sr from root to shoot. However, Sr translocation decreased with Ca applications. Accordingly canola plants are highly recommended for phytoextraction of Sr from polluted soils

  17. Effect of different treatments on 110m Ag plant uptake in various soil types

    International Nuclear Information System (INIS)

    Szerbin, P.; Koblinger-Bokori, E.

    1996-01-01

    110m Ag contamination may occur as a result of atmospheric release either during normal operation of nuclear power plants or in accidental circumstances. The gamma peaks of 110m Ag and radiocaesium are very close, and not every laboratory could make distinction between them. Therefore very few references are available on 110m Ag environmental behaviour and plant uptake. In the present study plant uptake of 110m Ag from four different types of soil was investigated, and the results are presented in relation to major soil characteristics. In addition, effects of two different treatments (phosphate and organic matter fertilizations) are determined in each type of soil. Our study clearly demonstrates that a carefully selected post-accident treatment can significantly reduce the environmental consequences of radioactive releases. Methods to be developed on bases of such studies could be used for remedial actions of agricultural lands polluted with radioactive substances

  18. Uptake of the natural radioactive gas radon by an epiphytic plant.

    Science.gov (United States)

    Li, Peng; Zhang, Ruiwen; Gu, Mintian; Zheng, Guiling

    2018-01-15

    Radon ( 222 Rn) is a natural radioactive gas and the major radioactive contributor to human exposure. The present effective ways to control Rn contamination are ventilation and adsorption with activated carbon. Plants are believed to be negligible in reducing airborne Rn. Here, we found epiphytic Tillandsia brachycaulos (Bromeliaceae) was effective in reducing airborne Rn via the leaves. Rn concentrations in the Rn chamber after Tillandsia plant treatments decreased more than those in the natural situation. The specialized foliar trichomes densely covering Tillandsia leaves play a major role in the uptake of Rn because the amplified rough leaf surface area facilitates deposition of Rn progeny particles and the powdery epicuticular wax layer of foliar trichomes uptakes liposoluble Rn. The results provide us a new ecological strategy for Rn contamination control, and movable epiphytic Tillandsia plants can be applied widely in Rn removal systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Gaseous release of radioactive iodine from decaying plants. I. Release following foliar and root uptake

    International Nuclear Information System (INIS)

    Saas, Arsene; Grauby, Andre

    1975-12-01

    Iodine uptake by plants is a significant link in the contamination of the food chain. Long half-live iodine was studied considering foliar and root uptake, loss by rain scavenging, residue decay or outgassing in order to assess two aspects of the problem: the importance of outgassing and the effect of the route of transfer on iodine losses. It appeared that iodine release was a function of the vegetal type, there were differences according to the pattern of absorption (via leaf or root) and the processes of iodine release were usually related to biochemical mechanisms [fr

  20. Uptake and movement of 14C-lindane in coffee plants

    International Nuclear Information System (INIS)

    Ruegg, E.F.; Lord, K.A.; Mesquita, T.B.

    1977-01-01

    Several types of experiments were performed to investigate the uptake and distribution of lindane in coffee plants using 14 C-labelled insecticide. The investigations showed that the insecticide taken from nutrient solution is concentrated in the roots and then moves to other parts of the plant. Experiments using macerated plant tissue showed that concentration of lindane in the roots occurs probably by a passive physical process. In another series of tests, leaf tretments of coffee plants grown in pots or in solution indicated that in a few hours about 90% of lindane may be lost from treated leaf as vapor. Some lindane, however, has been detected in other parts of the plant indicating leaf transllocation or migration of the insecticide through the air. The latter hypothesis has been proved by closed and open system comparative experiments using gas chromatographic techniques. This does not exclude a slower and possibly smaller translocation within the plant, suggested by the experiments using radioactivity,. (author) [pt

  1. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea

    International Nuclear Information System (INIS)

    Wu, S.C.; Cheung, K.C.; Luo, Y.M.; Wong, M.H.

    2006-01-01

    A greenhouse study was carried out with Brassica juncea to critically evaluate effects of bacterial inoculation on the uptake of heavy metals from Pb-Zn mine tailings by plants. Application of plant growth-promoting rhizobacteria, including nitrogen-fixing bacteria and phosphate and potassium solubilizers, might play an important role in the further development of phytoremediation techniques. The presence of these beneficial bacteria stimulated plant growth and protected the plant from metal toxicity. Inoculation with rhizobacteria had little influence on the metal concentrations in plant tissues, but produced a much larger above-ground biomass and altered metal bioavailability in the soil. As a consequence, higher efficiency of phytoextraction was obtained compared with control treatments. - Rhizobacteria promoted growth above normal biomass, but did not influence plant metal concentrations

  2. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.C. [Department of Biology and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China); Cheung, K.C. [Department of Biology and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China); Luo, Y.M. [Institute of Soil Science, Chinese Academy of Sciences, Nanjing (China); Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China); Wong, M.H. [Department of Biology and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China) and Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China)]. E-mail: mhwong@hkbu.edu.hk

    2006-03-15

    A greenhouse study was carried out with Brassica juncea to critically evaluate effects of bacterial inoculation on the uptake of heavy metals from Pb-Zn mine tailings by plants. Application of plant growth-promoting rhizobacteria, including nitrogen-fixing bacteria and phosphate and potassium solubilizers, might play an important role in the further development of phytoremediation techniques. The presence of these beneficial bacteria stimulated plant growth and protected the plant from metal toxicity. Inoculation with rhizobacteria had little influence on the metal concentrations in plant tissues, but produced a much larger above-ground biomass and altered metal bioavailability in the soil. As a consequence, higher efficiency of phytoextraction was obtained compared with control treatments. - Rhizobacteria promoted growth above normal biomass, but did not influence plant metal concentrations.

  3. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review.

    Science.gov (United States)

    Shahid, Muhammad; Shamshad, Saliha; Rafiq, Marina; Khalid, Sana; Bibi, Irshad; Niazi, Nabeel Khan; Dumat, Camille; Rashid, Muhammad Imtiaz

    2017-07-01

    Chromium (Cr) is a potentially toxic heavy metal which does not have any essential metabolic function in plants. Various past and recent studies highlight the biogeochemistry of Cr in the soil-plant system. This review traces a plausible link among Cr speciation, bioavailability, phytouptake, phytotoxicity and detoxification based on available data, especially published from 2010 to 2016. Chromium occurs in different chemical forms (primarily as chromite (Cr(III)) and chromate (Cr(VI)) in soil which vary markedly in term of their biogeochemical behavior. Chromium behavior in soil, its soil-plant transfer and accumulation in different plant parts vary with its chemical form, plant type and soil physico-chemical properties. Soil microbial community plays a key role in governing Cr speciation and behavior in soil. Chromium does not have any specific transporter for its uptake by plants and it primarily enters the plants through specific and non-specific channels of essential ions. Chromium accumulates predominantly in plant root tissues with very limited translocation to shoots. Inside plants, Cr provokes numerous deleterious effects to several physiological, morphological, and biochemical processes. Chromium induces phytotoxicity by interfering plant growth, nutrient uptake and photosynthesis, inducing enhanced generation of reactive oxygen species, causing lipid peroxidation and altering the antioxidant activities. Plants tolerate Cr toxicity via various defense mechanisms such as complexation by organic ligands, compartmentation into the vacuole, and scavenging ROS via antioxidative enzymes. Consumption of Cr-contaminated-food can cause human health risks by inducing severe clinical conditions. Therefore, there is a dire need to monitor biogeochemical behavior of Cr in soil-plant system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Uptake and transport of positron-emitting tracer (18F) in plants

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Matsuhashi, Shinpei; Shimazu, Masamitsu

    1997-01-01

    The transport of a positron-emitting isotope introduced into a plant was dynamically followed by a special observation apparatus called Positron-Emitting Tracer Imaging System' to observe the damage and recovery functions of plants in vivo. In the system, annihilation γ-rays from the positron emitter are detected with two planar detectors (5 x 6 cm 2 ). The water containing ca. 5 MBq/ml of 18 F was fed to the cut stem of soybean for 2 min and then the images of tracer activity were recorded for 30-50 min. When the midrib of a leaf near the petiole was cut just before measurement, the activity in the injured leaf was decreased but detected even at the apex. This result suggests that the damaged leaf recovered the uptake of water through the lamina. Maximum tracer activities in leaves of unirradiated plant were observed within 10 min, whereas those of irradiated plant at 100 Gy were observed after over 25 min. The final activity of irradiated plant after 30 min was lower than that of unirradiated plant. In case of beans, there was a difference in the absorption behavior of the 18 F-labeled water between unirradiated and irradiated samples. These results show that the system is effective to observe the uptake and transportation of water containing positron emitting tracer for the study of damage and recovery functions of plants. (Author)

  5. Total phenolics and antioxidant activity of five medicinal plant

    International Nuclear Information System (INIS)

    Sousa, Cleyton Marcos de M.; Silva, Hilris Rocha e; Vieira-Junior, Gerardo Magela; Ayres, Mariane Cruz C.; Costa, Charllyton Luis S. da; Araajo, Delton Servulo; Cavalcante, Luis Carlos D.; Barros, Elcio Daniel S.; Araujo, Paulo Breitner de M.; Brandao, Marcela S.; Chaves, Mariana H.

    2007-01-01

    This paper describes total phenolics content and antioxidant activity in the ethanolic extract of leaves, bark and roots of five medicinal plants: Terminalia brasiliensis Camb., Terminalia fagifolia Mart. and Zucc., Copernicia cerifera (Miller) H.E. Moore, Cenostigma macrophyllum Tul. var. acuminata Teles Freire and Qualea grandiflora Mart. The total phenolics content of the plant extracts, determined by the Folin-Ciocalteu method, varied from 250.0 ±8,2 to 763,63 ±13.03 mg of gallic acid equivalent/g dry EtOH extract. The antioxidant activity of extracts was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay system. Extract of bark from T. brasiliensis, the most active, with an EC 50 value of 27.59 ± 0.82 μg/mL, was comparable to rutin (EC 50 = 27.80 ± 1.38) and gallic acid (EC 50 = 24.27 ± 0.31), used as positive controls. The relationship between total phenolic content and antioxidant activity was positive and significant for T. brasiliensis, C. macrophyllum and C. cerifera. (author)

  6. Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae)

    International Nuclear Information System (INIS)

    Xue, S.G.; Chen, Y.X.; Reeves, Roger D.; Baker, Alan J.M.; Lin, Q.; Fernando, Denise R.

    2004-01-01

    The perennial herb Phytolacca acinosa Roxb. (Phytolaccaceae), which occurs in Southern China, has been found to be a new manganese hyperaccumulator by means of field surveys on Mn-rich soils and by glasshouse experiments. This species not only has remarkable tolerance to Mn but also has extraordinary uptake and accumulation capacity for this element. The maximum Mn concentration in the leaf dry matter was 19,300 μg/g on Xiangtan Mn tailings wastelands, with a mean of 14,480 μg/g. Under nutrient solution culture conditions, P. acinosa could grow normally with Mn supplied at a concentration of 8000 μmol/l, although with less biomass than in control samples supplied with Mn at 5 μmol/l. Manganese concentration in the shoots increased with increasing external Mn levels, but the total mass of Mn accumulated in the shoots first increased and then decreased. At an Mn concentration of 5000 μmol/l in the culture solution, the Mn accumulation in the shoot dry matter was highest (258 mg/plant). However, the Mn concentration in the leaves reached its highest value (36,380 μg/g) at an Mn supply level of 12,000 μmol/l. These results confirm that P. acinosa is an Mn hyperaccumulator which grows rapidly, has substantial biomass, wide distribution and a broad ecological amplitude. This species provides a new plant resource for exploring the mechanism of Mn hyperaccumulation, and has potential for use in the phytoremediation of Mn-contaminated soils

  7. Uptake of Cadmium by Flue-Cured Tobacco Plants: Exploring Bioavailability

    Science.gov (United States)

    Holzer, I.; Robarge, W. P.; Vann, M. C.

    2015-12-01

    Scientific understanding of cadmium (Cd) cycling in North Carolina tobacco plants and soils has lagged, even as production of flue-cured tobacco remains an important part of the NC economy ($903 million in 2014). Cd is considered a tobacco contaminant. When tobacco is burned, Cd can exist as a fine aerosol and subsequent inhalation is linked to cancer. Tobacco root exudates enhance Cd uptake, even though the Cd concentration in NC soils is soil remediation efforts. The objective of this study was to develop a Cd mass balance for flue-cured tobacco grown under field conditions in NC. Whole plant samples were collected at transplanting and every 2 weeks thereafter until harvest. Individual plants were segregated into root, stalk and individual leaves (n = 15 whole plants/sampling date; composite samples were taken early in the growing season). After recording dry mass, samples were analyzed using ion-coupled plasma optical emission spectrometry or ion-coupled plasma mass spectrometry. Lower leaves contained the highest Cd concentrations ( 7-10 mg/kg). Leaves occupying the upper 50% of the plant had Cd concentrations of 2 mg/kg. Uptake rate was greatest from day 27 to 66 ( 21.5 μg Cd/day). Selective Cd uptake appears evident between day 27 and 43, but overall the relative rate of Cd uptake was similar to other trace metals and micronutrients. Cd distribution within the plants mirrored the distribution of calcium, a macronutrient. Of the 8 mg of soil extractable Cd (0.075 mg/kg) in the rooting zone, 15.0% (1203 μg) is removed by uptake. Of this 15%, 64.2% (772.2 μg) is exported at harvest, and 35.8% (430.8 μg; lower leaves, roots, stalks) is returned to the soil. This study must be replicated to account for seasonal and soil variations. These results do inform selection of tobacco strains that limit uptake of trace metals, particularly Cd.

  8. Uptake and distribution of Pu, Am, Cm and Np in four plant species

    Energy Technology Data Exchange (ETDEWEB)

    Schreckhise, R G; Cline, J F [Battelle, Pacific Northwest Laboratories, Richland, WA (United States)

    1978-12-01

    The relative uptake of the nitrate forms of {sup 238}Pu, {sup 239}Pu, {sup 241}Sm, {sup 244}Cm and {sup 237}Np from soil into selectee parts of four different plant species grown under field conditions were observed. Cheatgrass (Bromus tectorum L.), peas (Pisum sativum, var. Blue Bonnet), barley (Hordeum vulgare, var. U. Cal. Briggs), and alfalfa (Medicago sativa, var. Ranger) were grown outdoors in contaminated soil contained in small weighing lysimeters constructed from 13.2 cm diameter by 1-meter-long polyvinyl chloride pipe. The amended soil, containing 0.1 to 1.0 mCi of each isotope individually per 3.4 kg soil, was situated in a 20 cm band and covered by 10 cm of uncontaminated soil to eliminate chances of windblown contamination to the surrounding environs. The plants were harvested at maturity, divided into selected components and radiochemically analyzed by alpha-energy analysis. There did not appear to be any effect of soil concentration on the plant uptake of {sup 238}Pu, {sup 239}Pu, {sup 241}Am or {sup 244}Cm for the two levels utilized (approximately 0.03 and 0.3 {mu}Ci/g soil). The relative uptake of {sup 238}Pu and {sup 239}Pu were not significantly different. Likewise, {sup 241} Am uptake values were not significantly different from the {sup 244}Cm values. The relative plant uptake of the four different transuranium element was: Np > Cm {approx} Am > Pu. The relative uptake values of Np were 2,200 to 45,000 times greater than for Pu, while Am and Cm values were 10 to 20 times greater. The seeds were significantly lower than the rest of the above ground plant parts for all four transuranics. The legumes accumulated approximately ten times more than the grasses. A hypothetical comparison of the radionuclide content of plants grown in soil contaminated with LMFBR fuels indicate that Am, Cm and Np concentrations would exceed Pu values. (author)

  9. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review

    Energy Technology Data Exchange (ETDEWEB)

    Tasho, Reep Pandi, E-mail: reeplepcha@gmail.com; Cho, Jae Yong, E-mail: soilcosmos@jbnu.ac.kr

    2016-09-01

    Therapeutic and sub-therapeutic use of antibiotics in livestock farming is and has been, a common practice worldwide. These bioactive organic compounds have short retention period and partial uptake into the animal system. The uptake effects of this pharmaceutics, with plants as the primary focus, has not been reviewed so far. This review addresses three main concerns 1) the extensive use of veterinary antibiotics in livestock farming, 2) disposal of animal waste containing active biosolids and 3) effects of veterinary antibiotics in plants. Depending upon the plant species and the antibiotic used, the response can be phytotoxic, hormetic as well as mutational. Additionally, the physiological interactions that make the uptake of these compounds relatively easy have also been discussed. High water solubility, longer half-lives, and continued introduction make them relatively persistent in the environment. Lastly, some prevention measures that can help limit their impact on the environment have been reviewed. There are three methods of control: treatment of animal manure before field application, an alternative bio-agent for disease treatment and a well targeted legalized use of antibiotics. Limiting the movement of these biosolids in the environment can be a challenge because of their varying physiological interactions. Electron irradiation and supervised inoculation of beneficial microorganisms can be effective remediation strategies. Thus, extensive future research should be focused in this area. - Highlights: • Use of veterinary antibiotics (VA's) in livestock farming. • The fate of VA's in soil. • Properties that make the uptake of VA's by plants relatively easy. • Effect of VA's on plants based on earlier findings. • Possible measures that are helpful in limiting the impact of VA's.

  10. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review

    International Nuclear Information System (INIS)

    Tasho, Reep Pandi; Cho, Jae Yong

    2016-01-01

    Therapeutic and sub-therapeutic use of antibiotics in livestock farming is and has been, a common practice worldwide. These bioactive organic compounds have short retention period and partial uptake into the animal system. The uptake effects of this pharmaceutics, with plants as the primary focus, has not been reviewed so far. This review addresses three main concerns 1) the extensive use of veterinary antibiotics in livestock farming, 2) disposal of animal waste containing active biosolids and 3) effects of veterinary antibiotics in plants. Depending upon the plant species and the antibiotic used, the response can be phytotoxic, hormetic as well as mutational. Additionally, the physiological interactions that make the uptake of these compounds relatively easy have also been discussed. High water solubility, longer half-lives, and continued introduction make them relatively persistent in the environment. Lastly, some prevention measures that can help limit their impact on the environment have been reviewed. There are three methods of control: treatment of animal manure before field application, an alternative bio-agent for disease treatment and a well targeted legalized use of antibiotics. Limiting the movement of these biosolids in the environment can be a challenge because of their varying physiological interactions. Electron irradiation and supervised inoculation of beneficial microorganisms can be effective remediation strategies. Thus, extensive future research should be focused in this area. - Highlights: • Use of veterinary antibiotics (VA's) in livestock farming. • The fate of VA's in soil. • Properties that make the uptake of VA's by plants relatively easy. • Effect of VA's on plants based on earlier findings. • Possible measures that are helpful in limiting the impact of VA's.

  11. Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants.

    Science.gov (United States)

    Sriprapat, Wararat; Suksabye, Parinda; Areephak, Sirintip; Klantup, Polawat; Waraha, Atcharaphan; Sawattan, Anuchit; Thiravetyan, Paitip

    2014-04-01

    Air borne uptake of toluene and ethylbenzene by twelve plant species was examined. Of the twelve plant species examined, the highest toluene removal was found in Sansevieria trifasciata, while the ethylbenzene removal from air was with Chlorophytum comosum. Toluene and ethylbenzene can penetrate the plant׳s cuticle. However, the removal rates do not appear to be correlated with numbers of stomata per plant. It was found that wax of S. trifasciata and Sansevieria hyacinthoides had greater absorption of toluene and ethylbenzene, and it contained high hexadecanoic acid. Hexadecanoic acid might be involved in toluene and ethylbenzene adsorption by cuticles wax of plants. Chlorophyll fluorescence analysis or the potential quantum yield of PSII (Fv/Fm) in toluene exposed plants showed no significant differences between the control and the treated plants, whereas plants exposed to ethylbenzene showed significant differences or those parameters, specifically in Dracaena deremensis (Lemon lime), Dracaena sanderiana, Kalanchoe blossfeldiana, and Cordyline fruticosa. The Fv/Fm ratio can give insight into the ability of plants to tolerate (indoor) air pollution by volatile organic chemicals (VOC). This index can be used for identification of suitable plants for treating/sequestering VOCs in contaminated air. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Regional uptake an variations in orthopaedic enhanced recovery pathways in knee and hip total arthroplasty.

    Science.gov (United States)

    Mawdsley, M J; Baker, P N; Desai, A; Green, R N; Jevons, L

    2016-05-01

    The use of enhanced recovery (ER) pathways for hip and knee arthroplasty has increased over the last decade, and the adoption within orthopaedics is becoming more common. We have demonstrated a regional variation and institutional inconsistency of uptake and delivery of ER pathways in our region. Units that have a unified pathway were more likely to have consistency in treatment and early analgesia for patients. We would advocate that units use an agreed enhanced recovery pathway to optimise patient recovery from hip and knee arthroplasties.

  13. Role of uranium speciation in the uptake and translocation of uranium by plants

    Energy Technology Data Exchange (ETDEWEB)

    Ebbs, S. D.; Brady, D. J.; Kochian, L. V. [US Plant, Soil, and Nutrition Laboratory, USDA-ARS, Cornell University, Ithaca, NY 14853 (United States)

    1998-07-01

    Uranium (U) uptake and translocation by plants was characterized using a computer speciation model to develop a nutrient culture system that provided U as a single predominant species in solution. A hydroponic uptake study determined that at pH 5.0, the uranyl (UO2{sup 2+}) cation was more readily taken up and translocated by peas (Pisum sativum) than the hydroxyl and carbonate U complexes present in the solution at pH 6.0 and 8.0, respectively. A subsequent experiment tested the extent to which various monocot and dicot species take up and translocate the uranyl cation. Of the species screened, tepary bean (Phaseolus acutifolius) and red beet (Beta vulgaris) were the species showing the greatest accumulation of U. In addition to providing fundamental information regarding U uptake by plants, the results obtained also have implications for the phytoremediation of U-contaminated soils. The initial characterization of U uptake by peas suggested that in the field, a soil pH of <5.5 would be required in order to provide U in the most plant-available form. A pot study using U-contaminated soil was therefore conducted to assess the extent to which two soil amendments, HEDTA and citric acid, were capable of acidifying the soil, increasing U solubility, and enhancing U uptake by red beet. Of these two amendments, only citric acid proved effective, decreasing the soil pH to 5.0 and increasing U accumulation by a factor of 14. The results of this pot study provide a basis for the development of an effective phytoremediation strategy for U-contaminated soils. (author)

  14. Use of rice seedlings to estimate uptake of radiocesium from soil to plants in Fukushima Prefecture

    International Nuclear Information System (INIS)

    Fujimura, Shigeto; Suzuki, Yasukazu; Ohno, Takeshi

    2013-01-01

    The uptake of radiocesium to plants from the soil is affected by many environmental factors, and it is difficult to determine the contribution of uptake among these factors. In addition, these environmental factors should be investigated independently for each field. The aim of this study was to develop a practical and simple method for the estimate of uptake of radiocesium from soil to plants. Rice seedlings were used to estimate the root uptake of radiocesium from seven different soils. To confirm that the seedlings were the effective indicator, the concentration of "1"3"7Cs in the seedlings was compared with that in brown rice and sunflower. The seedlings were cultivated for a week from germination in a phytotron and the concentrations of "1"3"7Cs in the seedlings above ground were determined. To obtain brown rice and sunflower, rice and sunflower were cultivated either in a pot (1/5000 a Wagner pot, 4000 cm"3) placed in a glasshouse or in a paddy field in Fukushima prefecture for two to four months. The concentration of "1"3"7Cs in the rice seedlings ranged from 150 to 1900 Bq kg"-"1, and that in brown rice and sunflower ranged from 2 to 880 Bq kg"-"1 and from 580 to 3900 Bq kg"-"1, respectively. The Spearman's rank correlation coefficient between the measured concentration of "1"3"7Cs in rice seedlings and the measured concentration of "1"3"7Cs in brown rice and sunflower was 1.0 (p < 0.001 and p = 0.09, respectively). This suggests that the use of rice seedlings in this experiment over a period of two weeks provides an effective indicator for the uptake of "1"3"7Cs from soil to plants over a longer period of time. (author)

  15. Use of rice seedlings to estimate uptake of radiocesium from soil to plants in Fukushima Prefecture

    International Nuclear Information System (INIS)

    Fujimura, Shigeto; Suzuki, Yasukazu; Ohno, Takeshi

    2012-01-01

    The uptake of radiocesium to plants from the soil is affected by many environmental factors, and it is difficult to determine the contribution of uptake among these factors. In addition, these environmental factors should be investigated independently for each field. The aim of this study was to develop a practical and simple method for the estimate of uptake of radiocesium from soil to plants. Rice seedlings were used to estimate the root uptake of radiocesium from seven different soils. To confirm that the seedlings were the effective indicator, the concentration of 137 Cs in the seedlings was compared with that in brown rice and sunflower. The seedlings were cultivated for a week from germination in a phytotron and the concentrations of 137 Cs in the seedlings above ground were determined. To obtain brown rice and sunflower, rice and sunflower were cultivated either in a pot (1/5000 a Wagner pot, 4000 cm 3 ) placed in a glasshouse or in a paddy field in Fukushima prefecture for two to four months. The concentration of 137 Cs in the rice seedlings ranged from 150 to 1900 Bq kg -1 , and that in brown rice and sunflower ranged from 2 to 880 Bq kg -1 and from 580 to 3900 Bq kg -1 , respectively. The Spearman's rank correlation coefficient between the measured concentration of 137 Cs in rice seedlings and the measured concentration of 137 Cs in brown rice and sunflower was 1.0 (p < 0.001 and p = 0.09, respectively). This suggests that the use of rice seedlings in this experiment over a period of two weeks provides an effective indicator for the uptake of 137 Cs from soil to plants over a longer period of time. (author)

  16. Role of uranium speciation in the uptake and translocation of uranium by plants

    International Nuclear Information System (INIS)

    Ebbs, S.D.; Brady, D.J.; Kochian, L.V.

    1998-01-01

    Uranium (U) uptake and translocation by plants was characterized using a computer speciation model to develop a nutrient culture system that provided U as a single predominant species in solution. A hydroponic uptake study determined that at pH 5.0, the uranyl (UO2 2+ ) cation was more readily taken up and translocated by peas (Pisum sativum) than the hydroxyl and carbonate U complexes present in the solution at pH 6.0 and 8.0, respectively. A subsequent experiment tested the extent to which various monocot and dicot species take up and translocate the uranyl cation. Of the species screened, tepary bean (Phaseolus acutifolius) and red beet (Beta vulgaris) were the species showing the greatest accumulation of U. In addition to providing fundamental information regarding U uptake by plants, the results obtained also have implications for the phytoremediation of U-contaminated soils. The initial characterization of U uptake by peas suggested that in the field, a soil pH of <5.5 would be required in order to provide U in the most plant-available form. A pot study using U-contaminated soil was therefore conducted to assess the extent to which two soil amendments, HEDTA and citric acid, were capable of acidifying the soil, increasing U solubility, and enhancing U uptake by red beet. Of these two amendments, only citric acid proved effective, decreasing the soil pH to 5.0 and increasing U accumulation by a factor of 14. The results of this pot study provide a basis for the development of an effective phytoremediation strategy for U-contaminated soils. (author)

  17. Approaches in the determination of plant nutrient uptake and distribution in space flight conditions

    Science.gov (United States)

    Heyenga, A. G.; Forsman, A.; Stodieck, L. S.; Hoehn, A.; Kliss, M.

    2000-01-01

    The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the radionuclides calcium-45 and iron-59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.

  18. Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake.

    Science.gov (United States)

    Adams, Eri; Chaban, Vitaly; Khandelia, Himanshu; Shin, Ryoung

    2015-03-05

    High concentrations of cesium (Cs(+)) inhibit plant growth but the detailed mechanisms of Cs(+) uptake, transport and response in plants are not well known. In order to identify small molecules with a capacity to enhance plant tolerance to Cs(+), chemical library screening was performed using Arabidopsis. Of 10,000 chemicals tested, five compounds were confirmed as Cs(+) tolerance enhancers. Further investigation and quantum mechanical modelling revealed that one of these compounds reduced Cs(+) concentrations in plants and that the imidazole moiety of this compound bound specifically to Cs(+). Analysis of the analogous compounds indicated that the structure of the identified compound is important for the effect to be conferred. Taken together, Cs(+) tolerance enhancer isolated here renders plants tolerant to Cs(+) by inhibiting Cs(+) entry into roots via specific binding to the ion thus, for instance, providing a basis for phytostabilisation of radiocesium-contaminated farmland.

  19. CO{sub 2} uptake by the Kalanchoe plant; CO{sub 2}-opname bij Kalanchoe

    Energy Technology Data Exchange (ETDEWEB)

    Verberkt, H.

    1994-01-01

    The results of a study on the assimilation of the Kalanchoe plant are presented. The aim of the study is to determine the optimal time period of a natural day (24 hours) to supply carbon dioxide to a Kalanchoe plant. A Kalanchoe plant originally is a so-called CAM (Crassulacean Acid Metabolism) plant: CO{sub 2} uptake at night and chemical conversion of CO{sub 2} into malic acid. By day the fixed CO{sub 2} is used for photosynthesis. It appears that a Kalanchoe plant also takes up CO{sub 2} by day, which is directly used for photosynthesis. For Dutch horticulture conditions (20C, sufficient moisture) extra CO{sub 2} supply by day in the spring results in an increase of both the fresh weight and the dry weight compared to no extra CO{sub 2} supply. 10 figs., 3 tabs., 19 refs., 4 appendices

  20. Effect of Thorium on Growth and Uptake of Some Elements by Maize Plant

    International Nuclear Information System (INIS)

    Al-Shobaki, M.E.E.

    2012-01-01

    A pot experiment (sand culture) was carried out to investigate the effect of thorium on maize dry matter yield, contents and uptake of N,P ,K, Na and Fe and thorium accumulation in maize plant.The pots were contaminated by thorium as Thorium Nitrate(Th (NO 3 ) 4 ,H 2 O)at concentrations 0,5,10,11,12,13,14,15 and 50 ppm. Pots irrigated by 1/10 Hogland solution for 15 days, increased tol/4 Hogland solution after that.The results show that the dry matter (shoot, root and whole plant)decreased with increasing thorium concentration in soil up to 12 ppm and slightly increased with increasing Th to 13 ppm . The Nitrogen content and its uptake decreased with increasing thorium concentration in media growth up to 11 ppm .They were slightly increased at Th concentration between 11-14 ppm in maize shoot and root. The shoots always contained N-content and uptake more than that found in roots . P- uptake decreased in both shoots and roots with increasing in thorium concentration in media growth.

  1. Bibliographical survey of radiostrontium uptake capacity and processes in aquatic plants

    International Nuclear Information System (INIS)

    Pally, M.; Foulquier, L.

    1983-09-01

    This report covers 302 articles published between 1949 and 1980 on the contamination of freshwater and marine aquatic plants by radioactive strontium. For the marine and continental environments, the results of laboratory experiments on the dynamics of radiostrontium buildup and localization, concentration factors, elimination processes, the effects of biological factors and of the environment, the activity levels and concentration factors measured in areas directly and indirectly affected by waste discharges, discrimination factors and the role of plants as radiation indicators, are examined. The radioactive strontium uptake potentials are higher for freshwater plants -especially mosses and characeae- than for marine plants. In zones not directly affected by waste discharges, the maximum activity measured is 82 pCi/kg wet weight, compared with 750 pCi/kg for freshwater plants. The peak values were observed in 1964-1965. In zones directly affected by waste discharges, the activity levels range from 15 to 1700 pCi of 90 Sr per kilogram of wet weight in the marine environment, and from 20 to 207000 pCi/kg in fresh water. This work underlines the need for greater accuracy in allowing for the ecological characteristics of each site when assessing the impact of nuclear facilities, and for thoroughly correlating field observations with laboratory experiments in order to obtain a prospective view of the potentials for radioactive strontium uptake by plants according to the activity levels present in the liquid effluents [fr

  2. Uptake of radiocarbon from plant rhizosphere based on geological disposal of TRU waste. Root-uptake of radiocarbon carbon derived from acetic acid

    International Nuclear Information System (INIS)

    Ogiyama, Shinichi; Takeda, Hiroshi; Uchida, Shigeo; Suzuki, Hiroyuki; Inubushi, Kazuyuki

    2008-01-01

    Hydroponic experiments were conducted to examine root-uptake of 14 C in the form of acetic acid by 3 kinds of plants (marigold, tall fescue, and paddy rice) based on buried transuranic (TRU) waste disposal. Also, chamber experiment was conducted to examine loss of 14 C as vaporized carbon dioxide (CO 2 ) from the experimental tessera (spatially heterogeneous environment). The distribution of radioactivity in the plant, mediums, and carbon dioxide ( 14 CO 2 ) in the chamber were determined, and the distribution of 14 C in the plant was visualized by the autoradiography. The plants absorbed and assimilated 14 C through the roots. The amount of 14 C in marigold and tall fescue were higher than that of paddy rice. However, the amounts of 14 C-acetic acid absorbed by all the plants through their roots were considered to be very small. More so, 14 CO 2 gas was released from the culture solution to the atmosphere; however, it was not enough for the plant to perform photosynthesis. Assimilation of 14 C in the plant shoots would be because of 14 C movement of inorganic forms such as CO 2 and HCO 3 - via the roots. Thus, the results indicated that the plants absorbed 14 C through the roots and assimilated it into the shoots or edible parts not because of uptake of 14 C-acetic acid but because of uptake of 14 C in inorganic forms. (author)

  3. Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumuskoy (Kutahya) mining area, Turkey.

    Science.gov (United States)

    Sasmaz, Merve; Akgül, Bunyamin; Yıldırım, Derya; Sasmaz, Ahmet

    2016-01-01

    This study investigated mercury (Hg) uptake and transport from the soil to different plant parts by documenting the distribution and accumulation of Hg in the roots and shoots of 12 terrestrial plant species, all of which grow naturally in surface soils of the Gumuskoy Pb-Ag mining area. Plant samples and their associated soils were collected and analyzed for Hg content by ICP-MS. Mean Hg values in the soils, roots, and shoots of all plants were 6.914, 460, and 206 µg kg(-1), respectively and lower than 1. The mean enrichment factors for the roots (ECR) and shoots (ECS) of these plants were 0.06 and 0.09, respectively and lower than 1. These results show that the roots of the studied plants prevented Hg from reaching the aerial parts of the plants. The mean translocation factor (TLF) was 1.29 and higher than 1. The mean TLF values indicated that all 12 plant species had the ability to transfer Hg from the roots to the shoots but that transfer was more efficient in plants with higher ECR and ECS. Therefore, these plants could be useful for the biomonitoring of environmental pollution and for rehabilitating areas contaminated by Hg.

  4. Effect of different treatments on 85Sr plant uptake in various soil types

    International Nuclear Information System (INIS)

    Koblinger-Bokori, E.; Szerbin, P.

    2000-01-01

    In the recent years radioecological studies are concentrated on the investigation of restoration possibilities of contaminated ecosystems. These studies are aimed to develop methods for decreasing the bioavailability of the radionuclides released to the environment. Radionuclides of long half-lives, such as 90 Sr and 137 Cs, are of special importance from the point of human health, since these nuclides can enter the human body via the food-chain and increase the radiation burden for many years. 90 Sr and 137 Cs contamination of the environment may occur as a result of atmospheric releases during nuclear accidents. For instance, considerable amounts were released to the atmosphere during the Chernobyl reactor accident. In the presented study strontium plant uptake from different types of soil was investigated. To avoid the difficulties related to 90 Sr determination, the gamma-emitting strontium isotope 85 Sr is used at the experiments (no isotopic effect takes place). The plant selected is yellow leguminous bean. Most typical Hungarian soils (leached Ramann brown forest soil, alluvial soil, chernozem-light sandy soil and calcareous chernozem soil) were selected for the experiments carried out under laboratory conditions. Results are presented in relation to major soil characteristics. Effects of two different treatments: lime and organic matter fertilizations on plant uptake are given. The highest uptake was found in bean grown on leached Ramann brown forest soil, whereas the lowest value was measured in the plant grown in calcareous chernozem soil. Organic fertilization significantly reduced the uptake of radiostrontium in all investigated types of soil. The largest factor of reduction was found to be as high as 3.5. Lime fertilization was less effective. Our study clearly demonstrates that carefully selected post-accident treatments (e.g. organic fertilization following strontium contamination) can significantly reduce the environmental consequences of

  5. Variable effects of plant colonization on black slate uptake into microbial PLFAs

    Science.gov (United States)

    Seifert, Anne-Gret; Trumbore, Susan; Xu, Xiaomei; Zhang, Dachung; Gleixner, Gerd

    2013-04-01

    Microbial degradation of carbon derived from black shale and slate has been shown in vitro. However, in natural settings where other labile carbon sources are likely to exist, this has not been previously demonstrated. We investigated the uptake of ancient carbon derived from slate weathering and from recently photosynthesised organic matter by different groups of microorganisms. Therefore we isolated microbial biomarkers (phospholipid fatty acids, PLFAs) from black slates collected at a chronosequence of waste piles which differed in age and vegetation cover. We quantified the amount of PLFAs and performed stable isotope and radiocarbon measurements on individual or grouped PLFAs to quantify the fraction of slate derived carbon. We used black slate from a pile heaped in the 1950s with either uncovered black slate material (bare site) or material slightly colonized by small plants (greened site) and from a forested leaching pile (forested site) used for alum-mining in the 19th century. Colonization by plants influenced the amount and composition of the microbial community. Greater amounts of PLFAs (5410 ng PLFA/g dw) were extracted from slate sampled at the forested site as opposed to the bare site (960 ng PLFAs/g dw) or the greened (annual grasses and mosses) rock waste pile (1050 ng PLFAs/g dw). We found the highest proportion of PLFAs representing Gram-negative bacteria on the forested site and the highest proportion of PLFAs representing Gram-positive bacteria on the bare site. The fungal PLFA was most abundant at the greened site. Sites with less plant colonization (bare and greened site) tended to have more depleted δ13C values compared to the forested site. Radiocarbon measurements on PLFAs indicated that fungi and Gram-positive bacteria were best adapted to black slate carbon uptake. In the fungal PLFA (combined bare and greened waste pile sample) and in PLFAs of Gram-positive bacteria (greened site) we measured 39.7% and 28.9% ancient carbon uptake

  6. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review.

