WorldWideScience

Sample records for total phenolic compound

  1. Ascorbic acid, β-carotene, total phenolic compound and ...

    African Journals Online (AJOL)

    A two year study at Alexandria University compared ascorbic acid, β-carotene, total phenolic compound, nitrite content and microbiological quality of orange and strawberry fruits grown under organic and conventional management techniques to see if producers concerns are valid. Organically grown oranges and ...

  2. The impact of drying techniques on phenolic compound, total phenolic content and antioxidant capacity of oat flour tarhana.

    Science.gov (United States)

    Değirmencioğlu, Nurcan; Gürbüz, Ozan; Herken, Emine Nur; Yıldız, Aysun Yurdunuseven

    2016-03-01

    In this study, the changes in phenolic composition, total phenolic content, and antioxidant capacity of tarhanas supplemented with oat flour (OF) at the levels of 20-100% (w/w) after three drying treatments (sun-, oven-, and microwave drying) were investigated. A total of seventeen phenolic standards have been screened in tarhanas, and the most abundant flavonol and phenolic acid compounds were kaempferol (23.62mg/g) and 3-hydroxy-4-metoxy cinnamic acid (9.60mg/g). The total phenolic content amount gradually increased with the addition of OF to tarhana, but decidedly higher total phenolic content was found in samples oven dried at 55°C as compared with other methods. The microwave- and oven dried tarhana samples showed higher TEACDPPH and TEACABTS values than those dried with the other methods, respectively, in higher OF amounts. Consequently, oven- and microwave-drying can be recommended to retain the highest for phenolic compounds as well as maximal antioxidant capacity in OF supplemented tarhana samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Ultrasound-Assisted Extraction of Total Phenolic Compounds from Inula helenium

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2013-01-01

    Full Text Available Ultrasound-assisted extraction (UAE of phenolic compounds from Inula helenium was studied. Effects of ethanol concentration, ultrasonic time, solid-liquid ratio, and number of extractions were investigated. An orthogonal array was constructed to optimize UAE process. The optimized extraction conditions were as follows: ethanol concentration, 30%; solid-liquid ratio, 1 : 20; number of extractions, 2 times; extraction time, 30 min. Under the optimal conditions, the yield of total phenolic compounds and chlorogenic acid was 6.13±0.58 and 1.32±0.17 mg/g, respectively. The results showed that high amounts of phenolic compounds can be extracted from I. helenium by ultrasound-assisted extraction technology.

  4. Total phenolic and phytosterol compounds and the radical scavenging activity of germinated Australian sweet lupin flour.

    Science.gov (United States)

    Rumiyati; Jayasena, Vijay; James, Anthony P

    2013-12-01

    In addition to their favourable nutritional profile, legumes also contain a range of bioactive compounds such as phenolic compounds and phytosterols which may protect against chronic diseases including cancer and cardiovascular disease. Germination of some legume seeds has been previously reported to increase the concentration of the bioactive compounds. In this study, the effect of germination of Australian Sweet Lupin (ASL) seeds for 9 days on the concentration of some bioactive compounds and the radical scavenging activity in the resulting flour was determined. The concentration of total phenolic compounds in methanolic extracts of germinated ASL flour was determined using Folin Ciocalteu reagent and phytosterols in oil extracts were analyzed by gas-liquid chromatography. The methanolic and oil extracts were also used to determine radical scavenging activity toward 2,2-diphenyl-1-picrylhydrazyl. In the methanolic extracts of germinated ASL flour, phenolic contents and the antioxidant activity were significantly increased following germination (700 and 1400 %, respectively). Analysis of the oil extracts of germinated ASL flour revealed that the concentration of phytosterols and the antioxidant activity were also increased significantly compared to ungerminated ASL flour (300 and 800 %, respectively). The relative proportion of phytosterols in germinated ASL flour was: β-sitosterol (60 %), stigmasterol (30 %) and campesterol (10 %). Germination increases the concentration of bioactive compounds and the radical scavenging activity in the germinated ASL flour.

  5. Determination of total phenolic compound contents and antioxidant capacity of persimmon skin

    Directory of Open Access Journals (Sweden)

    M Mohamadi

    2012-05-01

    Full Text Available Due to the adverse side effects of synthetic antioxidants, the search for natural and safe antioxidants has become crucial. In this study, the total phenolic compound contents and antioxidants activity of persimmon skin was investigated. The extraction was carried out by means of maceration method using ethanol and methanol solvents with ratio of 1 part persimmon skin to 5 parts of solvents. Afterwards, the total phenolic compounds and antioxidants activity was measured. According to the results, ethanolic and methanolic extracts contained 255.6 and 214.15 mg gallic acid per 100 g of persimmon skin, respectively. Moreover, ethanolic extracts showed a higher activity for scavenging free radicals compared to methanolic extracts.

  6. Evaluation of Antibacterial Activity and Total Phenol Compounds of Punica granatum Hydro-Alcoholic Extract

    Directory of Open Access Journals (Sweden)

    Elahe Ahmadi

    2016-12-01

    Full Text Available Background & Objectives: Punica granatum is a non-productive form of a plant and is used for the treatment of diseases in traditional medicine. In this study, we evaluate the antibacterial activity and the total phenol compounds of Punica granatum. Materials & Methods: Disk and well diffusion methods and MIC were used to evaluate the antibacterial activity of hydro-alcoholic extract on S. aureus and E. coli compared to standard commercial antibiotic disks. Measurement of phenol compounds were performed by Seevers and Daly colorimetric methods (Folin-ciocalteu indicator. Results: 35 and 29 mm inhibition zones in S. aureus and 22 and 17 mm inhibition zones in E. coli were shown by disk and well diffusion method, respectively. Also, 7.8 mg/ml concentration of extract showed the MIC points for two bacteria. Phenol compound of extract was 233.15±5.1 mg/g of extraction. Conclusion: Antibacterial effect of Punica granatum compared to antibiotics indicates the strong activity against examined bacteria. Extensive antibacterial study of Punica granatum is suggested.

  7. Total phenolic compounds, antioxidant potential and α-glucosidase inhibition by Tunisian Euphorbia paralias L.

    Directory of Open Access Journals (Sweden)

    Malek Besbes Hlila

    2016-08-01

    Full Text Available Objective: To examine the potential antioxidant and anti-α-glucosidase inhibitory activities of Tunisian Euphorbia paralias L. leaves and stems extracts and their composition of total polyphenol and flavonoids. Methods: The different samples were tested for their antiradical activities by using 2, 2’- azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS and 1,1-diphenyl-2-picrylhydrazyl (DPPH assays. In α-glucosidase activity, α-glucosidase (0.3 IU/mL and substrate, 2500 µmol/ L p-nitrophenyl α-D-glucopyranoside were used; absorbance was registered at 405 nm. Results: The leaves acetonic extract exhibited the strongest α-glucosidase inhibition [IC50 = (0.0035 ± 0.001 µg/mL], which was 20-fold more active than the standard product (acarbose [IC50 = (0.07 ± 0.01 µg/mL]. Acetonic extract of the leaves exhibited the highest quantity of total phenolic [(95.54 ± 0.04 µg gallic acid equivalent/mg] and flavonoid [(55.16 ± 0.25 µg quercetin equivalent/mg]. The obtained findings presented also that this extract was detected with best antioxidant capacity [IC50 = (0.015 ± 0.01 µg/mL] against DPPH and a value of IC50 equal to (0.02 ± 0.01 µg/mL against ABTS. Positive relationship between polyphenolic content of the tested Euphorbia paralias L. leaves and stems extracts and its antioxidant activity (DPPH and ABTS was detected. Elevated positive linear correlation was got between ABTS and total phenolic (R2 = 0.751. Conclusions: The findings clearly demonstrate that the use of a polar solvent enables extraction of significant quantities of phenol compounds and flavonoids.

  8. Phenolic Molding Compounds

    Science.gov (United States)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  9. Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano.

    Science.gov (United States)

    Abderrahim, Fatima; Huanatico, Elizabeth; Segura, Roger; Arribas, Silvia; Gonzalez, M Carmen; Condezo-Hoyos, Luis

    2015-09-15

    Physical features, bioactive compounds and total antioxidant capacity (TAC) of coloured quinoa varieties (Chenopodium quinoa Willd.) from Peruvian Altiplano were studied. Quinoa seeds did not show a pure red colour, but a mixture which corresponded to different fractal colour values (51.0-71.8), and they varied from small to large size. Regarding bioactive compounds, total phenolic (1.23-3.24mg gallic acid equivalents/g) and flavonol contents (0.47-2.55mg quercetin equivalents/g) were highly correlated (r=0.910). Betalains content (0.15-6.10mg/100g) was correlated with L colour parameter (r=-0.569), total phenolics (r=0.703) and flavonols content (r=0.718). Ratio of betaxanthins to betacyanins (0.0-1.41) was negatively correlated with L value (r=-0.744). Whereas, high TAC values (119.8-335.9mmol Trolox equivalents/kg) were negatively correlated with L value (r=-0.779), but positively with betalains (r=0.730), as well as with free (r=0.639), bound (r=0.558) and total phenolic compounds (r=0.676). Unexploited coloured quinoa seeds are proposed as a valuable natural source of phenolics and betalains with high antioxidant capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Solid-Liquid Extraction Kinetics of Total Phenolic Compounds (TPC from Red Dates

    Directory of Open Access Journals (Sweden)

    Bee Lin Chua

    2018-01-01

    Full Text Available Red dates are one of the most famous herbal plants in making traditional Chinese medicine. They contain large amount of bioactive compounds. The objectives of this research were to optimise the crude extract yield and total phenolic compounds (TPC yield from red dates using response surface methodology (RSM and model the extraction kinetics of TPC yield from red dates. Date fruits were dried in an oven under temperatures 50°C, 60°C, 70°C and 80°C until a constant weight was obtained. The optimum drying temperature was 60°C as it gave the highest crude extract yield and TPC yield. Besides that, single factor experiments were used to determine the optimum range of four extraction parameters which were: liquid-solid ratio (10-30 ml/g; ultrasonic power (70-90%; extraction temperature (50-70°C; and extraction time (40-60min. The optimum range of the four parameters were further optimised using the Box-Behken Design (BBD of RSM. The extraction conditions that gave the highest crude extract yield and TPC yield were chosen. The optimum value for liquid-solid ratio, ultrasonic power, extraction temperature and extraction time were 30ml/g, 70%, 60°C and 60 min respectively. The two equations generated from RSM were reliable and can be used to predict the crude extract yield and TPC yield. The higher the extraction temperature, liquid-solid ratio, and extraction time and lower ultrasonic power, the higher the crude extract and TPC yield. Finally, the results of TPC yield versus time based on the optimum extraction parameters from RSM optimisation were fitted into three extraction kinetic models (Peleg’s model, Page’s model and Ponomaryov’s model. It was found that the most suitable kinetic model to represent the extraction process of TPC from red dates was Page’s model due to its coefficient of determination (R2 was the closest to unity, 0.9663 while its root mean square error (RMSE was the closest to zero, 0.001534.

  11. Increase of content and bioactivity of total phenolic compounds from spent coffee grounds through solid state fermentation by Bacillus clausii.

    Science.gov (United States)

    Rochín-Medina, Jesús J; Ramírez, Karina; Rangel-Peraza, Jesús G; Bustos-Terrones, Yaneth A

    2018-03-01

    Spent coffee grounds are waste material generated during coffee beverage preparation. This by-product disposal causes a negative environmental impact, in addition to the loss of a rich source of nutrients and bioactive compounds. A rotating central composition design was used to determine the optimal conditions for the bioactivity of phenolic compounds obtained after the solid state fermentation of spent coffee grounds by Bacillus clausii . To achieve this, temperature and fermentation time were varied according to the experimental design and the total phenolic and flavonoid content, antioxidant activity and antimicrobial activity were determined. Surface response methodology showed that optimum bioprocessing conditions were a temperature of 37 °C and a fermentation time of 39 h. Under these conditions, total phenolic and flavonoid contents increased by 36 and 13%, respectively, in fermented extracts as compared to non-fermented. In addition, the antioxidant activity was increased by 15% and higher antimicrobial activity was observed against Gram positive and negative bacteria. These data demonstrated that bioprocessing optimization of spent coffee grounds using the surface response methodology was an important tool to improve phenolic extraction, which could be used as an antioxidant and antimicrobial agents incorporated into different types of food products.

  12. Correlation of pasting behaviors with total phenolic compounds and starch digestibility of indigenous pigmented rice grown in upper Northern Thailand

    Directory of Open Access Journals (Sweden)

    Jirapa Ponjanta

    2016-03-01

    Full Text Available Background: Thailand has one of the most important rice genetic resources with white, light brown, brown, red, and purple rice bran colors. The latter believed to have potential for health benefits due to their phenolic content. Recently researchers have indicated that starch digestive enzymes, including salivary and pancreatic α-amylases and α-glucosidases, can be inhibited by phenolic compounds. Although pasting properties of rice flour are key determinants of quality significantly impacting the final product texture, there is no in-depth study on their correlation with phenolic compound and starch digestibility. Methods: Rice flour from twelve varieties, three from each of five bran colors (white, brown, red, and purple, were evaluated for pasting properties (RVA-3D, total phenolic compounds, amylose content, resistant starch and estimated glycemic index. Simple correlation coefficients were calculated for the relationships between pasting properties (final viscosity, breakdown, setback and pasting temperature and total phenolic compounds, resistant starch and estimated glycemic index. Results: Within each rice variety, red and purple pigmented flours had higher total phenolic compounds (TPC and more resistant starch than that of white flours. The TPC and resistant starch content of the flours ranged between 7.83- 47.3 mg/L and 2.44–10.50% respectively, and producing 60-80 of estimated glycemic index. Viscosity behavior showed that pigmented with low amylose rice had lower viscosity temperature than that of pigmented with high amylose rice flour, but higher in peak viscosity. Correlation coefficients of pasting temperature, final viscosity, break down and setback with TCP was observed to be inversely related to glycemic index. However, it was positively correlated to the resistant starch and amylose content. Conclusions: Pigmented rice flour is a better source of TPC and resistant starch which in turn provides low glycemic index. This

  13. Evaluation of Antioxidant Activity, Total Flavonoids, Tannins and Phenolic Compounds in Psychotria Leaf Extracts

    Directory of Open Access Journals (Sweden)

    Anelise Samara Nazari Formagio

    2014-11-01

    Full Text Available The antioxidant activity of Psychotria carthagenensis, P. leiocarpa, P. capillacea and P. deflexa (Rubiaceae extracts were investigated, and the concentrations of total phenolics, flavonoids, condensed tannins and flavonols were determined. The chemical compositions of the extracts were investigated using the high performance liquid chromatography (HPLC/PAD method. We used 1,1-diphenyl-1-picrylhydrazyl free radical (DPPH, β-Carotene bleaching and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS radical cations to determine antioxidant activity. The ability to scavenge radical was measured in these experiments by the discoloration of the solution. Concentrations of constituents were measured spectrophotometrically. P. carthagenensis and P. capillacea exhibited the highest antioxidant activity, in the DPPH test, β-carotene bleaching and ABTS system. The highest phenolic, flavonoid, condensed tannin and flavonol concentration was found in P. carthagenensis and P. capillacea extracts. HPLC-PDA analysis of P. carthagenensis and P. capillacea revealed hydroxycinnamic acid (p-coumaric acid. This is the first report on the antioxidant properties and constituent analysis of these Psychotria extracts.

  14. Total phenolic compounds and tocopherols profiles of seven olive oil varieties grown in the south-west of Spain.

    Science.gov (United States)

    Franco, Maria Nieves; Galeano-Díaz, Teresa; Sánchez, Jacinto; De Miguel, Concha; Martín-Vertedor, Daniel

    2014-01-01

    This article reports about the presence of some of the components of minor fraction of virgin olive oils, polyphenols and tocopherols, in several of the VOO varieties from Extremadura. The relationship between both classes of compounds and the oxidative stability of the oils is also examined. The levels of total phenols, α, β, and γ tocopherols showed significant differences (ptocopherol was the most representative in the seven varieties (95.97 %) and ranged from (288 - 170) to (485 - 244) mg/kg in the Morisca and Carrasqueña varieties respectively. On the other hand, a positive high lineal correlation was observed between oxidative stability and studied along the maturity of the fruit and the total phenolic compounds (natural antioxidants) (r(2)>0.90; ptocopherol (r(2)>0.85; ptocopherol (r(2)>0.70; ptocopherols (r(2)>0.87; ptocopherol fraction contributed equally to the oxidative stability of all the VOO whereas the largest contribution was provided by the oil phenolic fraction, as it was the case of the Carrasqueña variety.

  15. Techniques for Analysis of Plant Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Thomas H. Roberts

    2013-02-01

    Full Text Available Phenolic compounds are well-known phytochemicals found in all plants. They consist of simple phenols, benzoic and cinnamic acid, coumarins, tannins, lignins, lignans and flavonoids. Substantial developments in research focused on the extraction, identification and quantification of phenolic compounds as medicinal and/or dietary molecules have occurred over the last 25 years. Organic solvent extraction is the main method used to extract phenolics. Chemical procedures are used to detect the presence of total phenolics, while spectrophotometric and chromatographic techniques are utilized to identify and quantify individual phenolic compounds. This review addresses the application of different methodologies utilized in the analysis of phenolic compounds in plant-based products, including recent technical developments in the quantification of phenolics.

  16. Phenolic Compounds in Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Pablo Velasco

    2010-12-01

    Full Text Available Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  17. Hypotheses on the effects of enological tannins and total red wine phenolic compounds on Oenococcus oeni.

    Science.gov (United States)

    Chasseriaud, Laura; Krieger-Weber, Sibylle; Déléris-Bou, Magali; Sieczkowski, Nathalie; Jourdes, Michael; Teissedre, Pierre Louis; Claisse, Olivier; Lonvaud-Funel, Aline

    2015-12-01

    Lot of articles report on the impact of polyphenols on wine lactic acid bacteria, but it is clear that the results still remain confusing, because the system is complicated both in term of chemical composition and of diversity of strains. In addition, red wines polyphenols are multiple, complex and reactive molecules. Moreover, the final composition of wine varies according to grape variety and to extraction during winemaking. Therefore it is nearly impossible to deduce their effects on bacteria from experiments in oversimplified conditions. In the present work, effect of tannins preparations, currently considered as possible technological adjuvants, was assessed on growth and malolactic fermentation for two malolactic starters. Experiments were conducted in a laboratory medium and in a white wine. Likewise, impact of total polyphenolic extracts obtained from different grape variety red wines was evaluated in the white wine as culture medium. As expected growth and activity of both strains were affected whatever the additions. Results suggest some interpretations to the observed impacts on bacterial populations. Influence of tannins should be, at least partly, due to redox potential change. Results on wine extracts show the need for investigating the bacterial metabolism of some galloylated molecules. Indeed, they should play on bacterial physiology and probably affect the sensory qualities of wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Comparison of total phenolic content and composition of individual ...

    African Journals Online (AJOL)

    A successful peanut breeding to obtain genotypes with greater phenolic content requires information on type and content of phenolic compounds in parental peanut genotypes. The aim of this study was to investigate the total phenolic contents and phenolic acid profiles of 15 Valencia-type peanut genotypes both in peanut ...

  19. The influence of ripening stage and cultivation system on the total antioxidant activity and total phenolic compounds of yellow passion fruit pulp.

    Science.gov (United States)

    Macoris, Mariana S; De Marchi, Renata; Janzantti, Natália S; Monteiro, Magali

    2012-07-01

    This work aimed to investigate the influence of both ripening stage and cultivation system on the total phenolic compounds (TPC) and total antioxidant activity (TAA) of passion fruit pulp. TPC extraction was optimized using a 2³ central composed design. The variables were fruit pulp volume, methanol volume and extraction solution volume. TPC was determined using the Folin-Ciocalteu reaction, and TAA using the ABTS radical reaction. The conditions to extract TPC were 2 mL passion fruit pulp and 9 mL extraction solution containing 40% methanol:water (v/v). TPC values increased in the passion fruit pulp during ripening for both cultivation systems, ranging from 281.8 to 361.9 mg gallic acid L⁻¹ (P ≤ 0.05) for the organic pulp and from 291.0 to 338.6 mg gallic acid L⁻¹ (P ≤ 0.05) for the conventional pulp. TPC values increased during ripening for both organic and conventional passion fruit. The same was true for TAA values for conventional passion fruit. For organic passion fruit, however, TAA values were highest at the initial ripening stages. These results suggest that antioxidant compounds exert strong influence on the initial ripening stages for organic passion fruit, when TPC still did not reach its maximum level. Copyright © 2012 Society of Chemical Industry.

  20. Pollen types and levels of total phenolic compounds in propolis produced by Apis mellifera L. (Apidae in an area of the Semiarid Region of Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    VANESSA R. MATOS

    2014-03-01

    Full Text Available Twenty-two propolis samples produced by Apis mellifera L. in an area of the Semiarid region the the State of Bahia (Agreste of Alagoinhas, Brazil, were palynologically analyzed and quantified regarding their levels of total phenolic compounds. These samples were processed using the acetolysis technique with the changes suggested for use with propolis. We found 59 pollen types belonging to 19 families and 36 genera. The family Fabaceae was the most representative in this study with nine pollen types, followed by the family Asteraceae with seven types. The types Mikania and Mimosa pudica occurred in all samples analyzed. The types Mimosa pudica and Eucalyptus had frequency of occurrence above 50% in at least one sample. The highest similarity index (c. 72% occurred between the samples ER1 and ER2, belonging to the municipality of Entre Rios. Samples from the municipality of Inhambupe displayed the highest (36.78±1.52 mg/g EqAG and lowest (7.68 ± 2.58 mg/g EqAG levels of total phenolic compounds. Through the Spearman Correlation Coefficient we noticed that there was a negative linear correlation between the types Mimosa pudica (rs = -0.0419 and Eucalyptus (rs = -0.7090 with the profile of the levels of total phenolic compounds of the samples.

  1. Characterization of Phenolic Compounds in Wine Lees

    Directory of Open Access Journals (Sweden)

    Ye Zhijing

    2018-03-01

    Full Text Available The effect of vinification techniques on phenolic compounds and antioxidant activity of wine lees are poorly understood. The present study investigated the antioxidant activity of white and red wine lees generated at early fermentation and during aging. In this study, the total phenol content (TPC, total tannin content (TTC, mean degree of polymerization (mDP, and antioxidant activities of five white and eight red wine lees samples from different vinification backgrounds were determined. The results showed that vinification techniques had a significant (p < 0.05 impact on total phenol and tannin content of the samples. White wine lees had high mDP content compared with red ones. Catechin (50–62% and epicatechin contents were the predominant terminal units of polymeric proanthocyanidin extracted from examined samples. Epigallocatechin was the predominant extension unit of white wine lees, whereas epicatechin was the predominant compound in red wine marc. The ORAC (oxygen radical absorbance capacity assay was strongly correlated with the DPPH (α, α-diphenyl-β-picrylhydrazyl assay, and the results showed the strong antioxidant activities associated with red wine lees (PN > 35 mg Trolox/g FDM (PN: Pinot noir lees; FDM: Freeze-dried Material. This study indicates that tannin is one of the major phenolic compounds available in wine lees that can be useful in human and animal health applications.

  2. Bioavailability of dietary phenolic compounds: Review

    Directory of Open Access Journals (Sweden)

    Erick Gutiérrez-Grijalva Paul Gutiérrez-Grijalva

    2015-12-01

    Full Text Available Phenolic compounds are ubiquitous in plant-based foods. High dietary intake of fruits, vegetables and cereals is related to a decreased rate in chronic diseases. Phenolic compounds are thought to be responsible, at least in part, for those health effects. Nonetheless, phenolic compounds bioaccessibility and biotransformation is often not considered in these studies; thus, a precise mechanism of action of phenolic compounds is not known. In this review we aim to present a comprehensive knowledge of the metabolic processes through which phenolic compounds go after intake.

  3. Recycling of phenolic compounds in Borneo's tropical peat swamp forests.

    Science.gov (United States)

    Yule, Catherine M; Lim, Yau Yan; Lim, Tse Yuen

    2018-02-07

    Tropical peat swamp forests (TPSF) are globally significant carbon stores, sequestering carbon mainly as phenolic polymers and phenolic compounds (particularly as lignin and its derivatives) in peat layers, in plants, and in the acidic blackwaters. Previous studies show that TPSF plants have particularly high levels of phenolic compounds which inhibit the decomposition of organic matter and thus promote peat accumulation. The studies of phenolic compounds are thus crucial to further understand how TPSF function with respect to carbon sequestration. Here we present a study of cycling of phenolic compounds in five forests in Borneo differing in flooding and acidity, leaching of phenolic compounds from senescent Macaranga pruinosa leaves, and absorption of phenolics by M. pruinosa seedlings. The results of the study show that total phenolic content (TPC) in soil and leaves of three species of Macaranga were highest in TPSF followed by freshwater swamp forest and flooded limestone forest, then dry land sites. Highest TPC values were associated with acidity (in TPSF) and waterlogging (in flooded forests). Moreover, phenolic compounds are rapidly leached from fallen senescent leaves, and could be reabsorbed by tree roots and converted into more complex phenolics within the leaves. Extreme conditions-waterlogging and acidity-may facilitate uptake and synthesis of protective phenolic compounds which are essential for impeded decomposition of organic matter in TPSF. Conversely, the ongoing drainage and degradation of TPSF, particularly for conversion to oil palm plantations, reverses the conditions necessary for peat accretion and carbon sequestration.

  4. Interspecific variation in total phenolic content in temperate brown algae

    Directory of Open Access Journals (Sweden)

    Anna Maria Mannino

    2017-09-01

    Full Text Available Marine algae synthesize secondary metabolites such as polyphenols that function as defense and protection mechanisms. Among brown algae, Fucales and Dictyotales (Phaeophyceae contain the highest levels of phenolic compounds, mainly phlorotannins, that play multiple roles. Four temperate brown algae (Cystoseira amentacea, Cystoseira compressa, Dictyopteris polypodioides and Padina pavonica were studied for total phenolic contents. Total phenolic content was determined colorimetrically with the Folin-Ciocalteu reagent. Significant differences in total phenolic content were observed between leathery and sheetlike algae and also within each morphological group. Among the four species, the sheet-like alga D. polypodioides, living in the upper infralittoral zone, showed the highest concentration of phenolic compounds. These results are in agreement with the hypothesis that total phenolic content in temperate brown algae is influenced by a combination of several factors, such as growth form, depth, and exposition to solar radiation.

  5. Phenolic Compounds Analysis of Root, Stalk, and Leaves of Nettle

    Directory of Open Access Journals (Sweden)

    Semih Otles

    2012-01-01

    Full Text Available Types of nettles (Urtica dioica were collected from different regions to analyze phenolic compounds in this research. Nettles are specially grown in the coastal part. According to this kind of properties, nettle samples were collected from coastal part of (Mediterranean, Aegean, Black sea, and Marmara Turkey. Phenolic profile, total phenol compounds, and antioxidant activities of nettle samples were analyzed. Nettles were separated to the part of root, stalk, and leaves. Then, these parts of nettle were analyzed to understand the difference of phenolic compounds and amount of them. Nettle (root, stalk and leaves samples were analyzed by using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD to qualitative and quantitative determination of the phenolic compounds. Total phenolic components were measured by using Folin-Ciocalteu method. The antioxidant activity was measured by using DPPH (2,2-diphenyl-1-picrylhydrazyl which is generally used for herbal samples and based on single electron transfer (SET.

  6. Phenolic compounds analysis of root, stalk, and leaves of nettle.

    Science.gov (United States)

    Otles, Semih; Yalcin, Buket

    2012-01-01

    Types of nettles (Urtica dioica) were collected from different regions to analyze phenolic compounds in this research. Nettles are specially grown in the coastal part. According to this kind of properties, nettle samples were collected from coastal part of (Mediterranean, Aegean, Black sea, and Marmara) Turkey. Phenolic profile, total phenol compounds, and antioxidant activities of nettle samples were analyzed. Nettles were separated to the part of root, stalk, and leaves. Then, these parts of nettle were analyzed to understand the difference of phenolic compounds and amount of them. Nettle (root, stalk and leaves) samples were analyzed by using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) to qualitative and quantitative determination of the phenolic compounds. Total phenolic components were measured by using Folin-Ciocalteu method. The antioxidant activity was measured by using DPPH (2,2-diphenyl-1-picrylhydrazyl) which is generally used for herbal samples and based on single electron transfer (SET).

  7. Phenolic Compounds Analysis of Root, Stalk, and Leaves of Nettle

    Science.gov (United States)

    Otles, Semih; Yalcin, Buket

    2012-01-01

    Types of nettles (Urtica dioica) were collected from different regions to analyze phenolic compounds in this research. Nettles are specially grown in the coastal part. According to this kind of properties, nettle samples were collected from coastal part of (Mediterranean, Aegean, Black sea, and Marmara) Turkey. Phenolic profile, total phenol compounds, and antioxidant activities of nettle samples were analyzed. Nettles were separated to the part of root, stalk, and leaves. Then, these parts of nettle were analyzed to understand the difference of phenolic compounds and amount of them. Nettle (root, stalk and leaves) samples were analyzed by using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) to qualitative and quantitative determination of the phenolic compounds. Total phenolic components were measured by using Folin-Ciocalteu method. The antioxidant activity was measured by using DPPH (2,2-diphenyl-1-picrylhydrazyl) which is generally used for herbal samples and based on single electron transfer (SET). PMID:22593694

  8. Phenolic Compounds Analysis of Root, Stalk, and Leaves of Nettle

    OpenAIRE

    Otles, Semih; Yalcin, Buket

    2012-01-01

    Types of nettles (Urtica dioica) were collected from different regions to analyze phenolic compounds in this research. Nettles are specially grown in the coastal part. According to this kind of properties, nettle samples were collected from coastal part of (Mediterranean, Aegean, Black sea, and Marmara) Turkey. Phenolic profile, total phenol compounds, and antioxidant activities of nettle samples were analyzed. Nettles were separated to the part of root, stalk, and leaves. Then, these parts ...

  9. Response of total phenolic content and antioxidant activities of bush ...

    African Journals Online (AJOL)

    The positive health benefits associated with tea are made possible by the antioxidant activity of phenolic compounds present in tea. The total phenolic content and antioxidant activity of bush tea (Athrixia phylicoides DC.) and special tea (Monsonia burkeana) were studied. The extractions were done in triplicate using cold ...

  10. Total Phenol amd Flavonoid contents of Crude Extract and Fractions ...

    African Journals Online (AJOL)

    Phenolic compounds are numerous in plants and are essential part of human diet. Picralima nitida has been extensively used in African folk medicine especially in West Africa. The present study evaluated the total phenolic and flavonoid contents of the extract and fractions of Picralima nitida. The methanol extracts of P.

  11. Characterization of Phenolic Compounds in Wine Lees.

    Science.gov (United States)

    Zhijing, Ye; Shavandi, Amin; Harrison, Roland; Bekhit, Alaa El-Din A

    2018-03-25

    The effect of vinification techniques on phenolic compounds and antioxidant activity of wine lees are poorly understood. The present study investigated the antioxidant activity of white and red wine lees generated at early fermentation and during aging. In this study, the total phenol content (TPC), total tannin content (TTC), mean degree of polymerization (mDP), and antioxidant activities of five white and eight red wine lees samples from different vinification backgrounds were determined. The results showed that vinification techniques had a significant ( p tannin content of the samples. White wine lees had high mDP content compared with red ones. Catechin (50-62%) and epicatechin contents were the predominant terminal units of polymeric proanthocyanidin extracted from examined samples. Epigallocatechin was the predominant extension unit of white wine lees, whereas epicatechin was the predominant compound in red wine marc. The ORAC (oxygen radical absorbance capacity) assay was strongly correlated with the DPPH (α, α-diphenyl-β-picrylhydrazyl) assay, and the results showed the strong antioxidant activities associated with red wine lees (PN > 35 mg Trolox/g FDM) (PN: Pinot noir lees; FDM: Freeze-dried Material). This study indicates that tannin is one of the major phenolic compounds available in wine lees that can be useful in human and animal health applications.

  12. Characterization of Phenolic Compounds in Wine Lees

    Science.gov (United States)

    Zhijing, Ye; Shavandi, Amin; Harrison, Roland; Bekhit, Alaa El-Din A.

    2018-01-01

    The effect of vinification techniques on phenolic compounds and antioxidant activity of wine lees are poorly understood. The present study investigated the antioxidant activity of white and red wine lees generated at early fermentation and during aging. In this study, the total phenol content (TPC), total tannin content (TTC), mean degree of polymerization (mDP), and antioxidant activities of five white and eight red wine lees samples from different vinification backgrounds were determined. The results showed that vinification techniques had a significant (p wine lees had high mDP content compared with red ones. Catechin (50–62%) and epicatechin contents were the predominant terminal units of polymeric proanthocyanidin extracted from examined samples. Epigallocatechin was the predominant extension unit of white wine lees, whereas epicatechin was the predominant compound in red wine marc. The ORAC (oxygen radical absorbance capacity) assay was strongly correlated with the DPPH (α,α-diphenyl-β-picrylhydrazyl) assay, and the results showed the strong antioxidant activities associated with red wine lees (PN > 35 mg Trolox/g FDM) (PN: Pinot noir lees; FDM: Freeze-dried Material). This study indicates that tannin is one of the major phenolic compounds available in wine lees that can be useful in human and animal health applications. PMID:29587406

  13. Compositional differences in the phenolics compounds of ...

    African Journals Online (AJOL)

    This study evaluates phenolic composition of commercial and experimental wines derived from bunch (Vitis vinifera) and muscadine (Vitis rotundifolia) grapes to determine compositional differences in phenolics. HPLC analysis of wines showed that majority of phenolic compounds eluted during the first 30 min. Of the red ...

  14. Estimate of consumption of phenolic compounds by Brazilian population

    Directory of Open Access Journals (Sweden)

    Vanesa Gesser Corrêa

    2015-04-01

    Full Text Available OBJECTIVE: Estimate the intake of phenolic compounds by the Brazilian population. METHODS: To estimate the average per capita food consumption, micro data from the National Dietary Survey and from the Household Budget Survey from 2008 to 2009 was analyzed. The phenolic content in food was estimated from the base of Phenol-Explorer. It was chosen according to compatibility and variety of food items and usual method of preparation. RESULTS: The Brazilian population consumed, on average, 460.15 mg/day of total phenolic compounds, derived mainly from beverages (48.9%, especially coffee and legumes (19.5%. Since this analysis of classes of phenolics it was possible to observe an intake of 314 mg/day of phenolic acids, 138.92 mg/day of flavonoids and 7.16 mg/ day of other kinds of phenolics. Regarding the variables studied this present study shows that those men who live in the countryside and in the northeastern region of the country had a higher consumption of phenolic compounds. Besides, consumption was higher by adults and the elderly, the medium income classes, the population with incomplete and complete primary education and those with adequate nutrition and also overweight status. CONCLUSION: The intake of phenolic compounds can be considered low, especially where consumption of fruit and vegetables is insufficient. We can conclude that coffee and black beans were the best contributors to phenolic intake.

  15. Characterization of total antioxidant capacity and (poly)phenolic compounds of differently pigmented rice varieties and their changes during domestic cooking.

    Science.gov (United States)

    Zaupa, Maria; Calani, Luca; Del Rio, Daniele; Brighenti, Furio; Pellegrini, Nicoletta

    2015-11-15

    In the recent years, the pigmented rice varieties are becoming more popular due to their antioxidant properties and phenolic content. In this study, we characterized the antioxidant capacity (TAC) and the phenolic profile in white, red and black rice varieties, and evaluated the effect of two cooking methods (i.e. "risotto" and boiling) on these compounds. Before the cooking, all the varieties contained several phenolic acids, whereas anthocyanins and flavonols were peculiar of black rice and flavan-3-ols of red rice. Among the rice varieties, the black had the highest TAC value. The content of (poly)phenolic compounds and TAC decreased after cooking in all three varieties, but to a lesser extent after the risotto method. As a consequence, the risotto cooking, which allows a complete absorption of water, would be a good cooking method to retain (poly)phenolic compounds and TAC in pigmented and non-pigmented whole-meal rice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Extraction and antioxidant activity of phenolic compounds from ...

    African Journals Online (AJOL)

    35:1, temperature: 70 oC, the experimental total phenolic yield was 30.464 ± 0.025, which agreed with ... The phenolic compounds showed strong antioxidant activities. At extract ..... under steam explosion is a suitable approach for obtaining a ...

  17. Effect of different types of processing on the total phenolic compound content, antioxidant capacity, and saponin content of Chenopodium quinoa Willd grains.

    Science.gov (United States)

    Nickel, Júlia; Spanier, Luciana Pio; Botelho, Fabiana Torma; Gularte, Márcia Arocha; Helbig, Elizabete

    2016-10-15

    The effects of five processing forms on the content of phenolic compounds, antioxidant capacity, and saponin content in quinoa grains were evaluated. The processes included washing, washing followed by hydration, cooking (with or without pressure), and toasting. The highest content of phenolic compounds was obtained after cooking under pressure; however, these compounds also increased with grain washing. The toasting process caused the greatest loss. The antioxidant capacity of the grains was similarly affected by the processing techniques. According to the amount of saponins, the grains were classified as bitter. Washing caused a reduction in these compounds, but the levels remained unchanged after cooking (with and without) pressure and toasting; however, they significantly increased after hydration. Cooking, especially with pressure, had greater effects than the other processes, and potentiated the functional properties of quinoa grains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Mineral composition, nutritional properties, total phenolics and flavonoids compounds of the atemoya fruit (Annona squamosa L. x Annona cherimola Mill. and evaluation using multivariate analysis techniques

    Directory of Open Access Journals (Sweden)

    WALTER N.L. DOS SANTOS

    2016-01-01

    Full Text Available ABSTRACT The atemoya is a hybrid fruit obtained by crossing of cherimoya (Annona cherimola Mill. with sweet sop (Annona squamosa L.. The information about chemical composition of atemoya is scarce. The mineral composition was evaluated employing Inductively Coupled Plasma Optical Emission Spectrometry (ICP OES and the centesimal composition and the physico-chemical parameters were assessed employing procedures described in the AOAC methods. The total phenolic compounds (TPC and total flavonoids (TF were determined using spectroanalytical methods. Considering the Reference Daily Intake (RDI, the concentrations of K, Cu and Vitamin C found in atemoya were the highest, representing about 32, 23 and 37% of the RDI, respectively. The total carbohydrates were 32 g 100g-1 and the soluble solids was equivalent to (32.50 ± 0.03 °Brix. The result for TPC was 540.47 ± 2.32 mgGAE 100 g-1 and the TF was 11.56 ± 1.36 mgQE 100 g-1. The exploratory evaluation of 42 atemoya samples was performed through Principal Component Analysis (PCA, which discriminated green and ripe fruits according to their mineral composition. The elements that contributed most for the variability between green and ripe fruits were: Ba, Ca, Cu, K, Mg and P.

  19. Determination of Phenolic Compounds in Wines

    Directory of Open Access Journals (Sweden)

    Charalampos Proestos

    2012-04-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 Wine contains natural antioxidants such as phenolic compounds also known as bioactive compounds. Samples of commercially available Greek wines were analyzed in order to determine this phenolic content. For the analysis, Reversed Phase-High Performance Liquid Chromatography (RP-HPLC coupled with a multiwavelength Ultraviolet/visible (UV/vis detector was used. The most abundant phenolic substances detected were (+-catechin (13.5-72.4 mg L-1 , gallic acid (0.40-99.47 mg L-1 and caffeic acid (0.87-33.48 mg L-1. The principal component analysis (PCA technique was used to study differentiation among wines according to their production area. Red wines contained more phenolic substances than white ones. Differences of the phenolic composition in wines of the same cultivar were investigated too.

  20. Antioxidant activity and total phenolic and flavonoid content of ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... Key words: Astragalus squarrosus, antioxidant, phenolics, flavonoids. INTRODUCTION ... Phenolic and flavonoid compounds are widely distri- buted plant constituents. ..... Antioxidant effects of some ginger constituents.

  1. Phenolic compounds participating in mulberry juice sediment formation during storage.

    Science.gov (United States)

    Zou, Bo; Xu, Yu-Juan; Wu, Ji-Jun; Yu, Yuan-Shan; Xiao, Geng-Sheng

    The stability of clarified juice is of great importance in the beverage industry and to consumers. Phenolic compounds are considered to be one of the main factors responsible for sediment formation. The aim of this study is to investigate the changes in the phenolic content in clarified mulberry juice during storage. Hence, separation, identification, quantification, and analysis of the changes in the contents of phenolic compounds, both free and bound forms, in the supernatant and sediments of mulberry juice, were carried out using high performance liquid chromatographic system, equipped with a photo-diode array detector (HPLC-PDA) and HPLC coupled with quadrupole-time of flight mass spectrometric (HPLC-QTOF-MS/MS) techniques. There was an increase in the amount of sediment formed over the period of study. Total phenolic content of supernatant, as well as free phenolic content in the extracts of the precipitate decreased, whereas the bound phenolic content in the sediment increased. Quantitative estimation of individual phenolic compounds indicated high degradation of free anthocyanins in the supernatant and sediment from 938.60 to 2.30 mg/L and 235.60 to 1.74 mg/g, respectively. A decrease in flavonoids in the supernatant was also observed, whereas the contents of bound forms of gallic acid, protocatechuic acid, caffeic acid, and rutin in the sediment increased. Anthocyanins were the most abundant form of phenolics in the sediment, and accounted for 67.2% of total phenolics after 8 weeks of storage. These results revealed that phenolic compounds, particularly anthocyanins, were involved in the formation of sediments in mulberry juice during storage.

  2. Daily intake estimation of phenolic compounds in the Spanish population

    Directory of Open Access Journals (Sweden)

    Inma Navarro González

    2017-12-01

    Full Text Available Introduction: Phenolic compounds are a large group of molecules present in plants with a diversity of chemical structures and biological activity. The objective of this study was to quantify the intake of phenolic compounds of the Spanish population. Material and Methods: The most consumed foods from vegetal origin in Spain were selected. These were picked up in the National Survey of Spanish Dietary Intake (ENIDE of 2011, edited by AESAN (Spanish Agency for Food Safety and Nutrition as a basis for quantifying the intake of phenolic compounds of Spaniards using the Phenol-Explorer database. Results: This database has allowed to estimate the average intake of polyphenols per day of Spaniards, which is 1365.1mg. Conclusions: The average intake of total polyphenols of Spaniards could have a protective effect against the mortality rate and exercise a preventive function on some chronic diseases along with other healthy lifestyle habits.

  3. Total phenolics and total flavonoids in selected Indian medicinal plants.

    Science.gov (United States)

    Sulaiman, C T; Balachandran, Indira

    2012-05-01

    Plant phenolics and flavonoids have a powerful biological activity, which outlines the necessity of their determination. The phenolics and flavonoids content of 20 medicinal plants were determined in the present investigation. The phenolic content was determined by using Folin-Ciocalteu assay. The total flavonoids were measured spectrophotometrically by using the aluminium chloride colorimetric assay. The results showed that the family Mimosaceae is the richest source of phenolics, (Acacia nilotica: 80.63 mg gallic acid equivalents, Acacia catechu 78.12 mg gallic acid equivalents, Albizia lebbeck 66.23 mg gallic acid equivalents). The highest total flavonoid content was revealed in Senna tora which belongs to the family Caesalpiniaceae. The present study also shows the ratio of flavonoids to the phenolics in each sample for their specificity.

  4. Phenolic compounds in Ross Sea water

    Science.gov (United States)

    Zangrando, Roberta; Barbaro, Elena; Gambaro, Andrea; Barbante, Carlo; Corami, Fabiana; Kehrwald, Natalie; Capodaglio, Gabriele

    2016-04-01

    Phenolic compounds are semi-volatile organic compounds produced during biomass burning and lignin degradation in water. In atmospheric and paleoclimatic ice cores studies, these compounds are used as biomarkers of wood combustion and supply information on the type of combusted biomass. Phenolic compounds are therefore indicators of paleoclimatic interest. Recent studies of Antarctic aerosols highlighted that phenolic compounds in Antarctica are not exclusively attributable to biomass burning but also derive from marine sources. In order to study the marine contribution to aerosols we developed an analytical method to determine the concentration of vanillic acid, vanillin, p-coumaric acid, syringic acid, isovanillic acid, homovanillic acid, syringaldehyde, acetosyringone and acetovanillone present in dissolved and particle phases in Sea Ross waters using HPLC-MS/MS. The analytical method was validated and used to quantify phenolic compounds in 28 sea water samples collected during a 2012 Ross Sea R/V cruise. The observed compounds were vanillic acid, vanillin, acetovanillone and p-coumaric acid with concentrations in the ng/L range. Higher concentrations of analytes were present in the dissolved phase than in the particle phase. Sample concentrations were greatest in the coastal, surficial and less saline Ross Sea waters near Victoria Land.

  5. Flavonoid, hesperidine, total phenolic contents and antioxidant ...

    African Journals Online (AJOL)

    Additionally, the antioxidant activities were also determined by ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity. C. hystrix had the highest flavonoid and total phenolic contents while C. aurantifolia had the highest hesperidine content. The antioxidant activity of ...

  6. Separation and characterization of phenolic compounds from ...

    African Journals Online (AJOL)

    (Combretaceae) is an Ivorian medicinal plant. There is little ethnobotanical and almost no chemical information available for this species. The aim of this study was to isolate phenolic compounds from T. ivoriensis. In this way, its ethyl acetate extract (Ea) was fractionated by silica gel column chromatography followed by ...

  7. Antiplasmodial activity of some phenolic compounds from ...

    African Journals Online (AJOL)

    Background: Plasmodium falciparum, one of the causative agents of malaria, has high adaptability through mutation and is resistant to many types of anti-malarial drugs. This study presents an in vitro assessment of the antiplasmodial activity of some phenolic compounds isolated from plants of the genus Allanblackia.

  8. Separation and characterization of phenolic compounds from ...

    African Journals Online (AJOL)

    Attioua

    2013-07-03

    Jul 3, 2013 ... (Theobroma cacao). J. Mass Spectrom. 38:35-42. Sanchez R, Jauregui LR, Viladomat B, Codina (2004). Qualitative analysis of phenolic compounds in apple Pomace using liquid chromatography coupled to mass spectrometry in tandem mode. Rapid Communun Mass Spectrom. 18:553-563. Saulo LDS ...

  9. A review of phenolic compounds in oil-bearing plants: Distribution, identification and occurrence of phenolic compounds.

    Science.gov (United States)

    Alu'datt, Muhammad H; Rababah, Taha; Alhamad, Mohammad N; Al-Mahasneh, Majdi A; Almajwal, Ali; Gammoh, Sana; Ereifej, Khalil; Johargy, Ayman; Alli, Inteaz

    2017-03-01

    Over the last two decades, separation, identification and measurement of the total and individual content of phenolic compounds has been widely investigated. Recently, the presence of a wide range of phenolic compounds in oil-bearing plants has been shown to contribute to their therapeutic properties, including anti-cancer, anti-viral, anti-oxidant, hypoglycemic, hypo-lipidemic, and anti-inflammatory activities. Phenolics in oil-bearing plants are now recognized as important minor food components due to several organoleptic and health properties, and they are used as food or sources of food ingredients. Variations in the content of phenolics in oil-bearing plants have largely been attributed to several factors, including the cultivation, time of harvest and soil types. A number of authors have suggested that the presence phenolics in extracted proteins, carbohydrates and oils may contribute to objectionable off flavors The objective of this study was to review the distribution, identification and occurrence of free and bound phenolic compounds in oil-bearing plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Determinación de vitamina C, compuestos fenólicos totales y actividad antioxidante de frutas de guayaba (Psidium guajava L. cultivadas en Colombia Vitamin C, total phenolic compounds and antioxidant activity in guava (Psidium guajava L. fruits from Colombia

    Directory of Open Access Journals (Sweden)

    Dayana Rojas-Barquera

    2009-01-01

    Full Text Available Some physicochemical parameters, vitamin C, total phenolic compounds and antioxidant activity (AA measured by ABTS, FRAP and DPPH methods were determinated in four different varieties of ripe guava produced in Colombia. Samples were statistically similar in their titratable acidity. Soluble solids were statistically similar and higher in "Pear", "Pink Regional", and "White Regional", but lower in "Apple" guavas. Vitamin C was statistically lower in "Pear" guava. Phenolics, ABTS-, FRAP-, and DPPH-AA were statistically lower in "Apple" guava if compared in wet basis. "Pink Regional" and "White Regional" contained the highest levels in vitamin C, phenolics and antioxidant activity.

  11. Antibacterial Activity of Phenolic Compounds Against the Phytopathogen Xylella fastidiosa

    OpenAIRE

    Maddox, Christina E.; Laur, Lisa M.; Tian, Li

    2010-01-01

    Xylella fastidiosa is a pathogenic bacterium that causes diseases in many crop species, which leads to considerable economic loss. Phenolic compounds (a group of secondary metabolites) are widely distributed in plants and have shown to possess antimicrobial properties. The anti-Xylella activity of 12 phenolic compounds, representing phenolic acid, coumarin, stilbene and flavonoid, was evaluated using an in vitro agar dilution assay. Overall, these phenolic compounds were effective in inhibiti...

  12. COMPARATION OF SEVERAL PLANTS EXTRACT AND VITAMIN C INHIBITION ACTIVITY TO TYROSINE PHOTODEGRADATION INDUCED BY KETOPROFEN AND ITS TOTAL PHENOLIC COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Tatang Irianti

    2016-12-01

    Full Text Available Antioxidant is known to inhibit free radical reaction. Tyrosine photodegradation can be caused by radical reaction. Nowadays, plant with antioxidants are widely used to inhibit free radical reaction. Study of inhibition of photodegradation used four groups. Those groups are: P1 consisted of 2mL tyrosine 0,05 %; P2 consisted of 2 mL tyrosine 0,05 %, and 600 μL Rhetoflam (topical ketoprofen 1 %; P3 consisted of 2 mL tyrosine 0,05 %, 60μL Rhetoflam 1 %, and 100 μL tea leaf water ekstract 0,15 %; P4 consisted of 2 mL tyrosine 0,05 %, 600 μL Rhetoflam 1 %, and 100 μL mahkota dewa fruit water ekstract 0,15 %; P5 consisted of 2 mL tyrosine 0,05 %, 600 μL Rhetoflam 1 %, and 100 μL finger root etanolic ekstract 0,15 %; P6 consisted of 2 mL tyrosine 0,05 %, 600 μL Rhetoflam 1 %, and 100 μL vitamin C 0,15 %; each group is added with aquadest up to 5,0 mL and illuminated with mercuric lamp for four hours. Level of remaining tyrosine was measured with visible spectrophotometric method. We used ANOVA to analyse the data with convidence level of 0,95 and then continued by Tukey (HSD. Follin-Ciocalteu method with galic acid calibration curve was used to determine total phenolic level. The level of total phenolic of tea leaf aquoeus extract, mahkota dewa fruit aquoeus extract, fingerroot ethanolic extract were 29.64±0.86 %; 8.29 % 0.27 %; and 7.11 %, 0.15 %, respectively. Our investigation also found gallic acid equivalent (GAE with the inhibition activity of 4.03; 1.58; and 2.09 and they were bigger than Vitamin C with the same concentration of 0.15 %.

  13. Phenolic Compounds of Cereals and Their Antioxidant Capacity.

    Science.gov (United States)

    Van Hung, Pham

    2016-01-01

    Phenolic compounds play an important role in health benefits because of their highly antioxidant capacity. In this review, total phenolic contents (TPCs), phenolic acid profile and antioxidant capacity of the extracted from wheat, corn, rice, barley, sorghum, rye, oat, and millet, which have been recently reported, are summarized. The review shows clearly that cereals contain a number of phytochemicals including phenolics, flavonoids, anthocyanins, etc. The phytochemicals of cereals significantly exhibit antioxidant activity as measured by trolox equivalent antioxidant capacity (TEAC), 2,2-diphenyl-1-picrylhydrazyl radical scavenging, reducing power, oxygen radical absorbance capacity (ORAC), inhibition of oxidation of human low-density lipoprotein (LDL) cholesterol and DNA, Rancimat, inhibition of photochemilumenescence (PCL), and iron(II) chelation activity. Thus, the consumption of whole grains is considered to have significantly health benefits in prevention from chronic diseases such as cardiovascular disease, diabetes, and cancer because of the contribution of phenolic compounds existed. In addition, the extracts from cereal brans are considered to be used as a source of natural antioxidants.

  14. [Phenolic compounds in branches of Tamarix rasissima].

    Science.gov (United States)

    Li, Juan; Li, Wei-Qi; Zheng, Ping; Wang, Rui; Yu, Jian-Qiang; Yang, Jian-Hong; Yao, Yao

    2014-06-01

    To study the chemical constituents of the branches of Tamarix rasissima, repeated silica gel column chromatography, Sephadex LH-20 chromatography and recrystallization were applied for chemical constituents isolation and purification. Ten phenolic compounds were isolated from the n-BuOH fraction and their structures were elucidated by physical properties and spectra analysis such as UV, ESI-MS and NMR as monodecarboxyellagic acid (1), ellagic acid (2), 3, 3'-di-O-methylellagic acid (3), 3, 3'-di-O-methylellagic acid-4-O-beta-D-glucopyranoside (4), 3, 3'-di-O-methylellagic acid-4'-O-alpha-D-arabinfuranoside (5), ferulic acid (6), isoferulic acid (7), caffeic acid (8), 4-O-acetyl-caffeic acid (9), and 4-methyl-1, 2-benzenediol (10). All compounds except for isoferulic acid were isolated firstly from this plant except for isoferulic acid, and compounds 5, 9 and 10 were obtained from Tamarix genus for the first time.

  15. Phenolic Compounds from Wine as Natural Preservatives of Fish Meat

    OpenAIRE

    Pedro Aredes Aredes-Fernández; María Cristina Manca de Nadra; María José Rodríguez-Vaquero

    2013-01-01

    The aim of this work is to investigate the antibacterial effect of phenolic compound combinations and total polyphenols of Argentinean red wine varieties against Escherichia coli ATCC 35218 and Listeria monocytogenes using commercial fish meat as model food. Rutin-quercetin combination and three wine varieties (Cabernet Sauvignon, Malbec and Merlot) caused cellular death of both bacteria on fish meat at 4 °C. Rutin-quercetin combination was effective on fish meat even at 20 °C. Clarified wine...

  16. Effect of solvent on the extraction of phenolic compounds and antioxidant capacity of hazelnut kernel.

    Science.gov (United States)

    Fanali, Chiara; Tripodo, Giusy; Russo, Marina; Della Posta, Susanna; Pasqualetti, Valentina; De Gara, Laura

    2018-03-22

    Hazelnut kernel phenolic compounds were recovered applying two different extraction approaches, namely ultrasound-assisted solid/liquid extraction (UA-SLE) and solid-phase extraction (SPE). Different solvents were tested evaluating total phenolic compounds and total flavonoids contents together to antioxidant activity. The optimum extraction conditions, in terms of the highest value of total phenolic compounds extracted together to other parameters like simplicity and cost were selected for method validation and individual phenolic compounds analysis. The UA-SLE protocol performed using 0.1 g of defatted sample and 15 mL of extraction solvent (1 mL methanol/1 mL water/8 mL methanol 0.1% formic acid/5 mL acetonitrile) was selected. The analysis of hazelnut kernel individual phenolic compounds was obtained by HPLC coupled with DAD and MS detections. Quantitative analysis was performed using a mixture of six phenolic compounds belonging to phenolic classes' representative of hazelnut. Then, the method was fully validated and the resulting RSD% values for retention time repeatability were below 1%. A good linearity was obtained giving R 2 no lower than 0.997.The accuracy of the extraction method was also assessed. Finally, the method was applied to the analysis of phenolic compounds in three different hazelnut kernel varieties observing a similar qualitative profile with differences in the quantity of detected compounds. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effects of extraction methods of phenolic compounds from Xanthium strumarium L. and their antioxidant activity

    Directory of Open Access Journals (Sweden)

    R. Scherer

    2014-03-01

    Full Text Available The effect of extraction methods and solvents on overall yield, total phenolic content, antioxidant activity, and the composition of the phenolic compounds in Xanthium strumarium extracts were studied. The antioxidant activity was determined by using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH, and the composition of the phenolic compounds was determined by HPLC-DAD and LC/MS. All results were affected by the extraction method, especially by the solvent used, and the best results were obtained with the methanol extract. The methanolic and ethanolic extracts exhibited strong antioxidant activity, and the chlorogenic and ferulic acids were the most abundant phenolic compounds in the extracts.

  18. Distribution and potential ecological risk of 50 phenolic compounds in three rivers in Tianjin, China.

    Science.gov (United States)

    Zhong, Wenjue; Wang, Donghong; Wang, Zijian

    2018-04-01

    Phenolic compounds widely exist in the surface water of many countries; however, few studies have simultaneously analyzed and evaluated broad-spectrum phenolic compounds in various components of the water environment. Therefore this study analyzed the distribution and potential ecological risk of 50 phenolic compounds in the surface water, sediment and suspended particulate matter of three important rivers in Tianjin, the main heavy industry city with high pollution in China. The qualitative results show that phenolic pollution existed extensively in the three rivers and the kinds of phenolic compounds in the water were relatively higher than in both sediment and suspended particulate matter. The quantitative results show that the phenolic pollution in the wet-season samples was serious than dry-season samples. Meanwhile, total concentrations of phenolic compounds in three components from the Dagu Drainage River (DDR) were all much higher than those in the Beitang Drainage River (BDR) and Yongdingxin River (YDXR). The highest total concentrations of phenolic compounds in three components all appeared in wet-season samples in DDR, and the highest total concentration was 1354 μg/L in surface water, 719 μg/kg dw in suspended particulate matter and 2937 μg/kg dw in sediment, respectively. The ecological risk of phenolic compounds in surface water was evaluated using the quotient method, and phenolic compounds with risk quotient (RQ) > 1 (RQ > 0.3 for YDXR) were identified as priority pollutants. Five kinds of phenolic compounds were identified as priority phenolic compounds in BDR, and the order of risk was 2-cresol > 2,4-xylenol > 2-sec-butylphenol > 2-naphthol > 3-cresol. Six kinds of phenolic compounds were identified as priority phenolic compounds in DDR, and the order of risk was 2-naphthol > p-chloro-m-xylenol > 4-cresol > 3-cresol > 2,4-xylenol > 2,3,6-Trimethylphenol. In YDXR, only phenol, 2-naphthol and 2,4-xylenol were identified as

  19. Assessing wines based on total phenols, phenolic acids and ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the phenolic profile of some red wines produced from native Turkish grape varieties (Vitis vinifera Öküzgözü, V. vinifera Boğazkere and V. vinifera Shiraz) and some red fruit wines produced from pomegranate (Punica granatum L.), myrtle (Myrtus communis L.) and black mulberry ...

  20. Green tea yogurt: major phenolic compounds and microbial growth.

    Science.gov (United States)

    Amirdivani, Shabboo; Baba, Ahmad Salihin Hj

    2015-07-01

    The purpose of this study was to evaluate fermentation of milk in the presence of green tea (Camellia sinensis) with respect to changes in antioxidant activity, phenolic compounds and the growth of lactic acid bacteria. Pasteurized full fat cow's milk and starter culture were incubated at 41 °C in the presence of two different types of green tea extracts. The yogurts formed were refrigerated (4 °C) for further analysis. The total phenolic content was highest (p yogurt (MGT) followed by steam-treated green tea (JGT) and plain yogurts. Four major compounds in MGTY and JGTY were detected. The highest concentration of major phenolic compounds in both samples was related to quercetin-rhamnosylgalactoside and quercetin-3-O-galactosyl-rhamnosyl-glucoside for MGTY and JGTY respectively during first 7 day of storage. Diphenyl picrylhydrazyl and ferric reducing antioxidant power methods showed highest antioxidant capacity in MGTY, JGTY and PY. Streptococcus thermophillus and Lactobacillus spp. were highest in MGTY followed by JGTY and PY. This paper evaluates the implementation of green tea yogurt as a new product with functional properties and valuable component to promote the growth of beneficial yogurt bacteria and prevention of oxidative stress by enhancing the antioxidant activity of yogurt.

  1. Quality characteristics and phenolic compounds of European pear ...

    African Journals Online (AJOL)

    Background: Pear fruits are an important source of plant secondary metabolites and one of the major sources of dietary phenolic compounds. Materials and Methods: The aim of this study was to determine the individual phenolic compounds and some quality characteristics of the flesh and peel of the fruit in four pear ...

  2. Phenolic Compounds and Antioxidant Activity of Phalaenopsis Orchid Hybrids

    Directory of Open Access Journals (Sweden)

    Truong Ngoc Minh

    2016-09-01

    Full Text Available Phalaenopsis spp. is the most commercially and economically important orchid, but their plant parts are often left unused, which has caused environmental problems. To date, reports on phytochemical analyses were most available on endangered and medicinal orchids. The present study was conducted to determine the total phenolics, total flavonoids, and antioxidant activity of ethanol extracts prepared from leaves and roots of six commercial hybrid Phalaenopsis spp. Leaf extracts of “Chian Xen Queen” contained the highest total phenolics with a value of 11.52 ± 0.43 mg gallic acid equivalent per g dry weight and the highest total flavonoids (4.98 ± 0.27 mg rutin equivalent per g dry weight. The antioxidant activity of root extracts evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay and β-carotene bleaching method was higher than those of the leaf extracts. Eleven phenolic compounds were identified, namely, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, vanillin, ferulic acid, sinapic acid, p-coumaric acid, benzoic acid, and ellagic acid. Ferulic, p-coumaric and sinapic acids were concentrated largely in the roots. The results suggested that the root extracts from hybrid Phalaenopsis spp. could be a potential source of natural antioxidants. This study also helps to reduce the amount of this orchid waste in industrial production, as its roots can be exploited for pharmaceutical purposes.

  3. Spectrophotometric Analysis of Phenolic Compounds in Grapes and Wines.

    Science.gov (United States)

    Aleixandre-Tudo, Jose Luis; Buica, Astrid; Nieuwoudt, Helene; Aleixandre, Jose Luis; du Toit, Wessel

    2017-05-24

    Phenolic compounds are of crucial importance for red wine color and mouthfeel attributes. A large number of enzymatic and chemical reactions involving phenolic compounds take place during winemaking and aging. Despite the large number of published analytical methods for phenolic analyses, the values obtained may vary considerably. In addition, the existing scientific knowledge needs to be updated, but also critically evaluated and simplified for newcomers and wine industry partners. The most used and widely cited spectrophotometric methods for grape and wine phenolic analysis were identified through a bibliometric search using the Science Citation Index-Expanded (SCIE) database accessed through the Web of Science (WOS) platform from Thompson Reuters. The selection of spectrophotometry was based on its ease of use as a routine analytical technique. On the basis of the number of citations, as well as the advantages and disadvantages reported, the modified Somers assay appears as a multistep, simple, and robust procedure that provides a good estimation of the state of the anthocyanins equilibria. Precipitation methods for total tannin levels have also been identified as preferred protocols for these types of compounds. Good reported correlations between methods (methylcellulose precipitable vs bovine serum albumin) and between these and perceived red wine astringency, in combination with the adaptation to high-throughput format, make them suitable for routine analysis. The bovine serum albumin tannin assay also allows for the estimation of the anthocyanins content with the measurement of small and large polymeric pigments. Finally, the measurement of wine color using the CIELab space approach is also suggested as the protocol of choice as it provides good insight into the wine's color properties.

  4. Characterization of Phenolic Compounds in Pinus laricio Needles and Their Responses to Prescribed Burnings

    Directory of Open Access Journals (Sweden)

    Lila Ferrat

    2007-07-01

    Full Text Available Fire is a dominant ecological factor in Mediterranean-type ecosystems. Management strategies include prescribed (controlled burning, which has been used in the management of several species, such as Pinus nigra ssp laricio var. Corsicana, a pine endemic to Corsica of great ecological and economic importance. The effects of prescribed burning on Pinus laricio have been little studied. The first aim of this study was to characterize total and simple phenolic compounds in Pinus laricio. The second aim was to understand: i the short term (one to three months and medium term (three years effects of prescribed burning, and ii the effects of periodic prescribed burning on the production of phenolic compounds in Pinus laricio. The first result of this study is the presence of total and simple phenolic compounds in the needles of Pinus laricio. 3-Vanillyl propanol is the major compound. After a prescribed burning, the synthesis of total phenolic compounds increases in Pinus laricio for a period of three months. Total phenolic compounds could be used as bioindicators for the short-term response of Pinus laricio needles to prescribed burning. Simple phenolic compounds do not seem to be good indicators of the impact of prescribed burning because prescribed burnings are low in intensity.

  5. Characterization of phenolic compounds in Pinus laricio needles and their responses to prescribed burnings.

    Science.gov (United States)

    Cannac, Magali; Pasqualini, Vanina; Greff, Stéphane; Fernandez, Catherine; Ferrat, Lila

    2007-07-30

    Fire is a dominant ecological factor in Mediterranean-type ecosystems. Management strategies include prescribed (controlled) burning, which has been used in the management of several species, such as Pinus nigra ssp laricio var. Corsicana, a pine endemic to Corsica of great ecological and economic importance. The effects of prescribed burning on Pinus laricio have been little studied. The first aim of this study was to characterize total and simple phenolic compounds in Pinus laricio. The second aim was to understand: i) the short term (one to three months) and medium term (three years) effects of prescribed burning, and ii) the effects of periodic prescribed burning on the production of phenolic compounds in Pinus laricio. The first result of this study is the presence of total and simple phenolic compounds in the needles of Pinus laricio. 3-Vanillyl propanol is the major compound. After a prescribed burning, the synthesis of total phenolic compounds increases in Pinus laricio for a period of three months. Total phenolic compounds could be used as bioindicators for the short-term response of Pinus laricio needles to prescribed burning. Simple phenolic compounds do not seem to be good indicators of the impact of prescribed burning because prescribed burnings are low in intensity.

  6. Antioxidant and Antiradical Properties of Selected Flavonoids and Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Zübeyir Huyut

    2017-01-01

    Full Text Available Phenolic compounds and flavonoids are known by their antioxidant properties and one of the most important sources for humans is the diet. Due to the harmful effects of synthetic antioxidants such as BHA and BHT, natural novel antioxidants have become the focus of attention for protecting foods and beverages and reducing oxidative stress in vivo. In the current study, we investigated the total antioxidant, metal chelating, Fe3+ and Cu2+ reduction, and free radical scavenging activities of some phenolic and flavonoid compounds including malvin, oenin, ID-8, silychristin, callistephin, pelargonin, 3,4-dihydroxy-5-methoxybenzoic acid, 2,4,6-trihydroxybenzaldehyde, and arachidonoyl dopamine. The antioxidant properties of these compounds at different concentrations (10–30 μg/mL were compared with those of reference antioxidants such as BHA, BHT, α-tocopherol, and trolox. Each substance showed dose-dependent antioxidant activity. Furthermore, oenin, malvin, arachidonoyl dopamine, callistephin, silychristin, and 3,4-dihydroxy-5-methoxybenzoic acid exhibited more effective antioxidant activity than that observed for the reference antioxidants. These results suggest that these novel compounds may function to protect foods and medicines and to reduce oxidative stress in vivo.

  7. Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.).

    Science.gov (United States)

    Wang, Mingfu; Simon, James E; Aviles, Irma Fabiola; He, Kan; Zheng, Qun-Yi; Tadmor, Yaakov

    2003-01-29

    Artichoke leaf is an herbal medicine known for a long time. A systematic antioxidant activity-directed fractionation procedure was used to purify antioxidative components from the aqueous methanol extractions of artichoke heads and leaves in this study. Seven active polyphenolic compounds were purified from artichoke, and structural elucidation of each was achieved using MS and NMR. Two of these compounds, apigenin-7-rutinoside and narirutin, were found to be unique to artichoke heads, this represents the first report of these compounds in the edible portion of this plant. The contents of these antioxidants and total phenols in dried artichoke samples from leaves and immature and mature heads of three varieties, Imperial Star, Green Globe, and Violet, were then analyzed and compared by colorimetric and validated HPLC methods. Significant differences by variety and plant organ were observed.

