WorldWideScience

Sample records for total particle mass

  1. Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument

    Science.gov (United States)

    Stockwell, Chelsea E.; Kupc, Agnieszka; Witkowski, Bartłomiej; Talukdar, Ranajit K.; Liu, Yong; Selimovic, Vanessa; Zarzana, Kyle J.; Sekimoto, Kanako; Warneke, Carsten; Washenfelder, Rebecca A.; Yokelson, Robert J.; Middlebrook, Ann M.; Roberts, James M.

    2018-05-01

    The chemical composition of aerosol particles is a key aspect in determining their impact on the environment. For example, nitrogen-containing particles impact atmospheric chemistry, air quality, and ecological N deposition. Instruments that measure total reactive nitrogen (Nr = all nitrogen compounds except for N2 and N2O) focus on gas-phase nitrogen and very few studies directly discuss the instrument capacity to measure the mass of Nr-containing particles. Here, we investigate the mass quantification of particle-bound nitrogen using a custom Nr system that involves total conversion to nitric oxide (NO) across platinum and molybdenum catalysts followed by NO-O3 chemiluminescence detection. We evaluate the particle conversion of the Nr instrument by comparing to mass-derived concentrations of size-selected and counted ammonium sulfate ((NH4)2SO4), ammonium nitrate (NH4NO3), ammonium chloride (NH4Cl), sodium nitrate (NaNO3), and ammonium oxalate ((NH4)2C2O4) particles determined using instruments that measure particle number and size. These measurements demonstrate Nr-particle conversion across the Nr catalysts that is independent of particle size with 98 ± 10 % efficiency for 100-600 nm particle diameters. We also show efficient conversion of particle-phase organic carbon species to CO2 across the instrument's platinum catalyst followed by a nondispersive infrared (NDIR) CO2 detector. However, the application of this method to the atmosphere presents a challenge due to the small signal above background at high ambient levels of common gas-phase carbon compounds (e.g., CO2). We show the Nr system is an accurate particle mass measurement method and demonstrate its ability to calibrate particle mass measurement instrumentation using single-component, laboratory-generated, Nr-containing particles below 2.5 µm in size. In addition we show agreement with mass measurements of an independently calibrated online particle-into-liquid sampler directly coupled to the

  2. Quantitative determination of carbonaceous particle mixing state in Paris using single particle mass spectrometer and aerosol mass spectrometer measurements

    Science.gov (United States)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-04-01

    secondary organic aerosol mixing states in Paris. Examination of the temporal behaviour and chemical composition of the ATOFMS classes also enabled estimation of the relative contribution of transported emissions of each chemical species and total particle mass in the size range investigated. Only 22% of the total ATOFMS-derived particle mass was apportioned to fresh, local emissions, with 78% apportioned to regional/continental scale emissions.

  3. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2013-09-01

    temporal behaviour and chemical composition of the ATOFMS classes also enabled estimation of the relative contribution of transported emissions of each chemical species and total particle mass in the size range investigated. Only 22% of the total ATOFMS-derived particle mass was apportioned to fresh, local emissions, with 78% apportioned to regional/continental-scale emissions.

  4. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    Science.gov (United States)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-09-01

    behaviour and chemical composition of the ATOFMS classes also enabled estimation of the relative contribution of transported emissions of each chemical species and total particle mass in the size range investigated. Only 22% of the total ATOFMS-derived particle mass was apportioned to fresh, local emissions, with 78% apportioned to regional/continental-scale emissions.

  5. Single-particle measurements of bouncing particles and in situ collection efficiency from an airborne aerosol mass spectrometer (AMS) with light-scattering detection

    Science.gov (United States)

    Liao, Jin; Brock, Charles A.; Murphy, Daniel M.; Sueper, Donna T.; Welti, André; Middlebrook, Ann M.