    Science.gov (United States)

    Tasho, Reep Pandi; Cho, Jae Yong

    2016-09-01

    Therapeutic and sub-therapeutic use of antibiotics in livestock farming is and has been, a common practice worldwide. These bioactive organic compounds have short retention period and partial uptake into the animal system. The uptake effects of this pharmaceutics, with plants as the primary focus, has not been reviewed so far. This review addresses three main concerns 1) the extensive use of veterinary antibiotics in livestock farming, 2) disposal of animal waste containing active biosolids and 3) effects of veterinary antibiotics in plants. Depending upon the plant species and the antibiotic used, the response can be phytotoxic, hormetic as well as mutational. Additionally, the physiological interactions that make the uptake of these compounds relatively easy have also been discussed. High water solubility, longer half-lives, and continued introduction make them relatively persistent in the environment. Lastly, some prevention measures that can help limit their impact on the environment have been reviewed. There are three methods of control: treatment of animal manure before field application, an alternative bio-agent for disease treatment and a well targeted legalized use of antibiotics. Limiting the movement of these biosolids in the environment can be a challenge because of their varying physiological interactions. Electron irradiation and supervised inoculation of beneficial microorganisms can be effective remediation strategies. Thus, extensive future research should be focused in this area. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Uptake and translocation of [14C]-monoethanolamine in barley plants

    International Nuclear Information System (INIS)

    Eckert, H.; Bergmann, H.; Reissmann, P.

    1988-01-01

    Uptake and translocation of 14 C-monoethanolamine (EA) and its hydrochloride were investigated after application to an unwounded part of the fifth leaf from the main shoot of intact spring barley plants. After 48 and 72 h, resp., the free EA base was both absorbed rapidly and translocated out of the feeding leaf. The absorbed 14 C preferably migrated to the tillers, which resulted in an approximately uniform distribution of the radioactivity in the above ground parts of the plant after the uptake phase (similar 14 C concentrations in the main shoot and tillers), whereas only few radioactivity moved to the roots. On the other hand, the protonated EA (EA-HCl) exhibited both a reduced uptake and a restricted mobility. The bulk of radioactivity remained in the main shoot. As a consequence of the principally analogous metabolism of EA and its protonated form, the translocation differences are compensated during ontogenesis. When the plants reached maturity, similar distribution patterns could be found in which the kernels represented a considerable sink. (author)

  8. Iron Requirement and Iron Uptake from Various Iron Compounds by Different Plant Species

    Science.gov (United States)

    Christ, Rudolf A.

    1974-01-01

    The Fe requirements of four monocotyledonous plant species (Avena sativa L., Triticum aestivum L., Oryza sativa L., Zea mays L.) and of three dicotyledonous species (Lycopersicum esculentum Mill., Cucumis sativus L., Glycine maxima (L.) Merr.) in hydroponic cultures were ascertained. Fe was given as NaFe-EDDHA chelate (Fe ethylenediamine di (O-hydroxyphenylacetate). I found that the monocotyledonous species required a substantially higher Fe concentration in the nutrient solution in order to attain optimum growth than did the dicotyledonous species. Analyses showed that the process of iron uptake was less efficient with the monocotyledonous species. When the results obtained by using chelated Fe were compared with those using ionic Fe, it was shown that the inefficient species were equally inefficient in utilizing Fe3+ ions. However, the differences between the efficient and the inefficient species disappeared when Fe2+ was used. This confirms the work of others who postulated that Fe3+ is reduced before uptake of chelated iron by the root. In addition, it was shown that reduction also takes place when Fe is used in ionic form. The efficiency of Fe uptake seems to depend on the efficiency of the root system of the particular plant species in reducing Fe3+. The removal of Fe from the chelate complex after reduction to Fe2+ seems to present no difficulties to the various plant species. PMID:16658933

  9. Validation of a spatial–temporal soil water movement and plant water uptake model

    KAUST Repository

    HEPPELL, J.

    2014-06-01

    © 2014, (publisher). All rights reserved. Management and irrigation of plants increasingly relies on accurate mathematical models for the movement of water within unsaturated soils. Current models often use values for water content and soil parameters that are averaged over the soil profile. However, many applications require models to more accurately represent the soil–plant–atmosphere continuum, in particular, water movement and saturation within specific parts of the soil profile. In this paper a mathematical model for water uptake by a plant root system from unsaturated soil is presented. The model provides an estimate of the water content level within the soil at different depths, and the uptake of water by the root system. The model was validated using field data, which include hourly water content values at five different soil depths under a grass/herb cover over 1 year, to obtain a fully calibrated system for plant water uptake with respect to climate conditions. When compared quantitatively to a simple water balance model, the proposed model achieves a better fit to the experimental data due to its ability to vary water content with depth. To accurately model the water content in the soil profile, the soil water retention curve and saturated hydraulic conductivity needed to vary with depth.

  10. On the formation and extent of uptake of silver nanoparticles by live plants

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Andrew T., E-mail: a.harris@usyd.edu.au; Bali, Roza [University of Sydney, Laboratory for Sustainable Technology, School of Chemical and Biomolecular Engineering (Australia)

    2008-04-15

    In this work we investigate the limits of uptake of metallic silver by two common metallophytes, Brassica juncea (BJ) and Medicago sativa (MS) and assess the form and distribution of the metal once sequestered by the plants. BJ accumulated up to 12.4 wt.% silver when exposed to an aqueous substrate containing 1,000 ppm AgNO{sub 3} for 72 h, however silver uptake was largely independent of exposure time and substrate silver concentration. MS accumulated up to 13.6 wt.% silver when exposed to an aqueous substrate containing 10,000 ppm AgNO{sub 3} for 24 h. In contrast to BJ there was a general trend for MS showing an increase in metal uptake with a corresponding increase in the substrate metal concentration and exposure time. In both cases the silver was stored as discrete nanoparticles, with a mean size of {approx}50 nm. According to the hyperaccumulation definition of Brooks et al. (Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359-362), this is the first report of the hyperaccumulation of silver in any plant species.

  11. Bibliographical review of radioactive cesium uptake capacity and processes in aquatic plants

    International Nuclear Information System (INIS)

    Pally, Monique; Foulquier, Luc.

    1981-11-01

    Both freshwater and marine plants are included in this survey covering 217 reports published between 1954 and 1979. These articles involve the radiocesium abundance found in areas either directly or indirectly affected by liquid waste releases. They specify the concentration factors determined from field measurements and laboratory works. Other areas covered include contamination kinetics, radiocesium distribution in higher plants, effects of biological and environmental factors. Radiocesium uptake potential is higher in freshwater algae and plants than in marine algae. Radiocesium adsorption phenomena seem to predominate in algae over absorption, while in the higher freshwater plants absorption is the primary phenomena. In areas not directly affected by liquid wastes, plant activity levels increased until they reached 10000 pCi/kg wet weight in 1965, and reduced thereafter. In areas directly affected by waste discharges, the activity levels range from 10 to 16000 pCi/kg wet weight in seawater, and from practically zero to 230000 pCi/kg in fresh water. This variability also affects the concentration factors. In most cases, the values measured in marine algae range from 10 to 100; the highest radiocesium uptake is found in brown algae and red algae. The concentration factors measured in freshwater mosses and algae are most often around 4000, while they are about 2000 in submerged, floating and emergent plants. Some plants, specially mosses and algae, proved to be better bioindicators than others. The biological half-lives range from 2 to 21 days in marine algae, and from 1 to 65 days in freshwater plants. This survey underscores the necessity of allowing for the ecological characteristics of each site when evaluating the impact of nuclear plants [fr

  12. Uptake of 40K and 137Cs in native plants of the Marshall Islands.

    Science.gov (United States)

    Simon, S L; Graham, J C; Terp, S D

    2002-01-01

    Uptake of 137Cs and 40K was studied in seven native plant species of the Marshall Islands. Plant and soil samples were obtained across a broad range of soil 137Cs concentrations (0.08-3900 Bq/kg) and a narrower range of 40K soil concentrations (2.3-55 Bq/kg), but with no systematic variation of 40K relative to 137Cs. Potassium-40 concentrations in plants varied little within the range of 40K soil concentrations observed. Unlike the case for 40K, 137Cs concentrations increased in plants with increasing 137Cs soil concentrations though not precisely in a proportionate manner. The best-fit relationship between soil and plant concentrations was P = aSb where a and b are regression coefficients and P and S are plant and soil concentrations, respectively. The exponent b for 40K was zero, implying plant concentrations were a single value, while b for 137Cs varied between 0.51 and 0.82, depending on the species. For both 40K and 137Cs, we observed a decreasing concentration ratio (where concentration ratio=plant concentration/soil concentration) with increasing soil concentrations. For the CR values, the best-fit relationship was of the form CR = aSb/S = aSb(-1). For the 40K CR functions, the exponent b - 1 was close to - 1 for all species. For the 137Cs CR functions, the exponent b - 1 varied from -0.19 to -0.48. The findings presented here, aswell as those by other investigators, collectively argue against the usefulness of simplistic ratio models to accurately predict uptake of either 40K or 137Cs in plants over wide ranges of soil concentration.

  13. Uptake of {sup 40}K and {sup 137}Cs in native plants of the Marshall Islands

    Energy Technology Data Exchange (ETDEWEB)

    Simon, S.L.; Graham, J.C.; Terp, S.D

    2002-07-01

    Uptake of {sup 137}Cs and {sup 40}K was studied in seven native plant species of the Marshall Islands. Plant and soil samples were obtained across a broad range of soil {sup 137}Cs concentrations (0.08-3900 Bq/kg) and a narrower range of {sup 40}K soil concentrations (2.3-55 Bq/kg), but with no systematic variation of {sup 40}K relative to {sup 137}Cs. Potassium-40 concentrations in plants varied little within the range of {sup 40}K soil concentrations observed. Unlike the case for {sup 40}K, {sup 137}Cs concentrations increased in plants with increasing {sup 137}Cs soil concentrations though not precisely in a proportionate manner. The best-fit relationship between soil and plant concentrations was P=aS{sup b} where a and b are regression coefficients and P and S are plant and soil concentrations, respectively. The exponent b for {sup 40}K was zero, implying plant concentrations were a single value, while b for {sup 137}Cs varied between 0.51 and 0.82, depending on the species. For both {sup 40}K and {sup 137}Cs, we observed a decreasing concentration ratio (where concentration ratio=plant concentration/soil concentration) with increasing soil concentrations. For the CR values, the best-fit relationship was of the form CR=aS{sup b}/S=aS{sup b-1}. For the {sup 40}K CR functions, the exponent b-1 was close to -1 for all species. For the {sup 137}Cs CR functions, the exponent b-1 varied from -0.19 to -0.48. The findings presented here, as well as those by other investigators, collectively argue against the usefulness of simplistic ratio models to accurately predict uptake of either {sup 40}K or {sup 137}Cs in plants over wide ranges of soil concentration.

  14. Effects of soil's properties on transfer of 137Cs to rice plants through plant uptake after soil deposition

    International Nuclear Information System (INIS)

    Keum, Dong-Kwon; Lee, Hansoo; Kang, Hee-Seok; Jun, In; Choi, Yong-Ho; Lee, Chang-Woo

    2007-01-01

    This paper presents a dynamic compartment model to appraise the concentration of 137 Cs in agricultural plants as a result of a soil deposition. The present model used the Absalom model as a module to account for the effects of a soil's properties (pH, soil clay content, organic matter content, and exchangeable potassium) on a plant uptake, and the leaching and fixation process of 137 Cs in a soil. The model was tested by comparing the model predictions of the 137 Cs aggregated transfer factors for rice plants with those obtained as results of simulated 137 Cs soil deposition experiments with seventeen paddy soils of different properties, all of which were performed before a transplanting of the rice. Predicted 137 Cs TF a values of the rice plants were found to be comparable with those observed. (author)

  15. Uptake and metabolism of diclofenac in Typha latifolia--how plants cope with human pharmaceutical pollution.

    Science.gov (United States)

    Bartha, Bernadett; Huber, Christian; Schröder, Peter

    2014-10-01

    The fate of pharmaceuticals in our environment is a very important issue for environmental and health research. Although these substances have been detected in environmental compartments in low concentration until now, they will pose considerable environmental risk to ecosystems, animals and human due to their biological activity. Alternative plant based removal technologies that make use of some potential wetland species like Phragmites or Typha within traditional wastewater treatment plants have to be established to cope with this "new generation" of pollutants. We investigated uptake and translocation of diclofenac (1mgl(-1)) in the macrophyte Typha latifolia L. during one week exposure in greenhouse experiments. Detoxification products and involved key enzymatic processes were identified. We also examined the oxidative stress induced by the treatment and the defense capacity of the plants. Rapid uptake and effective metabolism were observed, where glycoside and glutathione conjugates represent dominant metabolites. Up to seven-fold induction of glycosyltransferase activity was observed in roots, but not in shoots. Glutathione S-transferase activity was also induced, but to a lower extent. The activity changes of defense enzymes points to oxidative stress in the plants. Our results show that human pharmaceuticals can be metabolized by plants similar to xenobiotics, but that similarities to human metabolism are limited. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Accumulation of technetium from soil by plants: a potential mechanism for uptake and toxicity

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.; Cataldo, D.A.

    1975-07-01

    The isotope 99 Tc (T 1 / 2 , 2.15 x 10 5 years) is produced by the spontaneous fission of 238 U in nature and by the slow neutron fission of 238 U in nuclear reactors. In the latter case, the potential exists for Tc entrance into the environment in emissions from nuclear reactors, nuclear fuel reprocessing plants, and other facilities which use Tc for commercial purposes. Results are reported from studies on Tc uptake by plants. The most stable chemical species of Tc in aqueous solution is the pertechnetate ion (TcO 4 -1 ), and it is this form which is most likely to enter surface soils. Recent studies indicated that at least over the short term, pertechnetate is soluble and highly mobile in most soils and is sorbed in significant quantities only in high organic matter, low pH soils. Plant availability normally increases with increased ion solubility in soil provided the ion is not discriminated against at the plant root level. Furthermore, the aqueous chemistry of pertechnetate is similar in several respects to permanganate and molybdate, compounds of elements essential in []lant nutrition. Experiments were undertaken to determine the uptake and distribution of Tc in plants as a function of time using soybeans (Glycine max) and 99 Tc as a tracer. (CH)

  17. Balance and forms of zinc in soil and its uptake by plants

    Directory of Open Access Journals (Sweden)

    Šárka Poláková

    2006-01-01

    Full Text Available In this paper, zinc flows in arable soils of the Czech Republic and zinc fractions in arable soils are studied. Furthermore, a zinc uptake by agricultural plants is focused. Based on a database of the programme The basal soil monitoring system (BSMS a static zinc balance for arable soils on the national level was assessed. This programme is carried out by The Central Institute for Supervising and Testing in Agriculture (CISTA in Brno. As a representative for the zinc balance calculation, 121 monitoring plots were chosen. The Czech Republic net zinc fluxes ranged from –1250 g.ha– 1.y– 1 to +5595 g.ha– 1.y– 1, median +453 g.ha– 1.y– 1. The maximum zinc fluxes are typical of plots with manure applications. An atmospheric deposition is the most important input of zinc into arable soils. It makes 96,6% of the whole inputs. Leaching and run-off are neglected in this zinc balance by reason of missing credible data. The project Examination of zinc availability in dependence on its form in soil was established to provide more information about behavior of zinc in soil. The first step was starting a greenhouse pot experiment, which was focused on comparison of several extraction agents (AR, 2M HNO3, 0.43M HNO3, Mehlich III, DTPA, CAT, 1M NH4NO3, 0.01M CaCl2. Four soils with increasing zinc content were picked out for this experiment (Domanínek, Chrlice, Kutná Hora, Hlízov. Total zinc contents in these selected soils ranged from 156.8 to 583.7 ppm in dry matter (Aqua regia extraction. Contents in plants were in wide range from 20.7 to 273 ppm in dry matter according to the plant variety and used soil. Strong correlations between 0.43M HNO3, Mehlich III, DTPA and CAT were proved. Using of weaker extraction agents enabled to distinguish geogenic and anthropogenic origin of the contamination.

  18. Elucidating the role of dissolution in CeO{sub 2} nanoparticle plant uptake by smart radiolabeling

    Energy Technology Data Exchange (ETDEWEB)

    Schymura, Stefan; Hildebrand, Heike; Franke, Karsten [Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig (Germany); Fricke, Thomas [Vita34 AG, Business Unit BioPlanta, Leipzig (Germany); University of Bonn, Institute of Crop Science and Resource Conservation, Division Plant Nutrition (Germany)

    2017-06-19

    The identification of major uptake pathways in plants is an important factor when evaluating the fate of manufactured nanoparticles in the environment and the associated risks. Using different radiolabeling techniques we were able to show a predominantly particulate uptake for CeO{sub 2} nanoparticles in contrast to a possible uptake in the form of ionic cerium. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Effect of Plant Growth Promoting Rhizobacteria on the Concentration and Uptake of Macro Nutrients by Corn in a Cd-contaminated Calcareous Soil under Drought Stress

    Directory of Open Access Journals (Sweden)

    shahrzad karami

    2017-02-01

    each pot. Each seed of maize was inoculated with 2 mL (1×108 colony-forming units (cfu mL-1 of Micrococcus yunnanensis (a gram positive bacterium with the ability of production of sidrophore and phosphate dissolving characteristic. Each pot was irrigated daily with distilled water to near field capacity by weight, until 15 days after corn planting. Then corn was thinned to 3 plants per pot and irrigation was started with different levels of drought stress (without stress (F.C, 80, and 65% of field capacity by weight. At harvest (8 weeks after planting, the aerial parts of the plants was cut at the soil surface. The harvested plants were washed with distilled water, dried to a constant weight at 65C. Representative samples were dry-ashed and analyzed for macro nutrients. Results and Discussion: The results indicated that the inoculation of bacteria increased shoot dry weight (DW and total uptake of nitrogen (N, phosphorus (P, and potassium (K. Drought stress decreased DW, total uptake of N, P, and K, concentrations of N and K in corn shoots, and concentration of K in the soil. The application of biological fertilizers, such as plant growth promoting rhizobacteria, increase plant growth through increasing microorganism’s activities and population in the soil and so increase macro nutrients uptake by the plant. Phosphate solubilizing rhizobacteria increase plant growth and phosphate availability with production of organic acids and secretion of phosphatase enzymes or protons and conversion of non-soluble phosphates (either organic or inorganic phosphates to the forms that are more available for the plants and improve their nutrition and increase their growth. Drought stress decreases Dry Matter Weight(DMW through decreasing relative humidity of the air of plant growth environment and increases evaporation, transpiration, plant temperature and light intensity of the sun. It prevents normal development of roots, water uptake, and plant growth by reducing the moisture

  20. Composted biosolids and treated wastewater as sources of pharmaceuticals and personal care products for plant uptake: A case study with carbamazepine

    International Nuclear Information System (INIS)

    Ben Mordechay, Evyatar; Tarchitzky, Jorge; Chen, Yona; Shenker, Moshe; Chefetz, Benny

    2018-01-01

    Irrigation with treated wastewater (TWW) and application of biosolids to arable land expose the agro-environment to pharmaceuticals and personal care products (PPCPs) which can be taken up by crops. In this project, we studied the effect of a carrier medium (e.g., biosolids and TWW) on plant (tomato, wheat and lettuce) uptake, translocation and metabolism of carbamazepine as a model for non-ionic PPCPs. Plant uptake and bioconcentration factors were significantly lower in soils amended with biosolids compared to soils irrigated with TWW. In soils amended with biosolids and irrigated with TWW, the bioavailability of carbamazepine for plant uptake was moderately decreased as compared to plants grown in soils irrigated with TWW alone. While TWW acts as a continuous source of PPCPs, biosolids act both as a source and a sink for these compounds. Moreover, it appears that decomposition of the biosolids in the soil after amendment enhances their adsorptive properties, which in turn reduces the bioavailability of PPCPs in the soil environment. In-plant metabolism of carbamazepine was found to be independent of environmental factors, such as soil type, carrier medium, and absolute amount implemented to the soil, but was controlled by the total amount taken up by the plant. - Highlights: • Bioaccumulation of carbamazepine is higher in plants irrigated with TWW than in plants grown in soils applied with biosolids. • Application of composted biosolids reduces the bioavailability of carbamazepine originated from TWW irrigation. • Plant metabolism of carbamazepine is affected by the total amount taken-up by the plant. - Bioavailability of PPCPs originated from biosolids amendment is lower than the bioavailability of those introduced by irrigation with treated wastewater.

  1. A preliminary study on the uptake of radioiodine by rice plants from soil

    International Nuclear Information System (INIS)

    Uchida, Shigeo; Muramatsu, Yasuyuki; Sumiya, Misako; Ohmomo, Yoichiro; Yamaguchi, Shuho.

    1989-01-01

    In an atmospheric discharge of radioiodines, direct deposition of the nuclides onto leaf surface must be the most significant pathway from the environment to man. However, 129 I reaches man through several pathways because of its long half life of 1.6 x 10 7 years. Root uptake of 129 I is one of the most important pathways of this nuclide. In Japan, rice is thought to be the most critical crop on the pathway. In this paper, uptake of radioiodine from irrigation water by rice plant was investigated. Rice plants, Oryza sativa cv. Nihonbare, were grown under flooded condition in Wagner pots containing soil collected in Tokai-mura. Iodine-131 was added as a tracer into the surface water in the pots at three different growing stages, heading, dough-ripe and yellow-ripe stages, respectively, and the plants were cultivated until the harvest time in a plant growth chamber. At the harvest time, concentration of 131 I in each organ of rice plant was measured with a NaI scintillation counter. The profile of 131 I in the soil was also investigated. The results obtained are as follows; (1) Activities of 131 I in leaf blade and sheath of lower part were generally higher than those of upper part. Compared to the 131 I activity of the flag leaf, the ratios of the activity in rachis-branch, hull and brown rice were 1.0-0.5, 0.1 and 1-5 x 10 -3 , respectively. These may suggest that iodine taken up by the roots scarcely re-translocated into rice. (2) Ratio of 131 I in brown rice and hull was about 1 : 4. (3) Activity ratio ('concentration of 131 I in brown rice'/'average concentration of that in the soil' during 6 days uptake experiment.) was 4-5 x 10 -4 . (author)

  2. Total data management in the La Hague reprocessing plant

    International Nuclear Information System (INIS)

    Berthion, Y.; Perot, J.P.; Silie, P.

    1993-01-01

    Due to the complexity of a spent fuel reprocessing plant and its nuclear characteristics, the operators must have real-time access to updated information on many subjects. To meet these requirements effectively, Cogema has installed a number of diversified data processing systems linked by a communications network called Haguenet. The whole system forms the La Hague Total Data Management System (TDMS) which performs a full range of functions, namely production data management, maintenance data management, technical documentation and miscellaneous. Some examples of the main process data management applications implemented within the La Hague TDMS are briefly described (nuclear materials and waste follow-up, analytical data management, operating procedures management and site inspection management). Also presented are some examples of the maintenance-related systems implemented within the La Hague TDMS (diagnostic assistance system, software maintenance center, maintenance interventions demand and spare parts data management). (Z.S.)

  3. Total quality management to improve gas plant profits

    International Nuclear Information System (INIS)

    Kovacs, K.; Wood, G.; Thompson, L.

    1992-01-01

    This paper describes the application of total quality management (TQM) techniques to the gas processing industry. It also assesses the profit potential for applying TQM in a typical plant situation. Companies utilizing TQM techniques will enjoy a competitive advantage. It represents a new way of doing business for the gas processing industry and incorporates many of Dr. W. Edwards Deming's methods which are often cited as one of the competitive advantages used by the Japanese. TQM can be described as a collection of systems or techniques that work toward two major objectives: To continuously improve the process or operation; and To view meeting the customer's needs as an important criterion for success. As applied to a typical U.S. gas processing operation, it involves several different techniques which are outlined in the paper. The benefits of TQM are detailed in this paper. All of these benefits go directly to a plant's bottom line profitability. The paper also describes ho to establish a program and identifies the factors necessary for successful implementation

  4. Arsenate and fluoride enhanced each other's uptake in As-sensitive plant Pteris ensiformis.

    Science.gov (United States)

    Das, Suchismita; de Oliveira, Letuzia M; da Silva, Evandro; Ma, Lena Q

    2017-08-01

    We investigated the effects of arsenate (AsV) and fluoride (F) on each other's uptake in an As-sensitive plant Pteris ensiformis. Plants were exposed to 1) 0.1 × Hoagland solution control, 2) 3.75 mg L -1 As and 1.9, 3.8, or 7.6 mg L -1 F, or 3) 1 mg L -1 F and 3.75 mg L -1 or 7.5 mg L -1 As for 7 d in hydroponics. P. ensiformis accumulated 14.7-32.6 mg kg -1 As at 3.75 mg L -1 AsV, and 99-145 mg kg -1 F at 1 mg L -1 F. Our study revealed that AsV and F increased each other's uptake when co-present. At 1.9 mg L -1 , F increased frond As uptake from 14.7 to 40.3 mg kg -1 , while 7.5 mg L -1 As increased frond F uptake from 99 to 371 mg kg -1 . Although, AsV was the predominant As species in all tissues, F enhanced AsIII levels in the rhizomes and fronds, while the reverse was observed in the roots. Increasing As concentrations also enhanced TBARS and H 2 O 2 in tissues, indicating oxidative stress. However, F alleviated As stress by lowering their levels in the fronds. Frond and root membrane leakage were also evident due to As or F exposure. The results may facilitate better understanding of the mechanisms underlying the co-uptake of As and F in plants. However, the mechanisms of how they enhance each other's uptake in P. ensiformis need further investigation. Published by Elsevier Ltd.

  5. Soil respiration and photosynthetic uptake of carbon dioxide by ground-cover plants in four ages of jack pine forest

    Science.gov (United States)

    Striegl, Robert G.; Wickland, K.P.

    2001-01-01

    Soil carbon dioxide (CO2) emission (soil respiration), net CO2 exchange after photosynthetic uptake by ground-cover plants, and soil CO2 concentration versus depth below land surface were measured at four ages of jack pine (Pinus banksiana Lamb.) forest in central Saskatchewan. Soil respiration was smallest at a clear-cut site, largest in an 8-year-old stand, and decreased with stand age in 20-year-old and mature (60-75 years old) stands during May-September 1994 (12.1, 34.6, 31.5, and 24.9 mol C??m-2, respectively). Simulations of soil respiration at each stand based on continuously recorded soil temperature were within one standard deviation of measured flux for 48 of 52 measurement periods, but were 10%-30% less than linear interpolations of measured flux for the season. This was probably due to decreased soil respiration at night modeled by the temperature-flux relationships, but not documented by daytime chamber measurements. CO2 uptake by ground-cover plants ranged from 0 at the clear-cut site to 29, 25, and 9% of total growing season soil respiration at the 8-year, 20-year, and mature stands. CO2 concentrations were as great as 7150 ppmv in the upper 1 m of unsaturated zone and were proportional to measured soil respiration.

  6. Uptake of Cadmium by Lemna minor, a (hyper?- accumulator plant involved in phytoremediation applications

    Directory of Open Access Journals (Sweden)

    Bianconi D.

    2013-04-01

    Full Text Available Metal pollution in waters and soils is a major environmental and human health problem. Cadmium (Cd2+ is a heavy metal displaying toxic effects in plants. In this work we studied the potentiality of Lemna minor, a monocotyledonous aquatic macrophyte, to phytoremediate cadmium-polluted waters. The plants were exposed to different cadmium concentrations 0, 13, 22 and 46μM CdSO4 for a period of 24, 48 and 72 hours. Relative growth rates (RGR, bioconcentration factor (BCF, tolerance index (Ti, cadmium uptake in whole plant and maximum efficiency of PSII (Fv/Fm were measured under controlled climate conditions. RGR, Ti and Fv/Fm declined with increasing exposure time and cadmium concentrations, while the BCF and cadmium uptake showed an opposite behavior. Data analysis of RGR, BCF, Tiand FV/FM indicates that L. minor maintains a good capacity of growth, metal bioconcentration, tolerance and efficiency of PSII up to 48h in plants exposed to 13 and 22μM CdSO4. Our results exhibited that L. minor is a good cadmium accumulator and is able to remediate Cd-polluted waters, especially at low Cd concentrations.

  7. Effects of Chemical Applications to Metal Polluted Soils on Cadmium Uptake by Rice Plant

    Directory of Open Access Journals (Sweden)

    Yoo J. H.

    2013-04-01

    Full Text Available Pot experiment using metal polluted soils was conducted to investigate the effects of lime, iron and sulfur on changes in Cd availability and uptake by rice plant. Drainage and irrigation of water were performed to develop redox changes like field cultivation. Iron chloride and sodium sulfate solutions were applied to the pots in the middle of growth period of rice plant. Reactive metal pool in heavily polluted soils was slightly decreased after treatments with lime, iron chloride, sodium sulfate and combination of these chemicals. However, cadmium uptake by rice plant was significantly different across the treatments and the extent of Cd pollution. For highly polluted soils, more Cd reduction was observed in iron chloride treatments. Cd content in polished rice for iron chloride and (iron chloride+organic matter treatments was only 16-23% and 25-37% compared to control and liming, respectively. Treatment of (iron chloride+sulfate rather increased Cd content in rice. For moderately polluted soils, Cd reduction rate was the order of (OM+iron chloride > iron chloride > lime. Other treatments including sulfate rather increased Cd content in rice maximum 3 times than control. It was proposed to determine the optimum application rate of iron for minimizing hazardous effect on rice plant.

  8. Soil and vegetation influence in plants natural radionuclides uptake at a uranium mining site

    Science.gov (United States)

    Charro, E.; Moyano, A.

    2017-12-01

    The main objective of this work is to investigate the uptake of several radionuclides by the vegetation characteristic of a dehesa ecosystem in uranium mining-impacted soils in Central-West of Spain. The activity concentration for 238U, 226Ra, 210Pb, 232Th, and 224Ra was measured in soil and vegetation samples using a Canberra n-type HPGe gamma-ray spectrometer. Transfer factors of natural radionuclides in different tissues (leaves, branches, twigs, and others) of native plants were evaluated. From these data, the influence of the mine, the physicochemical parameters of the soils and the type of vegetation were analyzed in order to explain the accumulation of radionuclides in the vegetation. A preferential uptake of 210Pb and 226Ra by plants, particularly by trees of the Quercus species (Quercus pyrenaica and Quercus ilex rotundifolia), has been observed, being the transfer factors for 226Ra and 210Pb in these tree species higher than those for other plants (like Pinus pinaster, Rubur ulmifolius and Populus sp.). The analysis of radionuclide contents and transfer factors in the vegetation showed no evidence of influence of the radionuclide concentration in soils, although it could be explained in terms of the type of plants and, in particular, of the tree's species, with special attention to the tree's rate of growth, being higher in slow growing species.

  9. An Expanding Role For Purine Uptake Permease (PUP -like Transporters In Plant Secondary Metabolism.

    Directory of Open Access Journals (Sweden)

    John G. Jelesko

    2012-05-01

    Full Text Available For the past decade, our understanding of the plant purine uptake permease (PUP transporter family of was primarily oriented on purine nucleobase substrates and their tissue-specific expression patterns in Arabidopsis. However, a tobacco PUP-like homolog demonstrating nicotine uptake permease (NUP activity was recently shown to affect both nicotine metabolism and root cell growth. These new findings expand the physiological role for PUP-like transporters to include plant secondary metabolism. Molecular evolution analyses of PUP-like transporters indicate they are distinct group within an ancient super family of drug and metabolite transporters (DMTs. The PUP-like family originated during terrestrial plant evolution sometime between the bryophytes and the lycophytes. A phylogenetic analysis indicates that the PUP-like transporters were likely were derived from a pre-existing nucleotide sugar transporter family within the DMT super family. Within the lycophyte Selaginella, there are three paralogous groups of PUP-like transporters. One of the three PUP-like paralogous groups showed an extensive pattern of gene duplication and diversification within the angiosperm lineage, whereas the other two more ancestral PUP-like paralogous groups did not. Biochemical characterization of four closely-related PUP-like paralogs together with model-based phylogenetic analyses indicate both subfunctionalization and neofunctionalization during the molecular evolution of angiosperm PUP-like transporters. These findings suggest that members of the PUP-like family of DMT transporters are likely involved in diverse primary and secondary plant metabolic pathways.

  10. Prediction of phenanthrene uptake by plants with a partition-limited model

    International Nuclear Information System (INIS)

    Zhu, Lizhong; Gao, Yanzheng

    2004-01-01

    The performance of a partition-limited model on prediction of phenanthrene uptake by a wide variety of plant species was evaluated using a greenhouse study. The model predictions of root or shoot concentrations for tested plant species were all within an order of magnitude of the observed values. Modeled root concentrations appeared to be more accurate than modeled shoot concentrations. The differences of simulated and experimented concentrations of phenanthrene in roots and shoots of three representative plant species, including ryegrass, flowering Chinese cabbage, and three-colored amaranth, were less than 81% for roots and 103% for shoots. Results are promising in that the α pt values of the partition-limited model for root uptake of phenanthrene correlate well with root lipid contents. Additionally, a significantly positive correlation is also observed between root concentration factors (RCFs, defined as the ratio of contaminant concentrations in root and in soil on a dry weight basis) of phenanthrene and root lipid contents. Results from this study suggest that the partition-limited model may have potential applications for predicting the plant PAH concentration in contaminated sites

  11. Uptake of cesium and cobalt radionuclides from simulated radioactive wastewater by Ludwigia stolonifera aquatic plant

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.M., E-mail: hosamsaleh70@yahoo.com [Radioisotope Department, Nuclear Research Center, Atomic Energy Authority, Dokki 12311, Giza (Egypt); Bayoumi, T.A. [Radioisotope Department, Nuclear Research Center, Atomic Energy Authority, Dokki 12311, Giza (Egypt); Mahmoud, H.H. [Radioisotope Department, Nuclear Research Center, Atomic Energy Authority, Dokki 12311, Giza (Egypt); Central Laboratory for Elemental and Isotopic Analysis, Nuclear Research Center, Atomic Energy Authority (Egypt); Aglan, R.F. [Department of Analytical Chemistry, Hot Laboratories Center, Atomic Energy Authority, 13759 (Egypt)

    2017-04-15

    Highlights: • Radioactive contamination is a serious environmental problem. • Phytoremediation is a proper technique for soil and water decontamination. • Aquatic plant, Ludwigia stolonifera, for bioaccumulation of radionuclides. • Factors affecting uptake efficiency of {sup 137}Cs and {sup 60}Co radionuclides. - Abstract: The article reported herein was conducted as part of comprehensive study considered to evaluate the efficiency of Ludwigia stolonifera as a local aquatic plant located in the Egyptian environment for phytoremediation of hazardous toxic and radioactive elements dissolved in aqueous wastes dispersed from industrial and urban applications through the human activities. Ludwigia stolonifera was immersed in single and binary solution of {sup 60}Co and {sup 137}Cs. The specific uptake rate of plant was determined at various activity contents of radionuclides, multiplied masses of plant, lighting exposure and different pH values. Accumulation of {sup 60}Co and {sup 137}Cs in mixture was more than 95% and 65% respectively. pH was less effective than the other evaluated parameters.

  12. Composted biosolids and treated wastewater as sources of pharmaceuticals and personal care products for plant uptake: A case study with carbamazepine.

    Science.gov (United States)

    Ben Mordechay, Evyatar; Tarchitzky, Jorge; Chen, Yona; Shenker, Moshe; Chefetz, Benny

    2018-01-01

    Irrigation with treated wastewater (TWW) and application of biosolids to arable land expose the agro-environment to pharmaceuticals and personal care products (PPCPs) which can be taken up by crops. In this project, we studied the effect of a carrier medium (e.g., biosolids and TWW) on plant (tomato, wheat and lettuce) uptake, translocation and metabolism of carbamazepine as a model for non-ionic PPCPs. Plant uptake and bioconcentration factors were significantly lower in soils amended with biosolids compared to soils irrigated with TWW. In soils amended with biosolids and irrigated with TWW, the bioavailability of carbamazepine for plant uptake was moderately decreased as compared to plants grown in soils irrigated with TWW alone. While TWW acts as a continuous source of PPCPs, biosolids act both as a source and a sink for these compounds. Moreover, it appears that decomposition of the biosolids in the soil after amendment enhances their adsorptive properties, which in turn reduces the bioavailability of PPCPs in the soil environment. In-plant metabolism of carbamazepine was found to be independent of environmental factors, such as soil type, carrier medium, and absolute amount implemented to the soil, but was controlled by the total amount taken up by the plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Transformation, Conjugation, and Sequestration Following the Uptake of Triclocarban by Jalapeno Pepper Plants.

    Science.gov (United States)

    Huynh, Khang; Banach, Emily; Reinhold, Dawn

    2018-04-25

    Plant uptake and metabolism of emerging organic contaminants, such as personal-care products, pose potential risks to human health. In this study, jalapeno pepper ( Capsicum annuum) plants cultured in hydroponic media were exposed to both 14 C-labeled and unlabeled triclocarban (TCC) to investigate the accumulation, distribution, and metabolism of TCC following plant uptake. The results revealed that TCC was detected in all plant tissues; after 12 weeks, the TCC concentrations in root, stem, leaf, and fruit tissues were 19.74 ± 2.26, 0.26 ± 0.04, 0.11 ± 0.01, and 0.03 ± 0.01 mg/kg dry weight, respectively. More importantly, a substantial portion of the TCC taken up by plants was metabolized, especially in the stems, leaves, and fruits. Hydroxylated TCC (e.g., 2'-OH TCC and 6-OH TCC) and glycosylated OH-TCC were the main phase I and phase II metabolites in plant tissues, respectively. Bound (or nonextractable) residues of TCC accounted for approximately 44.6, 85.6, 69.0, and 47.5% of all TCC species that accumulated in roots, stems, leaves, and fruits, respectively. The concentrations of TCC metabolites were more than 20 times greater than the concentrations of TCC in the above-ground tissues of the jalapeno pepper plants after 12 weeks; crucially, approximately 95.6% of the TCC was present as metabolites in the fruits. Consequently, human exposure to TCC through the consumption of pepper fruits is expected to be substantially higher when phytometabolism is considered.