  8. Effect of Microwave-Assisted Extraction on the Phenolic Compounds and Antioxidant Capacity of Blackthorn Flowers.

    Science.gov (United States)

    Lovrić, Vanja; Putnik, Predrag; Kovačević, Danijela Bursać; Jukić, Marijana; Dragović-Uzelac, Verica

    2017-06-01

    This research was undertaken to investigate the influence of extraction parameters during microwave-assisted extraction on total phenolic content, total flavonoids, total hydroxycinnamic acids and total flavonols of blackthorn flowers as well as to evaluate the antioxidant capacity by two different methods (2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity and ferric reducing antioxidant power assays). The investigated extraction parameters were: solvent type and volume fraction of alcohol in solvent (50 and 70% aqueous solutions of ethanol and methanol), extraction time (5, 15 and 25 min) and extraction temperature (40, 50 and 60 °C) controlled by microwave power of 100, 200 and 300 W. Multivariate analysis of variance (MANOVA) was used to evaluate the differences at a 95% confidence level (p≤0.05). The obtained results show that aqueous solution of ethanol was more appropriate solvent for extraction of phenolic compounds (total flavonoids, total hydroxycinnamic acids and total flavonols) than aqueous solution of methanol. The amount of phenolic compounds was higher in 70% aqueous solution of ethanol or methanol, while higher antioxidant capacity was observed in 50% aqueous solution of methanol. Higher temperature of extraction improved the amount of phenolic compounds and also antioxidant capacity determined by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity assay. Extensive duration of extraction (15- to 25-minute interval) has a significant effect only on the increase of total phenolic content, while specific phenolic compound content and antioxidant capacity were the highest when microwave extraction time of 5 min was applied.

  9. Antioxidant Phenolic Compounds from Pu-erh Tea

    Directory of Open Access Journals (Sweden)

    Shu Shan Du

    2012-11-01

    Full Text Available Eight compounds were isolated from the water extract of Pu-erh tea and their structures were elucidated by NMR and MS as gallic acid (1, (+-catechin (2, (−-epicatechin (3, (−-epicatechin-3-O-gallate (4, (−-epigallocatechin-3-O-gallate (5, (−-epiafzelechin- 3-O-gallate (6, kaempferol (7, and quercetin (8. Their in vitro antioxidant activities were assessed by the DPPH and ABTS scavenging methods with microplate assays. The relative order of DPPH scavenging capacity for these compounds was compound 8 > compound 7 > compound 1 > compound 6 > compound 4 ≈ compound 5 > compound 2 > VC (reference > compound 3, and that of ABTS scavenging capacity was compound 1 > compound 2 > compound 7 ≈ compound 8 > compound 6 > compound 5 > compound 4 > VC (reference > compound 3. The results showed that these phenolic compounds contributed to the antioxidant activity of Pu-erh tea.

  10. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis).

    Science.gov (United States)

    de la Rosa, Laura A; Alvarez-Parrilla, Emilio; Shahidi, Fereidoon

    2011-01-12

    The phenolic composition and antioxidant activity of pecan kernels and shells cultivated in three regions of the state of Chihuahua, Mexico, were analyzed. High concentrations of total extractable phenolics, flavonoids, and proanthocyanidins were found in kernels, and 5-20-fold higher concentrations were found in shells. Their concentrations were significantly affected by the growing region. Antioxidant activity was evaluated by ORAC, DPPH•, HO•, and ABTS•-- scavenging (TAC) methods. Antioxidant activity was strongly correlated with the concentrations of phenolic compounds. A strong correlation existed among the results obtained using these four methods. Five individual phenolic compounds were positively identified and quantified in kernels: ellagic, gallic, protocatechuic, and p-hydroxybenzoic acids and catechin. Only ellagic and gallic acids could be identified in shells. Seven phenolic compounds were tentatively identified in kernels by means of MS and UV spectral comparison, namely, protocatechuic aldehyde, (epi)gallocatechin, one gallic acid-glucose conjugate, three ellagic acid derivatives, and valoneic acid dilactone.

  11. Total antioxidant capacity, total phenolic content and mineral elements in the fruit peel of Myrciaria cauliflora

    Directory of Open Access Journals (Sweden)

    Clináscia Rodrigues Rocha Araújo

    2013-12-01

    Full Text Available The in vitro antioxidant capacity, total phenolic content and mineral elements of the fruit peel of Myrciaria cauliflora were investigated. The antioxidant capacity was analyzed by the diphenylpicrylhydrazyl (DPPH, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS, ferric reducing antioxidant power (FRAP and β-carotene methods. The assays based on the DPPH (EC50 = 3.18 g sample/g DPPH, ABTS•+ (1017 μmol Trolox/g sample, FRAP (1676 µM Fe2SO4/g sample and β-carotene/linoleic acid (70% of oxidation inhibition methods indicated a high antioxidant capacity of the fruit peel extract of the plant. The Folin-Denis method was more efficient in determining the total phenolic compound contents in the different solvents than the Folin-Ciocalteu one. Extractions made with 4:1 methanol-water, 4:1 ethanol-water, 3:2 ethanol-water and 3:2 acetone-water solutions using the Folin-Denis method exhibited high contents of phenolic compounds (18.95, 14.06, 12.93 and 11.99 mg GAE/g, respectively. Potassium was the major element found in the fruit peel, followed by phosphorus, calcium, magnesium and iron, in that order. As a result, the fruit peel of M. cauliflora can be considered as an important source of natural antioxidants and essential elements of easy access for the population and for application in the food industry.

  12. Effect of X- and gamma-rays on phenolic compounds from Maytenus aquifolium Martius

    International Nuclear Information System (INIS)

    Campos, P.; Yariwake, J.H.; Lancas, F.M.

    2005-01-01

    The effect of irradiation using several doses of X- and γ-rays (10, 20, 40, 60, 80 and 100 kGy), upon total phenolic compounds contained in the leaves of Maytenus aquifolium Martius (Celastraceae) 'espinheira santa', was investigated. The content of phenolic compounds (measured by the Folin-Denis spectrophotometric method) was unaffected by X- or γ-ray irradiation, at any dose. (author)

  13. Health promoting and sensory properties of phenolic compounds in food

    Directory of Open Access Journals (Sweden)

    Lívia de Lacerda de Oliveira

    2014-12-01

    Full Text Available Phenolic compounds have been extensively studied in recent years. The presence of these compounds in various foods has been associated with sensory and health promoting properties. These products from the secondary metabolism of plants act as defense mechanisms against environmental stress and attack by other organisms. They are divided into different classes according to their chemical structures. The objective of this study was to describe the different classes of phenolic compounds, the main food sources and factors of variation, besides methods for the identification and quantification commonly used to analyze these compounds. Moreover, the role of phenolic compounds in scavenging oxidative stress and the techniques of in vitro antioxidant evaluation are discussed. In vivo studies to evaluate the biological effects of these compounds and their impact on chronic disease prevention are presented as well. Finally, it was discussed the role of these compounds on the sensory quality of foods.

  14. Comparative evaluation of maceration and ultrasonic-assisted extraction of phenolic compounds from fresh olives.

    Science.gov (United States)

    Deng, Junlin; Xu, Zhou; Xiang, Chunrong; Liu, Jing; Zhou, Lijun; Li, Tian; Yang, Zeshen; Ding, Chunbang

    2017-07-01

    Ultrasonic-assisted extraction (UAE) and maceration extraction (ME) were optimized using response surface methodology (RSM) for total phenolic compounds (TPC) from fresh olives. The main phenolic compounds and antioxidant activity of TPC were also investigated. The optimized result for UAE was 22mL/g of liquid-solid ratio, 47°C of extraction temperature and 30min of extraction time, 7.01mg/g of yielding, and for ME was 24mL/g of liquid-solid ratio, 50°C of extraction temperature and 4.7h of extraction time, 5.18mg/g of yielding. The HPLC analysis revealed that the extracts by UAE and ME possessed 14 main phenolic compounds, and UAE exhibited more amounts of all phenols than ME. The most abundant phenolic compounds in olive extracts were hydroxytyrosol, oleuropein and rutin. Both extracts showed excellent antioxidant activity in a dose-dependent manner. Taken together, UAE could effectively increase the yield of phenolic compounds from olives. In addition these phenolic compounds could be used as a potential source of natural antioxidants. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Phenolic Compounds in the Potato and Its Byproducts: An Overview

    Science.gov (United States)

    Akyol, Hazal; Riciputi, Ylenia; Capanoglu, Esra; Caboni, Maria Fiorenza; Verardo, Vito

    2016-01-01

    The potato (Solanum tuberosum L.) is a tuber that is largely used for food and is a source of different bioactive compounds such as starch, dietary fiber, amino acids, minerals, vitamins, and phenolic compounds. Phenolic compounds are synthetized by the potato plant as a protection response from bacteria, fungi, viruses, and insects. Several works showed that these potato compounds exhibited health-promoting effects in humans. However, the use of the potato in the food industry submits this vegetable to different processes that can alter the phenolic content. Moreover, many of these compounds with high bioactivity are located in the potato’s skin, and so are eliminated as waste. In this review the most recent articles dealing with phenolic compounds in the potato and potato byproducts, along with the effects of harvesting, post-harvest, and technological processes, have been reviewed. Briefly, the phenolic composition, main extraction, and determination methods have been described. In addition, the “alternative” food uses and healthy properties of potato phenolic compounds have been addressed. PMID:27240356

  16. The effect of growing conditions on phenolic compounds and ...

    African Journals Online (AJOL)

    arid and is widely used for anti-inflammatory and healing properties. This study evaluates the level of phenolic compounds and the antimicrobial activity in extracts of M. urundeuva obtained from greenhouse seedlings grown from seeds that ...

  17. Changes of the phenolic compounds and antioxidant activities in germinated adlay seeds.

    Science.gov (United States)

    Xu, Lei; Wang, Pei; Ali, Barkat; Yang, Na; Chen, Yisheng; Wu, Fengfeng; Xu, Xueming

    2017-09-01

    Over the years, germinated adlay products have been used as both food source and folk medicine. This study investigated the changes of total phenolic content (TPC), total flavonoid content (TFC), antioxidant activities, and phenolic acid profiles of adlay seed during germination. Results revealed that phenolic compounds and antioxidant activities varied with the germination stages. Germination significantly increased the free form phenolic and flavonoid contents by 112.5% and 168.3%, respectively. However, both of the bound form phenolic and flavonoid contents significantly decreased after germination. Phenolic acid compositions were quantified via HPLC analysis, and the levels of vanillic, p-coumaric, caffeic, hydroxybenzoic and protocatechuic acids in the free phenolic extracts were found to be significantly increased. The improvement of the free and total phenolic and flavonoid contents by the germination process led to a significant enhancement of the antioxidant activities (evaluated by the ABTS, FRAP and ORAC assays). The TPC showed the highest correlation with ORAC values (r = 0.9979). Germinated adlay had higher free and total phenolic and flavonoid contents, and antioxidant activities than ungerminated adlay. This study indicates that germinated adlay could be a promising functional food, more suitable for human consumption. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Phenolic compounds and antioxidant activity in red fruits produced in organic farming

    Directory of Open Access Journals (Sweden)

    Susana M. A. Soutinho

    2014-01-01

    Full Text Available In this work were studied three red fruits (raspberry, gooseberry and blueberry produced in organic mode, to evaluate the variations in the content of phenolic compounds and antioxidant capacity along maturation. The phenols were extracted from the fruits with two solvents (methanol and acetone and were quantified by the Folin-Ciocalteu method. The antioxidant activity was determined with two methods (HPPH and ABTS. Furthermore, HPLC was used to identify and quantify some phenolic compounds present in the fruits analyzed. The results showed that the total phenolic compounds in all fruits decreased along maturation, either in the methanol or acetone extracts (23 % and 20 % reduction, on average, for methanol and acetone extracts, respectively, although in methanol extracts the levels of phenolic compounds were always higher (0.54 and 0.21 mg GAE/g. The blueberry showed higher level of total phenolics in methanol extract (average 0.67 mg GAE/g, while in the acetone extract it was gooseberry (average 0.31 mg GAE/g. At the end of maturation, all fruits studied had similar values of antioxidant capacity as determined by DPPH method (0.52 mmol Trolox/g. For the ABTS method, blueberries showed higher values of antioxidant activity (6.01 mmol Trolox/g against 3.01 and 2.66 mmol Trolox/g, for raspberry and gooseberry, respectively. Furthermore, the HPLC analysis allowed to identify monomeric anthocyanins and phenolic acids in the three fruits studied.

  19. Phenolic Compounds from Wine as Natural Preservatives of Fish Meat

    Directory of Open Access Journals (Sweden)

    Pedro Aredes Aredes-Fernández

    2013-01-01

    Full Text Available The aim of this work is to investigate the antibacterial effect of phenolic compound combinations and total polyphenols of Argentinean red wine varieties against Escherichia coli ATCC 35218 and Listeria monocytogenes using commercial fish meat as model food. Rutin-quercetin combination and three wine varieties (Cabernet Sauvignon, Malbec and Merlot caused cellular death of both bacteria on fish meat at 4 °C. Rutin-quercetin combination was effective on fish meat even at 20 °C. Clarified wines did not affect the bacteria, indicating that wine polyphenols are responsible for the observed effect. The use of wine phenolic compounds as antibacterial agent could be used to prevent contamination and extend the shelf life of fish meat. A big finding of this work is the use of rutin–quercetin combination as preservative for the conservation of fish meat and its transport to the fish market, which is an effective antibacterial agent even when the transport temperature is not constant.

  20. Determination of total phenolic amount of some edible fruits and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... cals in foods that help to counter the detrimental effects of reaction oxygen species ... vegetables. Hence, the present work was aimed at deter- minating the .... Total phenol analyses: Automation and. Comparison with Manual ...

  1. TLC analysis of some phenolic compounds in kombucha beverage

    Directory of Open Access Journals (Sweden)

    Malbaša Radomir V.

    2004-01-01

    Full Text Available Black and green tea contains a wide range of natural phenolic compounds Flavanoids and their glycosides, catechins and the products of their condensation, and phenolic acids are the most important. Kombucha beverage is obtained by fermentation of tea fungus on black or green tea sweetened with sucrose. The aim of this paper was to investigate the composition of some phenolic compounds, catechin, epicatechin, quercetin, myricetin, gallic and tanic acid, and monitoring of their status during tea fungus fermentation. The method used for this study was thin layer chromatography with two different systems. The main phenolic compounds in the samples with green tea were catechin and epicatechin, and in the samples with black tea it was quercetin.

  2. Comparative total phenolic content, anti-lipase and antioxidant ...

    African Journals Online (AJOL)

    Total phenol values are expressed in terms of Gallic acid equivalent (w/w of dry mass). Aframomum melegueta exhibited the highest phenolic content of 60.4 ± 2.36 mgGAE/g, a percentage antioxidant activity of 86.6 % at 200μg/ml and percentage lipase inhibition of 89% at 1mg/ml while Aframomum danielli revealed a total ...

  3. Determination of the major phenolic compounds in pomegranate juices by HPLC−DAD−ESI-MS.

    Science.gov (United States)

    Gómez-Caravaca, Ana María; Verardo, Vito; Toselli, Moreno; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Caboni, Maria Fiorenza

    2013-06-05

    Traditionally, pomegranate (Punica granatum L.) has been consumed as fresh fruit or as pomegranate juice. In this study, the main phenolic compounds of 12 pomegranate varieties and 5 pomegranate clones were determined by HPLC−DAD−ESI-MS. Two chromatographic methods with a fused-core C18 column and a classical HPLC system were developed. Thirteen anthocyanins and fourteen other phenolic compounds were determined in the pomegranate juices. As far as we are concerned, a new flavonol-glycoside, phellatin or its isomer amurensin, has been tentatively identified for the first time in pomegranate juices. Total phenolic content ranged from 580.8 to 2551.3 mg/L of pomegranate juice. Anthocyanins varied between 20 to 82% of total phenolic content. Flavonoids were 1.6-23.6% of total phenolic compounds, while phenolic acids and ellagitannins were in the range 16.4-65.8%. The five clones reported a phenolic content comparable with that of the other pomegranate samples.

  4. Determination of Total Phenolics, Flavonoids and Antioxidant Capacity of Methanolic Extracts of Some Brassica Seeds

    Directory of Open Access Journals (Sweden)

    Maria Doiniţa Borş

    2014-11-01

    Full Text Available Cruciferous vegetables are rich in nutrients and bioactive compounds. Seeds are highly nutritious and they are becoming more and more popular in nowadays diets. In the present study various types of radish and mustard seeds were evaluated on the basis of the total phenolic content (TPC, total flavonoid content (TFC and the antioxidant potential, using simple spectrophotometric methods.

  5. Production of phenolic compounds from Spirulina maxima ...

    African Journals Online (AJOL)

    The purpose of this study was to illustrate the enhancing process of phenolics synthesis in Spirulina maxima grown in Zarrouk's medium supplemented with different concentration of NaNO3 and/or combined with phenylalanine (L-PA). Also, the protective efficacy of Spirulina polyphenolic (SPP) extracts against ...

  6. Relationship between red wine grades and phenolics. 1. Tannin and total phenolics concentrations.

    Science.gov (United States)

    Mercurio, Meagan D; Dambergs, Robert G; Cozzolino, Daniel; Herderich, Markus J; Smith, Paul A

    2010-12-08

    Measuring chemical composition is a common approach to support decisions about allocating foods and beverages to grades related to market value. Red wine is a particularly complex beverage, and multiple compositional attributes are needed to account for its sensory properties, including measurement of key phenolic components such as anthocyanins, total phenolics, and tannin, which are related to color and astringency. Color has been shown to relate positively to red wine grade; however, little research has been presented that explores the relationship between astringency-related components such as total phenolic or tannin concentration and wine grade. The aim of this research has been to investigate the relationship between the wine grade allocations of commercial wineries and total phenolic and tannin concentrations, respectively, in Australian Shiraz and Cabernet Sauvignon wines. Total phenolic and tannin concentrations were determined using the methyl cellulose precipitable (MCP) tannin assay and then compared to wine grade allocations made by winemaker panels during the companies' postvintage allocation process. Data were collected from wines produced by one Australian wine company over the 2005, 2006, and 2007 vintages and by a further two companies in 2007 (total wines = 1643). Statistical analysis revealed a positive trend toward higher wine grade allocation and wines that had higher concentrations of both total phenolics and tannin, respectively. This research demonstrates that for these companies, in general, Cabernet Sauvignon and Shiraz wines allocated to higher market value grades have higher total phenolics and higher tannin concentrations and suggests that these compositional parameters should be considered in the development of future multiparameter decision support systems for relevant commercial red wine grading processes. In addition, both tannin and total phenolics would ideally be included because although, in general, a positive relationship

  7. Profiling of the Major Phenolic Compounds and Their Biosynthesis Genes in Sophora flavescens Aiton

    Directory of Open Access Journals (Sweden)

    Jeongyeo Lee

    2018-01-01

    Full Text Available Sophorae Radix (Sophora flavescens Aiton has long been used in traditional medicine in East Asia due to the various biological activities of its secondary metabolites. Endogenous contents of phenolic compounds (phenolic acid, flavonol, and isoflavone and the main bioactive compounds of Sophorae Radix were analyzed based on the qualitative HPLC analysis and evaluated in different organs and at different developmental stages. In total, 11 compounds were detected, and the composition of the roots and aerial parts (leaves, stems, and flowers was significantly different. trans-Cinnamic acid and p-coumaric acid were observed only in the aerial parts. Large amounts of rutin and maackiain were detected in the roots. Four phenolic acid compounds (benzoic acid, caffeic acid, ferulic acid, and chlorogenic acid and four flavonol compounds (kaempferol, catechin hydrate, epicatechin, and rutin were higher in aerial parts than in roots. To identify putative genes involved in phenolic compounds biosynthesis, a total of 41 transcripts were investigated. Expression patterns of these selected genes, as well as the multiple isoforms for the genes, varied by organ and developmental stage, implying that they are involved in the biosynthesis of various phenolic compounds both spatially and temporally.

  8. Ultrasound Assisted Extraction of Phenolic Compounds from Peaches and Pumpkins

    Science.gov (United States)

    Altemimi, Ammar; Watson, Dennis G.; Choudhary, Ruplal; Dasari, Mallika R.; Lightfoot, David A.

    2016-01-01

    The ultrasound-assisted extraction (UAE) method was used to optimize the extraction of phenolic compounds from pumpkins and peaches. The response surface methodology (RSM) was used to study the effects of three independent variables each with three treatments. They included extraction temperatures (30, 40 and 50°C), ultrasonic power levels (30, 50 and 70%) and extraction times (10, 20 and 30 min). The optimal conditions for extractions of total phenolics from pumpkins were inferred to be a temperature of 41.45°C, a power of 44.60% and a time of 25.67 min. However, an extraction temperature of 40.99°C, power of 56.01% and time of 25.71 min was optimal for recovery of free radical scavenging activity (measured by 1, 1-diphenyl-2-picrylhydrazyl (DPPH) reduction). The optimal conditions for peach extracts were an extraction temperature of 41.53°C, power of 43.99% and time of 27.86 min for total phenolics. However, an extraction temperature of 41.60°C, power of 44.88% and time of 27.49 min was optimal for free radical scavenging activity (judged by from DPPH reduction). Further, the UAE processes were significantly better than solvent extractions without ultrasound. By electron microscopy it was concluded that ultrasonic processing caused damage in cells for all treated samples (pumpkin, peach). However, the FTIR spectra did not show any significant changes in chemical structures caused by either ultrasonic processing or solvent extraction. PMID:26885655

  9. Inhibition of lignin-derived phenolic compounds to cellulase.

    Science.gov (United States)

    Qin, Lei; Li, Wen-Chao; Liu, Li; Zhu, Jia-Qing; Li, Xia; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-01-01

    Lignin-derived phenolic compounds are universal in the hydrolysate of pretreated lignocellulosic biomass. The phenolics reduce the efficiency of enzymatic hydrolysis and increase the cost of ethanol production. We investigated inhibition of phenolics on cellulase during enzymatic hydrolysis using vanillin as one of the typical lignin-derived phenolics and Avicel as cellulose substrate. As vanillin concentration increased from 0 to 10 mg/mL, cellulose conversion after 72-h enzymatic hydrolysis decreased from 53 to 26 %. Enzyme deactivation and precipitation were detected with the vanillin addition. The enzyme concentration and activity consecutively decreased during hydrolysis, but the inhibition degree, expressed as the ratio of the cellulose conversion without vanillin to the conversion with vanillin (A 0 /A), was almost independent on hydrolysis time. Inhibition can be mitigated by increasing cellulose loading or cellulase concentration. The inhibition degree showed linear relationship with the vanillin concentration and exponential relationship with the cellulose loading and the cellulase concentration. The addition of calcium chloride, BSA, and Tween 80 did not release the inhibition of vanillin significantly. pH and temperature for hydrolysis also showed no significant impact on inhibition degree. The presence of hydroxyl group, carbonyl group, and methoxy group in phenolics affected the inhibition degree. Besides phenolics concentration, other factors such as cellulose loading, enzyme concentration, and phenolic structure also affect the inhibition of cellulose conversion. Lignin-blocking agents have little effect on the inhibition effect of soluble phenolics, indicating that the inhibition mechanism of phenolics to enzyme is likely different from insoluble lignin. The inhibition of soluble phenolics can hardly be entirely removed by increasing enzyme concentration or adding blocking proteins due to the dispersity and multiple binding sites of phenolics

  10. total contents of phenolics, flavonoids, tannins and antioxidant

    African Journals Online (AJOL)

    and korefe (a malt beverage like beer) are made from a mixture of enkuro (a dark ... Phenolic compounds are important components of beverages, to which they .... pH 3.20–5.17. Unmalted roasted barley. (Hordeum vuldare), sugar and yeast.

  11. Application of HPLC-DAD Technique for Determination of Phenolic Compounds in Bee Pollen Loads

    Directory of Open Access Journals (Sweden)

    Waś Ewa

    2017-06-01

    Full Text Available A method was elaborated to determine phenolic compounds (vanillin, caffeic, p-coumaric and salicylic acids, and flavonoids: rutin, hesperetin, quercetin, pinocembrin, apigenin, kaempferol, isorhamnetin, chrysin, and acacetin in bee pollen loads using highperformance liquid chromatography with a diode array detector (HPLC-DAD. Phenolic compounds from bee pollen were isolated on Cleanert C18-SPE columns (500 mg/6 mL, Agela Technologies. Polyphenols were identified by comparing the retention times and spectra of compounds found in pollen load samples with the ones of the standard mixture. Quantitative analysis was conducted using the external standard method. In addition, basic validation parameters for the method were determined. For the identified compounds (except for the salicylic acid, satisfactory (≥0.997 linear correlations were obtained. The elaborated method showed high repeatability and inter-laboratory reproducibility. Variability coeffcients of the majority of phenolic compounds did not exceed 10% in conditions of repeatability and inter-laboratory reproducibility, and for the total polyphenolic content they were 1.7 and 5.1%, respectively. The pollen load samples (n = 15 differed in qualitative and quantitative composition of the phenolic compounds. In all the samples, we identified the p-coumaric and salicylic acids and flavonoids rutin, hesperetin, and apigenin nevertheless, these compounds’ contents significantly differed among individual samples. The total phenolic content in the tested samples of pollen loads ranged from 0.653 to 5.966 mg/100 g (on average 2.737 mg/100 g.

  12. Directional liquefaction of biomass for phenolic compounds and in situ hydrodeoxygenation upgrading of phenolics using bifunctional catalysts

    Science.gov (United States)

    Junfeng Feng; Chung-yun Hse; Kui Wang; Zhongzhi Yang; Jianchun Jiang; Junming Xu

    2017-01-01

    Phenolic compounds derived from biomass are important feedstocks for the sustainable production of hydrocarbon biofuels. Hydrodeoxygenation is an effective process to remove oxygen-containing functionalities in phenolic compounds. This paper reported a simple method for producing hydrocarbons by liquefying biomass and upgrading liquefied products. Three phenolic...

  13. Composition and Concentration of Phenolic Compounds of ‘Auksis’ Apple Grown on Various Rootstocks

    Directory of Open Access Journals (Sweden)

    Kviklys Darius

    2017-06-01

    Full Text Available The trial was carried out at the Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry in 2013-2015. Cv. ‘Auksis’ was tested on 12 rootstocks: B.396, B.9, M.9, M.26, P 22, P 59, P 61, P 62, P 66, P 67, PB.4, and Pure 1. Accumulation of phenolic compounds depended on fruit yield and average fruit weight. On average, significantly lower concentration among rootstocks occurred when apple trees had abundant yield and fruits were smaller. On average chlorogenic acid constituted 50% and total procyanidins 28% of total phenols in ‘Auksis’ fruits. Flavonoid concentration most depended on rootstock and the highest variation was recorded. More than 50% difference occurred between the highest total flavonoid concentration in apples on PB.4 and the lowest on M.9 rootstocks. Low variability of total procyanidin concentration among rootstocks was observed. Differences between the highest and lowest concentration was 15%. Total concentration of phenolic compounds differed among rootstocks by 29-35% depending on the year. Differences in accumulation of phenolic compounds depended on rootstock genotype but not on yield or fruit weight. PB.4 and P 67 rootstocks had the highest, and M.9, P 62 and M.26 had the lowest concentration of total phenol in ‘Auksis’ fruits

  14. Screening of Catalysts for Hydrodeoxygenation of Phenol as Model Compound for Bio-oil

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Grunwaldt, Jan-Dierk; Jensen, Peter Arendt

    2013-01-01

    Four groups of catalysts have been tested for hydrodeoxygenation (HDO) of phenol as a model compound of bio-oil, including: oxide catalysts, methanol synthesis catalysts, reduced noble metal catalysts, and reduced non-noble metal catalysts. In total 23 different catalysts were tested at 100 bar H2...... and 275 °C in a batch reactor. The experiments showed that none of the tested oxides and methanol synthesis catalysts had any significant activity for phenol HDO at the given conditions, which were linked to their inability to hydrogenate the phenol. HDO of phenol over reduced metal catalysts could...... on a carbon support, but more active than the carbon supported noble metal catalysts when supported on ZrO2. This observation indicates that the nickel based catalysts require a metal oxide as carrier on which the activation of the phenol for the hydrogenation can take place through heterolytic dissociation...

  15. Profile of the Phenolic Compounds of Rosa rugosa Petals

    Directory of Open Access Journals (Sweden)

    Andrzej Cendrowski

    2017-01-01

    Full Text Available Rosa rugosa petals are a rich source of phenolic compounds, which determined their antioxidant properties. The aim of this study was to determine the polyphenolic composition of not processed petals of Rosa rugosa collected from the commodity crops and to determine the variability of the contained therein polyphenols between harvesting seasons. Twenty polyphenols were identified by UPLC-ESI-MS. The main fraction of polyphenols was ellagitannins, which are 69 to 74% of the total polyphenols of the petals. In the petals of Rosa rugosa, four anthocyanins have been identified: cyanidin 3,5-di-O-glucoside, peonidin 3-O-sophoroside, peonidin 3,5-di-O-glucoside, and peonidin 3-O-glucoside, of which the predominant peonidin 3,5-di-O-glucoside represented approx. 85% of all the determined anthocyanin compounds. It was found that the petals of Rosa rugosa are a valuable source of bioactive compounds and can be considered as a healthy valuable resource.

  16. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.

    Science.gov (United States)

    Silva, I; Campos, F M; Hogg, T; Couto, J A

    2011-08-01

    To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  17. Plant growth and phenolic compounds in the rhizosphere soil of wild oat (Avena fatua L.

    Directory of Open Access Journals (Sweden)

    Anna eIannucci

    2013-12-01

    Full Text Available The objectives of this study were to determine the pattern of dry matter (DM accumulation and the evolution of phenolic compounds in the rhizosphere soil from tillering to the ripe seed stages of wild oat (Avena fatua L., a widespread annual grassy weed. Plants were grown under controlled conditions and harvested 13 times during the growing season. At each harvest, shoot and root DM and phenolic compounds in the rhizosphere soil were determined. The maximum DM production (12.6 g/plant was recorded at 122 days after sowing (DAS; kernel hard stage. The increase in total aerial DM with age coincided with reductions in the leaf/stem and source/sink ratios, and an increase in the shoot/root ratio. HPLC analysis shows production of seven phenolic compounds in the rhizosphere soil of wild oat, in order of their decreasing levels: syringic acid, vanillin, 4-hydroxybenzoic acid, syringaldehyde, ferulic acid, p-cumaric acid and vanillic acid. The seasonal distribution for the total phenolic compounds showed two peaks of maximum concentrations, at the stem elongation stage (0.71 μg/kg; 82 DAS and at the heading stage (0.70 μg/kg; 98 DAS. Thus wild oat roots exude allelopathic compounds, and the levels of these phenolics in the rhizosphere soil vary according to plant maturity.

  18. From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions.

    Science.gov (United States)

    Talhaoui, Nassima; Gómez-Caravaca, Ana María; León, Lorenzo; De la Rosa, Raúl; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-03-04

    Phenolic compounds are responsible of the nutritional and sensory quality of extra-virgin olive oil (EVOO). The composition of phenolic compounds in EVOO is related to the initial content of phenolic compounds in the olive-fruit tissues and the activity of enzymes acting on these compounds during the industrial process to produce the oil. In this work, the phenolic composition was studied in six major cultivars grown in the same orchard under the same agronomical and environmental conditions in an effort to test the effects of cultivars on phenolic composition in fruits and oils as well as on transfer between matrices. The phenolic fractions were identified and quantified using high-performance liquid chromatography-diode array detector-time-of-flight-mass spectrometry. A total of 33 phenolic compounds were determined in the fruit samples and a total of 20 compounds in their corresponding oils. Qualitative and quantitative differences in phenolic composition were found among cultivars in both matrices, as well as regarding the transfer rate of phenolic compounds from fruits to oil. The results also varied according to the different phenolic groups evaluated, with secoiridoids registering the highest transfer rates from fruits to oils. Moreover, wide-ranging differences have been noticed between cultivars for the transfer rates of secoiridoids (4.36%-65.63% of total transfer rate) and for flavonoids (0.18%-0.67% of total transfer rate). 'Picual' was the cultivar that transferred secoiridoids to oil at the highest rate, whereas 'Changlot Real' was the cultivar that transferred flavonoids at the highest rates instead. Principal-component analysis confirmed a strong genetic effect on the basis of the phenolic profile both in the olive fruits and in the oils.

  19. From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions

    Directory of Open Access Journals (Sweden)

    Nassima Talhaoui

    2016-03-01

    Full Text Available Phenolic compounds are responsible of the nutritional and sensory quality of extra-virgin olive oil (EVOO. The composition of phenolic compounds in EVOO is related to the initial content of phenolic compounds in the olive-fruit tissues and the activity of enzymes acting on these compounds during the industrial process to produce the oil. In this work, the phenolic composition was studied in six major cultivars grown in the same orchard under the same agronomical and environmental conditions in an effort to test the effects of cultivars on phenolic composition in fruits and oils as well as on transfer between matrices. The phenolic fractions were identified and quantified using high-performance liquid chromatography-diode array detector-time-of-flight-mass spectrometry. A total of 33 phenolic compounds were determined in the fruit samples and a total of 20 compounds in their corresponding oils. Qualitative and quantitative differences in phenolic composition were found among cultivars in both matrices, as well as regarding the transfer rate of phenolic compounds from fruits to oil. The results also varied according to the different phenolic groups evaluated, with secoiridoids registering the highest transfer rates from fruits to oils. Moreover, wide-ranging differences have been noticed between cultivars for the transfer rates of secoiridoids (4.36%–65.63% of total transfer rate and for flavonoids (0.18%–0.67% of total transfer rate. ‘Picual’ was the cultivar that transferred secoiridoids to oil at the highest rate, whereas ‘Changlot Real’ was the cultivar that transferred flavonoids at the highest rates instead. Principal-component analysis confirmed a strong genetic effect on the basis of the phenolic profile both in the olive fruits and in the oils.

  20. Phenolic compounds and carotenoids in pumpkin fruit and related traditional products

    Directory of Open Access Journals (Sweden)

    Zdunić Gordana M.

    2016-01-01

    Full Text Available Pumpkin fruit is used in a diet since ancient times especially in rural communities. The major contributory factors of nutritional and medicinal value of pumpkins are carotenoids, polysaccharides, vitamins, minerals, and phenolic compounds. Due to a very large fruit that it is not easy to consume a whole as well as short shelf-life of fresh-cut pumpkin, different ways of conserving and processing are performed. In our study, total carotenoids, total phenolics and individual phenolics in fresh pumpkin and pumpkin traditional products such as sweet in wine, jam and juice, which are typical for northern parts of Serbia, were studied. Total carotenoids ranged from 27.6 μg/g of pumpkin sweet in wine to 86.3 μg/g of fresh fruit, while the amount of total phenolics varied between 93.0 μg GAE/g of pumpkin juice and 905.9 μg GAE/g of fresh fruit. Eight phenolic compounds were identified in the investigated samples and among them phenolic acids dominated. Among flavonoids, flavanon glycoside hesperidin was detected. [Projekat Ministarstva nauke Republike Srbije, br. 46013

  1. Characterization and quantitation of low and high molecular weight phenolic compounds in apple seeds.

    Science.gov (United States)

    Fromm, Matthias; Bayha, Sandra; Carle, Reinhold; Kammerer, Dietmar R

    2012-02-08

    The phenolic constituents of seeds of 12 different apple cultivars were fractionated by sequential extraction with aqueous acetone (30:70, v/v) and ethyl acetate after hexane extraction of the lipids. Low molecular weight phenolic compounds were individually quantitated by RP-HPLC-DAD. The contents of extractable and nonextractable procyanidins were determined by applying RP-HPLC following thiolysis and n-butanol/HCl hydrolysis, respectively. As expected, the results revealed marked differences of the ethyl acetate extracts, aqueous acetone extracts, and insoluble residues with regard to contents and mean degrees of polymerization of procyanidins. Total phenolic contents in the defatted apple seed residues ranged between 18.4 and 99.8 mg/g. Phloridzin was the most abundant phenolic compound, representing 79-92% of monomeric polyphenols. Yields of phenolic compounds significantly differed among the cultivars under study, with seeds of cider apples generally being richer in phloridzin and catechins than seeds of dessert apple cultivars. This is the first study presenting comprehensive data on the contents of phenolic compounds in apple seeds comprising extractable and nonextractable procyanidins. Furthermore, the present work points out a strategy for the sustainable and complete exploitation of apple seeds as valuable agro-industrial byproducts, in particular as a rich source of phloridzin and antioxidant flavanols.

  2. Phenolic compounds and related enzymes as determinants of sorghum for food use

    NARCIS (Netherlands)

    Dicko, M.H.; Gruppen, H.; Traore, A.S.; Voragen, A.G.J.; Berkel, van W.J.H.

    2006-01-01

    Phenolic compounds and related enzymes such as phenol biosynthesizing enzymes (phenylalanine ammonia lyase) and phenol catabolizing enzymes (polyphenol oxidase and peroxidase) are determinants for sorghum utilization as human food because they influence product properties during and after sorghum

  3. Effect of Microwave-Assisted Extraction on the Phenolic Compounds and Antioxidant Capacity of Blackthorn Flowers

    Directory of Open Access Journals (Sweden)

    Vanja Lovrić

    2017-01-01

    Full Text Available This research was undertaken to investigate the influence of extraction parameters during microwave-assisted extraction on total phenolic content, total flavonoids, total hydroxycinnamic acids and total flavonols of blackthorn flowers as well as to evaluate the antioxidant capacity by two different methods (2,2-diphenyl-1 picrylhydrazyl free radical scavenging capacity and ferric reducing antioxidant power assays. The investigated extraction parameters were: solvent type and volume fraction of alcohol in solvent (50 and 70 % aqueous solutions of ethanol and methanol, extraction time (5, 15 and 25 min and extraction temperature (40, 50 and 60 °C controlled by microwave power of 100, 200 and 300 W. Multivariate analysis of variance (MANOVA was used to evaluate the differences at a 95 % confidence level (p≤0.05. The obtained results show that aqueous solution of ethanol was more appropriate solvent for extraction of phenolic compounds (total flavonoids, total hydroxycinnamic acids and total flavonols than aqueous solution of methanol. The amount of phenolic compounds was higher in 70 % aqueous solution of ethanol or methanol, while higher antioxidant capacity was observed in 50 % aqueous solution of methanol. Higher temperature of extraction improved the amount of phenolic compounds and also antioxidant capacity determined by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity assay. Extensive duration of extraction (15- to 25-minute interval has a significant effect only on the increase of total phenolic content, while specific phenolic compound content and antioxidant capacity were the highest when microwave extraction time of 5 min was applied.

  4. Combined electrochemical degradation and activated carbon adsorption treatments for wastewater containing mixed phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Rajkumar, D.; Palanivelu, K.; Balasubramanian, N. [Anna University, Madras (India). Center for Environmental Studies

    2005-01-01

    Electrochemical degradation of mixed phenolic compounds present in coal conversion wastewater was investigated in the presence of chloride as supporting electrolyte. Initially, the degradation experiments were conducted separately with 300 mg/L of individual phenolic compound in the presence of 2500 mg/L chloride using Ti/TiO{sub 2}-RuO{sub 2}-IrO{sub 2} anode at 5.4 A/dm{sup 2} current density. Comparison of the experimental results of the chemical oxygen demand (COD) removal versus charge indicated that the order of decreasing COD removal for various phenolic compounds as catechol {gt} resorcinol {gt} m-cresol {gt} o-cresol {gt} phenol {gt} p-cresol. Degradation of the mixture of phenolic compounds and high-pressure liquid chromatography (HPLC) determinations at various stages of electrolysis showed that phenolic compounds were initially converted into benzoquinone and then to lower molecular weight aliphatic compounds. The COD and the total organic carbon (TOC) removal were 83 and 58.9% after passing 32 Ah/L with energy consumption of 191.6 kWh/kg of COD removal. Experiments were also conducted to remove adsorbable organic halogens (AOX) content in the treated solution using granular activated carbon. The optimum conditions for the removal of AOX was at pH 3.0, 5 mL/min flow rate and 31.2 cm bed height. Based on the investigation, a general scheme of treatment of mixed phenolic compounds by combined electrochemical and activated carbon adsorption treatment is proposed.

  5. Effect of cultivar and variety on phenolic compounds and antioxidant activity of cherry wine.

    Science.gov (United States)

    Xiao, Zuobing; Fang, Lingling; Niu, Yunwei; Yu, Haiyan

    2015-11-01

    To compare the influence of cultivar and variety on the phenolic compounds and antioxidant activity (AA) of cherry wines, total phenolic (TP), total flavonoid (TF), total anthocyanin (TA), total tannin (TT), five individual phenolic acids, and AA were determined. An ultra-performance liquid chromatography tandem mass spectrometry (HPLC-DAD/ESI-MS) method was developed for the determination of gallic acid (GAE), p-hydroxybenzoic acid (PHB), chlorogenic acid (CHL), vanillic acid (VAN), and caffeic acid (CAF). A principal component analysis (PCA) and a cluster analysis (CA) were used to analyze differences related to cultivar and variety. The TP, TF, TA, TT, and AA of samples sourced from the Shandong province of China were higher than those from the Jiangsu province. The PCA and CA results showed that phenolic compounds in cherry wines were closely related to cultivar and variety and that cultivar had more influence on the phenolic compounds of cherry wines than variety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Foliar phenolic compounds of ten wild species of Verbenacea as antioxidants and specific chemomarkers

    Directory of Open Access Journals (Sweden)

    J. A. Ávila-Reyes

    2017-06-01

    Full Text Available Abstract The family Verbenaceae hosts important species used in traditional medicine of many countries. The taxonomic controversies concerning the specific delimitation of several of its species make it difficult to guarantee the botanical origin of herbal preparations based on species of this family. To contribute to the development of both specific chemomarkers and a quality control tool to authenticate the botanical origin of herbal preparations of Verbenacea species, we determined the foliar HPLC-DAD phenolic profiles and the antioxidant properties of 10 wild species of this family occurring in Mexico. The contents of phenols and flavonoids varied significantly among species. Priva mexicana showed the highest levels of total phenolics (53.4 mg g-1 dry tissue and Verbena carolina had the highest levels of flavonoids (17.89 mg g-1 dry tissue. Relevant antioxidant properties revealed by antiradical and reducing power were found for the analyzed species. These properties varied significantly in a species-dependent manner. The phenolic compounds accumulated were flavones and phenolic acids. Flavones were the only type of flavonoids found. The results of a cluster analysis showed that the compounds were accumulated in species-specific profiles. The phenolic profiles are proposed as valuable chemomarkers that can become a useful tool for the quality control concerning the botanical origin of herbal medicinal preparations based on the species analyzed. In addition, phenolic profiles could contribute importantly to solve the taxonomic controversies concerning species delimitation in the family Verbenaceae.

  7. Identification and characterisation of phenolic compounds extracted from Moroccan olive mill wastewater

    Directory of Open Access Journals (Sweden)

    Inass Leouifoudi

    2014-06-01

    Full Text Available Olive mill wastewater, hereafter noted as OMWW was tested for its composition in phenolic compounds according to geographical areas of olive tree, i.e. the plain and the mountainous areas of Tadla-Azilal region (central Morocco. Biophenols extraction with ethyl acetate was efficient and the phenolic extract from the mountainous areas had the highest concentration of total phenols' content. Fourier-Transform-Middle Infrared (FT-MIR spectroscopy of the extracts revealed vibration bands corresponding to acid, alcohol and ketone functions. Additionally, HPLC-ESI-MS analyses showed that phenolic alcohols, phenolic acids, flavonoids, secoiridoids and derivatives and lignans represent the most abundant phenolic compounds. Nüzhenide, naringenin and long chain polymeric substances were also detected. Mountainous areas also presented the most effective DPPH scavenging potential compared to plain areas; IC50 values were 11.7 ± 5.6 µg/ml and 30.7 ± 4.4 µg/ml, respectively. OMWW was confirmed as a rich source of natural phenolic antioxidant agents.

  8. Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina).

    Science.gov (United States)

    Varela, M Celeste; Arslan, Idris; Reginato, Mariana A; Cenzano, Ana M; Luna, M Virginia

    2016-07-01

    Plants exposed to drought stress, as usually occurs in Patagonian shrublands, have developed different strategies to avoid or tolerate the lack of water during their development. Production of phenolic compounds (or polyphenols) is one of the strategies used by some native species of adverse environments to avoid the oxidative damage caused by drought. In the present study the relationship between phenolic compounds content, water availability and oxidative damage were evaluated in two native shrubs: Larrea divaricata (evergreen) and Lycium chilense (deciduous) of Patagonian shrublands by their means and/or by multivariate analysis. Samples of both species were collected during the 4 seasons for the term of 1 year. Soil water content, relative water content, total phenols, flavonoids, flavonols, tartaric acid esters, flavan-3-ols, proanthocyanidins, antioxidant capacity and lipid peroxidation were measured. According to statistical univariate analysis, L. divaricata showed high production of polyphenols along the year, with a phenolic compound synthesis enhanced during autumn (season of greatest drought), while L. chilense has lower production of these compounds without variation between seasons. The variation in total phenols along the seasons is proportional to the antioxidant capacity and inversely proportional to lipid peroxidation. Multivariate analysis showed that, regardless their mechanism to face drought (avoidance or tolerance), both shrubs are well adapted to semi-arid regions and the phenolic compounds production is a strategy used by these species living in extreme environments. The identification of polyphenol compounds showed that L. divaricata produces different types of flavonoids, particularly bond with sugars, while L. chilense produces high amount of non-flavonoids compounds. These results suggest that flavonoid production and accumulation could be a useful indicator of drought tolerance in native species. Copyright © 2016 Elsevier Masson

  9. Antioxidant Phenolic Compounds of Cassava (Manihot esculenta from Hainan

    Directory of Open Access Journals (Sweden)

    Haofu Dai

    2011-12-01

    Full Text Available An activity-directed fractionation and purification process was used to isolate antioxidant components from cassava stems produced in Hainan. The ethyl acetate and n-butanol fractions showed greater DPPH˙and ABTS·+ scavenging activities than other fractions. The ethyl acetate fraction was subjected to column chromatography, to yield ten phenolic compounds: Coniferaldehyde (1, isovanillin (2, 6-deoxyjacareubin (3, scopoletin (4, syringaldehyde (5, pinoresinol (6, p-coumaric acid (7, ficusol (8, balanophonin (9 and ethamivan (10, which possess significant antioxidant activities. The relative order of DPPH· scavenging capacity for these compounds was ascorbic acid (reference > 6 > 1 > 8 > 10 > 9 > 3 > 4 > 7 > 5 > 2, and that of ABTS·+ scavenging capacity was 5 > 7 > 1 > 10 > 4 > 6 > 8 > 2 > Trolox (reference compound > 3 > 9. The results showed that these phenolic compounds contributed to the antioxidant activity of cassava.

  10. Enrichment of Phenolic Compounds from Olive Mill Wastewater and In Vitro Evaluation of Their Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Saleh Abu-Lafi

    2017-01-01

    Full Text Available The production of olive oil generates massive quantities of by-product called olive mill wastewater (OMWW. The uncontrolled disposal of OMWW poses serious environmental problems. The OMWW effluent is rich in several polyphenolic compounds. Liquid-liquid extraction of OMWW using ethyl acetate solvent was used to enrich phenolic compounds under investigation. Total phenolic and flavonoid content and antioxidant activity of the extract were determined. HPLC coupled to photodiode array (PDA detector was used to analyze the main three phenolic compounds of OMWW, namely, hydroxytyrosol, tyrosol, and oleuropein. The antimicrobial activity of the extract was also investigated. Additionally, the OMWW extract was used as natural preservative and antioxidants for olive oil. Results showed that OMWW is very rich in phenolic compounds and has strong antioxidant activity. HPLC analysis showed that the extract contains mainly hydroxytyrosol and tyrosol but no oleuropein. The OMWW extract showed also positive activities as antibacterial (gram positive and gram negative and antifungal as well as activities against yeast. The addition of OMWW extract to olive oil samples has an effect on the stability of olive oil as reflected by its acid value, peroxide value, K232 and K270, and total phenolic content.

  11. Identification of Phenolic Compounds and Evaluation of Antioxidant and Antimicrobial Properties of Euphorbia Tirucalli L.

    Directory of Open Access Journals (Sweden)

    Keline Medeiros de Araújo

    2014-03-01

    Full Text Available Bioactive compounds extracted from natural sources can benefit human health. The aim of this work was to determine total phenolic content and antioxidant activity in extracts of Euphorbia tirucalli L. followed by identification and quantification of the phenolic compounds, as well as their antibacterial activities. Antioxidant activities were determined by DPPH and ABTS•+ assay. Identification of phenolic compounds was performed using high-performance liquid chromatography (HPLC, and antimicrobial activities were verified by agar dilution methods and MIC values. Total phenolic content ranged from 7.73 to 30.54 mg/100 g gallic acid equivalent. Extracts from dry plants showed higher antioxidant activities than those from fresh ones. The DPPH EC50 values were approximately 12.15 μg/mL and 16.59 μg/mL, respectively. Antioxidant activity measured by the ABTS method yielded values higher than 718.99 μM trolox/g for dry plants, while by the Rancimat® system yielded protection factors exceeding 1 for all extracts, comparable to synthetic BHT. Ferulic acid was the principal phenolic compound identified and quantified through HPLC-UV in all extracts. The extracts proved effective inhibitory potential for Staphylococcus epidermidis and Staphylococcus aureus. These results showed that extracts of Euphorbia tirucalli L. have excellent antioxidant capacity and moderate antimicrobial activity. These can be attributed to the high concentration of ferulic acid.

  12. Nitration of phenolic compounds and oxidation of hydroquinones ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we have reported a mild, efficient and selective method for the mononitration of phenolic compounds using sodium nitrite in the presence of tetrabutylammonium dichromate (TBAD) and oxidation of hydroquinones to quinones with TBAD in CH2Cl2. Using this method, high yields of nitrophenols and ...

  13. Phenolic compounds and antioxidant activity of edible flowers

    Directory of Open Access Journals (Sweden)

    Marta Natalia Skrajda

    2017-08-01

    Full Text Available Introduction: Edible flowers has been used for thousands of years. They increase aesthetic appearance of food, but more often they are mentioned in connection with biologically active substances. The main ingredient of the flowers is water, which accounts for more than 80%. In small amounts, there are also proteins, fat, carbohydrates, fiber and minerals. Bioactive substances such as carotenoids and phenolic compounds determine the functional properties of edible flowers. Aim: The aim of this work was to characterize the phenolic compounds found in edible flowers and compare their antioxidant activity. Results: This review summarizes current knowledge about the usage of edible flowers for human nutrition. The work describes the antioxidant activity and phenolic compounds of some edible flowers. Based on literature data there is a significant difference both in content of phenolic compounds and antioxidant activity between edible flowers. These difference reaches up to 3075-fold in case of antioxidant potential. Among described edible flowers the most distinguishable are roses, peonies, osmanthus fragans and sambuco nero. Conclusions: Edible flowers are the new source of nutraceuticals due to nutritional and antioxidant values.

  14. Mechanisms of action of phenolic compounds in olive.

    Science.gov (United States)

    Rafehi, Haloom; Ververis, Katherine; Karagiannis, Tom C

    2012-06-01

    Olive oil, an oil rich in monounsaturated fatty acids (MUFCs) and minor constituents including phenolic compounds, is a major component of the Mediterranean diet. The potential health benefits of the Mediterranean diet were highlighted by the seminal Seven Countries Study, and more contemporary research has identified olive oil as a major element responsible for these effects. It is emerging that the phenolic compounds are the most likely candidates accounting for the cardioprotective and cancer preventative effects of extra virgin olive oil (EVOO). In particular, the phenolic compound, hydroxytyrosol has been identified as one of the most potent antioxidants found in olive oil. This review will briefly consider historical aspects of olive oil research and the biological properties of phenolic compounds in olive oil will be discussed. The focus of the discussion will be related to the mechanisms of action of hydroxytyrosol. Studies have demonstrated that hydroxytyrosol induces apoptosis and cell cycle arrest in cancer cells. Further, research has shown that hydroxytyrosol can prevent cardiovascular disease by reducing the expression of adhesion molecules on endothelial cells and preventing the oxidation of low-density lipoprotein (LDL). The molecular mechanisms accounting for these effects are reviewed.

  15. Glycoalkaloids and phenolic compounds in gamma irradiated potatoes

    International Nuclear Information System (INIS)

    Bergers, W.W.A.

    1980-01-01

    Potatoes were used to study the metabolic stress effects in irradiated vegetable products. The changes of the contents of specific target compounds (glycoalkaloids, phenolic acids and coumarins) in alcoholic extracts of gamma irradiated potatoes were studied for metabolic irradiation stress. Doses of up to 3 kGy were applied to potatoes of several varieties. (Auth.)

  16. Flavoenzyme-catalyzed oxygenations and oxidations of phenolic compounds

    NARCIS (Netherlands)

    Moonen, MJH; Fraaije, MW; Rietjens, IMCM; Laane, C; van Berkel, WJH

    2002-01-01

    Flavin-dependent monooxygenases and oxidases play an important role in the mineralization of phenolic compounds. Because of their exquisite regioselectivity and stereoselectivity, these enzymes are of interest for the biocatalytic production of fine chemicals and food ingredients. In our group, we

  17. Removal of hard COD, nitrogenous compounds and phenols from a ...

    African Journals Online (AJOL)

    The objective of this study was to identify the factors affecting the suspended and fixed biomass in the removal of hard COD, nitrogenous compounds and phenols from a coal gasification wastewater (CGWW) stream using a hybrid fixed-film bioreactor (H-FFBR) process under real-time plant operational conditions and ...

  18. Effect of phenolic compounds released during degradation of Coir ...

    African Journals Online (AJOL)

    MICHAEL

    www.bioline.org.br/ja. Effect of phenolic compounds released during degradation of Coir pith by ... of the culture filtrate appears to be non toxic in the tested animals @ JASEM. Coir pith is a highly ... degradation of coir pith by fungi and bacteria were already reported, ... no.1 filter paper and used as feed for the experimental ...

  19. Chemical evaluation of protein quality and phenolic compound ...

    African Journals Online (AJOL)

    Dr ACHU Mercy BIH epouse LOH

    2011-07-07

    Jul 7, 2011 ... These results show a great variability on the protein contents which depend on the specie and which also seem to depend on the regions, as seen from the low values obtained for Sudanese seeds. Phenolic compounds have been shown to have a lot of beneficial effects as antioxidants, antithrombotic and ...

  20. Antioxidative activities and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts.

    Science.gov (United States)

    Peiretti, Pier Giorgio; Meineri, Giorgia; Gai, Francesco; Longato, Erica; Amarowicz, Ryszard

    2017-09-01

    Phenolic compounds were extracted from pumpkin (Cucurbita pepo) seed and amaranth (Amaranthus caudatus) grain into 80% (v/v) methanol. The extracts obtained were characterised by the contents of total phenolic compounds (TPC), trolox equivalent antioxidant capacity (TEAC), ferric-reducing antioxidant power (FRAP) and antiradical activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH · ) radical. The content of individual phenolic compounds was determined by HPLC-DAD method. Pumpkin seeds showed the higher content of TPC than that from amaranth. The TEAC values of both extracts were similar each other. The lower value of FRAP was observed for pumpkin seed. Phenolic compound present in amaranth grain exhibited strongest antiradical properties against DPPH radical. Several peaks were present on the HPLC chromatograms of two extracts. The UV-DAD spectra confirmed the presence of vanillic acid derivatives in the amaranth grain. The three main phenolic compound present in pumpkin seed were characterised by UV-DAD spectra with maximum at 258, 266 and 278 nm.

  1. Phenolic Compounds from Belamcanda chinensis Seeds

    Directory of Open Access Journals (Sweden)

    Ying-Ying Song

    2018-03-01

    Full Text Available Two new sucrose derivatives, namely, belamcanosides A (1 and B (2, together with five other known compounds (3−7, were isolated from the seeds of Belamcanda chinensis (L. DC. Their structures were identified based on spectroscopic data. Especially, the absolute configurations of fructose and glucose residues in 1 and 2 were assigned by acid hydrolysis, followed by derivatization and gas chromatography (GC analysis. Among the known compounds, (−-hopeaphenol (3, (+-syringaresinol (4, and quercetin (5, were isolated from B. chinensis for the first time. In addition, biological evaluation of 1 and 2 against cholesterol synthesis and metabolism at the gene level was carried out. The results showed that compounds 1 and 2 could regulate the expression of cholesterol synthesis and metabolism-associated genes, including 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR, squalene epoxidase (SQLE, low density lipoprotein receptor (LDLR, and sortilin (SORT1 genes in HepG2 cells.

  2. Bioaccessibility and bioavailability of phenolic compounds in bread: a review.

    Science.gov (United States)

    Angelino, Donato; Cossu, Marta; Marti, Alessandra; Zanoletti, Miriam; Chiavaroli, Laura; Brighenti, Furio; Del Rio, Daniele; Martini, Daniela

    2017-07-19

    Cereal-based products, like breads, are a vehicle for bioactive compounds, including polyphenols. The health effects of polyphenols like phenolic acids (PAs) are dependent on their bioaccessibility and bioavailability. The present review summarizes the current understanding of potential strategies to improve phenolic bioaccessibility and bioavailability and the main findings of in vitro and in vivo studies investigating these strategies applied to breads, including the use of raw ingredients with greater phenolic content and different pre-processing technologies, such as fermentation and enzymatic treatment of ingredients. There is considerable variability between in vitro studies, mainly resulting from the use of different methodologies, highlighting the need for standardization. Of the few in vivo bioavailability studies identified, acute, single-dose studies demonstrate that modifications to selected raw materials and bioprocessing of bran could increase the bioavailability, but not necessarily the net content, of bread phenolics. The two medium-term identified dietary interventions also demonstrated greater phenolic content, resulting from the modification of the raw materials used. Overall, the findings suggest that several strategies can be used to develop new bread products with greater phenolic bioaccessibility and bioavailability. However, due to the large variability and the few studies available, further investigations are required to determine better the usefulness of these innovative processes.

  3. Pulse seed germination improves antioxidative activity of phenolic compounds in stripped soybean oil-in-water emulsions.

    Science.gov (United States)

    Xu, Minwei; Jin, Zhao; Peckrul, Allen; Chen, Bingcan

    2018-06-01

    The purpose of this study was to investigate antioxidative activity of phenolic compounds extracted from germinated pulse seed including chickpeas, lentils and yellow peas. Phenolic compounds were extracted at different germination time and total phenolic content was examined by Folin Ciocalteu's reaction. Antioxidative activity of extracts was characterized by in vitro assay including 2, 2-diphenyl-1-picrylhydrazyl radical scavenging capacity (DPPH), oxygen radical absorbance capacity (ORAC), iron-binding assay, and in stripped soybean oil-in-water emulsions. The results suggested that germination time is critical for phenolic compounds production. The form variation of phenolic compounds influenced the antioxidative activity of phenolic compounds both in vitro assay and in emulsion systems. Soluble bound phenolic compounds showed higher antioxidative ability in emulsion system with the order of chickpea > yellow pea > lentil. On the basis of these results, soluble bound phenolic compounds may be considered as a promising natural antioxidant to prevent lipid oxidation in foods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Role and significance of total phenols during rooting of Protea ...

    African Journals Online (AJOL)

    The high total phenol content was associated with significantly higher rooting percentage and increased the number of roots formed. Blanching reduced the time needed for the cuttings to root sufficiently to be transplanted to the field by 30 days. Analyses of different parts of cuttings throughout the entire rooting period ...

  5. Role and significance of total phenols during rooting of Protea ...

    African Journals Online (AJOL)

    Reviewer

    2011-10-03

    Oct 3, 2011 ... fluctuations in total phenol concentration of different parts ... Rooting percentage, mean root dry mass and mean number of roots according to root length ... differences at P ≤ 0.05 based on chi-square; 2different letters in.

  6. Cytotoxicity, Total Phenolic Contents and Antioxidant Activity of the ...

    African Journals Online (AJOL)

    The leaves of Annona muricata were extracted using ethanol and the extracts were evaluated for cytotoxicity using Brine Shrimp Lethality Assay, total phenolic content (TPC) and antioxidant activity using DPPH radical scavenging assay. The crude extract showed 73.33 % mortality at 1000 μg/mL concentration and its ...

  7. Antioxidant, Phytotoxic and Antiurease Activities, and Total Phenolic ...

    African Journals Online (AJOL)

    Purpose: To evaluate the antioxidant, phytotoxic and anti-urease properties of dichloromethane and methanol extracts of Conocarpus lancifolius in correlation with total phenolic and flavonoid contents. Methods: The whole plant (dried aerial parts and root) of Conocarpus lancifolius was extracted successively with ...

  8. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Maurizio Servili

    2013-12-01

    Full Text Available Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life.

  9. Effect of fungal infection on phenolic compounds during the storage of coffee beans

    Directory of Open Access Journals (Sweden)

    Amal, A. A.

    2013-12-01

    Full Text Available Aims: This work was undertaken to study the effect of Aspergillus infection on phenolic compounds in beans from four cultivars of the coffee plant (Coffea arabica L.. The effects of storage conditions of the coffee beans were also examined. Methodology and results: Beans from four varieties of coffee were artificially infected with three species of Aspergillus: A. niger, A. melleus and A. alliacus, and stored at 0, 8 and 25 ± 2 °C. After 3, 6 and 9 months, the contents of phenolic compounds in the beans were determined using high performance liquid chromatography (HPLC. Conclusion, significance and impact study: The results of this study showed that phenolic compounds were qualitatively and quantitatively higher in the inoculated beans as compared with the uninfected control beans, reflecting a possible induced defense mechanism in the infected beans. Increased storage periods resulted in higher levels of phenols, but the average total, bound and free phenols did not differ between the cultivars tested. Effective control of Apergillus infection in coffee beans can prevent such changes in phenolics that may affect their commercial value.

  10. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation

    Science.gov (United States)

    García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana

    2016-01-01

    In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11–16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18–22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9–13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly. PMID:26930190

  11. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation.

    Science.gov (United States)

    García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana

    2016-01-01

    In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11-16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18-22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9-13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly.

  12. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil.

    Science.gov (United States)

    Wang, Xiaoqin; Zeng, Qiumei; Del Mar Contreras, María; Wang, Lijuan

    2017-12-01

    In Asia, tea seed oils (seed oils from Camellia oleifera, C. chekiangoleosa, and C. sinensis) are used in edible, medicinal, and cosmetic applications. However, these oils differ in their fatty acid contents, and there is little known about their phenolic compounds. Here we analyzed the phenolic compounds of seed oils from three species gathered from 15 regions of China. Twenty-four phenolic compounds were characterized by HPLC-Q-TOF-MS, including benzoic acids (6), cinnamic acids (6), a hydroxyphenylacetic acid, flavanols (4), flavonols (3), flavones (2), and dihydroflavonoids (2). Some of these phenolic compounds had not previously been reported from C. sinensis (20), C. oleifera (15), and C. chekiangoleosa (24) seed oils. Quantification was done by HPLC-QqQ-MS using 24 chemical standards. The total concentrations in the studied samples ranged from 20.56 to 88.56μg/g. Phenolic acids were the most abundant class, accounting for 76.2-90.4%, with benzoic acid, found at up to 18.87μg/g. The concentration of catechins, typical of tea polyphenols, ranged between 2.1% and 9.7%, while the other flavonoids varied from 4.2% to 17.8%. Although the cultivation region affected the phenolic composition of the Camellia seed oils, in our hierarchical clustering analysis, the samples clustered according to species. The phenolic composition of the seed oils from C. oleifera and C. chekiangoelosa were similar. We found that the phenolic categories in Camellia seed oils were similar to tea polyphenols, thereby identifying a source of liposoluble tea polyphenols and potentially accounting for some of the reported activities of these oils. In addition, this work provides basic data that allows distinction of various Camellia seed oils, as well as improvements to be made in their quality standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Decoction, infusion and hydroalcoholic extract of Origanum vulgare L.: different performances regarding bioactivity and phenolic compounds.

    Science.gov (United States)

    Martins, Natália; Barros, Lillian; Santos-Buelga, Celestino; Henriques, Mariana; Silva, Sónia; Ferreira, Isabel C F R

    2014-09-01

    Bioactivity of oregano methanolic extracts and essential oils is well known. Nonetheless, reports using aqueous extracts are scarce, mainly decoction or infusion preparations used for therapeutic applications. Herein, the antioxidant and antibacterial activities, and phenolic compounds of the infusion, decoction and hydroalcoholic extract of oregano were evaluated and compared. The antioxidant activity is related with phenolic compounds, mostly flavonoids, since decoction presented the highest concentration of flavonoids and total phenolic compounds, followed by infusion and hydroalcoholic extract. The samples were effective against gram-negative and gram-positive bacteria. It is important to address that the hydroalcoholic extract showed the highest efficacy against Escherichia coli. This study demonstrates that the decoction could be used for antioxidant purposes, while the hydroalcoholic extract could be incorporated in formulations for antimicrobial features. Moreover, the use of infusion/decoction can avoid the toxic effects showed by oregano essential oil, widely reported for its antioxidant and antimicrobial properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Degradation of phenolic compounds by using advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M. [Univ. de los Andes, Escuela Basica de Ingenieria, La Hechicera, Merida (Venezuela); Hincapie, M. [Dept. de Ingenieria Sanitaria y Ambiental, Univ. de Antioquia, Medellin (Colombia); Curco, D.; Contreras, S.; Gimenez, J.; Esplugas, S. [Dept. de Ingenieria Quimica, Facultad de Quimica, Univ. de Barcelona, Barcelona (Spain)

    2003-07-01

    A new empirical kinetic equation [r = k{sub 1}c - k{sub 2} (c{sub 0} - c)] is proposed for the photocatalytic degradation of phenolic compounds. This equation considers the influence of the intermediates in the degradation of the pollutant. The correct formulation of the contaminant mass balance in the experimental device that operates in recycle mode was done. The proposed empirical kinetic equation fitted quite well with the experimental results obtained in the TiO{sub 2}-photocatalytic degradation of phenol. (orig.)

  15. Infestation of froghopper nymphs changes the amounts of total phenolics in sugarcane

    Directory of Open Access Journals (Sweden)

    Silva Rafael José Navas da

    2005-01-01

    Full Text Available The increased rate of sugarcane harvest without previous burn has provided a very favorable environment to the froghopper Mahanarva fimbriolata (Stal, 1854, with high moisture and low temperature variation. Few works have studied the response of sugarcane to this pest, so little is known about resistant cultivars. Plant phenolics are widely studied compounds because of their known antiherbivore effect. This research aims to determine if the attack of M. fimbriolata nymphs stimulates the accumulation of total phenolics in sugarcane. The experiment was carried out in greenhouse and arranged in completely randomized design, in a 3 X 2 X 4 factorial with three replications. Second instar nymphs of M. fimbriolata were infested at the following rates: control, 2-4 and 4-8 nymphs per pot (first-second infestations, respectively. Pots were covered with nylon net and monitored daily to isolate the effect of leaf sucking adults. Leaf and root samples were collected and kept frozen in liquid nitrogen until analyses. Infested plants showed higher levels of phenolics in both root and leaf tissues. In roots, the cultivar SP80-1816 accumulated more phenolic compounds in response to the infestation of M. fimbriolata. On the other hand, higher levels were found in leaves and roots of control plants of SP86-42, which might be an indication of a non-preference mechanism. The increase of total phenolics in sugarcane infested with root-sucking froghopper nymphs does not seem to be useful to detect the resistance to this pest.

  16. Optimization of extraction conditions of total phenolics, antioxidant activities, and anthocyanin of oregano, thyme, terebinth, and pomegranate.

    Science.gov (United States)

    Rababah, Taha M; Banat, Fawzi; Rababah, Anfal; Ereifej, Khalil; Yang, Wade

    2010-09-01

    The purpose of this study was to evaluate the total phenolic extracts and antioxidant activity and anthocyanins of varieties of the investigated plants. These plants include oregano, thyme, terebinth, and pomegranate. The optimum extraction conditions including temperature and solvent of the extraction process itself were investigated. Total phenolic and anthocyanin extracts were examined according to Folin-Ciocalteu assay and Rabino and Mancinelli method, respectively. The effect of different extracting solvents and temperatures on extracts of phenolic compounds and anthocyanins were studied. Plant samples were evaluated for their antioxidant chemical activity by 2, 2-diphenyl-1-picrylhydrazl assay, to determine their potential as a source of natural antioxidant. Results showed that all tested plants exhibited appreciable amounts of phenolic compounds. The methanolic extract (60 °C) of sour pomegranate peel contained the highest phenolic extract (4952.4 mg/100 g of dry weight). Terebinth green seed had the lowest phenolic extract (599.4 mg/100 g of dry weight). Anthocyanins ranged between 3.5 (terebinth red seed) and 0.2 mg/100 g of dry material (thyme). Significant effect of different extracting solvents and temperatures on total phenolics and anthocyanin extracts were found. The methanol and 60 °C of extraction conditions found to be the best for extracting phenolic compounds. The distilled water and 60 °C extraction conditions found to be the best for extracting anthocyanin.