    2017-10-01

    A light-scattering module was coupled to an airborne, compact time-of-flight aerosol mass spectrometer (LS-AMS) to investigate collection efficiency (CE) while obtaining nonrefractory aerosol chemical composition measurements during the Southeast Nexus (SENEX) campaign. In this instrument, particles scatter light from an internal laser beam and trigger saving individual particle mass spectra. Nearly all of the single-particle data with mass spectra that were triggered by scattered light signals were from particles larger than ˜ 280 nm in vacuum aerodynamic diameter. Over 33 000 particles are characterized as either prompt (27 %), delayed (15 %), or null (58 %), according to the time and intensity of their total mass spectral signals. The particle mass from single-particle spectra is proportional to that derived from the light-scattering diameter (dva-LS) but not to that from the particle time-of-flight (PToF) diameter (dva-MS) from the time of the maximum mass spectral signal. The total mass spectral signal from delayed particles was about 80 % of that from prompt ones for the same dva-LS. Both field and laboratory data indicate that the relative intensities of various ions in the prompt spectra show more fragmentation compared to the delayed spectra. The particles with a delayed mass spectral signal likely bounced off the vaporizer and vaporized later on another surface within the confines of the ionization source. Because delayed particles are detected by the mass spectrometer later than expected from their dva-LS size, they can affect the interpretation of particle size (PToF) mass distributions, especially at larger sizes. The CE, measured by the average number or mass fractions of particles optically detected that had measurable mass spectra, varied significantly (0.2-0.9) in different air masses. The measured CE agreed well with a previous parameterization when CE > 0.5 for acidic particles but was sometimes lower than the minimum parameterized CE of 0.5.

  6. Efficient isotope ratio analysis of uranium particles in swipe samples by total-reflection x-ray fluorescence spectrometry and secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Esaka, Fumitaka; Watanabe, Kazuo; Fukuyama, Hiroyasu; Onodera, Takashi; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu

    2004-01-01

    A new particle recovery method and a sensitive screening method were developed for subsequent isotope ratio analysis of uranium particles in safeguards swipe samples. The particles in the swipe sample were recovered onto a carrier by means of vacuum suction-impact collection method. When grease coating was applied to the carrier, the recovery efficiency was improved to 48±9%, which is superior to that of conventionally-used ultrasoneration method. Prior to isotope ratio analysis with secondary ion mass spectrometry (SIMS), total reflection X-ray fluorescence spectrometry (TXRF) was applied to screen the sample for the presence of uranium particles. By the use of Si carriers in TXRF analysis, the detection limit of 22 pg was achieved for uranium. By combining these methods with SIMS, the isotope ratios of 235 U/ 238 U for individual uranium particles were efficiently determined. (author)

  7. Physical Origin of Elementary Particle Masses

    OpenAIRE

    Hansson, Johan

    2014-01-01

    In contemporary particle physics, the masses of fundamental particles are incalculable constants, being supplied by experimental values. Inspired by observation of the empirical particle mass spectrum, and their corresponding physical interaction couplings, we propose that the masses of elementary particles arise solely due to the self-interaction of the fields associated with the charges of a particle. A first application of this idea is seen to yield correct order of magnitude predictions f...

  8. God particle and origin of mass

    International Nuclear Information System (INIS)

    He Hongjian; Kuang Yuping

    2014-01-01

    The new Higgs boson discovered at the CERN LHC could be the God particle expected from the standard model. This revolutionary discovery opens up a new era of exploring the origin of masses for all elementary particles in the universe. It becomes a turning point of the particle physics in 21 th century. This article presents the following: (1) Scientific importance of searching and testing the God particle(s); (2) The history of studying the origin of mass, and why Newton mechanics and Einstein relativity could not resolve the origin of mass; (3) The mysterious vacuum and the mechanism of spontaneous symmetry breaking; (4) How the God particle was invented and how the LHC might have discovered it; (5) The perspective of seeking the origin of mass and new physics laws. (authors)

  9. On the mass spectrum of particles

    International Nuclear Information System (INIS)

    Sajo, Istvan

    1983-01-01

    An eigenvalue formula of general validity was developed with correct mathematical methods from measured data of the stationary mass and self-energy of stationary particles; this is able to generate universally the mass of particles belonging to any class or group, i.e. to produce the spectra of particles with a stationary mass surpassing that of the electron. The author shows that this eigenvalue formula can be produced as the produc t of several partial formulae which, separately, are not more complicated than that developed by Balmer from data measured on the spectrum of the hydrogen atom. The validity of the first version of the formulae was checked for many particles discovered subsequently. The results are published in detail in the present paper, together with the method of development of the universal eigenvalue formula generating the mass spectrum of elementary particles. The formulae describing the discrete energy levels of the particles can be extended by considering the theory of special relativity, also to the mass of moving particles proportional with their inertia. (author)

  10. On the Origin of Elementary Particle Masses

    OpenAIRE

    Hansson, Johan

    2012-01-01

    The oldest enigma in fundamental particle physics is: Where do the observed masses of elementary particles come from? Inspired by observation of the empirical particle mass spectrum we propose that the masses of elementary parti cles arise solely due to the self-interaction of the fields associated with a particle. We thus assume that the mass is proportional to the strength of the interaction of th e field with itself. A simple application of this idea to the fermi...