  14. Plant uptake and availability of antimony, lead, copper and zinc in oxic and reduced shooting range soil.

    Science.gov (United States)

    Hockmann, Kerstin; Tandy, Susan; Studer, Björn; Evangelou, Michael W H; Schulin, Rainer

    2018-03-19

    Shooting ranges polluted by antimony (Sb), lead (Pb), copper (Cu) and zinc (Zn) are used for animal grazing, thus pose a risk of contaminants entering the food chain. Many of these sites are subject to waterlogging of poorly drained soils. Using field lysimeter experiments, we compared Sb, Pb, Cu and Zn uptake by four common pasture plant species (Lolium perenne, Trifolium repens, Plantago lanceolata and Rumex obtusifolius) growing on a calcareous shooting range soil under waterlogged and drained conditions. To monitor seasonal trends, the same plants were collected at three times over the growing season. Additionally, variations in soil solution concentrations were monitored at three depths over the experiment. Under reducing conditions, soluble Sb concentrations dropped from ∼50 μg L -1 to ∼10 μg L -1 , which was attributed to the reduction of Sb(V) to Sb(III) and the higher retention of the trivalent species by the soil matrix. Shoot Sb concentrations differed by a factor of 60 between plant species, but remained at levels <0.3 μg g -1 . Despite the difference in soil solution concentrations between treatments, total Sb accumulation in shoots for plants collected on the waterlogged soil did not change, suggesting that Sb(III) was much more available for plant uptake than Sb(V), as only 10% of the total Sb was present as Sb(III). In contrast to Sb, Pb, Cu and Zn soil solution concentrations remained unaffected by waterlogging, and shoot concentrations were significantly higher in the drained treatment for many plant species. Although showing an increasing trend over the season, shoot metal concentrations generally remained below regulatory values for fodder plants (40 μg g -1  Pb, 150 μg g -1 Zn, 15-35 μg g -1 Cu), indicating a low risk of contaminant transfer into the food chain under both oxic and anoxic conditions for the type of shooting range soil investigated in this study. Copyright © 2018 Elsevier Ltd. All rights

  15. Plant uptake of bicarbonate as measured with the 11C isotope

    International Nuclear Information System (INIS)

    Wallace, A.; Mueller, R.T.; Wood, R.A.; Soufi, S.M.

    1979-01-01

    11 C which is cyclotron produced by 14 N(P, α) 11 C(half-life 20.1 M) was used as a tracer of bicarbonate to determine its movements from a nutrient solution through roots to stems and leaves of bush bean plants (Phaseolus vulgaris L. var Improved Tendergreen). The short time involved and the high solution pH minimized the need for use of the Henderson Hasselbach equation for activity correction. Quantities of 11 C did move into roots, stems and leaves with a sharp decreasing gradient (root/stem = 14.5, stems/leaves = 11.7) More 11 C moved into plants with KHCO 3 than with NaHCO 3 . The (NH 4 ) 2 SO 4 enhanced 11 C uptake and KNO 3 decreased it. This enhancement and competition indicated possibility of some uptake of HCO 3 - . In an experiment with Galenia pubescens (Eckl. and Zeyh.) Druce, the 11 C was more readily moved to stems and leaves than in bush bean indicating substantial uptake of HCO 3 - . (Auth.)

  16. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants.

    Science.gov (United States)

    Ahmad, Munir; Usman, Adel R A; Al-Faraj, Abdullah S; Ahmad, Mahtab; Sallam, Abdelazeem; Al-Wabel, Mohammad I

    2018-03-01

    Biochar (BC) was produced by pyrolyzing the date palm leaf waste at 600 °C and then loaded with phosphorus (P) via sorption process. Greenhouse pot experiment was conducted to investigate the application effects of BC and P-loaded biochar (BCP) on growth and availability of P and heavy metals to maize (Zea mays L.) plants grown in contaminated mining soil. The treatments consisted of BC and BCP (at application rates of 5, 10, 20, and 30 g kg -1 of soil), recommended NK and NPK, and a control (no amendment). Sorption experiment showed that Langmuir predicted maximum P sorption capacity of BC was 13.71 mg g -1 . Applying BCP increased the soil available P, while BC and BCP significantly decreased the soil labile heavy metals compared to control. Likewise, heavy metals in exchangeable and reducible fractions were transformed to more stable fraction with BC and BCP applications. The highest application rate of BCP (3%) was most effective treatment in enhancing plant growth parameters (shoot and root lengths and dry matter) and uptake of P and heavy metals by 2-3 folds. However, based on metal uptake and phytoextraction indices, total heavy metals extraction by maize plants was very small for practical application. It could be concluded that using P-loaded biochar as a soil additive may be considered a promising tool to immobilize heavy metals in contaminated mining areas, while positive effects on the biomass growth of plants may assist the stabilization of contaminated areas affected by wind and water erosion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Uptake, Translocation, Metabolism, and Distribution of Glyphosate in Nontarget Tea Plant (Camellia sinensis L.).

    Science.gov (United States)

    Tong, Mengmeng; Gao, Wanjun; Jiao, Weiting; Zhou, Jie; Li, Yeyun; He, Lili; Hou, Ruyan

    2017-09-06

    The uptake, translocation, metabolism, and distribution behavior of glyphosate in nontarget tea plant were investigated. The negative effects appeared to grown tea saplings when the nutrient solution contained glyphosate above 200 mg L -1 . Glyphosate was highest in the roots of the tea plant, where it was also metabolized to aminomethyl phosphonic acid (AMPA). The glyphosate and AMPA in the roots were transported through the xylem or phloem to the stems and leaves. The amount of AMPA in the entire tea plant was less than 6.0% of the amount of glyphosate. The glyphosate level in fresh tea shoots was less than that in mature leaves at each day. These results indicated that free glyphosate in the soil can be continuously absorbed by, metabolized in, and transported from the roots of the tea tree into edible leaves, and therefore, free glyphosate residues in the soil should be controlled to produce teas free of glyphosate.

  18. Plutonium uptake by plants from soil containing plutonium-238 dioxide particles. Final report

    International Nuclear Information System (INIS)

    Brown, K.W.; McFarlane, J.C.

    1977-05-01

    Three plant species--alfalfa, lettuce, and radishes were grown in soils contaminated with plutonium-238 dioxide (238)PuO2 at concentrations of 23, 69, 92, and 342 nanocuries per gram (nCi/g). The length of exposure varied from 60 days for the lettuce and radishes to 358 days for the alfalfa. The magnitude of plutonium incorporation as indicated by the discrimination ratios for these species, after being exposed to the relatively insoluble PuO2, was similar to previously reported data using different chemical forms of plutonium. Evidence indicates that the predominant factor in plutonium uptake by plants may involve the chelation of plutonium contained in the soils by the action of compounds such as citric acid and/or other similar chelating agents released from the plant roots

  19. Real-time imaging of {sup 35}S-sulfate uptake in a rape seed plant

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, T.M.; Yamawaki, M.; Ishibashi, H.; Tanoi, K. [Tokyo Univ. (Japan). Lab. of Radioisotope Plant Physiology

    2011-07-01

    We present real-time images of {sup 35}S-sulfate uptake in a rapeseed plant visualized by the system we developed. In the leaves of rapeseed plants, {sup 35}S accumulated in higher amounts and more rapidly in the more developed leaves. This real-time imaging system can be used to visualize the movement of both {sup 35}S and {sup 32}P in the same plant. In the pods of rapeseed, images of {sup 35}S show that {sup 35}S accumulated mostly in the terminal parts; on the other hand {sup 32}P, when applied as {sup 32}P-phosphoric acid, accumulated in the middle part of the pods. (orig.)

  20. Uptake and distribution of 137Cs, stable Cs and K in rice plants

    International Nuclear Information System (INIS)

    Tsukada, Hirofumi; Hasegawa, Hidenao

    2003-01-01

    The uptake and distributions of 137 Cs, stable Cs and K were determined for rice plant components, including polished rice, rice bran, hulls, leaves, stems, and roots. The distribution of 137 Cs in polished rice and rice bran was similar to that of stable Cs, while that of K was different. The concentration ratios of Cs/K in leaves increased in older leaf blade positions, which meant that the translocation rate of stable Cs, was slower than that of K. At harvest the dry weight of polished rice accounted for 34% of the entire rice plant, while the distributions of stable Cs in the polished rice and the non-edible parts were 7 and 93%, respectively. These findings suggest that the transfer and distribution of stable Cs in rice plants are different from those of K, and the behavior of stable Cs provides a useful analogue in predicting the fate of 137 Cs in an agricultural environment. (author)

  1. Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species

    International Nuclear Information System (INIS)

    Greger, Maria; Wang Yaodong; Neuschuetz, Clara

    2005-01-01

    In this paper we investigated if, and to what extent, six different plant species accumulate, translocate and emit mercury (Hg) into the air. The Hg uptake by roots, distribution of Hg to the shoot and release of Hg via shoots of garden pea, spring wheat, sugar beet, oil-seed rape, white clover and willow were investigated in a transpiration chamber. The airborne Hg was trapped in a Hopcalite trap or a gold trap. Traps and plant materials were analysed for content of Hg by CVAAS. The results show that all plant species were able to take up Hg to a large extent from a nutrient solution containing 200 μg L -1 Hg. However, the Hg translocation to the shoot was low (0.17-2.5%) and the Hg that reached the leaves was trapped and no release of the absorbed Hg to the air was detected. - Mercury translocation to shoots was low

  2. Effect of pesticides on the uptake and transport of radiophosphorus in horse-bean and cucumber plants

    Energy Technology Data Exchange (ETDEWEB)

    Hanker, I; Taimr, L; Kudelova, A [Vyzkumne Ustavy Rostlinne Vyroby, Prague (Czechoslovakia). Ustav Ochrany Rostlin

    1977-01-01

    During the treatment of the roots of intact bean and cucumber plants with the preparation Pirimor (pirimicarb) and on the second day after application of the insecticides Bi 58 (dimethoate), Pirimor and Lannate (methomyl) to roots diminished /sup 32/P uptake was also noted after treatment of overground parts of bean plants with the preparation Pirimor. On the other hand, on the second day after application of the fungicide Folcidin (cypendazole) to the roots of cucumber plants /sup 32/P uptake was significantly stimulated, radioactivity being accumulated in the overground parts of plants.

  3. Growth, nutrient uptake and ectomycorrhizal function in Pinus sylvestris plants exposed to aluminium and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen-Jonnarth, Ulla [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    2000-07-01

    The potential role of aluminium (Al) toxicity to trees has been of particular concern to forest owners and scientists since the early 1980's when Ulrich hypothesised that both Al and heavy metals were involved in forest dieback because of their increased concentrations in soil due to acidification. Since then, numerous studies have examined the effects of metals upon nutrient uptake by plants. However, most of these investigations have been carried out in the absence of mycorrhizal fungi, which, in most ecosystems, are crucial components in nutrient uptake by plants. The present work focused on the effects of elevated concentrations of Al and heavy metals on Scots pine (Pinus sylvestris L.) and the potential role of ectomycorrhiza in modifying these effects. Ectomycorrhizal colonisation enhanced the growth and nutrient uptake by seedlings. To some extent, colonisation also alleviated reduced nutrient uptake which was a feature of seedlings growing in the presence of the metals. This effect was particularly noticeable with respect to P uptake. In general, mycorrhizal seedlings grew better and had an improved P, K, Mg and S status compared with non-mycorrhizal seedlings. Significant differences were also found in nutrient uptake among seedlings colonised by different fungi. One fungus, Hebeloma cf. longicaudum, was more sensitive to the Al treatment than the pine seedlings. The use of the base cation / Al ratio as an indicator of the potential detrimental effects to trees to acidification and Al is discussed. The production of oxalic acid was found to increase when mycorrhizal and nonmycorrhizal seedlings were exposed to Al or Cu. Colonisation by Suillus variegatus or Rhizopogon roseolus, in particular, resulted in a marked increase. These results demonstrate that there is a capacity, especially by certain ectomycorrhizal fungi, for increased production of the metal-chelating oxalic acid when root systems are exposed to increased levels of metals. In a field

  4. Growth, nutrient uptake and ectomycorrhizal function in Pinus sylvestris plants exposed to aluminium and heavy metals

    International Nuclear Information System (INIS)

    Ahonen-Jonnarth, Ulla

    2000-01-01

    The potential role of aluminium (Al) toxicity to trees has been of particular concern to forest owners and scientists since the early 1980's when Ulrich hypothesised that both Al and heavy metals were involved in forest dieback because of their increased concentrations in soil due to acidification. Since then, numerous studies have examined the effects of metals upon nutrient uptake by plants. However, most of these investigations have been carried out in the absence of mycorrhizal fungi, which, in most ecosystems, are crucial components in nutrient uptake by plants. The present work focused on the effects of elevated concentrations of Al and heavy metals on Scots pine (Pinus sylvestris L.) and the potential role of ectomycorrhiza in modifying these effects. Ectomycorrhizal colonisation enhanced the growth and nutrient uptake by seedlings. To some extent, colonisation also alleviated reduced nutrient uptake which was a feature of seedlings growing in the presence of the metals. This effect was particularly noticeable with respect to P uptake. In general, mycorrhizal seedlings grew better and had an improved P, K, Mg and S status compared with non-mycorrhizal seedlings. Significant differences were also found in nutrient uptake among seedlings colonised by different fungi. One fungus, Hebeloma cf. longicaudum, was more sensitive to the Al treatment than the pine seedlings. The use of the base cation / Al ratio as an indicator of the potential detrimental effects to trees to acidification and Al is discussed. The production of oxalic acid was found to increase when mycorrhizal and nonmycorrhizal seedlings were exposed to Al or Cu. Colonisation by Suillus variegatus or Rhizopogon roseolus, in particular, resulted in a marked increase. These results demonstrate that there is a capacity, especially by certain ectomycorrhizal fungi, for increased production of the metal-chelating oxalic acid when root systems are exposed to increased levels of metals. In a field

  5. Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior

    Energy Technology Data Exchange (ETDEWEB)

    López-Luna, J., E-mail: jlol_24@hotmail.com [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); Silva-Silva, M.J. [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); Martinez-Vargas, S. [Facultad de Ingeniería, Universidad Autónoma del Carmen, Ciudad del Carmen 24115, Campeche (Mexico); Mijangos-Ricardez, O.F. [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); González-Chávez, M.C. [Colegio de Postgraduados en Ciencias Agrícolas, Carr. México–Texcoco km 36.5, Montecillo 56230, Estado de México (Mexico); Solís-Domínguez, F.A. [Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, Baja California Norte (Mexico); Cuevas-Díaz, M.C. [Facultad de Ciencias Químicas, Universidad Veracruzana, Coatzacoalcos 96535, Veracruz (Mexico)

    2016-09-15

    The aim of this work was to assess the uptake of citrate-coated magnetite nanoparticles (NPs) by wheat plants and its effect on the bioaccumulation and toxicity of individual and joint Cd{sup 2+} and Cr{sup 6+} levels. Seven-day assays were conducted using quartz sand as the plant growth substrate. The endpoints measured were seed germination, root and shoot lengths, and heavy metal accumulation. Magnetite exhibited very low toxicity, regardless of the wheat seedling NP uptake and distribution into roots and shoots. The seed germination and shoot length were not sensitive enough, while the root length was a more sensitive toxicity endpoint. The root length of wheat seedlings exposed to individual metals decreased by 50% at 2.67 mg Cd{sup 2+} kg{sup −1} and 5.53 mg Cr{sup 6+} kg{sup −1}. However, when magnetite NPs (1000 mg kg{sup −1}) were added, the root length of the plants increased by 25 and 50%. Cd{sup 2+} and Cr{sup 6+} showed similar and noninteractive joint action, but strongly impaired the wheat seedlings. In contrast, an interactive infra-additive or antagonistic effect was observed upon adding magnetite NPs. Thus, cadmium and chromium accumulation in vegetable tissues was considerately diminished and the toxicity alleviated. - Highlights: • We assessed the effect of nanomagnetite on heavy metal toxicity in wheat plants. • Citrate-coated magnetite nanoparticles (NPs) exerted very low toxicity to plants. • Cadmium was more toxic than chromium and toxicity was mitigated by magnetite NPs. • Cadmium and chromium had a similar and noninteractive joint action on plants. • Metals showed an interactive infra-additive joint effect by adding magnetite NPs.

  6. Uptake of metals and metalloids by Conyza canadensis L. from a thermoelectric power plant landfill

    Directory of Open Access Journals (Sweden)

    Vukojević Vesna

    2016-01-01

    Full Text Available Fourteen metals and metalloids were determined in Conyza canadensis L. harvested from the fly ash landfill of the thermoelectric power plant “Kolubara” (Serbia. Fly ash samples were collected together with the plant samples and subjected to sequential extraction according to the three-step sequential extraction scheme proposed by the Community Bureau of Reference (BCR; now the Standards, Measurements and Testing Program. The contents of metals and metalloids were determined by inductively coupled plasma optical emission spectrometry (ICP-OES in plant root and the aboveground part and correlated with their contents in the fly ash samples. The bioconcentration factor (BCF and translocation factors (TF were calculated to access uptake of metals from fly ash and their translocation to the aboveground part. Results regarding As revealed that fly ash samples in the proximity of the active cassette had higher amounts of the element. Principal component analysis (PCA showed that As had no impact on the classification of plant parts. BCF for As ranged from 1.44 to 23.8 and varied, depending on the investigated area; TF for As ranged from 0.43 to 2.61, indicating that the plant translocated As from root to shoot. In addition to As, Conyza canadensis L. exhibited efficient uptake of other metals from fly ash. According to the calculated BCF and TF, the plant retained Al, Fe and Cr in the root and translocated Zn, Cd, Cu and As from root to shoot in the course of the detoxifying process. [Projekat Ministarstva nauke Republike Srbije, br. 172030 i br. 172017

  7. Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xingmao, E-mail: ma@engr.siu.edu [Civil and Environmental Engineering, Southern Illinois University Carbondale, IL 62901 (United States); Gurung, Arun [Civil and Environmental Engineering, Southern Illinois University Carbondale, IL 62901 (United States); Deng, Yang [Earth and Environmental Studies, Montclair State University, NJ 07403 (United States)

    2013-01-15

    Use of nano-scale zero valent iron (nZVI) for the treatment of various environmental pollutants has been proven successful. However, large scale introduction of engineered nanomaterials such as nZVI into the environment has recently attracted serious concerns. There is an urgent need to investigate the environmental fate and impact of nZVI due to the scope of its application. The goal of this study was to evaluate the toxicity and accumulation of bare nZVI by two commonly encountered plant species: cattail (Typha latifolia) and hybrid poplars (Populous deltoids × Populous nigra). Plant seedlings were grown hydroponically in a greenhouse and dosed with different concentrations of nZVI (0–1000 mg/L) for four weeks. The nZVI exhibited strong toxic effect on Typha at higher concentrations (> 200 mg/L) but enhanced plant growth at lower concentrations. nZVI also significantly reduced the transpiration and growth of hybrid poplars at higher concentrations. Microscopic images indicated that large amount of nZVI coated on plant root surface as irregular aggregates and some nZVI penetrated into several layers of epidermal cells. Transmission electron microscope (TEM) and scanning transmission electron microscope (STEM) confirmed the internalization of nZVI by poplar root cells but similar internalization was not observed for Typha root cells. The upward transport to shoots was minimal for both plant species. - Highlights: ► nZVI may exert phytotoxic effects on plants at concentrations (> 200 mg/L) often encountered in site remediation practices. ► nZVI deposits on plant root surface as aggregates and some could internalize in plant root cells. ► Plant uptake and accumulation of nZVI are plant species-dependent. ► Upward transport from roots to shoots was not observed.

  8. A New Oidiodendron maius Strain Isolated from Rhododendron fortunei and Its Effects on Nitrogen Uptake and Plant Growth

    Directory of Open Access Journals (Sweden)

    Xiangying Wei

    2016-08-01

    Full Text Available A new mycorrhizal fungal strain was isolated from hair roots of Rhododendron fortunei Lindl. grown in Huading Forest Park, Zhejiang Province, China. Morphological characterization and internal transcribed spacer (ITS rDNA analysis suggested that it belongs to Oidiodendron maius Barron, and we designated it as strain Om19. Methods for culturing Om19 were established, and the ability of Om19 to form mycorrhizae on R. fortunei was evaluated in a peat-based substrate. Microscopic observations showed hyaline hyphae on the surface of hair roots and crowded hyphal complexes (hyphal coils inside root cortical cells of R. fortunei after inoculation, indicating that the roots were well colonized by Om19. In a second experiment, fresh and dry weight of R. fortunei two months after Om19 inoculation were greater than uninoculated plants, and the total nitrogen (N absorbed by plants inoculated with Om19 was greater than the uninoculated controls. qRT-PCR analysis of five genes related to N uptake and metabolism (two nitrate transporters, an ammonium transporter, glutamine synthetase, and glutamate synthase showed that these genes were highly upregulated with 2 to 9 fold greater expression in plants inoculated with Om19 compared to uninoculated plants. In the third experiment, Om19 was inoculated into the peat-based substrate for growing Formosa azalea (R. indica ‘Formosa’. ‘Formosa’ azalea plants grown in the inoculated substrate had larger canopies and root systems compared to uninoculated plants. Our results show that Om19 could be an important microbial tool for improving production of Rhododendron plants.

  9. Plutonium-239 and americium-241 uptake by plants from soil. Final report

    International Nuclear Information System (INIS)

    Brown, K.W.

    1979-03-01

    Alfalfa was grown in soil contaminated with plutonium-239 dioxide (239PuO2) at a concentration of 29.7 nanocuries per gram (nCi/g). In addition to alfalfa, radishes, wheat, rye, and tomatoes were grown in soils contaminated with americium-241 nitrate (241Am(NO3)3) at a concentration of 189 nCi/g. The length of exposure varied from 52 days for the radishes to 237 days for the alfalfa. The magnitude of plutonium incorporation by the alfalfa as indicated by the concentration ratio, 0.0000025, was similar to previously reported data using other chemical forms of plutonium. The results did indicate, however, that differences in the biological availability of plutonium isotopes do exist. All of the species exposed to americium-241 assimilated and translocated this radioisotope to the stem, leaf, and fruiting structures. The magnitude of incorporation as signified by the concentration ratios varied from 0.00001 for the wheat grass to 0.0152 for the radishes. An increase in the uptake of americium also occurred as a function of time for four of the five plant species. Evidence indicates that the predominant factor in plutonium and americium uptake by plants may involve the chelation of these elements in soils by the action of compounds such as citric acid and/or other similar chelating agents released from plant roots

  10. Applications of Fertilizer Cations Affect Cadmium and Zinc Concentrations in Soil Solutions and Uptake by Plants

    DEFF Research Database (Denmark)

    Lorenz, S. E.; Hamon, R. E.; McGrath, S. P.

    1994-01-01

    A pot experiment was conducted to study changes over time of Cd and Zn in soil solution and in plants. Radish was grown in a soil which had been contaminated with heavy metals prior to 1961. Constant amounts of a fertilizer solution (NH4N03, KN03) were added daily. Soil solution was obtained......-metal (Cd, Zn) ions in soil solutions and a decrease in soil pH, probably due to ion-exchange mechanisms and the dissolution of carbonates. Uptake of Cd and Zn into leaves was correlated with the mass flow of Cd (adjusted r2 = 0.798) and Zn (adjusted r2=0.859). Uptake of K, Ca and Mg by the plants...... at intervals by displacement with water. The cumulative additions of small amounts of fertilizers were made equal to the plants' requirements at the final harvest but were found to exceed them during most of the experiment. Excess fertilizers caused substantial increases of major (K, Ca, Mg) and heavy...

  11. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions

    Science.gov (United States)

    Gebremikael, Mesfin T.; Steel, Hanne; Buchan, David; Bert, Wim; de Neve, Stefaan

    2016-09-01

    The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota.

  12. A portion of plant airborne communication is endorsed by uptake and metabolism of volatile organic compounds.

    Science.gov (United States)

    Matsui, Kenji

    2016-08-01

    Plants have the ability to sense volatile organic compounds (VOCs) so as to efficiently adapt to their environment. The mechanisms underlying such plant 'olfactory' systems are largely unknown. Here I would like to propose that the metabolism of VOCs in plant tissues is one of the mechanisms by which plants sense VOCs. During the gas-exchange that is essential for photosynthesis, VOCs in the atmosphere are taken into the intercellular spaces of leaves. Each VOC is partitioned between the gas phase (intercellular space) and liquid phase (cell wall) at a certain ratio determined by Henry's law. The VOCs in the cell wall diffuse through the plasma membrane to the cytosol depending on their oil/water partition coefficients. Plants detoxify some VOCs, especially those that are oxidized, through glycosylation, glutathionylation, and reduction. These metabolic processes lower the concentration of VOCs in the cytosol, which facilitates further cytosolic uptake. As a result, vigorous metabolism of VOCs in the cytosol can lead to a substantial accumulation of VOC metabolites and the depletion of glutathione or NADPH. One such metabolite (a VOC glycoside) is known to mount a direct defense against herbivores, whilst deprivation of glutathione and NADPH can fortify plants with responses similar to the oxidative stress response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Dynamics of plant nutrient uptake as affected by biopore-associated root growth in arable subsoil

    DEFF Research Database (Denmark)

    Han, Eusun; Kautz, Timo; Huang, Ning

    2017-01-01

    %) precrops, respectively. On average root diameter and root dry mass of following crops were greater by 11 and 15 % after chicory than tall fescue. At anthesis chicory-barley treatment accumulated 10 % more K in comparison to tall fescue-barley treatment. P uptake of canola was greater (7 %) after tall...... fescue compared with chicory at the stage of fruit development. Conclusions: Our results suggest that the subsoil heterogenization by altered soil biopores hold relevance for plant root growth and overall crop performance. However, the effects depended on biopore size classes, root characteristics...

  14. Effect of different treatments on {sup 85}Sr plant uptake in various soil types

    Energy Technology Data Exchange (ETDEWEB)

    Koblinger-Bokori, E.; Szerbin, P. [' Frederic Joliot-Curie' National Research Institute for Radiobiology and Radiohygiene, Budapest (Hungary)

    2000-05-01

    In the recent years radioecological studies are concentrated on the investigation of restoration possibilities of contaminated ecosystems. These studies are aimed to develop methods for decreasing the bioavailability of the radionuclides released to the environment. Radionuclides of long half-lives, such as {sup 90}Sr and {sup 137}Cs, are of special importance from the point of human health, since these nuclides can enter the human body via the food-chain and increase the radiation burden for many years. {sup 90}Sr and {sup 137}Cs contamination of the environment may occur as a result of atmospheric releases during nuclear accidents. For instance, considerable amounts were released to the atmosphere during the Chernobyl reactor accident. In the presented study strontium plant uptake from different types of soil was investigated. To avoid the difficulties related to {sup 90}Sr determination, the gamma-emitting strontium isotope {sup 85}Sr is used at the experiments (no isotopic effect takes place). The plant selected is yellow leguminous bean. Most typical Hungarian soils (leached Ramann brown forest soil, alluvial soil, chernozem-light sandy soil and calcareous chernozem soil) were selected for the experiments carried out under laboratory conditions. Results are presented in relation to major soil characteristics. Effects of two different treatments: lime and organic matter fertilizations on plant uptake are given. The highest uptake was found in bean grown on leached Ramann brown forest soil, whereas the lowest value was measured in the plant grown in calcareous chernozem soil. Organic fertilization significantly reduced the uptake of radiostrontium in all investigated types of soil. The largest factor of reduction was found to be as high as 3.5. Lime fertilization was less effective. Our study clearly demonstrates that carefully selected post-accident treatments (e.g. organic fertilization following strontium contamination) can significantly reduce the

  15. Effects of atmospheric humidity on uptake of elemental iodine by plants

    International Nuclear Information System (INIS)

    Angeletti, L.; Guenot, J.; Caput, C.

    1983-01-01

    A laboratory study was performed under controlled experimental conditions in order to evaluate the effects of the relative humidity and the exposure time on the velocity of deposition of vapour iodine onto aerials parts of plants. The results show that: - the deposition velocity increases by a factor of 2 for each increase of relative humidity of 25%, - the deposition velocity is independent of the exposure time. The foliar uptake of vapour iodine seems to be related both to stomatal opening and cuticular sorption. The importance of cuticular sorption increases rapidly with the relative humidity [fr

  16. Radionuclide movement in soils and uptake by plants. A selected, annotated bibliography

    International Nuclear Information System (INIS)

    Francis, C.W.; Talmage, S.S.; McMullin, B.B.

    1975-08-01

    This bibliography covers the world literature from 1948 to 1975 and contains 1397 references to information on how various chemical, physical, and biological factors influence the movement of radionuclides in soil and uptake by plants. Much of the data is related to the major fission products in radioactive fallout, with emphasis on 137 Cs and 90 Sr. References are included to data on nearly all fission products, a large number of biologically important activation products, and various naturally occurring radioactive nuclides such as uranium and thorium. Subject, author, geographic location, taxon, and permuted title indexes are included. (U.S.)

  17. Total {sup 18}F-dopa PET tumour uptake reflects metabolic endocrine tumour activity in patients with a carcinoid tumour

    Energy Technology Data Exchange (ETDEWEB)

    Fiebrich, Helle-Brit; Walenkamp, Annemiek M.; Vries, Elisabeth G.E. de [University Medical Centre Groningen, Department of Medical Oncology, Groningen (Netherlands); Jong, Johan R. de; Koopmans, Klaas Pieter; Dierckx, Rudi A.J.O.; Brouwers, Adrienne H. [University Medical Centre Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Kema, Ido P. [University Medical Centre Groningen, Department of Laboratory Medicine, Groningen (Netherlands); Sluiter, Wim; Links, Thera P. [University Medical Centre Groningen, Department of Endocrinology, Groningen (Netherlands)

    2011-10-15

    Positron emission tomography (PET) using 6-[{sup 18}F]fluoro-L-dihydroxyphenylalanine ({sup 18}F-dopa) has an excellent sensitivity to detect carcinoid tumour lesions. {sup 18}F-dopa tumour uptake and the levels of biochemical tumour markers are mediated by tumour endocrine metabolic activity. We evaluated whether total {sup 18}F-dopa tumour uptake on PET, defined as whole-body metabolic tumour burden (WBMTB), reflects tumour load per patient, as measured with tumour markers. Seventy-seven consecutive carcinoid patients who underwent an {sup 18}F-dopa PET scan in two previously published studies were analysed. For all tumour lesions mean standardised uptake values (SUVs) at 40% of the maximal SUV and tumour volume on {sup 18}F-dopa PET were determined and multiplied to calculate a metabolic burden per lesion. WBMTB was the sum of the metabolic burden of all individual lesions per patient. The 24-h urinary serotonin, urine and plasma 5-hydroxindoleacetic acid (5-HIAA), catecholamines (nor)epinephrine, dopamine and their metabolites, measured in urine and plasma, and serum chromogranin A served as tumour markers. All but 1 were evaluable for WBMTB; 74 patients had metastatic disease. {sup 18}F-dopa PET detected 979 lesions. SUV{sub max} on {sup 18}F-dopa PET varied up to 29-fold between individual lesions within the same patients. WBMTB correlated with urinary serotonin (r = 0.51) and urinary and plasma 5-HIAA (r = 0.78 and 0.66). WBMTB also correlated with urinary norepinephrine, epinephrine, dopamine and plasma dopamine, but not with serum chromogranin A. Tumour load per patient measured with {sup 18}F-dopa PET correlates with tumour markers of the serotonin and catecholamine pathway in urine and plasma in carcinoid patients, reflecting metabolic tumour activity. (orig.)

  18. Uptake and translocation of plutonium in two plant species using hydroponics.

    Science.gov (United States)

    Lee, J H; Hossner, L R; Attrep, M; Kung, K S

    2002-01-01

    This study presents determinations of the uptake and translocation of Pu in Indian mustard (Brassica juncea) and sunflower (Helianthus annuus) from Pu contaminated solution media. The initial activity levels of Pu were 18.50 and 37.00 Bq ml(-1), for Pu-nitrate [239Pu(NO3)4] and for Pu-citrate [239Pu(C6H5O7)+] in nutrient solution. Plutonium-diethylenetriaminepentaacetic acid (DTPA: [239Pu-C14H23O10N3] solution was prepared by adding 0, 5, 10, and 50 microg of DTPA ml(-1) with 239Pu(NO3)4 in nutrient solution. Concentration ratios (CR, Pu concentration in dry plant material/Pu concentration in nutrient solution) and transport indices (Tl, Pu content in the shoot/Pu content in the whole plant) were calculated to evaluate Pu uptake and translocation. All experiments were conducted in hydroponic solution in an environmental growth chamber. Plutonium concentration in the plant tissue was increased with increased Pu contamination. Plant tissue Pu concentration for Pu-nitrate and Pu-citrate application was not correlated and may be dependent on plant species. For plants receiving Pu-DTPA, the Pu concentration was increased in the shoots but decreased in the roots resulting in a negative correlation between the Pu concentrations in the plant shoots and roots. The Pu concentration in shoots of Indian mustard was increased for application rates up to 10 microg DTPA ml(-1) and up to 5 microg DTPA ml(-1) for sunflower. Similar trends were observed for the CR of plants compared to the Pu concentration in the shoots and roots, whereas the Tl was increased with increasing DTPA concentration. Plutonium in shoots of Indian mustard was up to 10 times higher than that in shoots of sunflower. The Pu concentration in the apparent free space (AFS) of plant root tissue of sunflower was more affected by concentration of DTPA than that of Indian mustard.

  19. Sustainable measures for sewage sludge treatment - evaluating the effects on P reaction in soils and plant P uptake

    Science.gov (United States)

    Shenker, Moshe; Einhoren, Hana

    2016-04-01

    Wastewater treatment, whether for water reusing or for releasing into the environment, results in sewage sludge rich in organic matter and nutrients. If free of pathogens and pollutants, this waste material is a widely used as soil amendment and source of valuable nutrients for agronomic use. Nevertheless, its P/N ratio largely exceeds plant P/N demand. Limiting its application rates according to the P demand of crops will largely limit its application rates and its beneficial effect as a soil amendment and as a source for other nutrients. An alternative approach, in which P is stabilized before application, was evaluated in this study. Anaerobically digested fresh sewage sludge (FSS) was stabilized by aluminum sulfate, ferrous sulfate, and calcium oxide (CaO), as well as by composting with shredded woody yard-waste to produce Al-FSS, Fe-FSS, CaO-FSS, and FSS-compost, respectively. Defined organic-P sources (glucose-1-phosphate and inositol-hexa-phosphate) and a P fertilizer (KH2PO4) were included as well and a control with no P amendments was included as a reference. Each material was applied at a fixed P load of 50 mg kg-1 to each of three soils and P speciation and plants P uptake were tested along 112 days of incubation at moderate (near field capacity) water content. Tomato seedlings were used for the P uptake test. The large set of data was used to evaluate the effect of each treatment on P reactions and mechanisms of retention in the tested soils and to correlate various P indices to P availability for plants. Plant P uptake was highly correlated to Olsen-P as well as to water-soluble inorganic-P, but not to water-soluble organic-P and not to total P or other experimentally-defined stable P fractions. We conclude that the P stabilization in the sludge will allow beneficial and sustainable use of sewage sludge as a soil amendment and source of nutrients, but the stabilization method should be selected in accordance with the target soil properties.

  20. A Review on Heavy Metals (As, Pb, and Hg Uptake by Plants through Phytoremediation

    Directory of Open Access Journals (Sweden)

    Bieby Voijant Tangahu

    2011-01-01

    Full Text Available Heavy metals are among the most important sorts of contaminant in the environment. Several methods already used to clean up the environment from these kinds of contaminants, but most of them are costly and difficult to get optimum results. Currently, phytoremediation is an effective and affordable technological solution used to extract or remove inactive metals and metal pollutants from contaminated soil and water. This technology is environmental friendly and potentially cost effective. This paper aims to compile some information about heavy metals of arsenic, lead, and mercury (As, Pb, and Hg sources, effects and their treatment. It also reviews deeply about phytoremediation technology, including the heavy metal uptake mechanisms and several research studies associated about the topics. Additionally, it describes several sources and the effects of As, Pb, and Hg on the environment, the advantages of this kind of technology for reducing them, and also heavy metal uptake mechanisms in phytoremediation technology as well as the factors affecting the uptake mechanisms. Some recommended plants which are commonly used in phytoremediation and their capability to reduce the contaminant are also reported.

  1. Noninvasive method for the assessment of dermal uptake of pesticides using attenuated total reflectance infrared spectroscopy.

    Science.gov (United States)

    Carden, Angela; Yost, Michael G; Fenske, Richard A

    2005-03-01

    Dermal absorption of pesticides is a primary exposure route for agricultural workers, but is not well characterized. Current measurement techniques are either invasive, such as tape-stripping, or require extensive sample preparation or analysis time, such as urinary metabolite monitoring or wipe sampling followed by gas chromatography analysis. We present the application of a noninvasive, spectroscopic approach for the measurement of pesticide absorption into skin. Attenuated total reflectance infrared spectroscopy (ATR-IR) was used to monitor directly the absorption of two pesticides--captan and azinphos-methyl--in ten volunteers over 20 min under occlusive conditions. We found substantial variability in absorption across subjects. Our results were comparable to those measured by the more traditional method of wipe-sampling followed by extraction and gas chromatography analysis. Multivariate data analysis, in the form of multivariate curve resolution (MCR), is a novel addition to this type of experiment, yielding time-resolved information unachievable by standard methods. These data are potentially more informative than the monitoring of blood or urinary metabolites because they can be acquired in essentially real-time, allowing observations of pesticide absorption on a rapid timescale rather than over hours or days.

  2. Fertilizer-n uptake and distribution in rice plants using 15N tracer technique

    International Nuclear Information System (INIS)

    Yan Juan; Shen Qirong; Yin Bin; Wan Xinjun

    2009-01-01

    Fertilizer-nitrogen (N) uptake and distribution in rice were studied using 15 N tracer technique. The results obtained were as follows. At the tillering, jointing and booting, and anthesis stages, 23.1%, 8.3% and 19.9% of N were taken from fertilizer applied in base (N1), tillering (N2) and jointing and booting (N3), respectively. The 15 N translocation from anthesis to maturity was in the order of N3>N1>N2, but the 15 N translocation efficiency was higher in N1 (base fertilizer treatment) than in the other two treatments. At maturity, the 15 N distribution in straw in the treatments of N1, N2 and N3 was only 24.3%, 26.7% and 30.4%, respectively. No matter what time the N fertilizer was applied, the 15 N uptake was mostly distributed in leaves, then in the sheath, the least in stem, and 15 N distribution in spike increased with the increased 15 N translocation from nutritional organs to spike after anthesis. The study also showed that the 15 N uptake at maturity in N1, N2 and N3 treatments was 10.3%, 5.9% and 12.4%, respectively. The results indicated that (1) when soil N content was not high, the base fertilizer application was important to rice growth, and optimal increment might help increase tillering, and improve rice quality; (2) the initiation fertilizer significantly promoted quantities during grain filling, and thus application of N fertilizer in initiation was of considerable advance in increasing N harvest index (NHI); (3) the rice plants absorbed less N applied in tillering stage due to a big N loss in that period. Therefore a little bit increase of base N fertilizer with no or very small amount of tillering fertilizer, together with some topdressing of N fertilizer during initiation could improve N uptake by rice. (authors)

  3. Use of gold nanoparticles to detect water uptake in vascular plants.

    Science.gov (United States)

    Hwang, Bae Geun; Ahn, Sungsook; Lee, Sang Joon

    2014-01-01

    Direct visualization of water-conducting pathways and sap flows in xylem vessels is important for understanding the physiology of vascular plants and their sap ascent. Gold nanoparticles (AuNPs) combined with synchrotron X-ray imaging technique is a new promising tool for investigating plant hydraulics in opaque xylem vessels of vascular plants. However, in practical applications of AuNPs for real-time quantitative visualization of sap flows, their interaction with a vascular network needs to be verified in advance. In this study, the effect of AuNPs on the water-refilling function of xylem vessels is experimentally investigated with three monocot species. Discrepancy in the water uptakes starts to appear at about 20 min to 40 min after the supply of AuNP solution to the test plant by the possible gradual accumulation of AuNPs on the internal structures of vasculature. However conclusively, it is observed that the water-refilling speeds in individual xylem vessels are virtually unaffected by hydrophilically surface-modified AuNPs (diameter ∼20 nm). Therefore, the AuNPs can be effectively used as flow tracers in the xylem vessels in the first 20∼30 min without any physiological barrier. As a result, AuNPs are found to be useful for visualizing various fluid dynamic phenomena occurring in vascular plants.