  17. Quantification of the levels of tannins and total phenols and evaluation of the antioxidant activity of fruits of pepper tree

    Directory of Open Access Journals (Sweden)

    Natália Ribeiro Bernardes

    2011-12-01

    Full Text Available The fruits of pepper tree (Schinus terebinthifolius Raddi are widely used in the world cooking and its consumption has been encouraged since the late 80’s due to the presence of phenolic substances. Therefore, this study quantified the levels of tannins and total phenols in the fruits of pepper tree, aiming at establishing a possible correlation between these substances and their antioxidant activity. Phenolic compounds were extracted with acetone: water (7:3, and quantified by spectrophotometry. The antioxidant activity was measured by DPPH method. The results showed low levels of condensed tannins and total phenols in the peel of the fruit, not being detected hydrolysable tannins in them. Nevertheless, the methanolic extract showed high antioxidant potential, which indicates the absence of a correlation between antioxidant activity and the levels of phenolic compounds in these fruits.

  18. Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants

    Directory of Open Access Journals (Sweden)

    Oksana Sytar

    2018-05-01

    Full Text Available Bioactive phenolic compounds are powerful antioxidants in traditionally used medicinal and industrial crop plants and have attracted increased interest in the last years in their application and role in non-destructive methodology for pre-screening analysis of some stress factors. In this study the qualitative target was linked with future possible applications of received data for improving non-destructive methodology as well as for improving existing knowledge regarding antioxidant content in some plant species. Comparative analysis of total phenolics, flavonoid contents, phenolic acid composition, and antioxidant activity in known east central Europe medicinal and industrial crop plants of 26 species of families Asteraceae, Rosaceae and Lamiaceae was done. Among the investigated leaf extracts the highest total phenolic, total flavonoid contents and antioxidant activity have been seen for Stachys byzantine L. (Lamiaceae, Calendula officinalis L. (Asteraceae and for Potentilla recta L. (Rosaceae. The highest syringic acid content has been found in the leaf extracts of plant family Asteraceae – in the range from 0.782 to 5.078 mg g−1 DW. The representative’s family Rosaceae has a higher content of p-anisic acid in the range 0.334–3.442 mg g−1DW compared to the leaf extracts of families Lamiaceae and Asteraceae. The comparative study showed significant differences of content of phenolic acids in the leaf extracts of different representative’s families Rosaceae, Asteraceae and Lamiaceae. We suggest that the presence of some phenolic acids can be used as a possible marker for family botanical specifications of representative families Asteraceae and Rosaceae. It was supposed that some pharmacological effects can be connected with the analyzed data. Keywords: Phenolic compounds, Flavonoids, Phenolic acids, Antioxidant activity, Asteraceae, Rosaceae, Lamiaceae

  19. Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Eun, J.B.; Wierenga, P.A.; Gruppen, H.

    2009-01-01

    Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by different oxidised phenolic compounds including caffeic acid, ferulic acid and tannic acid at different concentrations were investigated. Oxidised phenolic compounds were covalently attached to gelatin as

  20. Phenolic compounds and biological activity of Capsicum annuum L ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate antifungal and antioxidant activities of vegetable extracts (Capsicum annuum L. cv. Dora, cv. Strizanka, cv. Morava), grown in Serbia. Different experimental models have included the determination content of total phenolics, total flavonoids, antioxidant capacity and minimum ...

  1. Antioxidant Capacities and Total Phenolic Contents of 56 Wild Fruits from South China

    Directory of Open Access Journals (Sweden)

    Hua-Bin Li

    2010-11-01

    Full Text Available In order to identify wild fruits possessing high nutraceutical potential, the antioxidant activities of 56 wild fruits from South China were systematically evaluated. The fat-soluble components were extracted with tetrahydrofuran, and the water-soluble ones were extracted with a 50:3.7:46.3 (v/v methanol-acetic acid-water mixture. The antioxidant capacities of the extracts were evaluated using the ferric reducing antioxidant power (FRAP and Trolox equivalent antioxidant capacity (TEAC assays, and their total phenolic contents were measured by the Folin-Ciocalteu method. Most of these wild fruits were analyzed for the first time for their antioxidant activities. Generally, these fruits had high antioxidant capacities and total phenolic contents. A significant correlation between the FRAP value and the TEAC value suggested that antioxidant components in these wild fruits were capable of reducing oxidants and scavenging free radicals. A high correlation between antioxidant capacity and total phenolic content indicated that phenolic compounds could be the main contributors to the measured antioxidant activity. The results showed that fruits of Eucalyptus robusta, Eurya nitida, Melastoma sanguineum, Melaleuca leucadendron, Lagerstroemia indica, Caryota mitis, Lagerstroemia speciosa and Gordonia axillaris possessed the highest antioxidant capacities and total phenolic contents among those tested, and could be potential rich sources of natural antioxidants and functional foods. The results obtained are very helpful for the full utilization of these wild fruits.

  2. Effects of cooking methods on phenolic compounds in xoconostle (Opuntia joconostle).

    Science.gov (United States)

    Cortez-García, Rosa María; Ortiz-Moreno, Alicia; Zepeda-Vallejo, Luis Gerardo; Necoechea-Mondragón, Hugo

    2015-03-01

    Xoconostle, the acidic cactus pear fruit of Opuntia joconostle of the Cactaceae family, is the source of several phytochemicals, such as betalain pigments and numerous phenolic compounds. The aim of the present study was to analyze the effect of four cooking procedures (i.e., boiling, grilling, steaming and microwaving) on the total phenolic content (TPC) and antioxidant activity (measured by ABTS, DPPH, reducing power, and BCBA) of xoconostle. In addition, HPLC-DAD analyses were performed to identify and quantify individual phenolic compounds. After microwaving and steaming xoconostle, the TPC remained the same that in fresh samples, whereas both grilling and boiling produced a significant, 20% reduction (p ≤ 0.05). Total flavonoids remained unchanged in boiled and grilled xoconostle, but steaming and microwaving increased the flavonoid content by 13 and 20%, respectively. Steaming and microwaving did not produce significant changes in the antioxidant activity of xoconostle, whereas boiling and grilling result in significant decreases. The phenolic acids identified in xoconostle fruits were gallic, vanillic, 4-hydroxybenzoic, syringic, ferulic and protocatechuic acids; the flavonoids identified were epicatechin, catechin, rutin, quercitrin, quercetin and kaempferol. Based on the results, steaming and microwaving are the most suitable methods for retaining the highest level of phenolic compounds and flavonoids in xoconostle.

  3. Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds.

    Science.gov (United States)

    Slatnar, Ana; Klancar, Urska; Stampar, Franci; Veberic, Robert

    2011-11-09

    Fresh figs were subjected to two different drying processes: sun-drying and oven-drying. To assess their effect on the nutritional and health-related properties of figs, sugars, organic acids, single phenolics, total phenolics, and antioxidant activity were determined before and after processing. Samples were analyzed three times in a year, and phenolic compounds were determined using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). In figs, monomer sugars predominate, which is important nutritional information, and the content of sugars as well as organic acids in fresh figs was lower than in dried fruits. However, the best sugar/organic acid ratio was measured after the sun-drying process. Analysis of individual phenolic compounds revealed a higher content of all phenolic groups determined after the oven-drying process, with the exception of cyanidin-3-O-rutinoside. Similarly, higher total phenolic content and antioxidant activity were detected after the drying process. With these results it can be concluded that the differences in analyzed compounds in fresh and dried figs are significant. The differences between the sun-dried and oven-dried fruits were determined in organic acids, sugars, chlorogenic acid, catechin, epicatechin, kaempferol-3-O-glucoside, luteolin-8-C-glucoside, and total phenolic contents. The results indicate that properly dried figs can be used as a good source of phenolic compounds.

  4. Irreversible adsorption of phenolic compounds by activated carbons

    International Nuclear Information System (INIS)

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs

  5. Irreversible adsorption of phenolic compounds by activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  6. Phenolic Compounds and Antioxidant Activities of Liriope muscari

    Directory of Open Access Journals (Sweden)

    Shu Shan Du

    2012-02-01

    Full Text Available Five phenolic compounds, namely N-trans-coumaroyltyramine (1, N-trans-feruloyltyramine (2, N-trans-feruloyloctopamine (3, 5,7-dihydroxy-8-methoxyflavone (4 and (3S3,5,4′-trihydroxy-7-methoxy-6-methylhomoisoflavanone (5, were isolated from the fibrous roots of Liriope muscari (Liliaceae. Compounds 2–5 were isolated for the first time from the Liriope genus. Their in vitro antioxidant activities were assessed by the DPPH and ABTS scavenging methods with microplate assays. The structure-activity relationships of compounds 1–3 are discussed.

  7. Aquatic pathways model to predict the fate of phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.J.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. To better assess possible impacts, we developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The computer programs use compartmental analysis to simulate aquatic ecosystems. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The APM will consider any aquatic pathway for which the user has transport data. Additionally, APM will estimate transport rates from physical and chemical properties of chemicals between several key compartments. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. The properties of heavier molecular weight phenolics (indanols, naphthols) are not well enough understood at this time to make similar judgements. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation (using APM) of a spill of solvent refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor.

  8. Tracing phenolic compounds through manufacturing of edible films from orange and grapefruit peels

    OpenAIRE

    Hernández-Carrillo, J.G.; Valdez-Fragoso, A.; Welti-Chanes, J.; Mújica-Paz, H.

    2015-01-01

    Edible films naturally rich in phenolic compounds were prepared from orange and grapefruit peels. Free and total polyphenols were determined by Folin-Ciocalteau method and flavonoids were identified and quantified by HPLC in the manufacturing processes of films. Films from grapefruit and orange peel had 24.95 and 28.18 mg GAE/g (Gallic Acid Equivalents/g), respectively, retaining more than 50% of total phenolics from the raw material. Hesperidin (33.39 mg/g) was the main flavonoid in orange p...

  9. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat.

    Science.gov (United States)

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation.

  10. Promising Potential of Dietary (Poly)Phenolic Compounds in the Prevention and Treatment of Diabetes Mellitus.

    Science.gov (United States)

    Dias, Tania R; Alves, Marco G; Casal, Susana; Oliveira, Pedro F; Silva, Branca M

    2017-01-01

    The incidence of diabetes mellitus (DM) is reaching alarming proportions worldwide, particularly because it is increasingly affecting younger people. This reflects the sedentary lifestyle and inappropriate dietary habits, especially due to the advent of processed foods in modern societies. Thus, unsurprisingly, the first medical recommendation to patients with clinically evident DM is the alteration in their eating behaviour, particularly regarding carbohydrates and total energy intake. Despite individual and cultural preferences, human diet makes available a large amount of phytochemicals with therapeutic potential. Phenolic compounds are the most abundant class of phytochemicals in edible plants, fruits and beverages. These compounds have strong antioxidant and anti-inflammatory activities that have been associated with specific features of their chemical structure. Among others, such properties make them promising antidiabetic agents and several mechanisms of action have already been proposed. Herein, we discuss the recent findings on the potential of dietary phenolic compounds for the prevention and/or treatment of (pre)diabetes, and associated complications. A broad range of studies supports the innate potential of phenolic compounds to protect against DM-associated deleterious effects. Their antidiabetic activity has been demonstrated by: i) regulation of carbohydrate metabolism; ii) improvement of glucose uptake; iii) protection of pancreatic β-cells; iv) enhancement of insulin action and v) regulation of crucial signalling pathways to cell homeostasis. Dietary phenolic compounds constitute an easy, safe and cost-effective way to combat the worrying scenario of DM. The interesting particularities of phenolic compounds reinforce the implementation of a (poly)phenolic-rich nutritional regime, not only for (pre)diabetic patients, but also for non-diabetic people. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Content of Phenolic Compounds in the Genus Carduus L. from Bulgaria

    Directory of Open Access Journals (Sweden)

    Iliya Zhelev

    2013-12-01

    Full Text Available Phytochemical screening of the content of total polyphenols, flavonoids, phenolic acids and anthocyanins in Bulgarian Carduus L. species was carried out. The plant materials (inflorescences from all of the 14 species found in Bulgaria has been collected from natural habitats from different floristic regions, during the period 2011-2013. Chemical analysis of the specimens was carried out in accordance with 11 Russian and 7 European Pharmacopoeia. For some of the plant species the obtained results are the first published data about content of phenolic compounds. The content of flavonoids (1,8-3,2% and total phenols(1,7-2,3% was higher in comparison with this of phenolic acids (0,6-2,4% and anthocyanins (0,5-1,5%. The highest content of total phenols and antocyanins was determined in the Carduus thracicus. The three species Carduus thoermeri, Carduus nutans and Carduus candicans ssp. globifer were characterized with the highest content of flavonoids. The highest content of phenolic acids was determined in the Carduus armatus.

  12. ANTIOXIDANT ACTIVITY, TOTAL PHENOLIC AND FLAVONOID CONTENT OF MORINDA CITRIFOLIA FRUIT EXTRACTS FROM VARIOUS EXTRACTION PROCESSES

    Directory of Open Access Journals (Sweden)

    PRAVEEN K. RAMAMOORTHY

    2007-04-01

    Full Text Available Soxhlet, Ultrasonic extract of Morinda citrifolia L. fruit and four extracts from high pressure extraction at 10 MPa using ethanol, ethyl acetate as solvent and dried by vacuum oven and spray dryer were analyzed for their antioxidant activity by peroxide value method and diphenylpicrylhydrazyl radical scavenging method. The five extracts along with the reference samples, butylated hydroxyl toluene and tannic acid were further analyzed to determine their total phenolic content by Folin-Ciocalteau method and total flavonoid content by Dowd method. The M. citrifolia extract by high pressure extraction with ethyl acetate as solvent and spray dried was found to exhibit highest antioxidant activity and total flavonoid content. High total phenolic content was determined in the high pressure extract using ethyl acetate as solvent and vacuum dried. It was interesting to note that ultrasonic extract exhibited significant antioxidant activity, total phenolic and flavonoid content. High pressure extracted M. citrifolia in ethanol was found to express lesser values comparatively. The significant difference in activity among the high pressure extracts was found to be due to the polarity of the solvents used for extraction as M. citrifolia fruit contains relatively larger quantity of non-polar antioxidant compounds. It was also found that the drying methods had significant impact on the antioxidant activity, total phenolic and flavonoid content of the extracts.

  13. Phenol-Sulfuric Acid Method for Total Carbohydrates

    Science.gov (United States)

    Nielsen, S. Suzanne

    The phenol-sulfuric acid method is a simple and rapid colorimetric method to determine total carbohydrates in a sample. The method detects virtually all classes of carbohydrates, including mono-, di-, oligo-, and polysaccharides. Although the method detects almost all carbohydrates, the absorptivity of the different carbohydrates varies. Thus, unless a sample is known to contain only one carbohydrate, the results must be expressed arbitrarily in terms of one carbohydrate.

  14. Radiation induced chemical changes of phenolic compounds in strawberries

    Energy Technology Data Exchange (ETDEWEB)

    Breitfellner, F.; Solar, S. E-mail: sonja.solar@univie.ac.at; Sontag, G

    2003-06-01

    In unirradiated strawberries four phenolic acids (gallic acid, p-coumaric acid, caffeic acid and 4-hydroxybenzoic acid), the flavonoids (+)-catechin, (-)-epicatechin and glycosides from kaempferol and quercetin were determined by reversed phase chromatography with diode array detection. Characteristic linear dose/concentration relationships were found for 4-hydroxybenzoic acid and two unidentified compounds. One of them may be usable as marker to prove an irradiation treatment.

  15. Radiation induced chemical changes of phenolic compounds in strawberries

    International Nuclear Information System (INIS)

    Breitfellner, F.; Solar, S.; Sontag, G.

    2003-01-01

    In unirradiated strawberries four phenolic acids (gallic acid, p-coumaric acid, caffeic acid and 4-hydroxybenzoic acid), the flavonoids (+)-catechin, (-)-epicatechin and glycosides from kaempferol and quercetin were determined by reversed phase chromatography with diode array detection. Characteristic linear dose/concentration relationships were found for 4-hydroxybenzoic acid and two unidentified compounds. One of them may be usable as marker to prove an irradiation treatment

  16. Non-phenolic antioxidant compounds from Buddleja asiatica.

    Science.gov (United States)

    el-Sayed, Mortada M; Abdel-Hameed, El-Sayed S; Ahmed, Wafaa S; el-Wakil, Eman A

    2008-01-01

    The methanol extract of the leaves of Buddleja asiatica Lour. (Loganiaceae) showed antioxidant activity toward the well known in vitro antioxidant tests such as total antioxidant capacity by the phosphomolybdenum method, free radical scavenging activity by the 1,1-diphenyl-2-picrylhydrazyl scavenging assay (DPPH assay) and hydrogen peroxide scavenging methods. Due to the high scavenging activity of the n-butanol successive fraction toward DPPH and H2O2 (SC50 = 11.99 and 18.54 microg/ml, respectively), this extract was subjected to chromatographic separation and isolation. Four non-phenolic compounds were isolated and identified on the basis of spectroscopic and chemical analyses: 1-O-beta-D-glucopyranosyl-2-methoxy-3-(2-hydroxy-triaconta-3,12-dienoate)-glycerol (1), 3-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->3)]-[beta-D-glucopyranosyl-(1-->2)]-beta-D-fucopyranosyl-olean-11,13(18)-diene-3 beta,23,28-triol (2), 3-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->3)]-beta-D-fucopyranosyl-olean-11,13(18)-diene-3,23,28-triol (3), and 3-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->3)]-[beta-D-xylopyranosyl-(1-->2)]-beta-D-glucuronopyranosyl-acid-olean-11,13(18)-diene-3 beta,23,28-triol (4). The four compounds were evaluated as antioxidant agents using the three antioxidant bioassay tests.

  17. Total phenolics and antioxidant activity of five medicinal plant

    International Nuclear Information System (INIS)

    Sousa, Cleyton Marcos de M.; Silva, Hilris Rocha e; Vieira-Junior, Gerardo Magela; Ayres, Mariane Cruz C.; Costa, Charllyton Luis S. da; Araajo, Delton Servulo; Cavalcante, Luis Carlos D.; Barros, Elcio Daniel S.; Araujo, Paulo Breitner de M.; Brandao, Marcela S.; Chaves, Mariana H.

    2007-01-01

    This paper describes total phenolics content and antioxidant activity in the ethanolic extract of leaves, bark and roots of five medicinal plants: Terminalia brasiliensis Camb., Terminalia fagifolia Mart. and Zucc., Copernicia cerifera (Miller) H.E. Moore, Cenostigma macrophyllum Tul. var. acuminata Teles Freire and Qualea grandiflora Mart. The total phenolics content of the plant extracts, determined by the Folin-Ciocalteu method, varied from 250.0 ±8,2 to 763,63 ±13.03 mg of gallic acid equivalent/g dry EtOH extract. The antioxidant activity of extracts was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay system. Extract of bark from T. brasiliensis, the most active, with an EC 50 value of 27.59 ± 0.82 μg/mL, was comparable to rutin (EC 50 = 27.80 ± 1.38) and gallic acid (EC 50 = 24.27 ± 0.31), used as positive controls. The relationship between total phenolic content and antioxidant activity was positive and significant for T. brasiliensis, C. macrophyllum and C. cerifera. (author)

  18. Chemical composition and antioxidant activity of phenolic compounds and essential oils from Calamintha nepeta L.

    Science.gov (United States)

    Khodja, Nabyla Khaled; Boulekbache, Lila; Chegdani, Fatima; Dahmani, Karima; Bennis, Faiza; Madani, Khodir

    2018-05-24

    Background Essential oils, infusion and decoction extracts of Calamintha nepeta L. were evaluated for their bioactive substances (polyphenols and essential oils) and antioxidant activities. Methods The amounts of phenolic compounds were determined by colorimetric assays and identified by high performance and liquid chromatography coupled with ultraviolet detector (HPLC-UV) method. The chemical composition of essential oils was determined by gas-chromatography coupled with mass spectrometry (GC/MS) method. For the evaluation of the antioxidant activity of essential oils and extracts, two different assays (reducing power and DPPH radical scavenging activity) were used. Results Infusion extract presented the highest phenolic content, followed by the decoction one, while the lowest amount was observed in essential oils. The amount of flavonoids of the decocted extract was higher than that of the infused one. The phenolic profile of C. nepeta infusion and decoction extracts revealed the presence of 28 and 13 peaks, respectively. Four phenolics compounds were identified in infusion (gallic acid (GA), rosmarinic acid (RA), caffeine (C) and caffeic acid (CA)) and two were identified in decoction (GA and RA). The chemical composition of essential oils revealed the presence of 29 compounds, accounting for the 99.7% of the total oils. Major compounds of essential oil (EO) were trans-menthone (50.06%) and pulegone (33.46%). Infusion and decoction extracts revealed an interesting antioxidant activity which correlates positively with their total phenolic contents. Conclusions These results showed that Calamintha nepeta could be considered as a valuable source of phenolics and essential oils with potent antioxidant activity.

  19. Standardization of Tragopogon graminifolius DC. Extract Based on Phenolic Compounds and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Farzaei

    2014-01-01

    Full Text Available Tragopogon graminifolius DC. (TG, Compositae family, is traditionally used for the treatment of various diseases like gastrointestinal and hepatic disorders. The aim of the present study is to standardize extracts from TG used for preparation of different dosage forms in traditional Iranian medicine (TIM based on phenolic compounds. For this purpose, total phenolic content and some phenolic compounds were determined in ethanolic extracts from aerial part and root of TG by HPLC method. Furthermore, antioxidant activity was evaluated using DPPH-HPLC methods. Caffeic acid, gallic acid, ρ-coumaric acid, ferulic acid, and catechin were detected in root and aerial part of TG. ρ-Coumaric acid (6.357 ± 0.014 mg·g−1 was dominant phenolic compound in aerial part followed by ferulic acid (1.24 ± 0.018 mg·g−1. Also, ρ-coumaric acid (2.685 ± 0.031 mg·g−1 was highly abundant in root, followed by catechin (2.067 ± 0.021 mg·g−1. Antioxidant activity of root extract (460.45 ± 0.78 µg Vit.E.E·mL−1 was better than that of aerial part. Generally, phenolic compounds are one of the major constituents of TG and could be used as markers for standardization of dosage forms prepared from this plant. Also, TG demonstrated significant antioxidant activity using DPPH-HPLC method. Phenolic compounds of TG may be responsible for its marked antioxidant properties.

  20. Relationship structure-antioxidant activity of hindered phenolic compounds

    Directory of Open Access Journals (Sweden)

    Weng, X. C.

    2014-12-01

    Full Text Available The relationship between the structure and the antioxidant activity of 21 hindered phenolic compounds was investigated by Rancimat and DPPH· tests. 3-tert-butyl-5-methylbenzene-1,2-diol is the strongest antioxidant in the Rancimat test but not in the DPPH· test because its two hydroxyl groups have very strong steric synergy. 2,6-Ditert-butyl-4-hydroxy-methylphenol exhibits a strong antioxidant activity as 2,6-ditertbutyl- 4-methoxyphenol does in lard. 2,6-Ditert-butyl-4- hydroxy-methylphenol also exhibits stronger activity than 2-tert-butyl-4- methoxyphenol. The methylene of 2,6-ditert-butyl-4-hydroxy-methylphenol can provide a hydrogen atom to active free radicals like a phenolic hydroxyl group does because it is greatly activated by both the aromatic ring and hydroxyl group. Five factors affect the antioxidant activities of the phenolic compounds: how stable the phenolic compound free radicals are after providing hydrogen atoms; how many hy drogen atoms each of the phenolic compounds can provide; how fast the phenolic compounds provide hydrogen atoms; how easily the phenolic compound free radicals can combine with more active free radicals, and whether or not a new antioxidant can form after the phenolic compound provides hydrogen atoms.La relación entre estructura y la actividad antioxidante de 21 compuestos fenólicos con impedimentos estéricos fue investigado mediante ensayos con Rancimat y DPPH·. El 3-terc-butil-5-metilbenceno-1,2-diol es el antioxidante más potente en los ensayos mediante Rancimat pero no mediante ensayos con DPPH·, porque sus dos grupos hidroxilo tienen una fuerte sinergia estérica. El 2,6-Di-terc-butil-4-hidroxi-metil-fenol mostró una actividad antioxidante tan fuerte como el 2,6-di-ter-butil-4-metoxifenol en ensayos con manteca de cerdo. El 2,6-di-terc-butil-4-hidroxi-metilfenol también mostró una actividad más fuerte que el 2-terc-butil-4-metoxifenol. El grupo metileno del 2,6-di-ter-butil-4-hidroxi

  1. Total phenols and antioxidant activities of leaf and stem extracts from coriander, mint and parsley grown in Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Juhaimi, F.; Ghafoorr, K.

    2011-01-01

    Leaves and stems of three different herbs from two different families were used to extract phenolic compounds and the bioactivity of the extracts was evaluated by using 1, 1-diphenyl-2-picrylhydrazyl or DPPH scavenging ability or their antioxidant activities. Extract from leaves of mint, which belongs to Lamiaceae family contained 1.24 mgGAE/100 mL of total phenolic compounds and 34.21% antioxidant activity which were significantly higher than those in extracts from coriander and parsley, both of which belong to Apiaceae family. Extracts of leaves from these herbs showed more quantity of total phenols and higher antioxidant activities than extracts from stem parts, however both leaves and stems of these three herbs grown in Saudi Arabia contained good quantities of total phenols (>1.02 mgGAE/100 mL) and showed more than 18.3% free radical scavenging activity. (author)

  2. Optimization of pressurized liquid extraction by response surface methodology of Goji berry (Lycium barbarum L.) phenolic bioactive compounds.

    Science.gov (United States)

    Tripodo, Giusy; Ibáñez, Elena; Cifuentes, Alejandro; Gilbert-López, Bienvenida; Fanali, Chiara

    2018-01-03

    Pressurized liquid extraction (PLE) has been used for the first time in this work to extract phenolic compounds from Goji berries according to a multilevel factorial design using response surface methodology. The global yield (% w/dw, weight/dry-weight), total phenolic content (TPC), total flavonoid (TF) and antioxidant activity (determined via ABTS assay, expressed as TEAC value) were used as response variables to study the effects of temperature (50-180°C) and green solvent composition (mixtures of ethanol/water). Phenolic compounds characterization was performed by high performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS). The optimum PLE conditions predicted by the model were as follows: 180°C and 86% ethanol in water with a good desirability value of 0.815. The predicted conditions were confirmed experimentally and once the experimental design was validated for commercial fruit samples, the PLE extraction of phenolic compounds from three different varieties of fruit samples (Selvatico mongolo, Bigol, and Polonia) was performed. Nine phenolic compounds were tentatively identified in these extracts, including phenolic acids and their derivatives, and flavonols. The optimized PLE conditions were compared to a conventional solid-liquid extraction, demonstrating that PLE is a useful alternative to extract phenolic compounds from Goji berry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cytotoxic and Antimigratory Activities of Phenolic Compounds from Dendrobium brymerianum

    Directory of Open Access Journals (Sweden)

    Pornprom Klongkumnuankarn

    2015-01-01

    Full Text Available Chromatographic separation of a methanol extract prepared from the whole plant of Dendrobium brymerianum led to the isolation of eight phenolic compounds. Among the isolated compounds (1–8, moscatilin (1, gigantol (3, lusianthridin (4, and dendroflorin (6 showed appreciable cytotoxicity against human lung cancer cell lines with IC50 values of 196.7, 23.4, 65.0, and 125.8 μg/mL, respectively, and exhibited antimigratory property at nontoxic concentrations. This study is the first report on the biological activities of this plant.

  4. Characterisation of phenolic compounds in wild fruits from Northeastern Portugal.

    Science.gov (United States)

    Guimarães, Rafaela; Barros, Lillian; Dueñas, Montserrat; Carvalho, Ana Maria; Queiroz, Maria João R P; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2013-12-15

    This study aimed to analyse the phenolic composition of wild fruits of Arbutus unedo (strawberry-tree), Prunus spinosa (blackthorn), Rosa canina and Rosa micrantha (wild roses). Analyses were performed by HPLC-DAD-ESI/MS. P spinosa fruits presented the highest concentration in phenolic acids (29.78 mg/100 g dry weight), being 3-O-caffeoylquinic acid the most abundant one, and flavone/ols (57.48 mg/100 g), among which quercetin3-O-rutinoside (15.63 mg/100 g) was the majority compound. (+)-Catechin was the most abundant compound in A. unedo (13.51 mg/100 g) and R. canina (3.59 mg/100 g) fruits. A. unedo fruits presented the highest concentration in flavan-3-ols (36.30 mg/100 g). Cyanidin 3-O-glucoside was found in all the studied fruits, being the major anthocyanin in most of them, with the exception of P. spinosa samples, in which cyaniding 3-O-rutinoside and peonidin 3-O-rutinoside predominated; P. spinosa fruit presented the more complex anthocyanin profile among the analysed fruits and also the highest anthocyanin concentrations, which was coherent with its greater pigmentation. All in all, P. spinosa presented the highest levels of phenolic acids and flavonoids, including anthocyanins, flavonols and flavones, although no flavan-3-ols could be identified in its fruits. The present study represents a contribution to the chemical characterisation of phenolic compounds from wild fruits with acknowledged antioxidant activity and traditionally used for several folk medicinal applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Characterization of phenols biodegradation by compound specific stable isotope analysis

    Science.gov (United States)

    Wei, Xi; Gilevska, Tetyana; Wenzig, Felix; Hans, Richnow; Vogt, Carsten

    2015-04-01

    Biodegradation of phenol and alkylphenols has been described under both oxic and anoxic conditions. In the absence of molecular oxygen, the degradation of phenolic compounds is initiated by microorganisms through carboxylation, fumarate addition to the methyl moiety or anoxic hydroxylation of the methyl moiety. Comparatively, under aerobic condition, the initiation mechanisms are revealed to be monoxygenation or dihydroxylation for phenol and ring hydroxylation or methyl group oxidation for cresols. While several studies biochemically characterized the enzymes and reaction mechanisms in the relevant degradation pathways, isotope fractionation patterns were rarely reported possibly due to constraints in current analytical methods. In this study, the carbon isotope fractionation patterns upon the degradation of phenol and cresols by several strains were analyzed by using isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). The corresponding enrichment factors for carbon (ƐC) have been obtained. Cresols degradation by various strains showed generally moderate carbon isotope fractionation patterns with notable differences. For p-cresol degradation, five strains were examined. The aerobic strain Acinetobacter calcoaceticus NCIMB8250 exploits ring hydroxylation by molecular oxygen as initial reaction, and a ƐC value of -1.4±0.2‰ was obtained. Pseudomonas pseudoalcaligenes NCIMB 9867, an aerobic strain initiating cresols degradation via oxygen-dependent side chain hydroxylation, yielded a ƐC value of -2.3±0.2‰. Under nitrate-reducing conditions, Geobacter metallireducens DSM 7210 and Azoarcus buckelii DSM 14744 attacks p-cresol at the side chain by monohydroxylation using water as oxygen source; the two strains produced ƐC values of -3.6±0.4‰ and -2±0.1‰, accordingly. The sulfate-reducing Desulfosarcina cetonica DSM 7267 activating cresols by fumarate addition to the methyl moiety yielded ƐC values of -1.9±0.2‰ for p

  6. Potential of LC Coupled to Fluorescence Detection in Food Metabolomics: Determination of Phenolic Compounds in Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Romina P. Monasterio

    2016-09-01

    Full Text Available A powerful chromatographic method coupled to a fluorescence detector was developed to determine the phenolic compounds present in virgin olive oil (VOO, with the aim to propose an appropriate alternative to liquid chromatography-mass spectrometry. An excitation wavelength of 285 nm was selected and four different emission wavelengths (316, 328, 350 and 450 nm were simultaneously recorded, working therefore on “multi-emission” detection mode. With the use of commercially available standards and other standards obtained by semipreparative high performance liquid chromatography, it was possible to identify simple phenols, lignans, several complex phenols, and other phenolic compounds present in the matrix under study. A total of 26 phenolic compounds belonging to different chemical families were identified (23 of them were susceptible of being quantified. The proposed methodology provided detection and quantification limits within the ranges of 0.004–7.143 μg·mL−1 and 0.013–23.810 μg·mL−1, respectively. As far as the repeatability is concerned, the relative standard deviation values were below 0.43% for retention time, and 9.05% for peak area. The developed methodology was applied for the determination of phenolic compounds in ten VOOs, both monovarietals and blends. Secoiridoids were the most abundant fraction in all the samples, followed by simple phenolic alcohols, lignans, flavonoids, and phenolic acids (being the abundance order of the latter chemical classes logically depending on the variety and origin of the VOOs.

  7. TiO2–AgCl Based Nanoparticles for Photocatalytic Production of Phenolic Compounds from Lignocellulosic Residues

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Alvarado-Morales, Merlin; Boscaro, Davide

    2018-01-01

    Lignocellulosic biomass residues can be used as an interesting resource for the production of biochemicals or sustainable fuels. In this optic, lignin represents an interesting raw material for the production of chemicals, such as aromatic compounds, or fuels. This can contribute in moving away...... for optimal phenolic compounds production. It was found that the photocatalytic treatment boosted the phenolic production from wheat straw. The efficiency of the process depended on the initial pH and catalyst concentration. Process optimization towards increased phenolic compounds production was performed...... of toxic compounds presented in the catalyst-straw solution and specifically, HNO3 was toxic to methanogenic communities. Hence, to succeed in an efficient biorefinery framework where total phenols and biogas production are combined, the usage of HNO3 for catalyst synthesis should be avoided....

  8. Extraction of triterpenoids and phenolic compounds from Ganoderma lucidum: optimization study using the response surface methodology.

    Science.gov (United States)

    Oludemi, Taofiq; Barros, Lillian; Prieto, M A; Heleno, Sandrina A; Barreiro, Maria F; Ferreira, Isabel C F R

    2018-01-24

    The extraction of triterpenoids and phenolic compounds from Ganoderma lucidum was optimized by using the response surface methodology (RSM), using heat and ultrasound assisted extraction techniques (HAE and UAE). The obtained results were compared with that of the standard Soxhlet procedure. RSM was applied using a circumscribed central composite design with three variables (time, ethanol content, and temperature or ultrasonic power) and five levels. The conditions that maximize the responses (extraction yield, triterpenoids and total phenolics) were: 78.9 min, 90.0 °C and 62.5% ethanol and 40 min, 100.0 W and 89.5% ethanol for HAE and UAE, respectively. The latter was the most effective, resulting in an extraction yield of 4.9 ± 0.6% comprising a content of 435.6 ± 21.1 mg g -1 of triterpenes and 106.6 ± 16.2 mg g -1 of total phenolics. The optimized extracts were fully characterized in terms of individual phenolic compounds and triterpenoids by HPLC-DAD-ESI/MS. The recovery of the above-mentioned bioactive compounds was markedly enhanced using the UAE technique.

  9. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans.

    Science.gov (United States)

    Castello, Fabio; Costabile, Giuseppina; Bresciani, Letizia; Tassotti, Michele; Naviglio, Daniele; Luongo, Delia; Ciciola, Paola; Vitale, Marilena; Vetrani, Claudia; Galaverna, Gianni; Brighenti, Furio; Giacco, Rosalba; Del Rio, Daniele; Mena, Pedro

    2018-05-15

    Grape pomace, the major byproduct of the wine and juice industry, is a relevant source of bioactive phenolic compounds. However, polyphenol bioavailability in humans is not well understood, and the inter-individual variability in the production of phenolic metabolites has not been comprehensively assessed to date. The pharmacokinetic and excretive profiles of phenolic metabolites after the acute administration of a drink made from red grape pomace was here investigated in ten volunteers. A total of 35 and 28 phenolic metabolites were quantified in urine and plasma, respectively. The main circulating metabolites included phenyl-γ-valerolactones, hydroxybenzoic acids, simple phenols, hydroxyphenylpropionic acids, hydroxycinnamates, and (epi)catechin phase II conjugates. A high inter-individual variability was shown both in urine and plasma samples, and different patterns of circulating metabolites were unravelled by applying unsupervised multivariate analysis. Besides the huge variability in the production of microbial metabolites of colonic origin, an important variability was observed due to phase II conjugates. These results are of interest to further understand the potential health benefits of phenolic metabolites on individual basis. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Retardation of quality changes in camel meat sausages by phenolic compounds and phenolic extracts.

    Science.gov (United States)

    Maqsood, Sajid; Manheem, Kusaimah; Abushelaibi, Aisha; Kadim, Isam Tawfik

    2016-11-01

    Impact of tannic acid (TA), date seed extract (DSE), catechin (CT) and green tea extract (GTE) on lipid oxidation, microbial load and textural properties of camel meat sausages during 12 days of refrigerated storage was investigated. TA and CT showed higher activities in all antioxidative assays compared to DSE and GTE. Lipid oxidation and microbial growth was higher for control sausages when compared to other samples. TA and CT at a level of 200 mg/kg were more effective in retarding lipid oxidation and lowering microbial count (P < 0.05). Sausages treated with TA and DSE were found to have higher hardness, gumminess and chewiness values compared to other treatments (P < 0.05). Addition of different phenolic compounds or extract did not influence the sensory color of sausages. Furthermore, sensory quality was also found to be superior in TA and CT treated sausages. Therefore, pure phenolic compounds (TA and CT) proved to be more effective in retaining microbial and sensorial qualities of camel meat sausages compared to phenolic extracts (GTE and DSE) over 12 days of storage at 4°C. © 2016 Japanese Society of Animal Science.

  11. Phenolic Compounds as Nutraceuticals or Functional Food Ingredients.

    Science.gov (United States)

    Caleja, Cristina; Ribeiro, Andreia; Barreiro, Maria Filomena; Ferreira, Isabel C F R

    2017-01-01

    Nowadays, the functional foods represent one the most promising, interesting and innovative areas in the food industry. Various components are being added to foods in order to render them functional. One example of these components are plant naturally occurring phenolic compounds, which are associated with a high antioxidant capacity and thus with benefits in relation to human health. However, despite the huge number of scientific studies and patents on this topic and their natural presence in foods, namely in the ones from plant origin, there are still few marketable products enriched with these compounds. The commercialization of this type of functional products needs to go through various regulations, proving that they are safe and present the ascribed health benefits, conquering the target audience. In this review the growing interest of industry and consumers' appetence for functional foods and nutraceuticals is highlighted, focusing especially on phenolic compounds. Although several published works show the multitude of bioactive properties of these compounds, ensuring their use as bioactive ingredients in food, they present inherent stability issues needing to be solved. However, considerable research is presently ongoing to overcome this problem, making viable the development of new products to be launched in the market. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Phenolic Compounds Present Schinus terebinthifolius Raddi Influence the Lowering of Blood Pressure in Rats.

    Science.gov (United States)

    de Lima Glória, Lorena; Barreto de Souza Arantes, Mariana; Menezes de Faria Pereira, Silvia; de Souza Vieira, Guilherme; Xavier Martins, Camilla; Ribeiro de Carvalho Junior, Almir; Antunes, Fernanda; Braz-Filho, Raimundo; José Curcino Vieira, Ivo; Leandro da Cruz, Larissa; Siqueira de Almeida Chaves, Douglas; de Paiva Freitas, Silvério; Barros de Oliveira, Daniela

    2017-10-23

    This study identified two phenolic compounds in Schinus terebinthifolius Raddi fruits: naringenin (first report in this species) and gallic acid. Their structures were elucidated by nuclear magnetic resonance (NMR) data (¹H-, 13 C-NMR) and a high-performance liquid chromatography (HPLC) technique. A high content of phenolics (659.21 mg of gallic acid equivalents/g of sample-Folin-Ciocalteau method) and total flavonoids (140.69 mg of rutin equivalents/g of sample-aluminum chloride method) were quantified in S. terebinthifolius , as well as high antioxidant activity (77.47%-2,2-diphenyl-1-picrylhydrazyl, DPPH method). The antihypertensive activity related to its phenolic content was investigated. After intravenous infusion in Wistar rats, these phenolics significantly reduced ( p < 0.05) the systolic, median, and diastolic arterial pressures of individuals. The rotarod test was performed to determine the mechanism of action of the sample vasorelaxant effect. It was found that its action exceeded that of the positive control used (diazepam). This confirmed the vasodilatory activity exerted by S. terebinthifolius fruits is related to the phenolic compounds present in the plant, which are potent antioxidants and inhibit oxidative stress, mainly in the central nervous system.

  13. Radiation induced chemical changes of phenolic compounds in strawberries

    International Nuclear Information System (INIS)

    Breitfellner, F.; Solar, S.; Sontag, G.

    2002-01-01

    Complete text of publication follows. The investigations were directed to the determination of the effect of γ-irradiation on various phenolic compounds in strawberries in dependence of dose. A significant decrease of these compounds during irradiation could reduce their beneficial effect on health, which are based on their antioxidative and anticarcinogenic properties. On the other hand hydroxilation of phenolic acids has been proposed as a promising method to distinguish between irradiated and not irradiated fruits and vegetables. Irradiated and not irradiated strawberry samples were homogenized, centrifuged and chromatographically purified from matrix components on polyamide columns. For determination of hydroxybenzoic and hydroxycinnamic acids, which are present as esters or as glycosides, the samples had to be acid/base hydrolized prior to purification. The individual compounds were separated by reversed phase chromatography and detected by means of a diode-array-detector. Peak identification was based on both UV-Vis-spectra and retention times compared with those of standards. In hydrolized samples four phenolic acids [gallic acid, 4-hydroxybenzoic acid, p-coumaric acid and caffeic acid] were identified. Only 4-hydroxybenzoic acid was affected by irradiation (build up with dose). Five flavonoids were detected in non hydrolized samples [(+)-catechin, (-)-epicatechin, kaempferol-3-glucoside, quercetin-3-glucoside and, in trace quantities, quercetin-3-galactoside], the concentration of the catechines and of kaempferol-3-glucoside decreased as irradiation dose increased, whereas those of quercetin-3-glucoside remained unchanged. In addition two as yet unclassified compounds showed a significant change of concentration upon irradiation. One of them (m/e = 450) is decreasing, one (m/e = 318) is increasing to the fivefold at a dose of 6 kGy

  14. Antioxidant Activity of Phenolic Compounds from Fava Bean Sprouts.

    Science.gov (United States)

    Okumura, Koharu; Hosoya, Takahiro; Kawarazaki, Kai; Izawa, Norihiko; Kumazawa, Shigenori

    2016-06-01

    Fava beans are eaten all over the world and recently, marketing for their sprouts began in Japan. Fava bean sprouts contain more polyphenols and l-3,4-dihydroxyphenylalanine (l-DOPA) than the bean itself. Our antioxidant screening program has shown that fava bean sprouts also possess a higher antioxidant activity than other commercially available sprouts and mature beans. However, the individual constituents of fava bean sprouts are not entirely known. In the present study, we investigated the phenolic compounds of fava bean sprouts and their antioxidant activity. Air-dried fava bean sprouts were treated with 80% methanol and the extract was partitioned in water with chloroform and ethyl acetate. HPLC analysis had shown that the ethyl acetate-soluble parts contained phenolic compounds, separated by preparative HPLC to yield 5 compounds (1-5). Structural analysis using NMR and MS revealed that the compounds isolated were kaempferol glycosides. All isolated compounds had an α-rhamnose at the C-7 position with different sugars attached at the C-3 position. Compounds 1-5 had β-galactose, β-glucose, α-rhamnose, 6-acetyl-β-galactose and 6-acetyl-β-glucose, respectively, at the C-3 position. The amount of l-DOPA in fava bean sprouts was determined by the quantitative (1) H NMR technique. The l-DOPA content was 550.45 mg ± 11.34 /100 g of the raw sprouts. The antioxidant activities of compounds 2-5 and l-DOPA were evaluated using the 2,2-diphenyl-1-picrylhydrazyl scavenging assay. l-DOPA showed high antioxidant activity, but the isolated kaempferol glycosides showed weak activity. Therefore, it can be suggested that l-DOPA contributed to the antioxidant activity of fava bean sprouts. © 2016 Institute of Food Technologists®

  15. Nutritional Composition and Antioxidant Capacity in Edible Flowers: Characterisation of Phenolic Compounds by HPLC-DAD-ESI/MSn

    Directory of Open Access Journals (Sweden)

    Inmaculada Navarro-González

    2014-12-01

    Full Text Available Edible flowers are commonly used in human nutrition and their consumption has increased in recent years. The aim of this study was to ascertain the nutritional composition and the content and profile of phenolic compounds of three edible flowers, monks cress (Tropaeolum majus, marigold (Tagetes erecta and paracress (Spilanthes oleracea, and to determine the relationship between the presence of phenolic compounds and the antioxidant capacity. Proximate composition, total dietary fibre (TDF and minerals were analysed according to official methods: total phenolic compounds (TPC were determined with Folin-Ciocalteu’s reagent, whereas antioxidant capacity was evaluated using Trolox Equivalent Antioxidant Capacity (TEAC and Oxygen Radical Absorbance Capacity (ORAC assays. In addition, phenolic compounds were characterised by HPLC-DAD-MSn. In relation to the nutritional value, the edible flowers had a composition similar to that of other plant foods, with a high water and TDF content, low protein content and very low proportion of total fat—showing significant differences among samples. The levels of TPC compounds and the antioxidant capacity were significantly higher in T. erecta, followed by S. oleracea and T. majus. Thirty-nine different phenolic compounds were tentatively identified, with flavonols being the major compounds detected in all samples, followed by anthocyanins and hydroxycynnamic acid derivatives. In T. erecta small proportions of gallotannin and ellagic acid were also identified.

  16. Phytochemical screening, total phenolic, total flavonoids contents and antioxidant activity of cinchona ledgeriana leaves ethanol extract

    Science.gov (United States)

    Sundowo, Andini; Artanti, Nina; Hanafi, M.; Minarti, Primahana, Gian

    2017-11-01

    C ledgeriana is a medicinal plant that contains alkaloids, especially on the barks for commercial production of quinine as antimalarial. The main alkaloids in this plant are cinchonine, cinchonidine, quinine and quinidine. Besides for antiamalarial this plant is also commonly used to treat whooping cough, influenza and dysentery. Compare to other medicinal plants, nowadays only very few studies were conducted in Cinchona species. Our current study aims to determine the content of phytochemical, total phenol and total flavonoids from C. ledgeriana leaves 70% ethanol extract. The extraction was performed by maceration method using 70% ethanol solvent and then fractionated into hexane, ethylacetate and butanol. Phytochemical screening was performed to determine the content of alkaloids, flavonoids, terpenoids, tannins and saponins. Total phenol and flavonoid contents of the extract were determined by Folin-Ciocalteu and alumunium chloride colorimetric methods using gallic acid and quercetin as standards. The antioxidant activity was determined by using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The results of phytochemical screening showed that the 70% ethanol extract of C. ledgeriana leaves contained alkaloids, flavonoids, terpenoids, tannins and saponins. The total phenol and total flavonoids analysis showed that ethyl acetate fraction had the highest total phenol (40.23%) and total flavonoids (65.34%).

  17. Comparative study of phenolic compounds in Cabernet Sauvignon wines made in traditional and Ganimede fermenters.

    Science.gov (United States)

    Bai, Bianxia; He, Fei; Yang, Lili; Chen, Feng; Reeves, Malcolm J; Li, Jingming

    2013-12-15

    Chemical profiles of anthocyanin and non-anthocyanin phenolics of Cabernet Sauvignon wine made by two different winemaking techniques (traditional vinification and Ganimede method) were determined by high performance liquid chromatography-mass spectrometry (HPLC-MS). Particularly, effect of extraction on and subsequent stability of the phenolic compounds from the end of fermentation to bottling were investigated. The results showed that the total anthocyanin content was higher in the young wines produced in the Ganimede fermenter. The anthocyanin contents in these wines subsequently decreased significantly after two years of ageing. By contrast, the traditional vinification was slightly better than the Ganimede to yield the non-anthocyanin phenolics. This indicates that the Ganimede fermenter might be suitable for the production of brightly coloured red wines for early consumption, which could save time and labour cost for industrial production of highquality wines. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Optimized methodology for the simultaneous extraction of glucosinolates, phenolic compounds and antioxidant activity from maca (Lepidium meyenii)

    NARCIS (Netherlands)

    Campos, D.; Chirinos, R.; Barreto, O.; Noratto, G.; Pedreschi Plasencia, R.P.

    2013-01-01

    Maca is a highly appreciated Andean crop with multiple attributed health claims due to its assortment of bioactive compounds. The extraction parameters of glucosinolates (GLs), total phenolic compounds (TPC) and antioxidant capacity (AC) of maca (Lepidium meyenii) hypocotyls were optimized using

  19. Phenolic compounds from the roots of Valeriana officinalis var. latifolia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng-Cheng; Ran, Xin-Hui; Luo, Huai-Rong; Liu, Yu-Qing; Zhou Jun [State Key Laboratory of Phytochemistry and Plant Resources in West China. Kunming Institute of Botany, Chinese Academy of Sciences (China); Ma, Qing-Yun; Zhao, You-Xing, E-mail: zhoujun3264@yahoo.com.cn, E-mail: zhaoyouxing@itbb.org.cn [Key Laboratory of Biology and Genetic Resources of Tropical Crops. Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology. Chinese Academy of Tropical Agriculture Sciences (China)

    2013-09-15

    A new benzofuran neolignan, dihydrodehydrodiconiferyl alcohol 9-isovalerate, along with ten known phenolic compounds, olivil, pinoresinol, 8-hydroxypinoresinol, pinorespiol, 8-hydroxy- 7-epipinoresinol, trans-p-hydroxyphenyl- propenoic acid, cis-p-hydroxyphenyl-propenoic acid, ferulic acid, isoferulic acid and isovanillin were isolated from the roots of Valeriana officinalis var. latifolia. Their structures and configurations were elucidated on the basis of spectroscopic methods. The inhibitory activity for acetylcholinesterase (AChE) and enhancing activity on nerve growth factor (NGF)-mediated neurite outgrowth in PC12 cells of dihydrodehydrodiconiferyl alcohol 9-isovaterate and olivil were evaluated. (author)

  20. Phenolic compounds from the roots of Valeriana officinalis var. latifolia

    International Nuclear Information System (INIS)

    Wang, Peng-Cheng; Ran, Xin-Hui; Luo, Huai-Rong; Liu, Yu-Qing; Zhou Jun; Ma, Qing-Yun; Zhao, You-Xing

    2013-01-01

    A new benzofuran neolignan, dihydrodehydrodiconiferyl alcohol 9-isovalerate, along with ten known phenolic compounds, olivil, pinoresinol, 8-hydroxypinoresinol, pinorespiol, 8-hydroxy- 7-epipinoresinol, trans-p-hydroxyphenyl- propenoic acid, cis-p-hydroxyphenyl-propenoic acid, ferulic acid, isoferulic acid and isovanillin were isolated from the roots of Valeriana officinalis var. latifolia. Their structures and configurations were elucidated on the basis of spectroscopic methods. The inhibitory activity for acetylcholinesterase (AChE) and enhancing activity on nerve growth factor (NGF)-mediated neurite outgrowth in PC12 cells of dihydrodehydrodiconiferyl alcohol 9-isovaterate and olivil were evaluated. (author)

  1. Detection and quantification of phenolic compounds in olive oil by high resolution {sup 1}H nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Christophoridou, Stella [NMR Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, Voutes, 71003 Heraklion, Crete (Greece); Dais, Photis [NMR Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, Voutes, 71003 Heraklion, Crete (Greece)], E-mail: dais@chemistry.uoc.gr

    2009-02-09

    High resolution {sup 1}H NMR spectroscopy has been employed as a versatile and rapid method to analyze the polar fraction of extra virgin olive oils containing various classes of phenolic compounds. The strategy for identification of phenolic compounds is based on the NMR chemical shifts of a large number of model compounds assigned by using two-dimensional (2D) NMR spectroscopy. Furthermore, 2D NMR was applied to phenolic extracts in an attempt to discover additional phenolic compounds. The {sup 1}H NMR methodology was successful in detecting simple phenols, such as p-coumaric acid, vanillic acid, homovanillyl alcohol, vanillin, free tyrosol, and free hydroxytyrosol, the flavonols apigenin and luteolin, the lignans (+) pinoresinol, (+) 1-acetoxypinoresinol and syringaresinol, two isomers of the aldehydic form of oleuropein and ligstroside, the dialdehydic form of oleuropein and ligstroside lacking a carboxymethyl group, and finally total hydroxytyrosol and total tyrosol reflecting the total amounts of free and esterified hydroxytyrol and tyrosol, respectively. The absolute amount of each phenolic constituent was determined in the polar fraction by using anhydrous 1,3,5-triazine as an internal standard.

  2. Detection and quantification of phenolic compounds in olive oil by high resolution 1H nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Christophoridou, Stella; Dais, Photis

    2009-01-01

    High resolution 1 H NMR spectroscopy has been employed as a versatile and rapid method to analyze the polar fraction of extra virgin olive oils containing various classes of phenolic compounds. The strategy for identification of phenolic compounds is based on the NMR chemical shifts of a large number of model compounds assigned by using two-dimensional (2D) NMR spectroscopy. Furthermore, 2D NMR was applied to phenolic extracts in an attempt to discover additional phenolic compounds. The 1 H NMR methodology was successful in detecting simple phenols, such as p-coumaric acid, vanillic acid, homovanillyl alcohol, vanillin, free tyrosol, and free hydroxytyrosol, the flavonols apigenin and luteolin, the lignans (+) pinoresinol, (+) 1-acetoxypinoresinol and syringaresinol, two isomers of the aldehydic form of oleuropein and ligstroside, the dialdehydic form of oleuropein and ligstroside lacking a carboxymethyl group, and finally total hydroxytyrosol and total tyrosol reflecting the total amounts of free and esterified hydroxytyrol and tyrosol, respectively. The absolute amount of each phenolic constituent was determined in the polar fraction by using anhydrous 1,3,5-triazine as an internal standard

  3. Total contents of phenolics, flavonoids, tannins and antioxidant capacity of selected traditional Ethiopian alcoholic beverages

    Directory of Open Access Journals (Sweden)

    A. Debebe

    2016-02-01

    Full Text Available The aim of this study was to determine the total contents of phenolics, tannins and flavonoids and antioxidant capacity and their relationships in traditional Ethiopian alcoholic beverages. They have been determined utilizing Folin–Ciocalteu assay, aluminum chloride precipitating agent and 2,2-diphenyl-1-picrylhydrazyl (DPPH assay, respectively. The most widely consumed beverages and which have many varieties were selected for this study. These are gesho fermented and non-gesho beverages tella, tej, borde, keribo, birz, korefe and areke. The total phenolic content obtained in gallic acid equivalent (GAE μg mL-1 was: areke (0.2–0.62, tella (10.1–19.1, tej (5.8–9.5, keribo (10.4–14.9, birz (10.5–12.2, korefe (9.2–10.7 and borde (8.4–10.6. The majority of phenolic compounds in the alcoholic beverages are non-tannic and non-flavonoid compounds. The antioxidant capacity obtained in ascorbic acid equivalent (AAE μg mL-1 was: areke (-0.28–284, tella (31.6–201, tej (1.73–73.7, keribo (39.21–90.11, birz (41.95–63.08, korefe (58.25–96.45 and borde (180–217. The variation in the antioxidant activity among the beverages is due to the types and amount of ingredients used, disparity in the preparation process and the types of phenolic compounds found. The relationship between total phenolics and antioxidant activities was investigated using Pearson correlation at 95% confidence level. The results obtained indicate that the non-gesho fermented beverages such as keribo (-0.714, birz (-0.686 and borde (-0.212 have negative antioxidant correlation with the total phenolic, whereas, fermented beverages with gesho such as tella (0.539, tej (0.385 and korefe (0.557 have positive correlations. Areke has an overall positive correlation (0.609, but, the cereal areke which does not have medicinal plants has negative correlation. DOI: http://dx.doi.org/10.4314/bcse.v30i1.3

  4. Total Phenolic, Flavonoids and Antioxidant Capacity of Some Medicinal and Aromatic Plants

    Directory of Open Access Journals (Sweden)

    Melinda Nagy

    2014-11-01

    Full Text Available Abstract: Antioxidants are substances that protect cells from the induced oxidative stress damage caused by unstable molecules known as free radicals that. Antioxidants neutralize free radicals as a natural by-product of normal cell processes. In the present study,were evaluated  the phenolic and flavonoids contents as well as the antioxidant capacity of seeds from  the Lamiaceae and Apiaceae family: fennel  (Foeniculum vulgare, dill (Anethum graveolens and rosemary (Rosmarinus officinalis . (Sreemoyee Ch. et. al., 2012 The main objective of the study was the comparative assessment of the phenolic and flavonoid compounds from dill, rosemary and fennel methanolic extracts correlated with their  antioxidant activity. Both total phenolic content and flavonoids content of the seeds samples were measured spectrophotometrically using the Folin-Ciocalteu assay and a chromogenic system of NaNO2–Al(NO33–NaOH, respectively.. Antioxidant capacity was determined by 2,2-DPPH method. Results strongly showed that Rosmarinus officinalis extract has the most effective antioxidant capacity in scavenging DPPH radicals, while Foeniculum vulgare and Anethum graveolens were less active. The total phenolic content was within 773,14 and 3367,24mg GAE/ 100g while the concentration in flavonoids was between 231,84 and 1325,53 QEg/100g dry seeds.  

  5. Phenolic Profiles and Contribution of Individual Compounds to Antioxidant Activity of Apple Powders.

    Science.gov (United States)

    Raudone, Lina; Raudonis, Raimondas; Liaudanskas, Mindaugas; Viskelis, Jonas; Pukalskas, Audrius; Janulis, Valdimaras

    2016-05-01

    Apples (Malus domestica L.) are the most common source of phenolic compounds in northern European diet. Besides pectins, dietary fibers, vitamins, and oligosaccharides they contain phenolic compounds of different classes. Apple powders are convenient functional forms retaining significant amounts of phenolic antioxidants. In this study reducing and radical scavenging profiles of freeze-dried powders of "Aldas,ˮ "Auksis,ˮ "Connel Red,ˮ "Ligol,ˮ "Lodel,ˮ and "Rajkaˮ were determined and phenolic constituents were identified using ultra high-performance liquid chromatography coupled to quadrupole and time-of-flight mass spectrometers. A negative ionization mode was applied and seventeen compounds: phenolic acids (coumaroylquinic, chlorogenic), flavonoids (quercetin derivatives), and procyanidin derivatives (B1, B2, and C1) were identified in all tested apple samples. Total values of Trolox equivalents varied from 7.72 ± 0.32 up to 20.02 ± 0.52 and from 11.10 ± 0.57 up to 21.42 ± 0.75 μmol/g of dry weight of apple powder in FRAP (ferric reducing antioxidant power) and ABTS (2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) postcolumn assays, respectively. The greatest Trolox equivalent values were determined for apples of "Aldasˮ cultivar. Chlorogenic acid and procyanidin C1 were the most significant contributors to total reducing and radical scavenging activity in all apple cultivars tested, therefore they could be considered as markers of antioxidant activity. © 2016 Institute of Food Technologists®

  6. Phytochemical screening, antioxidant activity, total phenolic and total flavonoid contents of seven local varieties of Rosa indica L.

    Science.gov (United States)

    Zahid, Kiran; Ahmed, Maqsood; Khan, Farah

    2018-05-01

    Rosa indica symbol of godness and beauty known for various healing power, has astringent, sedative, anti-inflammatory and antidepressant qualities. Standard methods were used for qualitative detection of phyto-compounds, and quantitative detection of antioxidants was done using DPPH radical scavenging assay, total phenolics and total flavonoids content were expressed in mg GAE/g dry weight and mg QE/g dry weight. Results revealed phyto-compounds presence in all varieties under study however maximum % inhibition was observed by R. indica var pink perfume (94 ± 0.6) with IC50 value 0.3376 ± 0.01 mg/mL. Highest phenolic and flavonoid content was observed in the leaves extract of R. indica var cardinal red, i.e. 3.3553 ± 0.11 (ethanol) mg of Gallic acid equivalents (GAE)/g dry weight and 3.736 ± 0.001(ethanol) mg of quercetin equivalents (QE)/g dry weight, respectively, at conc. 0.125 mg/mL. Our finding provides evidence that all varieties of rose contain medicinally important bioactive compounds and justifies their use for treatment of different diseases.

  7. Evaluation of phenolic compounds content and in vitro antioxidant activity of red wines produced from Vitis labrusca grapes

    Directory of Open Access Journals (Sweden)

    Daniel Braga de Lima

    2011-09-01

    Full Text Available Wine production in the northern Curitiba, Paraná, Brazil, specifically the communes of Colombo and Almirante Tamandaré, is based mainly on the utilization of Vitis labrusca grapes var. Bordô (Ives. Total sugar content, pH, and total acidity were analyzed in red wine samples from 2007 and 2008 vintages following official methods of analysis. Moreover, total phenolic, flavonoid, and tannin contents were analyzed by colorimetric methodologies and the antioxidant activity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH radical methodology. Phenolic compounds were identified by high performance liquid chromatography. The total phenolic content of wine samples presented concentrations varying between 1582.35 and 2896.08 mg gallic acid.L-1 since the major part corresponds to flavonoid content. In these compounds' concentration range, a direct relationship between phenolic compounds content and levels of antioxidant activity was not observed. Among the identified phenolic compounds, chlorogenic, caffeic, and syringic acids were found to be the major components. Using three principal components, it was possible to explain 81.36% of total variance of the studied samples. Principal Components Analysis does not differentiate between vintages.

  8. Mineral analysis, anthocyanins and phenolic compounds in wine residues flour

    Directory of Open Access Journals (Sweden)

    Bennemann Gabriela Datsch

    2016-01-01

    Full Text Available This study analyzed the mineral content (N, P, K, S, Ca, Fe, Mg, Mn, Fe and Zn, anthocyanins and phenolic compounds in flours produced from residues of different grape cultivars from the wineries in the Southern region of Brazil. Mineral analysis showed a significant difference for all grape cultivar, with the exception for phosphorus content. Residues from cv. Seibel showed higher levels of N, Cu and Mg. The cultivars Ancelotta, Tanat and Bordô present higher contents of K, Zn, Mn, Fe and Ca. For the concentration of anthocyanins, cultivars Cabernet Sauvignon (114.7 mg / 100g, Tannat (88.5 mg / 100 g and Ancelotta (33.8 mg/100 g had the highest concentrations. The cultivars Pinot Noir (7.0 g AGE / 100 g, Tannat (4.3 g AGE / 100 g, and Ancelotta (3.9 g AGE / 100 g had the highest content of phenolic compounds. Considering these results, it became evident the potential of using the residue of winemaking to produce flour for human consumption, highlighting the grapes ‘Tannat' and ‘Ancellotta'.

  9. Rapid determination of total phenols in seawater by 4-aminoantipyrine colorimetry

    Digital Repository Service at National Institute of Oceanography (India)

    Kadam, A.N.; Bhangale, V.P.

    A rapid and efficient 4-aminoantipyrine (4-AAP) colorimetric method without any cleanup step to determine total phenols in seawater is described. Efficiency of the method for seawater using external addition of phenol concentrations with working...

  10. Phytochemical constituents, antioxidant activity, total phenolic and flavonoid contents of Arisarum vulgare seeds

    OpenAIRE

    Hadjer Kadri; Salah Eddine Djilani; Abdelouaheb Djilani

    2013-01-01

    Background.Arisarum vulgare is screened and its total phenolic compounds and total flavonoid contents were measured. In addition, the antioxidant capacity of the methanol-water (7:3) extract of this plant is evalu- ated by DPPH (2,2-diphenyl-1 picrylhydrazyl) and ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfon- ic)) tests expressed by Vitamin C Equivalent Antioxidant Capacity (VCEAC). HPLC analyses are carried out to identify some polyphenols. The aim of this study is to identify, ...

  11. Bioavailability and metabolism of phenolic compounds from wholegrain wheat and aleurone-rich wheat bread.

    Science.gov (United States)

    Bresciani, Letizia; Scazzina, Francesca; Leonardi, Roberto; Dall'Aglio, Elisabetta; Newell, Michael; Dall'Asta, Margherita; Melegari, Camilla; Ray, Sumantra; Brighenti, Furio; Del Rio, Daniele

    2016-11-01

    This work aimed at investigating absorption, metabolism, and bioavailability of phenolic compounds after consumption of wholegrain bread or bread enriched with an aleurone fraction. Two commercially available breads were consumed by 15 participants on three occasions and matched for either the amount of ferulic acid in the bread or the amount of bread consumed. Urine was collected for 48 h from all the volunteers for phenolic metabolite quantification. Blood samples were collected for 24 h following bread consumption in five participants. A total of 12 and 4 phenolic metabolites were quantified in urine and plasma samples, respectively. Metabolites were sulfate and glucuronic acid conjugates of phenolic acids, and high concentrations of ferulic acid-4'-O-sulfate, dihydroferulic acid-4'-O-sulfate, and dihydroferulic acid-O-glucuronide were observed. The bioavailability of ferulic acid was significantly higher from the aleurone-enriched bread when all ferulic acid metabolites were accounted for. The study shows that low amounts of aleurone-enriched bread resulted in equivalent plasma levels of ferulic acid as wholegrain bread. This could suggest that, if the absorbed phenolic metabolites after wholegrain product intake exert health benefits, equal levels could be reached through the consumption of lower doses of refined products enriched in aleurone fraction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Partition behavior of virgin olive oil phenolic compounds in oil-brine mixtures during thermal processing for fish canning.

    Science.gov (United States)

    Sacchi, Raffaele; Paduano, Antonello; Fiore, Francesca; Della Medaglia, Dorotea; Ambrosino, Maria Luisa; Medina, Isabel

    2002-05-08

    The chemical modifications and partitioning toward the brine phase (5% salt) of major phenol compounds of extra virgin olive oil (EVOO) were studied in a model system formed by sealed cans filled with oil-brine mixtures (5:1, v/v) simulating canned-in-oil food systems. Filled cans were processed in an industrial plant using two sterilization conditions commonly used during fish canning. The partitioning of phenolic compounds toward brine induced by thermal processing was studied by reversed-phase high-performance liquid chromatographic analysis of the phenol fraction extracted from oils and brine. Hydroxytyrosol (1), tyrosol (2), and the complex phenolic compounds containing 1 and 2 (i.e., the dialdehydic form of decarboxymethyl oleuropein aglycon 3, the dialdehydic form of decarboxymethyl ligstroside aglycon 4, and the oleuropein aglycon 6) decreased in the oily phase after sterilization with a marked partitioning toward the brine phase. The increase of the total amount of 1 and 2 after processing, as well as the presence of elenolic acid 7 released in brine, revealed the hydrolysis of the ester bond of hydrolyzable phenolic compounds 3, 4, and 6 during thermal processing. Both phenomena (partitioning toward the water phase and hydrolysis) contribute to explain the loss of phenolic compounds exhibited by EVOO used as filling medium in canned foods, as well as the protection of n-3 polyunsaturated fatty acids in canned-in-EVOO fish products.

  13. Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants.

    Science.gov (United States)

    Sytar, Oksana; Hemmerich, Irene; Zivcak, Marek; Rauh, Cornelia; Brestic, Marian

    2018-05-01

    Bioactive phenolic compounds are powerful antioxidants in traditionally used medicinal and industrial crop plants and have attracted increased interest in the last years in their application and role in non-destructive methodology for pre-screening analysis of some stress factors. In this study the qualitative target was linked with future possible applications of received data for improving non-destructive methodology as well as for improving existing knowledge regarding antioxidant content in some plant species. Comparative analysis of total phenolics, flavonoid contents, phenolic acid composition, and antioxidant activity in known east central Europe medicinal and industrial crop plants of 26 species of families Asteraceae , Rosaceae and Lamiaceae was done. Among the investigated leaf extracts the highest total phenolic, total flavonoid contents and antioxidant activity have been seen for Stachys byzantine L. ( Lamiaceae ), Calendula officinalis L. ( Asteraceae ) and for Potentilla recta L. ( Rosaceae ). The highest syringic acid content has been found in the leaf extracts of plant family Asteraceae - in the range from 0.782 to 5.078 mg g -1  DW. The representative's family Rosaceae has a higher content of p-anisic acid in the range 0.334-3.442 mg g -1 DW compared to the leaf extracts of families Lamiaceae and Asteraceae . The comparative study showed significant differences of content of phenolic acids in the leaf extracts of different representative's families Rosaceae , Asteraceae and Lamiaceae . We suggest that the presence of some phenolic acids can be used as a possible marker for family botanical specifications of representative families Asteraceae and Rosaceae . It was supposed that some pharmacological effects can be connected with the analyzed data.