  11. About limit masses of elementary particles

    International Nuclear Information System (INIS)

    Ibadova, U.R.

    2002-01-01

    The simple examples of spontaneous breaking of various symmetries for the scalar theory with fundamental mass have been considered. Higgs' generalizations on 'fundamental masses' that was introduced into the theory on a basis of the five-dimensional de Sitter space. The connection among 'fundamental mass', 'Planck's mass' and 'maxim ons' has been found. Consequently, the relationship among G-gravitational constant and other universal parameters can be established. The concept the mass having its root from deep antiquity (including Galilee's Pis sans experiment, theoretical research of the connection of mass with the Einstein's energy etc.) still remains fundamental. Every theoretical and experimental research in classical physics and quantum physics associated with mass is of step to the discernment of Nature. Besides of mass, the other fundamental constants such as Planck's constant ℎ and the speed of light also play the most important role in the modern theories. The first one related to quantum mechanics and the second one is related to the theory of relativity. Nowadays the properties and interactions of elementary particles can be described more or less adequately in terms of local fields that are affiliated with the lowest representations of corresponding compact groups of symmetry. It is known that the mass of any body is composed of masses of its comprising elementary particles. The mass of elementary particles is the Casimir operator of the non-compact Poincare group, and those representations of the given group, that are being used in Quantum Field Theory (QFT), and it can take any values in the interval of 0≤m≤∞. Two particles, today referred to as elementary particles, can have masses; distinct one from another by many orders. For example, vectorial bosons with the mass of ∼10 15 GeV take place in general relativity theory modules, whereas the mass of an electron is only ∼0.5·10 3 GeV. Formally, the standard QFT remains logical in a case

  12. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    Science.gov (United States)

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  13. Characterizing uranium oxide reference particles for isotopic abundances and uranium mass by single particle isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Kraiem, M.; Richter, S.; Erdmann, N.; Kühn, H.; Hedberg, M.; Aregbe, Y.

    2012-01-01

    Highlights: ► A method to quantify the U mass in single micron particles by ID-TIMS was developed. ► Well-characterized monodisperse U-oxide particles produced by an aerosol generator were used. ► A linear correlation between the mass of U and the volume of particle(s) was found. ► The method developed is suitable for determining the amount of U in a particulate reference material. - Abstract: Uranium and plutonium particulate test materials are becoming increasingly important as the reliability of measurement results has to be demonstrated to regulatory bodies responsible for maintaining effective nuclear safeguards. In order to address this issue, the Institute for Reference Materials and Measurements (IRMM) in collaboration with the Institute for Transuranium Elements (ITU) has initiated a study to investigate the feasibility of preparing and characterizing a uranium particle reference material for nuclear safeguards, which is finally certified for isotopic abundances and for the uranium mass per particle. Such control particles are specifically required to evaluate responses of instruments based on mass spectrometric detection (e.g. SIMS, TIMS, LA-ICPMS) and to help ensuring the reliability and comparability of measurement results worldwide. In this paper, a methodology is described which allows quantifying the uranium mass in single micron particles by isotope dilution thermal ionization mass spectrometry (ID-TIMS). This methodology is characterized by substantial improvements recently achieved at IRMM in terms of sensitivity and measurement accuracy in the field of uranium particle analysis by TIMS. The use of monodisperse uranium oxide particles prepared using an aerosol generation technique developed at ITU, which is capable of producing particles of well-characterized size and isotopic composition was exploited. The evidence of a straightforward correlation between the particle volume and the mass of uranium was demonstrated in this study

  14. Higgs Particle: The Origin of Mass

    Science.gov (United States)

    Okada, Yasuhiro

    2007-11-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments, LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generation mechanism, which could lead to a deeper understanding of particle physics.