  4. Interactions between salt marsh plants and Cu nanoparticles - Effects on metal uptake and phytoremediation processes.

    Science.gov (United States)

    Andreotti, Federico; Mucha, Ana Paula; Caetano, Cátia; Rodrigues, Paula; Rocha Gomes, Carlos; Almeida, C Marisa R

    2015-10-01

    The increased use of metallic nanoparticles (NPs) raises the probability of finding NPs in the environment. A lot of information exists already regarding interactions between plants and metals, but information regarding interactions between metallic NPs and plants, including salt marsh plants, is still lacking. This work aimed to study interactions between CuO NPs and the salt marsh plants Halimione portulacoides and Phragmites australis. In addition, the potential of these plants for phytoremediation of Cu NPs was evaluated. Plants were exposed for 8 days to sediment elutriate solution doped either with CuO or with ionic Cu. Afterwards, total metal concentrations were determined in plant tissues. Both plants accumulated Cu in their roots, but this accumulation was 4 to 10 times lower when the metal was added in NP form. For P. australis, metal translocation occurred when the metal was added either in ionic or in NP form, but for H. portulacoides no metal translocation was observed when NPs were added to the medium. Therefore, interactions between plants and NPs differ with the plant species. These facts should be taken in consideration when applying these plants for phytoremediation of contaminated sediments in estuaries, as the environmental management of these very important ecological areas can be affected. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Effect of pre-sowing gamma irradiation on the ion uptake of bean plants

    International Nuclear Information System (INIS)

    Koeroesi, F.

    1979-01-01

    The electrolyte levels, pH and K + activity values of a modified Knopp solution with different ion strengths were studied in order to analyse the probable stimulating effect of gamma irradiation (750, 1000, 1500 rad) on bean plants. The results of this experiment are as follows. The conductivity of the modified Knopp solution, at the 2-3 leaf age of the bean plant (Seaway), was reduced most by 1000 rad combinations; this phenomenon is caused by the vigorous ion uptake. In the previously mentioned development stage the stimulation of the ion absorption can be observed in every combination. At the 3-4 leaf age of the bean the stimulation effect of the radiation levels used was altered by ion ratios. One of the possible explanations is that, parallel with the progress of the ontogenesis, the claim in individual ions is changing, thus the ion of the favoured role may bring about a stimulating effect by different irradiation doses. (author)

  6. Can iron plaque affect Sb(III) and Sb(V) uptake by plants under hydroponic conditions

    NARCIS (Netherlands)

    Ji, Ying; Lenz, Markus; Lenz, Markus; Schulin, Rainer; Tandy, Susan

    2018-01-01

    Antimony (Sb) contamination of soils is of concern due to h uman activities such as recycling of Sb containing Pb acid batteries, shooting and mining. However Sb uptake by plants is poorly documented, especially when plants are growing on waterlogged soils and iron plaques form on their roots. The

  7. Grass species influence on plant N uptake - Determination of atmospheric N deposition to a semi-natural peat bog site using a 15N labelling approach

    Science.gov (United States)

    Hurkuck, Miriam; Brümmer, Christian; Spott, Oliver; Flessa, Heinz; Kutsch, Werner L.

    2014-05-01

    Large areas of natural peat bogs in Northwestern Germany have been converted to arable land and were subjected to draining and peat cutting in the past. The few protected peatland areas remaining are affected by high nitrogen (N) deposition. Our study site - a moderately drained raised bog - is surrounded by highly fertilized agricultural land and livestock production. In this study, we used a 15N pool dilution technique called 'Integrated Total Nitrogen Input' (ITNI) to quantify annual deposition of atmospheric N into biomonitoring pots over a two-year period. Since it considers direct N uptake by plants, it was expected to result in higher N input than conventional methods for determination of N deposition (e.g. micrometeorological approaches, bulk N samplers). Using Lolium multiflorum and Eriophorum vaginatum as monitor plants and low, medium and high levels of fertilization, we aimed to simulate increasing N deposition to planted pots and to allocate airborne N after its uptake by the soil-plant system in aboveground biomass, roots and soil. Increasing N fertilization was positively correlated with biomass production of Eriophorum vaginatum, whereas atmospheric plant N uptake decreased and highest airborne N input of 899.8 ± 67.4 µg N d-1 pot-1 was found for low N fertilization. In contrast, Lolium multiflorum showed a clear dependency of N supply on plant N uptake and was highest (688.7 ± 41.4 µg N d-1 pot-1) for highly fertilized vegetation pots. Our results suggest that grass species respond differently to increasing N input. While crop grasses such as Lolium multiflorum take up N according to N availability, species adopted to nutrient-limited conditions like Eriophorum vaginatum show N saturation effects with increasing N supply. Total airborne N input ranged from about 24 to 66 kg N ha-1 yr-1 dependent on the used indicator plant and the amount of added fertilizer. Parallel determination of atmospheric N deposition using a micrometeorological approach

  8. Cadmium uptake from solution by plants and its transport from roots to shoots

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, S.C.; Jones, L.H.P.; Hopper, M.J.

    1976-02-01

    The uptake of cadmium by the roots of plants, and its transport to shoots was examined using solution culture. Uptake by the roots of perennial ryegrass over a period of 4 hours from an aqueous solution containing 0.25 ppm cadmium as CdCl/sub 2/ was (i) enhanced by killing the roots and (ii) depressed when Ca/sup 2 +/, Mn/sup 2 +/ or Zn/sup 2 +/ were added to the solution. The distribution of cadmium between the roots and shoots of 23 species was examined at 4 days after a single, 3-day exposure to a nutrient solution containing 0.01 ppm added Cd. In all except 3 species, i.e. kale, lettuce and watercress, more than 50% of that taken up was retained in the shoot, and in fibrous roots of fodder beet, parsnip, carrot and radish it was greater than in the swollen storage roots. When perennial ryegrass was similarly exposed to solutions containing 0.01, 0.05, and 0.25 ppm added cadmium, uptake, as measured at 3 days after adding cadmium, increased with increasing rates of addition, but the proportion retained in the roots was constant (approximately 88%). There was no further transport from roots to shoots during the next 21 days, with the result that the concentration in the shoots decreased progressively with increasing growth. It is concluded that although the roots of several species can take up large quantities of cadmium from solution there are mechanisms which may restrict the movement of cadmium through plants, and thus to animals. 21 references, 7 tables.

  9. Evaluating and reducing a model of radiocaesium soil-plant uptake

    Energy Technology Data Exchange (ETDEWEB)

    Tarsitano, D.; Young, S.D. [School of Biosciences, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Crout, N.M.J., E-mail: neil.crout@nottingham.ac.u [School of Biosciences, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2011-03-15

    An existing model of radiocaesium transfer to grasses was extended to include wheat and barley and parameterised using data from a wide range of soils and contact times. The model structure was revised and evaluated using a subset of the available data which was not used for model parameterisation. The resulting model was then used as a basis for systematic model reduction to test the utility of the model components. This analysis suggested that the use of 4 model variables (relating to radiocaesium adsorption on organic matter and the pH sensitivity of soil solution potassium concentration) and 1 model input (pH) are not required. The results of this analysis were used to develop a reduced model which was further evaluated in terms of comparisons to observations. The reduced model had an improved empirical performance and fewer adjustable parameters and soil characteristic inputs. - Research highlights: {yields} A model of plant radiocesium uptake is evaluated and re-parameterised. {yields} The representation of time dependent changes in plant uptake is improved. {yields} Model reduction is applied to evaluate the model structure. {yields} A reduced model is identified which outperforms the previously reported model. {yields} The reduced model requires fewer soil specific inputs.

  10. Liming and plant aging influence on micronutrient uptake by Brachiaria decumbens forage

    International Nuclear Information System (INIS)

    Armelin, Maria Jose A.; Saiki, Mitiko; Primavesi, Odo; Primavesi, Ana C.

    2007-01-01

    Brachiaria decumbens is the main forage in pastures of several Brazilian regions. The effects of liming and plant age on micronutrient uptake by the forage of a degraded Brachiaria decumbens pasture under restoration process, were studied in Sao Carlos - SP, southeastern Brazil, under altitude tropical climate. Experimental design was a random block (100 m 2 ), with 6 replications and 3 treatments. Each block received the following treatment: 0 t/ha of limestone with NK; 2 t/ha of limestone applied on soil surface with NK and maintenance of 1 t/ha per annum; 8 t/ha of limestone applied once on soil surface with NK. Forage samples were collected 14 cm above soil surface, each 36 days in the rain season. Instrumental neutron activation analysis (INAA) followed by gamma-ray spectrometry was the analytical method used to determine the micronutrient content. In some cases, Co Fe, Mn and Zn were negatively affected by increasing limestone doses. The opposite effect was observed for Cl. Decreases of Cl, Co and Mo uptake in forage were enhanced with plant aging. (author)

  11. Study on the effect of x-ray irradiation of seed on zinc uptake in maize (Zea Mays L.) plants

    International Nuclear Information System (INIS)

    Joshi, Gargi; Singh, K.P.; Joshi, G.C.

    2007-01-01

    The effects of irradiations by X-rays at the two dose levels (1.1 KR and 2.2 KR) of seeds on uptake of zinc ion in maize (Zea Mays L.) plants were studied. The uptake and internal distribution of zinc ion in the maize plants was carried out by incorporating radioactive zinc as zinc chloride (ZnCl 2 ) in the nutrient solution to the plants. The localization and translocation of radioactive zinc was studied employing phosphor imaging systems (FX). The radioactivity measurement has been carried out using solid scintillation counter. It was observed that zinc ions uptake was higher in plants out of 2.2 KR X-rays irradiated seeds. (author)

  12. Effects of elevated CO2 on soil organic matter turnover and plant nitrogen uptake: First results from a dual labeling mesocosm experiment

    Science.gov (United States)

    Eder, Lucia Muriel; Weber, Enrico; Schrumpf, Marion; Zaehle, Sönke

    2017-04-01

    The response of plant growth to elevated concentrations of CO2 (eCO2) is often constrained by plant nitrogen (N) uptake. To overcome potential N limitation, plants may invest photosynthetically fixed carbon (C) into N acquiring strategies, including fine root biomass, root exudation, or C allocation to mycorrhizal fungi. In turn, these strategies may affect the decomposition of soil organic matter, leading to uncertainties in net effects of eCO2 on C storage. To gain more insight into these plant-soil C-N-interactions, we combined C and N stable isotope labeling in a mesocosm experiment. Saplings of Fagus sylvatica L. were exposed to a 13CO2 enriched atmosphere at near ambient (380 ppm) or elevated (550 ppm) CO2 concentrations for four months of the vegetation period in 2016. Aboveground and belowground net CO2 fluxes were measured separately and the 13C label enabled partitioning of total soil CO2 efflux into old, soil derived and new, plant-derived C. We used ingrowth cores to assess effects of eCO2on belowground C allocation and plant N uptake in more detail and in particular we evaluated the relative importance of ectomycorrhizal associations. In the soil of each sapling, ingrowth cores with different mesh sizes allowed fine roots or only mycorrhizal hyphae to penetrate. In one type of ingrowth core each, we incorporated fine root litter that was enriched in 15N. Additionally, total N uptake was estimated by using 15N enriched saplings and unlabeled control plants. We found that eCO2 increased aboveground net CO2 exchange rates by 19% and total soil respiration by 11%. The eCO2 effect for GPP and also for NPP was positive (+23% and +11%, respectively). By combining gaseous C fluxes with data on new and old C stocks in bulk soil and plants through destructive harvesting in late autumn 2016, we will be able to infer net effects of eCO2 on the fate of C in these mesocosms. Biomass allocation patterns can reveal physiological responses to high C availability under

  13. The roles of nematodes in nitrogen and phosphorous availability, plant uptake and growth in organically amended soils

    Science.gov (United States)

    Gebremikael, Mesfin; Buchan, David; De Neve, Stefaan

    2017-04-01

    Several studies have shown that soil biota contributes significantly to the crucial ecosystem functions and services such as organic matter decomposition and nutrient cycling. The contribution of each group of soil organisms may vary depending primarily on their feeding behavior. The magnitude of the ecosystem services by the biota may also depend on the interactions amongst the soil biota groups and their surrounding environment, for instance, biochemical characteristics of the externally added organic material. However, only a few studies considered these interactions concurrently. Here, we investigated the effects of fauna-microbe-plant interactions on organic matter decomposition and nutrient cycling by applying different organic materials spanning a range of C:N ratios and presumed N availability. Nematodes were selected as model fauna because they are the most abundant soil metazoans that have a diversified feeding strategy and interact very intimately with microbes, other fauna, and plants. A series of incubation experiments were conducted in bare and planted microcosms under controlled conditions using fresh soil collected from an agricultural field and defaunated by gamma irradiation. In the first experiment without plants, the defaunated soil cores were either left unamended (UNA) or received lignin-rich low N compost (COI), N-rich compost (COV), fresh manure (MAN) or chopped clover (CLO). The entire free-living soil nematode community was extracted from unirradiated fresh soil and reinoculated into half of the soil cores that had been defaunated by gamma irradiation. Two treatments: with (+Nem) and without (-Nem) nematodes were compared for soil nitrogen and phosphorus availability, plant uptake, and PLFA signatures over time during a 105-days incubation. The same experimental setup was used to investigate further the CLO amendment in the presence of plants (rye grass was used as a model plant). Nematodes were extracted and assigned to feeding groups

  14. Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2017-11-01

    Full Text Available Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi (Brassica chinensis L. to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg−1 were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tetX, blaCTX-M, and sul1 and sul2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems.

  15. Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure.

    Science.gov (United States)

    Zhang, Hao; Li, Xunan; Yang, Qingxiang; Sun, Linlin; Yang, Xinxin; Zhou, Mingming; Deng, Rongzhen; Bi, Linqian

    2017-11-03

    Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs) in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi ( Brassica chinensis L.) to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC) levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg -1 were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tet X, bla CTX-M , and sul 1 and sul 2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems.

  16. Using phylogenetic and ionomic relationships to predict the uptake of radionuclides by any plant species

    Energy Technology Data Exchange (ETDEWEB)

    Willey, Neil J.; Siasou, Eleni [Centre for Research In Biosciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY (United Kingdom)

    2014-07-01

    It is not practical to empirically derive soil-to-plant TFs for all soil-plant combinations that are important in radiological assessments, so predictions for a range of species on different soils types are frequently impossible because TFs are unknown. This severely hampers predictions of both doses to biota and of the contamination of a variety of food chains with radioisotopes. Compilations of TFs in themselves provide no fundamental understanding of the plant factors that control the soil-to-plant transfer of radionuclides and thus no method of prediction. We have developed methods for the meta-analyses of radionuclide transfer data that can be used to make predictions of the transfer of radionuclides into any plants species for which TFs do not exist based on an understand of the plant factors that control radionuclide uptake. There is no reason a priori to think that variation in TF should be constrained by species. The species is, essentially, a reproductive unit and variation in many plant traits, some of which might control radionuclide uptake, occurs at taxonomic levels above the species. In the last 15 years genomic information has transformed the understanding of the evolutionary relationships of the living world so that new 'trees of life' (phylogenies) are now available. Using a Residual Maximum Likelihood modeling procedure to compile a significant proportion of all existing TF data onto a single scale, we here present a synthesis of the influence of phylogeny on variation in soil-to-plant TFs for radioisotopes of Cs, Sr, Co, I, Tc, and S. We show that a significant proportion of variation in TF is associated with major branches of the phylogeny of angiosperms (flowering plants) so that knowledge of a species' position on the phylogeny can be used to make predictions of transfer relative to other species. These phylogenetically-based predictions of relative transfer to any species can be used to make absolute predictions to any species

  17. Soil-to-plant halogens transfer studies 2. Root uptake of radiochlorine by plants

    Energy Technology Data Exchange (ETDEWEB)

    Kashparov, V. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine); Colle, C. [Institute for Radioprotection and Nuclear Safety (IRSN/DEI/SECRE), Cadarache bat 159, BP 3, 13115 Saint Paul-lez-Durance (France)]. E-mail: claude.colle@irsn.fr; Zvarich, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine); Yoschenko, V. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine); Levchuk, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine); Lundin, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine)

    2005-07-01

    Long-term field experiments have been carried out in the Chernobyl exclusion zone in order to determine the parameters governing radiochlorine ({sup 36}Cl) transfer to plants from four types of soil, namely, podzoluvisol, greyzem, and typical and meadow chernozem. Radiochlorine concentration ratios (CR) in radish roots (15 {+-} 10), lettuce leaves (30 {+-} 15), bean pods (15 {+-} 11) and wheat seed (23 {+-} 11) and straw (210 {+-} 110) for fresh weight of plants were obtained. These values correlate well with stable chlorine values for the same plants. One year after injection, {sup 36}Cl reached a quasi-equilibrium with stable chlorine in the agricultural soils and its behavior in the soil-plant system mimicked the behavior of stable chlorine (this behavior was determined by soil moisture transport in the investigated soils). In the absence of intensive vertical migration, more than half of {sup 36}Cl activity in arable layer of soil passes into the radish, lettuce and the aboveground parts of wheat during a single vegetation period.

  18. Soil-to-plant halogens transfer studies 2. Root uptake of radiochlorine by plants

    International Nuclear Information System (INIS)

    Kashparov, V.; Colle, C.; Zvarich, S.; Yoschenko, V.; Levchuk, S.; Lundin, S.

    2005-01-01

    Long-term field experiments have been carried out in the Chernobyl exclusion zone in order to determine the parameters governing radiochlorine ( 36 Cl) transfer to plants from four types of soil, namely, podzoluvisol, greyzem, and typical and meadow chernozem. Radiochlorine concentration ratios (CR) in radish roots (15 ± 10), lettuce leaves (30 ± 15), bean pods (15 ± 11) and wheat seed (23 ± 11) and straw (210 ± 110) for fresh weight of plants were obtained. These values correlate well with stable chlorine values for the same plants. One year after injection, 36 Cl reached a quasi-equilibrium with stable chlorine in the agricultural soils and its behavior in the soil-plant system mimicked the behavior of stable chlorine (this behavior was determined by soil moisture transport in the investigated soils). In the absence of intensive vertical migration, more than half of 36 Cl activity in arable layer of soil passes into the radish, lettuce and the aboveground parts of wheat during a single vegetation period

  19. Identification and Characterization of Novel Plant Adenylate Cyclases – The Arabidopsis Thaliana Potassium Uptake Permeases

    KAUST Repository

    Al-Younis, Inas M.

    2018-05-01

    Adenylyl Cyclases (ACs) catalyze the formation of the key universal second messenger adenosine 3’, 5’-cyclic monophosphate (cAMP) from adenosine 5’- triphosphate. Cyclic AMP participates in several signal transduction pathways and is present in bacteria and higher and lower eukaryotes including higher plants. Previous studies in plants have shown a role for cAMP in signal transduction during e.g. the cell cycle, elongation of the pollen tube and stimulation of protein kinase activity. More recently cAMP has been shown to play a role in stress responses. Interestingly, cAMP has also been shown to regulate ion transport in plant cells. Here we used a similar strategy that led to the discovery of the first guanylyl cyclase in plants that was based on the alignment of conserved and functionally assigned amino acids in the catalytic centre of annotated nucleotide cyclases from lower and higher eukaryotes, to identify a novel candidate ACs in Arabidopsis (Arabidopsis thaliana K+ Uptake 5 and 7). ATKUP5 and 7 are homologous to K+ uptake permeases (KUPs) from bacteria and high-affinity K+ transporters (HAKs) from fungi. The AC activity was investigated by recombinantly expressing the ATKUP5 and 7 AC domain in vitro and by complementation of an E. coli AC mutant (cyaA). Furthermore, ATKUP5 was tested for its ability to functionally complement a yeast mutant deficient in Trk1 and Trk2 high affinity potassium uptake transporters. Site-mutagenesis in the AC domain was used to test the effect of both functions in each other. Furthermore, ATKUP5 was characterized electrophysiologically in HEK-293 cells to characterize the nature of this transporter. The localization of the ATKUP5 in Arabidopsis was examined using a Green Fluorescent Protein (GFP) fusion with the ATKUP5 to determine whether ATKUP5 is expressed at the plasma or tonoplast membrane. Arabiodpsis thaliana of the wild type, overexpressing ATKUP5 and atkup5 mutant lines were used to examine phenotypic differences.

  20. Uranium uptake and accumulation in plants from soil contaminated with uranium in different concentrations

    International Nuclear Information System (INIS)

    Zhao Luxue; Tang Yongjin; Luo Xuegang

    2014-01-01

    The plants of Medicago sativa L., Hibiscus esulentus L, Waterspinach, Amaranthus retroflexus and Abutilon theophrasti Medic were employed as the indicator to investigate the uranium uptake and accumulation from soils contaminated with uranium (UO_2 (CH_3COO)_2 · 2H_2O) of 25 mg · kg"-"l, 75 mg · kg"-"1, 125 mg · kg"-"l, 175 mg · kg"-"l respectively, in a pot experiment. The result shows that, U concentration in the aerial part and underground part of the whole plant increased with the rise of uranium concentration in the soils. In the contaminated soils with 25∼125 mg · kg"-"l concentrations of uranium, U content of Medicago sativa L is the highset (6.78 mg · kg"-"l, 61.53 mg · kg"-"l, 74.06 mg · kg"-"l separately). While in the 175 mg · kg"-"l concentration of uranium contaminated soils, U content of Hibiscus esulentus L is the highest (86.72 mg · kg"-"1), which is mainly because of U concentration in its roots have higher level of uranium (388.16 mg · kg"-"l). Comprehensive analysis shows that Medicago sativa L. is a good plant for phytoextraction and Hibiscus esulentus L is a good immobilizing plant for phytoremediation. The results can provide some theoretical basis and technical support for remedying U-contaminated soils in different areas of our country. (authors)

  1. Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review

    Science.gov (United States)

    Tripathi, Durgesh K.; Tripathi, Ashutosh; Shweta; Singh, Swati; Singh, Yashwant; Vishwakarma, Kanchan; Yadav, Gaurav; Sharma, Shivesh; Singh, Vivek K.; Mishra, Rohit K.; Upadhyay, R. G.; Dubey, Nawal K.; Lee, Yonghoon; Chauhan, Devendra K.

    2017-01-01

    Nanotechnology is a cutting-edge field of science with the potential to revolutionize today’s technological advances including industrial applications. It is being utilized for the welfare of mankind; but at the same time, the unprecedented use and uncontrolled release of nanomaterials into the environment poses enormous threat to living organisms. Silver nanoparticles (AgNPs) are used in several industries and its continuous release may hamper many physiological and biochemical processes in the living organisms including autotrophs and heterotrophs. The present review gives a concentric know-how of the effects of AgNPs on the lower and higher autotrophic plants as well as on heterotrophic microbes so as to have better understanding of the differences in effects among these two groups. It also focuses on the mechanism of uptake, translocation, accumulation in the plants and microbes, and resulting toxicity as well as tolerance mechanisms by which these microorganisms are able to survive and reduce the effects of AgNPs. This review differentiates the impact of silver nanoparticles at various levels between autotrophs and heterotrophs and signifies the prevailing tolerance mechanisms. With this background, a comprehensive idea can be made with respect to the influence of AgNPs on lower and higher autotrophic plants together with heterotrophic microbes and new insights can be generated for the researchers to understand the toxicity and tolerance mechanisms of AgNPs in plants and microbes. PMID:28184215

  2. Study of element uptake in plants from the soil to assess environmental contamination by toxic elements

    CERN Document Server

    En, Z; Tsipin, V V; Tillaev, T; Jumaniyazova, G I

    2003-01-01

    Uptake of various elements by plants through the root system from the soil was studied. Vegetation experiments with cotton and white beet were carried out in the control and test fields. The test fields were enriched with phyto-bacterial strains capable of dissolving insoluble phosphate compounds. Analytical work involved analysis of blank, control and test soil samples and analysis of plants sampled in different growing periods: periods of first sprouts, florescence and ripening of the plants. Multielement analyses of soil and plant samples were carried out by instrumental neutron activation techniques using our WWR-SM research reactor. Results of the measurements have shown that macro- and microelement composition of the analyzed soil samples were consistent to clark contents except for copper. Our experiments have resulted that the concentration levels of copper in the soils were within 300-450 mg/kg, and its average concentration in cotton leaves was about similar to 35 mg/kg while in beet leaves it reach...

  3. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants

    International Nuclear Information System (INIS)

    Li, H.; Ye, Z.H.; Wei, Z.J.; Wong, M.H.

    2011-01-01

    The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L -1 ) and a soil pot trail (control, 60 mg As kg -1 ). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O 2 kg -1 root d.w. d -1 ), As uptake (e.g., 8.8-151 mg kg -1 in shoots in 0.8 mg As L -1 treatment), translocation factor (2.1-47% in 0.8 mg As L -1 ) and tolerance (29-106% in 0.8 mg As L -1 ). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity. - Research highlights: → There is significant correlation between the porosity of roots and rates of ROL. → The rates of ROL are significantly correlated with tolerance indices and concentrations of As, Fe, Mn on root surface. → The rates of ROL is negatively correlated with As translocation factor. - Wetland plants with high rates of ROL tended to form more Fe plaque on root surfaces and possess higher As tolerance.

  4. Exogenous application of plant growth regulators increased the total ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... the exogenous application of flavonoids reports plant growth regulation ... method used for extraction and quantification of endogenous gibberellins was ... 365 nm) while separation was done on a C18 reverse-phase HPLC.

  5. Dynamic plant uptake model applied for drip irrigation of an insecticide to pepper fruit plants

    DEFF Research Database (Denmark)

    Legind, Charlotte Nielsen; Kennedy, C. M.; Rein, Arno

    2011-01-01

    irrigation, its application for a soil-applied insecticide and a sensitivity analysis of the model parameters. RESULTS: The model predicted the measured increase and decline of residues following two soil applications of an insecticide to peppers, with an absolute error between model and measurement ranging...... from 0.002 to 0.034 mg kg fw—1. Maximum measured concentrations in pepper fruit were approximately 0.22 mg kg fw—1. Temperature was the most sensitive component for predicting the peak and final concentration in pepper fruit, through its influence on soil and plant degradation rates...

  6. Limited uptake, translocation and enhanced metabolic degradation contribute to glyphosate tolerance in Mucuna pruriens var. utilis plants.

    Science.gov (United States)

    Rojano-Delgado, Antonia María; Cruz-Hipolito, Hugo; De Prado, Rafael; Luque de Castro, María Dolores; Franco, Antonio Rodríguez

    2012-01-01

    Velvet bean (Mucuna pruriens, Fabaceae) plants exhibits an innate, very high resistance (i.e., tolerance) to glyphosate similar to that of plants which have acquired resistance to this herbicide as a trait. We analyzed the uptake of [(14)C]-glyphosate by leaves and its translocation to meristematic tissues, and used scanning electron micrographs to further analyze the cuticle and 3D capillary electrophoresis to investigate a putative metabolism capable of degrading the herbicide. Velvet bean exhibited limited uptake of glyphosate and impaired translocation of the compound to meristematic tissues. Also, for the first time in a higher plant, two concurrent pathways capable of degrading glyphosate to AMPA, Pi, glyoxylate, sarcosine and formaldehyde as end products were identified. Based on the results, the innate tolerance of velvet bean to glyphosate is possibly a result of the combined action of the previous three traits, namely: limited uptake, impaired translocation and enhanced degradation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water.

    Science.gov (United States)

    Wu, Chenxi; Spongberg, Alison L; Witter, Jason D; Fang, Min; Czajkowski, Kevin P

    2010-08-15

    Many pharmaceuticals and personal care products (PPCPs) are commonly found in biosolids and effluents from wastewater treatment plants. Land application of these biosolids and the reclamation of treated wastewater can transfer those PPCPs into the terrestrial and aquatic environments, giving rise to potential accumulation in plants. In this work, a greenhouse experiment was used to study the uptake of three pharmaceuticals (carbamazepine, diphenhydramine, and fluoxetine) and two personal care products (triclosan and triclocarban) by an agriculturally important species, soybean (Glycine max (L.) Merr.). Two treatments simulating biosolids application and wastewater irrigation were investigated. After growing for 60 and 110 days, plant tissues and soils were analyzed for target compounds. Carbamazepine, triclosan, and triclocarban were found to be concentrated in root tissues and translocated into above ground parts including beans, whereas accumulation and translocation for diphenhydramine and fluoxetine was limited. The uptake of selected compounds differed by treatment, with biosolids application resulting in higher plant concentrations, likely due to higher loading. However, compounds introduced by irrigation appeared to be more available for uptake and translocation. Degradation is the main mechanism for the dissipation of selected compounds in biosolids applied soils, and the presence of soybean plants had no significant effect on sorption. Data from two different harvests suggest that the uptake from soil to root and translocation from root to leaf may be rate limited for triclosan and triclocarban and metabolism may occur within the plant for carbamazepine.

  8. Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals.

    Science.gov (United States)

    Meers, E; Tack, F M G; Van Slycken, S; Ruttens, A; Du Laing, G; Vangronsveld, J; Verloo, M G

    2008-01-01

    The contamination of soils by trace metals has been an unfortunate sideeffect of industrialization. Some of these contaminants can interfere with vulnerable enduses of soil, such as agriculture or nature, already at relatively low levels of contamination. Reversely, conventional civil-technical soil-remediation techniques are too expensive to remediate extended areas of moderately contaminated soil. Phytoextraction has been proposed as a more economic complementary approach to deal with this specific niche of soil contamination. However, phytoextraction has been shown to be a slow-working process due to the low amounts of metals that can be annually removed from the soil under normal agronomic conditions. Therefore, extensive research has been conducted on process optimization by means of chemically improving plant availability and the uptake of heavy metals. A wide range of potential amendments has been proposed in the literature, with considerable attention being spent on aminopolycarboxylic acids such as ethylenediaminetetraacetic acid (EDTA). However, these compounds have received increasing criticism due to their environmental persistence and associated risks for leaching. This review presents an overview of potential soil amendments that can be employed for enhancing metal uptake by phytoextraction crops, with a distinct focus on more degradable alternatives to persistent compounds such as EDTA.

  9. Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots.

    Science.gov (United States)

    Gao, Yanzheng; Cheng, Zhaoxia; Ling, Wanting; Huang, Jing

    2010-09-01

    The arbuscular mycorrhizal (AM) hyphae-mediated uptake of polycyclic aromatic hydrocarbons (PAHs) by the roots of ryegrass (Lolium multiflorum Lam.) was investigated using three-compartment systems. Glomus mosseae and Glomus etunicatum were chosen, and fluorene and phenanthrene were used as representative PAHs. When roots were grown in un-spiked soils, AM hyphae extended into PAH-spiked soil and clearly absorbed and transported PAHs to roots, resulting in high concentrations of fluorene and phenanthrene in roots. This was further confirmed by the batch equilibration experiment, which revealed that the partition coefficients (K(d)) of tested PAHs by mycorrhizal hyphae were 270-356% greater than those by roots, suggesting the great potential of hyphae to absorb PAHs. Because of fluorene's lower molecular weight and higher water solubility, its translocation by hyphae was greater than that of phenanthrene. These results provide new perspectives on the AM hyphae-mediated uptake by plants of organic contaminants from soil. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Soil Microbial Communities and Gas Dynamics Contribute to Arbuscular Mycorrhizal Nitrogen Uptake and Transfer to Plants

    Science.gov (United States)

    Hestrin, R.; Harrison, M. J.; Lehmann, J.

    2016-12-01

    Arbuscular mycorrhizal fungi (AMF) associate with most terrestrial plants and influence ecosystem ecology and biogeochemistry. There is evidence that AMF play a role in soil nitrogen cycling, in part by taking up nitrogen and transferring it to plants. However, many aspects of this process are poorly understood, including the factors that control fungal access to nitrogen stored in soil organic matter. In this study, we used stable isotopes and root exclusion to track nitrogen movement from organic matter into AMF and host plants. AMF significantly increased total plant biomass and nitrogen content, but both AMF and other soil microbes seemed to compete with plants for nitrogen. Surprisingly, gaseous nitrogen species also contributed significantly to plant nitrogen content under alkaline soil conditions. Our current experiments investigate whether free-living microbial communities that have evolved under a soil nitrogen gradient influence AMF access to soil organic nitrogen and subsequent nitrogen transfer to plants. This research links interactions between plants, mycorrhizal symbionts, and free-living microbes with terrestrial carbon and nitrogen dynamics.

  11. Effects of elemental sulphur on heavy metal uptake by plants growing on municipal sewage sludge.

    Science.gov (United States)

    Dede, Gulgun; Ozdemir, Saim

    2016-01-15

    In this study experiment was carried out to determine the phytoextraction potential of six plant species (Conium maculatum, Brassica oleraceae var. oleraceae, Brassica juncea, Datura stramonium, Pelargonium hortorum and Conyza canadensis) grown in a sewage sludge medium amended with metal uptake promoters. The solubility of Cu, Cd and Pb was significantly increased with the application of elemental S due to decrease of pH. Faecal coliform number was markedly decreased by addition of elemental sulphur. The extraction of Cu, Cr and Pb from sewage sludge by using B. juncea plant was observed as 65%, 65% and 54% respectively that is statistically similar to EDTA as sulphur. The bioaccumulation factors were found higher (>1) in the plants tested for Cu and Pb like B. juncea. Translocation index (TI) calculated values for Cd and Pb were greater than one (>1) in both C. maculatum and B. oleraceae var. oleraceae. The results cleared that the amendment of sludge with elemental sulphur showed potential to solubilize heavy metals in phytoremediation as much as EDTA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Uptake and fate of phenol, aniline and quinoline in terrestrial plants

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Bean, R.M.; Fellows, R.J.

    1987-06-01

    The bioavailability and chemical fate of xenobiotics in terrestrial plants can influence the impact of fossil fuel development on the human food chain. To determine the relative behavior of organic residues representing a range of chemical classes, we compared the rates of root absorption, tissue distribution and chemical fate of phenol, aniline and quinoline in soybean plants. Root absorption rates for these compounds were 180, 13 and 30 μg/g (fresh weight) root/day, respectively. Following uptake, aniline was concentrated in the root, while phenol and quinoline were evenly distributed in roots and leaves. After accumulation, phenol was readily decomposed, and its carbon was respired. While aniline was susceptible to oxidative decomposition, it persisted in leaves and roots; 25% of the soluble activity represented aniline, and a significant fraction was bound or conjugated to cell constitutents. Quinoline persisted both in the parent form and as metabolic products. However, in leaves, additional compounds were found that were chemically similar to quinoline; these were not found in unexposed plants. A substantial fraction of the quinoline accumulated by leaves was emitted to the atmosphere by volatilization. 12 refs., 5 tabs., 2 figs

  13. Plant uptake of radiocaesium from artificially contaminated soil monoliths covering major European soil types

    Energy Technology Data Exchange (ETDEWEB)

    Waegeneers, Nadia [Laboratory for Soil and Water Management, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium)], E-mail: nadia.waegeneers@agr.kuleuven.ac.be; Sauras-Yera, Teresa [Departament de Biologia Vegetal, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona (Spain); Thiry, Yves [SCK.CEN, Radioecology Laboratory, Boeretang 200, B-2400 Mol (Belgium); Vallejo, V. Ramon [Departament de Biologia Vegetal, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona (Spain); CEAM, Parque Tecnologico, Charles Darwin 14, 46980 Parterna (Spain); Smolders, Erik [Laboratory for Soil and Water Management, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium); Madoz-Escande, Chantal; Brechignac, Francois [SERLAB, ISPN, Department for Environmental Protection, CE-Cadarache Batiment 159, Saint-Paul-lez-Durance Cedex 13108 (France)

    2009-06-15

    Uptake of {sup 137}Cs was measured in different agricultural plant species (beans, lettuce, barley and ryegrass) grown in 5 undisturbed soil monoliths covering major European soil types. The first cultivation was made three years after soil contamination and plants were grown during 3 successive years. The plant-soil {sup 137}Cs transfer factors varied maximally 12-fold among soils and 35-fold among species when grown on the same soil. Single correlations between transfer factors and soil properties were found, but they varied widely with plant type and can hardly be used as a predictive tool because of the few soils used. The variation of {sup 137}Cs concentrations in plants among soils was related to differences in soil solution {sup 137}Cs and K concentrations, consistent with previous observations in hydroponics and pot trials. Absolute values of transfer factors could not be predicted based on a model validated for pot trials. The {sup 137}Cs activity concentration in soil solution decreased significantly (11- to 250-fold) for most soils in the 1997-1999 period and is partly explained by decreasing K in soil solution. Transfer factors of lettuce showed both increasing and decreasing trends between 2 consecutive years depending on soil type. The trends could be explained by the variation in {sup 137}Cs and K concentrations in soil solution. It is concluded that differences in {sup 137}Cs transfer factors among soils and trends in transfer factors as a function of time can be explained from soil solution composition, as shown previously for pot trials, although absolute values of transfer factors could not be predicted.

  14. Effect of soil-moisture stress on nitrogen uptake and fixation by plants

    International Nuclear Information System (INIS)

    Mitrosuhardjo, M.M.