  14. Evaluation of Nutritive Value, Phenolic Compounds and in vitro Digestion Charactristics of Barberry (Berberis Vulgaris Foliage

    Directory of Open Access Journals (Sweden)

    Seyed Jalal Modaresi

    2016-11-01

    Full Text Available Introduction This study was intended to evaluate the nutritional value, phenolic compounds and digestibility coefficients of barberry leaves. Berberis vulgaris is one of the major crops in the province. The province has more than 70 percent and 95 percent of the total area under cultivation of barberry. Waste and foliage of barberry harvest traditionally used to feed livestock Tannin concentration greater than 3 to 4 percent in food, can have negative effects on digestibility in ruminants and in particular to reduce the absorption of dietary protein. So it can be expected that high amounts of tannins within waste foliage of barberry reduce its efficiency in ruminants to be fed. Several studies have shown that the addition of certain compounds such as urea, polyethylene Due to the high volume of barberry foliage that remains after harvesting and the possibility of its use in animal nutrition, this study tried to determine some nutrient compounds, phenolic compounds and degradation parameters were barberry leaves. In addition, in this study to determine the best additives are effective in reducing the concentration of tannins and phenolic compounds, urea, polyethylene glycol, sodium hydroxide and calcium hydroxide were compared. Materials and method As the samples were dried by the sun for 6 days. The amount of 5% by weight (dry matter basis urea, polyethylene glycol, sodium hydroxide or calcium hydroxide that was prepared with distilled water, was sprayed on 5 kg of the sample and thoroughly mixed. Each of the treatments were prepared in triplicate. Treatments include: 1 control (foliage without additives, 2 foliage with 5% solution of urea, 3 foliage with 5% polyethylene glycol, 4 foliage with 5% sodium hydroxide, 5 with 5% calcium hydroxide was foliage. The sample were kept in anaerobic plastic containers for 3 days and then opened and dried at room temperature. Samples were analyzed for crude protein, neutral detergent fiber, acid detergent

  15. Effect of fermentation conditions on content of phenolic compounds in red wine

    Directory of Open Access Journals (Sweden)

    Puškaš Vladimir S.

    2005-01-01

    Full Text Available The evidence of compounds that increase the nutritive value of red wines has been presented in a number of papers. These compounds include catechins and proanthocyanidins among others. Their protective effect on the cardiovascular system and anticarcinogenic properties has been proved. The effect of maceration conditions and increased solid grape parts content, seed in the first place, on the content of phenolic compounds of wine was investigated. Several micro-trials were performed with Cabernet sauvignon sort; in some variants time and temperature of maceration were varied, while the ratio of residual stem and content of seed was increased several times, resulting in a significant change of phenolic compounds content in the obtained wine samples. The presence of ripe stem yielded good results, but only during six days of maceration, while in the case of longer maceration, the change of colour quality was negative. Supplementary quantities of seeds during maceration resulted in an increase of total phenols and catechins. A significant influence on colour of wines was also observed, especially in wines obtained applying shorter maceration.

  16. Content of Phenolic Compounds and Antioxidant Capacity in Fruits of Apricot Genotypes

    Directory of Open Access Journals (Sweden)

    Helena Skutkova

    2010-09-01

    Full Text Available Research on natural compounds is increasingly focused on their effects on human health. In this study, we were interested in the evaluation of nutritional value expressed as content of total phenolic compounds and antioxidant capacity of new apricot (Prunus armeniaca L. genotypes resistant against Plum pox virus (PPV cultivated on Department of Fruit Growing of Mendel University in Brno. Fruits of twenty one apricot genotypes were collected at the onset of consumption ripeness. Antioxidant capacities of the genotypes were determined spectrometrically using DPPH• (1,1-diphenyl-2-picryl-hydrazyl free radicals scavenging test, TEAC (Trolox Equivalent Antioxidant Capacity, and FRAP (Ferric Reducing Antioxidant Powermethods. The highest antioxidant capacities were determined in the genotypes LE-3228 and LE-2527, the lowest ones in the LE-985 and LE-994 genotypes. Moreover, close correlation (r = 0.964 was determined between the TEAC and DPPH assays. Based on the antioxidant capacity and total polyphenols content, a clump analysis dendrogram of the monitored apricot genotypes was constructed. In addition, we optimized high performance liquid chromatography coupled with tandem electrochemical and spectrometric detection and determined phenolic profile consisting of the following fifteen phenolic compounds: gallic acid, 4-aminobenzoic acid, chlorogenic acid, ferulic acid, caffeic acid, procatechin, salicylic acid, p-coumaric acid, the flavonols quercetin and quercitrin, the flavonol glycoside rutin, resveratrol, vanillin, and the isomers epicatechin, (–- and (+- catechin.

  17. Antioxidant capacity and phenolic compounds of Lonicerae macranthoides by HPLC-DAD-QTOF-MS/MS.

    Science.gov (United States)

    Hu, Xin; Chen, Lin; Shi, Shuyun; Cai, Ping; Liang, Xuejuan; Zhang, Shuihan

    2016-05-30

    Lonicerae macranthoides with strong antioxidant activity is commonly used in traditional Chinese medicine and folk tea/beverage. However, detailed information about its antioxidant activity and bioactive compounds is limited. Then at first, we comparatively evaluated total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activities of water extract, petroleum ether, ethyl acetate and n-butanol fractions of L. macranthoides. Ethyl acetate fraction exhibited the highest level of TPC (207.38 mg GAE/g DW), TFC (53.06 mg RE/g DW) and the best DPPH scavenge activity and reducing power. n-Butanol fraction showed the best ABTS(+) and O2(-) scavenging activities. Interestingly, water extract, ethyl acetate and n-butanol fractions showed stronger antioxidant activities than positive control, butylated hydroxytoluene (BHT). After that, thirty-one antioxidant phenolic compounds, including twenty-two phenolic acids and nine flavonoids, were screened by DPPH-HPLC experiment and then identified using HPLC-DAD-QTOF-MS/MS. It is noted that twenty-one compounds (1, 3-4, 6-17, 19, 23, 26, 28-29, and 31), as far as was known, were discovered from L. macranthoide for the first time, and eleven of them (3-4, 10-17, and 23) were reported in Lonicera species for the first time. Results indicated that L. macranthoides could serve as promising source of rich antioxidants in foods, beverages and medicines for health promotion. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Comparison of AOPs Efficiencies on Phenolic Compounds Degradation

    Directory of Open Access Journals (Sweden)

    Lourdes Hurtado

    2016-01-01

    Full Text Available In this work, a comparison of the performances of different AOPs in the phenol and 4-chlorophenol (4-CP degradation at lab and pilot scale is presented. It was found that, in the degradation of phenol, the performance of a coupled electro-oxidation/ozonation process is superior to that observed by a photo-Fenton process. Phenol removal rate was determined to be 0.83 mg L−1 min−1 for the coupled process while the removal rate for photo-Fenton process was only 0.52 mg L−1 min−1. Regarding 4-CP degradation, the complete disappearance of the molecule was achieved and the efficiency decreasing order was as follows: coupled electro-oxidation/ozonation > electro-Fenton-like process > photo-Fenton process > heterogeneous photocatalysis. Total organic carbon was completely removed by the coupled electro-oxidation/ozonation process. Also, it was found that oxalic acid is the most recalcitrant by-product and limits the mineralization degree attained by the technologies not applying ozone. In addition, an analysis on the energy consumption per removed gram of TOC was conducted and it was concluded that the less energy consumption is achieved by the coupled electro-oxidation/ozonation process.

  19. Addition of Phenols Compounds to Meat Dough Intended for Salami Manufacture and its Antioxidant Effect.

    Science.gov (United States)

    Novelli, Enrico; Fasolato, Luca; Cardazzo, Barbara; Carraro, Lisa; Taticchi, Agnese; Balzan, Stefania

    2014-08-28

    A purified extract of phenols compounds (65% of phenolic content of which decarboxymethyl oleuropein aglycone represented 45% of the wet mass) obtained from vegetation water (a by-product of oil mill) was added to a ground meat dough intended for salami manufacture in two concentration levels: 75 and 150 mg/100 g of dough (F1 and F2, respectively). The control batch was composed of lean and fat cuts of pork in 70:30 ratio, 2.7% salt and a mixed starter culture of staphylococci and pediococci. After stuffing into natural casings, salamis were aged until they reached a total weight loss of 30%. The product was then sliced and packaged in a protective atmosphere (nitrogen:carbon dioxide 80:20) and placed in a refrigerator thermostat (2-4°C) with alternating 12 h of artificial light and darkness. The samples were analysed for the measurement of pH, water activity, organic acidity, peroxide number and secondary products of lipid peroxidation at the time of slicing and after 10, 20 and 30 days of storage into the refrigerated thermostat. The pH and water activity were not substantially different between the control and the two enriched batches. The peroxide number and secondary products of lipid peroxidation values in the two batches with phenols were at least substantially lower than the control sample. In conclusion, the phenol compounds obtained from vegetation water have shown no interference with the ripening process while protecting the dough from oxidation.

  20. Preparative Separation of Phenolic Compounds from Halimodendron halodendron by High-Speed Counter-Current Chromatography

    Directory of Open Access Journals (Sweden)

    Zhu Yu

    2010-08-01

    Full Text Available Three phenolic compounds, p-hydroxybenzoic acid (1, isorhamnetin-3-O-β-D-rutinoside (2, and 3,3'-di-O-methylquercetin (5, along with a phenolic mixture were successfully separated from the ethyl acetate crude extract of Halimodendron halodendron by high-speed counter-current chromatography (HSCCC with chloroform-methanol-water-acetic acid (4:3:2:0.05, v/v as the two-phase solvent system. The phenolic mixture from HSCCC was further separated by preparative HPLC and purified by Sephadex LH-20 to afford quercetin (3 and 3-O-methylquercetin (4. Seven hundred mg of ethyl acetate crude extract was separated by HSCCC to obtain six fractions which were then analyzed by high performance liquid chromatography (HPLC. The HSCCC separation obtained total of 80 mg of the mixture of quercetin (3 and 3-O-methylquercetin (4 (26.43% and 71.89%, respectively in fraction 2, 14 mg of 3,3'-di-O-methylquercetin (5 at 95.14% of purity in fraction 3, 15 mg of p-hydroxybenzoic acid (1 at 92.83% of purity in fraction 5, 12 mg of isorhamnetin-3-O-β-D-rutinoside (2 at 97.99% of purity in fraction 6. This is the first time these phenolic compounds have been obtained from H. halodendron, and their chemical structures identified by means of physicochemical and spectrometric analysis.

  1. Preparative separation of phenolic compounds from Halimodendron halodendron by high-speed counter-current chromatography.

    Science.gov (United States)

    Wang, Jihua; Gao, Haifeng; Zhao, Jianglin; Wang, Qi; Zhou, Ligang; Han, Jianguo; Yu, Zhu; Yang, Fuyu

    2010-08-31

    Three phenolic compounds, p-hydroxybenzoic acid (1), isorhamnetin-3-O-β-D-rutinoside (2), and 3,3'-di-O-methylquercetin (5), along with a phenolic mixture were successfully separated from the ethyl acetate crude extract of Halimodendron halodendron by high-speed counter-current chromatography (HSCCC) with chloroform-methanol-water-acetic acid (4:3:2:0.05, v/v) as the two-phase solvent system. The phenolic mixture from HSCCC was further separated by preparative HPLC and purified by Sephadex LH-20 to afford quercetin (3) and 3-O-methylquercetin (4). Seven hundred mg of ethyl acetate crude extract was separated by HSCCC to obtain six fractions which were then analyzed by high performance liquid chromatography (HPLC). The HSCCC separation obtained total of 80 mg of the mixture of quercetin (3) and 3-O-methylquercetin (4) (26.43% and 71.89%, respectively) in fraction 2, 14 mg of 3,3'-di-O-methylquercetin (5) at 95.14% of purity in fraction 3, 15 mg of p-hydroxybenzoic acid (1) at 92.83% of purity in fraction 5, 12 mg of isorhamnetin-3-O-β-D-rutinoside (2) at 97.99% of purity in fraction 6. This is the first time these phenolic compounds have been obtained from H. halodendron, and their chemical structures identified by means of physicochemical and spectrometric analysis.

  2. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    Science.gov (United States)

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux. PMID:26528273

  3. Effects of thermal processing by nanofluids on vitamin C, total phenolics and total soluble solids of tomato juice.

    Science.gov (United States)

    Jafari, S M; Jabari, S S; Dehnad, D; Shahidi, S A

    2017-03-01

    In this research, our main idea was to apply thermal processing by nanofluids instead of conventional pasteurization processes, to shorten duration of thermal procedure and improve nutritional contents of fruit juices. Three different variables of temperature (70, 80 and 90 °C), nanofluid concentration (0, 2 and 4%) and time (30, 60 and 90 s) were selected for thermal processing of tomato juices by a shell and tube heat exchanger. The results demonstrated that 4% nanofluid concentration, at 30 °C for 30 s could result in 66% vitamin C retention of fresh juice while it was about 56% for the minimum nanofluid concentration and maximum temperature and time. Higher nanoparticle concentrations made tomato juices that require lowered thermal durations, because of better heat transfer to the product, and total phenolic compounds dwindle less severely; In fact, after 30 s thermal processing at 70 °C with 0 and 4% nanoparticles, total phenolic compounds were maintained by 71.9 and 73.6%, respectively. The range of total soluble solids for processed tomato juices was 5.4-5.6, meaning that nanofluid thermal processing could preserve the natural condition of tomato juices successfully. Based on the indices considered, a nanofluid thermal processing with 4% nanoparticle concentration at the temperature of 70 °C for 30 s will result in the best nutritional contents of final tomato juices.

  4. Essential oils chemical composition, antioxidant activities and total phenols of Astrodaucus persicus

    Directory of Open Access Journals (Sweden)

    Saeid Goodarzi

    2016-02-01

    Full Text Available Objective(s:Astrodaucus persicus, Apiaceae, is used as vegetable or food additive in some parts of Iran. The essential oils of different parts of Astrodaucus persicus from Kordestan province were analyzed for the first time and compared with other regions. In this study, antioxidant activities and total phenols determination of aerial parts essential oils and root fractions of A. persicus were investigated. Materials and Methods: The essential oils were obtained by hydro-distillation from flowers/fruits, leaves/stems, ripe fruits and roots of plant and analyzed by GC-MS. Crude root extract was fractionated with hexane, chloroform, ethyl acetate and methanol. Antioxidant activities by DPPH and FRAP methods and total phenols by Folin-ciocalteu assay were measured. Results: The abundant compounds of flowers/fruits blue essential oil were α-thujene, β-pinene and α-pinene. The predominant components of blue leaves/stems essential oil were α-thujene, α-pinene and α-fenchene. The major volatiles of ripe fruits blue essential oil were β-pinene, α-thujene and α-pinene. The chief compounds of root yellow essential oil were trans-caryophyllene, bicycogermacrene and germacrene-D. Total root extract and ethyl acetate fraction showed potent antioxidant activities and high amount of total phenols in comparison to other samples. Among volatile oils, the flowers/fruits essential oil showed potent reducing capacity. Conclusion: The major compounds of aerial parts essential oils were hydrocarbon monoterpenes while the chief percentage of roots essential oil constituents were hydrocarbon sesquiterpenes. α-Eudesmol and β-eudesmol were identified as responsible for creation of blue color in aerial parts essential oils. A. persicus was known as a potent antioxidant among Apiaceae.

  5. Essential oils chemical composition, antioxidant activities and total phenols of Astrodaucus persicus.

    Science.gov (United States)

    Goodarzi, Saeid; Hadjiakhoondi, Abbas; Yassa, Narguess; Khanavi, Mahnaz; Tofighi, Zahra

    2016-02-01

    Astrodaucus persicus, Apiaceae, is used as vegetable or food additive in some parts of Iran. The essential oils of different parts of Astrodaucus persicus from Kordestan province were analyzed for the first time and compared with other regions. In this study, antioxidant activities and total phenols determination of aerial parts essential oils and root fractions of A. persicus were investigated. The essential oils were obtained by hydro-distillation from flowers/fruits, leaves/stems, ripe fruits and roots of plant and analyzed by GC-MS. Crude root extract was fractionated with hexane, chloroform, ethyl acetate and methanol. Antioxidant activities by DPPH and FRAP methods and total phenols by Folin-ciocalteu assay were measured. The abundant compounds of flowers/fruits blue essential oil were α-thujene, β-pinene and α-pinene. The predominant components of blue leaves/stems essential oil were α-thujene, α-pinene and α-fenchene. The major volatiles of ripe fruits blue essential oil were β-pinene, α-thujene and α-pinene. The chief compounds of root yellow essential oil were trans-caryophyllene, bicycogermacrene and germacrene-D. Total root extract and ethyl acetate fraction showed potent antioxidant activities and high amount of total phenols in comparison to other samples. Among volatile oils, the flowers/fruits essential oil showed potent reducing capacity. The major compounds of aerial parts essential oils were hydrocarbon monoterpenes while the chief percentage of roots essential oil constituents were hydrocarbon sesquiterpenes. α-Eudesmol and β-eudesmol were identified as responsible for creation of blue color in aerial parts essential oils. A. persicus was known as a potent antioxidant among Apiaceae.

  6. Phenolic Compounds and Antioxidant Activity of Juices from Ten Iranian Pomegranate Cultivars Depend on Extraction

    Directory of Open Access Journals (Sweden)

    Hamidreza Akhavan

    2015-01-01

    Full Text Available Phenolic compounds and antioxidant activities of ten juices from arils and whole pomegranate cultivars grown in Iran were studied. Phenolic contents and antioxidant activities of juices from whole pomegranate fruit were significantly higher than juices from pomegranate arils, but the variety has a greater influence than the processing method. The main phenolics in the studied juices were punicalagin A (5.40–285 mg/L, punicalagin B (25.9–884 mg/L, and ellagic acid (17.4–928 mg/L. The major and minor anthocyanins of cyanidin 3,5-diglucoside (0.7–94.7 mg/L, followed by cyanidin 3-glucoside (0.5–52.5 mg/L, pelargonidin 3,5-diglucoside + delphinidin 3-glucoside (0–10.3 mg/L, delphinidin 3,5-diglucoside (0–7.68 mg/L, pelargonidin 3-glucoside (0–9.40 mg/L, and cyanidin-pentoside (0–1.13 mg/L were identified; the latter anthocyanin as well as cyanidin-pentoside-hexoside and delphinidin-pentoside were detected for the first time in Iranian pomegranates. The total phenolic contents were in the range of 220–2931 mg/100 mL. The results indicate that the pomegranate phenolics are not only influenced by extraction method but also—and even more—affected by the cultivar. Moreover, a good correlation was observed between total phenolic content and ABTS and FRAP methods in all pomegranate juices (>0.90. The results of current research can help to select the pomegranate cultivars for commercial juice production.

  7. Study on the presence and influence of phenolic compounds in callogenesis and somatic embryo development of cocoa (Theobroma cacao L..

    Directory of Open Access Journals (Sweden)

    Sulistyani Pancaningtyas

    2015-04-01

    Full Text Available Cocoa (Theobroma cacao L. like most tropical trees is recalcitrant in tissue culture. Somatic embryogenesis is generally efficient micropropagation technique to multiply elite material. However, Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. One of the factors often considered as a component of in vitro recalsitrance is a high phenolic content and oxidation of these compounds. In cocoa tissue culture accumulate large amounts of poliphenolics compounds which probably impair further development. This study was conducted to investigate the composition of phenolic compounds in cocoa flower and leaves, and their changes troughout the somatic embryogenesis process. Calli were induced in cacao floral and leaves explants on a half-strenght Murashige and Skoog medium containing 30 g/L Glucose and combination of 2,4 dichlorophenoxyacetic acid (2,4 D with kinetin (kin. Total polyphenol content was observed on Sulawesi 1 cocoa clone. Embryogenic and non-embryogenic callus were also compared. The percentage of callus production from flower tissue is 85%, percentage of embryogenic callus 40 %, although the percentage of somatic embryo production from embryogenic callus callus is 70%. The conservation of callus into somatic embryos followed by decline in phenol content and an increase in peroxidase. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non-embryogenic conditions. So that, phenolic compound can influence the production of calli and an absence the phenolic compound can enhance production of somatic embryo.

  8. Environmental factors affecting the concentration of phenolic compounds in Myrcia tomentosa leaves

    Directory of Open Access Journals (Sweden)

    Leonardo L. Borges

    2013-02-01

    Full Text Available Myrcia tomentosa (Aubl. DC., Myrtaceae, found in Central Brazilian Cerrado and popularly known as "goiaba-brava", belongs to the Myrcia genus, which has several species with medicinal properties such as: hypoglycemic, diuretic, hypotensive, antidiarrheal, antimicrobial and antitumor. The present study aimed to analyzed the environmental influence on concentrations of phenolic metabolites in M. tomentosa leaves. Compounds assayed in the leaves were: total phenols, tannins by protein precipitation, hydrolysable tannins and total flavonoids and mineral nutrients, while soil fertility was also analyzed, all over during one year. The results were submitted to Pearson Correlation Analysis and stepwise Multiple Regression Analysis to investigate the relationship between phenolics and environment data. Analysis of variance and Cluster Analysis allowed indicated a high variability in samples from different sites. The results obtained suggests that content of phenolics from M. tomentosa leaves are influenced by environmental factors, particularly some foliar nutrients (N1, Ca1 and Mn1, soil nutrients (Ca s and Ks and Rainfall.

  9. Environmental factors affecting the concentration of phenolic compounds in Myrcia tomentosa leaves

    Directory of Open Access Journals (Sweden)

    Leonardo L. Borges

    2013-04-01

    Full Text Available Myrcia tomentosa (Aubl. DC., Myrtaceae, found in Central Brazilian Cerrado and popularly known as "goiaba-brava", belongs to the Myrcia genus, which has several species with medicinal properties such as: hypoglycemic, diuretic, hypotensive, antidiarrheal, antimicrobial and antitumor. The present study aimed to analyzed the environmental influence on concentrations of phenolic metabolites in M. tomentosa leaves. Compounds assayed in the leaves were: total phenols, tannins by protein precipitation, hydrolysable tannins and total flavonoids and mineral nutrients, while soil fertility was also analyzed, all over during one year. The results were submitted to Pearson Correlation Analysis and stepwise Multiple Regression Analysis to investigate the relationship between phenolics and environment data. Analysis of variance and Cluster Analysis allowed indicated a high variability in samples from different sites. The results obtained suggests that content of phenolics from M. tomentosa leaves are influenced by environmental factors, particularly some foliar nutrients (N1, Ca1 and Mn1, soil nutrients (Ca s and Ks and Rainfall.

  10. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems.

    Science.gov (United States)

    Sepahpour, Shabnam; Selamat, Jinap; Abdul Manap, Mohd Yazid; Khatib, Alfi; Abdull Razis, Ahmad Faizal

    2018-02-13

    This study evaluated the efficacy of various organic solvents (80% acetone, 80% ethanol, 80% methanol) and distilled water for extracting antioxidant phenolic compounds from turmeric, curry leaf, torch ginger and lemon grass extracts. They were analyzed regarding the total phenol and flavonoid contents, antioxidant activity and concentration of some phenolic compounds. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay. Quantification of phenolic compounds was carried out using high-performance liquid chromatography (HPLC). All the extracts possessed antioxidant activity, however, the different solvents showed different efficiencies in the extraction of phenolic compounds. Turmeric showed the highest DPPH values (67.83-13.78%) and FRAP (84.9-2.3 mg quercetin/g freeze-dried crude extract), followed by curry leaf, torch ginger and lemon grass. While 80% acetone was shown to be the most efficient solvent for the extraction of total phenolic compounds from turmeric, torch ginger and lemon grass (221.68, 98.10 and 28.19 mg GA/g freeze dried crude extract, respectively), for the recovery of phenolic compounds from curry leaf (92.23 mg GA/g freeze-dried crude extract), 80% ethanol was the most appropriate solvent. Results of HPLC revealed that the amount of phenolic compounds varied depending on the types of solvents used.

  11. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems

    Directory of Open Access Journals (Sweden)

    Shabnam Sepahpour

    2018-02-01

    Full Text Available This study evaluated the efficacy of various organic solvents (80% acetone, 80% ethanol, 80% methanol and distilled water for extracting antioxidant phenolic compounds from turmeric, curry leaf, torch ginger and lemon grass extracts. They were analyzed regarding the total phenol and flavonoid contents, antioxidant activity and concentration of some phenolic compounds. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging assay and the ferric reducing antioxidant power (FRAP assay. Quantification of phenolic compounds was carried out using high-performance liquid chromatography (HPLC. All the extracts possessed antioxidant activity, however, the different solvents showed different efficiencies in the extraction of phenolic compounds. Turmeric showed the highest DPPH values (67.83–13.78% and FRAP (84.9–2.3 mg quercetin/g freeze-dried crude extract, followed by curry leaf, torch ginger and lemon grass. While 80% acetone was shown to be the most efficient solvent for the extraction of total phenolic compounds from turmeric, torch ginger and lemon grass (221.68, 98.10 and 28.19 mg GA/g freeze dried crude extract, respectively, for the recovery of phenolic compounds from curry leaf (92.23 mg GA/g freeze-dried crude extract, 80% ethanol was the most appropriate solvent. Results of HPLC revealed that the amount of phenolic compounds varied depending on the types of solvents used.

  12. Profiling of phenolic compounds and antioxidant properties of European varieties and cultivars of Vicia faba L. pods.

    Science.gov (United States)

    Valente, Inês M; Maia, Margarida R G; Malushi, Nertila; Oliveira, Hugo M; Papa, Lumturi; Rodrigues, José A; Fonseca, António J M; Cabrita, Ana R J

    2018-08-01

    Vicia faba L. pods are a by-product generated from the industrial processing of beans for human and animal consumption. As phenolic compounds may play important roles in health, the present work envisaged the phenolic characterization of seven European varieties and cultivars of V. faba (major and minor) pods and the assessment of their antioxidant activity. The V. faba methanolic extracts were characterized by HPLC-DAD-MS/MS for identification of polyphenolic compounds. The total phenolic content and antioxidant capacity of the extracts were evaluated by colorimetric methods (Folin-Ciocalteu, DPPH scavenging capacity assay, and FRAP assay). Main compounds identified by HPLC-DAD-MS/MS were derivatives of caffeic acid, coumaric acid and kaempferol. The broad bean Jögeva variety presented the highest content of free and esterified phenolics (26.3 and 26.7 mg 100 g -1 dry weight, respectively), followed by the horse bean varieties Bauska and Lielplatones. These results were corroborated by the analysis of total phenolic content, DPPH scavenging capacity and FRAP. This study confirmed the rich phenolic content of V. faba pods suggesting to be an interesting novel source for animal nutrition, promoting product quality and consumers' health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Quantification of phenolic compounds and antioxidant capacity of an underutilized Indian fruit: Rayan [Manilkara hexandra (Roxb. Dubard

    Directory of Open Access Journals (Sweden)

    Bhumi Parikh

    2017-03-01

    Full Text Available The fruit of Manilkara hexandra (Roxb. Dubard is one of the most underutilized fruits of India and in Gujarat state. It is popularly known as ‘Rayan’. The fruit and seed of Rayan were analysed for their total phenolic and flavonoid content, phenolic compounds and total antioxidant capacity with six different assay methods. The results indicated that the methanolic extract of Rayan fruit being a good source of phenolic (811.3 mg GAE/100 g fw and flavonoid (485.56 mg RE/100 g fw content. Also, eleven known phenolic compounds were tentatively identified for the first time from the fruit and seed of Rayan. The LC–MS/MS analysis of fruit revealed the presence of major phenolic compounds such as gallic acid, quercetin and kaempferol, while quercetin, gallic acid and vanillic acid in seed. The presence of quercetin suggests health benefits. The fruit of Rayan was also proved to be a better source of antioxidants as measured by FRAP, RPA, DPPHRSA, ABTSRSA and HRSA except NORSA in comparison with that of seed. The current study explains that M. hexandra is a relatively good source of antioxidants such as phenols and flavonoids for diet.

  14. Olive oils from Algeria: Phenolic compounds, antioxidant and antibacterial activities

    Directory of Open Access Journals (Sweden)

    Laincer, F.

    2014-03-01

    Full Text Available The phenolic compositions, antioxidant and antimicrobial activities against six bacteria of phenolic extracts of olive oil varieties from eleven Algerian varieties were investigated. The antioxidant activity was assessed by determining the scavenging effect on the DPPH and ABTS.+ radicals. The antimicrobial activity was measured as a zone of inhibition and minimum inhibitory concentration (MIC on human harmful and foodborne pathogens. The results show that total phenols was significantly (p .+ radicals (r = 0.76. Among the bacteria tested, S. aureus and to a lesser extent B. subtilis showed the highest sensitivity; the MIC varied from 0.6 to 1.6 mg·mL-1 and 1.2 to 1.8 mg·mL-1, respectively. The results reveal that Algerian olive oils may constitute a good source of antioxidant and antimicrobial agents.Se ha estudiado la composición fenólica y las actividades antioxidante y antimicrobiana, contra seis bacterias, de extractos de aceites de oliva de once variedades argelinas. La actividad antioxidante se evaluó mediante la determinación del efecto captador de radicales de DPPH y ABTS.+. La actividad antimicrobiana se midió como zona de inhibición y como concentración inhibitoria mínima (MIC sobre bacterias perjudiciales humanas y agentes patógenos transmitidos por los alimentos. Los resultados mostraron que los fenoles totales está significativamente (p .+ (r= 0,76. Entre las bacterias ensayadas, S. aureus y, en menor grado B. subtilis mostraron la mayor sensibilidad; el MIC varió de 0,6 a 1,6 mg·mL-1 y 1,2 a 1,8 mg·mL-1 respectivamente. Los resultados muestran que los aceites de oliva argelinos pueden constituir una buena fuente de antioxidantes y agentes antimicrobianos.

  15. Quantification of Phenolic Compounds and In Vitro Radical Scavenging Abilities with Leaf Extracts from Two Varieties of Psidium guajava L.

    Directory of Open Access Journals (Sweden)

    Julio César Camarena-Tello

    2018-02-01

    Full Text Available Guava leaf (Psidium guajava L. extracts are used in both traditional medicine and the pharmaceutical industry. The antioxidant compounds in P. guajava leaves can have positive effects including anti-inflammatory, anti-hyperglycemic, hepatoprotective, analgesic, anti-cancer effects, as well as protecting against cardiovascular diseases. In the present study, phenolic compounds and in vitro antioxidant capacity were measured in extracts obtained with polar and non-polar solvents from leaves of two varieties of guava, Calvillo Siglo XXI and Hidrozac. The quantity of total phenolics and total flavonoids were expressed as equivalents of gallic acid and quercetin, respectively. Hydroxyl radical, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS, 2,2-diphenyl-1-picrylhydrazyl (DPPH, and Oxygen Radical Absorbance Capacity using fluorescein (ORAC-FL in vitro tests were used to assess the radical scavenging abilities of the extracts. The total phenolics were higher in the aqueous fraction of the variety Calvillo Siglo XXI, while in the Hidrozac variety total phenolics were higher in the acetone and chloroform fractions. Total flavonoids were higher in all fractions in the variety Calvillo Siglo XXI. Total phenolics showed a highly positive correlation for ORAC-FL, and a moderately positive correlation with hydroxyl radicals. Finally, total flavonoids showed a slightly positive correlation for ORAC-FL and hydroxyl radicals. Both varieties of guava leaf extract showed excellent antioxidant properties.

  16. Quantification of Phenolic Compounds and In Vitro Radical Scavenging Abilities with Leaf Extracts from Two Varieties of Psidium guajava L.

    Science.gov (United States)

    Martínez-Flores, Héctor Eduardo; Garnica-Romo, Ma. Guadalupe; Padilla-Ramírez, José Saúl; Saavedra-Molina, Alfredo; Alvarez-Cortes, Osvaldo; Bartolomé-Camacho, María Carmen; Rodiles-López, José Octavio

    2018-01-01

    Guava leaf (Psidium guajava L.) extracts are used in both traditional medicine and the pharmaceutical industry. The antioxidant compounds in P. guajava leaves can have positive effects including anti-inflammatory, anti-hyperglycemic, hepatoprotective, analgesic, anti-cancer effects, as well as protecting against cardiovascular diseases. In the present study, phenolic compounds and in vitro antioxidant capacity were measured in extracts obtained with polar and non-polar solvents from leaves of two varieties of guava, Calvillo Siglo XXI and Hidrozac. The quantity of total phenolics and total flavonoids were expressed as equivalents of gallic acid and quercetin, respectively. Hydroxyl radical, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Oxygen Radical Absorbance Capacity using fluorescein (ORAC-FL) in vitro tests were used to assess the radical scavenging abilities of the extracts. The total phenolics were higher in the aqueous fraction of the variety Calvillo Siglo XXI, while in the Hidrozac variety total phenolics were higher in the acetone and chloroform fractions. Total flavonoids were higher in all fractions in the variety Calvillo Siglo XXI. Total phenolics showed a highly positive correlation for ORAC-FL, and a moderately positive correlation with hydroxyl radicals. Finally, total flavonoids showed a slightly positive correlation for ORAC-FL and hydroxyl radicals. Both varieties of guava leaf extract showed excellent antioxidant properties. PMID:29495514

  17. Quantification of Phenolic Compounds and In Vitro Radical Scavenging Abilities with Leaf Extracts from Two Varieties of Psidium guajava L.

    Science.gov (United States)

    Camarena-Tello, Julio César; Martínez-Flores, Héctor Eduardo; Garnica-Romo, Ma Guadalupe; Padilla-Ramírez, José Saúl; Saavedra-Molina, Alfredo; Alvarez-Cortes, Osvaldo; Bartolomé-Camacho, María Carmen; Rodiles-López, José Octavio

    2018-02-27

    Guava leaf ( Psidium guajava L.) extracts are used in both traditional medicine and the pharmaceutical industry. The antioxidant compounds in P. guajava leaves can have positive effects including anti-inflammatory, anti-hyperglycemic, hepatoprotective, analgesic, anti-cancer effects, as well as protecting against cardiovascular diseases. In the present study, phenolic compounds and in vitro antioxidant capacity were measured in extracts obtained with polar and non-polar solvents from leaves of two varieties of guava, Calvillo Siglo XXI and Hidrozac. The quantity of total phenolics and total flavonoids were expressed as equivalents of gallic acid and quercetin, respectively. Hydroxyl radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Oxygen Radical Absorbance Capacity using fluorescein (ORAC-FL) in vitro tests were used to assess the radical scavenging abilities of the extracts. The total phenolics were higher in the aqueous fraction of the variety Calvillo Siglo XXI, while in the Hidrozac variety total phenolics were higher in the acetone and chloroform fractions. Total flavonoids were higher in all fractions in the variety Calvillo Siglo XXI. Total phenolics showed a highly positive correlation for ORAC-FL, and a moderately positive correlation with hydroxyl radicals. Finally, total flavonoids showed a slightly positive correlation for ORAC-FL and hydroxyl radicals. Both varieties of guava leaf extract showed excellent antioxidant properties.

  18. Optimization of ultrasound-assisted extraction (UAE) of phenolic compounds from olive cake.

    Science.gov (United States)

    Mojerlou, Zohreh; Elhamirad, Amirhhossein

    2018-03-01

    The use of ultrasound in ultrasound-assisted extraction (UAE) is one of the main applications of this technology in food industry. This study aimed to optimize UAE conditions for olive cake extract (OCE) through response surface methodology (RSM). The optimal UAE conditions were obtained with extraction temperature of 56 °C, extraction time of 3 min, duty cycle of 0.6 s, and solid to solvent ratio of 3.6%. At the optimum conditions, the total phenolic compounds (TPC) content and antioxidant activity (AA) were measured 4.04 mg/g and 68.9%, respectively. The linear term of temperature had the most effect on TPC content and AA of OCE prepared by UAE. Protocatechuic acid and cinnamic acid were characterized as the highest (19.5%) and lowest (1.6%) phenolic compound measured in OCE extracted by UAE. This research revealed that UAE is an effective method to extract phenolic compounds from olive cake. RSM successfully optimized UAE conditions for OCE.

  19. Properties of Chitosan-Genipin Films Grafted with Phenolic Compounds from Red Wine

    OpenAIRE

    Gonçalves, Fernando Jorge

    2015-01-01

    Chitosan has been studied as a renewable biopolymer to form edible films and coatings to improve the shelf life of food products. Chemical modification of chitosan is a strategy to prepare chitosan films with enhanced properties to be used as food preservatives. Wine, particularly red wine, is a rich natural source of phenolic compounds, namely anthocyanins, proanthocyanidins, monomeric catechins, and phenolic acids. Phenolic compounds, in general, present strong antioxidant properties. The a...

  20. Identification and Phytotoxicity Assessment of Phenolic Compounds in Chrysanthemoides monilifera subsp. monilifera (Boneseed)

    OpenAIRE

    Al Harun, Md Abdullah Yousuf; Johnson, Joshua; Uddin, Md Nazim; Robinson, Randall W.

    2015-01-01

    Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a stan...

  1. Mutagenicity testing in the Salmonella typhimurium assay of phenolic compounds and phenolic fractions obtained from smokehouse smoke condensates.

    Science.gov (United States)

    Pool, B L; Lin, P Z

    1982-08-01

    Smokehouse smoke, which is used for flavouring meat products, was investigated for its mutagenic activity in the Salmonella typhimurium assay. We were chiefly concerned with the fractions free of polycyclic aromatic hydrocarbons but containing phenol compounds, which are responsible for the preservative and aromatizing properties of the smoke. The most abundantly occurring phenol compounds (phenol, cresols, 2,4-dimethylphenol, brenzcatechine, syringol, eugenol, vanilline and guaiacol) gave negative results when they were tested for mutagenicity at five concentrations up to 5000 micrograms/plate, with and without S-9 mix, using five strains of S. typhimurium. Even when phenol was further investigated in a variety of test conditions, no induction of his+ revertants was observed. When smokehouse smoke was condensed and fractionated the majority of the various phenolic fractions also gave negative results when tested at five concentrations using five strains of S. typhimurium. However there was a slight increase in the number of revertants in a few cases. The presence in the phenolic fractions of very small amounts of mutagenic impurities, the nature of which needs further investigation, cannot be excluded. These results support the further development of non-hazardous smoke-aroma preparations, based on the phenolic components of smokehouse smoke.

  2. Mutagenicity testing in the Salmonella typhimurium assay of phenolic compounds and phenolic fractions obtained from smokehouse smoke condensates

    Energy Technology Data Exchange (ETDEWEB)

    Pool, B.L.; Lin, P.Z.

    1982-08-01

    Smokehouse smoke, which is used for flavouring meat products, was investigated for its mutagenic activity in the Salmonella typhimurium assay. We were chiefly concerned with the fractions free of polycyclic aromatic hydrocarbons but containing phenol compounds, which are responsible for the preservative and aromatizing properties of the smoke. The most abundantly occurring phenol compounds (phenol, cresols, 2,4-dimethylphenol, brenzcatechine, syringol, eugenol, vanilline and guaiacol) gave negative results when they were tested for mutagenicity at five concentrations up to 5000 micrograms/plate, with and without S-9 mix, using five strains of S. typhimurium. Even when phenol was further investigated in a variety of test conditions, no induction of his+ revertants was observed. When smokehouse smoke was condensed and fractionated the majority of the various phenolic fractions also gave negative results when tested at five concentrations using five strains of S. typhimurium. However there was a slight increase in the number of revertants in a few cases. The presence in the phenolic fractions of very small amounts of mutagenic impurities, the nature of which needs further investigation, cannot be excluded. These results support the further development of non-hazardous smoke-aroma preparations, based on the phenolic components of smokehouse smoke.

  3. Antifungal activity of extracts and phenolic compounds from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... Key words: Barringtonia racemosa, antifungal, HPLC, phenolic acids, flavonoids. ... Among them, phenolic acids and flavonoids have been the object of .... on the previous method as described by Crozier et al. ... Quantification.

  4. Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage

    Directory of Open Access Journals (Sweden)

    Tzu-Ying Sun

    2015-12-01

    Full Text Available Traditional kombucha is a fermented black tea extract and sugar. Sweetened black tea (10% w/v and wheatgrass juice (WGJ were mixed in various ratios and used as fermentation substrate for enhancing phenolic compounds and antioxidant activity. Starter, comprising of yeast (Dekkera bruxellensis and acetic acid bacteria (Gluconacetobacter rhaeticus and Gluconobacter roseus, was inoculated at 20% (v/v, and fermented statically at 29 ± 1°C for 12 days. The results showed that the total phenolic and flavonoid contents and antioxidant activity of the modified kombucha were higher than those of traditional preparations. All WGJ-blended kombucha preparations were characterized as having higher concentrations of various phenolic compounds such as gallic acid, catechin, caffeic acid, ferulic acid, rutin, and chlorogenic acid as compared to traditional ones. Addition of WGJ resulted in the 1,1-diphenyl-2-picrylhydrazyl (DPPH scavenging ability of kombucha being > 90%, while the oxygen radical absorbance capacity increased from 5.0 μmol trolox equivalents/mL to 12.8 μmol trolox equivalents/mL as the ratio of WGJ increased from 0% to 67% (v/v. The highest antioxidant activity was obtained using a 1:1 (v/v black tea decoction to WGJ ratio and 3 days of fermentation, producing various types of phenolic acids. These results suggest that intake of fermented black tea enhanced with wheatgrass juice is advantageous over traditional kombucha formulas in terms of providing various complementary phenolics and might have more potential to reduce oxidative stress.

  5. Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage.

    Science.gov (United States)

    Sun, Tzu-Ying; Li, Jia-Shiun; Chen, Chinshuh

    2015-12-01

    Traditional kombucha is a fermented black tea extract and sugar. Sweetened black tea (10% w/v) and wheatgrass juice (WGJ) were mixed in various ratios and used as fermentation substrate for enhancing phenolic compounds and antioxidant activity. Starter, comprising of yeast (Dekkera bruxellensis) and acetic acid bacteria (Gluconacetobacter rhaeticus and Gluconobacter roseus), was inoculated at 20% (v/v), and fermented statically at 29 ± 1°C for 12 days. The results showed that the total phenolic and flavonoid contents and antioxidant activity of the modified kombucha were higher than those of traditional preparations. All WGJ-blended kombucha preparations were characterized as having higher concentrations of various phenolic compounds such as gallic acid, catechin, caffeic acid, ferulic acid, rutin, and chlorogenic acid as compared to traditional ones. Addition of WGJ resulted in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability of kombucha being > 90%, while the oxygen radical absorbance capacity increased from 5.0 μmol trolox equivalents/mL to 12.8 μmol trolox equivalents/mL as the ratio of WGJ increased from 0% to 67% (v/v). The highest antioxidant activity was obtained using a 1:1 (v/v) black tea decoction to WGJ ratio and 3 days of fermentation, producing various types of phenolic acids. These results suggest that intake of fermented black tea enhanced with wheatgrass juice is advantageous over traditional kombucha formulas in terms of providing various complementary phenolics and might have more potential to reduce oxidative stress. Copyright © 2015. Published by Elsevier B.V.

  6. Biodegradation of phenolic compounds with oxidases from sorghum and non-defined mixed bacterium media

    International Nuclear Information System (INIS)

    Obame, C. E. L.; Savadogo, P. W.; Mamoudou, D. H.; Dembele, R. H.; Traore, A. S.

    2009-01-01

    The biodegradation of the phenolic compounds is performed using oxidative enzymes, e. g. polyphenol oxidases (PPOs) and peroxidases (POXs). These oxidases displaying a wide spectrum for the oxidation of phenolic compounds were isolated either from sorghum or mixed bacteria. Spectrophotometric methods were used to assess the monophenolase and diphenolase activities of PPOs as well as the hydrogen-dependant oxidation of POXs. (Author)

  7. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods.

    Science.gov (United States)

    Ribas-Agustí, Albert; Martín-Belloso, Olga; Soliva-Fortuny, Robert; Elez-Martínez, Pedro

    2017-06-13

    Phenolic compounds are important constituents of plant-based foods, as their presence is related to protective effects on health. To exert their biological activity, phenolic compounds must be released from the matrix during digestion in an absorbable form (bioaccessible) and finally absorbed and transferred to the bloodstream (bioavailable). Chemical structure and matrix interactions are some food-related factors that hamper phenolic compounds bioaccessibility and bioavailability, and that can be counteracted by food processing. It has been shown that food processing can induce chemical or physical modifications in food that enhance phenolic compounds bioaccessibility and bioavailability. These changes include: (i) chemical modifications into more bioaccessible and bioavailable forms; (ii) cleavage of covalent or hydrogen bonds or hydrophobic forces that attach phenolic compounds to matrix macromolecules; (iii) damaging microstructural barriers such as cell walls that impede the release from the matrix; and (iv) create microstructures that protect phenolic compounds until they are absorbed. Indeed, food processing can produce degradation of phenolic compounds, however, it is possible to counteract it by modulating the operating conditions in favor of increased bioaccessibility and bioavailability. This review compiles the current knowledge on the effects of processing on phenolic compounds bioaccessibility or bioavailability, while suggesting new guidelines in the search of optimal processing conditions as a step forward towards the design of healthier foods.

  8. Liquid phase in situ hydrodeoxygenation of biomass-derived phenolic compounds to hydrocarbons over bifunctional catalysts

    Science.gov (United States)

    Junfeng Feng; Chung-yun Hse; Zhongzhi Yang; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    The objective of this study was to find an effective method for converting renewable biomass-derived phenolic compounds into hydrocarbons bio-fuel via in situ catalytic hydrodeoxygenation. The in situ hydrodeoxygenation of biomass-derived phenolic compounds was carried out in methanol-water solvent over bifunctional catalysts of Raney Ni and HZSM-5 or H-Beta. In the in...

  9. Biodegradation of phenolic compounds with oxidases from sorghum and non-defined mixed bacterium media

    Energy Technology Data Exchange (ETDEWEB)

    Obame, C. E. L.; Savadogo, P. W.; Mamoudou, D. H.; Dembele, R. H.; Traore, A. S.

    2009-07-01

    The biodegradation of the phenolic compounds is performed using oxidative enzymes, e. g. polyphenol oxidases (PPOs) and peroxidases (POXs). These oxidases displaying a wide spectrum for the oxidation of phenolic compounds were isolated either from sorghum or mixed bacteria. Spectrophotometric methods were used to assess the monophenolase and diphenolase activities of PPOs as well as the hydrogen-dependant oxidation of POXs. (Author)

  10. ANTIOXIDANT ACTIVITY AND TOTAL PHENOLIC CONTENT OF GRAPE SEEDS AND PEELS FROM ROMANIAN VARIETIES

    Directory of Open Access Journals (Sweden)

    Mădălina IUGA

    2017-12-01

    Full Text Available Grape seeds and peels are valuable by-products from wine production industry that can be valorized in food production. Both grape seeds and peels have a great amount of antioxidants and polyphenolic compounds. The aim of this study was to investigate the total phenolic content of red and white grape seeds and peels and to establish the optimal solvent concentration for highest extraction yield. For this purpose, Folin Ciocâlteu method was used to achieve the phenols content and the antioxidant activity was estimated using 2,2 – diphenyl-1-1picrylhydrazyl (DPPH reagent. The total phenolic content ranged from 81.13 mg GAE/g for red peels, 93.47 mg GAE/g for white peels, to 128.47 mg GAE/g for red seeds and 164.70 mg GAE/g for white seeds. The One-Way ANOVA method was used to see if there are differences between the antioxidant activities depending on the solvent concentration. The results showed that the methanol concentration significantly (p < 0.05 influences the antioxidants extraction. The inhibition percent IC50 ranged from 0,24 to 4,37 μg/mL for white peels, from 3,12 to 6,29 μg/mL for red peels, from 5,53 to 5,90 μg/mL for white seeds and from 4,59 to 6,14 μg/mL for red seeds. This study highlighted the possibility to use grape seeds and peels as food ingredients or natural antioxidant to extend the shelf life of food, especial of lipids and lipid-containing foods because of their high antioxidant activity and total phenolic content.

  11. Total phenolic content, radical scavenging properties, and essential oil composition of Origanum species from different populations.

    Science.gov (United States)

    Dambolena, José S; Zunino, María P; Lucini, Enrique I; Olmedo, Rubén; Banchio, Erika; Bima, Paula J; Zygadlo, Julio A

    2010-01-27

    The aim of this work was to compare the antiradical activity, total phenol content (TPC), and essential oil composition of Origanum vulgare spp. virens, Origanum x applii, Origanum x majoricum, and O. vulgare spp. vulgare cultivated in Argentina in different localities. The experiment was conducted in the research station of La Consulta (INTA-Mendoza), the research station of Santa Lucia (INTA-San Juan), and Agronomy Faculty of National University of La Pampa, from 2007 to 2008. The composition of the essential oils of oregano populations was independent of cultivation conditions. In total, 39 compounds were identified in essential oils of oregano from Argentina by means of GC-MS. Thymol and trans-sabinene hydrate were the most prominent compounds, followed by gamma-terpinene, terpinen-4-ol, and alpha-terpinene. O. vulgare vulgare is the only Origanum studied which is rich in gamma-terpinene. Among tested oregano, O. x majoricum showed the highest essential oil content, 3.9 mg g(-1) dry matter. The plant extract of O. x majoricum had greater total phenol content values, 19.36 mg/g dry weight, than the rest of oregano studied. To find relationships among TPC, free radical scavenging activity (FRSA), and climate variables, canonical correlations were calculated. The results obtained allow us to conclude that 70% of the TPC and FRSA variability can be explained by the climate variables (R(2) = 0.70; p = 8.3 x 10(-6)), the temperature being the most important climatic variable.

  12. Evaluation of antioxidant activity and phenolic compounds content in methanol extract obtained from leaves Commiphora Myrrha

    Directory of Open Access Journals (Sweden)

    Celia Eliane de Lara da Silva

    2013-09-01

    Full Text Available This work presents shows the study of antioxidant activity and quantification of phenolic content determined for the methanol extract obtained from Commiphora myrrha. The high content of phenolic compounds were evaluated against the potential to sequester free radical through the model 2,2-diphenyl-1-picrizil hydrazyl (DPPH and compared with a standard rutin. The results show that the inhibitory capacity of the extract (IC50 was 0.21 mg.L-1. The extract pursued an antioxidant activity of 91.3% compared to the scavenging ability of rutin standard. The content of phenolic extract was assessed by using the Folin-Ciocalteu determined where the IC50 was 3,02 mg.L-1. The concentration of total phenols was determined 1.176 ± 0.263 mg gallic acid equivalent . g-1 of extract (n=5. The results show that extracts of C. myrrha have high antioxidant potential and additional studies are needed for isolation, characterization and use of their property in pharmaceutical, nutritinal and cosmetology.

  13. Phenolic compounds from Glycyrrhiza pallidiflora Maxim. and their cytotoxic activity.

    Science.gov (United States)

    Shults, Elvira E; Shakirov, Makhmut M; Pokrovsky, Mikhail A; Petrova, Tatijana N; Pokrovsky, Andrey G; Gorovoy, Petr G

    2017-02-01

    Twenty-one phenolic compounds (1-21) including dihydrocinnamic acid, isoflavonoids, flavonoids, coumestans, pterocarpans, chalcones, isoflavan and isoflaven, were isolated from the roots of Glycyrrhiza pallidiflora Maxim. Phloretinic acid (1), chrysin (6), 9-methoxycoumestan (8), isoglycyrol (9), 6″-O-acetylanonin (19) and 6″-O-acetylwistin (21) were isolated from G. pallidiflora for the first time. Isoflavonoid acetylglycosides 19, 21 might be artefacts that could be produced during the EtOAc fractionation process of whole extract. Compounds 2-4, 10, 11, 19 and 21 were evaluated for their cytotoxic activity with respect to model cancer cell lines (CEM-13, MT-4, U-937) using the conventional MTT assays. Isoflavonoid calycosin (4) showed the best potency against human T-cell leukaemia cells MT-4 (CTD 50 , 2.9 μM). Pterocarpans medicarpin (10) and homopterocarpin (11) exhibit anticancer activity in micromolar range with selectivity on the human monocyte cells U-937. The isoflavan (3R)-vestitol (16) was highly selective on the lymphoblastoid leukaemia cells CEM-13 and was more active than the drug doxorubicin.

  14. Phenolic Compounds from the Leaves of Eucalyptus microcorys F. Muell.

    Directory of Open Access Journals (Sweden)

    Gilmara A. C. Fortes

    2015-04-01

    Full Text Available A new acylated glycoside, 4-O-( 4’,6’-di-O-galloyl- b - D -glucopyranosyl-trans-p-coumaric acid, named microcoryn ( 1 , together with sixteen known phenolic compounds, 5-O-(6'-O-galloyl- b - D -glucopyranosyl-gentisic acid (2, ellagic acid (3, gallic acid (4, kaempferol (5, quercetin (6, 3-O-galloyl- b - D -glucose (7, 2,3,6-tri-O-galloyl- b - D -glucose (8, 1,2,4,6-tetra-O-galloyl- b - D -glucose (9, 1,2,3,4,6-penta-O-galloyl- b - D -glucose (10, 4,6-hexahydroxydiphenoyl- b - D -glucose (11, gemin D (12, tellimagrandin I (13, tellimagrandin II (14, isocoriariin F (15, oenothein C (16, and oenothein B (17 were isolated from the leaves of Eucalyptus microcorys . The structure of the new compound was elucidated by spectroscopic data, especially by 2D NMR techniques. This is the first phytochemical investigation of this plant’s leaf extract.

  15. Extraction of phenolic compounds from extra virgin olive oil by a natural deep eutectic solvent: Data on UV absorption of the extracts

    Directory of Open Access Journals (Sweden)

    Vito Michele Paradiso

    2016-09-01

    Full Text Available This data article refers to the paper “Towards green analysis of virgin olive oil phenolic compounds: extraction by a natural deep eutectic solvent and direct spectrophotometric detection” [1]. A deep eutectic solvent (DES based on lactic acid and glucose was used as green solvent for phenolic compounds. Eight standard phenolic compounds were solubilized in the DES. Then, a set of extra virgin olive oil (EVOO samples (n=65 were submitted to liquid–liquid extraction by the DES. The standard solutions and the extracts were analyzed by UV spectrophotometry. This article reports the spectral data of both the standard solutions and the 65 extracts, as well as the total phenolic content of the corresponding oils, assessed by the Folin–Ciocalteu assay. Keywords: Natural deep eutectic solvents, Extra virgin olive oil, Phenolic compounds, UV spectrophotometry

  16. Phenolic compound contents and antioxidant activity in plants with nutritional and/or medicinal properties form the Peruvian Andean region

    NARCIS (Netherlands)

    Chirinos, R.; Pedreschi Plasencia, R.P.; Rogez, H.

    2013-01-01

    Total phenolic compounds (TPC) and antioxidant activities using different assays (DPPH, ABTS and ORAC) in fruits, grains, leaves, seeds, roots and tubers from 27 different Peruvian Andean plants used in folk medicine or/and as food by the native population were evaluated in order to use these as

  17. Sacha Inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytoserols, phenolic compounds and antioxidant capacity

    NARCIS (Netherlands)

    Chirinos, R.; Zuloeta, G.; Pedreschi Plasencia, R.P.

    2013-01-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A

  18. The reactivity of phenolic and non-phenolic residual kraft lignin model compounds with Mn(II)-peroxidase from Lentinula edodes.

    Science.gov (United States)

    Crestini, C; D'Annibale, A; Sermanni, G G; Saladino, R

    2000-02-01

    Three phenolic model compounds representing bonding patterns of residual kraft lignin were incubated with manganese peroxidase from Lentinula edodes. Extensive degradation of all the phenolic models, mainly occurring via side-chain benzylic oxidation, was observed. Among the tested model compounds the diphenylmethane alpha-5 phenolic model was found to be the most reactive, yielding several products showing oxidation and fragmentation at the bridging position. The non-phenolic 5-5' biphenyl and 5-5' diphenylmethane models were found unreactive.

  19. Antioxidant Capacity and Total Phenolic Compounds of Twelve Selected Potato Landrace Clones Grown in Southern Chile Capacidad Antioxidante y Compuestos Fenólicos totales de una Selección de Doce Variedades Tradicionales de Papa Cultivadas en la Región Sur de Chile

    Directory of Open Access Journals (Sweden)

    Kong Ah-Hen

    2012-03-01

    Full Text Available Colored potatoes (Solanum tuberosum L. provide a natural source of phytochemicals that help reduce the risk of diseases. However, there is a lack of information on the degree of variation of the antioxidant activity and polyphenolic contents of these native potatoes. Thus, the antioxidant activity (AA and total phenolic content (TPC of native Chilean potatoes were determined. Twelve potato landrace clones collected from established cultivations on Chiloe Island and Valdivia were selected. Total phenolic content and AA were compared with two commercial varieties, Shepody and Desirée. Total phenolic content was determined by the Folin-Ciocalteu method, and β-carotene bleaching was used to compare AA. The TPC varied in the peeled potato samples from 191 to 1864 mg 100 g-1 DM meanwhile these parameters varied from 345 to 2852 mg 100 g-1 DM in unpeeled samples. Antioxidant activity was higher in unpeeled potatoes, and was the highest in the unpeeled NG-6 or 'Bruja' native potato. The commercial var. Shepody showed pro-oxidant activity and had a relatively lower TPC. Results also indicated a higher concentration of total phenolics in the periderm of the colored native Chilean potatoes.Las papas (Solanum tuberosum L. coloreadas son una fuent natural de fitoquímicos que ayudan a reducir el riesgo de enfermedades. Sin embargo, existe una falta de información sobre el grado de variación de la actividad antioxidante y el contenido de polifenoles en estas papas nativas. Es así como la actividad antioxidante (AA y contenido de fenoles totales (TPC se determinaron en papas nativas chilenas. Doce genotipos de papa recogidos de cultivos establecidos en la Isla de Chiloé y en Valdivia fueron seleccionados, y se compararon TPC y AA con dos variedades comerciales, Shepody y Desirée. El TPC se determinó por el método de Folin-Ciocalteu, y el blanqueamiento de p-caroteno se utilizó para comparar la AA. El TPC varió en las muestras de papas sin piel desde

  20. Antioxidant and Nitrite-Scavenging Capacities of Phenolic Compounds from Sugarcane (Saccharum officinarum L. Tops

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2014-08-01

    Full Text Available Sugarcane tops were extracted with 50% ethanol and fractionated by petroleum ether, ethyl acetate (EtOAc, and n-butyl alcohol successively. Eight phenolic compounds in EtOAc extracts were purified through silica gel and Sephadex LH-20 column chromatographies, and then identified by nuclear magnetic resonance and electrospray ionization mass spectra. The results showed that eight phenolic compounds from EtOAc extracts were identified as caffeic acid, cis-p-hydroxycinnamic acid, quercetin, apigenin, albanin A, australone A, moracin M, and 5'-geranyl-5,7,2',4'-tetrahydroxyflavone. The antioxidant and nitrite-scavenging capacities of different solvent extracts correlated positively with their total phenolic (TP contents. Amongst various extracts, EtOAc extracts possessed the highest TP content and presented the strongest oxygen radical absorbance capacity (ORAC, 1,1'-diphenyl-2-picrylhydrazyl (DPPH radical-scavenging capacity, 2,2'-azobis-3-ethylbenthiaazoline-6-sulfonic acid (ABTS radical-scavenging capacity, ferric reducing antioxidant power (FRAP and nitrite-scavenging capacity. Thus, sugarcane tops could be promoted as a source of natural antioxidant.

  1. Phenolic compounds and sterol contents of olive (olea europaea l.) oils obtained from different

    International Nuclear Information System (INIS)

    Juhaimi, F.; Ghafoor, K.; Adiamo, O.Q.; Babiker, E.E.

    2017-01-01

    Oil obtained from 5 different olive cultivars was analyzed for phenolic and sterol composition. Total phenolic contents of oils were determined between 94.99 mg GAE/kg oil (Al-Joif) to 405.71 mg GAE/ kg oil (Sariulak) (p<0.05). Phenolic compounds of oils obtained from different olive verities (Ayvalik, Sariulak, Savrani, Al-Joif and Gemlik) when fully ripened were evaluated using reversed phase high performance liquid chromatography (RP-HPLC). Hydroxytyrosol and tyrosol were identified to have higher concentrations than other compounds. Tyrosol contents were between 3.65 mg/kg to 21.47 mg/kg oil (p<0.05) in different verities. The contents of hydroxytyrosol of oils for Ayvalik and Gemlik were 1.23 and 14.42 mg/kg, respectively. Cinnamic acid was detected only in Al-Joif olive oil sample. Low amounts of syringic, vanillin, p-cumaric, quercetin and luteolin were observed in different varieties' oils. (author)

  2. Response of total phenolic content and antioxidant activities of bush

    African Journals Online (AJOL)

    user

    OF BUSH TEA AND SPECIAL TEA USING DIFFERENT SELECTED. EXTRACTION ... 3,3'digallate and caffeine). Tea leaves have ..... Effects of solvent extraction on phenolic content and ... Critical Reviews in Food Science and Nutrition,.

  3. Flavonoids, total phenolics and antioxidant capacity: comparison between commercial green tea preparations

    Directory of Open Access Journals (Sweden)

    Débora Harumi Kodama

    2010-12-01

    Full Text Available The potential health benefits attributed to green tea and its catechins such as antioxidant effects, cancer chemoprevention, and weight loss have led to a huge increase of green tea products in the food market. The objectives of this work were to analyze and compare these products in terms of phenolic contents and in vitro antioxidant capacity including tea bags, dehydrated leaves, and ready-to-drink preparations after standardization of the infusion preparation procedure. Total phenolics content in 1 cup of the different teas varied from 90 to 341 mg of catechin equivalents, and the highest and the lowest values were both those of the ready-to-drink products. Infusions prepared from tea bags had contents varying from 96 to 201 mg.200 mL-1, and there were no significant differences among batches. The DPPH radical scavenging and the Oxygen Radical Absorbing Capacities (ORAC varied largely among the different tea preparations, from 23 to 131 mmoles of Trolox Equivalents (TE.200 mL-1 (DPPH, and from 1.2 to 5.1 mmoles of TE.200 mL-1 (ORAC, but again there were no differences among infusions or ready-to-drink commercial preparations. However, the antioxidant capacity of ready-to-drink products was partially due to the presence of other non-phenolic compounds such as ascorbic acid

  4. Effect of processing on antioxidant potential and total phenolics content in beet (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    Dorivaldo da Silva Raupp

    2011-09-01

    Full Text Available The antioxidant capacity of beet is associated with non-nutritive constituents, such as phenolic compounds. The purpose of this research was to evaluate the effect of two different heat-processing techniques (drying and canned on the antioxidant potential (ABTS and phenolics content of beets. A forced air circulation dehydrator was used for the drying. Drying at high temperatures (100 + 90 °C/5.6 hours; 90 °C/6 hours increased the antioxidant potential of the processed products while mild drying conditions decreased it (80 °C/6 hours; 100 + 70 °C/6 hours or had no effect on it (70 °C/7 hours; 100 + 80 °C/6 hours. For the canned products, the antioxidant potential did not differ according to the pH (4.2 to 3.8 for any of the four acids tested. Some processing methods influenced the antioxidant potential of the processed products, and this was also dependent on changes in the total phenolics content.

  5. Comparative study of the total phenol content and antioxidant activity of some medicinal herbal extracts

    Directory of Open Access Journals (Sweden)

    H. Hajimehdipoor

    2014-08-01

    Full Text Available Herbal medicines can be used as the potential sources of anti-oxidative compounds to help the treatment of diseases associated to oxidative stress. In this paper, the Ferric Reducing Antioxidant Power (FRAP activity of four Lamiaceae herbal extracts, which traditionally applied in oxidative stress related diseases, has been evaluated and total phenolics contents of these extracts determined by using Folin-Ciocalteu reagent. The aqueous methanol extracts were prepared by percolation method and investigated for antioxidant properties and total phenolics content evaluation. All the extracts showed antioxidant effect from 123.6±4.6 mmol of FeSO4.7H2Oequivalent/100 g dried extract in Scutellaria tornefortii to 551.5±16.0 mmol of FeSO4.7H2Oequivalent/100 g dried extract in Satureja sahendica. Interestingly, although Satureja sahendica exhibited the most antioxidant activity, the highest content of polyphenolics belonged to Stachys byzantina. Taking together, antioxidant activity of the mentioned medicinal plants is not necessarily associated with polyphenolic compounds and might be partially due to the presence of other polar constituents like terpenoid-glycosides in aqueous extracts that traditionally used as decoction.

  6. Total phenolics, flavonoids, tannins and antioxidant activity of lima beans conserved in a Brazilian Genebank

    Directory of Open Access Journals (Sweden)

    Tânia da Silveira Agostini-Costa

    2015-02-01

    Full Text Available The objective of this study was to characterize for the first time polyphenols and DPPH (2-diphenyl-1-picryhydrazyl radical antioxidant activity in commonly cultivated accessions of Phaseolus lunatus from an ex situ germplasm collection maintained by Embrapa, in Brazil. Furthermore, the study aimed to detect changes in total polyphenols, total flavonoids and condensed tannin for the same accessions after regeneration in a greenhouse. The results showed the diversity of the lima bean collection for phenolic compounds, which were strongly correlated with antioxidant activity. Lima beans accessions with the highest polyphenols and antioxidant activity were those with colored seeds. Conservation through cold storage of P. lunatus seeds in a cold chamber in the germplasm collection did not necessarily affect phenolic compounds. Variations observed in values after regeneration seeds may be mainly results of biotic and abiotic factors, including not only cultivar, but also environmental conditions. This study suggests that polyphenols in the lima beans present antioxidant activity, with possible beneficial effects for human health. It was expected that the potential of this tasty legume can be also used as a functional food crop and/or as a new ingredient in gastronomy.

  7. Detection of Total Phenol in Green and Black Teas by Flow Injection System and Unmodified Screen Printed Electrode

    Directory of Open Access Journals (Sweden)

    Ivanildo Luiz de Mattos

    2010-01-01

    Full Text Available A flow injection system using an unmodified gold screen-printed electrode was employed for total phenol determination in black and green teas. In order to avoid passivation of the electrode surface due to the redox reaction, preoxidation of the sample was realized by hexacyanoferrate(III followed by addition of an EDTA solution. The complex formed in the presence of EDTA minimizes or avoids polymerization of the oxidized phenols. The previously filtered tea sample and hexacyanoferrate(III reagent were introduced simultaneously into two-carrier streams producing two reproducible zones. At confluence point, the pre-oxidation of the phenolic compounds occurs while this zone flows through the coiled reactor and receives the EDTA solution before phenol detection. The consumption of ferricyanide was monitorized at 360 mV versus Ag/AgCl and reflected the total amount of phenolic compounds present in the sample. Results were reported as gallic acid equivalents (GAEs. The proposed system is robust, versatile, environmentally-friendly (since the reactive is used only in the presence of the sample, and allows the analysis of about 35–40 samples per hour with detection limit = 1 mg/L without the necessity for surface cleaning after each measurement. Precise results are in agreement with those obtained by the Folin-Ciocalteu method.

  8. Antioxidant properties, total phenolic and total flavonoid content of the Slovak white wines – welschriesling and chardonnay

    Directory of Open Access Journals (Sweden)

    Daniel Bajčan

    2017-01-01

    Full Text Available The biologically active compounds in wines, especially phenolics, are responsible for reduced risk of developing chronic diseses (cardiovascular diseases, cancer, diabetes, Alzheimer disease, etc., due to their antioxidant activities. Twenty six Slovak white wines, produced from different geographical origins, were examined in this study. The antioxidant activity, total phenolic and flavonoid contents of two types monovarietal wines - Welschriesling and Chardonnay were evaluated. All three mentioned parameters were determined by UV-VIS absorption spectrometry. The results showed that both types of Slovak white wines were high in polyphenols (average content was 303.2 mg GAE.L-1 in Welschriesling, resp. 355.6 mg GAE.L-1 in Chardonnay and flavonoids (average content was 51.9 mg CE.L-1 in Welschriesling, resp. 60.1 mg CE.L-1 in Chardonnay, as well as a high antioxidant activity (average value was 35.0% inhibition of DPPH in Welschriesling, resp. 43.3% inhibition of DPPH in Chardonnay, comparable to the wines produced in other regions in the world. Among the white wines, Chardonnay had higher content of total polyphenols, as well as flavonoids and higher values of antioxidant activity. Our results confirmed very strong linear correlations between all three analysed parameters (TPC, TFC and AA: TPC and TFC (r = 0.818, AA and TPC (r = 0.699, resp. TFC and AA (r = 0.693.

  9. Phenolic compounds and bioactive properties of wild German and Roman chamomiles

    OpenAIRE

    Guimarães, Rafaela; Barros, Lillian; Dueñas, Montserrat; Calhelha, Ricardo C.; Carvalho, Ana Maria; Santos-Buelga, Celestino; Queiroz, Maria João R.P.; Ferreira, Isabel C.F.R.