  15. Higgs particle. The origin of mass

    International Nuclear Information System (INIS)

    Okada, Yasuhiro

    2007-01-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments. LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generation mechanism, which could lead to a deeper understanding of particle physics. (author)

  16. Higgs Particle: The Origin of Mass

    OpenAIRE

    Okada, Yasuhiro

    2007-01-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments, LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generat...

  17. Charged particle scintillation mass spectrometer

    International Nuclear Information System (INIS)

    Baranov, P.S.; Zhuravlev, E.E.; Nafikov, A.A.; Osadchi , A.I.; Raevskij, V.G.; Smirnov, P.A.; Cherepnya, S.N.; Yanulis, Yu.P.

    1982-01-01

    A scintillation mass-spectrometer for charged particle identification by the measured values of time-of-flight and energy operating on line with the D-116 computer is described. Original time detectors with 100x100x2 mm 3 and 200x2 mm 2 scintillators located on the 1- or 2 m path length are used in the spectrometer. The 200x200x200 mm 3 scintillation unit is used as a E-counter. Time-of-flight spectra of the detected particles on the 2 m path length obtained in spectrometer test in the beam of charged particles escaping from the carbon target at the angle of 130 deg under 1.2 GeV bremsstrahlung beam of the ''Pakhra'' PIAS synchrotron are presented. Proton and deuteron energy spectra as well as mass spectrum of all the particles detected by the spectrometer are given. Mass resolution obtained on the 2 m path length for π-mesons is +-25%, for protons is +-5%, for deuterons is +-3%

  18. Isotope analysis of micro metal particles by adopting laser-ablation mass spectrometry

    International Nuclear Information System (INIS)

    Song, Kyu Seok; Ha, Young Kyung; Han, Sun Ho; Park, Yong Joon; Kim, Won Ho

    2005-01-01

    The isotope analysis of microparticles in environmental samples as well as laboratory samples is an important task. A special concern is necessary in particle analysis of swipe samples. Micro particles are normally analyzed either by dissolving particles in the solvents and adopting conventional analytical methods or direct analysis method such as a laser-ablation ICP mass spectrometry (LA-ICP-MS), SIMS, and SNMS (sputtered neutral mass spectrometry). But the LA-ICPMS uses large amount of samples because normally laser beam is tightly focused on the target particle for the complete ablation. The SIMS and SNMS utilize ion beams for the generation of sample ions from the particle. But the number of ions generated by an ion beam is less than 5% of the total generated particles in SIMS. The SNMS is also an excellent analytical technique for particle analysis, however, ion beam and frequency tunable laser system are required for the analysis. Recently a direct analysis of elements as well as isotopes by using laser-ablation is recognized one of the most efficient detection technology for particle samples. The laser-ablation mass spectrometry requires only one laser source without frequency tuneability with no sample pretreatment. Therefore this technique is one of the simplest analysis techniques for solid samples as well as particles. In this study as a part of the development of the new isotope analysis techniques for particles samples, a direct laser-ablation is adopted with mass spectrometry. Zinc and gadolinium were chosen as target samples, since these elements have isotopes with minor abundance (0.62% for Zn, and 0.2% for Gd). The preliminary result indicates that isotopes of these two elements are analyzed within 10% of natural abundance with good mass resolution by using direct laser-ablation mass spectrometry

  19. An electrostatic beam line for accelerator mass spectroscopy of exotic particles

    International Nuclear Information System (INIS)

    Elmore, D.; Kubik, P.W.; Hemmick, T.; Teng, R.; Kagan, H.; Haas, P.; Boyd, R.N.; Turner, R.; Nitz, D.; Ciampa, D.; Olsen, S.L.; Gentile, T.; Haelen, T.

    1985-01-01

    An all-electrostatic charged particle spectrometer has been constructed to perform high sensitivity searches for exotic states of matter. This spectrometer consists of an electrosatic beam line capable of mass independent charged particle transport and selection together with time-of-flight, energy loss and total energy detectors. This system has been used in conjunction with the tandem electrostatic accelerator at the Nuclear Structure Research Laboratory of the University of Rochester to search for fractionally charged or anomalously heavy particles. (orig.)