    1983-01-01

    The effect of four levels of soil moisture, namely 25, 30, 35, and 40% (g/g) on nitrogen uptake and fixation by plants was studied in a greenhouse experiment. Soybean and wheat were used in this experiment. Both crops were grown in pots containing 7 kg loamy alluvial soil. Rhizobium japonicum was used as an inoculant for soybean, one week after planting. Nitrogen-15 labelled urea with 10% atom excess was applied to each pot with a dose rate of 70 mg N/pot (20 kg N/ha) two weeks after planting. Soil moisture was regularly controlled with porous-cup mercury tensiometers, and the amount of water consumed by plants was always recorded. Water was applied to each pot with a distribution pipe which was laid down in the centre of the soil depth, horizontally in a circular form, and was connected with a smaller pipe to the soil surface. The result obtained showed that the amount of water consumed by plants grown in a higher level of soil moisture was increased until soil aeration problems arose. A different amount of water consumption between soybean and wheat was observed at least until a certain period of growing time. Fertilizer nitrogen taken up by both crops varied with the different levels of soil moisture. Generally, greater fertilizer nitrogen was taken up by both crops grown in a higher level of soil moisture. The symbiotic fixation of nitrogen was reasonable, although no clarification has been found about the role of the four levels of soil-moisture treatment on it. A similar effect of soil-moisture stress on nodule dry matter and acetylene reduction was found. (author)

  15. Plant uptake of radiocaesium from artificially contaminated soil monoliths covering major European soil types

    International Nuclear Information System (INIS)

    Waegeneers, Nadia; Sauras-Yera, Teresa; Thiry, Yves; Vallejo, V. Ramon; Smolders, Erik; Madoz-Escande, Chantal; Brechignac, Francois

    2009-01-01

    Uptake of 137 Cs was measured in different agricultural plant species (beans, lettuce, barley and ryegrass) grown in 5 undisturbed soil monoliths covering major European soil types. The first cultivation was made three years after soil contamination and plants were grown during 3 successive years. The plant-soil 137 Cs transfer factors varied maximally 12-fold among soils and 35-fold among species when grown on the same soil. Single correlations between transfer factors and soil properties were found, but they varied widely with plant type and can hardly be used as a predictive tool because of the few soils used. The variation of 137 Cs concentrations in plants among soils was related to differences in soil solution 137 Cs and K concentrations, consistent with previous observations in hydroponics and pot trials. Absolute values of transfer factors could not be predicted based on a model validated for pot trials. The 137 Cs activity concentration in soil solution decreased significantly (11- to 250-fold) for most soils in the 1997-1999 period and is partly explained by decreasing K in soil solution. Transfer factors of lettuce showed both increasing and decreasing trends between 2 consecutive years depending on soil type. The trends could be explained by the variation in 137 Cs and K concentrations in soil solution. It is concluded that differences in 137 Cs transfer factors among soils and trends in transfer factors as a function of time can be explained from soil solution composition, as shown previously for pot trials, although absolute values of transfer factors could not be predicted.

  16. The uptake of plutonium-239, 240, americium-241, strontium-90 into plants

    International Nuclear Information System (INIS)

    Popplewell, D.S.; Ham, G.J.; Johnson, T.E.

    1984-01-01

    This report describes the results of measurements on the uptake of plutonium, americium, strontium-90 and caesium-137 into peas, beet, oats, sweet corn, tomatoes and vegetable marrow grown in tubs containing radioactively-contaminated silts. The silts had been taken from an area of West Cumbria commonly referred to as the Ravenglass estuary. The experiments are categorised as being carried out under non-standard conditions because of the manner in which the radioactivity came to be incorporated into the growth medium. The growth medium was representative of conditions which could arise when the estuarine silt moves inland under the influence of wind and tide and mixes with the adjacent farm land. The silt had been contaminated by radioactive effluents from the nuclear fuels reprocessing plant at Sellafield and this contamination had been brought about by natural means. (Auth.)

  17. Zearalenone Uptake and Biotransformation in Micropropagated Triticum durum Desf. Plants: A Xenobolomic Approach.

    Science.gov (United States)

    Rolli, Enrico; Righetti, Laura; Galaverna, Gianni; Suman, Michele; Dall'Asta, Chiara; Bruni, Renato

    2018-02-14

    A model was set up to elucidate the uptake, translocation, and metabolic fate of zearalenone (ZEN) in durum wheat. After treatment with ZEN, roots and shoots were profiled with LC-HRMS. A comprehensive description of in planta ZEN biotransformation and a biotechnological evaluation of the model were obtained. Up to 200 μg ZEN were removed by each plantlet after 14 days. Most ZEN and its masked forms were retained in roots, while minimal amounts were detected in leaves. Sixty-two chromatographic peaks were obtained, resulting in 7 putative phase I and 18 putative phase II metabolites. ZEN16Glc and ZEN14Glc were most abundant in roots, sulfo-conjugates and zearalenol derivatives were unable to gain systemic distribution, while distinct isomers of malonyl conjugates were found in leaves and roots. This study underlines the potential ZEN occurrence in plants without an ongoing Fusarium infection. Micropropagation may represent a tool to investigate the interplay between mycotoxins and wheat.

  18. Analysis of peptide uptake and location of root hair-promoting peptide accumulation in plant roots.

    Science.gov (United States)

    Matsumiya, Yoshiki; Taniguchi, Rikiya; Kubo, Motoki

    2012-03-01

    Peptide uptake by plant roots from degraded soybean-meal products was analyzed in Brassica rapa and Solanum lycopersicum. B. rapa absorbed about 40% of the initial water volume, whereas peptide concentration was decreased by 75% after 24 h. Analysis by reversed-phase HPLC showed that number of peptides was absorbed by the roots during soaking in degraded soybean-meal products for 24 h. Carboxyfluorescein-labeled root hair-promoting peptide was synthesized, and its localization, movement, and accumulation in roots were investigated. The peptide appeared to be absorbed by root hairs and then moved to trichoblasts. Furthermore, the peptide was moved from trichoblasts to atrichoblasts after 24 h. The peptide was accumulated in epidermal cells, suggesting that the peptide may have a function in both trichoblasts and atrichoblasts. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  19. Nuclear microprobe study of heavy metal uptake and transport in aquatic plant species

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Kocsar, I.; Szikszai, Z.; Lakatos, Gy.

    2005-01-01

    Complete text of publication follows. In aquatic ecosystems water contamination by trace metals is one of the main types of pollution that may stress the biotic community. Although some metals are needed as micronutrients for autotrophic organisms, they can have toxic effects at higher concentration. Aquatic plants can take up large quantities of nutrients and metals from the environment, they can live under extreme environmental conditions therefore they are being increasingly used in remediation processes to reduce contamination. Besides the usually applied bulk analytical techniques quantitative micro-PIXE investigation of the macro, micro and trace element distribution within the root can lead to a better understanding of the heavy metal up-take, transport and detoxification mechanisms of the plants and thus helps to select the proper species for the remedial activity, or possibly to increase the efficiency of the remediation. In this work we determined the elemental distributions in root cross sections and along the roots of reed (Phragmaties australis), bulrush (Typha angustifolia) and sea club-rush (Bolboschoemus maritimus) using the Debrecen nuclear microprobe. The plants originate from the dried units of the wastewater sedimentation pond system of the tannery of Kunszentmarton. 1500 m 3 waste water containing lime, sodium-salts, ammonium-salts, chromium-salts, sodium, chlorine and magnesium ions, sulphur and organic material was released to the pond system every day till 1988. The chosen species are the dominant species of the area, composing 85-90% of the green plant covering. This heavily contaminated area has been regularly monitored by the colleagues of the Dept. of Applied Ecology of the Univ. of Debrecen since 1998. They focused their work the potentially toxic heavy metal chromium. In order to conserve the samples in the living state, the roots were frozen in liquid nitrogen. 16-20 μm thick cross sections were made with cryo-microtome, and all the

  20. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shenglian; Xu, Taoying; Chen, Liang [Hunan Univ., Changsha (China). College of Environmental Science and Engineering] [and others

    2012-02-15

    The effects of Bacillus sp. SLS18, a plant-growth-promoting endophyte, on the biomass production and Mn/Cd uptake of sweet sorghum (Sorghum bicolor L.), Phytolacca acinosa Roxb., and Solanum nigrum L. were investigated. SLS18 displayed multiple heavy metals and antibiotics resistances. The strain also exhibited the capacity of producing indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic acid deaminase. In pot experiments, SLS18 could not only infect plants effectively but also significantly increase the biomass of the three tested plants in the presence of Mn/Cd. The promoting effect order of SLS18 on the biomass of the tested plants was sweet sorghum > P. acinosa > S. nigrum L. In the presence of Mn (2,000 mg kg{sup -1}) and Cd (50 mg kg{sup -1}) in vermiculite, the total Mn/Cd uptakes in the aerial parts of sweet sorghum, P. acinosa, and S. nigrum L. were increased by 65.2%/40.0%, 55.2%/31.1%, and 18.6%/25.6%, respectively, compared to the uninoculated controls. This demonstrates that the symbiont of SLS18 and sweet sorghum has the potential of improving sweet sorghum biomass production and its total metal uptake on heavy metal-polluted marginal land. It offers the potential that heavy metal-polluted marginal land could be utilized in planting sweet sorghum as biofuel feedstock for ethanol production, which not only gives a promising phytoremediation strategy but also eases the competition for limited fertile farmland between energy crops and food crops. (orig.)

  1. Improving Lowland Rice (O. sativa L. cv. MR219 Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    Directory of Open Access Journals (Sweden)

    Perumal Palanivell

    2015-01-01

    Full Text Available High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1. Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1 significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1 and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  2. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    Science.gov (United States)

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  3. Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements.

    Science.gov (United States)

    Rivelli, Anna Rita; De Maria, Susanna; Puschenreiter, Markus; Gherbin, Piergiorgio

    2012-04-01

    We investigated the effects on physiological response, trace elements and nutrients accumulation of sunflower plants grown in soil contaminated with: 5 mg kg(-1) of Cd; 5 and 300 mg kg(-1) of Cd and Zn, respectively; 5, 300, and 400 mg kg(-1) of Cd, Zn, and Cu, respectively. Contaminants applied did not produce large effects on growth, except in Cd-Zn-Cu treatment in which leaf area and total dry matter were reduced, by 15%. The contamination with Cd alone did not affect neither growth nor physiological parameters, despite considerable amounts of Cd accumulated in roots and older leaves, with a high bioconcentration factor from soil to plant. By adding Zn and then Cu to Cd in soil, significant were the toxic effects on chlorophyll content and water relations due to greater accumulation of trace elements in tissues, with imbalances in nutrients uptake. Highly significant was the interaction between shoot elements concentration (Cd, Zn, Cu, Fe, Mg, K, Ca) and treatments. Heavy metals concentrations in roots always exceeded those in stem and leaves, with a lower translocation from roots to shoots, suggesting a strategy of sunflower to compartmentalise the potentially toxic elements in physiologically less active parts in order to preserve younger tissues.

  4. Foliar uptake of nitrogen from ant fecal droplets: an overlooked service to ant plants

    DEFF Research Database (Denmark)

    Pinkalski, Christian Alexander Stidsen; Jensen, Karl-Martin Vagn; Damgaard, Christian Frølund

    2018-01-01

    and subsequently deposited fecal droplets on the seedlings, coffee leaves showed increased levels of 15N and total N compared to control plants without ants. This was evident for both exposed leaves and leaves covered in plastic bags (i.e. not directly exposed to ants). Thus, N from ant excretions was absorbed...

  5. Uptake of radionuclides by plants growing on Brazilian soil: the effect of soil ageing

    International Nuclear Information System (INIS)

    Wasserman, Maria A.; Rochedo, Elaine R.R.; Ferreira, Ana C.M.; Vidal Perez, Daniel

    2008-01-01

    , indicating strong sorption mechanism, only explained by the presence of traces of vermiculite in these soils. Older contamination or younger contamination than contamination in Nitisol did not reduced plant uptake in that extreme way. These results suggest that soils originated from highly weathered areas, identified by the absence of high activity clay minerals and low fertility, the 137 Cs uptake by plants can remains high for a long period. (author)

  6. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [State Key Laboratory for Bio-control, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Ye, Z.H., E-mail: lssyzhh@mail.sysu.edu.c [State Key Laboratory for Bio-control, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wei, Z.J. [School of Information and Technology, Guangdong University of Foreign Studies, Guangzhou 510275 (China); Wong, M.H., E-mail: mhwong@hkbu.edu.h [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2011-01-15

    The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L{sup -1}) and a soil pot trail (control, 60 mg As kg{sup -1}). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O{sub 2} kg{sup -1} root d.w. d{sup -1}), As uptake (e.g., 8.8-151 mg kg{sup -1} in shoots in 0.8 mg As L{sup -1} treatment), translocation factor (2.1-47% in 0.8 mg As L{sup -1}) and tolerance (29-106% in 0.8 mg As L{sup -1}). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity. - Research highlights: There is significant correlation between the porosity of roots and rates of ROL. The rates of ROL are significantly correlated with tolerance indices and concentrations of As, Fe, Mn on root surface. The rates of ROL is negatively correlated with As translocation factor. - Wetland plants with high rates of ROL tended to form more Fe plaque on root surfaces and possess higher As tolerance.

  7. Uptake of plutonium-238 by plants grown under field condition as affected by one year of weathering and aging

    International Nuclear Information System (INIS)

    Cline, J.F.; Hinds, W.T.

    1976-06-01

    Less 238 Pu was concentrated in the seeds than in the vegetative parts in all plant species. Leaves contained more 238 Pu than the stem or pods, and the monocots had lower concentrations of 238 Pu in their tissues than the dicots. Irrigation of plants affected the uptake of 238 Pu, especially on the year-to-year changes in the amount of the element accumulated in the plant parts. Several more years of data must be analyzed to determine if this phenomenon is real. Soil profiles must be studied to determine what configuration changes may occur in the 238 Pu in the soil. Other investigators show that soil microbes change the chemical form of plutonium in the soil and the organic complexes that are formed are more available for plant uptake

  8. Simulation of the plant uptake of organophosphates and other emerging pollutants for greenhouse experiments and field conditions

    DEFF Research Database (Denmark)

    Trapp, Stefan; Eggen, Trine

    2013-01-01

    The uptake of the organophosphates tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), tributyl phosphate (TBP), the insect repellant N,N-diethyl toluamide (DEET), and the plasticizer n-butyl benzenesulfonamide (NBBS) into plants was studied in greenhouse experiments...

  9. UPTAKE AND PHYTOTRANSFORMATION OF O,P'-DDT AND P,P'-DDT BY AXENICALLY CULTIVATED AQUATIC PLANTS

    Science.gov (United States)

    The uptake and phytotransformation of o,p'-DDT and p,p'-DDT were investigated in vitro using three axenically cultivated aquatic plants: parrot feather (Mariophyllum aquaticum), duckweed (Spirodela oligorrhiza), and elodea (Elodea canadensis). The decay profile of DDT from the aq...

  10. Reduction of Cadmium Uptake of Rice Plants Using Soil Amendments in High Cadmium Contaminated Soil: A Pot Experiment

    Directory of Open Access Journals (Sweden)

    Dian Siswanto

    2013-05-01

    Full Text Available The aims of this study were to investigate the effect of agricultural residues on reducing cadmium uptake in rice plants. The rice plants growing on no cadmium/free cadmium soils (N, Cd soils (Cds, and Cd soils each amended with 1% w/w of coir pith (CP, coir pith modified with sodium hydroxide (CPm and corncob (CC under high cadmium contaminated soil with an average 145 mg Cd kg-1 soil were investigated. The results showed that the cumulative transpiration of rice grown in various treatments under high cadmium contaminated soil followed the order: Cds > CPm ≥ CP ≥ CC. These transpirations directly influenced cadmium accumulation in shoots and husks of rice plants. The CC and CP seemed to work to reduce the cadmium uptake by rice plants indicated by accumulated cadmium in the husk that were 2.47 and 7.38 mg Cd kg-1 dry weight, respectively. Overall, transpiration tended to drive cadmium accumulation in plants for rice grown in high cadmium contaminated soil. The more that plants uptake cadmium, the lower cadmium that remains in the soil.

  11. Uptake, translocation, and distribution of root-applied [C ring-U-14C]-ZJ0273 in plants of oilseed rape and rice

    International Nuclear Information System (INIS)

    Li Zheng; Han Ailiang; Zhang Yanfei; Li Juying; Wang Yue; Wang Haiyan; Ye Qingfu; Lu Long

    2009-01-01

    ZJ0273, propyl 4-(2-(4, 6-dimethoxypyrimidin-2-yloxy) benzylamino) benzoate, is a novel ALS-inhibited herbicide development for pre-and post-emergence weed control in field of oilseed rape. The comparative uptake, translocation and distribution of root-applied [C ring-U- 14 C] ZJ0273 in the plants of susceptible rice and tolerant oilseed rape were investigated under laboratory conditions. The results showed that the uptake of [C ring-U- 14 C]-ZJ0273 in both rice (Oryza sativa L.) and oilseed rape (Brassica napus L.) increased with time. Larger percentage of the applied ZJ0273 was uptaken by rice than oilseed rape at any sampling time. At 384 hours after treatment, the uptake of [C ring-U- 14 C]-ZJ0273 reached 24.1% of the applied amount in rice, while only 4.1% of the applied in oilseed rape. The majority of the absorbed ZJ0273 remained in the root of the tested plants, which indicated the weak mobility of ZJ0273 and/or its metabolites in both the plants of susceptible rice and tolerant oilseed rape. The radioactivity per unit of dry weight in the roots and leaves of rice was 9.470 Bq/mg and 0.910 Bq/mg, respectively, which was significantly higher than that in oilseed rape (3.870 Bq/mg and 0.390 Bq/mg). Therefore, the difference in the total uptake of ZJ0273 and the accumulation of ZJ0273 and/or its metabolites perunit of dry weight between rice and oilseed rape, which revealed in this study, might be one of the reasons for the different susceptibility of rice and oilseed rape on ZJ0273. (authors)

  12. The effect of elevated CO2 and temperature on nutrient uptake by plants grown in basaltic soil

    Science.gov (United States)

    Villasenor Iribe, E.; Dontsova, K.; Juarez, S.; Le Galliard, J. F.; Chollet, S.; Llavata, M.; Massol, F.; Barré, P.; Gelabert, A.; Daval, D.; Troch, P.; Barron-Gafford, G.; Van Haren, J. L. M.; Ferrière, R.

    2017-12-01

    Mineral weathering is an important process in soil formation. The interactions between the hydrologic, geologic and atmospheric cycles often determine the rate at which weathering occurs. Elements and nutrients weathered from the soil by water can be removed from soils in the runoff and seepage, but they can also remain in situ as newly precipitated secondary minerals or in biomass as a result of plant uptake. Here we present data from an experiment that was conducted at the controlled environment facility, Ecotron Ile-de-France (Saint-Pierre-les-Nemours, France) that studied mineral weathering and plant growth in granular basaltic material with high glass content that is being used to simulate soil in large scale Biosphere 2 Landscape Evolution Observatory (LEO) project. The experiment used 3 plant types: velvet mesquite (Prosopis velutina), green spangletop (Leptochloa dubia), and alfalfa (Medicago sativa), which were grown under varying temperature and CO2 conditions. We hypothesized that plants grown under warmer, higher CO2 conditions would have larger nutrient concentrations as more mineral weathering would occur. Results of plant digestions and analysis showed that plant concentrations of lithogenic elements were significantly influenced by the plant type and were different between above- and below-ground parts of the plant. Temperature and CO2 treatment effects were less pronounced, but we observed significant temperature effect on plant uptake. A number of major and trace elements showed increase in concentration with increase in temperature at elevated atmospheric CO2. Effect was observed both in the shoots and in the roots, but more significant differences were observed in the shoots. Results presented here indicate that climate change would have strong effect on plant uptake and mobility of weathered elements during soil formation and give further evidence of interactions between abiotic and biological processes in terrestrial ecosystems.

  13. Simultaneous simulations of uptake in plants and leaching to groundwater of cadmium and lead for arable land amended with compost or farmyard manure

    DEFF Research Database (Denmark)

    Legind, Charlotte Nielsen; Rein, Arno; Serre, Jeanne

    2012-01-01

    The water budget of soil, the uptake in plants and the leaching to groundwater of cadmium (Cd) and lead (Pb) were simulated simultaneously using a physiological plant uptake model and a tipping buckets water and solute transport model for soil. Simulations were compared to results from a ten-year...

  14. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems.

    Science.gov (United States)

    Gonsamo, Alemu; Chen, Jing M; Ooi, Ying W

    2018-05-01

    Climate change is lengthening the growing season of the Northern Hemisphere extratropical terrestrial ecosystems, but little is known regarding the timing and dynamics of the peak season of plant activity. Here, we use 34-year satellite normalized difference vegetation index (NDVI) observations and atmospheric CO 2 concentration and δ 13 C isotope measurements at Point Barrow (Alaska, USA, 71°N) to study the dynamics of the peak of season (POS) of plant activity. Averaged across extratropical (>23°N) non-evergreen-dominated pixels, NDVI data show that the POS has advanced by 1.2 ± 0.6 days per decade in response to the spring-ward shifts of the start (1.0 ± 0.8 days per decade) and end (1.5 ± 1.0 days per decade) of peak activity, and the earlier onset of the start of growing season (1.4 ± 0.8 days per decade), while POS maximum NDVI value increased by 7.8 ± 1.8% for 1982-2015. Similarly, the peak day of carbon uptake, based on calculations from atmospheric CO 2 concentration and δ 13 C data, is advancing by 2.5 ± 2.6 and 4.3 ± 2.9 days per decade, respectively. POS maximum NDVI value shows strong negative relationships (p POS days. Given that the maximum solar irradiance and day length occur before the average POS day, the earlier occurrence of peak plant activity results in increased plant productivity. Both the advancing POS day and increasing POS vegetation greenness are consistent with the shifting peak productivity towards spring and the increasing annual maximum values of gross and net ecosystem productivity simulated by coupled Earth system models. Our results further indicate that the decline in autumn NDVI is contributing the most to the overall browning of the northern high latitudes (>50°N) since 2011. The spring-ward shift of peak season plant activity is expected to disrupt the synchrony of biotic interaction and exert strong biophysical feedbacks on climate by modifying the surface albedo and energy budget. © 2017

  15. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] D. A. Webb).

    Science.gov (United States)

    Saa, Sebastian; Olivos-Del Rio, Andres; Castro, Sebastian; Brown, Patrick H

    2015-01-01

    The use of biostimulants has become a common practice in agriculture. However, there is little peer-reviewed research on this topic. In this study we tested, under controlled and replicated conditions, the effect of one biostimulant derived from seaweed extraction (Bio-1) and another biostimulant derived from microbial fermentation (Bio-2). This experiment utilized 2-years-old almond plants over two growing seasons in a randomized complete design with a full 2 × 4 factorial structure with two soil potassium treatments (125 μg g(-1) of K vs. 5 μg g(-1)) and four foliar treatments (No spray, Foliar-K, Bio-1, Bio-2). Rubidium was utilized as a surrogate for short-term potassium uptake and plant growth, nutrient concentration, and final plant biomass were evaluated. There was a substantial positive effect of both biostimulant treatments on total shoot leaf area, and significant increases in shoot length and biomass under adequate soil potassium supply with a positive effect of Bio-1 only under low K supply. Rubidium uptake was increased by Bio-1 application an effect that was greater under the low soil K treatment. Though significant beneficial effects of the biostimulants used on plant growth were observed, it is not possible to determine the mode of action of these materials. The results presented here illustrate the promise and complexity of research involving biostimulants.

  16. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] D. A. Webb

    Directory of Open Access Journals (Sweden)

    Sebastian eSaa

    2015-02-01

    Full Text Available The use of biostimulants has become a common practice in agriculture. However, there is little peer-reviewed research on this topic. In this study we tested, under controlled and replicated conditions, the effect of one biostimulant derived from seaweed extraction (Bio-1 and another biostimulant derived from microbial fermentation (Bio-2. This experiment utilized two-year-old almond plants over two growing seasons in a randomized complete design with a full 2 x 4 factorial structure with two soil potassium treatments (125 µg g-1 of K vs 5 µg g-1 and four foliar treatments (No spray, Foliar-K, Bio-1, Bio-2. Rubidium was utilized as a surrogate for short-term potassium uptake and plant growth, nutrient concentration, and final plant biomass were evaluated. There was a substantial positive effect of both biostimulant treatments on total shoot leaf area, and significant increases in shoot length and biomass under adequate soil potassium supply with a positive effect of Bio-1 only under low K supply. Rubidium uptake was increased by Bio-1 application an effect that was greater under the low soil K treatment. Though significant beneficial effects of the biostimulants used on plant growth were observed, it is not possible to determine the mode of action of these materials. The results presented here illustrate the promise and complexity of research involving biostimulants.

  17. Using Flux Site Observations to Calibrate Root System Architecture Stencils for Water Uptake of Plant Functional Types in Land Surface Models.

    Science.gov (United States)

    Bouda, M.

    2017-12-01

    Root system architecture (RSA) can significantly affect plant access to water, total transpiration, as well as its partitioning by soil depth, with implications for surface heat, water, and carbon budgets. Despite recent advances in land surface model (LSM) descriptions of plant hydraulics, RSA has not been included because of its three-dimensional complexity, which makes RSA modelling generally too computationally costly. This work builds upon the recently introduced "RSA stencil," a process-based 1D layered model that captures the dynamic shifts in water potential gradients of 3D RSA in response to heterogeneous soil moisture profiles. In validations using root systems calibrated to the rooting profiles of four plant functional types (PFT) of the Community Land Model, the RSA stencil predicts plant water potentials within 2% of the outputs of full 3D models, despite its trivial computational cost. In transient simulations, the RSA stencil yields improved predictions of water uptake and soil moisture profiles compared to a 1D model based on root fraction alone. Here I show how the RSA stencil can be calibrated to time-series observations of soil moisture and transpiration to yield a water uptake PFT definition for use in terrestrial models. This model-data integration exercise aims to improve LSM predictions of soil moisture dynamics and, under water-limiting conditions, surface fluxes. These improvements can be expected to significantly impact predictions of downstream variables, including surface fluxes, climate-vegetation feedbacks and soil nutrient cycling.

  18. Measuring coral calcification under ocean acidification: methodological considerations for the 45Ca-uptake and total alkalinity anomaly technique

    Directory of Open Access Journals (Sweden)

    Stephanie Cohen

    2017-09-01

    Full Text Available As the oceans become less alkaline due to rising CO2 levels, deleterious consequences are expected for calcifying corals. Predicting how coral calcification will be affected by on-going ocean acidification (OA requires an accurate assessment of CaCO3 deposition and an understanding of the relative importance that decreasing calcification and/or increasing dissolution play for the overall calcification budget of individual corals. Here, we assessed the compatibility of the 45Ca-uptake and total alkalinity (TA anomaly techniques as measures of gross and net calcification (GC, NC, respectively, to determine coral calcification at pHT 8.1 and 7.5. Considering the differing buffering capacity of seawater at both pH values, we were also interested in how strongly coral calcification alters the seawater carbonate chemistry under prolonged incubation in sealed chambers, potentially interfering with physiological functioning. Our data indicate that NC estimates by TA are erroneously ∼5% and ∼21% higher than GC estimates from 45Ca for ambient and reduced pH, respectively. Considering also previous data, we show that the consistent discrepancy between both techniques across studies is not constant, but largely depends on the absolute value of CaCO3 deposition. Deriving rates of coral dissolution from the difference between NC and GC was not possible and we advocate a more direct approach for the future by simultaneously measuring skeletal calcium influx and efflux. Substantial changes in carbonate system parameters for incubation times beyond two hours in our experiment demonstrate the necessity to test and optimize experimental incubation setups when measuring coral calcification in closed systems, especially under OA conditions.

  19. Introduction of total productive maintenance in steelworks plants

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2009-04-01

    Full Text Available The paper presents the concept of TPM - Total Productive Maintenance and its basic method 5S (sort, systematize, sweep, sanitize, self-discipline. The new management concept is realized in Japanese and USA companies. On the Polish market the methods was adopted in the first years of 21st century by car manufacturers and household equipment producers. Nowadays the concept is tested by steelworks in Polish steel industry. The process of introduction of these methods is long, difficult and requires organizational and technical changes. The companies which realize Awareness Management Project of workers in Health and Safety System use other methods whose primary goal is to ensure objectivity and comparability of results and skill assessment of particular employees (the Current and Periodic Assessment System for worker and supervision positions.

  20. Plant uptake of trace elements on a Swiss military shooting range: Uptake pathways and land management implications

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Brett H. [Swiss Federal Institute of Technology (ETH), Universitaetstrasse 16, CH-8092 Zuerich (Switzerland)], E-mail: brett.robinson@env.ethz.ch; Bischofberger, Simone; Stoll, Andreas; Schroer, Dirk; Furrer, Gerhard; Roulier, Stephanie; Gruenwald, Anna; Attinger, Werner; Schulin, Rainer [Swiss Federal Institute of Technology (ETH), Universitaetstrasse 16, CH-8092 Zuerich (Switzerland)

    2008-06-15

    Over 400 tons of Pb enters Swiss soils annually at some 2000 military shooting ranges (MSRs). We measured elements in the leaves of 10 plant species and associated rhizospheric soil on the stop butt of a disused MSR. The geometric mean concentrations of Pb, Sb, Cu, Ni in rhizospheric soils were 10,171 mg/kg, 5067 mg/kg, 4125 mg/kg and 917 mg/kg. Some species contained Pb, Cu and Ni, above concentrations (30 mg/kg, 25 mg/kg and 50 mg/kg) shown to be toxic to livestock. Most contaminants in leaves resulted from surface deposition. However, at soil Pb concentrations >60,000 mg/kg, Equisetum arvense and Tussilago farfara took up >1000 mg/kg Pb into the leaves. These plants are not hyperaccumulators, having <100 mg/kg Pb in leaves at lower soil concentrations. Removal of soil with more than 30,000 Pb, from which one could smelt this metal to offset remediation costs, followed by revegetation, would minimise dust and hence leaf-borne contaminants. - Establishment of a complete vegetation cover on shooting ranges would reduce the contamination of plant leaves by toxic trace elements.

  1. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau.

    Science.gov (United States)

    Wang, Jian; Fu, Bojie; Lu, Nan; Zhang, Li

    2017-12-31

    Water is a limiting factor and significant driving force for ecosystem processes in arid and semi-arid areas. Knowledge of plant water uptake pattern is indispensable for understanding soil-plant interactions and species coexistence. The 'Grain for Green' project that started in 1999 in the Loess Plateau of China has led to large scale vegetation change. However, little is known about the water uptake patterns of the main plant species that inhabit in this region. In this study, the seasonal variations in water uptake patterns of three representative plant species, Stipa bungeana, Artemisia gmelinii and Vitex negundo, that are widely distributed in the semi-arid area of the Loess Plateau, were identified by using dual stable isotopes of δ 2 H and δ 18 O in plant and soil water coupled with a Bayesian mixing model MixSIAR. The soil water at the 0-120cm depth contributed 79.54±6.05% and 79.94±8.81% of the total water uptake of S. bungeana and A. gmelinii, respectively, in the growing season. The 0-40cm soil contributed the most water in July (74.20±15.20%), and the largest proportion of water (33.10±15.20%) was derived from 120-300cm soils in August for A. gmelinii. However, V. negundo obtained water predominantly from surface soil horizons (0-40cm) and then switched to deep soil layers (120-300cm) as the season progressed. This suggested that V. negundo has a greater degree of ecological plasticity as it could explore water sources from deeper soils as the water stress increased. This capacity can mainly be attributed to its functionally dimorphic root system. V. negundo may have a competitive advantage when encountering short-term drought. The ecological plasticity of plant water use needs to be considered in plant species selection and ecological management and restoration of the arid and semi-arid ecosystems in the Loess Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Short-term effects of a dung pat on N2 fixation and total N uptake in a perennial ryegrass/white clover mixture

    DEFF Research Database (Denmark)

    Jørgensen, F.V.; Jensen, E.S.

    1997-01-01

    The short-term effects of a simulated cattle dung pat on N-2 fixation and total uptake of N in a perennial ryegrass/white clover mixture was studied in a container experiment using sheep faeces mixed with water to a DM content of 13%. We used a new N-15 cross-labelling technique to determine...

  3. Patterns of bone tracer uptake on SPECT-CT in symptomatic and asymptomatic patients with primary total hip arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, Thierry; Hirschmann, Michael T. [Kantonsspital Baselland (Bruderholz, Liestal, Laufen), Department of Orthopaedic Surgery and Traumatology, Bruderholz (Switzerland); University of Basel, Basel (Switzerland); Schiapparelli, Filippo-Franco; Rotigliano, Niccolo [Kantonsspital Baselland (Bruderholz, Liestal, Laufen), Department of Orthopaedic Surgery and Traumatology, Bruderholz (Switzerland); Rasch, Helmut [Kantonsspital Baselland, Institute of Radiology and Nuclear Medicine, Bruderholz (Switzerland); Amsler, Felix [Amsler Consulting, Basel (Switzerland)

    2018-02-15

    The primary purpose of this study was to compare bone tracer uptake (BTU) on SPECT/CT in symptomatic and asymptomatic total hip arthroplasty (THA) and identify a possible relationship between BTU patterns and patient's symptoms. The secondary purpose was to investigate if the fixation methods (cemented versus uncemented) lead to different BTU patterns. A total of 58 THAs, 31 symptomatic (group S) and 27 asymptomatic (group AS), were prospectively collected and retrospectively analyzed. All symptomatic patients underwent standardized detailed history, clinical examination, radiographs and 99mTc-HDP SPECT/CT. BTU in SPECT/CT was quantified in three dimensions and anatomically localized in a scheme of quadrants and levels using a customized previously validated software. T tests were used on both quadrants and levels inside and between groups. A Pearson correlation was performed for BTU within the quadrants. An area under receiver operating characteristic curves was drawn in order to find a BTU value that could differentiate the two groups. Within the groups, patients with cemented and uncemented stems were compared for influences on BTU intensity. The causes of pain were identified in 61% of the patients. The most common problem was aseptic loosening (n = 12). In group AS, levels 1, 2 and 5 had similar BTUs. BTUs in these levels were significantly higher than in level 3, 4 and 6. In group S, no significant differences were seen in terms of BTU in level 1-5. However, BTU here was significantly higher than at level 6 (p < 0.001). In both groups, level 1, the superior, had a significantly higher BTU than level 2 (group AS p < 0.01, group S p < 0.05). Comparing the BTU of the two groups among levels, significant differences were found for level 4, level 5 and the entire stem areas (p < 0.05). The ROC curve calculated on the whole stem allowed identification of a BTU ratio of 3.1 that separated the 92.6% patients of group AS with BTU < 3.1 from the 54.8% of patients

  4. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    Science.gov (United States)

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  5. Uptake of plant-derived specific alkaloids allows males of a butterfly to copulate.

    Science.gov (United States)

    Honda, Keiichi; Matsumoto, Junya; Sasaki, Ken; Tsuruta, Yoshiaki; Honda, Yasuyuki

    2018-04-03

    Certain butterflies utilize plant-acquired alkaloids for their own chemical defense and/or for producing male sex pheromone; a trait known as pharmacophagy. Males of the danaine butterfly, Parantica sita, have been reported to ingest pyrrolizidine alkaloids (PAs) as adults to produce two PA-derived sex pheromone components, viz. danaidone (major) and 7R-hydroxydanaidal. We found, however, that not all PAs that can be precursors for the pheromone serve for mating success of males. Here we show that although the sex pheromone is regarded as a requisite for successful mating, uptake of specific PA(s) (lycopsamine-type PAs) is also imperative for the males to achieve copulation. The increase in the levels of two biogenic amines, octopamine and/or serotonin, in the brain and thoracic ganglia of males fed with specific PA(s) suggested that these alkaloids most likely enhance male mating activity. The results can present new evidence for the evolutionary provenance of pharmacophagous acquisition of PAs in PA-adapted insects.

  6. Comparison of direct deposition and root uptake results after the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2012-01-01

    Field horsetail(Equisetum arvense) is a kind of fern, and the fertile shoots are eaten as vegetables in Japan in the spring. Since fern species tend to concentrate radiocaesium from soil, concentrations and distribution patterns of radiocaesium in the fertile shoots are of interest. In this study, distribution and food processing results were compared using samples collected in 2011(n=1) and 2012(n=3); the sample collected in 2011 received direct deposition from the Fukushima Daiichi Nuclear Power Plant accident while those collected in 2012 included radiocaesium mainly taken up from soil. About 200-300 shoots were collected at each sampling time. The 137 Cs concentration in samples collected in 2012 decreased by 100-200 times compared to that in 2011. The radiocaesium distribution patterns in strobili, leaves and stems of 2012 samples were almost the same as those of 2011; however, the patterns were different from those of potassium. The radiocaesium removal percentage by food processing (washing + boiling for 2.5min) was 70% in 2011, while that for 2012 samples was 32-72%; the effect of direct deposition and root uptake was not clear. (author)

  7. Uptake, sequestration and tolerance of cadmium at cellular levels in the hyperaccumulator plant species Sedum alfredii

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Shengke; Xie, Ruohan; Wang, Haixin; Hu, Yan; Hou, Dandi; Liao, Xingcheng; Brown, Patrick H.; Yang, Hongxia; Lin, Xianyong; Labavitch, John M.; Lu, Lingli

    2017-04-01

    Sedum alfredii is one of a few plant species known to hyperaccumulate cadmium (Cd). Uptake, localization, and tolerance of Cd at cellular levels in shoots were compared in hyperaccumulating (HE) and non-hyperaccumulating (NHE) ecotypes of Sedum alfredii. X-ray fluorescence images of Cd in stems and leaves showed only a slight Cd signal restricted within vascular bundles in the NHEs, while enhanced localization of Cd, with significant tissue- and age-dependent variations, was detected in HEs. In contrast to the vascular-enriched Cd in young stems, parenchyma cells in leaf mesophyll, stem pith and cortex tissues served as terminal storage sites for Cd sequestration in HEs. Kinetics of Cd transport into individual leaf protoplasts of the two ecotypes showed little difference in Cd accumulation. However, far more efficient storage of Cd in vacuoles was apparent in HEs. Subsequent analysis of cell viability and hydrogen peroxide levels suggested that HE protoplasts exhibited higher resistance to Cd than those of NHE protoplasts. These results suggest that efficient sequestration into vacuoles, as opposed to rapid transport into parenchyma cells, is a pivotal process in Cd accumulation and homeostasis in shoots of HE S. alfredii. This is in addition to its efficient root-to-shoot translocation of Cd.