    2012-01-01

    Natural products represent a rich source of biologically active compounds and are an example of molecular diversity, with recognized potential in drug discovery. In the present work, methanolic extracts of Matricaria recutita L. (German chamomile) and Chamaemelum nobile L. (Roman chamomile) and their decoction and infusion (the most consumed preparations of these herbs) were submitted to an analysis of phenolic compounds and bioactivity evaluation. Phenolic compounds were characterized by HPL...

  10. Two new phenolic compounds and antitumor activities of asparinin A from Asparagus officinalis.

    Science.gov (United States)

    Li, Xue-Mei; Cai, Jin-Long; Wang, Le; Wang, Wen-Xiang; Ai, Hong-Lian; Mao, Zi-Chao

    2017-02-01

    Two new phenolic acid compounds, asparoffin C (1) and asparoffin D (2), together with four known compounds, asparenyol (3), gobicusin B (4), 1-methoxy-2-hydroxy-4-[5-(4-hydroxyphenoxy)-3-penten-1-ynyl] phenol (5), and asparinin A (6), have been isolated from the stems of Asparagus officinalis. The structures were established by extensive spectroscopic methods (MS and 1D and 2D NMR). Compound 6 has obvious antitumor activities both in vitro and in vivo.

  11. Effect of polyphenol oxidase (PPO and air treatments on total phenol and tannin content of cocoa nibs

    Directory of Open Access Journals (Sweden)

    Brito Edy Sousa de

    2002-01-01

    Full Text Available Cocoa flavour is greatly influenced by polyphenols. These compounds undergo a series of transformations during cocoa processing leading to the characteristic cocoa flavour. The use of exogenous polyphenol oxidase (PPO proved to be useful to reduce polyphenol content in cocoa nibs. The effect of a PPO associated or not with air over total phenol and tannin content was evaluated. Cocoa nibs were autoclaved and treated with a PPO or water in the absence or presence of an air flow for 0.5, 1, 2 and 3 hours. Total phenol content was reduced in PPO or water treatments, but when associated with air there was an increase in phenol content. Tannin content was reduced only by the treatment with water and air.

  12. Simple quantification of phenolic compounds present in the minor fraction of virgin olive oil by LC-DAD-FLD.

    Science.gov (United States)

    Godoy-Caballero, M P; Acedo-Valenzuela, M I; Galeano-Díaz, T

    2012-11-15

    This paper presents the results of the study on the extraction, identification and quantification of a group of important phenolic compounds in virgin olive oil (VOO) samples, obtained from olives of various varieties, by liquid chromatography coupled to UV-vis and fluorescence detection. Sixteen phenolic compounds belonging to different families have been identified and quantified spending a total time of 25 min. The linearity was examined by establishing the external standard calibration curves. Four order linear ranges and limits of detection ranging from 0.02 to 0.6 μg mL(-1) and 0.006 to 0.3 μg mL(-1) were achieved using UV-vis and fluorescence detection, respectively. Regarding the real samples, for the determination of the phenolic compounds in higher concentrations (hydroxytyrosol and tyrosol) a simple liquid-liquid extraction with ethanol was used to make the sample compatible with the mobile phase. Recovery values close to 100% were obtained. However, a previous solid phase extraction with Diol cartridges was necessary to concentrate and separate the minor phenolic compounds of the main interferences. The parameters affecting this step were carefully optimized and, after that, recoveries near 80-100% were obtained for the rest of the studied phenolic compounds. Also, the limits of detection were improved 15 times. Finally, the standard addition method was carried out for each of the analytes and no matrix effect was found, so the quantification of the 16 phenolic compounds from different monovarietal VOO was carried out by using the corresponding external standard calibration plot. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Concentration of phenolic compounds is increased in lettuce grown under high light intensity and elevated CO2.

    Science.gov (United States)

    Pérez-López, Usue; Sgherri, Cristina; Miranda-Apodaca, Jon; Micaelli, Francesco; Lacuesta, Maite; Mena-Petite, Amaia; Quartacci, Mike Frank; Muñoz-Rueda, Alberto

    2018-02-01

    The present study was focused on lettuce, a widely consumed leafy vegetable for the large number of healthy phenolic compounds. Two differently-pigmented lettuce cultivars, i.e. an acyanic-green leaf cv. and an anthocyanic-red one, were grown under high light intensity or elevated CO 2 or both in order to evaluate how environmental conditions may affect the production of secondary phenolic metabolites and, thus, lettuce quality. Mild light stress imposed for a short time under ambient or elevated CO 2 concentration increased phenolics compounds as well as antioxidant capacity in both lettuce cvs, indicating how the cultivation practice could enhance the health-promoting benefits of lettuce. The phenolic profile depended on pigmentation and the anthocyanic-red cv. always maintained a higher phenolic amount as well as antioxidant capacity than the acyanic-green one. In particular, quercetin, quercetin-3-O-glucuronide, kaempferol, quercitrin and rutin accumulated under high light or high CO 2 in the anthocyanic-red cv., whereas cyanidin derivatives were responsive to mild light stress, both at ambient and elevated CO 2 . In both cvs total free and conjugated phenolic acids maintained higher values under all altered environmental conditions, whereas luteolin reached significant amounts when both stresses were administered together, indicating, in this last case, that the enzymatic regulation of the flavonoid synthesis could be differently affected, the synthesis of flavones being favored. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. The Comparative Analysis of Phenolic Compounds Accumulation in Leaves of Various Kinds of Kalanchoe

    Directory of Open Access Journals (Sweden)

    N. N. SAZHINA

    2014-06-01

    Full Text Available One of actual problems of modern pharmacology is creation of new medicines on the basis of vegetable raw materials. In this plan some succulents present a great interest in particular some kinds of the genus Kalanchoe, such as Kalanchoe pinnata (K.pinnata and Kalanchoe Daigremontiana (K.daigremontiana. Their leaves contain useful mineral salts, organic acids and the numerous phenolic compounds (PC. Education and accumulation of these PC depends on genetic features of a plant and numerous factors of environment. Besides, these representatives of a secondary metabolism cause biological, including antioxidant activity (AOA of this or that species of a plant, that is ability its component to inhibit oxidizing free radical processes. Use of modern methods of antioxidant properties research for plant extracts or juice of this or that plant allow to study and reveal their medicinal value at higher level.In the present work the comparative analysis of measurement results of the total phenols content and their activity in leave juice of various kinds of Kalanchoe (Kalanchoe L. is carried out by ammetric and chemiluminescence methods for the purpose of identification among them the most active producers of phenol metabolites. Objects of research were juice samples of 34 kinds of the genus Kalanchoe, grown up in a succulent collection in Timiryazev Institute of plant physiology RAS (Moscow, Russia. Among the studied samples two most active from the point of view of their antioxidant properties Kalanchoe kinds: K.scapigera and K.rhombopilosa are revealed. Both methods show considerably higher values of the phenol metabolite content in leave juice of these plants and their AOA in comparison with K.pinnata and K.daigremontiana. For possible expansion for use of specified types of Kalanchoe as sources of biologically active compounds, additional researches of biochemical structure, antibacterial, antimicrobic and other properties of these plant components is

  15. Addition of phenols compounds to meat dough intended for salami manufacture and its antioxidant effect

    Directory of Open Access Journals (Sweden)

    Enrico Novelli

    2014-08-01

    Full Text Available A purified extract of phenols compounds (65% of phenolic content of which decarboxymethyl oleuropein aglycone represented 45% of the wet mass obtained from vegetation water (a by-product of oil mill was added to a ground meat dough intended for salami manufacture in two concentration levels: 75 and 150 mg/100 g of dough (F1 and F2, respectively. The control batch was composed of lean and fat cuts of pork in 70:30 ratio, 2.7% salt and a mixed starter culture of staphylococci and pediococci. After stuffing into natural casings, salamis were aged until they reached a total weight loss of 30%. The product was then sliced and packaged in a protective atmosphere (nitrogen:carbon dioxide 80:20 and placed in a refrigerator thermostat (2-4°C with alternating 12 h of artificial light and darkness. The samples were analysed for the measurement of pH, water activity, organic acidity, peroxide number and secondary products of lipid peroxidation at the time of slicing and after 10, 20 and 30 days of storage into the refrigerated thermostat. The pH and water activity were not substantially different between the control and the two enriched batches. The peroxide number and secondary products of lipid peroxidation values in the two batches with phenols were at least substantially lower than the control sample. In conclusion, the phenol compounds obtained from vegetation water have shown no interference with the ripening process while protecting the dough from oxidation.

  16. Biosynthesis of phenolic compounds in hypocotyl callus cultures of fenugreek (Trigonella foenum graecum L. )

    Energy Technology Data Exchange (ETDEWEB)

    Dhandapani, M; Antony, A; Subba Rao, P V [Indian Inst. of Science, Bangalore. Dept. of Biochemistry

    1977-03-01

    Hypocotyl callus cultures of fenugreek were studied to determine their potential for synthesizing phenolics, particularly those which are intermediates in lignin and flavonoid biosynthesis. The cultures were found to be capable of synthesizing an array of phenolic compounds characteristic of higher plants. Both phenylalanine-U-/sup 14/C and cinnamic acid-U-/sup 14/C were found to be efficient precursors of these phenolics.

  17. The content changes of selected phenolic compounds during processing of medicinal plants

    OpenAIRE

    GROŠAFTOVÁ, Blanka

    2007-01-01

    This work was aimed to the problem of change of the content of selected phenolic substances during treatment and storage of medical plants. Flavonoids represent small, but very important group of phenolic compounds. The biggest attention was paid to quercetin and rutine.Content of phenolic substances was determined by method of micellar electrokinetic capillary chromatography (MECC) in case of 6 medicinal plants usually used in traditional and modern medicine.

  18. Stability of phenolic compounds in dry fermented sausages added with cocoa and grape seed extracts

    OpenAIRE

    Ribas-Agusti, Albert; Gratacós-Cubarsí, Marta; Sárraga, Carmen; Guàrdia, M. Dolors; García-Regueiro, José-Antonio

    2014-01-01

    The level of eleven target phenolic compounds was evaluated in dry fermented sausages added with vegetable extracts. Grape seed (GSE1 and GSE2) and cocoa extracts, rich in phenolic compounds, were added in the formulation of dry fermented sausages (“salchichón” and “fuet”). Evolution of the major monomeric and oligomeric phenolic compounds of these extracts was evaluated during sausage shelf life by UHPLC-MS/MS. Kind of sausage did not affect significantly overall stability of the target comp...

  19. The Evolution of Total Phenolic Compounds and Antioxidant Activities during Ripening of Grapes (Vitis vinifera L., cv. Tempranillo Grown in Semiarid Region: Effects of Cluster Thinning and Water Deficit

    Directory of Open Access Journals (Sweden)

    Inmaculada Garrido

    2016-11-01

    Full Text Available A study was made of how water status (rainfed vs. irrigated and crop load (no cluster thinning vs. cluster thinning can together affect the grapes of Vitis vinifera cv. Tempranillo vines growing in a semiarid zone of Extremadura (Spain. The grapes were monitored at different stages of ripening, measuring the peroxidase (POX and superoxide dismutase (SOD antioxidant activities and the phenolic content (flavonoids and phenylpropanoids, together with other parameters. The irrigation regime was adjusted to provide 100% of crop evapotranspiration (ETc. The findings confirmed previous results that both thinning and water deficit advance ripening, while irrigation and high crop load (no thinning lengthen the growth cycle. The SOD activity remained practically constant throughout ripening in the thinned treatments and was always lower than in the unthinned treatments, an aspect which could have been the cause of the observed greater level of lipid peroxidation in the water deficit, thinned treatment. The nonspecific peroxidase activity was very low, especially in the thinned treatments. The effect of thinning was enhanced when combined with water deficit, inducing increases in phenylpropanoids and, above all, flavonoids at the harvest stage of ripening, while leaving the polyphenol oxidase activity (PPO unaffected.

  20. Experimental and theoretical binding affinity between polyvinylpolypyrrolidone and selected phenolic compounds from food matrices.

    Science.gov (United States)

    Durán-Lara, Esteban F; López-Cortés, Xaviera A; Castro, Ricardo I; Avila-Salas, Fabián; González-Nilo, Fernando D; Laurie, V Felipe; Santos, Leonardo S

    2015-02-01

    Polyvinylpolypyrrolidone (PVPP) is a fining agent, widely used in winemaking and brewing, whose mode of action in removing phenolic compounds has not been fully characterised. The aim of this study was to evaluate the experimental and theoretical binding affinity of PVPP towards six phenolic compounds representing different types of phenolic species. The interaction between PVPP and phenolics was evaluated in model solutions, where hydroxyl groups, hydrophobic bonding and steric hindrance were characterised. The results of the study indicated that PVPP exhibits high affinity for quercetin and catechin, moderate affinity for epicatechin, gallic acid and lower affinity for 4-methylcatechol and caffeic acid. The affinity has a direct correlation with the hydroxylation degree of each compound. The results show that the affinity of PVPP towards phenols is related with frontier orbitals. This work demonstrates a direct correlation between the experimental affinity and the interaction energy calculations obtained through computational chemistry methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Total phenols, flavonoids, anthocyanins, ascorbic acid contents and ...

    African Journals Online (AJOL)

    mmpa

    2014-03-05

    Mar 5, 2014 ... for Rhamnus kurdica Boiss in flowering were evaluated in this work. The polar extraction of ... INTRODUCTION. Antioxidant activity is essential for life, to counteract the strongly ... balance (Erkan et al., 2011). Phenolic ... were procured from Sigma-Aldrich Chemie (Steinheim, Germany). Analytical grade ...

  2. Antioxidant activity and total phenolic and flavonoid content of ...

    African Journals Online (AJOL)

    The antioxidant capacity of the flowering aerial parts of Astragalus squarrosus was determined by 1,1- diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and ferric thiocyanate methods. The phenolic and flavonoid content was also measured. A. squarrosus showed weak free radical scavenging activity with the DPPH ...

  3. Composition and distribution of cell wall phenolic compounds in flax (Linum usitatissimum L.) stem tissues

    NARCIS (Netherlands)

    Gorshkova, T.A.; Salnikov, V.V.; Pogodina, N.M.; Chemikosova, S.B.; Yablokova, E.V.; Ulanov, A.V.; Ageeva, M.V.; Dam, van J.E.G.; Lozovaya, V.V.

    2000-01-01

    Cell wall phenolic compounds were analysed in xylem and bast fibre-rich peels of flax stems by biochemical, histochemical and ultrastructural approaches. Localization of cell wall phenolics by the enzyme-gold method using laccase revealed several gold particle distribution patterns. One of the major

  4. Vacuum Drying for Extending Litchi Shelf-Life: Vitamin C, Total Phenolics, Texture and Shelf-Life Assessment.

    Science.gov (United States)

    Richter Reis, Felipe; de Oliveira, Aline Caroline; Gadelha, Gabriella Giani Pieretti; de Abreu, Marcela Breves; Soares, Hillary Isabelle

    2017-06-01

    In an attempt to obtain shelf-stable litchi fruit with preserved nutritional quality and good sensory features, quarters of peeled and pitted fruits were vacuum dried at 50, 60 and 70 °C at a constant pressure of 8.0 kPa. The product was assessed for its vitamin C, total phenolics and texture (hardness). In addition, the product with the best texture was assessed for its shelf-life by means of accelerated testing. Results suggest that vacuum dried litchi retained almost 70% of the vitamin C and total phenolics when compared to frozen fruits (control). Vitamin C and phenolic compounds content significantly decreased with drying, while no difference was found between different drying temperatures. Hardness increased with drying temperature. The sample dried at 70 °C presented crispness, which is a desired quality feature in dried fruit products. This sample was subjected to shelf-life evaluation, whose result suggests a shelf-life of eight months at 23 °C. Total color change (CIE ΔE 00 ) was the expiry criterion. Vacuum drying was a suitable technique for producing shelf-stable litchi fruit with good texture while preserving its desirable original nutrients. Consumption of vacuum dried litchi may be beneficial to health due to its remarkable content of phenolic compounds and vitamin C.

  5. Phenolic compounds of Pinus laricio needles: a bioindicator of the effects of prescribed burning in function of season.

    Science.gov (United States)

    Cannac, Magali; Pasqualini, Vanina; Barboni, Toussaint; Morandini, Frederic; Ferrat, Lila

    2009-07-15

    Fire is a dominant ecological factor in Mediterranean-type ecosystems. Forest management includes many preventive tools, in particular for fire prevention, such as mechanical treatments and prescribed burning. Prescribed burning is a commonly used method for treating fuel loads, but fuel reduction targets for reducing wildfire hazards must be balanced against fuel retention targets in order to maintain habitat and other forest functions. This approach was used on Pinus nigra ssp laricio var. Corsicana, a pine endemic to Corsica of great ecological and economic importance. Many studies of plant phenolic compounds have been carried out concerning responses to various stresses. The aim of this study was to understand i) the effects of prescribed burning 1 to 16 months later and ii) the effects of the seasonality of burning, spring or fall, on the production of phenolic compounds in Pinus laricio. After prescribed burning conducted in spring, Pinus laricio increases the synthesis of total phenolic compounds for a period of 7 months. The increase is greater after spring-burning than fall-burning. With regard to simple phenols, only dihydroferulic acid responds about 1 year after both types of prescribed burning. The causes of these increases are discussed in this paper. Total phenolic compounds could be used as a bioindicator for the short-term response of Pinus laricio needles to prescribed burning. Simple phenols may be useful for revealing the medium-term effects of prescribed burning. The results of this study include recommending forest managers to use prescribed burning in the fall rather than spring to reduce fuel loads and have less impact on the trees.

  6. Antibacterial, Antiradical Potential and Phenolic Compounds of Thirty-One Polish Mushrooms.

    Directory of Open Access Journals (Sweden)

    Natalia Nowacka

    Full Text Available Among many sources of natural bioactive substances, mushrooms constitute a huge and almost unexplored group. Fungal compounds have been repeatedly reported to exert biological effects which have prompted their use in pharmaceutical and cosmetic industry. Therefore, the aim of this study was analysis of chemical composition and biological activity of 31 wild growing mushroom species (including saprophytic and parasitic from Poland.Qualitative and quantitative LC-ESI-MS/MS analysis of fourteen phenolic acids in the mushrooms analysed was performed. Moreover, total phenolic content was determined by the modified Folin-Ciocalteau method. Antioxidative activity of ethanolic extracts towards DPPH• free radical was examined. Antibacterial activity against Gram-positive (S. epidermidis, S. aureus, B. subtilis, M. luteus and Gram-negative (E. coli, K. pneumoniae, P. aeruginosa, P. mirabilis microbial strains was analyzed.As a result, the first such broad report on polyphenolic composition, antiradical and antimicrobial potential of wild growing Polish mushrooms was developed. Mushroom extracts were found to contain both benzoic (protocatechuic, 4-OH-benzoic, vanillic, syringic and cinnamic acid derivatives (caffeic, p-coumaric, ferulic. Total phenolic content in mushrooms ranged between 2.79 and 53.13 mg gallic acid equivalent /g of dried extract in Trichaptum fuscoviolaceum and Fomes fomentarius, respectively. Fungi showed much differentiated antiradical activity, from highly active F. fomentarius to poorly effective Russula fragilis (IC50 1.39 to 120.54 mg per mg DPPH•, respectively. A quite considerable relationship between phenolic content and antiradical activity has been demonstrated. Mushrooms varied widely in antimicrobial potential (MIC from 0.156 to 5 mg/ml. Generally, a slightly higher activity against Gram-positive than Gram-negative strains was observed. This is the first study concerning the chemical composition and biological activity

  7. Vitamin C, Phenolic Compounds and Antioxidant Capacity of Broccoli Florets Grown under Different Nitrogen Treatments Combined with Selenium

    Directory of Open Access Journals (Sweden)

    Peñas Elena

    2018-06-01

    Full Text Available Broccoli consumption is rising worldwide and fertilization is a tool to increase its production. However, little is known about the effect of mineral supplementation to the soil on the bioactive compounds. Therefore, the aim of this investigation was to analyze the content of vitamin C, total phenolic compounds and the antioxidant capacity of broccoli florets cultivated under different nitrogen (N conditions in combination with selenium (IV and VI. Greenhouse experiments were conducted in broccoli grown in commercial soil treated with different N sources [(NH42SO4, NaNO3, NH4NO3 or CO(NH22 at 160 kg N/ha]. In addition, selenium (Se salts [Na2SeO3 (Se IV or Na2SeO4 (Se VI at 10 and 20 kg Se/ha] were applied. There were no evidences of the influence of N treatment on vitamin C content whilst Se (IV or VI uptake led to a significant reduction of this vitamin in broccoli florets, irrespective of the N source. In contrast, total phenolics content and antioxidant capacity underwent a significant increment under N application. However, their combination with Se salts modified total phenolic content and antioxidant capacities in broccoli florets depending on N source and Se doses. Among all the experimental trials, application of NH4NO3 combined with 10 g Se (IV/ha was the elective treatment strategy to produce broccoli florets with higher content of phenolic compounds and antioxidant capacity and, therefore, enhanced functionality.

  8. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus.

    Science.gov (United States)

    Noreen, Hafiza; Semmar, Nabil; Farman, Muhammad; McCullagh, James S O

    2017-08-01

     > CDA MW > CDA DCM > CDA CHL > CDA ACE > CDA nHX in DPPH, ABTS and FRAP assays. A significant relationship is found between antioxidant potential and total phenolic content, suggesting that phenolic compounds are the major contributors to the antioxidant activity of C. didymus. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  9. Antioxidant and antimicrobial phenolic compounds from extracts of cultivated and wild-grown Tunisian Ruta chalepensis

    Directory of Open Access Journals (Sweden)

    Ines Ouerghemmi

    2017-04-01

    Full Text Available The antioxidant and antibacterial activities of phenolic compounds from cultivated and wild Tunisian Ruta chalepensis L. leaves, stems, and flowers were assessed. The leaves and the flowers exhibited high but similar total polyphenol, flavonoid, and tannin content. Moreover, two organs showed strong, although not significantly different, total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl scavenging ability, and reducing power. Investigation of the phenolic composition showed that vanillic acid and coumarin were the major compounds in the two organs, with higher percentages in the cultivated organs than in the spontaneous organs. Furthermore, R. chalepensis extracts showed marked antibacterial properties against human pathogen strains, and the activity was organ- and origin-dependent. Spontaneous stems had the strongest activity against Pseudomonas aeruginosa. From these results, it was concluded that domestication of Ruta did not significantly affect its chemical composition and consequently the possibility of using R. chalpensis organs as a potential source of natural antioxidants and as an antimicrobial agent in the food industry.

  10. [Phenolic compounds in leaves insertions of Mentha × villosa Huds. cv. Snežná].

    Science.gov (United States)

    Tekeľová, Daniela; Bittner Fialová, Silvia; Tóth, Jaroslav; Czigle, Szilvia

    Lamiaceae plants mostly accumulate active ingredients in their leaves. The subfamily Nepetoideae, including the genus Mentha L., is characterized by the presence of essential oil and antioxidant phenolics, chiefly hydroxycinnamic acids with predominance of rosmarinic acid, and flavonoids. Mentha × piperita and M. spicata are the most broadly used mints in both medicine and industry, while M. x villosa is less known in our country. Herbal drugs in the form of leaves are usually analysed unpartitioned, while single leaves insertions have only been studied occasionally. Therefore, the aim of this work was the quantification of the active compounds content in the leaves pairs of Mentha × villosa Huds. cv. Snežná, using pharmacopoeial methods: total hydroxycinnamic derivatives expressed as rosmarinic acid (THD) and luteolin-type flavonoids. THD content ranged from 6.7% to 9.4% in the leaves pairs water extracts, and from 6.6% to 14.0% in methanol extracts. Flavonoids contents, expressed as luteolin-7-O-glucoside, ranged from 4.0% to 8.8% in water extracts, and from 4.0% to 10.5% in methanol extracts. Antioxidant activity (DPPH) expressed as SC50 ranged from 10.2 to 16.9 μg.ml-1 (drug dry weight) in water extracts, and from 10.7 to 21.6 μg.ml-1 in methanol extracts. The highest content of phenolic compounds as well as the highest antioxidant activity were found to be in the top sheet, while the lowest content of phenolic compounds and lowest antioxidant activity were detected in the leaves of the middle stem part.Key words: Mentha × villosa Huds cv. Snežná hydroxycinnamic derivatives rosmarinic acid luteolin-7-O-glucoside DPPH.

  11. EXTRACTION OF PHENOLIC COMPOUNDS FROM PETAI LEAVES (PARKIA SPECIOSA HASSK. USING MICROWAVE AND ULTRASOUND ASSISTED METHODS

    Directory of Open Access Journals (Sweden)

    Buanasari Buanasari

    2017-06-01

    Full Text Available The antioxidant has an activity to neutralize free radical compound that the body needs to avoid damage cells and tissues. Phenolic is one of the compounds that have an antioxidant activity. The influences of ultrasonic-assisted extraction (UAE and microwave-assisted extraction (MAE conditions on phenolic compounds of Parkia speciosa Hassk. leaves were investigated. The effects of temperature (40°C, 50°C, 60°C and 70°C, time (10, 30 and 50 minutes and material-solvent ratio (1:10, 1:13, 1:15 were evaluated based on the yield, total phenolic content (TPC and antioxidant activity. The result showed that the highest yield (15.82% was obtained at 1:15 (w/w of material-solvent ratio, 50°C of temperature and 50 minutes of extraction time for MAE. The highest yield of UAE is 15.53% that sample was obtained at 1:13 (w/w of material-solvent ratio, 60°C of optimal temperature and 30 minutes extraction time. The highest IC50 of UAE method extract was 52.55 ppm, while the extract obtained using MAE method was 50.44 ppm. UAE is more stable at higher temperatures. Time and solvent which was used more efficient than MAE. Extract of petai leaves (Parkia speciosa Hassk. were very potential to be used as a source of natural antioxidants because they have IC50 values from 41.39 to 66.00 ppm. Its antioxidants capacity is ranged from strong to very strong capacity.

  12. Antioxidant, Cytotoxic Activities and Total Phenolic Content of Four Indonesian Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Waras Nurcholis

    2017-03-01

    Full Text Available The crude ethanol extracts of four Indonesian medicinal plants namely Curcuma xanthorrhiza Roxb.,Phyllanthus niruri Linn., Andrographis paniculata Ness., and Curcuma aeruginosa Roxb. wereexamined for their antioxidant (radical scavenging activity using 2, 2-diphenyl-2-picrylhydrazyl(DPPH free radical and cytotoxicity using brine shrimp lethality test (BSLT. The total phenoliccontent was used the Folin-Ciocalteu method. IC50 values for DPPH radical scavenging activityranged from 14.5 to 178.5 μg/ml, with P. niruri having the lowest value and therefore the mostpotent, and C. aeruginosa having the highest value. LC50 values for BSLT ranged from 210.3 to593.2 μg/ml, with C. xanthorrhiza and A. paniculata having the lowest and highest values,respectively. The total phenolic content of the Indonesian plants ranged from 133.0 ±3.7 to863.3±54.7 mg tannic acid equivalent per 1 g extract, with C. aeruginosa and P. niruri having thelowest and highest values, respectively. A positive correlation between free radical scavengingactivity and the content of phenolic compounds was found in the four of Indonesian medicinal plants.

  13. Free and Bound Phenolic Compound Content and Antioxidant Activity of Different Cultivated Blue Highland Barley Varieties from the Qinghai-Tibet Plateau.

    Science.gov (United States)

    Yang, Xi-Juan; Dang, Bin; Fan, Ming-Tao

    2018-04-11

    In this study, the polyphenols composition and antioxidant properties of 12 blue highland barley varieties planted on the Qinghai-Tibet Plateau area were measured. The contents of the free, bound and total phenolic acids varied between 166.20-237.60, 170.10-240.75 and 336.29-453.94 mg of gallic acid equivalents per 100 g of dry weight (DW) blue highland barley grains, while the free and bound phenolic acids accounted for 50.09% and 49.91% of the total phenolic acids, respectively. The contents of the free, bound and total flavones varied among 20.61-25.59, 14.91-22.38 and 37.91-47.98 mg of catechin equivalents per 100 g of dry weight (DW) of blue highland barley grains, while the free and bound flavones accounted for 55.90% and 44.10% of the total flavones, respectively. The prominent phenolic compounds in the blue hulless barley grains were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, naringenin, hesperidin, rutin, (+)-catechin and quercetin. Among these, protocatechuic acid, chlorogenic acid and (+)-catechin were the major phenolic compounds in the free phenolics extract. The most abundant bound phenolics were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, benzoic acid, dimethoxybenzoic acid, naringenin, hesperidin, quercetin and rutin. The average contribution of the bound phenolic extract to the DPPH • free radical scavenging capacity was higher than 86%, that of free phenolic extract to the ABTS •+ free radical scavenging capacity was higher than 79%, and that of free phenolic (53%) to the FRAP antioxidant activity was equivalent to that of the bound phenol extract (47%). In addition, the planting environment exerts a very important influence on the polyphenol composition, content and antioxidant activity of blue highland barley. The correlation analysis showed that 2,4-hydroxybenzoic acid and protocatechuic acid were the main contributors to the DPPH • and ABTS •+ free radical scavenging capacity in the free phenolic extract

  14. Dynamics in the concentrations of health-promoting compounds: lupeol, mangiferin and different phenolic acids during postharvest ripening of mango fruit.

    Science.gov (United States)

    Vithana, Mekhala Dk; Singh, Zora; Johnson, Stuart K

    2018-03-01

    Mango fruit (Mangifera indica L.) is renowned for its pleasant taste and as a rich source of health beneficial compounds. The aim of this study was to investigate the changes in concentrations of health-promoting compounds, namely ascorbic acid, carotenoids, antioxidants, lupeol, mangiferin, total phenols and individual phenolic acids, as well as ethylene production and respiration rates during climacteric ripening in 'Kensington Pride' and 'R2E2' mango fruit. The climacteric ethylene and respiration peaks were noted on the third day of the fruit ripening period. The concentrations of total carotenoids in the pulp, total antioxidants in both pulp and peel, and total phenols of the peel, lupeol and mangiferin were significantly elevated, whereas the concentration of ascorbic acid declined during post-climacteric ripening. Gallic, chlorogenic and vanillic acids were identified as the major phenolic acids in both pulp and peel of 'Kensington Pride' and 'R2E2' mangoes. The concentrations of phenolic acids (gallic, chlorogenic, vanillic, ferulic and caffeic acids) also increased during the post-climacteric phase. The concentrations of all phenolic compounds were several-fold higher in the peel than pulp. Mangoes at post-climacteric ripening phase offer the highest concentrations of health-promoting compounds. Peel, at this stage of fruit ripening, could be exploited as a good source for extraction of these compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris.

    Science.gov (United States)

    Hossain, Mohammad Amzad; AL-Raqmi, Khulood Ahmed Salim; AL-Mijizy, Zawan Hamood; Weli, Afaf Mohammed; Al-Riyami, Qasim

    2013-09-01

    To prepare various crude extracts using different polarities of solvent and to quantitatively evaluate their total phenol, flavonoids contents and phytochemical screening of Thymus vulgaris collected from Al Jabal Al Akhdar, Nizwa, Sultanate of Oman. The leave sample was extracted with methanol and evaporated. Then it was defatted with water and extracted with different polarities organic solvents with increasing polarities. The prepare hexane, chloroform, ethyl acetate, butanol and methanol crude extracts were used for their evaluation of total phenol, flavonoids contents and phytochemical screening study. The established conventional methods were used for quantitative determination of total phenol, flavonoids contents and phytochemical screening. Phytochemical screening for various crude extracts were tested and shown positive result for flavonoids, saponins and steroids compounds. The result for total phenol content was the highest in butanol and the lowest in methanol crude extract whereas the total flavonoids contents was the highest in methanol and the lowest hexane crude extract. The crude extracts from locally grown Thymus vulgaris showed high concentration of flavonoids and it could be used as antibiotics for different curable and uncurable diseases.

  16. Advances in extraction and analysis of phenolic compounds from plant materials

    Institute of Scientific and Technical Information of China (English)

    XU Cong-Cong; WANG Bing; PU Yi-Qiong; TAO Jian-Sheng; ZHANG Tong

    2017-01-01

    Phenolic compounds,the most abundant secondary metabolites in plants,have received more and more attention in recent years because of their distinct bioactivities.This review summarizes different types of phenolic compounds and their extraction and analytical methods used in the recent reports,involving 59 phenolic compounds from 52 kinds of plants.The extraction methods include solid-liquid extraction,ultrasound-assisted extractions,microwave-assisted extractions,supercritical fluid extraction,and other methods.The analysis methods include spectrophotometry,gas chromatography,liquid chromatography,thin-layer chromatography,capillary electrophoresis,and near-infrared spectroscopy.After illustrating the specific conditions of the analytical methods,the advantages and disadvantages of each method are also summarized,pointing out their respective suitability.This review provides valuable reference for identification and/or quantification of phenolic compounds from natural products.

  17. PHYSICOCHEMICAL CHARACTERISTICS, ANTIOXIDANT CAPACITY AND PHENOLIC COMPOUNDS OF TOMATOES FERTIGATED WITH DIFFERENT NITROGEN RATES

    Directory of Open Access Journals (Sweden)

    MARCOS FILGUEIRAS JORGE

    2017-01-01

    Full Text Available The objective of this work was to evaluate the physicochemical and microbiological characteristics, antioxidant capacity and phenolic compounds of organic cherry tomatoes grown under fertigation with organic dairy cattle wastewater (DCW with different nitrogen rates. Tomato plants, grown in an agroecological farm in Seropédica, State of Rio de Janeiro, Brazil, were subjected to four different nitrogen rates (T1=0, T2=50, T3=100 and T4=150% of N. The moisture, lipids, ashes, protein and total fiber contents, soluble solids (ºBrix, reducing and total sugars (%, pH and total titratable acidity (mg NaOH per 100 g were evaluated. The total phenolic content (TPC and the antioxidant capacity was determined by the DPPH and FRAP methods. The different nitrogen rates (%N affected the pH, protein and soluble solids contents. The increase in %N increased the antioxidant capacities, according to the DPPH assay, and TPC. On the other hand, the tomatoes under fertigation with the highest %N presented lower antioxidant capacities according to the FRAP assay. The fertigation did not affect the microbiological characteristics of the tomatoes, which presented fecal coliforms count <3 NMP g-1 and absence of Salmonella in 25 g.

  18. Optimization of antioxidant phenolic compounds extraction from quinoa (Chenopodium quinoa) seeds.

    Science.gov (United States)

    Carciochi, Ramiro Ariel; Manrique, Guillermo Daniel; Dimitrov, Krasimir

    2015-07-01

    The objective of this study was to optimize the extraction conditions of phenolic and flavonoids compounds from quinoa (Chenopodium quinoa) seeds using ultrasound assistance technology. A randomized central composite face-centered design was used to evaluate the effect of extraction temperature, ethanol concentration in the solvent, and ultrasound power on the total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity by response surface analysis. Predicted model equations were obtained to describe the experimental data regarding TPC, TFC and antioxidant activity, with significant variation in the linear, quadratic, and interaction effects of the independent variables. Regression analysis showed that more than 88 % of the variability was explained by the models. The best extraction conditions obtained by simultaneous maximization of the responses were: extraction temperature of 60 °C, 80 % ethanol as solvent and non-application of ultrasounds. Under the optimal conditions, the corresponding predicted response values were 103.6 mg GAE/100 g dry weight (dw), 25.0 mg quercetin equiv./100 g dw and 28.6 % DPPH radical scavenging, for TPC, TFC and antioxidant activity, respectively. The experimental values agreed with those predicted within a 95 % confidence level, indicating the suitability of the employed model. HPLC analysis of the obtained extracts confirmed the highest phenolic compound yield in the extract obtained under optimal extraction conditions. Considering the characteristics of the antioxidant-rich extracts obtained, they could be consider for potential application in the food industry, as nutraceutical and functional foods ingredient or well as replacement of synthetic antioxidants.

  19. Adsorption of phenolic compound by aged-refuse

    Energy Technology Data Exchange (ETDEWEB)

    Chai Xiaoli [State Key Laboratory of Pollution Control and Resource Reuse, School of Enviromental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092 (China)]. E-mail: xlchai@mail.tongji.edu.cn; Zhao Youcai [State Key Laboratory of Pollution Control and Resource Reuse, School of Enviromental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092 (China)

    2006-09-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic.

  20. Adsorption of phenolic compound by aged-refuse

    International Nuclear Information System (INIS)

    Chai Xiaoli; Zhao Youcai

    2006-01-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic

  1. Comparison of phenolic compounds and antioxidant capacities of ...

    African Journals Online (AJOL)

    Yomi

    2012-10-09

    Oct 9, 2012 ... Thirty samples of sorghum beers “dolo” were selected from traditionally fermented household manufacturers .... anti-diarrhoeic properties (Awika and Rooney, 2004; ... investigation on levels of phenolic content and antioxidant.

  2. Chemical and sensory quality of processed carrot puree as influenced by stress-induced phenolic compounds.

    Science.gov (United States)

    Talcott, S T; Howard, L R

    1999-04-01

    Physicochemical analysis of processed strained product was performed on 10 carrot genotypes grown in Texas (TX) and Georgia (GA). Carrots from GA experienced hail damage during growth, resulting in damage to their tops. Measurements included pH, moisture, soluble phenolics, total carotenoids, sugars, organic acids, and isocoumarin (6-MM). Sensory analysis was conducted using a trained panel to evaluate relationships between chemical and sensory attributes of the genotypes and in carrots spiked with increasing levels of 6-MM. Preharvest stress conditions in GA carrots seemed to elicit a phytoalexic response, producing compounds that impacted the perception of bitter and sour flavors. Spiking 6-MM into strained carrots demonstrated the role bitter compounds have in lowering sweetness scores while increasing the perception of sour flavor. Screening fresh carrots for the phytoalexin 6-MM has the potential to significantly improve the sensory quality of processed products.

  3. Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compound from licorice root

    OpenAIRE

    Karami, Zohreh; Emam-Djomeh, Zahra; Mirzaee, Habib Allah; Khomeiri, Morteza; Mahoonak, Alireza Sadeghi; Aydani, Emad

    2014-01-01

    In present study, response surface methodology was used to optimize extraction condition of phenolic compounds from licorice root by microwave application. Investigated factors were solvent (ethanol 80 %, methanol 80 % and water), liquid/solid ratio (10:1–25:1) and time (2–6 min). Experiments were designed according to the central composite rotatable design. The results showed that extraction conditions had significant effect on the extraction yield of phenolic compounds and antioxidant capac...

  4. Comparative Analysis of ?-Oryzanol, ?-Glucan, Total Phenolic Content and Antioxidant Activity in Fermented Rice Bran of Different Varieties

    OpenAIRE

    Jung, Tae-Dong; Shin, Gi-Hae; Kim, Jae-Min; Choi, Sun-Il; Lee, Jin-Ha; Lee, Sang Jong; Park, Seon Ju; Woo, Koan Sik; Oh, Sea Kwan; Lee, Ok-Hawn

    2017-01-01

    Rice bran, a by-product derived from processing rice, is a rich source of bioactive compounds. Recent studies have suggested that the fermentation can improve their biological activities. This study aimed to determined the level of γ-oryzanol, β-glucan and total phenol contents of fermented rice bran from 21 Korean varieties, as well as to evaluate their antioxidant activities. We also assessed the validation of the analytical method for determining γ-oryzanol content in fermented rice brans....

  5. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds.

    Science.gov (United States)

    Ghafoor, Kashif; Choi, Yong Hee; Jeon, Ju Yeong; Jo, In Hee

    2009-06-10

    Important functional components from Campbell Early grape seed were extracted by ultrasound-assisted extraction (UAE) technology. The experiments were carried out according to a five level, three variable central composite rotatable design (CCRD). The best possible combinations of ethanol concentration, extraction temperature, and extraction time with the application of ultrasound were obtained for the maximum extraction of phenolic compounds, antioxidant activities, and anthocyanins from grape seed by using response surface methodology (RSM). Process variables had significant effect on the extraction of functional components with extraction time being highly significant for the extraction of phenolics and antioxidants. The optimal conditions obtained by RSM for UAE from grape seed include 53.15% ethanol, 56.03 degrees C temperature, and 29.03 min time for the maximum total phenolic compounds (5.44 mg GAE/100 mL); 53.06% ethanol, 60.65 degrees C temperature, and 30.58 min time for the maximum antioxidant activity (12.31 mg/mL); and 52.35% ethanol, 55.13 degrees C temperature, and 29.49 min time for the maximum total anthocyanins (2.28 mg/mL). Under the above-mentioned conditions, the experimental total phenolics were 5.41 mg GAE/100 mL, antioxidant activity was 12.28 mg/mL, and total anthocyanins were 2.29 mg/mL of the grape seed extract, which is well matched with the predicted values.

  6. Effects of phenolic compounds in propolis on digestive and ruminal parameters in dairy cows

    Directory of Open Access Journals (Sweden)

    Sílvia Cristina de Aguiar

    2014-04-01

    Full Text Available Four rumen-cannulated primiparous lactating cows were studied in a 4 × 4 Latin square design experiment to evaluate the effects of propolis-based products (PBP with different concentrations of propolis and alcohol levels on total digestibility, (TD, ruminal digestibility (RD, intestinal digestibility (ID, pH, ruminal ammonia-nitrogen production (NH3-N, rumen microbial synthesis, and blood parameters. The feed consisted of 591.9 g/kg corn silage and 408.1 g/kg concentrate (dry matter [DM] basis, and treatments differed with regard to the inclusion (via ruminal cannula or exclusion of PBP as follows: control (without the PBP, PBP B1 (3.81 mg of phenolic compounds/kg of ingested DM, PBP C1 (3.27 mg of phenolic compounds/kg of ingested DM, and PBP C3 (1.93 mg of phenolic compounds/kg of ingested DM. Inclusion of PBP reduced the RD of dietary crude protein (CP. Treatment PBP C1 reduced ruminal NH3-N production, while PBP B1 increased the ID of CP relative to that in the control. These findings indicate that propolis had a positive effect on rumen nitrogen metabolism. Rumen pH, efficiency of microbial protein synthesis, and blood parameters were not affected by addition of PBP, but there were significant effects on the other parameters when the treatments containing propolis were contrasted. Higher TD of DM (0.717 vs. 0.685, OM (0.737 vs. 0.703, and CP (0.760 vs. 0.739, as well as higher NDF (0.622 vs. 0.558 and TDN (0.747 vs. 0.712 were observed when comparing PBP C1 with C3. Inclusion of propolis in diets for dairy cows have positive effects on protein metabolism in the rumen. Variation in the amounts of phenolic compounds in the different PBP may explain the diverse effects on the digestive parameters evaluated.

  7. Study on the presence and influence of phenolic compounds in callogenesis and somatic embryo development of cocoa (Theobroma cacao L..

    Directory of Open Access Journals (Sweden)

    Sulistyani Pancaningtyas

    2015-03-01

    Full Text Available Cocoa (Theobroma cacao L. like most tropical trees is recalcitrant in tissue culture. Somatic embryogenesis is generally efficient micropropagation technique to multiply elite material. However, Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. One of the factors often considered as a component of in vitro recalsitrance is a high phenolic content and oxidation of these compounds. In cocoa tissue culture accumulate large amounts of poliphenolics compounds which probably impair further development. This study was conducted to investigate the composition of phenolic compounds in cocoa flower and leaves, and their changes troughout the somatic embryogenesis process. Calli were induced in cacao floral and leaves explants on a half-strenght Murashige and Skoog medium containing 30 g/L Glucose and combination of 2,4 dichlorophenoxyacetic acid (2,4 D with kinetin (kin. Total polyphenol content was observed on Sulawesi 1 cocoa clone. Embryogenic and non-embryogenic callus were also compared. The percentage of callus production from flower tissue is 85%, percentage of embryogenic callus 40 %, although  the percentage of somatic embryo production from embryogenic callus callus is 70%. The conservation of callus into somatic embryos followed by decline in phenol content and an increase in peroxidase. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non-embryogenic conditions. So that, phenolic compound can influence the production of calli and an absence the phenolic compound can enhance production of somatic embryo.Kata kunci: Theobroma cacao L., polifenol, embrio somatik, kalus, flavonoid, katekin, in vitro recalcitance

  8. Analysis of Protein-Phenolic Compound Modifications Using Electrochemistry Coupled to Mass Spectrometry.

    Science.gov (United States)

    Kallinich, Constanze; Schefer, Simone; Rohn, Sascha

    2018-01-29

    In the last decade, electrochemical oxidation coupled with mass spectrometry has been successfully used for the analysis of metabolic studies. The application focused in this study was to investigate the redox potential of different phenolic compounds such as the very prominent chlorogenic acid. Further, EC/ESI-MS was used as preparation technique for analyzing adduct formation between electrochemically oxidized phenolic compounds and food proteins, e.g., alpha-lactalbumin or peptides derived from a tryptic digestion. In the first step of this approach, two reactant solutions are combined and mixed: one contains the solution of the digested protein, and the other contains the phenolic compound of interest, which was, prior to the mixing process, electrochemically transformed to several oxidation products using a boron-doped diamond working electrode. As a result, a Michael-type addition led to covalent binding of the activated phenolic compounds to reactive protein/peptide side chains. In a follow-up approach, the reaction mix was further separated chromatographically and finally detected using ESI-HRMS. Compound-specific, electrochemical oxidation of phenolic acids was performed successfully, and various oxidation and reaction products with proteins/peptides were observed. Further optimization of the reaction (conditions) is required, as well as structural elucidation concerning the final adducts, which can be phenolic compound oligomers, but even more interestingly, quite complex mixtures of proteins and oxidation products.

  9. Interactions between wine phenolic compounds and human saliva in astringency perception.

    Science.gov (United States)

    García-Estévez, Ignacio; Ramos-Pineda, Alba María; Escribano-Bailón, María Teresa

    2018-03-01

    Astringency is a complex perceptual phenomenon involving several sensations that are perceived simultaneously. The mechanism leading to these sensations has been thoroughly and controversially discussed in the literature and it is still not well understood since there are many contributing factors. Although we are still far from elucidating the mechanisms whereby astringency develops, the interaction between phenolic compounds and proteins (from saliva, oral mucosa or cells) seems to be most important. This review summarizes the recent trends in the protein-phenol interaction, focusing on the effect of the structure of the phenolic compound on the interaction with salivary proteins and on methodologies based on these interactions to determine astringency.

  10. Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica dioica L.

    Science.gov (United States)

    Pinelli, Patrizia; Ieri, Francesca; Vignolini, Pamela; Bacci, Laura; Baronti, Silvia; Romani, Annalisa

    2008-10-08

    In the present study the phenolic composition of leaves, stalks, and textile fiber extracts from Urtica dioica L. is described. Taking into account the increasing demand for textile products made from natural fibers and the necessity to create sustainable "local" processing chains, an Italian project was funded to evaluate the cultivation of nettle fibers in the region of Tuscany. The leaves of two nettle samples, cultivated and wild (C and W), contain large amounts of chlorogenic and 2- O-caffeoylmalic acid, which represent 71.5 and 76.5% of total phenolics, respectively. Flavonoids are the main class in the stalks: 54.4% of total phenolics in C and 31.2% in W samples. Anthocyanins are second in quantitative importance and are present only in nettle stalks: 28.6% of total phenolics in C and 24.4% in W extracts. Characterization of phenolic compounds in nettle extracts is an important result with regard to the biological properties (antioxidant and antiradical) of these metabolites for their possible applications in various industrial activities, such as food/feed, cosmetics, phytomedicine, and textiles.

  11. Methodologies for the Extraction of Phenolic Compounds from Environmental Samples: New Approaches

    Directory of Open Access Journals (Sweden)

    Cristina Mahugo Santana

    2009-01-01

    Full Text Available Phenolic derivatives are among the most important contaminants present in the environment. These compounds are used in several industrial processes to manufacture chemicals such as pesticides, explosives, drugs and dyes. They also are used in the bleaching process of paper manufacturing. Apart from these sources, phenolic compounds have substantial applications in agriculture as herbicides, insecticides and fungicides. However, phenolic compounds are not only generated by human activity, but they are also formed naturally, e.g., during the decomposition of leaves or wood. As a result of these applications, they are found in soils and sediments and this often leads to wastewater and ground water contamination. Owing to their high toxicity and persistence in the environment, both, the US Environmental Protection Agency (EPA and the European Union have included some of them in their lists of priority pollutants. Current standard methods of phenolic compounds analysis in water samples are based on liquid–liquid extraction (LLE while Soxhlet extraction is the most used technique for isolating phenols from solid matrices. However, these techniques require extensive cleanup procedures that are time-intensive and involve expensive and hazardous organic solvents, which are undesirable for health and disposal reasons. In the last years, the use of news methodologies such as solid-phase extraction (SPE and solid-phase microextraction (SPME have increased for the extraction of phenolic compounds from liquid samples. In the case of solid samples, microwave assisted extraction (MAE is demonstrated to be an efficient technique for the extraction of these compounds. In this work we review the developed methods in the extraction and determination of phenolic derivatives in different types of environmental matrices such as water, sediments and soils. Moreover, we present the new approach in the use of micellar media coupled with SPME process for the

  12. Changes in Phenolic Compounds and Phytotoxicity of the Spanish-Style Green Olive Processing Wastewaters by Aspergillus niger B60.

    Science.gov (United States)

    Papadaki, Eugenia; Tsimidou, Maria Z; Mantzouridou, Fani Th

    2018-05-16

    This study systematically investigated the degradation kinetics and changes in the composition of phenolic compounds in Spanish-style Chalkidiki green olive processing wastewaters (TOPWs) during treatment using Aspergillus niger B60. The fungal growth and phenol degradation kinetics were described sufficiently by the Logistic and Edward models, respectively. The maximum specific growth rate (2.626 1/d) and the maximum degradation rate (0.690 1/h) were observed at 1500 mg/L of total polar phenols, indicating the applicability of the process in TOPWs with a high concentration of phenolic compounds. Hydroxytyrosol and the other simple phenols were depleted after 3-8 days. The newly formed secoiridoid derivatives identified by HPLC-DAD-FLD and LC-MS are likely produced by oleoside and oleuropein aglycon via the action of fungal β-glucosidase and esterase. The treated streams were found to be less phytotoxic with reduced chemical oxygen demand by up to 76%. Findings will provide useful information for the subsequent treatment of residual contaminants.

  13. Effect of Spanish style processing on the phenolic compounds and antioxidant activity of Algerian green table olives

    Energy Technology Data Exchange (ETDEWEB)

    Mettouchi, S.; Sacchi, R.; Ould Moussa, Z.E.D.; Paduano, A.; Savarese, M.; Tamendjari, A.

    2016-07-01

    The study was carried out on seven Algerian olive cultivars to report the effect of Spanish style processing on individual and total phenolic compounds and the changes that occur in antioxidant capacity. The results indicate that the treatment leads to losses in phenolic contents which are cultivar dependent. Sigoise is the least affected variety (12.25%) and Azzeradj from Seddouk the most affected one (94.80%). The phenolic profile shows drastic changes after processing. Hydroxytyrosol is dominant in processed olives (14.42–545.42 mg·100 g−1) while oleuropein is the major phenolic compound in fresh olives (994.27 mg·100 g−1). As a consequence to the loss in phenolic content, substantial reductions in the antioxidant activities of the extracts are noted. They are estimated to be 13.12–92.75% in scavenging activity against the DPPH radical, 37.78–93.98% in reducing capacity, 59.45–97.94% in the hydrogen peroxide radical and 7.26–51.66% in the inhibition bleaching of β-carotene. Among the processed varieties, only Sigoise presented a positive value of RACI (relative antioxidant capacity index). (Author)

  14. Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses.

    Science.gov (United States)

    Chen, Mingshun; Zhao, Yi; Yu, Shujuan

    2015-04-01

    Response surface methodology was used to optimise experimental conditions for ultrasonic-assisted extraction (UAE) of functional components from sugar beet molasses. The central composite design (CCD) was used for the optimisation of extraction parameters in terms of total phenolic contents, antioxidant activities and anthocyanins. Result suggested the optimal conditions obtained by RSM for UAE from sugar beet molasses were as follows: HCl concentration 1.55-1.72 mol/L, ethanol concentration 57-63% (v/v), extraction temperature 41-48 °C, and extraction time 66-73 min. In the optimal conditions, the experimental total phenolic contents were 17.36 mg GAE/100mL, antioxidant activity was 16.66 mg TE/g, and total anthocyanins were 31.81 mg/100g of the sugar beet molasses extract, which were well matched the predicted values. Teen compounds, i.e. gallic acid, vanillin, hydroxybenzoic acid, syringic acid, cyanidin-3-O-rutinoside, cyanidin-3-O-glucoside, catechin, delphinidin-3-O-rutinoside, delphinidin-3-O-glucuronide and ferulic acid were determined by HPLC-DAD-MS/MS in sugar beet molasses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The Impact of Simple Phenolic Compounds on Beer Aroma and Flavor

    Directory of Open Access Journals (Sweden)

    Michael Lentz

    2018-03-01

    Full Text Available Beer is a complex beverage containing a myriad of flavor- and aroma-active compounds. Brewers strive to achieve an appropriate balance of desired characters, while avoiding off-aromas and flavors. Phenolic compounds are always present in finished beer, as they are extracted from grains and hops during the mashing and brewing process. Some of these compounds have little impact on finished beer, while others may contribute either desirable or undesirable aromas, flavors, and mouthfeel characteristics. They may also contribute to beer stability. The role of simple phenolic compounds on the attributes of wort and beer are discussed.

  16. Phytochemistry, antioxidant capacity, total phenolic content and anti-inflammatory activity of Hibiscus sabdariffa leaves.

    Science.gov (United States)

    Zhen, Jing; Villani, Thomas S; Guo, Yue; Qi, Yadong; Chin, Kit; Pan, Min-Hsiung; Ho, Chi-Tang; Simon, James E; Wu, Qingli

    2016-01-01

    A liquid chromatography-mass spectrometry method was developed for the simultaneous separation, and determination of natural compounds including phenolic acids and flavonoids in the leaves of Hibiscus sabdariffa. By analyzing the UV and MS data, and comparison with authenticated standards, 10 polyphenols including neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, quercetin, kaempferol and their glycosides were identified together with 5-(hydroxymethyl)furfural. Major constituents in the leaves of 25 different populations from worldwide accessions were quantified and compared with each other. The total phenolic content of each accession was determined using Folin-Ciocalteu assay, ranging from 18.98 ± 2.7 to 29.9 ± 0.5 mg GAE/g. Their in vitro antioxidant activities were measured by ABTS radical cation decolorization assay, varying from 17.5 to 152.5 ± 18.8 μmol Trolox/g. After the treatment of H. sabdariffa leaf extract, the reduction of LPS-induced NO production dose-dependently in RAW 264.7 cell indicates the extract's potential anti-inflammatory activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years

    Science.gov (United States)

    Chung, Ill-Min; Lim, Ju-Jin; Ahn, Mun-Seob; Jeong, Haet-Nim; An, Tae-Jin; Kim, Seung-Hyun

    2015-01-01

    Background The study of phenolic compounds profiles and antioxidative activity in ginseng fruit, leaves, and roots with respect to cultivation years, and has been little reported to date. Hence, this study examined the phenolic compounds profiles and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free-radical-scavenging activities in the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) as a function of cultivation year. Methods Profiling of 23 phenolic compounds in ginseng fruit, leaves, and roots was investigated using ultra-high performance liquid chromatography with the external calibration method. Antioxidative activity of ginseng fruit, leaves, and roots were evaluated using the method of DPPH free-radical-scavenging activity. Results The total phenol content in ginseng fruit and leaves was higher than in ginseng roots (p phenol content in the ginseng samples was significantly correlated to the DPPH free-radical-scavenging activity (r = 0.928****). In particular, p-coumaric acid (r = 0.847****) and ferulic acid (r = 0.742****) greatly affected the DPPH activity. Among the 23 phenolic compounds studied, phenolic acids were more abundant in ginseng fruit, leaves, and roots than the flavonoids and other compounds (p phenolic compounds in 3–6-yr-old ginseng fruit, leaves, and roots. Conclusion This study provides basic information about the antioxidative activity and phenolic compounds profiles in fruit, leaves, and roots of Korean ginseng with cultivation years. This information is potentially useful to ginseng growers and industries involved in the production of high-quality and nutritional ginseng products. PMID:26843824

  18. TLC Fingerprint analysis of phenolic and flavonoid compounds in some Iranian Salvia spp., a chemotaxonomic approach

    Directory of Open Access Journals (Sweden)

    Marzieh Fotovvat

    2015-10-01

    Full Text Available Salvia is an important genus of Lamiaceae which phenolic compounds are the main secondary metabolites of its members. The objective of this study was to investigate the diversity of phenolic and flavonoid compounds in the leaves and flowers from 41 wild populations of 27 Salvia species from Iran by TLC method and evaluation of their significance as chemical markers for taxonomic purposes. Rosmarinic acid, salvianolic acids A and B, apigenin, rutine, scutellarin and baicalin were characterized as the main compounds of the studied Salvia species. Based on the dendrogram obtained from the didtribution patterns of phenolic compounds using cluster analysis by UPGMA method, the Salvia species were studied chemotaxonomically. Results showed that the patterns of phenolic compounds in the leaf and flower organs were similar in populations of a species, while they were different among the species. It seems that substantial differences in the patterns of these compounds at inter-species level were mainly due to genetic differences. The results from classification of the species by cluster analysis of the phenolic data supported their grouping according to their classical taxonomy in the Flora Iranica. This suggests the importance of these compounds as chemical markers for the classification of Salvia species at inter-species and subgenus levels.

  19. Inhibition of dehydrogenase activity in petroleum refinery wastewater bacteria by phenolic compounds

    Directory of Open Access Journals (Sweden)

    Gideon C. Okpokwasili

    2010-04-01

    Full Text Available The toxicity of phenol, 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol on Pseudomonas, Bacillus and Escherichia species isolated from petroleum refinery wastewater was assessed via inhibition of dehydrogenase enzyme activity. At low concentrations, 2-nitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol stimulated dehydrogenase activity and at sufficient concentrations, phenolic compounds inhibited dehydrogenase activities. Generally, phenol is less toxic than substituted phenols. Estimations of the degree of inhibition/stimulation of dehydrogenase activities showed significant dose-dependent responses that are describable by logistic functions. The toxicity thresholds varied significantly (P < 0.05 among the bacterial strains and phenolic compounds. The median inhibitory concentrations (IC50s ranged from 4.118 ± 0.097 mg.L-1 for 4-nitrophenol against Pseudomonas sp. DAF1 to 1407.997 ± 7.091 mg.L-1 for phenol against Bacillus sp. DISK1. This study suggested that the organisms have moderate sensitivity to phenols and have the potential to be used as indicators for assessment of chemical toxicity. They could also be used as catalysts for degradation of phenols in effluents.

  20. Effect of alcoholic fermentation in the content of phenolic compounds in cider processing

    Directory of Open Access Journals (Sweden)

    Alessandro Nogueira

    2008-10-01

    Full Text Available The objective of this work was to study the effect of alcoholic fermentation on the content of phenol compounds of five cider apple varieties. The initial content in the apple juice samples, as determined by HPLC, varied from 188.4 to 2776.17 m mg.L-1. In three of them (DC, PJ, GU, the total phenol compounds remained unaffected by fermentation. However, in two (DM, KE, the final values were lower (55 and 313 mg.L-1. In these apple cider, the values of caffeic acid increased from 6.6 mg.L-1 to 41.8 mg.L-1. The catechin content increased during the process, approximately 13 mg.L-1 independent of the variety. The other phenols class did not present any modifications due to the alcoholic fermentation, maintaining the phenolic compounds of original clarified apple juice in the cider.O objetivo deste trabalho foi estudar o efeito da fermentação alcoólica no teor de compostos fenólicos de cinco mostos de maçãs industriais. Os compostos fenólicos foram analisados por HPLC. Os mostos apresentaram fenóis totais entre 188,4 a 2776,17 mg.L-1. Os teores de fenóis durante a fermentação permaneceram os mesmos para as variedades DC, PJ e GU, entretanto, em DM e KE foi observada uma diminuição dos teores de fenóis (55 e 313 mg.L-1, respectivamente. Em KE o teor do ácido caféico aumentou de 6,6 mg.L-1 para 41,8 mg.L-1. O teor de catequinas aumentou cerca de 13 mg.L-1 durante o processo, independente da variedade. As outras classes de fenóis não apresentaram modificações com a fermentação alcoólica, permanecendo na sidra os compostos fenólicos do suco de maçã clarificado.

  1. Phytochemical study of phenolic compounds of labrador tea (Lédum palústre L.

    Directory of Open Access Journals (Sweden)

    Валентина Петровна Гапоненко

    2015-11-01

    Full Text Available Aim. This work is devoted a phytochemical study of biologically active substances in herb of Labrador Tea (Lédum palústre L., as well as investigation of the possibility of complex use of raw materials in order to create on its basis new herbal medicines.Methods. The object of the study served as the herb Labrador Tea. Separation of isolated substances was performed by adsorption and partition chromatography on various adsorbents. The structure of the isolated compounds was determined based on physicochemical methods: paper (PC and the thin layer (TLC chromatography, UV, IR and NMR spectroscopy in comparison with the original valid standards of flavonoids. Acid hydrolys was used for the determination of the flavonoid aglycone composition. The content of total flavonoids was determined by differential spectrophotometry at a wavelength of 412 nm from the reaction with aluminum chloride based on the hyperoside-standard (Ukrainian scientific Pharmacopoeial center for quality of medicines (Pharmacopoeial center, Kharkоv.Results. During this study we found more than 40 of phenolic compounds and identified 31compounds. The phytochemical analysis showed the presence of flavonols (11 compounds, catechins (5. Hydroxycinnamic acids represented by caffeic, ferulic, chlorogenic acids. Besides that, it were found phenolic glycoside arbutin, coumarins - coumarin, umbelliferon, scopoletin, esculetin and esculin, tannins – metyl gallate, pyrogallol.Conclusions. The following biologically active substances were defined for the first time: flavonoids – 5-methyl-kaempferol, avicularin, polistahozid, quercitrin; coumarins – esculetin, esculin; as well as hydroxycinnamic acids – ferulic, chlorogenic, neochlorogenic of Labrador Tea. The obtained data justify the prospectivefor creation of new and effective herbal medicines from Labrador Tea

  2. Total Phenolic Content and Antioxidant Capacity of Radish as Influenced by the Variety and Vegetative Stage

    Directory of Open Access Journals (Sweden)

    Maria Doinița Borș

    2015-05-01

    Full Text Available This study investigates the influence of the variety and vegetative stage on the total phenolic content and antioxidant capacity of radish. Samples of seeds, sprouts (day-3, day-5 and day-7 and roots of three varieties (red, white and black of radish (Raphanussativus were collected and tested for the above-mentioned parameters. Determination of total phenolic content was performed by Folin-Ciocalteau assay and antioxidant activity by DPPH assay. The total phenolic content ranged between 4.75 and 19.44 mg GAE/g DW and the antioxidant capacity between 12 and 75%. The highest total phenolic content and antioxidant capacity was found in radish sprouts and the lowest in radish roots, and among samples in the black radish variety. 

  3. Determination of total phenolic content and antioxidant activitity of methanol extract of Maranta arundinacea L fresh leaf and tuber

    Science.gov (United States)

    Kusbandari, A.; Susanti, H.

    2017-11-01

    Maranta arundinacea L is one of herbaceous plants in Indonesia which have flavonoid content. Flavonoids has antioxidants activity by inhibition of free radical oxidation reactions. The study aims were to determination total phenolic content and antioxidant activity of methanol extract of fresh leaf and tuber of M. arundinacea L by UV-Vis spectrophotometer. The methanol extracts were obtained with maceration and remaseration method of fresh leaves and tubers. The total phenolic content was assayed with visible spectrophotometric using Folin Ciocalteau reagent. The antioxidant activity was assayed with 1,1-diphenyl-2-picrilhidrazil (DPPH) compared to gallic acid. The results showed that methanol extract of tuber and fresh leaf of M. arundinacea L contained phenolic compound with total phenolic content (TPC) in fresh tuber of 3.881±0.064 (% GAE) and fresh leaf is 6.518±0.163 (% b/b GAE). IC50 value from fresh tuber is 1.780±0.0005 μg/mL and IC50 fresh leaf values of 0.274±0.0004 μg/mL while the standard gallic acid is IC50 of 0.640±0.0002 μg/mL.

  4. Analysis of Leucaena mimosine, Acacia tannins and total phenols by near infrared reflectance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M N.V. [Hyderabad Univ. (India). Dept. of Plant Sciences

    1995-11-01

    The mimosine contents of Leucaena foliage, Acacia tannins and total phenols from leaf, bark and pod were analyzed by a near infrared relectance spectrophotometer (Compscan 3000). A calibration equation (linear summation regression) was developed with near infrared spectral analysis software, using 30 spectra from old and young leaves of Leucaena and 23 spectra from different samples of Acacia. The near infrared analyzer calculated that the percentages of mimosine, total phenols and tannins are closely comparable to laboratory results. (author)

  5. Comparative Analysis of Total Phenolic Content in Sea Buckthorn Wine and Other Selected Fruit Wines

    OpenAIRE

    Bharti Negi; Gargi Dey

    2009-01-01

    This is the first report from India on a beverage resulting from alcoholic fermentation of the juice of sea buckthorn (Hippophae rhamnoides L) using lab isolated yeast strain. The health promoting potential of the product was evaluated based on its total phenolic content. The most important finding was that under the present fermentation condition, the total phenolic content of the wine product was 689 mg GAE/L. Investigation of influence of bottle ageing on the sea buckthorn wine showed a sl...

  6. First Approach to the Analytical Characterization of
Barrel-Aged Grape Marc Distillates Using Phenolic Compounds and Colour Parameters.

    Science.gov (United States)

    Rodríguez-Solana, Raquel; Salgado, José Manuel; Domínguez, José Manuel; Cortés-Diéguez, Sandra

    2014-12-01

    Phenolic compounds (benzoic and cinnamic acid derivatives) were determined by high-performance liquid chromatography with multiple wavelength detector (HPLC- -MWD) in grape marc distillates aged in Quercus petraea , Quercus robur and Quercus alba wooden barrels. In addition to colour indices and evaluable polyphenols, all samples were described by sensorial analysis. There were significant differences in the mean concentrations of the majority of phenolic compounds among the samples. Gallic and benzoic acids were the most abundant and samples aged in Q. robur from Galicia (NW of Spain) had the highest concentration of most of the determined phenols. Grape marc distillates aged in Q. robur obtained the highest values of all sensorial attributes, whereas samples aged in Q. petraea and Q. alba obtained similar scores. Principal component analysis accounted for 88.32% of total variance, showing a good separation of aged distillates in terms of phenolic compounds and colour characteristics, according to the species and origin of the oak wood used in the ageing process.

  7. First Approach to the Analytical Characterization of Barrel-Aged Grape Marc Distillates Using Phenolic Compounds and Colour Parameters

    Directory of Open Access Journals (Sweden)

    Raquel Rodríguez-Solana

    2014-01-01

    Full Text Available Phenolic compounds (benzoic and cinnamic acid derivatives were determined by high-performance liquid chromatography with multiple wavelength detector (HPLC-MWD in grape marc distillates aged in Quercus petraea, Quercus robur and Quercus alba wooden barrels. In addition to colour indices and evaluable polyphenols, all samples were described by sensorial analysis. There were signifi cant diff erences in the mean concentrations of the majority of phenolic compounds among the samples. Gallic and benzoic acids were the most abundant and samples aged in Q. robur from Galicia (NW of Spain had the highest concentration of most of the determined phenols. Grape marc distillates aged in Q. robur obtained the highest values of all sensorial attributes, whereas samples aged in Q. petraea and Q. alba obtained similar scores. Principal component analysis accounted for 88.32 % of total variance, showing a good separation of aged distillates in terms of phenolic compounds and colour characteristics, according to the species and origin of the oak wood used in the ageing process.

  8. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Catal, Tunc [Department of Biological and Ecological Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331 (United States); Department of Wood Science and Engineering, Oregon State University, 102 97331, Corvallis, OR (United States); Department of Molecular Biology and Genetics, Istanbul Technical University, 34469-Maslak, Istanbul (Turkey); Fan, Yanzhen; Liu, Hong [Department of Biological and Ecological Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331 (United States); Li, Kaichang [Department of Wood Science and Engineering, Oregon State University, 102 97331, Corvallis, OR (United States); Bermek, Hakan [Department of Molecular Biology and Genetics, Istanbul Technical University, 34469-Maslak, Istanbul (Turkey)

    2008-05-15

    Lignocellulosic biomass is an attractive fuel source for MFCs due to its renewable nature and ready availability. Furan derivatives and phenolic compounds could be potentially formed during the pre-treatment process of lignocellulosic biomass. In this study, voltage generation from these compounds and the effects of these compounds on voltage generation from glucose in air-cathode microbial fuel cells (MFCs) were examined. Except for 5-hydroxymethyl furfural (5-HMF), all the other compounds tested were unable to be utilized directly for electricity production in MFCs in the absence of other electron donors. One furan derivate, 5-HMF and two phenolic compounds, trans-cinnamic acid and 3,5-dimethoxy-4-hydroxy-cinnamic acid did not affect electricity generation from glucose at a concentration up to 10 mM. Four phenolic compounds, including syringaldeyhde, vanillin, trans-4-hydroxy-3-methoxy, and 4-hydroxy cinnamic acids inhibited electricity generation at concentrations above 5 mM. Other compounds, including 2-furaldehyde, benzyl alcohol and acetophenone, inhibited the electricity generation even at concentrations less than 0.2 mM. This study suggests that effective electricity generation from the hydrolysates of lignocellulosic biomass in MFCs may require the employment of the hydrolysis methods with low furan derivatives and phenolic compounds production, or the removal of some strong inhibitors prior to the MFC operation, or the improvement of bacterial tolerance against these compounds through the enrichment of new bacterial cultures or genetic modification of the bacterial strains. (author)

  9. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells

    Science.gov (United States)

    Catal, Tunc; Fan, Yanzhen; Li, Kaichang; Bermek, Hakan; Liu, Hong

    Lignocellulosic biomass is an attractive fuel source for MFCs due to its renewable nature and ready availability. Furan derivatives and phenolic compounds could be potentially formed during the pre-treatment process of lignocellulosic biomass. In this study, voltage generation from these compounds and the effects of these compounds on voltage generation from glucose in air-cathode microbial fuel cells (MFCs) were examined. Except for 5-hydroxymethyl furfural (5-HMF), all the other compounds tested were unable to be utilized directly for electricity production in MFCs in the absence of other electron donors. One furan derivate, 5-HMF and two phenolic compounds, trans-cinnamic acid and 3,5-dimethoxy-4-hydroxy-cinnamic acid did not affect electricity generation from glucose at a concentration up to 10 mM. Four phenolic compounds, including syringaldeyhde, vanillin, trans-4-hydroxy-3-methoxy, and 4-hydroxy cinnamic acids inhibited electricity generation at concentrations above 5 mM. Other compounds, including 2-furaldehyde, benzyl alcohol and acetophenone, inhibited the electricity generation even at concentrations less than 0.2 mM. This study suggests that effective electricity generation from the hydrolysates of lignocellulosic biomass in MFCs may require the employment of the hydrolysis methods with low furan derivatives and phenolic compounds production, or the removal of some strong inhibitors prior to the MFC operation, or the improvement of bacterial tolerance against these compounds through the enrichment of new bacterial cultures or genetic modification of the bacterial strains.

  10. Influence of environmental factors on the concentration of phenolic compounds in leaves of Lafoensia pacari

    Directory of Open Access Journals (Sweden)

    Bruno Leite Sampaio

    2011-09-01

    Full Text Available Lafoensia pacari A. St.-Hil., Lythraceae, a plant from the Cerrado known as pacari or dedaleiro, is widely used as an antipyretic, wound healing, anti-inflammatory, antidiarrheal and in the treatment of gastritis and cancer. Notable among the metabolite groups identified in leaves of L. pacari are the polyphenols, such as tannins and flavonoids, related to the pharmacological activities of pacari. Studies on the influence of environmental factors over production of major groups of secondary metabolites in pacari are important because they contribute data for its cultivation and harvest, and establish quantitative parameters of secondary metabolites in the plant drug. The objective of this study was to evaluate the influence of environmental factors on concentrations of phenolic metabolites in the leaves of L. pacari. Compounds quantified in the leaves were: total phenols, tannins by protein precipitation, hydrolysable tannins, total flavonoids, ellagic acid and mineral nutrients, while soil fertility was also analyzed, all over a period of one year. The data were analyzed using multivariate analysis, and the results suggest that metabolite concentrations in the leaves of this plant are influenced by seasonal factors, in particular the temperature and foliar micronutrients (Cu, Fe, Mn, Zn.

  11. Influence of environmental factors on the concentration of phenolic compounds in leaves of Lafoensia pacari

    Directory of Open Access Journals (Sweden)

    Bruno Leite Sampaio

    2011-12-01

    Full Text Available Lafoensia pacari A. St.-Hil., Lythraceae, a plant from the Cerrado known as pacari or dedaleiro, is widely used as an antipyretic, wound healing, anti-inflammatory, antidiarrheal and in the treatment of gastritis and cancer. Notable among the metabolite groups identified in leaves of L. pacari are the polyphenols, such as tannins and flavonoids, related to the pharmacological activities of pacari. Studies on the influence of environmental factors over production of major groups of secondary metabolites in pacari are important because they contribute data for its cultivation and harvest, and establish quantitative parameters of secondary metabolites in the plant drug. The objective of this study was to evaluate the influence of environmental factors on concentrations of phenolic metabolites in the leaves of L. pacari. Compounds quantified in the leaves were: total phenols, tannins by protein precipitation, hydrolysable tannins, total flavonoids, ellagic acid and mineral nutrients, while soil fertility was also analyzed, all over a period of one year. The data were analyzed using multivariate analysis, and the results suggest that metabolite concentrations in the leaves of this plant are influenced by seasonal factors, in particular the temperature and foliar micronutrients (Cu, Fe, Mn, Zn.

  12. Uptake of phenolic compounds from plant foods in human intestinal ...

    Indian Academy of Sciences (India)

    Gavirangappa Hithamani

    Open-pan boiling reduced the uptake of quercetin from the onion. Among pure phenolic ... vegetable, is a major source of flavonoid in the diet (Galdón et al. 2008). ..... inflammatory and anti-atherosclerotic properties of red wine polyphenolic ... quercetin and quercetin-rich red onion extract on skeletal muscle mitochondria ...

  13. Zeolite supported palladium catalysts for hydroalkylation of phenolic model compounds

    Czech Academy of Sciences Publication Activity Database

    Akhmetzyanova, U.; Opanasenko, Maksym; Horáček, J.; Montanari, E.; Čejka, Jiří; Kikhtyanin, O.

    2017-01-01

    Roč. 252, NOV 2017 (2017), s. 116-124 ISSN 1387-1811 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : Phenol hydroalkylation * Cyclohexylcyclohexane * MWW Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.615, year: 2016

  14. Characterization and quantification of phenolic compounds of extra ...

    African Journals Online (AJOL)

    SAM

    2014-03-19

    Mar 19, 2014 ... sensory qualities, as well as with the health-related and antioxidant ... et al., 2011b). Several studies have been published on the analysis of olive oil .... of phenolic com- pounds in comparison with Chetoui andOueslati ones.

  15. Cross-reactivity of antibodies with phenolic compounds in pistachios during quantification of ochratoxin A by commercial enzyme-linked immunosorbent assay kits.

    Science.gov (United States)

    Lee, Hyun Jung; Meldrum, Alexander D; Rivera, Nicholas; Ryu, Dojin

    2014-10-01

    Ochratoxin A (OTA), a nephrotoxic mycotoxin, naturally occurs in wide range of agricultural commodities. Typical screening of OTA involves various enzyme-linked immunosorbent assay (ELISA) methods. Pistachio (Pistacia vera L.) is a rich source of phenolic compounds that may result in a false positive due to structural similarities to OTA. The present study investigated the cross-reactivity profiles of phenolic compounds using two commercial ELISA test kits. High-performance liquid chromatography was used to confirm the concentration of OTA in the pistachio samples and compared with the results obtained from ELISA. When the degree of interaction and 50 % inhibitory concentration of phenolic compounds were determined, the cross-reactivity showed a pattern similar to that observed with the commercial ELSIA kits, although quantitatively different. In addition, the degree of interaction increased with the increasing concentration of phenolic compounds. The ELISA value had stronger correlations with the content of total phenolic compound, gallic acid, and catechin (R(2) = 0.757, 0.732, and 0.729, respectively) compared with epicatechin (R(2) = 0.590). These results suggest that phenolic compounds in pistachio skins may cross-react with the OTA antibody and lead to a false positive or to an overestimation of OTA concentration in ELISA-based tests.

  16. A study on total phenolics and vitamin c contents of kalecik karasi (vitis vinifera l.) clones

    International Nuclear Information System (INIS)

    Keskin, N.; Keskin, S.

    2014-01-01

    In this study total phenolic and vitamin C contents of the fully ripe berries of 23 clones of Kalecik Karasi which is one of the leading Turkish local red-wine grape cultivar originally grown in Kizilirmak valley near Kalecik/Ankara region were examined under the clone selection project supported by TUBTAK (Project Nr: 107 O 731). High-pressure liquid chromatography (HPLC) was used for vitamin C and spectrophotometer for total phenolics estimation. One way ANOVA was used to compare means of clone for their total phenolic and vitamin C contents. In addition to this univariate method, hierarchical cluster analysis was performed to identify similarity levels among the clones by considering total phenolics and vitamin C content together. Differences among the clones were found statistically significant for both characteristics. Total phenolic contents of the clones varied from 3.310 mg (clone 21) to 3.389 mg (clone 6) as GAE g fw. Vitamin C content ranged from 14.010 mg (clone 6) to 16.500 mg (clone 19) in 100g fw. Furthermore, similarity level for all clones was 83.1% that means variation rate is about 17% among the clones. As a summary of whole data, the first three performing clones are 6 (3.389 mg), 10 (3.374 mg) and 1 (3.365 mg) for total phenolics, and 19 (16.500 mg), 9 (16.020 mg), and 21 (16.015 mg) for vitamin C contents of the berries. (author)

  17. Mentha spicata L. infusions as sources of antioxidant phenolic compounds: emerging reserve lots with special harvest requirements.

    Science.gov (United States)

    Rita, Ingride; Pereira, Carla; Barros, Lillian; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2016-10-12

    Mentha spicata L., commonly known as spearmint, is widely used in both fresh and dry forms, for infusion preparation or in European and Indian cuisines. Recently, with the evolution of the tea market, several novel products with added value are emerging, and the standard lots have evolved to reserve lots, with special harvest requirements that confer them with enhanced organoleptic and sensorial characteristics. The apical leaves of these batches are collected in specific conditions having, then, a different chemical profile. In the present study, standard and reserve lots of M. spicata were assessed in terms of the antioxidants present in infusions prepared from the different lots. The reserve lots presented the highest concentration in all the compounds identified in relation to the standard lots, with 326 and 188 μg mL -1 of total phenolic compounds, respectively. Both types of samples presented rosmarinic acid as the most abundant phenolic compound, at concentrations of 169 and 101 μg mL -1 for reserve and standard lots, respectively. The antioxidant activity was higher in the reserve lots which had the highest total phenolic compounds content, with EC 50 values ranging from 152 to 336 μg mL -1 . The obtained results provide scientific information that may allow the consumer to make a conscientious choice.

  18. Inhibition and kinetic studies of lignin degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    Science.gov (United States)

    Surendran, Arthy; Siddiqui, Yasmeen; Saud, Halimi Mohd; Ali, Nusaibah Syd; Manickam, Sivakumar

    2018-05-22

    Lignolytic (Lignin degrading) enzyme, from oil palm pathogen Ganoderma boninense Pat. (Syn G. orbiforme (Ryvarden), is involved in the detoxification and the degradation of lignin in the oil palm and is the rate-limiting step in the infection process of this fungus. Active inhibition of lignin degrading enzymes secreted by G. boninense by various naturally occurring phenolic compounds and estimation of efficiency on pathogen suppression was aimed at. In our work, ten naturally occurring phenolic compounds were evaluated for their inhibitory potential towards the lignolytic enzymes of G.boninense. Additionally, the lignin degrading enzymes were characterised. Most of the peholic compounds exhibited an uncompetitive inhibition towards the lignin degrading enzymes. Benzoic acid was the superior inhibitor to the production of lignin degrading enzymes, when compared between the ten phenolic compounds. The inhibitory potential of the phenolic compounds toward the lignin degrading enzymes are higher than that of the conventional metal ion inhibitor. The lignin degrading enzymes were stable in a wide range of pH but were sensitive to higher to temperature. The study demonstrated the inhibitor potential of ten naturally occurring phenolic compounds toward the lignin degrading enzymes of G. boninense with different efficacies. The study has shed a light towards a new management strategy to control BSR in oil palm. It serves as replacement for the existing chemical control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Electrochemical Incineration of Phenolic Compounds from the Hydrocarbon Industry Using Boron-Doped Diamond Electrodes

    Directory of Open Access Journals (Sweden)

    Alejandro Medel

    2012-01-01

    Full Text Available Electrochemical incineration using boron-doped diamond electrodes was applied to samples obtained from a refinery and compared to the photo-electro-Fenton process in order to selectively eliminate the phenol and phenolic compounds from a complex matrix. Due to the complex chemical composition of the sample, a pretreatment to the sample in order to isolate the phenolic compounds was applied. The effects of the pretreatment and of pH on the degradation of the phenolic compounds were evaluated. The results indicate that the use of a boron-doped diamond electrode in an electrochemical incineration process mineralizes 99.5% of the phenolic sample content. Working in acidic medium (pH = 1, and applying 2 A at 298 K under constant stirring for 2 hours, also results in the incineration of the reaction intermediates reflected by 97% removal of TOC. In contrast, the photo-electro-Fenton process results in 99.9% oxidation of phenolic compounds with only a 25.69% removal of TOC.

  20. Screening for quality indicators and phenolic compounds of biotechnological interest in honey samples from six species of stingless bees (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Rosane Gomes de OLIVEIRA

    Full Text Available Abstract Honey from stingless bees of the genus Melipona is a well sought product. Nevertheless lack of legal frameworks for quality assessment complicates the evaluation of food safety and marketing of these products. Seeking to assess the quality of honey from the bees of this genus, physical and chemical analyses, identification of phenolic compounds, and microbiological evaluation from six species of stingless bees was performed. The honey samples showed high reducing sugars, low protein levels and a balanced microbiota. High total phenols and flavonoids and higher antioxidant activity were also recorded. Different phenolic compounds of great biotechnological potential were identified and of these apigenin, kaempferol and luteolin were identified for the first time in honey. To the best of our knowledge, this is one of the few works describing a detail characterization of melipona honey together with identification of the phenolic compounds of significant therapeutic value.

  1. Extraction of phenolic compounds from extra virgin olive oil by a natural deep eutectic solvent: Data on UV absorption of the extracts.

    Science.gov (United States)

    Paradiso, Vito Michele; Clemente, Antonia; Summo, Carmine; Pasqualone, Antonella; Caponio, Francesco

    2016-09-01

    This data article refers to the paper "Towards green analysis of virgin olive oil phenolic compounds: extraction by a natural deep eutectic solvent and direct spectrophotometric detection" [1]. A deep eutectic solvent (DES) based on lactic acid and glucose was used as green solvent for phenolic compounds. Eight standard phenolic compounds were solubilized in the DES. Then, a set of extra virgin olive oil (EVOO) samples (n=65) were submitted to liquid-liquid extraction by the DES. The standard solutions and the extracts were analyzed by UV spectrophotometry. This article reports the spectral data of both the standard solutions and the 65 extracts, as well as the total phenolic content of the corresponding oils, assessed by the Folin-Ciocalteu assay.

  2. Optimization of Ultrasound-assisted Extraction of Phenolic Compounds from Myrcia amazonica DC. (Myrtaceae) Leaves

    Science.gov (United States)

    de Morais Rodrigues, Mariana Cristina; Borges, Leonardo Luiz; Martins, Frederico Severino; Mourão, Rosa Helena V.; da Conceição, Edemilson Cardoso

    2016-01-01

    Background: Myrcia amazonica. DC is a species predominantly found in northern Brazil, and belongs to the Myrtaceae family, which possess various species used in folk medicine to treat gastrointestinal disorders, infectious diseases, and hemorrhagic conditions and are known for their essential oil contents. Materials and Methods: This study aimed applied the Box–Behnken design combined with response surface methodology to optimize ultrasound-assisted extraction of total polyphenols, total tannins (TT), and total flavonoids (TF) from M. amazonica DC. Results: The results indicated that the best conditions to obtain highest yields of TT were in lower levels of alcohol degree (65%), time (15 min), and also solid: Liquid ratio (solid to liquid ratio; 20 mg: 5 mL). The TF could be extracted with high amounts with higher extraction times (45 min), lower values of solid: Liquid ratio (20 mg: mL), and intermediate alcohol degree level. Conclusion: The exploitation of the natural plant resources present very important impact for the economic development, and also the valorization of great Brazilian biodiversity. The knowledge obtained from this work should be useful to further exploit and apply this raw material. SUMMARY Myrcia amazonica leaves possess phenolic compounds with biological applications;Lower levels of ethanolic strength are more suitable to obtain a igher levels of phenolic compouds such as tannins;Box-Behnken design indicates to be useful to explore the best conditions of ultrasound assisted extraction. Abbreviation used: Nomenclature ES: Ethanolic strength, ET: Extraction time, SLR: Solid to liquid ratio, TFc: Total flavonoid contents, TPc: Total polyphenol contents, TTc: Total tannin contents PMID:27019555

  3. Effect of different cooking methods on total phenolic contents and antioxidant activities of four Boletus mushrooms.

    Science.gov (United States)

    Sun, Liping; Bai, Xue; Zhuang, Yongliang

    2014-11-01

    The influences of cooking methods (steaming, pressure-cooking, microwaving, frying and boiling) on total phenolic contents and antioxidant activities of fruit body of Boletus mushrooms (B. aereus, B. badius, B. pinophilus and B. edulis) have been evaluated. The results showed that microwaving was better in retention of total phenolics than other cooking methods, while boiling significantly decreased the contents of total phenolics in samples under study. Effects of different cooking methods on phenolic acids profiles of Boletus mushrooms showed varieties with both the species of mushroom and the cooking method. Effects of cooking treatments on antioxidant activities of Boletus mushrooms were evaluated by in vitro assays of hydroxyl radical (OH·) -scavenging activity, reducing power and 1, 1-diphenyl-2-picrylhydrazyl radicals (DPPH·) -scavenging activity. Results indicated the changes of antioxidant activities of four Boletus mushrooms were different in five cooking methods. This study could provide some information to encourage food industry to recommend particular cooking methods.

  4. Chromatographic analysis of phenol compounds in six natural populations of Anthyllis vulneraria (L.

    Directory of Open Access Journals (Sweden)

    Andzrej Kalinowski

    2015-01-01

    Full Text Available Thin-layer chromatography was used to study the phenol composition in individual plants from six natural populations of Anthyllis collected from three distinct geographic regions of Poland. The results showed a variability of the phenols in the examined populations. The populations from Wielkopolska region proved to be most variable, showing the greatest number of phenols. The lowest number of the phenols studies was found in the Tatry populations. Each population showed its own particular spectrum of phenolic compounds. It was found that the populations originating from similar habitats showed more common spots than those from different regions. Populations from the Tatra region were found to differ most from the rest.

  5. Analysis of phenolic compounds for poultry feed by supercritical fluid chromatography

    Science.gov (United States)

    Phenolic compounds have generated interest as components in functional feed formulations due to their anti-oxidant, anti-microbial, and anti-fungal properties. These compounds may have greater significance in the future as the routine use of antibiotics is reduced and the prevalence of resistant bac...

  6. Influence of gamma irradiation on phenolic compounds of minimally processed baby carrots

    International Nuclear Information System (INIS)

    Hirashima, Fabiana K.; Fabbri, Adriana D.T.; Sagretti, Juliana M.A.; Nunes, Thaise C.F.; Sabato, Suzy F.; Galvao, Natascha S.; Lanfer-Marquez, Ursula M.

    2013-01-01

    Consumption of fresh fruits and vegetables provide several health benefits including risk reduction of oxidative stress-related diseases. These benefits have been associated with bioactive compounds, mainly phenolic compounds. Minimally processed products are a growing segment in food retail establishments due its practicality and convenience without significantly altering fresh-like characteristics. To extend the shelf life of these products, an application of ionizing radiation is an alternative, based on a physical and non-thermal method of preservation. The effect of irradiation on phenolic compounds of minimally processed baby carrots have not been reported in literature yet. The aim of this study was to evaluate the levels of phenolic compounds in baby carrots after the irradiation process. Samples of minimally processed baby carrots were purchased at a local supermarket and irradiated with doses of 0.5 and 1.0 kGy. Phenolic compounds were extracted from shredded carrots with MeOH and analyzed spectrophotometrically by the Folin Ciocalteau method using a gallic acid standard curve. The results showed that the phenolic contents decreased significantly (p<0.05) with increasing radiation dose. In non-irradiated baby carrots (control), the levels of phenolic compounds were about 330 μg eq. gallic acid/g, while irradiated samples with 0.5 kGy, showed an approximately 10% reduction when compared with the control. An irradiation dose of 1.0 kGy caused a loss of 20%. Although the radiation has affected the phenolic content, the process seems to be interesting by maintaining their fresh-like characteristics. (author)

  7. Influence of gamma irradiation on phenolic compounds of minimally processed baby carrots

    Energy Technology Data Exchange (ETDEWEB)

    Hirashima, Fabiana K.; Fabbri, Adriana D.T.; Sagretti, Juliana M.A.; Nunes, Thaise C.F.; Sabato, Suzy F., E-mail: fmayumi@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Galvao, Natascha S.; Lanfer-Marquez, Ursula M., E-mail: lanferum@usp.br [Universidade de Sao Paulo (FCF/USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas

    2013-07-01

    Consumption of fresh fruits and vegetables provide several health benefits including risk reduction of oxidative stress-related diseases. These benefits have been associated with bioactive compounds, mainly phenolic compounds. Minimally processed products are a growing segment in food retail establishments due its practicality and convenience without significantly altering fresh-like characteristics. To extend the shelf life of these products, an application of ionizing radiation is an alternative, based on a physical and non-thermal method of preservation. The effect of irradiation on phenolic compounds of minimally processed baby carrots have not been reported in literature yet. The aim of this study was to evaluate the levels of phenolic compounds in baby carrots after the irradiation process. Samples of minimally processed baby carrots were purchased at a local supermarket and irradiated with doses of 0.5 and 1.0 kGy. Phenolic compounds were extracted from shredded carrots with MeOH and analyzed spectrophotometrically by the Folin Ciocalteau method using a gallic acid standard curve. The results showed that the phenolic contents decreased significantly (p<0.05) with increasing radiation dose. In non-irradiated baby carrots (control), the levels of phenolic compounds were about 330 μg eq. gallic acid/g, while irradiated samples with 0.5 kGy, showed an approximately 10% reduction when compared with the control. An irradiation dose of 1.0 kGy caused a loss of 20%. Although the radiation has affected the phenolic content, the process seems to be interesting by maintaining their fresh-like characteristics. (author)

  8. Comparison on Phenolic Compounds and Antioxidant Properties of Cabernet Sauvignon and Merlot Wines from Four Wine Grape-Growing Regions in China

    Directory of Open Access Journals (Sweden)

    Bao Jiang

    2012-07-01

    Full Text Available The antioxidant activities in the Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China were measured by different analytical assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH·, cupric reducing antioxidant capacity (CUPRAC, superoxide radical-scavenging activity (SRSA and the contents of total phenols, total flavonoids, total flavanols and total anthocyanins were determined. The results showed that the contents of phenolic compounds and the levels of antioxidant activity in the wine samples greatly varied with cultivar and environmental factors of vine growth. The contents of phenolic compounds and antioxidant activities in Cabernet Sauvignon and Merlot wines from the Yuquanying region of Ningxia were significantly higher than other three regions, followed by the wines from Shacheng region of Hebei, and these parameters were the lowest in Cabernet Sauvignon and Merlot wines from the Changli regions of Hebei and Xiangning region of Shanxi. Taken together, a close relationship between phenolic subclasses and antioxidant activity was observed for the wine samples. Moreover, there were significant discrepancies in the individual phenolic composition and content of four regional Cabernet Sauvignon and Merlot wines, among which the individual phenolic compounds (catechin, epicatechin, cinnamic acid, quercetin-3-O-glucuronide, quercetin-3-O-glucoside, laricitrin-3-O-glucoside and isorhamnetin-3-O-glucoside revealed a significant correlation (p < 0.05 with the antioxidant capacity in present study, especially for catechin and epicatechin.

  9. Comparison on phenolic compounds and antioxidant properties of cabernet sauvignon and merlot wines from four wine grape-growing regions in China.

    Science.gov (United States)

    Jiang, Bao; Zhang, Zhen-Wen

    2012-07-25

    The antioxidant activities in the Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China were measured by different analytical assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH·), cupric reducing antioxidant capacity (CUPRAC), superoxide radical-scavenging activity (SRSA) and the contents of total phenols, total flavonoids, total flavanols and total anthocyanins were determined. The results showed that the contents of phenolic compounds and the levels of antioxidant activity in the wine samples greatly varied with cultivar and environmental factors of vine growth. The contents of phenolic compounds and antioxidant activities in Cabernet Sauvignon and Merlot wines from the Yuquanying region of Ningxia were significantly higher than other three regions, followed by the wines from Shacheng region of Hebei, and these parameters were the lowest in Cabernet Sauvignon and Merlot wines from the Changli regions of Hebei and Xiangning region of Shanxi. Taken together, a close relationship between phenolic subclasses and antioxidant activity was observed for the wine samples. Moreover, there were significant discrepancies in the individual phenolic composition and content of four regional Cabernet Sauvignon and Merlot wines, among which the individual phenolic compounds (catechin, epicatechin, cinnamic acid, quercetin-3-O-glucuronide, quercetin-3-O-glucoside, laricitrin-3-O-glucoside and isorhamnetin-3-O-glucoside) revealed a significant correlation (p < 0.05) with the antioxidant capacity in present study, especially for catechin and epicatechin.

  10. Phenolic compounds of green tea: Health benefits and technological application in food

    Directory of Open Access Journals (Sweden)

    José Manuel Lorenzo

    2016-08-01

    Full Text Available Green tea has been an important beverage for humans since ancient times, widely consumed and considered to have health benefits by traditional medicine in Asian countries. Green tea phenolic compounds are predominately composed of catechin derivatives, although other compounds such as flavonols and phenolic acids are also present in lower proportion. The bioactivity exerted by these compounds has been associated with reduced risk of severe illnesses such as cancer, cardiovascular and neurodegenerative diseases. Particularly, epigallocatechin gallate has been implicated in alteration mechanisms with protective effect in these diseases as indicated by several studies about the effect of green tea consumption and mechanistic explanation through in vitro and in vivo experiments. The biological activity of green tea phenolic compounds also promotes a protective effect by antioxidant mechanisms in biological and food systems, preventing the oxidative damage by acting over either precursors or reactive species. Extraction of phenolic compounds influences the antioxidant activity and promotes adequate separation from green tea leaves to enhance the yield and/or antioxidant activity. Application of green tea phenolic compounds is of great interest because the antioxidant status of the products is enhanced and provides the product with additional antioxidant activity or reduces the undesirable changes of oxidative reactions while processing or storing food. In this scenario, meat and meat products are greatly influenced by oxidative deterioration and microbial spoilage, leading to reduced shelf life. Green tea extracts rich in phenolic compounds have been applied to increase shelf life with comparable effect to synthetic compounds, commonly used by food industry. Green tea has great importance in general health in technological application, however more studies are necessary to elucidate the impact in pathways related to other diseases and food

  11. Simultaneous determination of phenolic compounds in Cynthiana grape (Vitis aestivalis) by high performance liquid chromatography-electrospray ionisation-mass spectrometry.

    Science.gov (United States)

    Ramirez-Lopez, L M; McGlynn, W; Goad, C L; Mireles Dewitt, C A

    2014-04-15

    Phenolic acids, flavanols, flavonols and stilbenes (PAFFS) were isolated from whole grapes, juice, or pomace and purified using enzymatic hydrolysis. Only anthocyanin mono-glucosides and a few of the oligomers from Cynthiana grape (Vitis aestivalis) were analysed. Flavonoid-anthocyanin mono-glucosides (FA) were isolated using methanol/0.1% hydrochloric acid extraction. In addition, crude extractions of phenolic compounds from Cynthiana grape using 50% methanol, 70% methanol, 50% acetone, 0.01% pectinase, or petroleum ether were also evaluated. Reverse phase high performance liquid chromatography (RP-HPLC) with photodiode array (PDA) detector was used to identify phenolic compounds. A method was developed for simultaneous separation, identification and quantification of both PAFFS and FA. Quantification was performed by the internal standard method using a five points regression graph of the UV-visible absorption data collected at the wavelength of maximum absorbance for each analyte. From whole grape samples nine phenolic compounds were tentatively identified and quantified. The individual phenolic compounds content varied from 3 to 875 mg kg⁻¹ dry weight. For juice, twelve phenolic compounds were identified and quantified. The content varied from 0.07 to 910 mg kg⁻¹ dry weight. For pomace, a total of fifteen phenolic compounds were tentatively identified and quantified. The content varied from 2 mg kg⁻¹ to 198 mg kg⁻¹ dry matter. Results from HPLC analysis of the samples showed that gallic acid and (+)-catechin hydrate were the major phenolic compounds in both whole grapes and pomace. Cyanidin and petunidin 3-O-glucoside were the major anthocyanin glucosides in the juice. Published by Elsevier Ltd.

  12. PHENOLIC COMPOUNDS OF WATER-ETHANOLIC EXTRACT OF MENTHA LONGIFOLIA L

    Directory of Open Access Journals (Sweden)

    O. A. Grebennikova

    2014-01-01

    Full Text Available The article represents data about qualitative and quantitative composition of phenolic compounds in water-ethanol extract of perspective clone of Mentha longifolia L. of NBE-NSC selection. Phenolic substances content in water-ethanol extract amounted to 3003.3 mg/100g. 13 components were determined in the extract. The extract contains caffeic acid, chlorogenic acid isomers, rosmarinic acid and glycosides of luteolin. Rosmarinic acid (50.2% prevails among phenolic substances of Mentha longifolia extract. The conclusion is that the use of this extract is possible to create products with high biological value

  13. Preparative Separation of Phenolic Compounds from Halimodendron halodendron by High-Speed Counter-Current Chromatography

    OpenAIRE

    Wang, Jihua; Gao, Haifeng; Zhao, Jianglin; Wang, Qi; Zhou, Ligang; Han, Jianguo; Yu, Zhu; Yang, Fuyu

    2010-01-01

    Three phenolic compounds, p-hydroxybenzoic acid (1), isorhamnetin-3-O-β-D-rutinoside (2), and 3,3'-di-O-methylquercetin (5), along with a phenolic mixture were successfully separated from the ethyl acetate crude extract of Halimodendron halodendron by high-speed counter-current chromatography (HSCCC) with chloroform-methanol-water-acetic acid (4:3:2:0.05, v/v) as the two-phase solvent system. The phenolic mixture from HSCCC was further separated by preparative HPLC and purified by Sephadex LH...

  14. Inhibition of dehydrogenase activity in petroleum refinery wastewater bacteria by phenolic compounds

    OpenAIRE

    Gideon C. Okpokwasili; Christian Okechukwu Nweke

    2010-01-01

    The toxicity of phenol, 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol on Pseudomonas, Bacillus and Escherichia species isolated from petroleum refinery wastewater was assessed via inhibition of dehydrogenase enzyme activity. At low concentrations, 2-nitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol stimulated dehydrogenase activity and at sufficient concentrations, phenolic compounds inhibi...

  15. Consistent production of phenolic compounds by Penicillium brevicompactum for chemotaxonomic characterization

    DEFF Research Database (Denmark)

    Andersen, Birgitte

    1991-01-01

    A consistently produced group of fungal secondary metabolites from Penicillium brevicompactum has been purified and identified as the Raistrick phenols. These compounds are shown to exist separately as an equilibrium mixture in aqueous solutions. The Raistrick phenols have all been included in th...... in the metabolite profile of P. brevicompactum. By means of thin layer chromatography-scanning and high performance liquid chromatography-UV diode array detection, the chromatographic and spectroscopic data can be used in the chemotaxonomic characterization of the fungus....

  16. Influence of phenolic compounds on rumen microbial activity

    International Nuclear Information System (INIS)

    Vitti, D.M.S.S.; Abdalla, A.L.; Silva Filho, J.C.

    1985-01-01

    An 'in vitro' experiment is carried out to examine the effect of tannic acid on rumen microbial activity, due to the toxicity of phenolic acids on many microrganisms. Rumen content is incubated with sodium bicarbonate, glucose and different quantities of tannic acid. 1 μCi of 32 p-labelled phosphate is added and after 6 hours the incorporated activity is measured. (M.A.C.) [pt

  17. Total phenol content and antioxidant activity of water solutions of plant extracts

    Directory of Open Access Journals (Sweden)

    Mirela Kopjar

    2009-01-01

    Full Text Available Water solutions of extracts were investigated for total phenol content, flavonoid content and antioxidant activity. Susceptibility to degradation of water solutions of plant extracts, under light and in the dark, during storage at room temperature was investigated in order to determine their stability prior to their application for fortification of food products. Large dispersion of total phenol (TP content in the investigated model solutions of selected extracts (olive leaves, green tea, red grape, red wine, pine bark PE 5:1, pine bark PE 95 %, resveratrol, ranging from 11.10 mg GAE/100 mL to 92.19 mg GAE/100 mL was observed. Consequently, large dispersion of total flavonoids (TF content (8.89 mg to 61.75 mg CTE/100 mL was also observed. Since phenols have been mostly responsible for antioxidant activity of extracts, in most cases, antioxidant activity followed the TP content. That was proven by estimation of correlation coefficient between the total phenol content and antioxidant activity. Correlation coefficients between investigated parameters ranged from 0.5749 to 0.9604. During storage of 5 weeks at room temperature loss of phenols and flavonoids occurred. Antioxidant activity decreased with the decrease of TP and TF content. Degradations of phenols and flavonoids were more pronounced in samples stored at light.

  18. Effect of growth stages on total phenolics content and antioxidant activity of Fumaria vaillantii L.

    Directory of Open Access Journals (Sweden)

    L. Mehdizadeh*

    2017-11-01

    Full Text Available Background and objectives: Plant extracts and their constituents are known to exert biological effects, especially antioxidant activity. Fumaria vaillantii (Fumariaceae has several therapeutic effects in traditional medicine. Antioxidants are able to protect the human body from oxidative damage connected to the reaction of free radicals. Synthetic antioxidants have toxic and carcinogenic effects on human health; therefore, their application has been limited. Thus, there has been an increasing interest in the natural antioxidant compounds to prevent the foods from deterioration. In this study, the antioxidant activity of F. vaillantii extracts at three stages of growth has been evaluated. Methods: The ethanol extracts from the aerial parts of the plants at different phenological stages were prepared and the total phenolics content was determined by Folin-Ciocalteu reagent. Also, the antioxidant activity were determined by three methods as 2,2-diphenyl-1-picrylhydrazyl (DPPH, ferric-ion reducing antioxidant power (FRAP and phosphomolybdenum complex tests. All experiments were carried out in triplicate, and data were subjected to ANOVA according to the SAS software. Results: Total phenolics content of vegetative, budding and flowering stages were 68.38, 71.11 and 56.42 mg GAE/g extract, respectively. Although flowering stage showed the highest antioxidant activity in phosphomolybdenum complex, in DPPH and FRAP methods, it decreased from vegetative to flowering stages. Conclusion: According to the results, the Iranian F. vaillantii extract from vegetative stage was a potential source of natural antioxidants for food and pharmaceutical industries that can be used in different industries.

  19. Effect of maceration duration on physicochemical characteristics, organic acid, phenolic compounds and antioxidant activity of red wine from Vitis vinifera L. Karaoglan.

    Science.gov (United States)

    Kocabey, N; Yilmaztekin, M; Hayaloglu, A A

    2016-09-01

    Effects of different maceration times (5, 10 and 15 days) on composition, phenolic compounds and antioxidant activities of red wines made from the Vitis vinifera L. Karaoglan grown in Malatya were investigated. Maceration duration changed some chemical constituents and color of Karaoglan red wines. A linear relationship was observed between antioxidant activity of wine and maceration duration. Major organic acid was tartaric acid which was at the highest concentration in wine macerated for 10 days. A total of 25 phenolic compounds was determined in wine samples. Within these phenolics; procyanidin B2, trans -caftaric acid, gallic acid, trans -caffeic acid, (+) catechin, (-) epicatechin and quercetin-3- O -glucoside were the most abundant phenolics regardless of maceration duration. In general, extended maceration duration resulted in increase in the concentration of phenolic compounds, reflecting the antioxidant activities of wine. In conclusion, the highest concentrations of total and individual phenolic compounds as well as antioxidant activities were found in wines macerated for 15 days.

  20. Antioxidation activity and total phenolic contents of various Toona ...

    African Journals Online (AJOL)

    user

    2012-09-11

    Sep 11, 2012 ... oxidative compounds from plants have aroused more attention, and increasing efforts have been made to search for plant-derived .... changed into various green and blue colors depending on the reducing capacity of the ..... and MPP+: Selective vulnerability of cultured mouse astocytes. Brain. Res.

  1. Antioxidant activity, total phenolic, and total flavonoid of extracts from stems of Jasminum nervosum Lour

    Directory of Open Access Journals (Sweden)

    Wei, Xiangyong

    2011-06-01

    Full Text Available Guangxi traditional Chinese Medical University Universidad de Medicina Tradicional China de Guangxi This study evaluated the antioxidant activities of the extracts of Jasminum nervosum Lour. stems along with the effects of different extract solvents on total phenolics (TP, total flavonoids (TF, and antioxidant potential. The antioxidant activity of the extracts was assessed using the following methods: DPPH, ABTS+ both free radicals scavenging assays, and reducing assays. TP and TF were detected by spectrophotometric and HPLC methods. In former methods, the highest amount of TP content was ethy lacetate extract (EAE, expressed as gallic acid equivalents. The greatest TF content was in the n-butanol extract (BE, expressed as lutin equivalents. No significant difference was observed in the TP/TF content between these two extracts. The antioxidant activity and TP/TF content of three extracts seemed to follow the same trend. This implied that there is a good correlation between antioxidant activities and TP/TF content. But in HPLC methods, EAE contained the highest content of lutin and gallic acid, which decreased in the same order of EAE > BE > PE, the rank order of TP/TF content of EAE and BE were different according to antioxidant ability. The overall results showed that the EAE and BE were richer in phenolics and flavonoids than petroleum ether extract (PE, and may represent a good source of antioxidants.Este estudio evaluó las actividades antioxidantes de extractos de tallos de Jasminum nervosum Lour., y el efecto de diferentes disolventes de extracción en los fenoles totales (TP y flavonoides totales (TF, y su potencial antioxidante. La actividad antioxidante de los extractos fue evaluada usando los siguientes métodos: DPPH, ABTS+ y ensayos reductores. TP y TF fueron detectados por métodos espectroscópicos y por HPLC. Con el primer método, el contenido más alto de TP se obtuvo en el extracto con acetato de etilo (EAE, expresado como

  2. Phenolic Compounds from the Fermentation of Cultivars Cabernet Sauvignon and Merlot from the Slovenian Coastal Region

    Directory of Open Access Journals (Sweden)

    Marin Berovič

    2004-01-01

    Full Text Available Large scale fermentation of the cultivars Cabernet Sauvignon and Merlot from the Slovenian coastal region was performed in Bücher-Vaslin roto tank vinificators. Six different areas, Prade, Kortina, Škocijan, Ankaran, Labor and Hrvatini, were selected for this study to investigate total phenols, anthocyanins, tannins and colour density, as well as pH, titratable acidity, sugar content and ethanol. Anthocyanins and phenolic compounds were found to be in generally higher concentrations (up to 4240 mg/L in Cabernet Sauvignon. Prolongation of the fermentation phase with Merlot gave even reduced concentrations of anthocyanins, a phenomenon which was not observed in Cabernet Sauvignon. The highest concentration of anthocyanins was found in Merlot from the Kortina location (735 mg/L, and in Cabernet Sauvignon from the Labor location (998 mg/L. The highest concentration of tannins (1828 mg/L was found in the grapes of Cabernet Sauvignon from the Ankaran location, while in Merlot 1280 mg/L was detected in a sample from the Prade area. The tone of colour and its intensity reached full maturity in Cabernet Sauvignon. Merlot from the Kortina location reached the highest colour density of 1.57, while in a sample of Cabernet Sauvignon from Hrvatini colour density was 2.89. Only small differences were detected in colour quality between Merlot and Cabernet Sauvignon.

  3. Phenolic compounds and antioxidant activity of hydroalcoholic extracts of wild and cultivated murtilla (Ugni molinae Turcz.

    Directory of Open Access Journals (Sweden)

    Thalita Riquelme Augusto

    2014-12-01

    Full Text Available Over the last decade a considerable increase in the number of studies addressing the use of antioxidants from natural sources has led to the identification and understanding of the potential mechanisms of biologically active components. This results from the fact that they can be used to replace synthetic antioxidants commonly used in food. Murtilla (Ugni molinae Turcz is a native berry grown in Chile, and in the present study, the phenolic composition and antioxidant activity of its fruits were studied. Hydroalcoholic extracts of dehydrated fruits from two genotypes of murtilla (Ugni molinae Turcz. were produced. Extracts of wild murtilla and 14-4 genotype fruits had 19.35 and 40.28mg GAE/g for Total Phenolic Compounds, 76.48, and 134.35μmol TEAC/g for DPPH, and 157.04 and 293.99 μmol TEAC/g for ABTS, respectively. Components such as quercetin, epicatechin, and gallic, benzoic and hydrocaffeic acids were identified by CG/MS analysis. All of them showed antioxidant activity. Therefore, it is possible to say that the hydroalcoholic extracts of murtilla have antioxidant potential to be used in lipidic food.

  4. Identification and Phytotoxicity Assessment of Phenolic Compounds in Chrysanthemoides monilifera subsp. monilifera (Boneseed.

    Directory of Open Access Journals (Sweden)

    Md Abdullah Yousuf Al Harun

    Full Text Available Chrysanthemoides monilifera subsp. monilifera (boneseed, a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial

  5. Identification and Phytotoxicity Assessment of Phenolic Compounds in Chrysanthemoides monilifera subsp. monilifera (Boneseed).

    Science.gov (United States)

    Al Harun, Md Abdullah Yousuf; Johnson, Joshua; Uddin, Md Nazim; Robinson, Randall W

    2015-01-01

    Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days) exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial quantity of free

  6. Antioxidant Activities of Total Phenols of Prunella vulgaris L. in Vitro and in Tumor-bearing Mice

    Directory of Open Access Journals (Sweden)

    Feng Shi

    2010-12-01

    Full Text Available Prunella vulgaris L. (PV, Labiatae is known as a self-heal herb. The different extracts of dried spikes were studied for the best antioxidant active compounds. The 60% ethanol extract (P-60 showed strong antioxidant activity based on the results of 2,2’-azino-di(3-ethylbenzthiazoline-6-sulfonic acid (ABTS˙+, 2,2-diphenyl-1-picrylhydrazyl (DPPH and ferric reducing antioxidant power (FRAP assay methods. High performance liquid chromatography (HPLC and LC/MS analysis showed that the main active compounds in P-60 were phenols, such as caffeic acid, rosmarinic acid, rutin and quercetin. Total phenols were highly correlated with the antioxidant activity (R2 = 0.9988 in ABTS˙+; 0.6284 in DPPH and 0.9673 FRAP tests. P-60 could inhibit significantly the tumor growth in C57BL/6 mice. It can also been showed that increased superoxide dismutase (SOD activity and decreased malondialdehyde (MDA content in serum of tumor-bearing mice. These results suggested that P-60 extract had high antioxidant activity in vitro and in vivo and total phenols played an important role in antioxidant activity for inhibition of tumor growth.

  7. Influence of Harvest Season and Cultivar on the Variation of Phenolic Compounds Composition and Antioxidant Properties in Vaccinium ashei Leaves

    Directory of Open Access Journals (Sweden)

    Verciane Schneider Cezarotto

    2017-09-01

    Full Text Available The effect of variation of harvest season and cultivar on the total phenolic content (TPC, total flavonoid content (TFC, HPLC-UV/DAD profile and antioxidant properties in Vaccinium ashei (Rabbiteye blueberry leaves grown in Brazil was evaluated. The cultivars collected in December and March were Aliceblue, Powderblue, Climax, Bluegem and FloridaM. It was observed that leaves from March had the highest TPC values (222 ± 1 mg gallic acid equivalents/g to Aliceblue cultivar and highest TFC values (49.8 ± 0.8 and 48.7 ± 0.7 µg rutin/g to Clímax and Powderblue cultivars, respectively. The chromatographic profile was quantitatively similar, however, the proportions of each compound were influenced by cultivar and harvest season. Chlorogenic acid and rutin were the main identified phenolic compounds, but chlorogenic acid was the most abundant in both harvest seasons. Antioxidant capacities values ranged from 5.80 ± 0.04 to 105 ± 2 µg/mL (DPPH and 178 ± 5 to 431 ± 8 mmol Trolox/100 g (ORAC. The cultivar Bluegem by March had the highest values in both assays. The results indicate that the blueberry leaves from different cultivars and harvest seasons have different phenolic compounds content and different antioxidant capacities. In addition, the antioxidant properties demonstrated a high correlation with rutin content.

  8. Modeling of volatile and phenolic compounds and optimization of the process conditions for obtaining balanced extra virgin olive oils

    Directory of Open Access Journals (Sweden)

    A. M. Vidal

    2018-06-01

    Full Text Available The main objective of this paper is to obtain extra virgin olive oils (EVOOs which are balanced in volatile and phenolic compounds. An experimental design was performed and response surface methodology was applied. The factors for malaxation were: temperature 20-40 °C, time 30-90 min, and hole diameter of hammer-crusher 4.5-6.5 mm. The results show that high temperatures and small hole diameter must be used in order to obtain a higher content in phenolic compounds, while for volatile compounds a low temperature and large hole diameter must be used. The models predict that the best and more balanced EVOO are obtained with the hole diameter of greater size and a medium-low temperature. Thus, for a hammer-crusher hole diameter of 6.5 mm 337 and 356 mg/kg total HPLC phenols were obtained for malaxation temperature of 20 and 25 °C, respectively and, likewise, 12.7 and 11.5 mg/kg total LOX volatiles.

  9. Use of avocado peel (Persea americana in tea formulation: a functional product containing phenolic compounds with antioxidant activity

    Directory of Open Access Journals (Sweden)

    Eliza Mariane Rotta

    2015-01-01

    Full Text Available The peels of avocados, like other fruit peels, are commonly discarded, not knowing their potential use. In order to reuse avocado peel, the chemical and mineral compositions, total phenolic and flavonoid contents as well as antioxidant activities have been investigated by DPPH (1,1-diphenyl-2-picrylhydrazyl and FRAP(ferric-reducing antioxidant power methods in in natura and dehydrated avocado peel. Dehydrated avocado-peel tea was manufactured and the antioxidant activity was evaluated, as well as their flavonoid and phenolic compound contents, and compared with other teas marketed. Avocado peel, especially dried avocado peel, contains major phenolic compounds (10,848.27 ± 162.34 mg GAE kg-1 and flavonoids (1,360.34 ± 188.65 mg EQ kg-1. The avocado-peel tea showed antioxidant activity by DPPH (1,954.24 ± 87.92 e 2518.27 ± 192.59 mg TE L-1 and phenolic and flavonoids contents highest than apple tea. The avocado-peel tea showed good antioxidant activity and had good acceptability by sensory analysis as a promising product.

  10. The effect of drying temperatures on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol contents in citrus seed and oils.

    Science.gov (United States)

    Al Juhaimi, Fahad; Özcan, Mehmet Musa; Uslu, Nurhan; Ghafoor, Kashif

    2018-01-01

    In this study, the effect of drying temperature on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol content of citrus seeds and oils were studied. Kinnow mandarin seed, dried at 60 °C, exhibited the highest antioxidant activity. Orlendo orange seed had the maximum total phenolic content and α-tocopherol content, with a value of 63.349 mg/100 g and 28.085 mg/g (control samples), respectively. The antioxidant activity of Orlendo orange seed (63.349%) was higher than seeds of Eureka lemon (55.819%) and Kinnow mandarin (28.015%), while the highest total phenolic content was found in seeds of Kinnow mandarin, followed by Orlendo orange and Eureka lemon (113.132). 1.2-Dihydroxybenzene (13.171), kaempferol (10.780), (+)-catechin (9.341) and isorhamnetin (7.592) in mg/100 g were the major phenolic compounds found in Kinnow mandarin. Among the unsaturated fatty acids, linoleic acid was the most abundant acid in all oils, which varied from 44.4% (dried at 80 °C) to 46.1% (dried at 70 °C), from 39.0% (dried at 60 °C) to 40.0% (dried at 70 °C). The total phenolic content, antioxidant activity and phenolic compounds of citrus seeds and tocopherol content of seed oils were significantly affected by drying process and varied depending on the drying temperature.

  11. Effect of Storage Temperature on Vitamin C, Total Phenolics, UPLC Phenolic Acid Profile and Antioxidant Capacity of Eleven Potato (Solanum tuberosum Varieties

    Directory of Open Access Journals (Sweden)

    Joseph Hubert Yamdeu Galani

    2017-03-01

    Full Text Available Storage of potato tubers at low temperature affects their metabolism and may alter their phytochemical properties. There is a need to elucidate the changes in antioxidant compounds, activity and enzymes during storage of tubers. Eleven Indian potato varieties were evaluated for antioxidant parameters, after 0, 30, 60 and 90 days of storage at room temperature, 15 °C and 4 °C. Total phenolics (0.0786–0.1546 mg gallic acid equivalents⋅g−1 FW and vitamin C content (0.0828–0.2416 mg⋅g−1 FW varied among the varieties and were different with storage temperature; their levels fluctuated during storage but remained above the initial level until the last day of observation. Phenolic acid profiling by UPLC identified 12 compounds among which the most abundant was chlorogenic acid followed by gallic acid, sinapic acid and ellagic acid. Except para-coumaric acid which decreased at 4 °C, all the phenolic acids increased with storage. Caffeic acid, chlorogenic acid, protocatechuic acid and gallic acid mostly correlated with total phenolic content (r = 0.456, 0.482, 0.588 and 0.620, respectively. Antioxidant activity against both DPPH and ABTS radicals increased during the initial days of storage and then dropped to a level comparable or lower than the original value, irrespective of the storage temperature. Correlation study revealed that chlorogenic acid, gallic acid and ferulic acid mostly contributed to antioxidant activity. Activity of both antioxidant enzymes, superoxide dismutase and ascorbate peroxidase, increased initially but then decreased to values lower than the initial level and were not influenced by storage temperature. Correlation with antioxidant activity indicated that the enhancement of reactive oxygen scavenging species in cold stored tubers could result mainly from ascorbate peroxidase activity. Our results demonstrate that storage temperature adversely influences the metabolism and the content of

  12. Effects of dietary sweet potato leaf meal on the growth, non-specific immune responses, total phenols and antioxidant capacity in channel catfish (Ictalurus punctatus).

    Science.gov (United States)

    Lochmann, Rebecca T; Islam, Shahidul; Phillips, Harold; Adam, Zelalem; Everette, Jace

    2013-04-01

    Traditional energy sources in catfish diets have become costly, and economical alternatives are needed. Sweet potato leaves are underutilised agricultural by-products that provide energy and substantial amounts of phenols, which affect animal and human health. There is little information on the effects of these compounds on catfish, or the capacity of catfish to accumulate dietary phenols. Catfish enriched with phenols have marketing potential as functional foods. This study investigated the effects of diets with sweet potato leaf meal (SPLM) on growth performance, health and total phenolic compounds in catfish. SPLM was substituted for wheat middlings in three diets fed to groups of juvenile catfish for 10 weeks. Weight gain, feed conversion, survival, alternative complement activity and lysozyme activity were similar among diets. Haematocrit was lower in fish fed diets with SPLM, but within the normal range. Total phenols and antioxidant capacity in the whole body were similar among treatments. SPLM was an effective energy source for catfish up to the maximum level tested (230 g kg(-1) diet). SPLM did not enhance total phenols in catfish, but there were no apparent antinutritional effects of the meal on catfish growth, health or survival. © 2012 Society of Chemical Industry.

  13. Rapid profiling of polymeric phenolic acids in Salvia miltiorrhiza by hybrid data-dependent/targeted multistage mass spectrometry acquisition based on expected compounds prediction and fragment ion searching.

    Science.gov (United States)

    Shen, Yao; Feng, Zijin; Yang, Min; Zhou, Zhe; Han, Sumei; Hou, Jinjun; Li, Zhenwei; Wu, Wanying; Guo, De-An

    2018-04-01

    Phenolic acids are the major water-soluble components in Salvia miltiorrhiza (>5%). According to previous studies, many of them contribute to the cardiovascular effects and antioxidant effects of S. miltiorrhiza. Polymeric phenolic acids can be considered as the tanshinol derived metabolites, e.g., dimmers, trimers, and tetramers. A strategy combined with tanshinol-based expected compounds prediction, total ion chromatogram filtering, fragment ion searching, and parent list-based multistage mass spectrometry acquisition by linear trap quadropole-orbitrap Velos mass spectrometry was proposed to rapid profile polymeric phenolic acids in S. miltiorrhiza. More than 480 potential polymeric phenolic acids could be screened out by this strategy. Based on the fragment information obtained by parent list-activated data dependent multistage mass spectrometry acquisition, 190 polymeric phenolic acids were characterized by comparing their mass information with literature data, and 18 of them were firstly detected from S. miltiorrhiza. Seven potential compounds were tentatively characterized as new polymeric phenolic acids from S. miltiorrhiza. This strategy facilitates identification of polymeric phenolic acids in complex matrix with both selectivity and sensitivity, which could be expanded for rapid discovery and identification of compounds from complex matrix. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels

    KAUST Repository

    Jin, Peng; Wang, Tifeng; Liu, Nana; Dupont, Sam; Beardall, John; Boyd, Philip W.; Riebesell, Ulf; Gao, Kunshan

    2015-01-01

    Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46–212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130–160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28–48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes.

  15. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels

    KAUST Repository

    Jin, Peng

    2015-10-27

    Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46–212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130–160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28–48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes.

  16. Evaluation of phenolic compounds in mate (Ilex paraguariensis) processed by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Furgeri, C.; Nunes, T.C.F.; Fanaro, G.B. [Instituto de Pesquisas Energeticas Nucleares, IPEN-CNEN/SP, Centro de Tecnologia das Radiacoes-Laboratory de Deteccao de Alimentos Irradiados, Av. Professor Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-900 Sao Paulo (Brazil); Souza, M.F.F.; Bastos, D.H.M. [Faculdade de Saude Publica, FSP/USP, Departamento de Nutricao-Av. Dr. Arnaldo, 715, CEP: 01246-904 Sao Paulo (Brazil); Villavicencio, A.L.C.H. [Instituto de Pesquisas Energeticas Nucleares, IPEN-CNEN/SP, Centro de Tecnologia das Radiacoes-Laboratory de Deteccao de Alimentos Irradiados, Av. Professor Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-900 Sao Paulo (Brazil)], E-mail: villavic@ipen.br

    2009-07-15

    The radiation food processing has been demonstrating great effectiveness in the attack of pathogenic agents, while little compromising nutritional value and sensorial properties of foods. The mate (Ilex paraguariensis), widely consumed product in South America, generally in the form of infusions with hot or cold water, calls of chimarrao or terere, it is cited in literature as one of the best sources phenolic compounds. The antioxidants action of these constituent has been related to the protection of the organism against the free radicals, generated in alive, currently responsible for the sprouting of some degenerative illness as cancer, arteriosclerosis, rheumatic arthritis and cardiovascular clutters among others. The objective of that work was to evaluate the action of the processing for gamma radiation in phenolic compounds of terere beverage in the doses of 0, 3, 5, 7 and 10 kGy. The observed results do not demonstrate significant alterations in phenolic compounds of terere beverage processed by gamma radiation.

  17. Evaluation of phenolic compounds in mate (Ilex paraguariensis) processed by gamma radiation

    International Nuclear Information System (INIS)

    Furgeri, C.; Nunes, T.C.F.; Fanaro, G.B.; Souza, M.F.F.; Bastos, D.H.M.; Villavicencio, A.L.C.H.

    2009-01-01

    The radiation food processing has been demonstrating great effectiveness in the attack of pathogenic agents, while little compromising nutritional value and sensorial properties of foods. The mate (Ilex paraguariensis), widely consumed product in South America, generally in the form of infusions with hot or cold water, calls of chimarrao or terere, it is cited in literature as one of the best sources phenolic compounds. The antioxidants action of these constituent has been related to the protection of the organism against the free radicals, generated in alive, currently responsible for the sprouting of some degenerative illness as cancer, arteriosclerosis, rheumatic arthritis and cardiovascular clutters among others. The objective of that work was to evaluate the action of the processing for gamma radiation in phenolic compounds of terere beverage in the doses of 0, 3, 5, 7 and 10 kGy. The observed results do not demonstrate significant alterations in phenolic compounds of terere beverage processed by gamma radiation.

  18. Screening plant derived dietary phenolic compounds for bioactivity related to cardiovascular disease.

    Science.gov (United States)

    Croft, Kevin D; Yamashita, Yoko; O'Donoghue, Helen; Shirasaya, Daishi; Ward, Natalie C; Ashida, Hitoshi

    2018-04-01

    The potential health benefits of phenolic acids found in food and beverages has been suggested from a number of large population studies. However, the mechanism of how these compounds may exert biological effects is less well established. It is also now recognised that many complex polyphenols in the diet are metabolised to simple phenolic acids which can be taken up in the circulation. In this paper a number of selected phenolic compounds have been tested for their bioactivity in two cell culture models. The expression and activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells and the uptake of glucose in muscle cells. Our data indicate that while none of the compounds tested had a significant effect on eNOS expression or activation in endothelial cells, several of the compounds increased glucose uptake in muscle cells. These compounds also enhanced the translocation of the glucose transporter GLUT4 to the plasma membrane, which may explain the observed increase in cellular glucose uptake. These results indicate that simple cell culture models may be useful to help understand the bioactivity of phenolic compounds in relation to cardiovascular protection. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Analysis of phenolic compounds in different parts of pomegranate (Punica granatum) fruit by HPLC-PDA-ESI/MS and evaluation of their antioxidant activity: application to different Italian varieties.

    Science.gov (United States)

    Russo, Marina; Fanali, Chiara; Tripodo, Giusy; Dugo, Paola; Muleo, Rosario; Dugo, Laura; De Gara, Laura; Mondello, Luigi

    2018-06-01

    The analysis of pomegranate phenolic compounds belonging to different classes in different fruit parts was performed by high-performance liquid chromatography coupled with photodiode array and mass spectrometry detection. Two different separation methods were optimized for the analysis of anthocyanins and hydrolyzable tannins along with phenolic acids and flavonoids. Two C 18 columns, core-shell and fully porous particle stationary phases, were used. The parameters for separation of phenolic compounds were optimized considering chromatographic resolution and analysis time. Thirty-five phenolic compounds were found, and 28 of them were tentatively identified as belonging to four different phenolic compound classes; namely, anthocyanins, phenolic acids, hydrolyzable tannins, and flavonoids. Quantitative analysis was performed with a mixture of nine phenolic compounds belonging to phenolic compound classes representative of pomegranate. The method was then fully validated in terms of retention time precision, expressed as the relative standard deviation, limit of detection, limit of quantification, and linearity range. Phenolic compounds were analyzed directly in pomegranate juice, and after solvent extraction with a mixture of water and methanol with a small percentage of acid in peel and pulp samples. The accuracy of the extraction method was also assessed, and satisfactory values were obtained. Finally, the method was used to study identified analytes in pomegranate juice, peel, and pulp of six different Italian varieties and one international variety. Differences in phenolic compound profiles among the different pomegranate parts were observed. Pomegranate peel samples showed a high concentration of phenolic compounds, ellagitannins being the most abundant ones, with respect to pulp and juice samples for each variety. With the same samples, total phenols and antioxidant activity were evaluated through colorimetric assays, and the results were correlated among them.

  20. Effect of Different Solvents on Total Phenolic Contents and Antioxidant Activity of Zizyphus jujube Miller Fruits

    Directory of Open Access Journals (Sweden)

    Gholamhossein Davarynejad

    2017-10-01

    Full Text Available Introduction: Phenolic compounds have an ability to scavenge free radicals and cause the balance of reactive oxygen species (ROS in our body. This balance prevents atherosclerosis, coronary heart and cancer diseases. Butylated hydroxyl toluene (BHT is a well-known synthetic antioxidant, which is restricted to be used due to its probable toxic effects. Therefore, replacement of synthetic antioxidants with plant materials with high amounts of antioxidant activity, which protect the body from free radicals and many diseases caused by lipid peroxidation, is an appropriate option. ZiziphusjujubaMiller is one of the forty species belonging to Rhamnaceae family, which produces a great deal of industrial raw materials for horticultural, ornamental, food, and pharmaceutical industries. Antioxidants can be extracted by various solvents and extraction methods. Solvent extraction is the most common method used for separating natural antioxidants. Solvent properties undoubtedly play a key role in the extraction of antioxidative compounds. The type and yield of antioxidant extracted have been found to vary as affected by the solvent properties such as polarity, viscosity and vapor pressure. Therefore, it is difficult to develop a unified standard method for the extraction of antioxidants from all plant materials. Materials and Methods: Plant materials Fresh fruits were collected from Birjand, Iran, in late summer 2014. The samples were air dried under the shade at room temperature. Dried fruits were ground by using a mortar and pestle and were separately extracted by distilled water and organic solvents such as methanol, ethanol and acetone (50%, 90% and100% (v/v. After filtering through the Whatman paper #3 and removing the solvents (using a rotary evaporator (BUCHI V-850 and water (using a freeze dryer, (OPERON, FDB-5503, Korea, the dried extracts were stored in refrigerator for further analysis. Determination of Total Phenolic Content (TPC Samples were

  1. Optimization of autohydrolysis conditions to extract antioxidant phenolic compounds from spent coffee grounds

    DEFF Research Database (Denmark)

    Ballesteros, Lina F.; Ramirez, Monica J.; Orrego, Carlos E.

    2017-01-01

    Autohydrolysis, which is an eco-friendly technology that employs only water as extraction solvent, was used to extract antioxidant phenolic compounds from spent coffee grounds (SCG). Experimental assays were carried out using different temperatures (160–200 °C), liquid/solid ratios (5–15 ml/g SCG.......46 mg TE/g SCG, and TAA = 66.21 mg α-TOC/g SCG) consisted in using 15 ml water/g SCG, at 200 °C during 50 min. Apart from being a green technology, autohydrolysis under optimized conditions was demonstrated to be an efficient method to extract antioxidant phenolic compounds from SCG....

  2. An Alternative Use of Horticultural Crops: Stressed Plants as Biofactories of Bioactive Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Luis Cisneros-Zevallos

    2012-09-01

    Full Text Available Plants subjected to abiotic stresses synthesize secondary metabolites with potential application in the functional foods, dietary supplements, pharmaceutical, cosmetics and agrochemical markets. This approach can be extended to horticultural crops. This review describes previous reports regarding the effect of different postharvest abiotic stresses on the accumulation of phenolic compounds. Likewise, the physiological basis for the biosynthesis of phenolic compounds as an abiotic stress response is described. The information presented herein would be useful for growers and the fresh produce market which are interested in finding alternative uses for their crops, especially for those not meeting quality standards and thus are considered as waste.

  3. Biofortification (Se: Does it increase the content of phenolic compounds in virgin olive oil (VOO?

    Directory of Open Access Journals (Sweden)

    Roberto D'Amato

    Full Text Available Extra-Virgin Olive Oil (EVOO is a fundamental component of the Mediterranean diet and it may contain several anti-oxidant substances, such as phenols. Previous research has shown that this food may be enriched in phenols by spraying a sodium-selenate solution (100 mg L-1 Se onto the crop canopy before flowering. The aim of this research was to evaluate the effect of this Se-fertilization before flowering (cv. Leccino on the phenolic profile of EVOOs, and test to what extent such effects depend on the weather pattern, as observed in two contrasting experimental seasons (2013 and 2014. Results showed that Se-fertilisation enriched EVOOs both in selenium (up to 120 μg kg-1 and in phenols (up to 401 mg kg-1. This latter enrichment was related to an increase in PAL (L-Phenylalanine Ammonia-Lyase activities and it was largely independent on the climatic pattern. Considering the phenolic profile, oleacein, ligustroside, aglycone and oleocanthal were the most affected compounds and were increased by 57, 50 and 32%, respectively. All these compounds, especially oleacein, have been shown to exert a relevant anti-oxidant activity, contributing both to the shelf-life of EVOOs and to positive effects on human health. It is suggested that Se-fertilisation of olive trees before flowering may be an interesting practice, particularly with poor cultivars and cold and rainy weather patterns, which would normally lead to the production of EVOOs with unfavourable phenolic profile.

  4. Biofortification (Se): Does it increase the content of phenolic compounds in virgin olive oil (VOO)?

    Science.gov (United States)

    D’Amato, Roberto; Proietti, Primo; Onofri, Andrea; Regni, Luca; Esposto, Sonia; Servili, Maurizio; Businelli, Daniela; Selvaggini, Roberto

    2017-01-01

    Extra-Virgin Olive Oil (EVOO) is a fundamental component of the Mediterranean diet and it may contain several anti-oxidant substances, such as phenols. Previous research has shown that this food may be enriched in phenols by spraying a sodium-selenate solution (100 mg L-1 Se) onto the crop canopy before flowering. The aim of this research was to evaluate the effect of this Se-fertilization before flowering (cv. Leccino) on the phenolic profile of EVOOs, and test to what extent such effects depend on the weather pattern, as observed in two contrasting experimental seasons (2013 and 2014). Results showed that Se-fertilisation enriched EVOOs both in selenium (up to 120 μg kg-1) and in phenols (up to 401 mg kg-1). This latter enrichment was related to an increase in PAL (L-Phenylalanine Ammonia-Lyase) activities and it was largely independent on the climatic pattern. Considering the phenolic profile, oleacein, ligustroside, aglycone and oleocanthal were the most affected compounds and were increased by 57, 50 and 32%, respectively. All these compounds, especially oleacein, have been shown to exert a relevant anti-oxidant activity, contributing both to the shelf-life of EVOOs and to positive effects on human health. It is suggested that Se-fertilisation of olive trees before flowering may be an interesting practice, particularly with poor cultivars and cold and rainy weather patterns, which would normally lead to the production of EVOOs with unfavourable phenolic profile. PMID:28448631

  5. The influence of beverage composition on delivery of phenolic compounds from coffee and tea.

    Science.gov (United States)

    Ferruzzi, Mario G

    2010-04-26

    Epidemiological data suggest that consumption of coffee and tea is associated with a reduced risk of several chronic and degenerative diseases including cardiovascular disorders, diabetes, obesity and neurodegenerative disorders. Both coffee and tea are a rich source of phenolic compounds including chlorogenic acids in coffee; and flavan-3-ols as well as complex theaflavins and thearubigens in tea. Coffee and tea are two of the most commonly consumed beverages in the world and thus represent a significant opportunity to positively affect disease risk and outcomes globally. Central to this opportunity is a need to better understand factors that may affect the bioavailability of specific phenolic components from coffee and tea based beverages. An overview of the phenolic composition of coffee and tea is discussed in the context of how processing and composition might influence phenolic profiles and bioavailability of individual phenolic components. Specifically, the impact of beverage formulation, the extent and type of processing and the influence of digestion on stability, bioavailability and metabolism of bioactive phenolics from tea and coffee are discussed. The impact of co-formulation with ascorbic acid and other phytochemicals are discussed as strategies to improve absorption of these health promoting phytochemicals. A better understanding of how the beverage composition impacts phenolic profiles and their bioavailability is critical to development of beverage products designed to deliver specific health benefits. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Total phenolic content, antioxidant and antimicrobial activities of Blepharis edulis extracts

    Directory of Open Access Journals (Sweden)

    Mohaddese Mahboubi

    2013-02-01

    Full Text Available Blepharis edulis is traditionally used as an antiseptic, purgative, aphrodisiac and anti-inflammatory agent. The extractsof plant aerial parts were screened for total phenolic content (TPC gallic acid equivalents (GAE, total flavonoid compound(TFC quercetin equivalents (QE, antioxidant capacity and its antimicrobial activity by micro broth dilution assay. The 50%-inhibition values of BHT and 70% (v/v aqueous ethanol, 70% (v/v aqueous methanol, methanol, and water extracts of B.edulis according to the DPPH method were found to be 19.6, 71.2, 73.7, 81.4, and 218.4 g/ml, respectively. TPC ranged from38.9 to 102.7 mg GAE/g dry extracts. The antimicrobial activity showed that yeast and fungi were sensitive and resistantmicroorganisms to the extracts. The 70%-methanol extract showed more drastic antimicrobial activity than the others. Theantimicrobial activity of ethanolic extract is the same as of the methanolic extract; water extract had the weakest antimicrobialactivity.