  8. Exemplifying whole-plant ozone uptake in adult forest trees of contrasting species and site conditions

    International Nuclear Information System (INIS)

    Nunn, Angela J.; Wieser, Gerhard; Metzger, Ursula; Loew, Markus; Wipfler, Philip; Haeberle, Karl-Heinz; Matyssek, Rainer

    2007-01-01

    Whole-tree O 3 uptake was exemplified for Picea abies, Fagus sylvatica and Larix decidua in stands at high and low altitude and contrasting water availability through sap flow measurement in tree trunks, intrinsically accounting for drought and boundary layer effects on O 3 flux. O 3 uptake of evergreen spruce per unit foliage area was enhanced by 100% at high relative to low elevation, whereas deciduous beech and larch showed similar uptake regardless of altitude. The responsiveness of the canopy conductance to water vapor and, as a consequence, O 3 uptake to soil moisture and air humidity did not differ between species. Unifying findings at the whole-tree level will promote cause-effect based O 3 risk assessment and modeling. - Sap flow-based assessment of whole-tree O 3 uptake reflects similar responsiveness of canopy conductance and O 3 uptake across contrasting tree species and site conditions

  9. Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants

    International Nuclear Information System (INIS)

    Navarro, Divina A.; Bisson, Mary A.; Aga, Diana S.

    2012-01-01

    Graphical abstract: This study highlights the importance of quantum dot (QD) structural stability in preventing phytotoxicity. Overall, there is no evidence that Arabidopsis thaliana plants can internalize intact QDs within 1–7 days of exposure, with or without humic acids. Highlights: ► Potential uptake of water-dispersible CdSe/ZnS QDs by Arabidopsis was demonstrated. ► QDs were not internalized by Arabidopsis as intact particles. ► Plants exposed to Cd-, Se-, and QD + HA suspensions experienced oxidative stress. ► An effective LC–MS method proves detection of low levels of glutathione in plants. ► Uptake of Cd and/or Se leached from QDs is of major concern. - Abstract: Interest on the environmental impacts of engineered nanomaterials has rapidly increased over the past years because it is expected that these materials will eventually be released into the environment. The present work investigates the potential root uptake of water-dispersible CdSe/ZnS quantum dots (QDs) by the model plant species, Arabidopsis thaliana. Experiments revealed that Arabidopsis exposed to QDs that are dispersed in Hoagland's solution for 1–7 days did not internalize intact QDs. Analysis of Cd and Se concentrations in roots and leaves by inductively-coupled plasma mass spectrometry indicated that Cd and Se from QD-treated plants were not translocated into the leaves, and remained in the root system of Arabidopsis. Furthermore, fluorescence microscopy showed strong evidence that the QDs were generally on the outside surfaces of the roots, where the amount of QDs adsorbed is dependent on the stability of the QDs in suspension. Despite no evidence of nanoparticle internalization, the ratio of reduced glutathione levels (GSH) relative to the oxidized glutathione (GSSG) in plants decreased when plants were exposed to QD dispersions containing humic acids, suggesting that QDs caused oxidative stress on the plant at this condition.

  10. Cuticular uptake of xenobiotics into living plants. Part 2: influence of the xenobiotic dose on the uptake of bentazone, epoxiconazole and pyraclostrobin, applied in the presence of various surfactants, into Chenopodium album, Sinapis alba and Triticum aestivum leaves.

    Science.gov (United States)

    Forster, W Alison; Zabkiewicz, Jerzy A; Liu, Zhiqian

    2006-07-01

    This study has determined the uptake of three pesticides, applied as commercial or model formulations in the presence of a wide range of surfactants, into the leaves of three plant species (bentazone into Chenopodium album L. and Sinapis alba L., epoxiconazole and pyraclostrobin into Triticum aestivum L.). The results have confirmed previous findings that the initial dose (nmol mm(-2)) of xenobiotic applied to plant foliage is a strong, positive determinant of uptake. This held true for all the pesticide formulations studied, although surfactant concentration was found to have an effect. The lower surfactant concentrations studied showed an inferior relationship between the amount of xenobiotic applied and uptake. High molecular mass surfactants also produced much lower uptake than expected from the dose uptake equations in specific situations.

  11. Silver nanoparticles uptake by salt marsh plants - Implications for phytoremediation processes and effects in microbial community dynamics.

    Science.gov (United States)

    Fernandes, Joana P; Mucha, Ana P; Francisco, Telmo; Gomes, Carlos Rocha; Almeida, C Marisa R

    2017-06-15

    This study investigated the uptake of silver nanoparticles (AgNPs) by a salt marsh plant, Phragmites australis, as well as AgNPs effects on rhizospheric microbial community, evaluating the implications for phytoremediation processes. Experiments were carried out with elutriate solution doped with Ag, either in ionic form or in NP form. Metal uptake was evaluated in plant tissues, elutriate solutions and sediments (by AAS) and microbial community was characterized in terms of bacterial community structure (evaluated by ARISA). Results showed Ag accumulation but only in plant belowground tissues and only in the absence of rhizosediment, the presence of sediment reducing Ag availability. But in plant roots Ag accumulation was higher when Ag was in NP form. Multivariate analysis of ARISA profiles showed significant effect of the absence/presence of Ag either in ionic or NP form on microbial community structure, although without significant differences among bacterial richness and diversity. Overall, P. australis can be useful for phytoremediation of medium contaminated with Ag, including with AgNPs. However, the presence of Ag in either forms affected the microbial community structure, which may cause disturbances in ecosystems function and compromise phytoremediation processes. Such considerations need to be address regarding environmental management strategies applied to the very important estuarine areas. The form in which the metal was added affected metal uptake by Phragmites australis and rhizosediment microbial community structure, which can affect phytoremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An experimental set-up to study carbon, water, and nitrate uptake rates by hydroponically grown plants.

    Science.gov (United States)

    Andriolo, J L; Le Bot, J; Gary, C; Sappe, G; Orlando, P; Brunel, B; Sarrouy, C

    1996-01-01

    The experimental system described allows concomitant hourly measurements of CO2, H2O, and NO3 uptake rates by plants grown hydroponically in a greenhouse. Plants are enclosed in an airtight chamber through which air flows at a controlled speed. Carbon dioxide exchange and transpiration rates are determined from respective differences of concentrations of CO2 and water vapor of the air at the system inlet and outlet. This set-up is based on the "open-system" principle with improvements made on existing systems. For instance, propeller anemometers are used to monitor air flow rates in the chamber. From their signal it is possible to continuously adjust air speed to changing environmental conditions and plant activity. The air temperature inside the system therefore never rises above that outside. Water and NO3 uptake rates are calculated at time intervals from changes in the volume and the NO3 concentration of the nutrient solution in contact with the roots. The precise measurement of the volume of solution is achieved using a balance which has a higher precision than any liquid level sensors. Nitrate concentration is determined in the laboratory from aliquots of solution sampled at time intervals. A number of test runs are reported which validate the measurements and confirm undisturbed conditions within the system. Results of typical diurnal changes in CO2, H2O, and NO3 uptake rates by fruiting tomato plants are also presented.

  13. Uptake and effects of a mixture of widely used therapeutic drugs in Eruca sativa L. and Zea mays L. plants.

    Science.gov (United States)

    Marsoni, Milena; De Mattia, Fabrizio; Labra, Massimo; Bruno, Antonia; Bracale, Marcella; Vannini, Candida

    2014-10-01

    Pharmaceutically active compounds (PACs) are continuously dispersed into the environment due to human and veterinary use, giving rise to their potential accumulation in edible plants. In this study, Eruca sativa L. and Zea mays L. were selected to determine the potential uptake and accumulation of eight different PACs (Salbutamol, Atenolol, Lincomycin, Cyclophosphamide, Carbamazepine, Bezafibrate, Ofloxacin and Ranitidine) designed for human use. To mimic environmental conditions, the plants were grown in pots and irrigated with water spiked with a mixture of PACs at concentrations found in Italian wastewaters and rivers. Moreover, 10× and 100× concentrations of these pharmaceuticals were also tested. The presence of the pharmaceuticals was tested in the edible parts of the plants, namely leaves for E. sativa and grains for Z. mays. Quantification was performed by liquid chromatography mass spectroscopy (LC/MS/MS). In the grains of 100× treated Z. mays, only atenolol, lincomycin and carbamazepine were above the limit of detection (LOD). At the same concentration in E. sativa plants the uptake of all PACs was >LOD. Lincomycin and oflaxacin were above the limit of quantitation in all conditions tested in E. sativa. The results suggest that uptake of some pharmaceuticals from the soil may indeed be a potential transport route to plants and that these environmental pollutants can reach different edible parts of the selected crops. Measurements of the concentrations of these pharmaceuticals in plant materials were used to model potential adult human exposure to these compounds. The results indicate that under the current experimental conditions, crops exposed to the selected pharmaceutical mixture would not have any negative effects on human health. Moreover, no significant differences in the growth of E. sativa or Z. mays plants irrigated with PAC-spiked vs. non-spiked water were observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Using magnetic and chemical measurements to detect atmospherically-derived metal pollution in artificial soils and metal uptake in plants

    International Nuclear Information System (INIS)

    Sapkota, B.; Cioppa, M.T.

    2012-01-01

    Quantification of potential effects of ambient atmospheric pollution on magnetic and chemical properties of soils and plants requires precise experimental studies. A controlled growth experiment assessing magnetic and chemical parameters was conducted within (controls) and outside (exposed) a greenhouse setting. Magnetic susceptibility (MS) measurements showed that while initial MS values were similar for the sample sets, the overall MS value of exposed soil was significantly greater than in controls, suggesting an additional input of Fe-containing particles. Scanning electron microscope images of the exposed soils revealed numerous angular magnetic particles and magnetic spherules typical of vehicular exhaust and combustion processes, respectively. Similarly, chemical analysis of plant roots showed that plants grown in the exposed soil had higher concentrations of Fe and heavy (toxic) metals than controls. This evidence suggests that atmospheric deposition contributed to the MS increase in exposed soils and increased metal uptake by plants grown in this soil. - Highlights: ► Magnetic susceptibility (MS) values increased in exposed soils during the growth. ► MS values in control soils decreased from their initial values during the growth. ► Decrease in MS values due to downwards migration of Fe particles, magnetic mineral transformations and Fe uptake by plants. ► Higher metal uptake in plants grown in exposed soils than those grown in controls. ► Atmospheric particulate deposition isolated as main contributor to these effects. - Variations in atmospheric particulate levels are measurable using magnetic and chemical techniques on soils and plant biomass, and suggest pollutant levels may be higher than previously recognized.

  15. Comparative effects of partial root-zone irrigation and deficit irrigation on phosphorus uptake in tomato plants

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Liu, Fulai; Jensen, Christian Richardt

    2012-01-01

    The comparative effects of partial root-zone irrigation (PRI) and deficit irrigation (DI) on phosphorus (P) uptake in tomato (Lycopersicon esculentum Mill.) plants were investigated in a split-root pot experiment. The results showed that PRI treatment improved water-use efficiency (WUE) compared...... to the DI treatment. PRI-treated plants accumulated significantly higher amounts of P in their shoots than DI plants under organic maize straw N fertilisation, whereas similar levels of shoot P accumulation were observed under mineral N fertilisation. Thus, the form of N fertiliser, and thereby...... the different plant N status, affected the accumulation of P in shoots, as reflected by a higher plant N:P ratio following mineral N fertilisation than after organic N fertilisation. Compared to the DI treatment, PRI significantly increased both the physiological and agronomic efficiencies of P-use under...

  16. Active Uptake of Amino Acids by Leaves of an Epiphytic Vascular Plant, Tillandsia paucifolia (Bromeliaceae).

    Science.gov (United States)

    Nyman, L P; Davis, J P; O'dell, S J; Arditti, J; Stephens, G C; Benzing, D H

    1987-03-01

    Specialized epidermal trichomes on the leaves of the epiphyte, Tillandsia paucifolia (Bromeliaceae) accumulate amino acids from solution. Simultaneous net uptake of 17 amino acids was determined using high performance liquid chromatography. Uptake occurs against concentration gradients at least as high as 10(4).

  17. Active Uptake of Amino Acids by Leaves of an Epiphytic Vascular Plant, Tillandsia paucifolia (Bromeliaceae) 1

    Science.gov (United States)

    Nyman, Leslie Paul; Davis, James P.; O'Dell, Stephen J.; Arditti, Joseph; Stephens, Grover C.; Benzing, David H.

    1987-01-01

    Specialized epidermal trichomes on the leaves of the epiphyte, Tillandsia paucifolia (Bromeliaceae) accumulate amino acids from solution. Simultaneous net uptake of 17 amino acids was determined using high performance liquid chromatography. Uptake occurs against concentration gradients at least as high as 104. Images Fig. 2 Fig. 3 PMID:16665307

  18. Uptake, translocation and biotransformation of N-ethyl perfluorooctanesulfonamide (N-EtFOSA) by hydroponically grown plants.

    Science.gov (United States)

    Zhao, Shuyan; Zhou, Tao; Zhu, Lingyan; Wang, Bohui; Li, Ze; Yang, Liping; Liu, Lifen

    2018-04-01

    N-ethyl perfluorooctane sulfonamide (N-EtFOSA) is an important perfluorooctanesulfonate (PFOS) precursor (PreFOS) which is used in sulfluramid. The present work studied the uptake, translocation and metabolism of N-EtFOSA in wheat (Triticum aestivum L.), soybean (Glycine max L. Merrill) and pumpkin (Cucurbita maxima L.) by hydroponic exposure. Except for parent N-EtFOSA, its metabolites of perfluorooctane sulfonamide acetate (FOSAA), perfluorooctane sulfonamide (PFOSA), PFOS, perfluorohexane sulfonate (PFHxS) and perfluorobutane sulfonate (PFBS) were detected in the roots and shoots of all the three plant species examined. This suggested that plant roots could take up N-EtFOSA from solutions efficiently, and translocate to shoots. A positive correlation was found between root concentration factors (RCFs) of N-EtFOSA and root lipid content. Much higher proportion of N-EtFOSA transformation products in plant tissues than in the solutions suggested that N-EtFOSA could be in vivo metabolized in plant roots and shoots to FOSAA, PFOSA and PFOS, and other additional shorter-chain perfluoroalkane sulfonates (PFSAs), including PFHxS and PFBS. The results suggested that plants had biotransformation pathways to N-EtFOSA that were different than those from microorganisms and animals. This study provides important information about the uptake and metabolism of PreFOSs in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants.

    Science.gov (United States)

    Tripathi, Rudra D; Tripathi, Preeti; Dwivedi, Sanjay; Kumar, Amit; Mishra, Aradhana; Chauhan, Puneet S; Norton, Gareth J; Nautiyal, Chandra S

    2014-10-01

    Toxic metal(loid) contamination of soil and sediment poses long term risk to soil and human health through plant-human or plant-animal-human food chain pathways. Iron plaque (IP) formation is frequent in aquatic and wetland plant species and is responsible for the sequestration of various metal(loids). The presence of IP may act as a buffer or barrier and may thus enhance or reduce the uptake of potentially phytotoxic metals and metalloids by plants. If IP acts as a barrier, then low IP producing macrophytes/aquatic plants may be better accumulators of toxic metals and may find use in constructed wetlands for remediation of pollutants, while high IP forming edible plant species could be safer for human consumption. Conversely, if IP acts as a buffer for mineral nutrients and toxic elements then those cultivars may be rich in nutrients, but may also cause toxicity. However, an ecotoxicological risk is also inevitable if IP rich macrophyte roots containing heavy metals are consumed by herbivores. In this review, we summarize the current understanding about the role of IP in metal and metalloid sequestration, uptake, and transport. Furthermore, we will address the role of root IP in Oryza sativa for arsenic (As) sequestration leading to lower grain As translocation, reducing the risk of human exposure.

  20. Growth and N-uptake in sorghum plants manured with different amounts of Leucaena Leucocephala shoots as affected by time of application

    International Nuclear Information System (INIS)

    Kurdali, F.; Al-Shamma'a, M.

    2007-01-01

    A pot experiment was conducted throughout two successive years to determine the impact of adding four rates of nitrogen (0, 60, 120 and 180 kg N/ha) in the form of Leucaena leucocephala (lam.) de Wit green manure as affected by different time (T0, T15 and T30) of application (just before sowing, 15 and 30 days before sowing, respectively) on the performance of sorghum (Sorghum bicolor L.) using the indirect N-15 isotopic dilution technique. Results showed that leucaena leaves, used as a green manure, significantly increased dry matter production and N yield of sorghum. The effect was more pronounced in panicles than shoots. In the first year, N recoveries in sorghum of the total N contained in leucaena green manure ranged between 17-24% in T0, 14-24% in T15 and 15-19% in T30. The highest N recovery value was obtained in lowest rate of n treatment (N60). Moreover, soil incorporated with leucaena green manure one month before planting enhanced both soil and mineral N fertilizer in sorghum plants. In the second year, total N uptake in sorghum (eg., panicles and the entire plant) increased with increasing amounts of N added as a leucaena green manure. N recoveries in sorghum ranged between 26-47% in T0, about 24% in T15 and 23-325 in T30 of the total N contained in leucaena green manure (LGM). As shown in the first year, the highest value of N recovery was obtained in lowest rate of N treatment. The beneficial effects of leucaena green manure on dry matter and N yield in sorghum was attributed not only to the additional N availability to the plant, but also to effects on the enhancement of soil N uptake, particularly when the incorporation was made before a sufficient time from sowing. The beneficial effect of green manuring with leucaena leaves at T15 and T30 was mainly resulted from enhancement of N uptake from this added material, as well as from soil and fertilizer N. Whereas, it was only attributed to N uptake from green manure in the T0 treatment. Incorporation

  1. Growth and N-uptake in sorghum plants manured with different amounts of Leucaena Leucocephala shoots as affected by time of application

    International Nuclear Information System (INIS)

    Kurdali, F.; Al-Shamma'a, M.

    2006-08-01

    A pot experiment was conducted throughout two successive years to determine the impact of adding four rates of nitrogen (0, 60, 120 and 180 kg N/ha) in the form of Leucaena leucocephala (lam.) de Wit green manure as affected by different time (T0, T15 and T30) of application (just before sowing, 15 and 30 days before sowing, respectively) on the performance of sorghum (Sorghum bicolor L.) using the indirect N-15 isotopic dilution technique. Results showed that leucaena leaves, used as a green manure, significantly increased dry matter production and N yield of sorghum. The effect was more pronounced in panicles than shoots. In the first year, N recoveries in sorghum of the total N contained in leucaena green manure ranged between 17-24% in T0, 14-24% in T15 and 15-19% in T30. The highest N recovery value was obtained in lowest rate of n treatment (N 60 ). Moreover, soil incorporated with leucaena green manure one month before planting enhanced both soil and mineral N fertilizer in sorghum plants. In the second year, total N uptake in sorghum (eg., panicles and the entire plant) increased with increasing amounts of N added as a leucaena green manure. N recoveries in sorghum ranged between 26-47% in T0, about 24% in T15 and 23-325 in T30 of the total N contained in leucaena green manure (LGM). As shown in the first year, the highest value of N recovery was obtained in lowest rate of N treatment. The beneficial effects of leucaena green manure on dry matter and N yield in sorghum was attributed not only to the additional N availability to the plant, but also to effects on the enhancement of soil N uptake, particularly when the incorporation was made before a sufficient time from sowing. The beneficial effect of green manuring with leucaena leaves at T15 and T30 was mainly resulted from enhancement of N uptake from this added material, as well as from soil and fertilizer N; whereas, it was only attributed to N uptake from green manure in the T0 treatment. Incorporation

  2. Bone turnover markers are correlated with total skeletal uptake of 99mTc-methylene diphosphonate (99mTc-MDP)

    International Nuclear Information System (INIS)

    Lenora, Janaka; Norrgren, Kristina; Thorsson, Ola; Wollmer, Per; Obrant, Karl J; Ivaska, Kaisa K

    2009-01-01

    Skeletal uptake of 99m Tc labelled methylene diphosphonate ( 99m Tc-MDP) is used for producing images of pathological bone uptake due to its incorporation to the sites of active bone turnover. This study was done to validate bone turnover markers using total skeletal uptake (TSU) of 99m Tc-MDP. 22 postmenopausal women (52–80 years) volunteered to participate. Scintigraphy was performed by injecting 520 MBq of 99m Tc-MDP and taking whole body images after 3 minutes, and 5 hours. TSU was calculated from these two images by taking into account the urinary loss and soft tissue uptake. Bone turnover markers used were bone specific alkaline phosphatase (S-Bone ALP), three different assays for serum osteocalcin (OC), tartrate resistant acid phosphatase 5b (S-TRACP5b), serum C-terminal cross-linked telopeptides of type I collagen (S-CTX-I) and three assays for urinary osteocalcin (U-OC). The median TSU of 99m Tc-MDP was 23% of the administered activity. All bone turnover markers were significantly correlated with TSU with r-values from 0.52 (p = 0.013) to 0.90 (p < 0.001). The two resorption markers had numerically higher correlations (S-TRACP5b r = 0.90, S-CTX-I r = 0.80) than the formation markers (S-Total OC r = 0.72, S-Bone ALP r = 0.66), but the difference was not statistically significant. TSU did not correlate with age, weight, body mass index or bone mineral density. In conclusion, bone turnover markers are strongly correlated with total skeletal uptake of 99m Tc-MDP. There were no significant differences in correlations for bone formation and resorption markers. This should be due to the coupling between formation and resorption

  3. Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations.

    Science.gov (United States)

    Zhu, Y-G; Huang, Y-Z; Hu, Y; Liu, Y-X

    2003-04-01

    A hydroponic experiment was carried out to investigate the effects of iodine species and solution concentrations on iodine uptake by spinach (Spinacia oleracea L.). Five iodine concentrations (0, 1, 10, 50 and 100 microM) for iodate (IO(3)(-)) and iodide (I(-)) were used. Results show that higher concentrations of I(-) (> or =10 microM) had some detrimental effect on plant growth, while IO(3)(-) had little effect on the biomass production of spinach plants. Increases in iodine concentration in the growth solution significantly enhanced I concentrations in plant tissues. The detrimental effect of I(-) on plant growth was probably due to the excessively high accumulation of I in plant tissues. The solution-to-spinach leaf transfer factors (TF(leaf), fresh weight basis) for plants treated with iodide were between 14.2 and 20.7 at different solution concentrations of iodide; TF(leaf) for plants treated with iodate decreased gradually from 23.7 to 2.2 with increasing solution concentrations of iodate. The distribution coefficients (DCs) of I between leaves and roots were constantly higher for plants treated with iodate than those treated with iodide. DCs for plants treated with iodide increased with increasing solution concentrations of iodide, while DCs for plants treated with iodate (around 5.5) were similar across the range of solution concentrations of iodate used in this experiment. The implications of iodine accumulation in leafy vegetables in human iodine nutrition are also discussed. Copyright 2002 Elsevier Science Ltd.

  4. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India

    Energy Technology Data Exchange (ETDEWEB)

    Jha, V.N., E-mail: jhavn1971@gmail.com; Tripathi, R.M., E-mail: tripathirm@yahoo.com; Sethy, N.K., E-mail: sethybarc@rediffmail.com; Sahoo, S.K., E-mail: sksbarc@gmail.com

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r = 0.86, p < 0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r = 0.88, p < 0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p < 0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. - Highlights: • Uranium mill tailings pond. • Jaduguda, India. • Fresh water plants. • Uranium uptake. • Relationship of uranium with stable elements.

  5. Determination of total As in onion plants growing in contaminated substrates by total reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Lue-Meru Marco Parra

    2011-01-01

    The onion (Allium cepa L.) is one of the most important cultivars in the world and its production level occupies the second place in Venezuela. It becomes important to develop analytical procedures for arsenic determination and to study the effect of this element on the cultures, as well the absorption, transport and translocation processes. A TXRF method for As determination in onions was developed. Two treatments were applied to the onion plants, As contaminated and control. The contaminant was added to the plants to an amount of 100 μg, in a single time 3 weeks after the transplant of plantlets. The green leaves bulbs, and roots together with the stems were separated 45 days after transplant and analyzed by TXRF and HG-AAS for total Arsenic determination. A good agreement was found between these two techniques, demonstrating the accuracy of the TXRF procedure. It was found that the highest concentration corresponded to the root and stems (37 ± 31 μg g -1 ), followed by the bulbs (11 ± 7 μg g -1 ), being the smallest level found in the green leaves (4 ± 3 μg g -1 ). At low As contamination levels of 0.25 μg g -1 , a risk for translocation of the toxic element to the edible parts of the onion plants exists. At this level the normal development of the plant is not affected, being the only exception the root length, which is significantly higher in the contaminated treatment. (author)

  6. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees

    Science.gov (United States)

    Jensen, Anna M.; Warren, Jeffrey M.; Hanson, Paul J.; Childs, Joanne; Wullschleger, Stan D.

    2015-01-01

    Background and Aims The carbon (C) balance of boreal terrestrial ecosystems is sensitive to increasing temperature, but the direction and thresholds of responses are uncertain. Annual C uptake in Picea and other evergreen boreal conifers is dependent on seasonal- and cohort-specific photosynthetic and respiratory temperature response functions, so this study examined the physiological significance of maintaining multiple foliar cohorts for Picea mariana trees within an ombrotrophic bog ecosystem in Minnesota, USA. Methods Measurements were taken on multiple cohorts of needles for photosynthetic capacity, foliar respiration (Rd) and leaf biochemistry and morphology of mature trees from April to October over 4 years. The results were applied to a simple model of canopy photosynthesis in order to simulate annual C uptake by cohort age under ambient and elevated temperature scenarios. Key Results Temperature responses of key photosynthetic parameters [i.e. light-saturated rate of CO2 assimilation (Asat), rate of Rubisco carboxylation (Vcmax) and electron transport rate (Jmax)] were dependent on season and generally less responsive in the developing current-year (Y0) needles compared with 1-year-old (Y1) or 2-year-old (Y2) foliage. Temperature optimums ranged from 18·7 to 23·7, 31·3 to 38·3 and 28·7 to 36·7 °C for Asat, Vcmax and Jmax, respectively. Foliar cohorts differed in their morphology and photosynthetic capacity, which resulted in 64 % of modelled annual stand C uptake from Y1&2 cohorts (LAI 0·67 m2 m−2) and just 36 % from Y0 cohorts (LAI 0·52 m2 m−2). Under warmer climate change scenarios, the contribution of Y0 cohorts was even less; e.g. 31 % of annual C uptake for a modelled 9 °C rise in mean summer temperatures. Results suggest that net annual C uptake by P. mariana could increase under elevated temperature, and become more dependent on older foliar cohorts. Conclusions Collectively, this study illustrates the physiological and

  7. Effects of Fe plaque and organic acids on metal uptake by wetland plants under drained and waterlogged conditions.

    Science.gov (United States)

    Li, W C; Deng, H; Wong, M H

    2017-12-01

    This study aims to assess the role of Fe plaque in metal uptake and translocation by different wetland plants and examine the effects of organic acids on metal detoxification in wetland plants. It was found that although exposed to a similar level of metals in rhizosphere soil solution, metal uptake by shoots of Cypercus flabelliformis and Panicum paludosum was greatly reduced, consequently leading to a better growth under flooded than under drained conditions. This may be related to the enhanced Fe plaque in the former, but due to the decreased root permeability in the latter under anoxic conditions. The Fe plaque on root surface has potential to sequester metals and then reduce metal concentrations and translocation in shoot tissues. However, whether the Fe plaque acts as a barrier to metal uptake and translocation may also be dependent on the root anatomy. Although metal tolerance in wetland plants mainly depends upon their metal exclusion ability, the higher-than-toxic-level of metal concentrations in some species indicates that internal metal detoxification might also exist. It was suggested that malic or citric acid in shoots of P. paludosum and C. flabelliformis may account for their internal detoxification for Zn. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Phytochelatin synthesis in response to Hg uptake in aquatic plants near a chlor-alkali factory.

    Science.gov (United States)

    Turull, Marta; Grmanova, Gabriela; Dago, Àngela; Ariño, Cristina; Díez, Sergi; Díaz-Cruz, José Manuel; Esteban, Miquel

    2017-06-01

    The effects of mercury (Hg) released from a chlor-alkali factory in aquatic plants along the Ebro River basin (NE Spain) were analysed considering the phytochelatins (PC n ) and their isoforms content in these plants. These compounds were analyzed using HPLC with amperometric detection, and the macrophytes species Ceratophyllum demersum and Myriopyllum spicatum were collected in two sampling campaigns, autumn and spring, respectively. To correlate the PC n content in macrophytes with the Hg contamination, analysis of total Hg (THg) content in plants and suspended particulate matter, as well as the dissolved-bioavailable fraction of Hg in water measured by the diffusive gradient in thin film (DGT) technique were done. The results confirm the presence of PC 2 -Ala in extracts of C. demersum and PC 2 -desGly in M. spicatum, and the concentration of these thiol compounds depends clearly on the distance between the hot spot and the downstream sites: the higher the levels are, the closer the hot spot is. Since most of the Hg is hypothesized to be associated with SPM and transported downstream, our results of the DGT suggest that trace amounts of Hg in water can be released as free metal ions yielding a certain accumulation in plants (reaching the ppb level) that are enough for activation of induction of PCs. A few PCs species have been determined, at different seasons, indicating that they can be used as good indicators of the presence of bioavailable Hg in aquatic media throughout the year. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of gamma irradaition on growth and nutrients uptake of sorghum plants

    International Nuclear Information System (INIS)

    Eleiwa, M.E.; Rabie, M.H.

    1994-01-01

    A pot experiment was carried out using sandy calcareous soils to study the effects of gamma irradiating doses for sorghum seeds on dry matter yield and elemental uptake. Three cuttings were taken during the experiment every 40 days. Results showed that 4 Kr. dose was the best dose that caused significant higher increase of dry matter yield and nutrients uptake for three cuttings under both types of soil. Gamma irradiation doses at 8 Kr. and above all had an adverse affect on dry matter yield and nutrients uptake, especially under calcareous soil. (author)

  10. EFFECT OF ALUMINUM ON PLANT GROWTH, PHOSPORUS AND CALCIUM UPTAKE OF TROPICAL RICE (Oryza sativa, MAIZE (Zea mays, AND SOYBEAN (Glycine max

    Directory of Open Access Journals (Sweden)

    D. Nursyamsi

    2018-01-01

    Full Text Available Aluminum toxicity is the most limiting factor to plant growth on acid soils. Structural and functional damages in the root system by Al decrease nutrient uptake and lead to reduce plant growth and mineral deficiency in shoot. Greenhouse experiment was conducted to study the effect of Al on plant growth, and P and Ca uptake of rice, maize, and soybean. The plants were grown in hydroponic solution added with 0, 5, 10, and 30 ppm Al, at pH 4.0. The results showed that relative growth of shoots and roots of upland rice, lowland rice, maize, and soybean decreased with an increase of Al level. However, sometimes the low Al level (5 ppm stimulated shoot and root growth of some varieties in these species. According to total AlRG30 values, which is Al concentration in solution when relative growth decreased to 50%, Al tolerance of species was in order of barley < maize < soybean < lowland rice < upland rice. For maize, Al tolerance was in the order of Arjuna < Kalingga < P 3540 < SA 5 < SA 4 < PM 95 A < SA 3 < Antasena; for soybean was Wilis < INPS < Galunggung < Kerinci < Kitamusume; for lowland rice was RD 23 < Kapuas < Cisadane < KDML 105 < IR 66 < RD 13, and for upland rice was Dodokan < JAC165 < Cirata < Orizyca sabana 6 < Danau Tempe < Laut Tawar. Based on the rank of Al tolerance, rice was the useful crop to be planted in acid soils. Antasena (maize, Kitamusume ( soybean , RD 13 (lowland rice, and Laut Tawar (upland rice were also recommended for acid soils. P and Ca concentration in shoots and roots commonly decreased with an increase of Al level. However, the low Al level stimulated absorption of P and Ca concentrations in shoots and roots.

  11. The effect of plant sterol-enriched turkey meat on cholesterol bio-accessibility during in vitro digestion and Caco-2 cell uptake.

    Science.gov (United States)

    Grasso, S; Harrison, S M; Monahan, F J; Brayden, D; Brunton, N P

    2018-03-01

    This study evaluated the effect of a plant sterol-enriched turkey product on cholesterol bio-accessibility during in vitro digestion and cholesterol uptake by Caco-2 monolayers. Turkey products, one plant sterol-enriched (PS) and one plant sterol-free (C), were produced in an industrial pilot plant. Before simulated digestion, matrices were spiked with cholesterol (1:5 weight ratio of cholesterol to plant sterol). Plant sterols were included at a concentration equivalent to the minimum daily intake recommended by the European Food Safety Authority (EFSA) for cholesterol lowering. After simulated digestion, the percentage of cholesterol micellarization and uptake by Caco-2 cells in the presence of PS meat were measured. Compared to C meat, PS meat significantly inhibited cholesterol micellarization on average by 24% and Caco-2 cell accumulation by 10%. This study suggests that plant sterols in meat can reduce cholesterol uptake by intestinal epithelia and it encourages efforts to make new PS-based functional foods.

  12. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil.

    Science.gov (United States)

    Hassan, Saad Eldin; Hijri, Mohamed; St-Arnaud, Marc

    2013-09-25

    Trace metal (TM) pollution of soil is a worldwide problem that threatens the quality of human and environmental health. Phytoremediation using plants and their associated microbes has been increasingly used as a green technology for cleaning up TM-polluted soils. In this study, we investigated the effect of inoculating two arbuscular mycorrhizal fungal isolates, Rhizophagus irregularis and Funneliformis mosseae, on trace metal uptake by sunflower plants grown in soils contaminated with three different Cd concentrations in a greenhouse trial. Root colonization, plant dry mass, and plant tissue cadmium (Cd), zinc (Zn), and copper (Cu) concentrations in roots and shoots were determined after sunflower harvesting. We found that root mycorrhizal colonization rates were not significantly affected by Cd treatments. At low soil Cd concentration, R. irregularis-inoculated plants had significantly higher shoot Cd and Zn concentrations than plants inoculated with F. mosseae and non-inoculated plants. However, at high soil Cd concentrations, F. mosseae-inoculated plants had significantly lower shoot Cd and Zn concentrations and biological concentration factor (BCF) values than plants inoculated with R. irregularis and non-inoculated plants. Cadmium was mainly translocated in shoot tissues of R. irregularis-inoculated plants and sequestered in the rhizosphere of F. mosseae-inoculated plants. The results indicate that these AMF strains mediate different tolerance strategies to alleviate TM toxicity in their host plants and that inoculation with the R. irregularis strain can be used for Cd phytoextraction, whereas this F. mosseae strain can be useful for Cd and Zn phytostabilization of contaminated soil. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Effect of thyroxine on cellular oxygen-consumption and glucose uptake: evidence of an effect of total T4 and not "free T4"

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E

    1990-01-01

    Recent studies of cellular T4 and T3 uptake have indicated active transport of the hormones into the cell rather than passive diffusion of the non-protein bound fraction. In order to study the significance of the extracellular environment, oxygen consumption and glucose uptake were examined...... in human mononuclear blood cells. Cells were incubated in protein free medium and in human serum totally depleted of thyroid hormones by resin treatment and fixed amounts of T4 (total T4 = 0-50-100-5000 nmol/l; free T4 = 0-5-11-5600 pmol/l) were added. Thyroxine stimulated glucose uptake and oxygen......-consumption in a dose dependent manner but the T4 stimulation was dependent on the total concentration of T4 and did not differ between serum incubation or non-protein containing medium. Addition of ANS (100 mg/l) which inhibits binding of T4 to TBG, did not increase T4 effect in serum. Inhibition of the Na...

  14. Screening for bioactive metabolites in plant extracts modulating glucose uptake and fat accumulation

    DEFF Research Database (Denmark)

    El-Houri, Rime Bahij; Kotowska, Dorota Ewa; C. B. Olsen, Louise

    2014-01-01

    while weekly activating PPARγ without promoting adipocyte differentiation. In addition, these extracts were able to decrease fat accumulation in C. elegans. Methanol extracts of summer savory (Satureja hortensis), common elder, and broccoli (Brassica oleracea) enhanced glucose uptake in myotubes...

  15. A mathematical model for investigating the effect of cluster roots on plant nutrient uptake

    KAUST Repository

    Zygalakis, K. C.; Roose, T.

    2012-01-01

    phase and can also solubilised due to citrate exudation. Using multiple scale homogenisation techniques we derive an effective model that accounts for the cumulative effect of citrate exudation and phosphate uptake by cluster roots whilst still retaining

  16. Imaging of radiocesium uptake dynamics in a plant body using a newly developed high-resolution gamma camera for radiocesium

    Energy Technology Data Exchange (ETDEWEB)

    Kawachi, Naoki; Yin, Yong-Gen; Suzui, Nobuo; Ishii, Satomi; Fujimaki, Shu [Radiotracer Imaging Gr., Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Yoshihara, Toshihiro [Plant Molecular Biology, Laboratory of Environmental Science, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194 (Japan); Watabe, Hiroshi [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 (Japan); Yamamoto, Seiichi [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673 (Japan)

    2014-07-01

    Vast agricultural and forest areas around the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Station in Japan were contaminated with radiocesium (Cs-134 and Cs-137) after the accident following the earthquake and tsunami in March 2011. A variety of agricultural studies, such as fertilizer management and plant breeding, have been undertaken intensively for reduction of radiocesium uptake in crops, or, enhancement of uptake in phyto-remediation. In this study, we newly developed a gamma camera specific for plant nutritional research, and performed quantitative analyses on uptake and partitioning of radiocesium in intact plant bodies. In general, gamma camera is a common technology in medical imaging, but it is not applicable to high-energy gamma rays such as emissions from Cs-137 (662 keV). Therefore, we designed our new gamma camera to prevent the penetration and scattering of the high-energy gamma rays. A single-crystal scintillator, Ce-doped Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (Ce:GAGG), was employed, which has a relatively high density, a large light output, no natural radioactivity and no hygroscopicity. A 44 x 44 matrix of the Ce:GAGG pixels, with dimensions of 0.85 mm x 0.85 mm x 10 mm for each pixel, was coupled to a high-quantum efficiency position sensitive photomultiplier tube. This gamma detector unit was encased in a 20-mm-thick tungsten container with a tungsten pinhole collimator on the front. By using this gamma camera, soybean plants (Glycine max), grown in hydroponic solutions and fed with 1-2 MBq of Cs-137, were imaged for 6.5 days in maximum to investigate and visualize the uptake dynamics into/within the areal part. As a result, radiocesium gradually appeared in the shoot several hours after feeding of Cs-137, and then accumulated intensively in the maturing pods and seeds in a characteristic pattern. Our results also demonstrated that this gamma-camera method enables quantitative evaluation of plant ability to absorb, transport

  17. Influence of Phosphorus and Manganese Rats in Nutrient Solution on Mn-54 Uptake by Mango Plants

    International Nuclear Information System (INIS)

    Sharaf, A.N.