  7. Antioxidant activity of phenolic compounds in lentil seeds (Lens culinaris L.

    Directory of Open Access Journals (Sweden)

    Dragišić-Maksimović Jelena

    2010-01-01

    Full Text Available The antioxidant activities of methanol extracts of lentil seeds (Lens culinaris L. have been investigated in this work. Scarce reference data describe lentil seeds as rich in polyphenols, which are reported to exhibit bioactive properties due to their capability to reduce or quench reactive oxygen species. The content and composition of phenolics is highly dependent of the cultivars, environments/growth conditions and method of analysis. Therefore, this study is an effort in investigation of phenolics content and composition in lentil seeds trying to prove the contribution of identified phenolics to antioxidant capacity. HPLC measurements revealed that lentil seeds contain gallic acid, epicatechin, catechin, protocatechuic acid, rutin, p-coumaric acid and umbeliferone. Their DPPH radical scavenging activity was in descending order from gallic acid to umbeliferone. The presented results contribute to knowledge of the implications in dietary intake of phenolic compounds from lentil seeds.

  8. Phenolic compounds and properties of antioxidants in grapevine roots (Vitis vinifera L. under low-temperature stress followed by recovery

    Directory of Open Access Journals (Sweden)

    Stanisław Weidner

    2011-01-01

    Full Text Available The research has been performed on roots of Vitis vinifera, cv. Himrod, obtained from seedlings grown under chill stress conditions (+10oC in the day and +7oC at night, under optimum conditions (+25oC in the day and +18oC at night and from seedling which underwent a recover period after the chill stress treatment. The purpose of the study has been to determine quantitative and qualitative changes in phenolic compounds as well as to demonstrate changes in antiradical properties of extracts from grapevine roots, which appeared as a result of chill stress and during recovery under the optimum conditions following the stress. Phenolic compounds from grapevine roots were extracted using 80% acetone. The total content of phenolics was determined by colorimetry. The content of tannins was tested by precipitation with bovine serum albumin. The reducing power as well as DPPH• free radical and ABTS+• cation radical scavenging activity of the extracts were also tested. In order to identify phenolic compounds present in the extracts the RP-HPLC technique was employed. The tested material was found to contain tannins and three identified phenolic acids: ferulic, caffeic and p-coumaric ones. The latter occurred in the highest concentrations (from 4.46 to 6.28 µg/g fresh matter. Ferulic acid appeared in smaller amounts (from 1.68 to 2.65 µg/g fresh matter, followed by caffeic acid (from 0.87 to 1.55 µg/g fresh matter. Significantly less total phenolic compounds occurred in roots of seedlings subjected to chill stress. However, the total content of these compounds increased significantly in roots of plants which underwent recovery after chill stress. Concentration of tannins was determined by two methods. The content of condensed tannins was depressed in roots as a result of low temperature stress, whereas the content of condensed and hydrolysing tannins (determined via the BSA method rose under chill stress conditions. A significant increase in tannins

  9. Vitamin C and total phenols quantification in calli of native passion fruit induced by combinations of Picloram and Kinetin

    Directory of Open Access Journals (Sweden)

    Fabiane Aparecida Artioli-Coelho

    2015-08-01

    Full Text Available Brazil is one of the center of origin of passion fruit and has an important natural variability of the genus Passiflora. Several wild species of this genus are resistant to some pests and diseases and many are considered as medicinal. The aim of this research was to induce callus from in vitro Passiflora gibertii leaf explants for quantification of vitamin C and total phenols. Once the appropriate auxin/cytokine balance promotes callus formation and may optimize the production of secondary compounds and vitamins, calli were induced using a half-strength MS medium with a combination of the auxin Picloran (PIC and the cytokine Kinetin (KIN. The vitamin C and total phenols were quantified by colorimetric methods from calli after different culture periods. The calli induction was strongly dependent of the combination PIC/KIN. It was observed high vitamin C content (94.8mg 100g-1 during the calli induction period in MS+4.14µM PIC+ 0.207µM KIN. Higher PIC/KIN concentrations promoted an increase in the vitamin C content after three subcultures. The higher PIC (8.28µM/KIN (0.828µM concentration was the higher was the total phenols production (66mg tannic acid 100g-1 of fresh callus during the calli induction period.

  10. Effect of ascorbic acid and dehydration on concentrations of total phenolics, antioxidant capacity, anthocyanins, and color in fruits.

    Science.gov (United States)

    Rababah, Taha M; Ereifej, Khalil I; Howard, L

    2005-06-01

    The purpose of this investigation was to report on the total phenolics, anthocyanins, and oxygen radical absorbance capacity (ORAC) of strawberry, peach, and apple, the influence of dehydration and ascorbic acid treatments on the levels of these compounds, and the effect of these treatments on fruit color. Results showed that fresh strawberry had the highest levels for total phenolics [5317.9 mg of chlorogenic acid equivalents (CAE)/kg], whereas lower levels were found in fresh apple and peach (3392.1 and 1973.1 mg of CAE/kg, respectively), and for anthocyanins (138.8 mg/kg), whereas lower levels were found in fresh apple and peaches (11.0 and 18.9 mg/kg, respectively; fresh strawberry had an ORAC value of 62.9 mM/kg Trolox equivalents. The fresh apple and peach were found to have ORAC values of 14.7 and 11.4 mM/kg of Trolox equivalents, respectively. The color values indicated that the addition of 0.1% ascorbic acid increased the lightness (L) and decreased the redness (a) and yellowness (b) color values of fresh strawberry, peach, and apple, sliced samples, and the puree made from them. Also, results showed that dehydration is a good method to keep the concentrations of total phenolics and anthocyanins and ORAC values at high levels.

  11. Continuous extraction of phenolic compounds from pomegranate peel using high voltage electrical discharge.

    Science.gov (United States)

    Xi, Jun; He, Lang; Yan, Liang-Gong

    2017-09-01

    Pomegranate peel, a waste generated from fruit processing industry, is a potential source of phenolic compounds that are known for their anti-oxidative properties. In this study, a continuous high voltage electrical discharge (HVED) extraction system was for the first time designed and optimized for phenolic compounds from pomegranate peel. The optimal conditions for HVED were: flow rate of materials 12mL/min, electrodes gap distance 3.1mm (corresponding to 29kV/cm of electric field intensity) and liquid to solid ratio 35mL/g. Under these conditions, the experimental yield of phenolic compounds was 196.7±6.4mg/g, which closely agreed with the predicted value (199.83mg/g). Compared with the warm water maceration, HVED method possessed higher efficiency for the extraction of phenolic compounds. The results demonstrated that HVED technique could be a very effective method for continuous extraction of natural compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources

    Directory of Open Access Journals (Sweden)

    Nelly Medina-Torres

    2017-07-01

    Full Text Available Vegetable sources and agro-industrial residues represent an important source of phenolic compounds that are useful in a wide range of applications, especially those with biological activities. Conventional techniques of phytochemical extraction have been associated with a high consumption of organic solvents that limits the application of bioactive extracts, leading to the implementation of novel extraction technologies using mechanisms such as Ultrasound Assisted Extraction (UAE. In the present review, an analysis of the involved variables in the extraction yield of phenolic compounds through UAE is presented, highlighting the advantages of this technology based on the results obtained in various optimized studies. A comparison with other technologies and a proposal of its possible application for agro industrial residues as raw material of phenolic compounds is also indicated. Finally, it is concluded that UAE is a technology that is placed within the area of Sustainable Chemistry since it promotes the use of renewable raw materials through the extraction of phenolic compounds, implementing the substitution of organic solvents with solvents that do not present toxic effects, lowering the energy consumption when compared to conventional methods and minimizing process times and temperatures, which is useful for the extraction of thermo-labile compounds.

  13. Effect of In Vitro Digestion on the Total Antioxidant Capacity and Phenolic Content of 3 Species of Oregano (Hedeoma patens, Lippia graveolens, Lippia palmeri).

    Science.gov (United States)

    Gutiérrez-Grijalva, Erick Paul; Angulo-Escalante, Miguel Angel; León-Félix, Josefina; Heredia, J Basilio

    2017-12-01

    Oregano phenolic compounds have been studied for their anti-inflammatory properties. Nonetheless, after ingestion, the gastrointestinal environment can affect their antioxidant stability and thus their bioactive properties. To evaluate the effect of in vitro gastrointestinal (GI) digestion on the phenolic compounds of 3 species of oregano (Hedeoma patens, Lippia graveolens, and Lippia palmeri), the total reducing capacity, total flavonoid content, and antioxidant capacity were evaluated before and after in vitro GI digestion. In addition, the phenolic compounds of the 3 oregano species were identified and quantified by UPLC-PDA before and after in vitro GI digestion. It was shown that the reducing capacity, flavonoid content and antioxidant capacity were affected by the GI digestion process. Moreover, the phenolic compounds identified were apigenin-7-glucoside, scutellarein, luteolin, luteolin-7-glucoside, phloridzin and chlorogenic acid, and their levels were affected by the in vitro GI process. Our results showed that the phenolic compounds from these 3 species of oregano are affected by the in vitro digestion process, and this effect is largely attributable to pH changes. These changes can modify the bioavailability and further anti-inflammatory activity of oregano phenolics, and thus, further research is needed. Oregano is a rich source of polyphenols that have shown bioactive properties like anti-inflammatory potential. However, little is known of the gastrointestinal fate of oregano polyphenols which is imperative to fully understand its bioaccessibility. Our results are important to develop new administration strategies which could help protect the antioxidant and anti-inflammatory potential and bioaccessibility of such compounds. © 2017 Institute of Food Technologists®.

  14. Phenolic derivatives and other chemical compounds from Cochlospermum regium

    International Nuclear Information System (INIS)

    Solon, Soraya; Carollo, Carlos Alexandre; Brandao, Luiz Fabricio Gardini; Macedo, Cristiana dos Santos de; Klein, Andre; Dias-Junior, Carlos Alan; Siqueira, Joao Maximo de

    2012-01-01

    This study describes the chemical investigation of the ethyl acetate fraction obtained from the hydroethanolic extract of the xylopodium of Cochlospermum regium (Mart. and Schr.) Pilger, which has been associated with antimicrobial activity. Phytochemical investigation produced seven phenol derivatives: ellagic acid, gallic acid, dihydrokaempferol, dihydrokaempferol-3-ο-β-glucopyranoside, dihydrokaempferol-3-ο-β-(6''-galloyl)-glucopyranoside, pinoresinol, and excelsin. It also contained two triacylbenzenes, known as cochlospermines A and B. The hydroethanolic extract and its fractions exhibited antimicrobial activity (0.1 mg/mL) against Staphylococcus aureus and Pseudomonas aeruginosa. Gallic acid showed activity against S. aureus. Dihydrokaempferol-3-ο-β-(6 - galloyl)-glucopyranoside is reported here for the first time in the literature (author)

  15. Phenolic compounds removal from mimosa tannin model water and olive mill wastewater by energy-efficient electrocoagulation process

    Directory of Open Access Journals (Sweden)

    Marijana Kraljić Roković

    2014-12-01

    Full Text Available The objective of this work was to study the influence of NaCl concentration, time, and current density on the removal efficiency of phenolic compounds by electrocoagulation process, as well as to compare the specific energy consumption (SEC of these processes under different experimental conditions. Electrocoagulation was carried out on two different samples of water: model water of mimosa tannin and olive mill wastewater (OMW. Low carbon steel electrodes were used in the experiments. The properties of the treated effluent were determined using UV/Vis spectroscopy and by measuring total organic carbon (TOC. Percentage of removal increased with time, current density, and NaCl concentration. SEC value increased with increased time and current density but it was decreased significantly by NaCl additions (0-29 g L-1. It was found that electro­coagulation treatment of effluents containing phenolic compounds involves complex formation between ferrous/ferric and phenolic compounds present in treated effluent, which has significant impact on the efficiency of the process.

  16. Phenolic compounds in cultures of tissues of tea plants and the effect of light on their synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Koretskaya, T.F.; Zaprometov, M.N.

    1975-01-01

    Stem and leaf calluses of tea plants (Camellia sinensis) retain the capacity for synthesis of phenolic compounds. The content of phenolic compounds comprises 2 to 5 percent of dry weight, the main share (80 to 95 percent) belonging to catechins and leucoanthocyans, including their polymeric forms. The following compounds were detected in callus tissue: (--)-epicatechin, (+)-catechin, two leucoanthocyans, and several unidentified phenolic compounds that fluoresce in UV. (--)-Epicatechin is predominant. In contrast to tissues of an intact plant, the callus does not contain gallocatechins or free gallic acid under the given cultivation conditions. The content of phenolic compounds changes in proportion to callus growth, their greatest amount being formed during the phase of intensive growth. Light stimulates synthesis of phenolic compounds, including the most reduced group of flavonoids, viz., leucoanthocyans and catechins.

  17. Optimization of supercritical carbon dioxide extraction of Piper Betel Linn leaves oil and total phenolic content

    Science.gov (United States)

    Aziz, A. H. A.; Yunus, M. A. C.; Arsad, N. H.; Lee, N. Y.; Idham, Z.; Razak, A. Q. A.

    2016-11-01

    Supercritical Carbon Dioxide (SC-CO2) Extraction was applied to extract piper betel linn leaves. The piper betel leaves oil was used antioxidant, anti-diabetic, anticancer and antistroke. The aim of this study was to optimize the conditions of pressure, temperature and flowrate for oil yield and total phenolic content. The operational conditions of SC-CO2 studied were pressure (10, 20, 30 MPa), temperature (40, 60, 80 °C) and flowrate carbon dioxide (4, 6, 8 mL/min). The constant parameters were average particle size and extraction regime, 355pm and 3.5 hours respectively. First order polynomial expression was used to express the extracted oil while second order polynomial expression was used to express the total phenolic content and the both results were satisfactory. The best conditions to maximize the total extraction oil yields and total phenolic content were 30 MPa, 80 °C and 4.42 mL/min leading to 7.32% of oil and 29.72 MPa, 67.53 °C and 7.98 mL/min leading to 845.085 mg GAE/g sample. In terms of optimum condition with high extraction yield and high total phenolic content in the extracts, the best operating conditions were 30 MPa, 78 °C and 8 mL/min with 7.05% yield and 791.709 mg gallic acid equivalent (GAE)/g sample. The most dominant condition for extraction of oil yield and phenolic content were pressure and CO2 flowrate. The results show a good fit to the proposed model and the optimal conditions obtained were within the experimental range with the value of R2 was 96.13% for percentage yield and 98.52% for total phenolic content.

  18. Rapid determination of phenolic compounds in water samples by alternating-current oscillopolarographic titration

    Institute of Scientific and Technical Information of China (English)

    XIAO Jun-ping; WANG Xue-feng; ZHOU Qing-xiang; FAN Xiao-yuan; SU Xian-fa; Bai Hua-hua; DUAN Hai-jing

    2007-01-01

    A rapid, simple and sensitive method was demonstrated for the determination of phenolic compounds in water samples by alternating-current oscillopolarographic titration. With the presence of sulfuric acid, phenol could be transferred into a nitroso-compound by reacting with NaNO2. The titration end-point was obtained by the formation of a sharp cut in the oscillopolarographic with infinitesimal NaNO2 on double platinum electrodes. The results showed that phenol had an excellent linear relationship over the range of 4.82×10-6 -9.65×10-3 mol/L, the RSD of the proposed method was lower than 1.5%, and the spiked recoveries of three real water samples were in the range of 95.6%-106.9%.

  19. Evaluation of antibacterial and anthelmintic activities with total phenolic contents of Piper betel leaves

    Directory of Open Access Journals (Sweden)

    Kazi Akter

    2014-09-01

    Full Text Available Objective: The study was conducted to investigate the antibacterial and anthelmintic activities and to determine total phenolic contents of methanolic extract of Piper betel leaves. Materials and Methods: The extract was subjected to assay for antibacterial activity using both gram positive and gram negative bacterial strains through disc diffusion method; anthelmintic activity with the determination of paralysis and death time using earthworm (Pheritima posthuma at five different concentrations and the determination of total phenolic contents using the Folin-ciocalteau method. Results: The extract showed significant (p

  20. Evaluation of antibacterial and anthelmintic activities with total phenolic contents of Piper betel leaves

    Science.gov (United States)

    Akter, Kazi Nahid; Karmakar, Palash; Das, Abhijit; Anonna, Shamima Nasrin; Shoma, Sharmin Akter; Sattar, Mohammad Mafruhi

    2014-01-01

    Objective: The study was conducted to investigate the antibacterial and anthelmintic activities and to determine total phenolic contents of methanolic extract of Piper betel leaves. Materials and Methods: The extract was subjected to assay for antibacterial activity using both gram positive and gram negative bacterial strains through disc diffusion method; anthelmintic activity with the determination of paralysis and death time using earthworm (Pheritima posthuma) at five different concentrations and the determination of total phenolic contents using the Folin-ciocalteau method. Results: The extract showed significant (pbetel leaves extract, therefore it may be processed for further drug research. PMID:25386394

  1. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    OpenAIRE

    D?az-de-Cerio, Elixabet; Verardo, Vito; G?mez-Caravaca, Ana Mar?a; Fern?ndez-Guti?rrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds ...

  2. Chemical Composition of the Essential Oil, Total Phenolics, Total Flavonoids and Antioxidant Activity of Methanolic Extracts of Satureja montana L.

    Directory of Open Access Journals (Sweden)

    Avni Hajdari

    2016-05-01

    Full Text Available Aerial parts of Satureja montana L. (Lamiaceae were collected from seven growing wild populations (four populations in Kosovo, two in Albania and one in Montenegro in 2013 with the aim of assessing the natural variation in the chemical composition of the essential oils, total flavonoids, total phenolics and the antioxidant activity of their methanolic extracts. Essential oils were obtained by steam distillation and analysed using GC-FID and GC-MS, whereas total flavonoids, total phenolics and antioxidant activities were determined using spectrophotometric methods. Sixty-one volatile constituents were identified. The main constituents were myrcene, p-cymene, γ-terpinene, linalool, thymol, carvacrol and viridiflorol. Total phenolics ranged from 68.1 to 102.6 mg/g dry mass, the total flavonoid content ranged from 38.3 to 67.0 mg/g dm, and the antioxidant activity according to the DPPH assay ranged from 253.3 to 342.9 mg TE/g dm and according to the FRAP assay ranged from 8.9 to 11.4 mg TE/g dm. Hierarchical cluster analysis and principal component analyses were used to assess the geographical variations in the essential oil composition. Statistical analysis revealed that the analysed populations are grouped into four main clusters that appear to reflect the environmental impact on the chemical composition, which is influenced by differences in habitat composition, altitude and microclimatic conditions.

  3. Effects of lignin-derived phenolic compounds on xylitol production and key enzyme activities by a xylose utilizing yeast Candida athensensis SB18.

    Science.gov (United States)

    Zhang, Jinming; Geng, Anli; Yao, Chuanyi; Lu, Yinghua; Li, Qingbiao

    2012-10-01

    Candida athensensis SB18 is potential xylitol producing yeast isolated in Singapore. It has excellent xylose tolerance and is able to produce xylitol in high titer and yield. However, by-products, such as phenolic compounds, derived in lignocellulosic biomass hydrolysate might negatively influence the performance of this strain for xylitol production. In this work, four potential phenolic inhibitors, such as vanillin, syringaldehyde, 4-hydroxybenzaldehyde and phenol, were evaluated for their inhibitory effects on xylitol production by C. athensensis SB18. Phenol was shown to be the most toxic molecule on this microorganism followed by syringaldehyde. Vanillin and 4-hydroxylbenzaldehyde was less toxic than phenol and syringaldehyde, with vanillin being the least toxic. Inhibition was insignificant when the total content of inhibitors was below 1.0 g/L. The presence of phenolic compounds affected the activity of xylose reductase, however not on that of xylitol dehydrogenase. C. athensensis SB18 is therefore a potential xylitol producer from hemicellulosic hydrolysate due to its assimilation of such phenolic inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae.

    Science.gov (United States)

    Subban, Kamalraj; Subramani, Ramesh; Johnpaul, Muthumary

    2013-01-01

    A novel phenolic compound, 4-(2,4,7-trioxa-bicyclo[4.1.0]heptan-3-yl) phenol (1), was isolated from Pestalotiopsis mangiferae, an endophytic fungus associated with Mangifera indica Linn. The structure of the compound was elucidated on the basis of comprehensive spectral analysis (UV, IR, ¹H-, ¹³C- and 2D-NMR, as well as HRESI-MS). Compound (1) shows potent antibacterial and antifungal activity against Bacillus subtilis, Klebsiella pneumoniae, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa and Candida albicans. The transmission electron microscope study for the mode of inhibition of compound (1) on bacterial pathogens revealed the destruction of bacterial cells by cytoplasm agglutination with the formation of pores in cell wall membranes.

  5. Phenolic compounds of Triplaris gardneriana can protect cells against oxidative stress and restore oxidative balance

    NARCIS (Netherlands)

    Almeida, de Thiago Silva; Neto, José Joaquim Lopes; Sousa, de Nathanna Mateus; Pessoa, Igor Parra; Vieira, Leonardo Rogério; Medeiros, De Jackeline Lima; Boligon, Aline Augusti; Hamers, Astrid R.M.; Farias, Davi Felipe; Peijnenburg, Ad; Carvalho, Ana Fontenele Urano

    2017-01-01

    This work aimed to add value to an underexploited plant species from Brazil, Triplaris gardneriana. To that, the phenolic compounds profile of its seed ethanolic extract and fractions was examined by HPLC and the antioxidant capacity assessed using chemical assays as well as in vitro cell imaging.

  6. Nanoliposomal carriers for improvement the bioavailability of high - valued phenolic compounds of pistachio green hull extract.

    Science.gov (United States)

    Rafiee, Zahra; Barzegar, Mohsen; Sahari, Mohammad Ali; Maherani, Behnoush

    2017-04-01

    In present study, nanoliposomes were prepared by thin hydration method with different concentrations of phenolic compounds (500, 750 and 1000ppm) of pure extract and lecithin (1, 2 and 3%w/w) and characterized by considering the particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE) and morphology. The results showed that nanoliposome (90.39-103.78nm) had negative surface charge varied from -51.5±0.9 to -40.2±0.2mV with a narrow size distribution (PDI≈0.069-0.123). Nanoliposomes composed of 1% lecithin with 1000ppm of phenolic compounds had the highest EE (52.93%). The FTIR analysis indicated the formation of hydrogen bonds between the polar zone of phospholipid and the OH groups of phenolic compounds. Phenolic compounds also increased phase transition temperature (Tc) of nanoliposomes (2.01-7.24°C). Moreover, nanoliposomes had considerable stability during storage. Consequently, liposome is an efficient carrier for protection and improving PGHE biofunctional actives in foodstuffs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds

    NARCIS (Netherlands)

    Mateo Anson, N.; Selinheimo, E.; Havenaar, R.; Aura, A.-M.; Mattila, I.; Lehtinen, P.; Bast, A.; Poutanen, K.; Haenen, G.R.M.M.

    2009-01-01

    Ferulic acid (FA) is the most abundant phenolic compound in wheat grain, mainly located in the bran. However, its bioaccessibility from the bran matrix is extremely low. Different bioprocessing techniques involving fermentation or enzymatic and fermentation treatments of wheat bran were developed

  8. Bark as potential source of chemical substances for industry: analysis of content of selected phenolic compounds

    Czech Academy of Sciences Publication Activity Database

    Maršík, Petr; Kotyza, Jan; Rezek, Jan; Vaněk, Tomáš

    -, č. 1 (2013), s. 4-9 ISSN 1804-0195 R&D Projects: GA MŠk(CZ) OC10026 Institutional research plan: CEZ:AV0Z50380511 Keywords : bark * extraction * phenolic compounds Subject RIV: EI - Biotechnology ; Bionics http://www. waste forum.cz/cisla/WF_1_2013.pdf#page=4

  9. Gamma irradiation affects the total phenol, anthocyanin and antioxidant properties in three different persian pistachio nuts.

    Science.gov (United States)

    Akbari, Mohammad; Farajpour, Mostafa; Aalifar, Mostafa; Sadat Hosseini, Mohammad

    2018-02-01

    The effects of gamma irradiation (GR) on total phenol, anthocyanin and antioxidant activity were investigated in three different Persian pistachio nuts at doses of 0, 1, 2 and 4 kGy. The antioxidant activity, as determined by FRAP and DPPH methods, revealed a significant increase in the 1-2 kGy dose range. Total phenol content (TPC) revealed a similar pattern or increase in this range. However, when radiation was increased to 4 kGy, TPC in all genotypes decreased. A radiation dose of 1 kGy had no significant effect on anthocyanin content of Kale-Ghouchi (K) and Akbari (A) genotypes, while it significantly increased the anthocyanin content in the Ghazvini (G) genotype. In addition, increasing the radiation to 4 kGy significantly increased the anthocyanin content of K and G genotypes. To conclude, irradiation could increase the phenolic content, anthocyanin and antioxidant activity of pistachio nuts.

  10. The relationship between total phenol concentration and the perceived style of extra virgin olive oil

    Energy Technology Data Exchange (ETDEWEB)

    Gawel, R.; Rogers, D. A. G.

    2009-07-01

    The degree of bitterness and pungency of a virgin olive oil largely defines its style, and therefore how it is most appropriately used by consumers. In order to assess how Australian olive oil producers interpret the style of their oils, 920 Australian virgin olive oils were classified by their producers as either being mild, medium or robust in style. Although in general, the classifications by producers were associated with the oils total phenol concentration, significant variability in phenol concentration within each style category was observed. The perceived styles of a subset of these oils were further assessed by panels of expert tasters. The expert panels were more discriminating when assigning oils to style categories based on total phenol levels. The producers and the expert panels were in moderate agreement with respect to oil style, with the interpretation of what constitutes a mild oil being the most contentious. (Author) 16 refs.

  11. Transformations of Phenolic Compounds in an in vitro Model Simulating the Human Alimentary Tract

    Directory of Open Access Journals (Sweden)

    Aleksandra Duda-Chodak

    2009-01-01

    Full Text Available The aim of this work is to establish the antioxidant properties of polyphenolic compounds of selected fruits before and after their transformations during digestion. The experiment was conducted in in vitro conditions on a set of dialysis membranes which simulated the human digestive tract. Apples of the Šampion, Malinowka and Golden Delicious cultivars, black chokeberry, banana, Wegierka zwykla blue plum, melon and Lukasowka pear were chosen for examination. It was found that compounds obtained after simulated digestion of chokeberries, pears and bananas showed lower antioxidant potential than fresh fruits, while the opposite results were obtained for apples and plums. All dialysates obtained after digestion were characterized by lower content of total polyphenols in comparison with raw material (fresh fruits. It was found that the polyphenols were hydrolyzed, especially glycosides of quercetin and cyanidin. Phenolic acids and cyanidin were characterized by low availability for absorption, whereas catechin and quercetin had a very high level of accessibility in the model small intestine.

  12. Phenolic compounds and flavonoids as plant growth regulators from fruit and leaf of Vitex rotundifolia.

    Science.gov (United States)

    Yoshioka, Takeo; Inokuchi, Tomohisa; Fujioka, Shozo; Kimura, Yasuo

    2004-01-01

    Five phenolic compounds, 4-hydroxybenzoic acid methyl ester (1), vanillic acid methyl ester (2), 4-hydroxy benzaldehyde (3), 4-hydroxybenzoic acid (4) and ferulic acid (5), and four flavonoids, 5,5'-dihydroxy-4',6,7-trimethoxyflavanone (6), luteolin (7), vitexicarpin (8) and artemetin (9), were isolated from fruits and leaves of Vitex rotundifolia L. The biological activities of these nine compounds have been examined using a bioassay with lettuce seedlings.

  13. Analysis of phenolic compounds from different morphological parts of Helichrysum devium by liquid chromatography with on-line UV and electrospray ionization mass spectrometric detection.

    Science.gov (United States)

    Gouveia, Sandra C; Castilho, Paula C

    2009-12-01

    A simple and rapid method has been used for the screening and identification of the main phenolic compounds from Helichrysum devium using high-performance liquid chromatography with on-line UV and electrospray ionization mass spectrometric detection (LC-DAD/ESI-MS(n)). The total aerial parts and different morphological parts of the plant, namely leaves, flowers and stems, were analyzed separately. A total of 34 compounds present in the methanolic extract from Helichrysum devium were identified or tentatively characterized based on their UV and mass spectra and retention times. Three of these compounds were positively identified by comparison with reference standards. The phenolic compounds included derivatives of quinic acid, O-glycosylated flavonoids, a caffeic acid derivative and a protocatechuic acid derivative. The characteristic loss of 206 Da from malonylcaffeoyl quinic acid was used to confirm the malonyl linkage to the caffeoyl group. This contribution presents one of the first reports on the analysis of phenolic compounds from Helichrysum devium using LC-DAD/ESI-MS(n) and highlights the prominence of quinic acid derivatives as the main group of phenolic compounds present in these extracts. We also provide evidence that the methanolic extract from the flowers was significantly more complex when compared to that of other morphological parts. Copyright 2009 John Wiley & Sons, Ltd.

  14. Effect of micro-oxygenation on color and anthocyanin-related compounds of wines with different phenolic contents.

    Science.gov (United States)

    Cano-López, Marta; Pardo-Mínguez, Francisco; Schmauch, Gregory; Saucier, Cedric; Teissedre, Pierre-Louis; López-Roca, Jose María; Gómez-Plaza, Encarna

    2008-07-23

    Several factors may affect the results obtained when micro-oxygenation is applied to red wines, the most important being the moment of application, the doses of oxygen, and the wine phenolic characteristics. In this study, three red wines, made from Vitis vinifera var. Monastrell (2005 vintage) and with different phenolic characteristics, were micro-oxygenated to determine as to how this technique affected the formation of new pigments in the wines and their chromatic characteristics. The results indicated that the different wines were differently affected by micro-oxygenation. In general, the micro-oxygenated wines had a higher percentage of new anthocyanin-derived pigments, being that this formation is more favored in the wines with the highest total phenol content. These compounds, in turn, significantly increased the wine color intensity. The wine with the lowest phenolic content was less influenced by micro-oxygenation, and the observed evolution in the degree of polymerization of tannins suggested that it might have suffered overoxygenation.

  15. Computational studies of free radical-scavenging properties of phenolic compounds.

    Science.gov (United States)

    Alov, Petko; Tsakovska, Ivanka; Pajeva, Ilza

    2015-01-01

    For more than half a century free radical-induced alterations at cellular and organ levels have been investigated as a probable underlying mechanism of a number of adverse health conditions. Consequently, significant research efforts have been spent for discovering more effective and potent antioxidants / free radical scavengers for treatment of these adverse conditions. Being by far the most used antioxidants among natural and synthetic compounds, mono- and polyphenols have been the focus of both experimental and computational research on mechanisms of free radical scavenging. Quantum chemical studies have provided a significant amount of data on mechanisms of reactions between phenolic compounds and free radicals outlining a number of properties with a key role for the radical scavenging activity and capacity of phenolics. The obtained quantum chemical parameters together with other molecular descriptors have been used in quantitative structure-activity relationship (QSAR) analyses for the design of new more effective phenolic antioxidants and for identification of the most useful natural antioxidant phenolics. This review aims at presenting the state of the art in quantum chemical and QSAR studies of phenolic antioxidants and at analysing the trends observed in the field in the last decade.

  16. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo Peels

    Directory of Open Access Journals (Sweden)

    Ramón Pacheco-Ordaz

    2018-02-01

    Full Text Available Mango (Mangifera indica cv. Ataulfo peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5% when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10−6 cm/s than in the other fractions and similar to that obtained when tested pure (2.48 × 10−6 cm/s. In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry.

  17. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo) Peels

    Science.gov (United States)

    Pacheco-Ordaz, Ramón; González-Aguilar, Gustavo A.

    2018-01-01

    Mango (Mangifera indica cv. Ataulfo) peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA) and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5%) when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp) across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10−6 cm/s) than in the other fractions and similar to that obtained when tested pure (2.48 × 10−6 cm/s). In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry. PMID:29419800

  18. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo) Peels.

    Science.gov (United States)

    Pacheco-Ordaz, Ramón; Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A; González-Aguilar, Gustavo A

    2018-02-08

    Mango ( Mangifera indica cv. Ataulfo) peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA) and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5%) when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp) across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10 -6 cm/s) than in the other fractions and similar to that obtained when tested pure (2.48 × 10 -6 cm/s). In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry.

  19. Influence of storage temperature on quality parameters, phenols and volatile compounds of Croatian virgin olive oils

    Directory of Open Access Journals (Sweden)

    Brkić Bubola, K.

    2014-09-01

    Full Text Available The influence of low storage temperature (+4 °C and -20 °C and conventional storage room temperature on the quality parameters, phenolic contents and volatile profiles of Buža, Črna and Rosinjola monovarietal virgin olive oils after 12 months of storage was investigated in this study. Virgin olive oils stored at low temperatures maintained better quality parameters than oils stored at room temperature. A negligible decrease in the total phenols was detected after 12 months of storage at all investigated temperatures. The total volatile compounds, aldehydes, alcohols and esters in almost all stored samples were unchanged compared to fresh oils. Total ketones increased after storage, although at a lower temperature these changes were less notable. An increase in the oxidation indicators hexanal and hexanal/E-2-hexenal ratio was the lowest in oils stored at +4 °C.Storage at temperatures lower than room temperature could help to prolong the shelf-life of extra virgin olive oil by maintaining high quality parameters and preserving the fresh oil’s volatile profile.Se ha estudiado la influencia, durante 12 meses, de temperaturas bajas (+4 °C y −20 °C y convencional (ambiente, sobre los parámetros de calidad, contenido fenólico y perfil de volátiles de aceites de oliva vírgenes monovarietales Buža, Črna y Rosinjola. Los aceites de oliva vírgenes almacenados a bajas temperaturas mantienen mejores propiedades de calidad que los aceites almacenados a temperatura ambiente. Se encontró una disminución no significativa de los fenoles totales después de 12 meses de almacenamiento a todas las temperaturas estudiadas. Los compuestos volátiles totales, aldehídos, alcoholes y ésteres, en casi todas las muestras almacenadas, se mantuvieron sin cambios en comparación con los aceites frescos. Las cetonas totales incrementaron tras el almacenamiento, aunque a temperaturasmas bajas estos cambios fueron menos notables. El incremento de los

  20. Photosynthetic capacity is negatively correlated with the concentration of leaf phenolic compounds across a range of different species.

    Science.gov (United States)

    Sumbele, Sally; Fotelli, Mariangela N; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A; Karabourniotis, George

    2012-01-01

    Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective-defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (A(max)) and TP and CT across species from different ecosystems in different continents? A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. The results revealed a negative relationship between TP and CT and A(max) among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, A(max) and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species.

  1. Inhibition and kinetic studies of cellulose- and hemicellulose-degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    Science.gov (United States)

    Surendran, A; Siddiqui, Y; Ali, N S; Manickam, S

    2018-06-01

    Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secretes extracellular hydrolytic enzymes. These play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by Ganoderma boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study. Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (V max and K m ) and the stability of the hydrolytic enzymes were also characterized. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Among all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G. boninense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature. These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma. The study has proved a replacement for chemical controls of G. boninense with naturally occurring phenolic compounds. © 2018 The Society for Applied Microbiology.

  2. Total Content of Phenolics and Antioxidant Activity in Crispbreads with Plant By-product addition

    Directory of Open Access Journals (Sweden)

    Konrade Daiga

    2017-11-01

    Full Text Available Vegetable processing in food industry results in significant amount of by-products – peel, mark, bark, seeds still rich in bioactive compounds. Apple, carrot and pumpkin peel and mark may be used for production of crispbreads as functional ingredients. The objective of this study is to investigate the stability of total phenolic content (TPC and antioxidant activity after high temperature and short time (HTST extrusion cooking of a wheat and rice-based crispbreads with addition of apple, carrot and pumpkin by-products obtained after juice extraxtion and dried. Raw materials for crispbread production were wheat flour, rice flour, wheat bran (72%, 24% and 4% respectively with addition of microwave–vacuum dried by-product powder in different amount (5%, 10%, 15%, 20%. Extrusion process was performed by using a laboratory singlescrew extruder GÖTTFERT 1 screw Extrusiometer L series (Germany. Total phenolic content (TPC was determined using the Folin Ciocalteu method. Antioxidant activity was evaluated by free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH antioxidant scavenging activity using a modified colorimetric method. Comparing different raw formulations, it was observed that the TPC of the apple by-product flour was significantly higher (p < 0.05 than in carrot and pumpkin flour. TPC in cereal-based crispbread was 36.06±1.15 before extrusion and 13.90±1.01 mg GAEg-1 DW (milligram Gallic acid equivalent per 100 g of dry weight (mg GAE 100 g−1 DW after extrusion. Addition of apple BPF increased TPC in crispbreads to 106.25±2.08, carrot BPF 84.73±3.45 and pumpkin BPF to 108.82±1.04 mg GAEg−1 DW. Antioxidant activity of control sample was 1.07±0.01mg TE (Trolox equivalents g−1 DW but in samples with addition of 20% apple by-products, it reached 3.77±0.02 TE g−1 DW for samples wih 20% carrot by-products reached 2.52±0.03TE g−1 DW and for samples wih 20% pumpkin by-products reached 3.77±0.02 TE g−1 DW.

  3. Bioactive phenolic compounds from aerial parts of Plinia glomerata.

    Science.gov (United States)

    Serafin, Cláudia; Nart, Viviane; Malheiros, Angela; de Souza, Márcia Maria; Fischer, Luiz; Delle Monache, Giuliano; Della Monache, Franco; Cechinel Filho, Valdir

    2007-01-01

    The present work describes the antinociceptive properties and chemical composition of the aerial parts of Plinia glomerata (Myrtaceae). Both of the extracts evaluated, acetonic and methanolic, showed potent antinociceptive action, when analyzed against acetic acid-induced abdominal constrictions in mice, with calculated ID50 (mg/kg, i. p.) values of 24.8 and 3.3, respectively. Through usual chromatographic techniques with an acetonic extract, the following compounds were obtained: 3,4,3'-trimethoxy flavellagic acid (1), 3,4,3'-trimethoxy flavellagic acid 4'-O-glucoside (3) and quercitrin (4), which were identified based on spectroscopic data. Compounds 1 (ID50 = 3.9 mg/kg, i. p., or 10.8 micromol/kg) and 3 (ID50 = 1.3 mg/kg or 2.5 micromol/kg) were notably more active than some well-known analgesic drugs used here for comparison.

  4. New phenolic compounds from the twigs of Artocarpus heterophyllus.

    Science.gov (United States)

    Di, X; Wang, S; Wang, B; Liu, Y; Yuan, H; Lou, H; Wang, X

    2013-02-01

    Two new chalcones, artocarpusins A and B (1 and 2), one new flavone, artocarpusin C (3), one new 2-arylbenzofuran derivative, artocarstilene A (4), and 15 flavonoids were isolated from the twigs of Artocarpus heterophyllus. Their structures were established on the basis of extensive spectroscopic analysis. Compounds 9 and 16 showed moderate inhibitory activity on the proliferation of the PC-3 and H460 cell lines.

  5. Antioxidant activity and total phenolic content in Red Ginger (Zingiber officinale) based drinks

    Science.gov (United States)

    Widayat; Cahyono, B.; Satriadi, H.; Munfarida, S.

    2018-01-01

    Indonesia is a rich spices country, both as a cooking spice and medicine. One of the most abundant commodities is red ginger, where it still less in application. On the other hand, the level of pollution is higher, so antioxidants are needed to protect the body cells from the bad effects of free radicals. The body can not naturally produce antioxidants as needed, so we need to consume foods with high antioxidant content. The purpose of this study is to know the antioxidant activity and total phenolic content in red ginger (Zingiber officinale) based drinks. Research design with complete randomized design (RAL) with factorial pattern 3 x 3, as the first factor is red ginger extract and water ratio (1: 1, 1: 2 and 1: 3) and second factor is the type of sugar used (cane sugar, palm sugar and mixed sugar). The results of this study indicate that red ginger extract and water ratio of 1: 3 give higher antioxidant. The highest antioxidant obtained in red ginger extract and water ratio of 1: 3 and using mixed sugar. That antioxidants value is 88.56%, it is not significant decreased compared to the antioxidant of pure ginger extract that is 91.46%. For higher phenol total content obtained on syrup that uses palm sugar. The highest phenol total content obtained in red ginger extract and water ratio of 1: 1 and using palm sugar. That total phenol content value is 6299 ppm.

  6. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds

    Directory of Open Access Journals (Sweden)

    H. Hajimehdipoor

    2014-04-01

    Full Text Available Phenolic and flavonoid compounds are secondary metabolites of plants which possess various activities such as anti-inflammatory, analgesic, anti-diabetes and anticancer effects. It has been established that these compounds can scavenge free radicals produced in the body. Because of this ability, not only the plants containing phenolic and flavonoid compounds but also, the pure compounds are used in medicinal products for prevention and treatment of many disorders. Considering that the golden aim of the pharmaceutical industries is using the most effective compounds with lower concentrations, determination of the best combination of the compounds with synergistic effects is important. In the present study, synergistic antioxidant effects of four phenolic compounds including caffeic acid, gallic acid, rosmarinic acid, chlorogenic acid and two flavonoids,  rutin and quercetin, have been investigated by FRAP (Ferric Reducing Antioxidant Power method. The synergistic effect was assessed by comparing the experimental antioxidant activity of the mixtures with calculated theoretical values and the interactions of the compounds were determined. The results showed that combination of gallic acid and caffeic acid demonstrated considerable synergistic effects (137.8% while other combinations were less potent. Among examined substances, rutin was the only one which had no effect on the other compounds. The results of ternary combinations of compounds demonstrated antagonistic effects in some cases. This was more considerable in mixture of rutin, caffeic acid, rosmarinic acid (-21.8%, chlorogenic acid, caffeic acid, rosmarinic acid (-20%, rutin, rosmarinic acid, gallic acid (-18.5% and rutin, chlorogenic acid, caffeic acid (-15.8%, while, combination of quercetin, gallic acid, caffeic acid (59.4% and quercetin, gallic acid, rutin (55.2% showed the most synergistic effects. It was concluded that binary and ternary combination of quercetin, rutin, caffeic acid

  7. Genetic variation of carotenoids, vitamin E and phenolic compounds in Provitamin A biofortified maize.

    Science.gov (United States)

    Muzhingi, Tawanda; Palacios-Rojas, Natalia; Miranda, Alejandra; Cabrera, Maria L; Yeum, Kyung-J; Tang, Guangwen

    2017-02-01

    Biofortified maize is not only a good vehicle for provitamin A carotenoids for vitamin A deficient populations in developing countries but also a source of vitamin E, tocochromanols and phenolic compounds, which have antioxidant properties. Using high-performance liquid chromatography and a total antioxidant performance assay, the present study analyzed the antioxidant variation and antioxidant activity of 36 provitamin A improved maize hybrids and one common yellow maize hybrid. The ranges of major carotenoids in provitamin A carotenoids biofortified maize were zeaxanthin [1.2-13.2 µg g -1 dry weight (DW)], β-cryptoxanthin (1.3-8.8 µg g -1 DW) and β-carotene (1.3-8.0 µg g -1 DW). The ranges of vitamin E compounds identified in provitamin A carotenoids biofortified maize were α-tocopherol (3.4-34.3 µg g -1 DW), γ-tocopherol (5.9-54.4 µg g -1 DW), α-tocotrienol (2.6-19.5 µg g -1 DW) and γ-tocotrienol (45.4 µg g -1 DW). The ranges of phenolic compounds were γ-oryzanol (0.0-0.8 mg g -1 DW), ferulic acid (0.4-3.6 mg g -1 DW) and p-coumaric acid (0.1-0.45 mg g -1 DW). There was significant correlation between α-tocopherol and cis isomers of β-carotene (P < 0.01). Tocotrienols were correlated with α-tocopherol and γ-oryzanol (P < 0.01). Genotype was significant in determining the variation in β-cryptoxanthin, β-carotene, α-tocopherol and γ-tocopherol contents (P < 0.01). A genotype × environment interaction was observed for γ-tocopherol content (P < 0.01). © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Towards semisynthetic natural compounds with a biaryl axis: Oxidative phenol coupling in Aspergillus niger.

    Science.gov (United States)

    Hugentobler, Katharina Gloria; Müller, Michael

    2018-04-01

    Regio- and stereoselective phenol coupling is difficult to achieve using synthetic strategies. However, in nature, cytochrome P450 enzyme-mediated routes are employed to achieve complete axial stereo- and regiocontrol in the biosynthesis of compounds with potent bioactivity. Here, we report a synthetic biology approach whereby the bicoumarin metabolic pathway in Aspergillus niger was specifically tailored towards the formation of new coupling products. This strategy represents a manipulation of the bicoumarin pathway in A. niger via interchange of the phenol-coupling biocatalyst and could be applied to other components of the pathway to access a variety of atropisomeric natural product derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Phenol compounds in the borehole 5G, Vostok station, after the unlocking of the subglacial lake

    Directory of Open Access Journals (Sweden)

    I. A. Alekhina

    2017-01-01

    Full Text Available The main results after the first unlocking into the subglacial Lake Vostok were as follows: the Lake had been opened and not polluted; the water pressure within the lake was not balanced by a column of the drilling liquid that resulted in unplanned rise of water in the borehole up to 340 m. The main problem during the drilling in the lake ice was to prevent a pollution of water by the drilling fluid, which filled the borehole, and thus, to avoid a compression of the fluid which could be the main source of chemical and biological pollution of not only the Lake itself, but also the Lake water samples and ice cores. The article presents results of analysis of causes for the occurrence of phenolic compounds in the central channel in the core of secondary ice, being formed by the lake water that rose into the well after the first penetration (the range of depths was 3426–3450 m. It was found that the process, running within the borehole during the drilling, can be described as the fractionation of phenolic compounds, being contained in the filling liquid, to the water phase with its subsequent freezing. We have developed methods for the determination of concentrations of phenolic compounds in the original aviation kerosene and Freon HCFC-141b: 6. mg·l−1 and 0.032 mg·l−1, respectively. To analyze the composition of phenolic compounds in the extract of real filling liquid, located at the bottom of the borehole, the method of gas chromatography-mass spectrometry (GC-MS was used. The corresponding peaks were quite well resolved and identified as phenol and its derivatives. The main components of the extract were phenol (20%, 2.5-dimethyl phenol (23,8%, 2,4,6-trimethylphenol, and other congeners of phenol. In our case, the Lake Vostok was not polluted during both, the first and second penetrations, however, the problem of human impact on these pristine and unique subglacial reservoirs remains extremely relevant. This impact includes not only

  10. Microscale validation of 4-aminoantipyrine test method for quantifying phenolic compounds in microbial culture

    International Nuclear Information System (INIS)

    Justiz Mendoza, Ibrahin; Aguilera Rodriguez, Isabel; Perez Portuondo, Irasema

    2014-01-01

    Validation of test methods microscale is currently of great importance due to the economic and environmental advantages possessed, which constitutes a prerequisite for the performance of services and quality assurance of the results to provide customer. This paper addresses the microscale validation of 4-aminoantipyrine spectrophotometric method for the quantification of phenolic compounds in culture medium. Parameters linearity, precision, regression, accuracy, detection limits, quantification limits and robustness were evaluated, addition to the comparison test with no standardized method for determining polyphenols (Folin Ciocalteu). The results showed that both methods are feasible for determining phenols

  11. Determination of in vitro total phenolic, flavonoid contents and antioxidant capacity of the methanolic extract of Echium amoenum L.

    Directory of Open Access Journals (Sweden)

    Fathi H

    2016-06-01

    Full Text Available Introduction: In traditional and modern medicine, active ingredients of medicinal plants have many applications in food, pharmaceutical, medical and industry. Antioxidants are compounds that prevent the oxidation process in the cell. Echium amoenum L. is a plant which grows in the mountainous regions of Mazandaran. This plant has different biological effects such as sedation, anti-inflammation, antidepressant and cancer preventive properties in traditional medicine. The aim of this study was to determine the total phenolic, flavonoid contents and antioxidant capacity of the methanolic extract of E.amoenum plant. Methods:In this experimental laboratory study the content of total phenolic Using the folin-siokalatio reactive at 760 nm wavelength and flavonoid With the use of aluminum chloride reagent at 420nm of E.amoenum extract were measured and antioxidant capacities of different concentrations of the extract were evaluated. Results: The results showed that total phenolic content of the extract was 429±2μg gallic acid equivalent/ml and flavonoid content was 148.56±1.52μg quercetin equivalent/ml, respectively. The radical scavenging activity by 2, 2-diphenyl-1-picryl-hydrazyl hydrate (DPPH,inhibitory concentration of 50%(IC50,was determined 178.11 μg/ml. Assessment of the reducing ability of extract showed that the extract had more activity than vitamin C. The percent nitric oxide trap inhibition of the extract was 57.89% and power iron chelating properties was 51.74%,that showed statistically significant difference in comparison with vitamin C and Quercetin (P=0.0473 and (P=0.0096 respectively. Conclusion: According to the results, E.amoenum extract had remarkable antioxidant capacity and can be proposed as an antioxidant compound used in the manufacture of food and pharmaceutical products.

  12. The effects of dietary phenolic compounds on cytokine and antioxidant production by A549 cells.

    Science.gov (United States)

    Gauliard, Benoit; Grieve, Douglas; Wilson, Rhoda; Crozier, Alan; Jenkins, Carol; Mullen, William D; Lean, Michael

    2008-06-01

    Levels of inflammatory cytokines are raised in chronic obstructive pulmonary disease (COPD). A diet rich in antioxidant vitamins may protect against the development of COPD. This study examined the effects of phenolic compounds and food sources on cytokine and antioxidant production by A549 cells. The effects of the following phenolic compounds on basal and interleukin (IL)-1-stimulated release of IL-8, IL-6, and reduced glutathione (GSH) were examined: resveratrol; Bouvrage, a commercially available raspberry juice (Ella Drinks Ltd., Alloa, Clacksmannanshire, UK); and quercetin 3'-sulfate. Purification of the raspberry juice by high-performance liquid chromatography gave three fractions: Fraction 1 contained phenolic acid and vitamin C, Fraction 2 contained flavonoids and ellagic acid, and Fraction 3 contained anthocyanins and ellagitannins. IL-8 production was increased in the presence of IL-1 (165 vs. 6,011 pg/mL, P or =50 micromol/mL significantly inhibited IL-8 and IL-6 production. Similar findings were made with raspberry juice at concentrations > or =25 microL/mL, and Fractions 1 and 3 were best able to inhibit IL-8 production. Quercetin 3'-sulfate, at 25 micromol/mL, inhibited IL-8 and IL-6 production. The changes observed in IL-8 were paralleled by changes in tumor necrosis factor-alpha. Thus, phenolic compounds can significantly alter cytokine and antioxidant production.

  13. Determination of phenolic compounds in air by using cyclodextrin-silica hybrid microporous composite samplers.

    Science.gov (United States)

    Mauri-Aucejo, Adela R; Ponce-Català, Patricia; Belenguer-Sapiña, Carolina; Amorós, Pedro

    2015-03-01

    An analytical method for the determination of phenolic compounds in air samples based on the use of cyclodextrin-silica hybrid microporous composite samplers is proposed. The method allows the determination of phenol, guaiacol, cresol isomers, eugenol, 4-ethylphenol and 4-ethylguaiacol in workplaces according to the Norm UNE-EN 1076:2009 for active sampling. Therefore, the proposed method offers an alternative for the assessment of the occupational exposure to phenol and cresol isomers. The detection limits of the proposed method are lower than those for the NIOSH Method 2546. Storage time of samples almost reaches 44 days. Recovery values for phenol, guaiacol, o-cresol, m-cresol, p-cresol, 4-ethylguaiacol, eugenol and 4-ethylphenol are 109%, 99%, 102%, 94%, 94%, 91%, 95% and 102%, respectively with a coefficient of variation below 6%. The method has been applied to the assessment of exposure in different areas of a farm and regarding the quantification of these compounds in the vapors generated by burning incense sticks and an essential oil marketed as air fresheners. The acquired results are comparable with those provided from a reference method for a 95% of confidence level. The possible use of these samplers for the sampling of other toxic compounds such as phthalates is evaluated by qualitative analysis of extracts from incense sticks and essential oil samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Dietary nutritional profile and phenolic compounds consumption in school children of highlands of Argentine Northwest.

    Science.gov (United States)

    Rossi, M C; Bassett, M N; Sammán, N C

    2018-01-01

    The objective of this work was to assess dietary patterns and consumption of phenolic compounds from fruits and vegetables byschoolchildren of high altitude regions from northwest of Argentina. A nutritional survey including food-frequency consumption, 24-h dietary recall and anthropometric measurements was applied to 241 children from 6 to 12years old. The amounts of the different classes of phenolic compounds were established from Food Composition Tables available in phenol-explorer website. Statistics analyses were performed using IBM SPSS 20.0. Nutritional status assessment showed underweight (2.2%), low weight (12.7%), overweight (12.7%) and obesity (7.4%). Mean intake of phenolic compounds was 412mg/day. Most consumed foods were infusions and sugar products, consumption of vegetables, fruits and dairy products were low compared to recommendations for this age. Considering that polyphenols have protective health effects, its low consumption could be a risk of development of chronic non communicable diseases. Published by Elsevier Ltd.

  15. Phenolic Compounds and Antioxidant Activity in Grape Juices: A Chemical and Sensory View

    Directory of Open Access Journals (Sweden)

    Fernanda Cosme

    2018-03-01

    Full Text Available The search for food products that promote health has grown over the years. Phenolic compounds present in grapes and in their derivatives, such as grape juices, represent today a broad area of research, given the benefits that they have on the human health. Grape juice can be produced from any grape variety once it has attained appropriate maturity. However, only in traditional wine producing regions, grape juices are produced from Vitis vinifera grape varieties. For example, Brazilian grape juices are essentially produced from Vitis labrusca grape varieties, known as American or hybrid, as they preserve their characteristics such as the natural flavour after pasteurisation. Grapes are one of the richest sources of phenolic compounds among fruits. Therefore, grape juices have been broadly studied due to their composition in phenolic compounds and their potential beneficial effects on human health, specifically the ability to prevent various diseases associated with oxidative stress, including cancers, cardiovascular and neurodegenerative diseases. Therefore, this review will address grape juices phenolic composition, with a special focus on the potential beneficial effects on human health and on the grape juice sensory impact.

  16. Changes in enzymes, phenolic compounds, tannins, and vitamin C in various stages of jambolan (Syzygium cumini Lamark development

    Directory of Open Access Journals (Sweden)

    Taís Silva de Oliveira Brandão

    2011-12-01

    Full Text Available The physiological state of a fruit is closely related to ripening and climatic conditions during the growing period when the fruit undergo changes in color, texture, and flavor. The ripening of the fruit can involve a complex series of biochemical reactions with alteration in enzymes activities, phenols, tannins, and ascorbic acid. The activity of enzymes (carboximethylcellulase, polygalacturonase, and pectinlyase, the total concentration of phenolic compounds, condensed tannins, and vitamin C in five stages of maturation were studied. Significant changes were observed between the maturity stages. The phenolic compounds were higher at green stage (705.01 ± 7.41; tannins were higher at green/purple stage (699.45 ± 0.22. The results showed that the ascorbic acid levels of the pulp varied significantly from 50.81 ± 1.43 to 6.61 ± 1.04 mg.100 g-1 during maturation. The specific activity of pectin lyase was higher at green stage (1531.90 ± 5.83. The specific activity of polygalacturonase was higher at mature stage (1.83 ± 0.0018. The specific activity of carboximetilcelulose was higher at ripe mature stage (4.61 ± 0.0024. The low ascorbic acid content found in jambolan fruit indicates that this fruit is not a rich source of this nutrient; however, other characteristics can make jambolan products fit for human consumption.

  17. Antioxidative properties of phenolic compounds isolated from the fungal endophytes of Zingiber nimmonii (J.Graham) Dalzell.

    Institute of Scientific and Technical Information of China (English)

    Madhuchhanda Das; Harischandra Sripathy Prakash; Monnanda Somaiah Nalini

    2017-01-01

    BACKGROUND:The microbes living in planta termed ‘endophytes’ is bestowed with the potential to produce bioactive substances.The aim of this investigation was focused on the isolation and molecular identification of the fungal endophytes from Zingiber nimmonii (J.Graham) Dalzell.,an endemic medicinal plant species of the ‘Western ghats’,a hotspot location in southem India and characterization of the secondary metabolites responsible for the antioxidant and DNA protective capacity using chromatography and mass spectrometry techniques.METHODS:Endophytic fungi were isolated and identified by sequencing the Internal Transcribed Spacer (ITS).The secondary metabolites were extracted with ethyl acetate and evaluated for the total phenolic,flavonoid and antioxidant capacities.The isolates with potential antioxidative property were further analyzed for the DNA protection ability and the presence ofbioactive phenolic compounds by High Performance Liquid Chromatography (HPLC) and Electrospray Ionization-Mass Spectroscopy/Mass Spectroscopy (ESI-MS/MS) techniques.RESULTS:Endophytic fungi belonging to 11 different taxa were identified.The total phenolic content of the extracts ranged from 10.8 ± 0.7 to 81.6 ± 6.0 mg gallic acid equivalent/g dry extract.F lavonoid was present in eight extracts in the range of 5.2 ± 0.5 to 24.3 ±0.9 mg catechin equivalents/g dry extract.Bipolaris specifera,Alternaria tenuissima,Aspergillus terreus,Nectria haematococca and Fusarium chlamydosporum extracts exhibited a potentially high antioxidant capacity.Characterization of the extracts revealed an array of phenolic acids and flavonoids.N.haematococca and F.chlamydosporum extracts contained quercetin and showed DNA protection ability.CONCLUSION:This study is the first comprehensive report on the fungal endophytes from Z.nimmonii,as potential sources of antioxidative and DNA protective compounds.The study indicates that Z.nimmonii endophytes are potential sources of antioxidants over the

  18. Identification and Antioxidant Properties of Phenolic Compounds during Production of Bread from Purple Wheat Grains

    Directory of Open Access Journals (Sweden)

    Lilei Yu

    2015-08-01

    Full Text Available Phenolic profiles and antioxidant properties of purple wheat varieties were investigated to document the effects of bread-making. Bread crust and crumb along with samples collected after mixing, 30 min fermenting, 65 min fermenting, and baking were examined. Free phenolic content (105.4 to 113.2 mg FAE/100 g significantly (p < 0.05 increased during mixing, fermenting, and baking (65% to 68%. Bound phenolics slightly (p > 0.05 decreased after 30 min fermentation (7% to 9% compared to the dough after mixing, but increased significantly (p < 0.05 during 65 min fermenting and baking (16% to 27%. Their antioxidant activities followed a similar trend as observed for total phenolic content. The bread crust demonstrated increased free (103% to 109% but decreased bound (2% to 3% phenolic content, whereas bread crumb exhibited a reversal of these results. Total anthocyanin content (TAC significantly (p < 0.05 decreased by 21% after mixing; however, it gradually increased to 90% of the original levels after fermenting. Baking significantly (p < 0.05 decreased TAC by 55%, resulting in the lowest value for bread crust (0.8 to 4.4 mg cyn-3-glu equiv./100 g. p-Hydroxybenzoic, vanillic, p-coumaric, and ferulic acids were detected in free-phenolic extracts, while protocatechuic, caffeic syringic, and sinapic were additional acids in bound-phenolic extracts. Cyanidin-3-glucoside was the detectable anthocyanin in purple wheat. Bread-making significantly (p < 0.05 increased the phenolic content and antioxidant activities; however, it compromised the anthocyanin content of purple wheat bread.

  19. FTIR Analysis of Phenolic Compound as Pancreatic Lipase Inhibitor from Inoculated Aquilaria Malaccensis

    International Nuclear Information System (INIS)

    Nur Fahana Jamahseri; Miradatul Najwa Mohd Rodhi; Nur Hidayah Zulkarnain; Nursyuhada Che Husain; Ahmad Fakhri Syahmi Masruddin

    2014-01-01

    This research aimed to discover the potential of inoculated Aquilaria malaccensis extract as a new and safe lipase inhibitor. The phenolic compounds in this plant are expected to promote inhibitory activity towards pancreatic lipase enzyme. Inoculated Aquilaria malaccensis was selected for this research, wherein the parts of this species (bark and leaves) were extracted via hydro distillation process. The extracts of this plant which are hydrosol, oil, and leaves were analyzed for phyto chemical compound via Fourier Transform Infrared Spectroscopy (FTIR). FTIR analysis of the extracts of inoculated Aquilaria malccensis revealed the presence of hydroxyl functional group in both leaves and hydrosol extracts but absence in oil. This validate the presence of phenolic compound in hydrosol and leaves extract. Therefore, the leaves and hydrosol extracts have potential as an anti-obesity agent by inhibiting pancreatic lipase. (author)

  20. Immunostimulatory effects of the phenolic compounds from lichens on nitric oxide and hydrogen peroxide production

    Directory of Open Access Journals (Sweden)

    Iracilda Z. Carlos

    Full Text Available The effects of isolated compounds from Brazilian lichens and their derivatives on H2O2 and NO production were studied using murine macrophages as a part of an attempt to understand their possible immunomodulatory properties. The compound cytotoxicity was studied using MTT assay. Macrophage stimulation was evaluated by the determination of NO (Griess assay and H2O2 (horseradish peroxidase/phenol red in supernatants of peritoneal macrophage cultures of Swiss mice. This research demonstrated stimulatory activities of some phenolic compounds isolated from lichens and their derivatives on H2O2 and NO production. Structure-activity relationships suggest several synthetic directions for further improvement of immunological activity.

  1. Riboflavin Phototransformation on the Changes of Antioxidant Capacities in Phenolic Compounds.

    Science.gov (United States)

    Song, Juhee; Seol, Nam Gyu; Kim, Mi-Ja; Lee, JaeHwan

    2016-08-01

    Eight phenolic compounds including: p-coumaric acid, vanillic acid, caffeic acid, chlorogenic acid, trolox, quercetin, curcumin, and resveratrol were treated with riboflavin (RF) photosensitization and in vitro antioxidant capacities of the mixtures were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2' azino bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays. Mixtures containing p-coumaric acid and vanillic acid under RF photosensitization showed increases in ferric ion reducing ability and radical scavenging activity of DPPH, whereas mixtures of other compounds had decreases in both radical scavenging ability and ferric reducing antioxidant power. Hydroxycoumaric acid and conjugated hydroxycoumaric and coumaric acids were tentatively identified from RF photosensitized p-coumaric acid, whereas dimmers of vanillic acid were tentatively identified from RF photosensitized vanillic acid. RF photosensitization may be a useful method to enhance antioxidant properties like ferric ion reducing abilities of some selected phenolic compounds. © 2016 Institute of Food Technologists®

  2. Yeast α-Glucosidase Inhibitory Phenolic Compounds Isolated from Gynura medica Leaf

    Directory of Open Access Journals (Sweden)

    Chao Tan

    2013-01-01

    Full Text Available Gynura medica leaf extract contains significant amounts of flavonols and phenolic acids and exhibits powerful hypoglycemic activity against diabetic rats in vivo. However, the hypoglycemic active constituents that exist in the plant have not been fully elaborated. The purpose of this study is to isolate and elaborate the hypoglycemic activity compounds against inhibition the yeast α-glucosidase in vitro. Seven phenolic compounds including five flavonols and two phenolic acids were isolated from the leaf of G. medica. Their structures were identified by the extensive NMR and mass spectral analyses as: kaempferol (1, quercetin (2, kaempferol-3-O-β-D-glucopyranoside (3, kaempferol-3-O-rutinoside (4, rutin (5, chlorogenic acid (6 and 3,5-dicaffeoylquinic acid methyl ester (7. All of the compounds except 1 and 3 were isolated for the first time from G. medica. Compounds 1–7 were also assayed for their hypoglycemic activity against yeast α-glucosidase in vitro. All of the compounds except 1 and 6 showed good yeast α-glucosidase inhibitory activity with the IC50 values of 1.67 mg/mL, 1.46 mg/mL, 0.38 mg/mL, 0.10 mg/mL and 0.53 mg/mL, respectively.

  3. Solid lipid nanoparticles as oral delivery systems of phenolic compounds: Overcoming pharmacokinetic limitations for nutraceutical applications.

    Science.gov (United States)

    Nunes, Sara; Madureira, Ana Raquel; Campos, Débora; Sarmento, Bruno; Gomes, Ana Maria; Pintado, Manuela; Reis, Flávio

    2017-06-13

    Drug delivery systems, accompanied by nanoparticle technology, have recently emerged as prominent solutions to improve the pharmacokinetic properties, namely bioavailability, of therapeutic and nutraceutical agents. Solid lipid nanoparticles (SLNs) have received much attention from researchers due to their potential to protect or improve drug properties. SLNs have been reported to be an alternative system to traditional carriers, such as emulsions, liposomes, and polymeric nanoparticles. Phenolic compounds are widespread in plant-derived foodstuffs and therefore abundant in our diet. Over the last decades, phenolic compounds have received considerable attention due to several health promoting properties, mostly related to their antioxidant activity, which can have important implications for health. However, most of these compounds have been associated with poor bioavailability being poorly absorbed, rapidly metabolized and eliminated, which compromises its biological and pharmacological benefits. This paper provides a systematic review of the use of SLNs as oral delivery systems of phenolic compounds, in order to overcome pharmacokinetic limitations of these compounds and improved nutraceutical potential. In vitro studies, as well as works describing topical and oral treatments will be revisited and discussed. The classification, synthesis, and clinical application of these nanomaterials will be also considered in this review article.

  4. Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria.

    Science.gov (United States)

    Pacheco-Ordaz, R; Wall-Medrano, A; Goñi, M G; Ramos-Clamont-Montfort, G; Ayala-Zavala, J F; González-Aguilar, G A

    2018-01-01

    Fruit extracts from different tissues (pulp, seed and peel) have shown antimicrobial and prebiotic activities related to their phenolic profile, although structure-specific evaluations have not been reported yet. The effect of five phenolic compounds (catechin and gallic, vanillic, ferulic and protocatechuic acids) identified in different fruits, particularly in mango, was evaluated on the growth of two probiotic (Lactobacillus rhamnosusGG ATCC 53103 and Lactobacillus acidophilusNRRLB 4495) and two pathogenic (Escherichia coli 0157:H7 ATCC 43890 and Salmonella enterica serovar Typhimurium ATCC 14028) bacteria. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of phenolic acids ranged from 15-20 mmol l -1 and 20-30 mmol l -1 against E. coli and S. Typhimurium, respectively. For catechin, the MIC and MBC were 35 mmol l -1 and >35 mmol l -1 against E. coli and S. Typhimurium, respectively. The presence of catechin and gallic, protocatechuic and vanillic acids in MRS broth without dextrose allowed the growth of lactobacilli. Catechin combined with protocatechuic or vanillic acid mildly allowed the growth of both probiotics. In conclusion, phenolic compounds can selectively inhibit the growth of pathogenic bacteria without affecting the viability of probiotics. This study provides relevant information about the effects of phenolic compounds commonly present in fruit and vegetables on the growth of probiotic and pathogenic bacteria. The compounds selectively allowed the growth of probiotic lactobacilli (Lactobacillus rhamnosus GG and Lactobacillus acidophilus) and inhibited pathogenic bacteria (Escherichia coli and Salmonella Typhimurium) at the same concentration (20 mmol l -1 ). These findings can contribute to the formulation of nutraceutical products, such as synbiotics, that can restore or maintain an optimal composition of human microbiota, potentially improving the overall health of the consumer. © 2017 The

  5. TOTAL PHENOLIC CONTENT, ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES OF THE EXTRACT OF EPHEDRA PROCERA FISCH. ET MEY.

    Science.gov (United States)

    Dehkordi, Naser Vahed; Kachouie, Mehrdad Ataie; Pirbalouti, Abdollah Ghasemi; Malekpoor, Fatemeh; Rabei, Mohammad

    2015-01-01

    Ephedra prcera belonging to the family Ephedraceae is a poison and medicinal plant. The main aim of present study was to determine total phenolic content and antioxidant and antibacterial activities of ethanolic extract from the aerial parts of E. procera collected from a natural habitat in Chaharmahal va Bakhtiari province, Southwestern Iran. The total phenolic content of the extract by Folin-Ciocalteu method and the antioxidant activity using DPPH assay were determined. The antibacterial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of the extract were evaluated against five bacteria, including Proteus vulgaris, Pseudomonas aeruginosa, Enteobacter aeogenes, Bacillus ceirus and Staphylococcus aureus. Total phenolic content in the extract of E. procera was 0.718 mg tannic acid/g dry weight extract. The results indicated that the ethanolic extract of E. piocera exhibited radical scavenging activity. In addition, the results of this study confirmed that the ethanolic extract of E. procera exhibited antibacterial activity. In conclusion, the extract of E. piocera could be an important source of phenolic components with antioxidant capacity and antibacterial activity.