    2011-01-01

    A greenhouse experiment was designed using solution culture and Mn-54 to study the effect of P and Mn rates on absorption of Mn-54, its translocation and percentage using six month old mango seedlings (Hindi Bi-Sinara cv.). Rates of P in nutrient solution were zero, half, one and two strength i.e. 0, 1, 2 and 4 m M whereas Mn rates were 1, 2 and 3 strength i.e. 2, 4 and 6 μM. The prepared nutrient solutions were labelled with carrier free Mn-54. Total absorption of Mn-54 by mango roots from nutrient solution was highly increased by increasing Mn rates, moreover, increasing P rates in media tended to enhance Mn-54 absorption. Translocation and distribution pattern of absorbed Mn-54 followed, to a great extent, the same trend of total absorption of it but with different magnitude. In this concern, more than 90% (about 94%) of total absorption of Mn-54 was retained in root system, whereas about 4% and 2% was translocated in stems and leaves, respectively. Retained Mn in mango roots is considered a good source of Mn for supplying mango plants with it for long term during growing season.

  18. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.

    Science.gov (United States)

    del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M

    2006-09-01

    The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.

  19. Uptake and Bioaccumulation of Pentachlorophenol by Emergent Wetland Plant Phragmites australis (Common Reed) in Cadmium Co-contaminated Soil.

    Science.gov (United States)

    Hechmi, Nejla; Ben Aissa, Nadhira; Abdenaceur, Hassen; Jedidi, Naceur

    2015-01-01

    Despite many studies on phytoremediation of soils contaminated with either heavy metals or organics, little information is available on the effectiveness of phytoremediation of co-occurring metal and organic pollutants especially by using wetland species. Phragmites australis is a common wetland plant and its potential for phytoremediation of cadmium pentachlorophenol (Cd-PCP) co-contaminated soil was investigated. A greenhouse study was executed to elucidate the effects of Cd (0, 10, and 20 mg kg(-1)) without or with PCP (0, 50, and 250 mg kg(-1)) on the growth of the wetland plant P. australis and its uptake, accumulation and removal of pollutant from soils. After 75 days, plant biomass was significantly influenced by interaction of Cd and PCP and the effect of Cd on plant growth being stronger than that of PCP. Coexistence of PCP at low level lessened Cd toxicity to plants, resulting in improved plant growth and increased Cd accumulation in plant tissues. The dissipation of PCP in soils was significantly influenced by interactions of Cd, PCP and plant presence or absence. As an evaluation of soil biological activities after remediation soil enzyme was measured.

  20. Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment.

    Science.gov (United States)

    Bártíková, Hana; Skálová, Lenka; Stuchlíková, Lucie; Vokřál, Ivan; Vaněk, Tomáš; Podlipná, Radka

    2015-08-01

    Many various xenobiotics permanently enter plants and represent potential danger for their organism. For that reason, plants have evolved extremely sophisticated detoxification systems including a battery of xenobiotic-metabolizing enzymes. Some of them are similar to those in humans and animals, but there are several plant-specific ones. This review briefly introduces xenobiotic-metabolizing enzymes in plants and summarizes present information about their action toward veterinary drugs. Veterinary drugs are used worldwide to treat diseases and protect animal health. However, veterinary drugs are also unwantedly introduced into environment mostly via animal excrements, they persist in the environment for a long time and may impact on the non-target organisms. Plants are able to uptake, transform the veterinary drugs to non- or less-toxic compounds and store them in the vacuoles and cell walls. This ability may protect not only plant themselves but also other organisms, predominantly invertebrates and wild herbivores. The aim of this review is to emphasize the importance of plants in detoxification of veterinary drugs in the environment. The results of studies, which dealt with transport and biotransformation of veterinary drugs in plants, are summarized and evaluated. In conclusion, the risks and consequences of veterinary drugs in the environment and the possibilities of phytoremediation technologies are considered and future perspectives are outlined.

  1. Differential uptake and translocation of β-HCH and dieldrin by several plant species from hydroponic medium.

    Science.gov (United States)

    Namiki, Sayuri; Otani, Takashi; Seike, Nobuyasu; Satoh, Shinobu

    2015-03-01

    To compare the uptake and translocation of hydrophobic organic chemicals by plant species, the authors performed uptake experiments with β-1,2,3,4,5,6-hexachlorocyclohexane (β-HCH) and 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-endo-1,4-exo-5,8-dimethanonaphthalene (dieldrin) using 5 species: Hordeum vulgare, Glycine max, Solanum lycopersicum, Brassica oleracea, and Cucurbita pepo. The present study evaluated uptake ability using root concentration factor (RCF) and translocation ability by transpiration stream concentration factor (TSCF). The RCFs of β-HCH and dieldrin did not differ remarkably among species, except that the RCF of β-HCH in B. oleracea was high. The TSCFs of β-HCH and dieldrin were high in C. pepo, which was not superior in uptake as estimated by RCF. The TSCF of dieldrin in C. pepo was decreased in darkness and was markedly decreased by heating of roots. These results support the hypothesis that transport proteins produced in the root contribute to dieldrin translocation. In contrast, TSCF of β-HCH was not decreased by these treatments. Therefore, translocation of β-HCH might not need the contribution of transport proteins. It is possible that C. pepo has a certain function to transport hydrophobic organic chemicals smoothly in root tissues. © 2014 SETAC.

  2. Relations between variously available fractions of trace metals in the soil and their actual plant-uptake

    International Nuclear Information System (INIS)

    Bujtas, K.; Csillag, J.

    1999-01-01

    In a pot experiment, availabilities of Cd, Cr, Ni, Pb, and Zn added to the soil as metal nitrates or as enrichment of sewage sludge were evaluated by comparing concentrations of their total potentially available, presumably plant-available and directly plant-available forms in the soil. At excessively increasing soil contamination, the plant-available concentrations increased more than the total soil contents, thus the relative availabilities of the metals increased. This was reflected in the amounts taken up by the young maize test plants and in the plant/soil transfer factors. Transfer factors calculated for the 'plant-available' soil metal contents depended less on the contamination level than those based on total soil metal contents. Refs. 8 (author)

  3. Effects of salinity and Cu on total uptake of micronutrient in shoot and root of pistachio cultivars (Pistacia vera L.)

    OpenAIRE

    S. Eskandari; V. Mozaffari

    2013-01-01

    To study the effects of soil Cu and salinity levels on uptake of micronutrients by shoots and roots of pistachio seedlings, a factorial experiment was carried out as completely randomized design with three replications in greenhouse of College of Agriculture, Vali-e-Asr University of Rafsanjan, Iran, in May 2008. Treatments consisted of five salinity levels (0, 800, 1600, 2400 and 3200 mg NaCl per kg soil), four Cu levels (0, 2.5, 5 and 7.5 mg Cu per kg soil) and two pistachio cultivars (Bada...

  4. Removal of two polycyclic musks in sewage treatment plants: Freely dissolved and total concentrations

    NARCIS (Netherlands)

    Artola-Garicano, E.; Borkent, I.; Hermens, J.L.M.; Vaes, W.H.J.

    2003-01-01

    In the current study, the removal of slowly degradable hydrophobic chemicals in sewage treatment plants (STPs) has been evaluated with emphasis on the combination of free and total concentration data. Free and total concentrations of two polycyclic musks were determined in each compartment of four

  5. Dry matter yield, carbon isotope discrimination and nitrogen uptake in silicon and/ or potassium fed chickpea and barley plants grown under water and non-water stress conditions

    International Nuclear Information System (INIS)

    Kurd Ali, F.; Al-Chammaa, M.; Mouasess, A.

    2012-09-01

    A pot experiment was conducted to study the effects of silicon (Si) and/or potassium (K) on dry matter yield, nitrogen uptake and carbon isotope discrimination Δ 13 C in water stressed (FC1) and well watered (FC2) chickpea plants using 15 N and 13 C isotopes. Three fertilizer rates of Si (Si 5 0, Si 1 00 and Si 2 00) and one fertilizer rate of K were used. The results showed that: In chickpeas, it was found, for most of the growth parameters, that Si either alone or in combination with K was more effective to alleviate water stress than K alone. Increasing soil water level from FC1 to FC2 often had a positive impact on values of most studied parameters. The Si 1 00K + (FC1) and Si 5 0K + (FC2) treatments gave high enough amounts of N 2 -fixation, higher dry matter production and greater nitrogen yield. The percent increments of total N 2 -fixed in the above mentioned treatments were 51 and 47% over their controls, respectively. On the other hand, increasing leaves dry matter in response to the solely added Si (Si 5 0K - and Si 1 00K - ) is associated with lower Δ 13 C under both watering regimes. This may indicate that Si fertilization had a beneficial effect on water use efficiency (WUE). Hence, Δ 13 C could be an adequate indicator of WUE in response to the exogenous supply of silicon to chickpea plants. Our results highlight that Si is not only involved in amelioration of growth and in maintaining of water status but it can be considered as an important element for the symbiotic performance of chickpea plants. It can be concluded that synergistic effect of silicon and potassium fertilization with adequate irrigation improves growth and nitrogen fixation in chickpea plants.In barley plants, solely added K or in combination with adequate rate of Si (Si 1 00) were more effective in alleviating water stress and producing higher yield in barley plants than solely added Si. However, the latter nutrient was found to be more effective than the former in producing

  6. Mapping the metal uptake in plants from Jasper Ridge Biological Preserve using synchrotron micro-focused X-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Allison [Univ. of California, Davis, CA (United States)

    2015-08-20

    Serpentine soil originates in the Earth’s mantle and contains high concentrations of potentially toxic transition metals. Although serpentine soil limits plant growth, endemic and adapted plants at Jasper Ridge Biological Preserve, located behind SLAC National Accelerator Laboratory, can tolerate these conditions. Serpentine soil and seeds belonging to native California and invasive plants were collected at Jasper Ridge. The seeds were grown hydroponically and on serpentine and potting soil to examine the uptake and distribution of ions in the roots and shoots using synchrotron micro-focused X-ray fluorescence spectroscopy. The results were used to determine differences between serpentine-tolerant plants. Rye grown on potting soil was enriched in Ni, Fe, Mn, and Cr compared to purple needlegrass grown on serpentine soil. Serpentine vegetation equally suppressed the uptake of Mn, Ni, and Fe in the roots and shoots. The uptake of Ca and Mg affected the uptake of other elements such as K, S, and P.

  7. Effect of root temperature on the uptake and metabolism of anions by the root system of Zea mays L. I. Uptake of sulphate by resistant and non-resistant plants

    Energy Technology Data Exchange (ETDEWEB)

    Holobrada, M; Mistrik, I; Kolek, J [Institute of Experimental Biology and Ecology of the Slovak Academy of Sciences, Bratislava (Czechoslovakia)

    1980-01-01

    The effect of root temperature upon the uptake of /sup 35/S-sulfate by intact 21 days old maize roots was discussed. The plant roots grown at 20 degC were cooled in steps down to 15 degC or 5 degC. The rate of /sup 35/S uptake was studied both in the whole root system and separately in the individual roots (primary seminal root, seminal adventitious roots and nodal roots). Differences were ascertained at lower uptakes by various root samples from resistant and nonresistant maize cultivars.

  8. Evaluation of drug uptake and deactivation in plant: Fate of albendazole in ribwort plantain (Plantago laceolata) cells and regenerants.

    Science.gov (United States)

    Stuchlíková Raisová, Lucie; Podlipná, Radka; Szotáková, Barbora; Syslová, Eliška; Skálová, Lenka

    2017-07-01

    Albendazole (ABZ) is a benzimidazole anthelmintic widely used especially in veterinary medicine. Along with other drugs, anthelmintics have become one of a new class of micro-pollutants that disturb the environment but the information about their fate in plants remains limited. The present study was designed to test the uptake and biotransformation of ABZ in the ribwort plantain (Plantago lancelota), a common meadow plant, which can come into contact with this anthelmintic through the excrements of treated animals in pastures. Two model systems were used and compared: cell suspensions and whole plant regenerants. In addition, time-dependent changes in occurrence of ABZ and its metabolites in roots, basal parts of the leaves and tops of the leaves were followed up. Ultrahigh-performance liquid chromatography coupled with high mass accuracy tandem mass spectrometry (UHPLC-MS/MS) led to the identification of 18 metabolites of ABZ formed in the ribwort. In both model systems, the same types of ABZ biotransformation reactions were found, but the spectrum and abundance of the ABZ metabolites detected in cell suspensions and regenerants differed significantly. Cell suspensions seem to be suitable only for qualitative estimations of drug biotransformation reactions while regenerants were shown to represent an adequate model for the qualitative as well as quantitative evaluation of drug uptake and metabolism in plants. Copyright © 2017. Published by Elsevier Inc.

  9. Arsenic uptake, arsenite efflux and plant growth in hyperaccumulator Pteris vittata: Role of arsenic-resistant bacteria.

    Science.gov (United States)

    Han, Yong-He; Fu, Jing-Wei; Chen, Yanshan; Rathinasabapathi, Bala; Ma, Lena Q

    2016-02-01

    Bacteria-mediated arsenic (As) transformation and their impacts on As and P uptake and plant growth in As-hyperaccumulator Pteris vittata (PV) were investigated under sterile condition. All As-resistant bacteria (9 endophytic and 6 rhizospheric) were As-reducers except one As-oxidizer. After growing two months in media with 37.5 mg kg(-1) AsV, As concentrations in the fronds and roots were 3655-5389 (89-91% AsIII) and 971-1467 mg kg(-1) (41-73% AsIII), corresponding to 22-52% decrease in the As in the media. Bacterial inoculation enhanced As and P uptake by up to 47 and 69%, and PV growth by 20-74%, which may be related to elevated As and P in plants (r = 0.88-0.97, p bacteria-free media was AsIII, suggesting efficient efflux of AsIII by PV roots (120 µg g(-1) root fw). This was supported by the fact that no AsV was detected in media inoculated with As-reducers while 95% of AsV was detected with As-oxidizer. Our data showed that, under As-stress, PV reduced As toxicity by efficient AsIII efflux into media and AsIII translocation to the fronds, and bacteria benefited PV growth probably via enhanced As and P uptake. Published by Elsevier Ltd.

  10. The effect of glucose stimulation on 45calcium uptake of rat pancreatic islets and their total calcium content as measured by a fluorometric micro-method

    International Nuclear Information System (INIS)

    Wolters, G.H.J.; Wiegman, J.B.; Konijnendijk, W.

    1982-01-01

    Glucose-stimulated 45 calcium uptake and total calcium content of rat pancreatic islets has been studied, using a new fluorometric micro-method to estimate total calcium. Extracellular calcium was separated from incubated tissue by a rapid micro-filtration procedure. Islets incubated up to 60 min with calcium chloride 2.5 mmol/l and glucose 2.5 mmol/l maintained the same calcium content (670 +- 7.5 pmol/μg DNA). When the glucose concentration was raised to 15 mmol/l no change in the total calcium content could be detected. On incubation with glucose 2.5 mmol/l in the absence of calcium, the calcium content decreased to 488 +- 27 pmol/μg DNA. On incubation with 45 calcium chloride 2.5 mmol/l for 5 or 30 min at 2.5 mmol/l glucose, islets exchanged 21 +- 2 and 28 +- 1% of their total calcium content and, at 15 mmol/l glucose, 30 +- 3 and 45 +- 2%, respectively. Thus, islet calcium has a high turn-over rate. Glucose stimulation results in an increase of the calcium uptake without enhancing the total calcium content and hence must increase the calcium-exchangeable pool. (orig.)

  11. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation

    NARCIS (Netherlands)

    Sobariu, Dana Luminita; Fertu, Daniela Ionela Tudorache; Diaconu, Mariana; Pavel, Lucian Vasile; Hlihor, Raluca Maria; Drăgoi, Elena Niculina; Curteanu, Silvia; Lenz, Markus; Corvini, Philippe François Xavier; Gavrilescu, Maria

    2016-01-01

    Certain species of plants can benefit from synergistic effects with plant growth-promoting rhizobacteria (PGPR) that improve plant growth and metal accumulation, mitigating toxic effects on plants and increasing their tolerance to heavy metals. The application of PGPR as biofertilizers and

  12. Nitrogen-15 uptake by whole plants and root callus cultures of inbred maize lines and their F1 hybrids

    International Nuclear Information System (INIS)

    Mladenova, Y.; Karadimova, M.

    1981-01-01

    The uptake of nitrogen-15 by 3 maize genotypes was investigated. Comparative analysis of N15 assimilation and distribution in the organs of intact plants of two self-pollinated lines and their F1 hybrid and also in a callus tissue of roots of the same genotypes was made. From the results the conclusion is drawn that the N-use efficiency of the female line is higher than that of the male line both in intact plants and callus tissues from roots. This fact indicates that the N-use efficiency is determined not only by the functions of the cells in the shoots, suggesting the participation of the photosynthetic carboxylases but also by the functions of cells without a photosynthesizing apparatus. The N-use efficiency in the F1 hybrid manifests ''heterosis'', in spite of the intact plants or root callus tissues are being studied. (author)

  13. Accumulation of total mercury and methylmercury in rice plants collected from different mining areas in China

    International Nuclear Information System (INIS)

    Meng, Mei; Li, Bing; Shao, Jun-juan; Wang, Thanh; He, Bin; Shi, Jian-bo; Ye, Zhi-hong; Jiang, Gui-bin

    2014-01-01

    A total of 155 rice plants were collected from ten mining areas in three provinces of China (Hunan, Guizhou and Guangdong), where most of mercury (Hg) mining takes place in China. During the harvest season, whole rice plants were sampled and divided into root, stalk and leaf, husk and seed (brown rice), together with soil from root zone. Although the degree of Hg contamination varied significantly among different mining areas, rice seed showed the highest ability for methylmercury (MeHg) accumulation. Both concentrations of total mercury (THg) and MeHg in rice plants were significantly correlated with Hg levels in soil, indicating soil is still an important source for both inorganic mercury (IHg) and MeHg in rice plants. The obvious discrepancy between the distribution patterns of THg and MeHg reflected different pathways of IHg and MeHg accumulation. Water soluble Hg may play more important role in MeHg accumulation in rice plants. -- Highlights: • Distribution patterns indicated different pathways of IHg and MeHg accumulation. • Soil is an important source for both THg and MeHg to rice plants. • Water soluble Hg may play more important role in MeHg accumulation in rice plants. -- The distribution patterns indicate different pathways of IHg and MeHg accumulation in rice plants

  14. A study of 32P-phosphate uptake in a plant by a real-time RI imaging system

    International Nuclear Information System (INIS)

    Yamawaki, M.; Kanno, S.; Ishibashi, H.; Noda, A.; Hirose, A.; Tanoi, K.; Nakanishi, T.M.

    2011-01-01

    It is very important to visualize the process of nutrient absorption and distribution to study the physiological activity of the plant. We developed a real-time radioisotope (RI) imaging system, where RI tracers were applied to the plant sample. This system allowed the quantitative measurement concerning the uptake of nutrients labeled with radioisotopes, such as 45 Ca, 35 S, 32 P and 14 C as long as several days. The β-rays emitted from the sample were converted to light by a CsI(Tl) scintillator and were guided to a highly sensitive CCD camera. The scintillator surface was covered with an Al plate to avoid LED light penetration but allow selected β-ray penetration. We employed Lotus japonicus for the plant sample and observed the 32 P-phosphate absorption in roots and the accumulation to the aboveground part of the plant. The environment condition of daytime and night was simulated by the ON/OFF of LED timer and the accumulation manner of the 32 P-phosphate in roots and leaves during daytime and night was analyzed. The accumulation of 32 P-phosphate in leaves was highly dependant on light irradiation and higher when the LEDs was turned on, whereas the absorption of 32 P-phosphate in root was higher when the LEDs was turned off. The transfer function concerning the transportation of phosphate within the plant during the developmental stage was obtained from the analysis of 32 P uptake images. We are now trying to get specific moving images of each radioisotope when two kinds of isotopes, such as 32 P and 32 S, were applied at the same time to the plant, through an image analysis. (orig.)

  15. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    Science.gov (United States)

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  16. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, E., E-mail: eva.schreck@ensat.fr [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); Foucault, Y. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); STCM, Societe de Traitements Chimiques des Metaux, 30 Avenue de Fondeyre 31200 Toulouse (France); Sarret, G. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Sobanska, S. [LASIR (UMR CNRS 8516), Universite de Lille 1, Bat. C5, 59655 Villeneuve d' Ascq cedex (France); Cecillon, L. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Castrec-Rouelle, M. [Universite Pierre and Marie Curie (UPMC-Paris 6), Bioemco (Biogeochimie et Ecologie des Milieux Continentaux), Site Jussieu, Tour 56, 4 Place Jussieu, 75252 Paris cedex 05 (France); Uzu, G. [Laboratoire d' Aerologie (UMR 5560), OMP, UPS 14, Avenue Edouard Belin, 31400 Toulouse (France); GET (UMR 5563), IRD, 14, Avenue Edouard Belin, 31400 Toulouse (France); Dumat, C. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France)

    2012-06-15

    Fine and ultrafine metallic particulate matters (PMs) are emitted from metallurgic activities in peri-urban zones into the atmosphere and can be deposited in terrestrial ecosystems. The foliar transfer of metals and metalloids and their fate in plant leaves remain unclear, although this way of penetration may be a major contributor to the transfer of metals into plants. This study focused on the foliar uptake of various metals and metalloids from enriched PM (Cu, Zn, Cd, Sn, Sb, As, and especially lead (Pb)) resulting from the emissions of a battery-recycling factory. Metal and metalloid foliar uptake by various vegetable species, exhibiting different morphologies, use (food or fodder) and life-cycle (lettuce, parsley and rye-grass) were studied. The mechanisms involved in foliar metal transfer from atmospheric particulate matter fallout, using lead (Pb) as a model element was also investigated. Several complementary techniques (micro-X-ray fluorescence, scanning electron microscopy coupled with energy dispersive X-ray microanalysis and time-of-flight secondary ion mass spectrometry) were used to investigate the localization and the speciation of lead in their edible parts, i.e. leaves. The results showed lead-enriched PM on the surface of plant leaves. Biogeochemical transformations occurred on the leaf surfaces with the formation of lead secondary species (PbCO{sub 3} and organic Pb). Some compounds were internalized in their primary form (PbSO{sub 4}) underneath an organic layer. Internalization through the cuticle or penetration through stomata openings are proposed as two major mechanisms involved in foliar uptake of particulate matter. - Graphical abstract: Overall picture of performed observations and mechanisms potentially involved in lead foliar uptake. Highlights: Black-Right-Pointing-Pointer Foliar uptake of metallic particulate matter (PM) is of environmental and health concerns. Black-Right-Pointing-Pointer The leaf morphology influences the adsorption

  17. Feasibility studies to improve plant availability and reduce total installed cost in IGCC plants

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kevin [General Electric Company, Houston, TX (United States); Anasti, William [General Electric Company, Houston, TX (United States); Fang, Yichuan [General Electric Company, Houston, TX (United States); Subramanyan, Karthik [General Electric Company, Houston, TX (United States); Leininger, Tom [General Electric Company, Houston, TX (United States); Zemsky, Christine [General Electric Company, Houston, TX (United States)

    2015-03-30

    The main purpose of this project is to look at technologies and philosophies that would help reduce the costs of an Integrated Gasification Combined Cycle (IGCC) plant, increase its availability or do both. GE’s approach to this problem is to consider options in three different areas: 1) technology evaluations and development; 2) constructability approaches; and 3) design and operation methodologies. Five separate tasks were identified that fall under the three areas: Task 2 – Integrated Operations Philosophy; Task 3 – Slip Forming of IGCC Components; Task 4 – Modularization of IGCC Components; Task 5 – Fouling Removal; and Task 6 – Improved Slag Handling. Overall, this project produced results on many fronts. Some of the ideas could be utilized immediately by those seeking to build an IGCC plant in the near future. These include the considerations from the Integrated Operations Philosophy task and the different construction techniques of Slip Forming and Modularization (especially if the proposed site is in a remote location or has a lack of a skilled workforce). Other results include ideas for promising technologies that require further development and testing to realize their full potential and be available for commercial operation. In both areas GE considers this project to be a success in identifying areas outside the core IGCC plant systems that are ripe for cost reduction and ity improvement opportunities.

  18. Influence of arbuscular mycorrhizal colonization on uptake of various elements by host plant

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki; Kumagai, Hiroshi; Oohashi, Kunio; Nogawa, Norio; Sawahata, Hiroyuki; Kawate, Minoru

    2003-01-01

    Radio-activation analysis was made with arbuscular mycorrhizal (AM) samples taken in three growing stage, nutritional growing stage, early and later growing stage for fertilization (flowering stage and flowering/maturation stage, respectively) to investigate influence of AM formation on absorbing ability of various elements in the host plant. Tagetes patula L. was used as the subject and Glomus etunicatum was used as AM. The rate of AM formation was determined in its three stages and an analysis was made on the correlation between the rate and fresh weight of the plant. On the day 29 after inoculation, there was no difference in fresh weight between the epigeal part and rhizome one, and also no difference in the AM formation between groups AM and group LAM where Glomus etunicatum and that harvested two years ago were inoculated, respectively. However, the fresh weight of the epigeal part was highest on the day 50 and the rate of AM formation was higher in the order of group AM, LAM and the control. Radio-activation analysis showed that a total of 24 elements including Na, Mg, Al, Cl, K, Ca were extracted from the culture soil, whereas 9 elements were done from culture medium. There appeared some differences in the content of elements among test groups on the day 50 and the day 68. The absorptions of Na, Mg, Cl, Mn, Zn, Cs, Ce, Eu and those of Na, Sr, Zn, Br, Sr, La, Ce, Sm, Eu, Yb were increased in the early growth and later growth stage for fertilization, respectively. It was suggested that the presence of Am but not development of AM might be involved in the increase in La absorption and the decrease in LU absorption. (M.N.)

  19. A Model of Uranium Uptake by Plant Roots Allowing for Root-Induced Changes in the soil.

    Science.gov (United States)

    Boghi, Andrea; Roose, Tiina; Kirk, Guy J D

    2018-03-20

    We develop a model with which to study the poorly understood mechanisms of uranium (U) uptake by plants. The model is based on equations for transport and reaction of U and acids and bases in the rhizosphere around cylindrical plant roots. It allows for the speciation of U with hydroxyl, carbonate, and organic ligands in the soil solution; the nature and kinetics of sorption reactions with the soil solid; and the effects of root-induced changes in rhizosphere pH. A sensitivity analysis showed the importance of soil sorption and speciation parameters as influenced by pH and CO 2 pressure; and of root geometry and root-induced acid-base changes linked to the form of nitrogen taken up by the root. The root absorbing coefficient for U, relating influx to the concentration of U species in solution at the root surface, was also important. Simplified empirical models of U uptake by different plant species and soil types need to account for these effects.

  20. Use of stable nitrogen isotope 15N in investigating nitrogen uptake by plants from allylisothiocyanate decomposition products

    International Nuclear Information System (INIS)

    Dolejskova, J.; Kovar, J.

    1976-01-01

    The assimilability of nitrogen from allylisothiocyanate or from its nitrogenous decomposition products by plants was investigated using 15 N-labelled allylisothiocyanate. The results show that plant nitrogen assimilation from allylisothiocyanate is the higher, the lower the total nitrogen content of the nutritive medium. (author)

  1. Mineral nutrition in aquatic carnivorous plants: effect of carnivory, nutrient reutilization and K+ uptake.

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2016-01-01

    Roč. 188, č. 1 (2016), s. 41-49 ISSN 1863-9135 R&D Projects: GA ČR(CZ) GAP504/11/0783 Institutional support: RVO:67985939 Keywords : Aldrovanda vesiculosa * Utricularia * mineral nutrient uptake Subject RIV: EF - Botanics Impact factor: 1.170, year: 2016

  2. Uptake and allocation of 15N in alpine plants. Implications for the importance of competitive ability in predicting community structure in a stressful environment

    International Nuclear Information System (INIS)

    Theodose, T.A.; Jaeger, C.H.; Bowman, W.D.; Schardt, J.C.

    1996-01-01

    Several potential components of competitive ability were determined for 13 plant species in a N-limited alpine moist meadow community in order to determine if competition had an influence on relative abundance in this stressful environment. The components of competitive ability examined were 15 N uptake rate, 15 N allocation, whole plant biomass, root:shoot ratio, and tissue N concentrations. It was hypothesized that 15 N uptake rate would be the component most correlated with relative abundance. However, 15 N uptake rate was negatively correlated with percent cover in the community. In contrast, whole plant biomass and root:shoot ratio were positively correlated with relative abundance. Tissue N concentrations and 15 N allocation were not important predictors of relative abundance. These results suggest that in a harsh environment, high resource uptake rates are not indicative of competitive ability, but may instead by a mechanism by which rare species are able to coexist with competitive dominants. (au) 47 refs

  3. Effects of shading on photosynthesis, plant organic nitrogen uptake and root fungal colonization in a subarctic mire ecosystem

    DEFF Research Database (Denmark)

    Olsrud, Hanna Maria Kerstin; Michelsen, Anders

    2009-01-01

    Arctic dwarf shrub ecosystems are predicted to be exposed to lower light intensity in a changing climate where mountain birch forests are expanding. We investigated how shading at 0%, 65%, and 97% affects photosynthesis, organic N uptake, C and N allocation patterns in plants, and root fungal...... ecosystems are capable of taking up organic N as intact glycine both under high irradiance levels and under shaded conditions when photosynthesis is strongly reduced. The allocation of 15N to green leaves of Rubus chamaemorus L. increased with shading, whereas the allocation of 13C to leaves of both...

  4. Coating Nanoparticles with Plant-Produced Transferrin-Hydrophobin Fusion Protein Enhances Their Uptake in Cancer Cells

    DEFF Research Database (Denmark)

    Reuter, Lauri J.; Shahbazi, Mohammad-Ali; Makila, Ermei M.

    2017-01-01

    can be expressed in Nicotiana benthamiana plants as a fusion with Trichoderma reesei hydrophobins HFBI, HFBII, or HFBIV. Transferrin-HFBIV was further expressed in tobacco BY-2 suspension cells. Both partners of the fusion protein retained their functionality; the hydrophobin moiety enabled migration...... to a surfactant phase in an aqueous two-phase system, and the transferrin moiety was able to reversibly bind iron. Coating porous silicon nanoparticles with the fusion protein resulted in uptake of the nanoparticles in human cancer cells. This study provides a proof-of concept for the functionalization...

  5. Distribution, and uptake by rice plants of 15N-labeled ammonium applied in mudballs in paddy soils

    International Nuclear Information System (INIS)

    Ventura, Wilbur; Yoshida, Tomio

    1978-01-01

    A 1974 field experiment determined the distribution, and uptake by rice plants, of ammonium fertilizer at 60 kg N/ha applied in mudballs into the reduced layer of paddy soil. The fertilizer-carrying mudballs were placed at the center of four hills. At the center of the plot, one 15 N-labeled mudball was applied and the 15 N content of the plants surrounding the site of placement were determined. For comparison, labeled ammonium fertilizer was basally incorporated with the entire puddled layer and a topdress application was made 39 days before heading. There was little movement of the ammonium nitrogen horizontally from the site of placement so that the distribution of 15 N was restricted to the four adjacent plant hills. The distribution of incorporated ammonium fertilizer with the puddled layer was likewise restricted to the four adjacent rice plants but topdressing, with the unavoidable disturbance of the floodwater, resulted to a wide distribution of the 15 N-labeled fertilizer. In all the methods of application, there was an uneven uptake of 15 N among four plants adjacent to the site of placement. An increase of at least 10% in the efficiency of ammonium fertilizer was obtained by the deep placement of ammoniated mudballs as compared to the common practice of incorporating the fertilizer with the puddled soil layer. Topdressing at 39 days before heading, however, was as efficient as mudballs applied at the same stage of growth. There was no significant increase in grain yield by deep placement of fertilizer because of the high initial nitrogen content of the soil. (author)

  6. Increasing plant use of organic nitrogen with elevation is reflected in nitrogen uptake rates and ecosystem delta15N.

    Science.gov (United States)

    Averill, Colin; Finzi, Adrien

    2011-04-01

    It is hypothesized that decreasing mean annual temperature and rates of nitrogen (N) cycling causes plants to switch from inorganic to organic forms of N as the primary mode of N nutrition. To test this hypothesis, we conducted field experiments and collected natural-abundance delta15N signatures of foliage, soils, and ectomycorrhizal sporocarps along a steep elevation-climate gradient in the White Mountains, New Hampshire, USA. Here we show that with increasing elevation organic forms of N became the dominant source of N taken up by hardwood and coniferous tree species based on dual-labeled glycine uptake analysis, an important confirmation of an emerging theory for the biogeochemistry of the N cycle. Variation in natural abundance foliar delta15N with elevation was also consistent with increasing organic N uptake, though a simple, mass balance model demonstrated that the uptake of delta15N depleted inorganic N, rather than fractionation upon transfer of N from mycorrhizal fungi, best explains variations in foliar delta15N with elevation.

  7. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake.

    Science.gov (United States)

    Rehman, Muhammad Zia-Ur; Rizwan, Muhammad; Ali, Shafaqat; Fatima, Nida; Yousaf, Balal; Naeem, Asif; Sabir, Muhammad; Ahmad, Hamaad Raza; Ok, Yong Sik

    2016-11-01

    Nickel (Ni) toxicity in agricultural crops is a widespread problem while little is known about the role of biochar (BC) and other organic amendments like farm manure (FM) from cattle farm and compost (Cmp) on its alleviation. A greenhouse experiment was conducted to evaluate the effects of BC, Cmp and FM on physiological and biochemical characteristics of maize (Zea mays L.) under Ni stress. Maize was grown in Ni spiked soil without and with two rates of the amendments (equivalent to 1% and 2% organic carbon, OC) applied separately to the soil. After harvest, plant height, root length, dry weight, chlorophyll contents, gas exchange characteristics and trace elements in plants were determined. In addition, post-harvest soil characteristics like pHs, ECe and bioavailable Ni were also determined. Compared to the control, all of the amendments increased plant height, root length, shoot and root dry weight with the maximum increase in all parameters by FM (2% OC) treatment. Similarly, total chlorophyll contents and gas exchange characteristics significantly increased with the application of amendments being maximum with FM (2% OC) application. Amendments significantly increased copper, zinc, manganese and iron concentrations and decreased Ni concentrations in the plants. The highest reduction in shoot Ni concentration was recorded with FM (2% OC) followed by BC (2% OC) being 73.2% and 61.1% lower compared to the control, respectively. The maximum increase in soil pH and decrease in AB-DTPA extractable Ni was recorded with BC (2% OC) followed by FM (2% OC). It is concluded that FM (2% OC) was the most effective in reducing Ni toxicity to plants by reducing Ni uptake while BC (2% OC) was the most effective in decreasing bioavailable Ni in the soil through increasing soil pH. However, long-term field studies are needed to evaluate the effects of these amendments in reducing Ni toxicity in plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Tritiated water uptake kinetics in tissue-free water and organically-bound fractions of tomato plants

    International Nuclear Information System (INIS)

    Spencer, F.S.

    1984-03-01

    The kinetics of tritiated water (HTO) vapour uptake into tissue-free water tritium (TFWT) and organically bound tritium (OBT) fractions of tomato, Lycopersicon esculentum Mill., cv Vendor, were investigated under controlled growing conditions. Most uptake data fitted a first-order kinetic model, C t = C ∞ (1-e -kt ), where C t is the tritium concentration at time t, Ca the steady-state concentration and k the uptake rate constant. During atmospheric-HTO exposure with clean-water irrigation in open pots the TFWT k values were 0.024 ± 0.023 h -1 for new foliage, 0.104 ± 0.067 h -1 for old foliage and 0.042 ± to 0.136 h -1 for new green fruit. OBT uptake rate constants were 20 percent less for new foliage and 76 percent less for new green fruit. Under steady-state conditions the ratio of tritium specific activities of TWFT to atmospheric HTO were 0.43 in new foliage, 0.46 in old foliage and 0.19 in green fruit. Within the plant, OBT and TFWT ratios were 0.70 for new foliage, 0.63 for old foliage (maximum) and between 0.72 and 1.92 for green fruit. The greater than unity tritium specific activity ratios in green fruit were not attributed to tritium enrichment but rather to the translocation of foliar OBT to the growing fruit which contained lower specific activity TFWT derived from soil water

  9. Mercury uptake and distribution in Lavandula stoechas plants grown in soil from Almadén mining district (Spain).

    Science.gov (United States)

    Sierra, M J; Millán, R; Esteban, E

    2009-11-01

    This work studies mercury root uptake by Lavandula stoechas var. Kew Red (lavender) and the distribution of this metal through the plant under greenhouse conditions along three consecutive seasons. Mercury concentration in plant tissues and in the different products obtained from lavender plants (essential oil, toilet water and in lavender tea) was assessed in order to evaluate the possible cultivation of lavender as a profitable alternative land use to mercury mining in the Almadén area once the mine had been closed down. Mercury concentration in useful parts of the plant was low (0.03-0.55 mg kg(-1)). Likewise, the essential oil, toilet water and tea obtained from these plants presented very low mercury levels, below the detection limit of the used equipment (<0.5 microg kg(-1)). In the case of the obtained tea, according to the recommendations given by the World Health Organization, the maximum daily intake of it without intoxication risk would be 85.2l. So, although other sources of mercury intake should also be considered in order to elaborate a complete toxicological risk assessment. Lavender data, obtained under this greenhouse working conditions, shows that lavender cultivation could be an alternative crop in the Almadén area.

  10. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    Science.gov (United States)

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  11. Bioaccessibility of barium from barite contaminated soils based on gastric phase in vitro data and plant uptake.

    Science.gov (United States)

    Abbasi, Sedigheh; Lamb, Dane T; Palanisami, Thavamani; Kader, Mohammed; Matanitobua, Vitukawalu; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    Barite contamination of soil commonly occurs from either barite mining or explorative drilling operations. This work reported in vitro data for barite contaminated soils using the physiologically based extraction test (PBET) methodology. The existence of barite in plant tissue and the possibility of 'biomineralised' zones was also investigated using Scanning Electron Microscopy. Soils with low barium (Ba) concentrations showed a higher proportion of Ba extractability than barite rich samples. Barium uptake to spinach from soil was different between short term spiking studies and field weathered soils. Furthermore, Ba crystals were not evident in spinach tissue or acid digest solutions grown in barium nitrate spiked soils despite high accumulation. Barite was found in the plant digest solutions from barite contaminated soils only. Results indicate that under the conservative assumptions made, a child would need to consume extreme quantities of soil over an extended period to cause chronic health problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Uptake and accumulation of potentially toxic elements in colonized plant species around the world's largest antimony mine area, China.