  6. Distribution of Phenolic Compounds and Antioxidative Activities of Rice Kernel and Their Relationships with Agronomic Practice

    Science.gov (United States)

    Kesarwani, Amit; Chiang, Po-Yuan; Chen, Shih-Shiung

    2014-01-01

    The phenolic and antioxidant activity of ethanolic extract of two Japonica rice cultivars, Taikeng no. 16 (medium and slender grain) and Kaohsiung no. 139 (short and round grain), grown under organic and conventional farming were examined. Analyses shows that Kaohsiung no. 139 contains the highest amount of secondary metabolites and continuous farming can increase its production. Results also suggest that phenolic content under different agronomic practices, has not shown significant differences but organically grown rice has proven to be better in higher accumulation of other secondary metabolites (2,2-diphenyl-1-picrylhydrazyl (DPPH), flavonoid content, and ferrous chelating capacity). In nutshell, genetic traits and environment have significant effect on phenolic compounds and the least variation reported under agronomic practices. PMID:25506072

  7. Distribution of Phenolic Compounds and Antioxidative Activities of Rice Kernel and Their Relationships with Agronomic Practice

    Directory of Open Access Journals (Sweden)

    Amit Kesarwani

    2014-01-01

    Full Text Available The phenolic and antioxidant activity of ethanolic extract of two Japonica rice cultivars, Taikeng no. 16 (medium and slender grain and Kaohsiung no. 139 (short and round grain, grown under organic and conventional farming were examined. Analyses shows that Kaohsiung no. 139 contains the highest amount of secondary metabolites and continuous farming can increase its production. Results also suggest that phenolic content under different agronomic practices, has not shown significant differences but organically grown rice has proven to be better in higher accumulation of other secondary metabolites (2,2-diphenyl-1-picrylhydrazyl (DPPH, flavonoid content, and ferrous chelating capacity. In nutshell, genetic traits and environment have significant effect on phenolic compounds and the least variation reported under agronomic practices.

  8. Effect of in Vitro Gastrointestinal Digestion on Encapsulated and Nonencapsulated Phenolic Compounds of Carob (Ceratonia siliqua L.) Pulp Extracts and Their Antioxidant Capacity.

    Science.gov (United States)

    Ydjedd, Siham; Bouriche, Sihem; López-Nicolás, Rubén; Sánchez-Moya, Teresa; Frontela-Saseta, Carmen; Ros-Berruezo, Gaspar; Rezgui, Farouk; Louaileche, Hayette; Kati, Djamel-Edine

    2017-02-01

    To determine the effect of in vitro gastrointestinal digestion on the release and antioxidant capacity of encapsulated and nonencapsulated phenolics carob pulp extracts, unripe and ripe carob pulp extracts were microencapsulated with polycaprolactone via double emulsion/solvent evaporation technique. Microcapsules' characterization was performed using scanning electron microscopy and Fourier transform infrared spectrometry analysis. Total phenolics and flavonoids content and antioxidant activities (ORAC, DPPH, and FRAP) were evaluated after each digestion step. The release of phenolic acids and flavonoids was measured along the digestion process by HPLC-MS/MS analysis. The most important phenolics and flavonoids content as well as antioxidant activities were observed after gastric and intestinal phases for nonencapsulated and encapsulated extracts, respectively. The microencapsulation of carob polyphenols showed a protective effect against pH changes and enzymatic activities along digestion, thereby promoting a controlled release and targeted delivery of the encapsulated compound, which contributed to an increase in its bioaccessibility in the gut.

  9. HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums.

    Science.gov (United States)

    Tomás-Barberán, F A; Gil, M I; Cremin, P; Waterhouse, A L; Hess-Pierce, B; Kader, A A

    2001-10-01

    The phenolic compounds of 25 peach, nectarine, and plum cultivars were studied and quantified by HPLC-DAD-ESIMS. Hydroxycinnamates, procyanidins, flavonols, and anthocyanins were detected and quantified. White and yellow flesh nectarines and peaches, and yellow and red plums, were analyzed at two different maturity stages with consideration of both peel and flesh tissues. HPLC-MS analyses allowed the identification of procyanidin dimers of the B- and A-types, as well as the presence of procyanidin trimers in plums. As a general rule, the peel tissues contained higher amounts of phenolics, and anthocyanins and flavonols were almost exclusively located in this tissue. No clear differences in the phenolic content of nectarines and peaches were detected or between white flesh and yellow flesh cultivars. There was no clear trend in phenolic content with ripening of the different cultivars. Some cultivars, however, had a very high phenolic content. For example, the white flesh nectarine cultivar Brite Pearl (350-460 mg/kg hydroxycinnamates and 430-550 mg/kg procyanidins in flesh) and the yellow flesh cv. Red Jim (180-190 mg/kg hydroxycinnamates and 210-330 mg/kg procyanidins in flesh), contained 10 times more phenolics than cultivars such as Fire Pearl (38-50 mg/kg hydroxycinnamates and 23-30 mg/kg procyanidins in flesh). Among white flesh peaches, cultivars Snow King (300-320 mg/kg hydroxycinnamates and 660-695 mg/kg procyanidins in flesh) and Snow Giant (125-130 mg/kg hydroxycinnamates and 520-540 mg/kg procyanidins in flesh) showed the highest content. The plum cultivars Black Beaut and Angeleno were especially rich in phenolics.

  10. Fluctuations in phenolic content, ascorbic acid and total carotenoids and antioxidant activity of fruit beverages during storage

    Directory of Open Access Journals (Sweden)

    C. Castro-López

    2016-09-01

    Full Text Available Stability of the total phenolic content, ascorbic acid, total carotenoids and antioxidant activity in eight fruit beverages was analyzed. The influence of storage temperature (4, 8 and 11 °C during the product shelf-life (20 days was evaluated. Pomegranate Juice presented the highest values for antioxidant activity by DPPH·− assay (552.93 ± 6.00 GAE μg mL−1, total carotenoids (3.18 ± 0.11 βCE μg mL−1, and total phenolic content (3967.07 ± 2.47 GAE μg mL−1; while Splash Blend recorded the highest levels of ascorbic acid (607.39 ± 2.13 AAE μg mL−1. The antioxidant capacity was stable at 4 and 8 °C for the first 8 days of storage; while carotenoids and ascorbic acid were slightly degraded through the storage time, possibly due to oxidation and/or reactions with other compounds. The results suggest that the observed variation during testing could be related to storage conditions of the final product.

  11. Effect of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm.f.

    Science.gov (United States)

    Kumar, Sandeep; Yadav, Amita; Yadav, Manila; Yadav, Jaya Parkash

    2017-01-25

    The aim of the present study was to analyse the effect of climate change on phytochemicals, total phenolic content (TPC) and antioxidant potential of methanolic extracts of Aloe vera collected from different climatic zones of the India. Crude methanolic extracts of A. vera from the different states of India were screened for presence of various phytochemicals, total phenolic content and in vitro antioxidant activity. Total phenolic content was tested by Folin-Ciocalteau reagent based assay whilst DPPH free radical scavenging assay, metal chelating assay, hydrogen peroxide scavenging assay, reducing power assay and β carotene-linoleic assay were used to assess the antioxidant potential of A. vera methanolic leaf extracts. Alkaloids, phenols, flavonoids, saponins, and terpenes were the main phytochemicals presents in all accessions. A significant positive correlation was found between TPC and antioxidant activity of different accessions. Extracts of highland and semi-arid zones possessed maximum antioxidant potential. Accessions from tropical zones showed the least antioxidant activity in all assays. It could be concluded that different agro-climatic conditions have effects on the phytochemicals, total phenolic content (TPC) and antioxidant potential of the A. vera plant. The results reveal that A. vera can be a potential source of novel natural antioxidant compounds.

  12. Consequences of plant phenolic compounds for productivity and health of ruminants.

    Science.gov (United States)

    Waghorn, Garry C; McNabb, Warren C

    2003-05-01

    Plant phenolic compounds are diverse in structure but are characterised by hydroxylated aromatic rings (e.g. flavan-3-ols). They are categorised as secondary metabolites, and their function in plants is often poorly understood. Many plant phenolic compounds are polymerised into larger molecules such as the proanthocyanidins (PA; condensed tannins) and lignins. Only the lignins, PA, oestrogenic compounds and hydrolysable tannins will be considered here. Lignins slow the physical and microbial degradation of ingested feed, because of resilient covalent bonding with hemicellulose and cellulose, rather than any direct effects on the rumen per se. The PA are prevalent in browse and are expressed in the foliage of some legumes (e.g. Lotus spp.), but rarely in grasses. They reduce the nutritive value of poor-quality diets, but can also have substantial benefits for ruminant productivity and health when improved temperate forages are fed. Beneficial effects are dependent on the chemical and physical structure, and concentration of the PA in the diet, but they have been shown to improve live-weight gain, milk yield and protein concentration, and ovulation rate. They prevent bloat in cattle, reduce gastrointestinal nematode numbers, flystrike and CH4 production. Some phenolic compounds (e.g. coumestans) cause temporary infertility, whilst those produced by Fusarium fungi found in pasture, silage or stored grains can cause permanent infertility. The HT may be toxic because products of their metabolism can cause liver damage and other metabolic disorders.

  13. Phenolic compounds of Triplaris gardneriana can protect cells against oxidative stress and restore oxidative balance.

    Science.gov (United States)

    de Almeida, Thiago Silva; Neto, José Joaquim Lopes; de Sousa, Nathanna Mateus; Pessoa, Igor Parra; Vieira, Leonardo Rogério; de Medeiros, Jackeline Lima; Boligon, Aline Augusti; Hamers, Astrid R M; Farias, Davi Felipe; Peijnenburg, Ad; Carvalho, Ana Fontenele Urano

    2017-09-01

    This work aimed to add value to an underexploited plant species from Brazil, Triplaris gardneriana. To that, the phenolic compounds profile of its seed ethanolic extract and fractions was examined by HPLC and the antioxidant capacity assessed using chemical assays as well as in vitro cell imaging. Twelve compounds were quantified and classified as either phenolic acids or flavonoids. The fractionation process did not generate fractions with different compositions except for chloroformic fraction, which showed only 6 out of 12 standard compounds used. DPPH assay revealed samples with a concentration-dependent radical scavenging activity, being methanolic fraction the one with the largest activity (SC 50 11.45±0.02μg/mL). Lipid peroxidation assessment, in the presence and absence of stress inducer, showed that particularly the ethanol extract (IC 50 26.75±0.08μg/mL) and the ethyl acetate fraction (IC 50 6.14±0.03μg/mL) could inhibit lipid peroxidation. The ethyl acetate fraction performed best in chelating iron (48% complexation at 1000μg/mL). Cell imaging experiments showed that the ethanolic extract could protect cells against oxidative stress as well as restore the oxidative balance upon stress induction. In conclusion, T. gardneriana seeds showed a promising phenolic compounds profile and antioxidant activity that may be further exploited. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Distribution and chemotaxonomic significance of phenolic compounds in Spermacoce verticillata (L. G. Mey

    Directory of Open Access Journals (Sweden)

    Iasmim C. Lima

    2014-02-01

    Full Text Available Context: Spermacoce verticillata, known as “poaia and vassourinha de botão”, is a species widely used in Brazilian traditional medicine as anti-inflammatory, antipyretic and analgesic. It is a native species, small, upright perennial, and broadly distributed throughout Brazil. Until now, few chemical studies have focused on the phenolic composition of this species. Aims: Evaluate the phytochemical profile of phenolic compounds from Spermacoce verticillata and search new compounds that have chemotaxonomic significance. Methods: Leaves of S. verticillata were extracted using distilled water. The extract (SVL was purified by several chromatography processes. Extract and compounds were analyzed by HPLC-DAD and NMR. Results: Phytochemical analysis led to identification, for the first time, of three compounds (1-3 for the specie. Chlorogenic acid (1 was identified by HPLC-DAD compared with reported in the literature. Quercetin-3-O-rutinoside (rutin (2 and kaempferol-3-O-rutinoside (3 were isolated from butanolic fraction and identified by spectroscopic analysis comparison with data reported in the literature. The flavonoid rutin is the major compound in SVL followed by kaempferol-3-O-rutinoside and chlorogenic acid. Conclusions: This is the first report for these compounds (1-3 in S. verticillata. The presence of these three new compounds indicates chemical markers of the species for this genus and family. This information is extremely important because increases the resources for chemotaxonomic classification of these species.

  15. Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food-borne bacteria.

    Science.gov (United States)

    Mellegård, H; Stalheim, T; Hormazabal, V; Granum, P E; Hardy, S P

    2009-07-01

    To identify the phenolic compounds in the leaves of Sphagnum papillosum and examine their antibacterial activity at pH appropriate for the undissociated forms. Bacterial counts of overnight cultures showed that whilst growth of Staphylococcus aureus 50084 was impaired in the presence of milled leaves, the phenol-free fraction of holocellulose of S. papillosum had no bacteriostatic effect. Liquid chromatography-mass spectrometry analysis of an acetone-methanol extract of the leaves detected eight phenolic compounds. Antibacterial activity of the four dominating phenols specific to Sphagnum leaves, when assessed in vitro as minimal inhibitory concentrations (MICs), were generally >2.5 mg ml(-1). MIC values of the Sphagnum-specific compound 'sphagnum acid' [p-hydroxy-beta-(carboxymethyl)-cinnamic acid] were >5 mg ml(-1). No synergistic or antagonistic effects of the four dominating phenols were detected in plate assays. Sphagnum-derived phenolics exhibit antibacterial activity in vitro only at concentrations far in excess of those found in the leaves. We have both identified the phenolic compounds in S. papillosum and assessed their antibacterial activity. Our data indicate that phenolic compounds in isolation are not potent antibacterial agents and we question their potency against food-borne pathogens.

  16. Biosorption of Phenolic Compounds from Aqueous Solutions using Pine (Pinus densiflora Sieb Bark Powder

    Directory of Open Access Journals (Sweden)

    Siva Kumar Nadavala

    2014-07-01

    Full Text Available The present study describes the development of a new bioadsorbent from lignocellulosic wastes of agricultural origin. The biosorption capacity of an agricultural solid waste, pine bark (Pinus densiflora Sieb., to remove phenolic compounds (phenol, 2-chlorophenol (2-CPh, and 4- chlorophenol (4-CPh from aqueous solutions under batch equilibrium conditions was investigated. The morphological characteristics of the biosorbent were evaluated by BET surface area analysis, Fourier transform infrared spectroscopy (FTIR, elemental analysis, an X-ray diffractometer (XRD, and a scanning electron microscope (SEM. Batch experiments were conducted to investigate the effect of initial pH (2 to 10, contact time, initial concentration of adsorbate (50 to 200 mg/L, and biosorbent dosage. The biosorption of phenolic compounds decreased with increasing pH, and the highest biosorption capacity was achieved at a pH of 6.0. Biosorption equilibrium was established in 120 min. The biosorption equilibrium data were fitted and analyzed with Langmuir, Freundlich, and Dubinin-Radushkevich isotherm equations, as well as four adsorption kinetic models. The kinetics data fitted well into the pseudo-second-order kinetic model, with a correlation coefficient greater than 0.993. The maximum monolayer biosorption capacity of pine bark for phenol, 2-CPh, and 4-CPh was found to be 142.85, 204.08, and 263.15 mg/g, respectively, as calculated by the Langmuir model at 30 ± 1 °C. Pine bark could be used as a new effective, low-cost biosorbent material with good uptake capacity and rapid kinetics for the removal of phenolic compounds from aqueous media.

  17. IN VITRO ANTIOXIDANT, TOTAL PHENOLIC AND FLAVONOID CONTENTS OF SIX ALLIUM SPECIES GROWING IN EGYPT

    Directory of Open Access Journals (Sweden)

    Mahfouz Abdel-Gawad

    2014-02-01

    Full Text Available This study was designated to determine the total phenolic and flavonoid contents as well as evaluation the in vitro antioxidant activity of the defatted methanolic extracts of six Allium species growing in Egypt. Three of them are subspecies of Allium cepa L. (ssp. red onion, ssp. white onion and ssp. green onion, the other three species are Allium sativum L. (garlic, Allium porrum L. (leek and Allium kurrat L. (kurrat baladi. The results exhibited that A. cepa (ssp. red onion and A. porrum have the highest phenolic contents. On the other hand, in vitro antioxidant activity using three methods, 1, 1-diphenyl-2-picrylhydrazyl (DPPH radical, phosphomolybdate and reducing power assays revealed that A. cepa (ssp. red onion and A. porrum have high antioxidant activities. Moreover, there was positive correlation between the antioxidant activity and total phenolic contents of the tested Allium species. Therefore, the two plant species A. cepa (ssp. red onion and A. porrum were submitted to fractionation process using chloroform, ethyl acetate and n-butanol. The results showed that the ethyl acetate fractions of the two plants have high phenolic and flavonoid contents as well as have high antioxidant activities. Also, the preliminary phytochemical screening of the tested Allium species showed that A. cepa (ssp. red onion and A. porrum have high quantities of flavonoids, steroids, terpenoids and saponins.

  18. Determination of chemical composition, total phenolic content and antioxidant activity of xylanthemum macropodum

    International Nuclear Information System (INIS)

    Samiullah, A.; Tareen, R.B.; Khan, N.; Akber, A.; Ali, I.; Khan, A.K.

    2017-01-01

    Evaluation of the phytochemistry, total phenolic content and antioxidant activity of the endemic plant of northern Balochistan Xylanthemum Macropodum of the Asteraceae family, is reported for the first time in this document. Chemical composition of Xylanthemum Macropodum was determined using well-established chemical tests and modern spectroscopic techniques. Extracts were taken from the whole plant using methanol and the extracts were tested for phytochemicals (secondary metabolites), total phenolic content (TPC) and antioxidant activity. The phytochemical (biochemical) examination of Xylanthemum Macropodum exposed the presence of alkaloids, phenols, steroids, flavonoids, tannins, terpenoids, saponins, coumarins, carbohydrates, cardiac glycosides, reducing sugars, and quinines. TPC of crude methanolic extract (CME) of plant was determined using Folin-Ciocalteu's reagent. The TPC determined was 256mg of tannic acid Eq/g of extract. Antioxidant activities were determined spectrophotometrically using the DPPH assay and Ferric ion (Fe/sup +3/) reducing antioxidant power assay. The potency of the DPPH assay of Xylanthemum Macropodum extract was 68% for the 0.10 mg/ml concentration and the FRAP value of the extract was 3.368 mmol Fe/sup +2//g of extract. Xylanthemum Macropodum has proved to be very rich in secondary metabolites, natural phenolics and has a very potent antioxidant activity. (author)

  19. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds.

    Science.gov (United States)

    Chougui, Nadia; Tamendjari, Abderezak; Hamidj, Wahiba; Hallal, Salima; Barras, Alexandre; Richard, Tristan; Larbat, Romain

    2013-08-15

    The seed composition of four varieties of Opuntia ficus-indica growing in Algeria was investigated. Seeds ground into a fine powder were first, subjected to oil extraction and fatty acids analysis. The phenolic compounds were then extracted from the defatted powder of seeds in order to be quantified and characterised by liquid chromatography coupled to mass spectrometry (LC-MS(n)) and to nuclear magnetic resonance (LC-NMR) approaches. In addition, an evaluation of the antioxidant activity of the phenolic extracts was investigated. Gas chromatography analysis of the seed oil showed high percentages of linoleic acid in the four varieties ranging from 58% to 63%. The phenolic profile of the Opuntia ficus-indica seeds displayed a high complexity, with more than 20 compounds detected at 330 nm after the LC separation. Among them, three isomers of feruloyl-sucrose were firmly identified and another was strongly supposed to be a sinapoyl-diglycoside. High correlations were found between phenolic content in the defatted seed extracts and their antioxidant activity. The data indicate that the defatted cactus seed wastes still contain various components that constitute a source for natural foods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Arylsulfotransferase from Clostridium innocuum-A new enzyme catalyst for sulfation of phenol-containing compounds.

    Science.gov (United States)

    Mozhaev, Vadim V; Khmelnitsky, Yuri L; Sanchez-Riera, Fernando; Maurina-Brunker, Julie; Rosson, Reinhardt A; Grund, Alan D

    2002-06-05

    Arylsulfotransferase (AST, EC 2.8.2.22), an enzyme capable of sulfating a wide range of phenol-containing compounds was purified from a Clostridium innocuum isolate (strain 554). The enzyme has a molecular weight of 320 kDa and is composed of four subunits. Unlike many mammalian and plant arylsulfotransferases, AST from Clostridium utilizes arylsulfates, including p-nitrophenyl sulfate, as sulfate donors, and is not reactive with 3-phosphoadenosine-5'-phosphosulfate (PAPS). The enzyme possesses broad substrate specificity and is active with a variety of phenols, quinones and flavonoids, but does not utilize primary and secondary alcohols and sugars as substrates. Arylsulfotransferase tolerates the presence of 10 vol% of polar cosolvents (dimethyl formamide, acetonitrile, methanol), but loses significant activity at higher solvent concentrations of 30-40 vol%. The enzyme retains high arylsulfotransferase activity in biphasic systems composed of water and nonpolar solvents, such as cyclohexane, toluene and chloroform, while in biphasic systems with more polar solvents (ethyl acetate, 2-pentanone, methyl tert-butyl ether, and butyl acetate) the enzyme activity is completely lost. High yields of AST-catalyzed sulfation were achieved in reactions with several phenols and tyrosine-containing peptides. Overall, AST studied in this work is a promising biocatalyst in organic synthesis to afford efficient sulfation of phenolic compounds under mild reaction conditions. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 567-575, 2002.

  1. The effect of high power ultrasound on phenolic composition, chromatic characteristics, and aroma compounds of red wines

    Directory of Open Access Journals (Sweden)

    Natka Ćurko

    2017-01-01

    Full Text Available High power ultrasound (HPU is a novel, non-thermal technology the application of which has been primarily evaluated in managing food quality. The application of high power ultrasound in wine technology is therefore directed at modulating microbial activity during fermentation, extraction of phenolic and aroma compounds from grapes to must, as well as at accelerating aging reactions in wine. The main aim of this article was to evaluate the effect of different HPU process parameters on sustaining the phenolic and aroma composition of red wine and its colour characteristics. Three different red wines, including Cabernet Sauvignon, Merlot, and Plavac mali, were treated with high power ultrasound (20kHz, considering the variations in ultrasound probe diameter size (12.7 and 19 mm, amplitude level (20, 30, and 40 %, and processing time (2, 4, and 6 minutes. Total polyphenol content, total anthocyanin concentration, and chromatic characteristics were analyzed by spectrophotometry, free anthocyanins were analysed by high performance liquid chromatography, and wine aroma compounds were analyzed by gas chromatography combined with solid-phase microextraction. The obtained results show that ultrasonic irradiation induces chemical changes in phenolic composition, chromatic characteristics, and aroma compounds concentration, and accelerates chemical reactions responsible for wine aging. The intensity of the mentioned chemical changes depends on the selected processing parameters and on the treated variety. Among three different parameters, the selection of the probe diameter was showed to be most significant factor influencing chemical composition, followed by the amplitude level and processing time. The smaller diameter probe size (12.7 mm, lowest amplitude (20%, and a shorter processing time (2 minutes showed a more favourable and lighter effect on the chemical composition of the treated red wines.

  2. Antioxidant Capacities and Total Phenolic Contents Enhancement with Acute Gamma Irradiation in Curcuma alismatifolia (Zingiberaceae Leaves

    Directory of Open Access Journals (Sweden)

    Sima Taheri

    2014-07-01

    Full Text Available The present study was conducted in order to assess the effect of various doses of acute gamma irradiation (0, 10, 15, and 20 Gy on the improvement of bioactive compounds and their antioxidant properties of Curcuma alismatifolia var. Sweet pink. The high performance liquid chromatography (HPLC and gas chromatography (GC analysis uncovered that various types of phenolic, flavonoid compounds, and fatty acids gradually altered in response to radiation doses. On the other hand, antioxidant activities determined by 1,1-Diphenyl-2-picryl-hydrazyl (DPPH, ferric reduction, antioxidant power (FRAP, and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS radical scavenging assay showed a higher irradiation level significantly increased the antioxidant properties. This study revealed an efficient effect of varying levels of gamma radiation, based on the pharmaceutical demand to enhance the accumulation and distribution of bioactive compounds such as phenolic and flavonoid compounds, fatty acids, as well as their antioxidant activities in the leaves of C. alismatifolia var. Sweet pink.

  3. Novel determination of the total phenolic content in crude plant extracts by the use of 1H NMR of the -OH spectral region

    International Nuclear Information System (INIS)

    Nerantzaki, A.A.; Tsiafoulis, C.G.; Charisiadis, P.; Kontogianni, V.G.; Gerothanassis, I.P.

    2011-01-01

    A novel method for the determination of the total phenolic content using 1 H NMR spectroscopy in the -OH spectral region is presented. The use of DMSO-d 6 , which is an aprotic and strongly hydrogen bonding solvent, allows the 'appearance' of the relative sharp resonances of phenolic hydroxyl protons in the region of 8-14 ppm. The determination of the total phenolic -OH content requires three steps: (i) a 1D 1 H NMR spectrum is obtained in DMSO-d 6 ; (ii) a subsequent 1D 1 H NMR spectrum is recorded with irradiation of the residual water signal which results in the elimination or reduction of the phenolic -OH groups, due to proton exchange; and (iii) 1D 1 H NMR spectra are recorded with the addition of a progressively increased amount of salt, NaHCO 3 , which results in extensive linebroadening of the COOH resonances thus allowing the discrimination of the phenolic from the carboxylic acid signals. Integration, with respect to the internal standard TSP-d 4 , of the signal resonances between 14 and 8 ppm in spectrum (i) which are either eliminated or reduced in intensity in steps (ii) and (iii) allows the quantitation of the total phenolic content. The method was applied to model compounds, a mixture of them and several extracts of natural products. The results of the proposed 1 H NMR method were compared to the Folin-Ciocalteu (FC) reagent method. Additionally, since 1 H NMR refers to the total phenolic hydroxyl protons, a reaction factor, A e , is proposed that corresponds to the hydroxyl reactivity. The 1 H NMR method is rapid and accurate bearing the inherent advantages of the NMR spectroscopy and can be applied directly in complex extracts. Furthermore, it can be applied in a wide range of matrixes from crude plant extracts and food products to biological samples.

  4. Distribution of phenolic compounds and antioxidant capacity in apples tissues during ripening.

    Science.gov (United States)

    Alberti, Aline; Zielinski, Acácio Antonio Ferreira; Couto, Marcelo; Judacewski, Priscila; Mafra, Luciana Igarashi; Nogueira, Alessandro

    2017-05-01

    The effect of variety and ripening stage on the distribution of phenolic compounds and in vitro antioxidant capacity of Gala, Fuji Suprema and Eva apples were evaluated. Hydroxycinnamic acids, flavonoids, flavanols, flavonols, dihydrochalcones and antioxidant activity (FRAP and DPPH) were assessed in the epicarp, mesocarp and endocarp of three varieties at three ripening stages (unripe, ripe and senescent). The Fuji Suprema variety distinguished by its content of flavonols at senescent stage, while Eva variety distinguished by its content of dihydrochalcones (unripe stage) and anthocyanins (ripe stage). In general, phenolic acids and flavonoids decreased with ripening in the epicarp and endocarp. However, in the mesocarp, the effect of ripening was related with the apple variety. Hierarchical cluster analysis confirmed the influence of ripening in the apple tissue. The evolution of these compounds during ripening occurred irregularly and it was influenced by the variety.

  5. Blackberry (Rubus spp.: influence of ripening and processing on levels of phenolic compounds and antioxidant activity of the 'Brazos' and 'Tupy' varieties grown in Brazil

    Directory of Open Access Journals (Sweden)

    Acácio Antonio Ferreira Zielinski

    2015-04-01

    Full Text Available Fruits from temperate and tropical climates which have high levels of antioxidant compounds are the source of numerous studies concerning the correlation with benefits to human health. The objectives of this study were to quantify the anthocyanins and phenolic compounds and also to measure the antioxidant activity (ferric reducing antioxidant power - FRAP of blackberries from two varieties grown in southern Brazil ('Brazos' and 'Tupy' at three stages of ripening; unripe, semi-ripe, ripe and their products (pulp and fermented products. During fruit ripening it was observed that weight, size, diameter and sugars increase significantly and acidity decreased significantly. The anthocyanin content ranged from 4.19 (semi-ripe 'Tupy' variety to 205.75mg 100g-1 (ripe 'Brazos' variety. The highest levels of phenolic compounds were observed for the unripe fruit of both varieties, while antioxidant activity showed no significant difference during the ripening stages. The studied pulp showed a high content of phenolic compounds (ten times higher than that found in the ripe fruits. The anthocyanin content and antioxidant activity did not show the same increase due to the degradation of anthocyanins caused by the heat treatment that was used. The alcoholic fermented beverage made from blackberries remained stable (total phenolic compounds and antioxidant activity during two years of storage, but the in third year a significant reduction in antioxidant activity was observed. These results can be important for establishing the shelf life of this kind of product made with blackberry

  6. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities.

    Science.gov (United States)

    Zhu, Xianfeng; Zhang, Hongxun; Lo, Raymond

    2004-12-01

    A preliminary antimicrobial disk assay of chloroform, ethyl acetate, and n-butanol extracts of artichoke (Cynara scolymus L.) leaf extracts showed that the n-butanol fraction exhibited the most significant antimicrobial activities against seven bacteria species, four yeasts, and four molds. Eight phenolic compounds were isolated from the n-butanol soluble fraction of artichoke leaf extracts. On the basis of high-performance liquid chromatography/electrospray ionization mass spectrometry, tandem mass spectrometry, and nuclear magnetic resonance techniques, the structures of the isolated compounds were determined as the four caffeoylquinic acid derivatives, chlorogenic acid (1), cynarin (2), 3,5-di-O-caffeoylquinic acid (3), and 4,5-di-O-caffeoylquinic acid (4), and the four flavonoids, luteolin-7-rutinoside (5), cynaroside (6), apigenin-7-rutinoside (7), and apigenin-7-O-beta-D-glucopyranoside (8), respectively. The isolated compounds were examined for their antimicrobial activities on the above microorganisms, indicating that all eight phenolic compounds showed activity against most of the tested organisms. Among them, chlorogenic acid, cynarin, luteolin-7-rutinoside, and cynaroside exhibited a relatively higher activity than other compounds; in addition, they were more effective against fungi than bacteria. The minimum inhibitory concentrations of these compounds were between 50 and 200 microg/mL.

  7. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MS(n) and screening for their antioxidant activity.

    Science.gov (United States)

    Spínola, Vítor; Pinto, Joana; Castilho, Paula C

    2015-04-15

    Five fruits species commonly cultivated and consumed in Madeira Island (Portugal) were investigated for their phenolic profile by means of reversed phase high-performance liquid chromatography coupled to diode array detection and electrospray ionisation mass spectrometry (HPLC-DAD-ESI/MS(n)) and antioxidant potential. A large number of compounds were characterised, flavonoids and phenolic acids being the major components found in target samples, 39 compounds (flavonoids, phenolic acids, terpenoids, cyanogenic glycosides and organic acids) were identified in cherimoyas, lemons, papayas, passion-fruits and strawberries for the first time. Furthermore, all samples were systematically analysed for their total phenolic and flavonoid contents along with two radical scavenging methods (ABTS and ORAC) for antioxidant activity measurement. Target fruits presented high phenolic contents which is responsible for most of the antioxidant activity against radical reactive species (R(2)>0.80). Quantitative data showed that anthocyanins, in particular pelargonidin-3-O-hexoside (>300 mg/100 mL), present only in strawberries were the compounds in largest amounts but are the ones which contribute less to the antioxidant activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp.

    Science.gov (United States)

    Lee, Min-Jeong; Son, Jung Eek; Oh, Myung-Min

    2014-01-30

    The production of high-quality crops based on phytochemicals is a strategy for accelerating the practical use of plant factories. Previous studies have demonstrated that ultraviolet (UV) light is effective in improving phytochemical production. This study aimed to determine the effect of various UV wavelengths on growth and phenolic compound accumulation in lettuce (Lactuca sativa L.) grown in a closed-type plant production system. Seven days, 1 day and 0.25 day were determined as the upper limit of the irradiation periods for UV-A, -B, and -C, respectively, in the lettuce based on physiological disorders and the fluorescence parameter F(v)/F(m). Continuous UV-A treatment significantly induced the accumulation of phenolic compounds and antioxidants until 4 days of treatment without growth inhibition, consistent with an increase in phenylalanine ammonia lyase (PAL) gene expression and PAL activity. Repeated or gradual UV-B exposure yielded approximately 1.4-3.6 times more total phenolics and antioxidants, respectively, than the controls did 2 days after the treatments, although both treatments inhibited lettuce growth. Repeated UV-C exposure increased phenolics but severely inhibited the growth of lettuce plants. Our data suggest that UV irradiation can improve the accumulation of phenolic compounds with antioxidant properties in lettuce cultivated in plant factories. © 2013 Society of Chemical Industry.

  9. Altered Transport and Metabolism of Phenolic Compounds in Obesity and Diabetes: Implications for Functional Food Development and Assessment12

    Science.gov (United States)

    Redan, Benjamin W; Buhman, Kimberly K; Novotny, Janet A; Ferruzzi, Mario G

    2016-01-01

    Interest in the application of phenolic compounds from the diet or supplements for the prevention of chronic diseases has grown substantially, but the efficacy of such approaches in humans is largely dependent on the bioavailability and metabolism of these compounds. Although food and dietary factors have been the focus of intense investigation, the impact of disease states such as obesity or diabetes on their absorption, metabolism, and eventual efficacy is important to consider. These factors must be understood in order to develop effective strategies that leverage bioactive phenolic compounds for the prevention of chronic disease. The goal of this review is to discuss the inducible metabolic systems that may be influenced by disease states and how these effects impact the bioavailability and metabolism of dietary phenolic compounds. Because current studies generally report that obesity and/or diabetes alter the absorption and excretion of these compounds, this review includes a description of the absorption, conjugation, and excretion pathways for phenolic compounds and how they are potentially altered in disease states. A possible mechanism that will be discussed related to the modulation of phenolic bioavailability and metabolism may be linked to increased inflammatory status from increased amounts of adipose tissue or elevated plasma glucose concentrations. Although more studies are needed, the translation of benefits derived from dietary phenolic compounds to individuals with obesity or diabetes may require the consideration of dosing strategies or be accompanied by adjunct therapies to improve the bioavailability of these compounds. PMID:28140326

  10. Kinetic analysis of polyoxometalate (POM) oxidation of non-phenolic lignin model compound

    Science.gov (United States)

    Tomoya Yokoyama; Hou-min Chang; Ira A. Weinstock; Richard S. Reiner; John F. Kadla

    2003-01-01

    Kinetic and reaction mechanism of non-phenolic lignin model compounds under anaerobic polyoxometalate (POM), Na5(+1.9)[SiV1(-0.1)MoW10(+0.1) 40], bleaching conditions were examined. Analyses using a syringyl type model, 1-(3,4,5-trimethoxyphenyl)ethanol (1), a guaiacyl type, 1-(3,4- imethoxyphenyl)ethanol (2), and 1- (4-ethoxy-3,5-dimethoxyphenyl)ethanol (3) suggest...

  11. INVESTIGATION OF PHENOLIC COMPOUNDS IN EXTRACTS FROM THE LEAVES OF LAURUS NOBILIS L.

    Directory of Open Access Journals (Sweden)

    N. M. Nasuhova

    2017-01-01

    Full Text Available Laurus nobilis L. is an evergreen dioecious, rarely monecious plant up to 15 m high. Its natural area includes Mediterranean countries. For a long time this plant has been actively cultivated as a decorative plant in (Europe, Russia, USA and others as well as in Turkey, Algeria, Morocco, Spain, France, Italy, Portugal, Mexico and Russia. Chemical composition of the Laurus leaves include essential oil components, sesquiterpenic lactones and phenolic compounds as the principal active groups of compounds.The aim of the study was the identification of phenolic compounds in water and water alcohol extracts from leaves of Laurus nobilis.Materials and methods. Examinations of qualitative composition of phenolic complex in extracts from Laurus samples under study were carried out using «Hitachi Chromaster» high-performance liquid chromatographer with «Column Oven 5310», «Pump 5110» and «UV-detector 5410».Results and discussion. The samples of Laurus nobilis leaves gathered in outskirts of Alushta (Republic of Crimea in July 2016 were the objects if the study. We identified caffeic, gallic, and chicoric acids, epigallocatechin gallate, luteolin-7-glycoside in the extracts obtained using ethanol 70%. And caffeic, gallic, isoferulic acids, dicoumarin, epicatechin, kaempferol, and isoquercitrin in ethanol 40% extracts. In water extracts we found the presence of ascorbic, gallic, and vanillic acids, epicatechin, quercetin-3-glycoside and kaempferol-3-galactoside.Conclusion. As the result of the Laurus nobilis leaves samples study, gathered in Alushta outskirts, ascorbic acid and 13 phenolic compounds were identified in water and water-alcohol (40% and 70% extracts using high performance liquid chromatography. Isoferulic and chicoric acids, epigallocatechin gallate, dicoumarin, kaempferol, isoquercitrin, kaempferol-3-galactoside and luteolin-7-glycoside were identified in Laurus nobilis leaves for the first time. 

  12. Stability of phenolic compounds of the propolis processed by ionizing radiation

    International Nuclear Information System (INIS)

    Matsuda, Andrea H.; Mastro, Nelida L. del

    2002-01-01

    Propolis is the generic term of a resin of different colors and consistency collected by bees, Apis mellifera, from diverse parts of plants, buds and resinous exudates. It possesses antibacterial , antifungal and antiviral properties and many other biological activities such as antiinflammatory, antiulcer, local anaesthetic, antitumor, etc. The aim of this work is to study the effect of 60 Co ionizing radiation on the stability of phenolic compounds of propolis. (author)

  13. Effect of different extracting solvents on antioxidant activity and phenolic compounds of a fruit and vegetable residue flour

    Directory of Open Access Journals (Sweden)

    Mônica C. P. Santos

    2016-01-01

    Full Text Available In order to quantify antioxidant capacity in food products, several methods have been proposed over the years. Among them, DPPH radical is widely used to determine the antioxidant capacity of different substrates. However, it is known that different types of extractants, providing different responses, can extract a variety of bioactive compounds. Besides, storage time seems to interfere in the stability of these substances. Integral use of fruits and vegetables has been proposed along the years as a means of reducing environmental pollution and give a better destination to by-products from food industries. Thus, this study aimed to evaluate the antioxidant potential of a fruit and vegetables residue flour (FVR with sequential and non-sequential extraction, in order to evaluate its antioxidant activity and phenolic compounds. And these compounds stability during storage of 180 days. It was observed that in non-sequential extraction, water was able to reduce by 74% the radical; however, at sequential extraction process, using six different extractors, each one was able to reduce at least 40% of DPPH. The total soluble phenolic contents in sequential extraction were 22.49 ± 1.59 mg GAE/g FVR on the first day and 5.35 ± 0.32 mg GAE/g FVR after 180 days.

  14. Impact of bioaccessibility and bioavailability of phenolic compounds in biological systems upon the antioxidant activity of the ethanolic extract of Triplaris gardneriana seeds.

    Science.gov (United States)

    Neto, José Joaquim Lopes; de Almeida, Thiago Silva; de Medeiros, Jackeline Lima; Vieira, Leonardo Rogério; Moreira, Thaís Borges; Maia, Ana Isabel Vitorino; Ribeiro, Paulo Riceli Vasconcelos; de Brito, Edy Sousa; Farias, Davi Felipe; Carvalho, Ana Fontenele Urano

    2017-04-01

    The most studied bioactive potential of phenolic compounds corresponds to antioxidant activity, which in turn, is associated with a reduction in the incidence of various human diseases. However, the total quantity of these bioactive substances in foods and medicinal preparations does not reflect the amount absorbed and metabolized by the body. The present study aimed to investigate the bioaccessibility of Triplaris gardneriana seeds ethanolic extract (EETg) by determination of phenolic composition and antioxidant activities before and after in vitro digestion as well as to estimate its bioavailability by chemical analysis of plasma and urine in animal models after oral administration. The bioaccessibility indexes of phenolic compounds in EETg were 48.65 and 69.28% in the presence and absence of enzymes, respectively. Among the identified phenolics classes, flavonoids, represented by galloylated procyanidins type B, proved to be more bioaccessible, 81.48 and 96.29% in the post-intestinal phase with and without enzymes, respectively. The oral administration in Wistar rats resulted in a significant decrease in plasma of the total antioxidant capacity, TAC, by FRAP assay 4h after beginning the experiment. For urine samples, an increase in TAC by DPPH and FRAP was observed from 1 and 4h after administration, respectively. UPLC-QTOF analysis of urine detected 2 metabolites originated from the degradation of phenolic compounds, i.e. hippuric acid and phenylacetil glycine. These results suggest that phenolic compounds in T. gardneriana are unstable under gastrointestinal conditions, being flavonoids the components with higher bioaccessibility; besides that, they showed limited bioavailability due to their rapid biotransformation and urinary elimination. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Secondary organic aerosol formation from phenolic compounds in the absence of NOx

    Directory of Open Access Journals (Sweden)

    D. Cocker III

    2011-10-01

    Full Text Available SOA formation from benzene, toluene, m-xylene, and their corresponding phenolic compounds were investigated using the UCR/CE-CERT Environmental Chamber to evaluate the importance of phenolic compounds as intermediate species in aromatic SOA formation. SOA formation yield measurements coupled to gas-phase yield measurements indicate that approximately 20% of the SOA of benzene, toluene, and m-xylene could be ascribed to the phenolic route under low NOx conditions. The SOA densities tend to be initially as high as approximately 1.8 g cm−3 and eventually reach the range of 1.3–1.4 g cm−3. The final SOA density was found to be independent of elemental ratio (O/C indicating that applying constant density (e.g., 1.4 g cm−3 to SOA formed from different aromatic compounds tested in this study is a reasonable approximation. Results from a novel on-line PILS-TOFMS (Particle-into-Liquid Sampler coupled with Agilent Time-of-Flight Mass Spectrometer are reported. Major signals observed by the on-line/off-line Agilent TOFMS indicated that products had the same number of carbon atoms as their parent aromatics, suggesting importance of ring-retaining products or ring-opening products following ring-cleavage.

  16. Optimizing a culture medium for biomass and phenolic compounds production using Ganoderma lucidum

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Zárate-Chaves

    2013-01-01

    Full Text Available The present work was aimed at optimizing a culture medium for biomass production and phenolic compounds by using Ganoderma lucidum. The culture was optimized in two stages; a Plackett-Burman design was used in the first one for identifying key components in the medium and a central composite design was used in the second one for optimizing their concentration. Both responses (biomass and phenolic compounds were simultaneously optimized by the latter methodology regarding desirability, and the optimal concentrations obtained were 50.00 g/L sucrose, 13.29 g/L yeast extract and 2.99 g/L olive oil. Maximum biomass production identified in these optimal conditions was 9.5 g/L and that for phenolic compounds was 0.0452 g/L, this being 100% better than that obtained in the media usually used in the laboratory. Similar patterns regarding chemical characterization and biological activity towards Aspergillus sp., from both fruiting body and mycelium-derived secondary metabolites and extracts obtained in the proposed medium were observed. It was shown that such statistical methodologies are useful for optimizing fermentation and, in the specific case of G. lucidum, optimizing processes for its production and its metabolites in submerged culture as an alternative to traditional culture.

  17. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  18. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer as well as its complex side chain structures, it has been a challenge to effectively depolymerize lignin and produce high value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) inclduing 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPCs yields obtained were 18% and 22% based on the initial weight of the lignin in SESPL and DACSL respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47%. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  19. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    Science.gov (United States)

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compound from licorice root.

    Science.gov (United States)

    Karami, Zohreh; Emam-Djomeh, Zahra; Mirzaee, Habib Allah; Khomeiri, Morteza; Mahoonak, Alireza Sadeghi; Aydani, Emad

    2015-06-01

    In present study, response surface methodology was used to optimize extraction condition of phenolic compounds from licorice root by microwave application. Investigated factors were solvent (ethanol 80 %, methanol 80 % and water), liquid/solid ratio (10:1-25:1) and time (2-6 min). Experiments were designed according to the central composite rotatable design. The results showed that extraction conditions had significant effect on the extraction yield of phenolic compounds and antioxidant capacities. Optimal condition in microwave assisted method were ethanol 80 % as solvent, extraction time of 5-6 min and liquid/solid ratio of 12.7/1. Results were compared with those obtained by soxhlet extraction. In soxhlet extraction, Optimum conditions were extraction time of 6 h for ethanol 80 % as solvent. Value of phenolic compounds and extraction yield of licorice root in microwave assisted (MAE), and soxhlet were 47.47 mg/g and 16.38 %, 41.709 mg/g and 14.49 %, respectively. These results implied that MAE was more efficient extracting method than soxhlet.

  1. [The content of phenolic compounds and antioxidant activity ready to eat desserts for infants].

    Science.gov (United States)

    Filipiak-Florkiewicz, Agnieszka; Dereń, Katarzyna

    2011-01-01

    The aim of this study was to determine the content of phenolic compounds and antioxidant activity in ready-to-eat desserts for babies. The experimental material consisted of six kinds of fruit desserts taken from the market in 2008, in which the content of dry matter phenolic compounds and antioxidant activity levels on the basis of free radical quenching ability ABTS were determined. The largest share of dry matter was found in apricot mousse with apples and bananas (16.9%). The largest amounts of phenolic compounds were found in the cream with apple and wild rose (186.3 mg/100 g) and apple with forest fruits (170.7 mg/100 g). The highest antioxidant activity among the desserts was determined in cream with apple and wild rose (14.2 micromol Trolox/g) and apple mousse with peaches (12.8 micromol Trolox/g). The antioxidant capacity of the remaining examined purée was slightly lower and ranged from 11.4-11.7 micromol Trolox/g.

  2. Multicommuted flow injection method for fast photometric determination of phenolic compounds in commercial virgin olive oil samples.

    Science.gov (United States)

    Lara-Ortega, Felipe J; Sainz-Gonzalo, Francisco J; Gilbert-López, Bienvenida; García-Reyes, Juan F; Molina-Díaz, Antonio

    2016-01-15

    A multicommuted flow injection method has been developed for the determination of phenolic species in virgin olive oil samples. The method is based on the inhibitory effect of antioxidants on a stable and colored radical cation formation from the colorless compound N,N-dimethyl-p-phenylenediamine (DMPD(•+)) in acidic medium in the presence of Fe(III) as oxidant. The signal inhibition by phenolic species and other antioxidants is proportional to their concentration in the olive oil sample. Absorbance was recorded at 515nm by means of a modular fiber optic spectrometer. Oleuropein was used as the standard for phenols determination and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox) was the reference standard used for total antioxidant content calculation. Linear response was observed within the range of 250-1000mg/kg oleuropein, which was in accordance with phenolic contents observed in commercial extra virgin olive oil in the present study. Fast and low-volume liquid-liquid extraction of the samples using 60% MeOH was made previous to their insertion in the flow multicommuted system. The five three-way solenoid valves used for multicommuted liquid handling were controlled by a homemade electronic interface and Java-written software. The proposed approach was applied to different commercial extra virgin olive oil samples and the results were consistent with those obtained by the Folin Ciocalteu (FC) method. Total time for the sample preparation and the analysis required in the present approach can be drastically reduced: the throughput of the present analysis is 8 samples/h in contrast to 1sample/h of the conventional FC method. The present method is easy to implement in routine analysis and can be regarded as a feasible alternative to FC method. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The role of humic and fulvic acids in the phototransformation of phenolic compounds in seawater

    International Nuclear Information System (INIS)

    Calza, P.; Vione, D.; Minero, C.

    2014-01-01

    Humic substances (HS) are known to act as photosensitizers toward the transformation of pollutants in the surface layer of natural waters. This study focused on the role played by HS toward the transformation of xenobiotics in seawater, with the purpose of assessing the prevailing degradation routes. Phenol was chosen as model xenobiotic and its transformation was investigated under simulated sunlight in the presence of terrestrial or marine humic and fulvic acids, in pure water at pH 8, artificial seawater (ASW) or natural seawater (NSW). The following parameters were determined: (1) the phenol degradation rate; (2) the variation in HS concentration with irradiation time; (3) the production of transformation products; (4) the influence of iron species on the transformation process. Faster transformation of phenol was observed with humic acids (HA) compared to fulvic acids (SRFA), and transformation induced by both HA and SRFA was faster in ASW than that in pure water. These observations can be explained by assuming an interplay between different competing and sometimes opposite processes, including the competition between chloride, bromide and dissolved oxygen for reaction with HS triplet states. The analysis of intermediates formed in the different matrices under study showed the formation of several hydroxylated (hydroquinone, 1,4-benzoquinone, resorcinol) and condensed compounds (2,2′-bisphenol, 4,4′-bisphenol, 4-phenoxyphenol). Although 1,4-benzoquinone was the main transformation product, formation of condensed molecules was significant with both HA and SRFA. Experiments on natural seawater spiked with HS confirmed the favored formation of condensed products, suggesting a key role of humic matter in dimerization reactions occurring in saline water. - Highlights: • Phenol transformation in seawater can be photosensitized by humic substances. • Dimeric species are peculiar intermediates formed in the process. • Phenol degradation occurred faster with

  4. The role of humic and fulvic acids in the phototransformation of phenolic compounds in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Calza, P., E-mail: paola.calza@unito.it; Vione, D.; Minero, C.

    2014-09-15

    Humic substances (HS) are known to act as photosensitizers toward the transformation of pollutants in the surface layer of natural waters. This study focused on the role played by HS toward the transformation of xenobiotics in seawater, with the purpose of assessing the prevailing degradation routes. Phenol was chosen as model xenobiotic and its transformation was investigated under simulated sunlight in the presence of terrestrial or marine humic and fulvic acids, in pure water at pH 8, artificial seawater (ASW) or natural seawater (NSW). The following parameters were determined: (1) the phenol degradation rate; (2) the variation in HS concentration with irradiation time; (3) the production of transformation products; (4) the influence of iron species on the transformation process. Faster transformation of phenol was observed with humic acids (HA) compared to fulvic acids (SRFA), and transformation induced by both HA and SRFA was faster in ASW than that in pure water. These observations can be explained by assuming an interplay between different competing and sometimes opposite processes, including the competition between chloride, bromide and dissolved oxygen for reaction with HS triplet states. The analysis of intermediates formed in the different matrices under study showed the formation of several hydroxylated (hydroquinone, 1,4-benzoquinone, resorcinol) and condensed compounds (2,2′-bisphenol, 4,4′-bisphenol, 4-phenoxyphenol). Although 1,4-benzoquinone was the main transformation product, formation of condensed molecules was significant with both HA and SRFA. Experiments on natural seawater spiked with HS confirmed the favored formation of condensed products, suggesting a key role of humic matter in dimerization reactions occurring in saline water. - Highlights: • Phenol transformation in seawater can be photosensitized by humic substances. • Dimeric species are peculiar intermediates formed in the process. • Phenol degradation occurred faster with

  5. Antioxidant Capacity and the Correlation with Major Phenolic Compounds, Anthocyanin, and Tocopherol Content in Various Extracts from the Wild Edible Boletus edulis Mushroom

    Directory of Open Access Journals (Sweden)

    Emanuel Vamanu

    2013-01-01

    Full Text Available Boletus edulis is a wild edible mushroom habitually consumed by rural populations. Ethanolic and methanolic extracts was obtained in cold and hot water from dried fruit bodies. The antioxidant activity of freeze-dried extracts from B. edulis were investigated using free radicals scavenging activity, reducing power, metal chelating effect, inhibition of lipid peroxidation, and the identification of antioxidant compounds. The levels of different compounds with antioxidant properties were higher in alcoholic extracts compared with aqueous extracts. Rosmarinic acid was the major phenolic compound, it being identified in a concentration between 7±0.23 and 56±0.15 mg/100 g extract. A positive correlation between the content of total phenols, flavonoids, anthocyanins, and tocopherols, and the antioxidant capacity of the extracts was determined. The results showed that the ethanolic extract of Romanian wild mushroom B. edulis represents a natural source of functional compounds.

  6. Antioxidant capacity and the correlation with major phenolic compounds, anthocyanin, and tocopherol content in various extracts from the wild edible Boletus edulis mushroom.

    Science.gov (United States)

    Vamanu, Emanuel; Nita, Sultana

    2013-01-01

    Boletus edulis is a wild edible mushroom habitually consumed by rural populations. Ethanolic and methanolic extracts was obtained in cold and hot water from dried fruit bodies. The antioxidant activity of freeze-dried extracts from B. edulis were investigated using free radicals scavenging activity, reducing power, metal chelating effect, inhibition of lipid peroxidation, and the identification of antioxidant compounds. The levels of different compounds with antioxidant properties were higher in alcoholic extracts compared with aqueous extracts. Rosmarinic acid was the major phenolic compound, it being identified in a concentration between 7 ± 0.23 and 56 ± 0.15 mg/100 g extract. A positive correlation between the content of total phenols, flavonoids, anthocyanins, and tocopherols, and the antioxidant capacity of the extracts was determined. The results showed that the ethanolic extract of Romanian wild mushroom B. edulis represents a natural source of functional compounds.

  7. Determination of phytochemicals, antioxidant activity and total phenolic content in Andrographis paniculata using chromatographic methods.

    Science.gov (United States)

    Kurzawa, Marzanna; Filipiak-Szok, Anna; Kłodzińska, Ewa; Szłyk, Edward

    2015-07-15

    Antioxidant activity, total phenolics content and selected phytochemicals (alkaloids and andrographolides) were determined in Andrographis paniculata and in dietary supplements containing this plant. Antioxidant activity was measured by FRAP, CUPRAC and DPPH procedures and ranged from 503.36 to 6164.09μmol TE/100g d.m. depending on methods, part of plant and kind of dietary supplement. The total phenolics (175.13-1723.79mg GAE/100g) and andrographolides content (19.44-85.13mg/g) in the studied samples were correlated with antioxidant activities determined by CUPRAC, FRAP and DPPH (r>0.95, ppaniculata leaves, whereas the lowest in dietary supplement Pn. Moreover principal component analysis, cluster analysis and one-way ANOVA follow by Duncan's tests were also performed. Copyright © 2015. Published by Elsevier B.V.

  8. Total Phenolics and Total Flavonoids Contents and Hypnotic Effect in Mice of Ziziphus mauritiana Lam. Seed Extract

    Directory of Open Access Journals (Sweden)

    Aye Moh Moh San

    2013-01-01

    Full Text Available The seeds of Ziziphus mauritiana Lam. have been traditionally used for treatment of various complications including insomnia and anxiety. They are popularly used as sedative and hypnotic drugs in China, Korea, Myanmar, Vietnam, and other Asian countries. However, no scientific proof on hypnotic activity of Z. mauritiana seeds (ZMS was reported. In this study, the hypnotic activity of 50% ethanolic extract from ZMS was observed on the loss of righting reflex in mice using pentobarbital-induced sleep mice method. The contents of total phenolics and total flavonoids in the extract were also determined. The results showed that the 50% ethanolic extract from ZMS contained total phenolics  mg gallic acid equivalent (GAE/g extract and total flavonoids  mg quercetin equivalent (QE/g extract. Oral administration of the extract at the dose of 200 mg/kg significantly increased the sleeping time in mice intraperitoneally administered with sodium pentobarbital (50 mg/kg body weight. These results supported the traditional use of ZMS for the treatment of insomnia. The seeds of Z. mauritiana should be further developed as an alternative sedative and/or hypnotic product.

  9. Antioxidant activity, total phenols and flavonoids of lichens from Venezuelan Andes.

    Directory of Open Access Journals (Sweden)

    Claudia M. Plaza

    2014-10-01

    Full Text Available Context:The biological potential of lichens has been documented through their use in traditional medicine. Secondary lichen metabolites exert a wide variety of biological actions, including their use as antioxidants. Aims:To evaluate the antioxidant activity, total phenol content, and flavonoids of four lichen fungal taxa collected in Mérida (Venezuela, and statistically evaluate the correlation between the antioxidant activity and the amount of phenols and flavonoids in the samples. Methods: Extracts were prepared with water, ethanol and dichloromethane from Cladonia aff. rappii, Cora aff. glabrata, Peltigera laciniata and Thamnolia vermicularis. The antioxidant capacity assessment was determined using DPPH• radical method and reducing power, with ascorbic acid as control. Total phenols were determined by means of the Folin-Ciocalteu method with gallic acid. Total flavonoids were estimated according to the modified Dowd method, using quercetin as standard. Results:The ethanolic extracts of the tested lichens showed the highest scavenging activity and reducing power compared to water and dichloromethane extracts at 4 mg/mL. The highest antiradical power value was found in ethanolic extract of Peltigera laciniata (2.28 mL/mgand the lowest in dichloromethane extract of Cora aff. glabrata (0.30 mL/mg. The correlation between antioxidant activity and total phenolic content was moderate. The flavonoids content of ethanolic extracts was highly significant but negative (p < 0.05. There was good correlation in dichloromethane extracts. The ethanolic extract of P. laciniata exhibited the highest antiradical activity despite showing the lowest flavonoid content. Conclusions: The ethanolic extracts of lichens tested showed to have the higher antioxidant activity and may be used as natural sources of new antioxidants.

  10. Solvent Effect on Antioxidant Activity and Total Phenolic Content of Betula alba and Convolvulus arvensi

    OpenAIRE

    Mohd Azman A. Nurul; Husni Shafik; Almajano P. Maria; Gallego G. Maria

    2013-01-01

    The potential of using herbal Betula alba (BA) and Convolvulus arvensis (CA) as a natural antioxidant for food applications were investigated. Each plant extract was prepared by using pure ethanol, different concentration of ethanol aqueous solutions, including 50% and 75%, 50% methanol aqueous and water. Total phenolic content (TPC) was determined using Folin–Ciocalteau method and antioxidant activity were analyzed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, trolox equivalent antioxida...

  11. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves

    Directory of Open Access Journals (Sweden)

    Alam Zeb

    2017-04-01

    Full Text Available Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins, and two chlorophylls. Lutein (806.0 μg/g, chlorophyll b′ (410.0 μg/g, chlorophyll a (162.4 μg/g, 9′-Z-neoxanthin (142.8 μg/g and all-E-violaxanthin (82.2 μg/g were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of 13 compounds, namely 4-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g, chlorogenic acid (28.5 mg/g, 5-O-caffeoylquinic acid (18.7 mg/g, coumaric acid (11.2 mg/g, and its derivative (33.1 mg/g were present in high amounts. These results suggest that the reversed phase HPLC profiling of Adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for the potential medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a possible source of nutraceuticals or as a functional food ingredient.

  12. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves

    Science.gov (United States)

    Zeb, Alam; Ullah, Fareed

    2017-04-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins and two chlorophylls. Lutein (806.0 µg/g), chlorophyll b' (410.0 µg/g), chlorophyll a (162.4 µg/g), 9'-Z-neoxanthin (142.8 µg/g) and all-E-violaxanthin (82.2 µg/g)) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of thirteen compounds, namely p-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5-O-caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g) and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for possible medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a potential source of nutraceuticals or as a functional food ingredient.

  13. Isoprenylated phenolic compounds with PTP1B inhibition from Morus alba.

    Science.gov (United States)

    Huang, Qing-Hua; Lei, Chun; Wang, Pei-Pei; Li, Jing-Ya; Li, Jia; Hou, Ai-Jun

    2017-10-01

    Two new Diels-Alder adducts, albasins A and B (1 and 2), one new isoprenylated 2-arylbenzofuran, albasin C (3), one new isoprenylated flavone, albasin D (4), together with sixteen known phenolic compounds, were isolated from the root bark of Morus alba. Their structures were elucidated by extensive spectroscopic analysis, including NMR, MS, and ECD data. All the new compounds and most of the known ones showed significant inhibitory effects on PTP1B in vitro with IC 50 values ranging from 0.57 to 7.49μM. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Identification and Antioxidant Properties of Phenolic Compounds during Production of Bread from Purple Wheat Grains.

    Science.gov (United States)

    Yu, Lilei; Beta, Trust

    2015-08-26

    Phenolic profiles and antioxidant properties of purple wheat varieties were investigated to document the effects of bread-making. Bread crust and crumb along with samples collected after mixing, 30 min fermenting, 65 min fermenting, and baking were examined. Free phenolic content (105.4 to 113.2 mg FAE/100 g) significantly (p 0.05) decreased after 30 min fermentation (7% to 9%) compared to the dough after mixing, but increased significantly (p bread crust demonstrated increased free (103% to 109%) but decreased bound (2% to 3%) phenolic content, whereas bread crumb exhibited a reversal of these results. Total anthocyanin content (TAC) significantly (p bread crust (0.8 to 4.4 mg cyn-3-glu equiv./100 g). p-Hydroxybenzoic, vanillic, p-coumaric, and ferulic acids were detected in free-phenolic extracts, while protocatechuic, caffeic syringic, and sinapic were additional acids in bound-phenolic extracts. Cyanidin-3-glucoside was the detectable anthocyanin in purple wheat. Bread-making significantly (p bread.

  15. Improve the biodegradability of post-hydrothermal liquefaction wastewater with ozone: conversion of phenols and N-heterocyclic compounds.

    Science.gov (United States)

    Yang, Libin; Si, Buchun; Martins, Marcio Arêdes; Watson, Jamison; Chu, Huaqiang; Zhang, Yuanhui; Tan, Xiaobo; Zhou, Xuefei; Zhang, Yalei

    2017-04-01

    Hydrothermal liquefaction is a promising technology to convert wet biomass into bio-oil. However, post-hydrothermal liquefaction wastewater (PHWW) is also produced during the process. This wastewater contains a high concentration of organic compounds, including phenols and N-heterocyclic compounds which are two main inhibitors for biological treatment. Thus, proper treatment is required. In this work, ozone was used to convert phenols and N-heterocyclic compounds with a dosage range of 0-4.64 mg O 3 /mL PHWW. After ozone treatment, the phenols were fully converted, and acids were produced. However, N-heterocyclic compounds were found to have a low conversion rate (21.7%). The kinetic analysis for the degradation of phenols and N-heterocyclic compounds showed that the substitute played an important role in determining the priority of ozone reactions. The OH moiety in the ring compounds (phenols and pyridinol) may form hydroxyl radical, which lead to an efficient reaction. A substantial improved biodegradability of PHWW was observed after ozone treatment. The ratio of BOD 5 /COD was increased by about 32.36%, and reached a maximum of 0.41. The improved biodegradability of PHWW was justified by the conversion of phenols and N-heterocyclic compounds.

  16. Inhibition of aflatoxin biosynthesis in Aspergillus flavus by phenolic compounds extracted of Piper betle L.

    Science.gov (United States)

    Yazdani, Darab; Mior Ahmad, Zainal Abidin; Yee How, Tan; Jaganath, Indu Bala; Shahnazi, Sahar

    2013-12-01

    Food contamination by aflatoxins is an important food safety concern for agricultural products. In order to identify and develop novel antifungal agents, several plant extracts and isolated compounds have been evaluated for their bioactivities. Anti-infectious activity of Piper betle used in traditional medicine of Malaysia has been reported previously. Crude methanol extract from P. betel powdered leaves was partitioned between chloroform and water. The fractions were tested against A. flavus UPMC 89, a strong aflatoxin producing strain. Inhibition of mycelial growth and aflatoxin biosynthesis were tested by disk diffusion and macrodillution techniques, respectively. The presence of aflatoxin was determined by thin-layer chromatography (TLC) and fluorescence spectroscopy techniques using AFB1 standard. The chloroform soluble compounds were identified using HPLC-Tandem mass spectrometry technique. The results, evaluated by measuring the mycelial growth and quantification of aflatoxin B1(AFLB1) production in broth medium revealed that chloroform soluble compounds extract from P. betle dried leaves was able to block the aflatoxin biosynthesis pathway at concentration of 500μg/ml without a significant effect on mycelium growth. In analyzing of this effective fractions using HPLC-MS(2) with ESI ionization technique, 11 phenolic compounds were identified. The results showed that the certain phenolic compounds are able to decline the aflatoxin production in A. flavus with no significant effect on the fungus mycelia growth. The result also suggested P. betle could be used as potential antitoxin product.

  17. Immobilization of Bacillus sp. in mesoporous activated carbon for degradation of sulphonated phenolic compound in wastewater.

    Science.gov (United States)

    Sekaran, G; Karthikeyan, S; Gupta, V K; Boopathy, R; Maharaja, P

    2013-03-01

    Xenobiotic compounds are used in considerable quantities in leather industries besides natural organic and inorganic compounds. These compounds resist biological degradation and thus they remain in the treated wastewater in the unaltered molecular configurations. Immobilization of organisms in carrier matrices protects them from shock load application and from the toxicity of chemicals in bulk liquid phase. Mesoporous activated carbon (MAC) has been considered in the present study as the carrier matrix for the immobilization of Bacillus sp. isolated from Effluent Treatment Plant (ETP) employed for the treatment of wastewater containing sulphonated phenolic (SP) compounds. Temperature, pH, concentration, particle size and mass of MAC were observed to influence the immobilization behavior of Bacillus sp. The percentage immobilization of Bacillus sp. was the maximum at pH 7.0, temperature 20 °C and at particle size 300 μm. Enthalpy, free energy and entropy of immobilization were -46.9 kJ mol(-1), -1.19 kJ mol(-1) and -161.36 JK(-1)mol(-1) respectively at pH 7.0, temperature 20 °C and particle size 300 μm. Higher values of ΔH(0) indicate the firm bonding of the Bacillus sp. in MAC. Degradation of aqueous sulphonated phenolic compound by Bacillus sp. immobilized in MAC followed pseudo first order rate kinetics with rate constant 1.12 × 10(-2) min(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Effects of NaCl and soaking temperature on the phenolic compounds, α-tocopherol, γ-oryzanol and fatty acids of glutinous rice.

    Science.gov (United States)

    Thammapat, Pornpisanu; Meeso, Naret; Siriamornpun, Sirithon

    2015-05-15

    Soaking is one of the important steps of the parboiling process. In this study, we investigated the effect of changes in different sodium chloride (NaCl) content (0%, 1.5% and 3.0% NaCl, w/v) of soaking media and soaking temperatures (30°C, 45°C and 60°C) on the phenolic compounds (α-tocopherol, γ-oryzanol) and on the fatty acids of glutinous rice, compared with unsoaked samples. Overall, the total phenolic content, total phenolic acids, γ-oryzanol, saturated fatty acid and mono-unsaturated fatty acid of the glutinous rice showed an increasing trend as NaCl content and soaking temperature increased, while α-tocopherol and polyunsaturated fatty acids decreased. Soaking at 3.0% NaCl provided the highest total phenolic content, total phenolic acids and γ-oryzanol (0.2mg GAE/g, 63.61 μg/g and 139.76 mg/100g, respectively) for the soaking treatments tested. Nevertheless, the amount of α-tocopherol and polyunsaturated fatty acid were found to be the highest (18.30/100g and 39.74%, respectively) in unsoaked rice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Impact of phenolic compounds and related enzymes in Sorghum varieties for resistance and susceptibility to biotic and abiotic stresses

    NARCIS (Netherlands)

    Dicko, M.H.; Gruppen, H.; Barro, C.; Traore, A.S.; Berkel, van W.J.H.; Voragen, A.G.J.

    2005-01-01

    Contents of phenolic compounds and related enzymes before and after sorghum grain germination were compared between varieties either resistant or susceptible to biotic (sooty stripe, sorghum midge, leaf anthracnose, striga, and grain molds) and abiotic (lodging, drought resistance, and photoperiod

  20. Phenolic Compounds Protect Cultured Hippocampal Neurons against Ethanol-Withdrawal Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Marianna E. Jung

    2009-04-01

    Full Text Available Ethanol withdrawal is linked to elevated oxidative damage to neurons. Here we report our findings on the contribution of phenolic antioxidants (17β-estradiol, p-octyl-phenol and 2,6-di-tert-butyl-4-methylphenol to counterbalance sudden ethanol withdrawal-initiated oxidative events in hippocampus-derived cultured HT-22 cells. We showed that ethanol withdraw