    Science.gov (United States)

    Long, Jiumei; Tan, Di; Deng, Sihan; Lei, Ming

    2018-04-11

    To provide information on reclamation of multi-heavy metal polluted soils with conception of phytostabilization, a field survey on the uptake and accumulation of potentially toxic elements such as antimony (Sb), arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) in colonized plant species around the world's largest antimony mine area, China, was conducted. Samples including leaves and shoots (including roots and stems) of colonized plants as well as rhizospheric soils were collected from eight sampling zones in the studied area. The results showed that the contents of Cu, Zn, and Pb in rhizospheric soils below plants were comparable to the corresponding background values of Hunan province, otherwise Sb, Cd, and As contents were extremely high (17-106, 17-87, and 3-7 times of the corresponding background values). The highest concentration of Sb was found in Aster subulatus (410 mg kg -1 ); Cd, As, and Zn were in Herba bidentis bipinnatae (10.9, 264, and 265 mg kg -1 , respectively); and Cu was in Artemisia lavandulaefolia (27.1 mg kg -1 ). It also exhibited that all the contents of As in leaves were several times of those in shoots of plants, Cd and other heavy metals showed in a similar pattern in several studied species, implying that the uptake route of these heavy metals via foliar might contribute to the accumulation. With high bioconcentration factors of heavy metals (more than 1, except for Zn), together with the growth abundance, Herba bidentis bipinnatae was considered as the most suitable colonized species for phytostabilization of the multi-heavy metal pollution in soils on this antimony mine area.

  13. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium.

    Science.gov (United States)

    Puga, A P; Abreu, C A; Melo, L C A; Beesley, L

    2015-08-15

    Heavy metals in soil are naturally occurring but may be enhanced by anthropogenic activities such as mining. Bio-accumulation of heavy metals in the food chain, following their uptake to plants can increase the ecotoxicological risks associated with remediation of contaminated soils using plants. In the current experiment sugar cane straw-derived biochar (BC), produced at 700 °C, was applied to a heavy metal contaminated mine soil at 1.5%, 3.0% and 5.0% (w/w). Jack bean (Canavalia ensiformis) and Mucuna aterrima were grown in pots containing soil and biochar mixtures, and control pots without biochar. Pore water was sampled from each pot to confirm the effects of biochar on metal solubility, whilst soils were analyzed by DTPA extraction to confirm available metal concentrations. Leaves were sampled for SEM analysis to detect possible morphological and anatomical changes. The application of BC decreased the available concentrations of Cd, Pb and Zn in 56, 50 and 54% respectively, in the mine contaminated soil leading to a consistent reduction in the concentration of Zn in the pore water (1st collect: 99 to 39 μg L(-1), 2nd: 97 to 57 μg L(-1) and 3rd: 71 to 12 μg L(-1)). The application of BC reduced the uptake of Cd, Pb and Zn by plants with the jack bean translocating high proportions of metals (especially Cd) to shoots. Metals were also taken up by Mucuna aterrima but translocation to shoot was more limited than for jack bean. There were no differences in the internal structures of leaves observed by scanning electron microscopy. This study indicates that biochar application during mine soil remediation reduce plant concentrations of potential toxic metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Degradation and plant uptake of nonylphenol (NP) and nonylphenol-12-ethoxylate (NP12EO) in four contrasting agricultural soils

    International Nuclear Information System (INIS)

    Sjoestroem, A.E.; Collins, C.D.; Smith, S.R.; Shaw, G.

    2008-01-01

    Nonylphenol polyethoxylates (NPEOs) are surfactants found ubiquitously in the environment due to widespread industrial and domestic use. Biodegradation of NPEOs produces nonylphenol (NP), an endocrine disruptor. Sewage sludge application introduces NPEOs and NP into soils, potentially leading to accumulation in soils and crops. We examined degradation of NP and nonylphenol-12-ethoxylate (NP12EO) in four soils. NP12EO degraded rapidly (initial half time 0.3-5 days). Concentrations became undetectable within 70-90 days, with a small increase in NP concentrations after 30 days. NP initially degraded quickly (mean half time 11.5 days), but in three soils a recalcitrant fraction of 26-35% remained: the non-degrading fraction may consist of branched isomers, resistant to biodegradation. Uptake of NP by bean plants was also examined. Mean bioconcentration factors for shoots and seeds were 0.71 and 0.58, respectively. Removal of NP from the soil by plant uptake was negligible (0.01-0.02% of initial NP). Root concentrations were substantially higher than shoot and seed concentrations. - Degradation curves of nonylphenol (NP) and nonylphenol-12-ethoxylate (NP12EO) in four soils indicate that 26-35% of NP is recalcitrant, with minor NP ingrowth from NP12EO breakdown

  15. Influence of organic N Sources on N transformation and uptake by lupine plants using 15N technique

    International Nuclear Information System (INIS)

    Abdel-Salam, A.A.; Gadalla, A.M.; Abdel- Aziz, H.A.; Galal, Y.G.M.; EL-degwy, S.M.

    2008-01-01

    A pot experiment was carried out under greenhouse conditions to evaluate the comparative efficiency and transformation of nitrogen applied either as mineral or organic forms. The obtained data showed that shoot dry weight was enhanced by compost and its mixture with leucaena. When organic sources were combined with 15 N, the leucaena.compost mixture (LC p ) gave the highest yield, and the other two were not significantly different from each other. Reinforcing the organic N with mineral N caused an average greater N.uptake over the non reinforced treatment. Similar trend was noticed with root system. Nitrogen uptake by roots was increased according to the order of LC > L > C. N derived from fertilizer (% Ndff) by lupine shoots was significantly affected by fertilizer addition either alone or reinforced with organic plant residues. Both, the portions (%) or absolute values (mg pot -1 ) of Ndff were increased by adding the organic residues. The highest value of Ndfs was recorded with application of leucaena followed by compost, then Leucaena + compost. Portion Ndfa reflected an effective response of lupines plants to Rhizobium inoculation. Addition of LC mixture combined with 15 N-fertilizer had enhanced the N 2 fixation and increased Ndfa value by about 66.7 % over those recorded with 15 N0 treatment. Organic amendment of leucaena could be an efficient source for N to infertile sandy soils

  16. Arsenic-induced nutrient uptake in As-hyperaccumulator Pteris vittata and their potential role to enhance plant growth.

    Science.gov (United States)

    Liu, Xue; Feng, Hua-Yuan; Fu, Jing-Wei; Chen, Yanshan; Liu, Yungen; Ma, Lena Q

    2018-05-01

    It is known that arsenic (As) promotes growth of As-hyperaccumulator Pteris vittata (PV), however, the associated mechanisms are unclear. Here we examined As-induced nutrient uptake in P. vittata and their potential role to enhance plant growth in sterile agar by excluding microbial effects. As-hyperaccumulator P. multifida (PM) and non-hyperaccumulator P. ensiformis (PE) belonging to the Pteris genus were used as comparisons. The results showed that, after 40 d of growth, As induced biomass increase in hyperaccumulators PV and PM by 5.2-9.4 fold whereas it caused 63% decline in PE. The data suggested that As played a beneficial role in promoting hyperaccumulator growth. In addition, hyperaccumulators PV and PM accumulated 7.5-13, 1.4-3.6, and 1.8-4.4 fold more As, Fe, and P than the non-hyperaccumulator PE. In addition, nutrient contents such as K and Zn were also increased while Ca, Mg, and Mn decreased or unaffected under As treatment. This study demonstrated that As promoted growth in hyperaccumulators and enhanced Fe, P, K, and Zn uptake. Different plant growth responses to As among hyperaccumulators PV and PM and non-hyperaccumulator PE may help to better understand why hyperaccumulators grow better under As-stress. Published by Elsevier Ltd.

  17. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake

    International Nuclear Information System (INIS)

    Xu Pengliang; Christie, Peter; Liu Yu; Zhang Junling; Li Xiaolin

    2008-01-01

    A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg -1 ) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake. - G. mosseae was more tolerant than M. truncatula to As and may have conferred enhanced host tolerance by restricting root As uptake and enhancing P nutrition

  18. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake

    Energy Technology Data Exchange (ETDEWEB)

    Xu Pengliang [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Christie, Peter [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Agricultural and Environmental Science Department, Queen' s University Belfast, Belfast BT9 5PX (United Kingdom); Liu Yu [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Zhang Junling [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)], E-mail: junlingz@cau.edu.cn; Li Xiaolin [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)

    2008-11-15

    A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg{sup -1}) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake. - G. mosseae was more tolerant than M. truncatula to As and may have conferred enhanced host tolerance by restricting root As uptake and enhancing P nutrition.

  19. Polysaccharides, total flavonoids content and antioxidant activities in different parts of Silybum marianum L. plants

    Science.gov (United States)

    Sun, Jing; Li, Xinhua; Yu, Xiaolei

    2017-01-01

    Silybum marianum L. is used for the production of silymarin, a flavonoid utilized for regenerating damaged hepatic tissues. Herein, the total flavonoid content (TFC) and polysaccharides content (PC) in the roots, main stems, leaves, fruit receptacles, and pappi of Silybum marianum were determined. The antioxidant activities of plant ethanol extracts were assessed to validate the medicinal potential of the various plant parts. The pappi exhibited the highest TFC (17.10 mg rutin/g of dry plant material), followed by the fruit receptacles (15.34 mg/g). The PC varied from 3.57±0.23 to 11.02±0.35 mg glucose /g dry plant material; the highest PC was obtained from the roots. At 50 ug/mL, the pappi ethanol extract showed the highest 1, 1-Diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity (69.68%), followed by the roots (66.02%).

  20. Uptake, translocation, and transformation of pentachlorophenol in soybean and spinach plants

    International Nuclear Information System (INIS)

    Casterline, J.L. Jr.; Barnett, N.M.; Ku, Y.

    1985-01-01

    Soybean plants were grown for 90 days and spinach plants for 64 days in a mixture of sterilized greenhouse soil and sand containing 10 ppm pentachlorophenol. All plant parts and soil samples were extracted and separated into nonpolar and polar fractions. Major nonpolar and polar metabolites were identified by gas-liquid chromatography and mass spectrometry. Nonpolar fractions from both soybean and spinach plants were found to contain pentachlorophenol and its metabolites, 2,3,4,6-tetrachlorophenol, methoxytetrachlorophenol, 2,3,4,6-tetrachloroanisole, and pentachloroanisole. Cleavage of polar metabolites from the soybean plants by acid hydrolysis yielded organic solvent-extractable products. These products were identified as pentachlorophenol, 2,3,4,6-tetrachlorophenol, and methoxytetrachlorophenol. Cleavage of polar materials from spinach plants yielded only pentachlorophenol. The polar metabolites from the soybean plants were also subjected to enzymatic cleavage by beta-glucosidase. The conjugates consisted mostly of O-glucosides of the same metabolites released by acid hydrolysis. Failure of hydrolysis by aryl sulfatase indicated that very little or no sulfates were present. The metabolites found in the plants were not detected in soil samples obtained from pots immediately after the plants were harvested

  1. The total antioxidant capacity and fluorescence imaging of selected plant leaves commonly consumed in Brunei Darussalam

    Science.gov (United States)

    Watu, Aswani; Metussin, Nurzaidah; Yasin, Hartini M.; Usman, Anwar

    2018-02-01

    We investigated the total antioxidant capacity and fluorescence imaging of several selected plants, namely Centella asiatica, Aidia borneensis and Anacardium occidentale, which are grown and traditionally consumed in Brunei Darussalam. The total antioxidant capacities of aqueous-methanolic infusions of their leaves were measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, and microscopic fluorescence images were measured to identify the fluorescent substances bound in the leaves. We found that the total antioxidant capacity of their infusions is estimated to be 150, 25, 15 folds, respectively, lower compared with that of the standard gallic acid. Accordingly, we demonstrated that the relative antioxidant activity of young and matured leaves agrees with the intensity of red light emission of their fresh leaves upon UV excitation. Thus, this non-invasive spectroscopic method can be potentially utilized to indicate the antioxidants in plant leaves qualitatively.

  2. Growth and nutrient uptake of maize plants as affected by elemental ...

    African Journals Online (AJOL)

    Jane

    2011-10-05

    Oct 5, 2011 ... and Cu, thus characterized as deficient in these micro nutrients. Nitrogen, phosphorus (P) and ... play an important role in the protection of plants against nutrient stress and pests and synthesis of vitamins ..... Brassica oleracea is controlled by the expression and the activity of sulphate transporter. Plant Biol.

  3. Production of positron emitters of metallic elements to study plant uptake and distribution

    International Nuclear Information System (INIS)

    Watanabe, S.; Ishioka, N.S.; Sekine, T.; Osa, A.; Koizumi, M.; Kiyomiya, S.; Nakanishi, H.; Mori, S.

    2001-01-01

    The metallic positron emitters 52 Mn, 52 Fe and 62 Zn, the elements of which are essential nutrients for plants as well as for animals, have been produced for a new tracer method in plant physiology. The tracer method utilizes the detection of annihilation γ-rays, like PET in nuclear medicine, to obtain two-dimensional images on a plant as well as to obtain radioactivity counts at specified points in a plant; this method allows us to observe the tracer movement in a living plant without touching the test plant. The previously reported methods of radiochemical separation of these metallic positron emitters from targets were partly modified from the view of their use in plant physiology. Radionuclidic impurities remaining in the final solutions were examined by γ-ray spectrometry, and their influences on the above-mentioned measurements are discussed. From the experiments on a barley plant, the speeds of 52 Mn 2+ ion and 52 Fe 3+ - mugineic-acid complex have been obtained for the first time to be 0.2 cm/min and 1.0 cm/min, respectively. (orig.)

  4. Species-specific effects of live roots and shoot litter on soil decomposer abundances do not forecast plant litter-nitrogen uptake.

    Science.gov (United States)

    Saj, Stéphane; Mikola, Juha; Ekelund, Flemming

    2009-08-01

    Plant species produce litter of varying quality and differ in the quality and quantity of compounds they release from live roots, which both can induce different decomposer growth in the soil. To test whether differences in decomposer growth can forecast the amount of N species acquire from plant litter, as suggested by theory, we grew individuals of three grassland plants-Holcus lanatus, Plantago lanceolata and Lotus corniculatus-in soils into which (15)N-labelled litter of either Holcus, Plantago or Lotus was added. We measured the effects of live roots and litter of each species on soil microbes and their protozoan and nematode feeders, and to link decomposer growth and plant nutrient uptake, we measured the amount of N taken up by plants from the added litter. We hypothesised that those species that induce the highest growth of microbes, and especially that of microbial feeders, will also take up the highest amount of N from the litter. We found, however, that although numbers of bacterial-feeding Protozoa and nematodes were on average lower after addition of Holcus than Plantago or Lotus litter, N uptake was higher from Holcus litter. Further, although the effects on Protozoa and bacterial- and fungal-feeding nematodes did not differ between the live plants, litter-N uptake differed, with Holcus being the most efficient compared to Plantago and Lotus. Hence, although microbes and their feeders unquestionably control N mineralization in the soil, and their growth differs among plant species, these differences cannot predict differences in litter-N uptake among plant species. A likely reason is that for nutrient uptake, other species-specific plant traits, such as litter chemistry, root proliferation ability and competitiveness for soil N, override in significance the species-specific ability of plants to induce decomposer growth.

  5. Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO2 and drought

    DEFF Research Database (Denmark)

    Andresen, Luise C.; Michelsen, Anders; Jonasson, Sven

    2009-01-01

    the responses to single factors treatments. The soil microbes were superior to plants in the short-term competition for the added glycine, as indicated by an 18 times larger 15N recovery in the microbial biomass compared to the plant biomass. The soil microbes acquired glycine largely as an intact compound (87...... here present results from a field experiment in which the effects of these three climate change factors are investigated solely and in all combinations at a temperate heath dominated by heather (Calluna vulgaris) and wavy hair-grass (Deschampsia flexuosa). Climate induced increases in plant production...... may increase plant root exudation of dissolved organic compounds such as amino acids, and the release of amino acids during decomposition of organic matter. Such free amino acids in soil serve as substrates for soil microorganisms and are also acquired as nutrients directly by plants. We investigated...

  6. pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants.

    Science.gov (United States)

    Chen, Jingguang; Fan, Xiaoru; Qian, Kaiyun; Zhang, Yong; Song, Miaoquan; Liu, Yu; Xu, Guohua; Fan, Xiaorong

    2017-10-01

    The nitrate (NO3-) transporter has been selected as an important gene maker in the process of environmental adoption in rice cultivars. In this work, we transferred another native OsNAR2.1 promoter with driving OsNAR2.1 gene into rice plants. The transgenic lines with exogenous pOsNAR2.1:OsNAR2.1 constructs showed enhanced OsNAR2.1 expression level, compared with wild type (WT), and 15 N influx in roots increased 21%-32% in response to 0.2 mm and 2.5 mm 15NO3- and 1.25 mm 15 NH 4 15 NO 3 . Under these three N conditions, the biomass of the pOsNAR2.1:OsNAR2.1 transgenic lines increased 143%, 129% and 51%, and total N content increased 161%, 242% and 69%, respectively, compared to WT. Furthermore in field experiments we found the grain yield, agricultural nitrogen use efficiency (ANUE), and dry matter transfer of pOsNAR2.1:OsNAR2.1 plants increased by about 21%, 22% and 21%, compared to WT. We also compared the phenotypes of pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines in the field, found that postanthesis N uptake differed significantly between them, and in comparison with the WT. Postanthesis N uptake (PANU) increased approximately 39% and 85%, in the pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines, respectively, possibly because OsNRT2.1 expression was less in the pOsNAR2.1:OsNAR2.1 lines than in the pOsNAR2.1:OsNRT2.1 lines during the late growth stage. These results show that rice NO 3 - uptake, yield and NUE were improved by increased OsNAR2.1 expression via its native promoter. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Cadmium Sorption Characteristics of Soil Amendments and its Relationship with the Cadmium Uptake by Hyperaccumulator and Normal Plants in Amended Soils

    Science.gov (United States)

    Sun, Yan; Wu, Qi-Tang; Lee, Charles C.C.; Li, Baoqin; Long, Xinxian

    2013-01-01

    In order to select appropriate amendments for cropping hyperaccumulator or normal plants on contaminated soils and establish the relationship between Cd sorption characteristics of soil amendments and their capacity to reduce Cd uptake by plants, batch sorption experiments with 11 different clay minerals and organic materials and a pot experiment with the same amendments were carried out. The pot experiment was conducted with Sedum alfredii and maize (Zea mays) in a co-cropping system. The results showed that the highest sorption amount was by montmorillonite at 40.82 mg/g, while mica was the lowest at only 1.83 mg/g. There was a significant negative correlation between the n value of Freundlich equation and Cd uptake by plants, and between the logarithm of the stability constant K of the Langmuir equation and plant uptake. Humic acids (HAs) and mushroom manure increased Cd uptake by S. alfredii, but not maize, thus they are suitable as soil amendments for the co-cropping S. alfredii and maize. The stability constant K in these cases was 0.14–0.16 L/mg and n values were 1.51–2.19. The alkaline zeolite and mica had the best fixation abilities and significantly decreased Cd uptake by the both plants, with K ≥ 1.49 L/mg and n ≥ 3.59. PMID:24912231

  8. Compound Synthesis or Growth and Development of Roots/Stomata Regulate Plant Drought Tolerance or Water Use Efficiency/Water Uptake Efficiency.

    Science.gov (United States)

    Meng, Lai-Sheng

    2018-04-11

    Water is crucial to plant growth and development because it serves as a medium for all cellular functions. Thus, the improvement of plant drought tolerance or water use efficiency/water uptake efficiency is important in modern agriculture. In this review, we mainly focus on new genetic factors for ameliorating drought tolerance or water use efficiency/water uptake efficiency of plants and explore the involvement of these genetic factors in the regulation of improving plant drought tolerance or water use efficiency/water uptake efficiency, which is a result of altered stomata density and improving root systems (primary root length, hair root growth, and lateral root number) and enhanced production of osmotic protectants, which is caused by transcription factors, proteinases, and phosphatases and protein kinases. These results will help guide the synthesis of a model for predicting how the signals of genetic and environmental stress are integrated at a few genetic determinants to control the establishment of either water use efficiency or water uptake efficiency. Collectively, these insights into the molecular mechanism underpinning the control of plant drought tolerance or water use efficiency/water uptake efficiency may aid future breeding or design strategies to increase crop yield.

  9. How to put plant root uptake into a soil water flow model [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Xuejun Dong

    2016-01-01

    Full Text Available The need for improved crop water use efficiency calls for flexible modeling platforms to implement new ideas in plant root uptake and its regulation mechanisms. This paper documents the details of modifying a soil infiltration and redistribution model to include (a dynamic root growth, (b non-uniform root distribution and water uptake, (c the effect of water stress on plant water uptake, and (d soil evaporation. The paper also demonstrates strategies of using the modified model to simulate soil water dynamics and plant transpiration considering different sensitivity of plants to soil dryness and different mechanisms of root water uptake. In particular, the flexibility of simulating various degrees of compensated uptake (whereby plants tend to maintain potential transpiration under mild water stress is emphasized. The paper also describes how to estimate unknown root distribution and rooting depth parameters by the use of a simulation-based searching method. The full documentation of the computer code will allow further applications and new development.

  10. The uptake, distribution and translocation of 86Rb in alfalfa plants susceptible and resistant to the bacterial wilt and the effect of Corynebacterium insidiosum upon these processes

    International Nuclear Information System (INIS)

    Hanker, I.; Kudelova, A.

    1981-01-01

    Alfalfa (Medicago sativa L.) plants susceptible (S) and resistant (R) to bacterial wilt were fed via roots with a nutrient solution labelled with 86 Rb + , at different times after inoculation with Corynebacterium insidiosum (McCull.) H.L. Jens. The infection did not affect 86 Rb + uptake per plant in the course of a 14-day-period following inoculation; however, it affected its distribution differently in the S- and the R-plants. 86 Rb + uptake significantly decreased due to the infection in the S-plants on the day 49 after inoculation (a 4-h-exposure to 86 Rb + ), with the ions more slowly translocated to the shoots in diseased S-plants than in diseased R-plants. Likely factors causing these effects and their relationship to alfalfa resistance to bacterial wilt are discussed. (author)

  11. Using 15N in studies on the uptake of mineral and organic nitrogen by plants

    International Nuclear Information System (INIS)

    Mitovska, R.

    1983-01-01

    Modelled microplot field experiments at the Central Experimental Station of the All-Union Institute of Fertilizers and Agrochemistry in Moscow were used to study the uptake of nitrogen ( 15 N) applied together or individually with minerals or with green oats mass or in both ways. The studies were conducted on soddy podzolic, heavy loam, soddy podzolic sandy soil and leached chernozem. It was established that the soddy podzolic heavy loam had the highest natural fertility and showed greatest response to the applied N

  12. Using /sup 15/N in studies on the uptake of mineral and organic nitrogen by plants

    Energy Technology Data Exchange (ETDEWEB)

    Mitovska, R. (Akademiya na Selskostopanskite Nauki, Sofia (Bulgaria). Inst. po Pochvoznanie)

    1983-01-01

    Modelled microplot field experiments at the Central Experimental Station of the All-Union Institute of Fertilizers and Agrochemistry in Moscow were used to study the uptake of nitrogen (/sup 15/N) applied together or individually with minerals or with green oats mass or in both ways. The studies were conducted on soddy podzolic, heavy loam, soddy podzolic sandy soil and leached chernozem. It was established that the soddy podzolic heavy loam had the highest natural fertility and showed greatest response to the applied N.

  13. Use of 32P in the study of phosphorus uptake and metabolism in plants

    International Nuclear Information System (INIS)

    Michalik, I.

    1980-01-01

    The method allows following the uptake and metabolism of phosphorus and isolating in acids both soluble organic phosphorus compounds (i.e., esters of phosphoric acid with glycides, free nucleotides, inorganic phosphorus) and insoluble phosphorus compounds (i.e., macromolecular compounds, phospholipids). The method of separating low-molecular and acid-soluble phosphorus compounds by one-dimensional paper chromatography was also tested. In maize roots the following low-molecular phosphorus compounds were determined by autoradiochromatography: ATP, ADP, G-1-P, AMP, G-6-P, di PGA, Ri-5-P, F-1, 6-diP, 3-PGA, Pan. (author)

  14. Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation.

    Science.gov (United States)

    Zhang, Yang; Lv, Tao; Carvalho, Pedro N; Arias, Carlos A; Chen, Zhanghe; Brix, Hans

    2016-02-01

    We aimed at assessing the effects of four wetland plant species commonly used in constructed wetland systems: Typha, Phragmites, Iris and Juncus for removing ibuprofen (IBU) and iohexol (IOH) from spiked culture solution and exploring the mechanisms responsible for the removal. IBU was nearly completely removed by all plant species during the 24-day experiment, whereas the IOH removal varied between 13 and 80 %. Typha and Phragmites were the most efficient in removing IBU and IOH, respectively, with first-order removal rate constants of 0.38 and 0.06 day(-1), respectively. The pharmaceuticals were taken up by the roots and translocated to the aerial tissues. However, at the end of the experiment, plant accumulation constituted only up to 1.1 and 5.7 % of the amount of IBU and IOH spiked initially. The data suggest that the plants mainly function by facilitating pharmaceutical degradation in the rhizosphere through release of root exudates.

  15. The Antioxidant Capacities and Total Phenolic Contents of Some Medicinal Plants in Iran

    Directory of Open Access Journals (Sweden)

    Ali Mirzaei

    2011-12-01

    Full Text Available Background & Objectives: Free radicals are highly reactive molecules may cause great damage to cell membranes and DNA and Result in inducing oxidation DNA mutations leading to cancer, degenerative, and other diseases. Plant antioxidant derived may be preventive of free radical damages. Methods & Materials: The Stems and flower sample of plants air-dried, finely ground and were extracted by ethanol: water (70:30 for 48 h. Extracts were filtered and dried under vacuum. The antioxidant activity of five ethanolic extract of medicinal plants (Descurainia Sophia, Plantago major, Trachyspermum copticum L, Coriandrum sativum and Trigonella foenum-graecum from Iran were analysed by five different methods [1,1-diphenyl-2-picrylhydrazyl (DPPH radical, 2,2,azinobis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS radical cation, Ferric-reducing antioxidant power assay (FRAP, phosphomolybdenum (PMB and reducing power (RP]. In addition, for determination of antioxidant components total phenolic content was also analyzed. Results: The total phenolic content of medicinal plant ranges from 74 to 154.3 mg Gallic acid/g extract as measured by the Folin–Ciocalteau method. Values of DPPH varied from 15.5 to 19.6 µmol trolex/g. FRAP ranged from 124.2 to 753 µmol of Fe(II/g extract. Antioxidant activity of the Plantago major was always higher compared to the other plants extracts values of total phenols content and antioxidant capacity by DPPH, ABTS, FRAP, (154.33 mg GAE/g, 1856 µmol trolox, 750 µmol trolox and 1169 µmol of Fe(II/g, extract respectively. The range of total antioxidant activity by phosphomolybdenum method was 513.3 to 870 µmol trolox/g. The reducing ability of the tested extracts was between 0.31-1.26. Plantago majorwas also highest activity in both tests. Conclusion: This study clearly demonstrated that Plantago major crude extract exhibit significant antioxidant activity.

  16. The effect of elevated cadmium content in soil on the uptake of nitrogen by plants

    Energy Technology Data Exchange (ETDEWEB)

    Ciecko, Z.; Kalembasa, S.; Wyszkowski, M.; Rolka, E. [University of Warmia & Mazury Olsztyn, Olsztyn (Poland). Dept. of Environmental Chemistry

    2004-07-01

    The aim of this study was to determine the effect of cadmium (10, 20, 30 and 40 mg Cd/kg of soil) contamination in soil with the application of different substances (compost, brown coal, lime and bentonite) on the intake of nitrogen by some plants. The correlations between the nitrogen content in the plants and the cadmium concentration in the soil, as well as the plant yield and the content of micro- and macroelements in the plants were determined. Plant species and cadmium dose determined the effects of soil contamination with cadmium on the content of nitrogen. Large doses of cadmium caused an increase in nitrogen content in the Avena sativa straw and roots and in the Zea mays roots. Soil contamination with cadmium resulted in a decrease of nitrogen content in the Avena sativa grain, in above-ground parts and roots of the Lupinus luteus, in the above-ground parts of the Zea mays and in the above-ground parts and roots of Phacelia tanacaetifolia. Among the experimental different substances, the application of bentonite had the strongest and a usually negative effect on the nitrogen content in plants. The greatest effect of bentonite was on Avena sativa grain, above-ground parts Zea mays and Lupinus luteus and Phacelia tanacaetifolia. The content of nitrogen in the plants was generally positively correlated with the content of the macroelements and some of the microelements, regardless of the substances added to the soil.

  17. Uptake of C-14 tagged acetate by rice in a paddy soil-to-rice plant system

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Nobuyoshi; Tagami, Keiko; Uchida, Shigeo [Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan)

    2014-07-01

    rice plants in the control group. Similar phenomena should also be found for spiked group so that it was difficult to estimate root uptake rate from soil. The highest activity was 1.3 x 10{sup 3} ± 2.3 x 10{sup 2} Bq/g of the rice husk sample in the spiked group, and the C-14 activities in each plant part of the spiked group decreased in the same order as those of the control group. The average soil-to-plant transfer factor for C-14 in white rice (TF: Bq/g-dry of C-14 in white rice/ Bq/g-dry of C-14 in the soil) was 6.8. This TF includes the C-14 uptake by rice plants from the atmosphere. Therefore, new environmental parameter, which considers the transfer of C-14 from atmosphere, is desired. This work has been partially supported by the Agency of Natural Resources and Energy, the Ministry of Economy, Trade, and Industry (METI) Japan. (authors)

  18. Total Data Management System for the La Hague spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Chabert, J.; Coignaud, G.; Perot, J.P.; Fournier, W.; Silvain, B.

    1991-01-01

    Operation of the UP2 and UP3 reprocessing plants at La Hague, France, generates considerable data processing requirements. To meet these requirements, a Total Data Management System (TDMS) has been designed and installed to operate the biggest Ethernet industrial network in Europe. This network, called Haguenet, interconnects a large number of computers and user terminals. The TDMS' main operational functions are plant operation and production data management, maintenance data management, technical documents management and computer-aided design (CAD). Extensive experience was gained through the design and operation of the TDMS at La Hague. (author)

  19. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation.

    Science.gov (United States)

    Sobariu, Dana Luminița; Fertu, Daniela Ionela Tudorache; Diaconu, Mariana; Pavel, Lucian Vasile; Hlihor, Raluca-Maria; Drăgoi, Elena Niculina; Curteanu, Silvia; Lenz, Markus; Corvini, Philippe François-Xavier; Gavrilescu, Maria

    2017-10-25

    Certain species of plants can benefit from synergistic effects with plant growth-promoting rhizobacteria (PGPR) that improve plant growth and metal accumulation, mitigating toxic effects on plants and increasing their tolerance to heavy metals. The application of PGPR as biofertilizers and atmospheric nitrogen fixators contributes considerably to the intensification of the phytoremediation process. In this paper, we have built a system consisting of rhizospheric Azotobacter microbial populations and Lepidium sativum plants, growing in solutions containing heavy metals in various concentrations. We examined the ability of the organisms to grow in symbiosis so as to stimulate the plant growth and enhance its tolerance to Cr(VI) and Cd(II), to ultimately provide a reliable phytoremediation system. The study was developed at the laboratory level and, at this stage, does not assess the inherent interactions under real conditions occurring in contaminated fields with autochthonous microflora and under different pedoclimatic conditions and environmental stresses. Azotobacter sp. bacteria could indeed stimulate the average germination efficiency of Lepidium sativum by almost 7%, average root length by 22%, average stem length by 34% and dry biomass by 53%. The growth of L. sativum has been affected to a greater extent in Cd(II) solutions due its higher toxicity compared to that of Cr(VI). The reduced tolerance index (TI, %) indicated that plant growth in symbiosis with PGPR was however affected by heavy metal toxicity, while the tolerance of the plant to heavy metals was enhanced in the bacteria-plant system. A methodology based on artificial neural networks (ANNs) and differential evolution (DE), specifically a neuro-evolutionary approach, was applied to model germination rates, dry biomass and root/stem length and proving the robustness of the experimental data. The errors associated with all four variables are small and the correlation coefficients higher than 0

  20. Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar.

    Science.gov (United States)

    Puga, A P; Abreu, C A; Melo, L C A; Paz-Ferreiro, J; Beesley, L

    2015-11-01

    Accumulation of heavy metals in unconsolidated soils can prove toxic to proximal environments, if measures are not taken to stabilize soils. One way to minimize the toxicity of metals in soils is the use of materials capable of immobilizing these contaminants by sorption. Biochar (BC) can retain large amounts of heavy metals due to, among other characteristics, its large surface area. In the current experiment, sugarcane-straw-derived biochar, produced at 700 °C, was applied to a heavy-metal-contaminated mine soil at 1.5, 3.0, and 5.0% (w/w). Jack bean and Mucuna aterrima were grown in pots containing a mine contaminated soil and soil mixed with BC. Pore water was sampled to assess the effects of biochar on zinc solubility, while soils were analyzed by DTPA extraction to confirm available metal concentrations. The application of BC decreased the available concentrations of Cd, Pb, and Zn in the mine contaminated soil leading to a consistent reduction in the concentration of Zn in the pore water. Amendment with BC reduced plant uptake of Cd, Pb, and Zn with the jack bean uptaking higher amounts of Cd and Pb than M. aterrima. This study indicates that biochar application during mine soil remediation could reduce plant concentrations of heavy metals. Coupled with this, symptoms of heavy metal toxicity were absent only in plants growing in pots amended with biochar. The reduction in metal bioavailability and other modifications to the substrate induced by the application of biochar may be beneficial to the establishment of a green cover on top of mine soil to aid remediation and reduce risks.

  1. The effect of fertilizer applications on 137Cs uptake by different plant species and vegetation types

    International Nuclear Information System (INIS)

    Belli, M.; Sansone, U.; Ardiani, R.; Feoli, E.; Scimone, M.; Menegon, S.; Parente, G.

    1995-01-01

    A trial carried out in a greenhouse over a two-year period is discussed. The effects on 137 Cs concentration in plants, roots and soil have been investigated versus the grassland species composition (legume, grass and mixture) and eight combinations of mineral fertilizers (NPK). The results indicate: (a) the effect of K fertilizer in reducing 137 Cs plant absorption; (b) the effect of N fertilizer in favouring grass growth and radiocaesium absorption; (c) for all fertilizer combinations, a higher 137 Cs storage in the root system of the legumes and a lower 137 Cs absorption in the plants. (author)

  2. Dynamics of Short-Term Phosphorus Uptake by Intact Mycorrhizal and Non-mycorrhizal Maize Plants Grown in a Circulatory Semi-Hydroponic Cultivation System.

    Science.gov (United States)

    Garcés-Ruiz, Mónica; Calonne-Salmon, Maryline; Plouznikoff, Katia; Misson, Coralie; Navarrete-Mier, Micaela; Cranenbrouck, Sylvie; Declerck, Stéphane

    2017-01-01

    A non-destructive cultivation system was developed to study the dynamics of phosphorus (Pi) uptake by mycorrhizal and non-mycorrhizal maize plantlets. The system consisted of a plant container connected via silicon tubes to a glass bottle containing a nutrient solution supplemented with Pi. The nutrient solution is pumped with a peristaltic pump to the upper part of the container via the silicon tubes and the solution percolate through the plantlet container back into the glass bottle. Pi is sampled from the glass bottle at regular intervals and concentration evaluated. Maize plantlets were colonized by the AMF Rhizophagus irregularis MUCL 41833 and Pi uptake quantified at fixed intervals (9, 21, and 42 h) from the depletion of the Pi in the nutrient solution flowing through the plantlets containers. Plants and fungus grew well in the perlite substrate. The concentration of Pi in the bottles followed an almost linear decrease over time, demonstrating a depletion of Pi in the circulating solution and a concomitant uptake/immobilization by the plantlet-AMF associates in the containers. The Pi uptake rate was significantly increased in the AMF-colonized plantlets (at 9 and 21 h) as compared to non-colonized plantlets, although no correlation was noticed with plant growth or P accumulation in shoots. The circulatory semi-hydroponic cultivation system developed was adequate for measuring Pi depletion in a nutrient solution and by corollary Pi uptake/immobilization by the plant-AMF associates. The measurements were non-destructive so that the time course of Pi uptake could be monitored without disturbing the growth of the plant and its fungal associate. The system further opens the door to study the dynamics of other micro and macro-nutrients as well as their uptake under stressed growth conditions such as salinity, pollution by hydrocarbon contaminants or potential toxic elements.

  3. Dynamics of Short-Term Phosphorus Uptake by Intact Mycorrhizal and Non-mycorrhizal Maize Plants Grown in a Circulatory Semi-Hydroponic Cultivation System

    Directory of Open Access Journals (Sweden)

    Mónica Garcés-Ruiz

    2017-08-01

    Full Text Available A non-destructive cultivation system was developed to study the dynamics of phosphorus (Pi uptake by mycorrhizal and non-mycorrhizal maize plantlets. The system consisted of a plant container connected via silicon tubes to a glass bottle containing a nutrient solution supplemented with Pi. The nutrient solution is pumped with a peristaltic pump to the upper part of the container via the silicon tubes and the solution percolate through the plantlet container back into the glass bottle. Pi is sampled from the glass bottle at regular intervals and concentration evaluated. Maize plantlets were colonized by the AMF Rhizophagus irregularis MUCL 41833 and Pi uptake quantified at fixed intervals (9, 21, and 42 h from the depletion of the Pi in the nutrient solution flowing through the plantlets containers. Plants and fungus grew well in the perlite substrate. The concentration of Pi in the bottles followed an almost linear decrease over time, demonstrating a depletion of Pi in the circulating solution and a concomitant uptake/immobilization by the plantlet-AMF associates in the containers. The Pi uptake rate was significantly increased in the AMF-colonized plantlets (at 9 and 21 h as compared to non-colonized plantlets, although no correlation was noticed with plant growth or P accumulation in shoots. The circulatory semi-hydroponic cultivation system developed was adequate for measuring Pi depletion in a nutrient solution and by corollary Pi uptake/immobilization by the plant-AMF associates. The measurements were non-destructive so that the ti