  20. Position and mass determination of multiple particles using cantilever based mass sensors

    International Nuclear Information System (INIS)

    Dohn, Soeren; Schmid, Silvan; Boisen, Anja; Amiot, Fabien

    2010-01-01

    Resonant microcantilevers are highly sensitive to added masses and have the potential to be used as mass-spectrometers. However, making the detection of individual added masses quantitative requires the position determination for each added mass. We derive expressions relating the position and mass of several added particles to the resonant frequencies of a cantilever, and an identification procedure valid for particles with different masses is proposed. The identification procedure is tested by calculating positions and mass of multiple microparticles with similar mass positioned on individual microcantilevers. Excellent agreement is observed between calculated and measured positions and calculated and theoretical masses.

  1. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    Science.gov (United States)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  2. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China.

    Science.gov (United States)

    Lu, Senlin; Tan, Zhengying; Liu, Pinwei; Zhao, Hui; Liu, Dingyu; Yu, Shang; Cheng, Ping; Win, Myat Sandar; Hu, Jiwen; Tian, Linwei; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2017-11-01

    Coal combustion particles (CCPs) are linked to the high incidence of lung cancer in Xuanwei and in Fuyuan, China, but studies on the chemical composition of the CCPs are still limited. Single particle aerosol mass spectrometry (SPAMS) was recently developed to measure the chemical composition and size of single particles in real-time. In this study, SPAMS was used to measure individual combustion particles emitted from Xuanwei and Fuyuan coal samples and the results were compared with those by ICP-MS and transmission electron microscopy (TEM). The total of 38,372 particles mass-analyzed by SPAMS can be divided into 9 groups based on their chemical composition and their number percentages: carbonaceous, Na-rich, K-rich, Al-rich, Fe-rich, Si-rich, Ca-rich, heavy metal-bearing, and PAH-bearing particles. The carbonaceous and PAH-bearing particles are enriched in the size range below 0.56 μm, Fe-bearing particles range from 0.56 to 1.0 μm in size, and heavy metals such as Ti, V, Cr, Cu, Zn, and Pb have diameters below 1 μm. The TEM results show that the particles from Xuanwei and Fuyuan coal combustion can be classified into soot aggregates, Fe-rich particles, heavy metal containing particles, and mineral particles. Non-volatile particles detected by SPAMS could also be observed with TEM. The number percentages by SPAMS also correlate with the mass concentrations measured by ICP-MS. Our results could provide valuable insight for understanding high lung cancer incidence in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fission fragment mass and total kinetic energy distributions of spontaneously fissioning plutonium isotopes

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with A = 236-246. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energy distributions are found in good agreement with the data.

  4. The notions of mass in gravitational and particle physics

    Science.gov (United States)

    Castellani, Gianluca

    It is presently thought that the mass of all of the elementary particles is determined by the Higgs field. This scalar field couples directly into the trace of the energy momentum tensor of the elementary particles. The attraction between two or more masses arises from the exchange of gravitational quantum particles of spin 2, called gravitons. The gravitational field couples directly into the energy momentum tensor. Then there is a close connection between the Higgs field, that originates the mass, and the gravitational field that dictates how the masses interact. Our purpose in this thesis is to discuss this close connection in terms of fundamental definitions of inertial and gravitational masses. On a practical level we explore two properties of mass from the viewpoint of coupling into the Higgs field: (i) The coupling of the both the Higgs and gravity to the energy-pressure tensor allows for the decay of the Higgs particle into two gravitons. We use the self energy part of the Higgs propagator to calculate the electromagnetic, weak, fermionic and gravitational decay rate of the Higgs particle. We show that the former process appears to dominate the other decay modes. Since the gravitons are detectable with virtually zero probability, the number of Higgs particles with observable decay products will be much less than previously expected. (ii) Some new experimental results seem to indicate that the mass of the heavy elementary particles like the Z,W+,W- and especially the top quark, depends on the particle environment in which these particles are produced. The presence of a Higgs field due to neighboring particles could be responsible for induced mass shifts. Further measurements of mass shift effects might give an indirect proof of the Higgs particle. Such can be in principle done by re-analyzing some of the production data e +e- → ZZ (or W+W-) already collected at the LEP experiment. About the physical property of the top quark, it is too early to arrive at

  5. Quantification of differences between occupancy and total monitoring periods for better assessment of exposure to particles in indoor environments

    Science.gov (United States)

    Wierzbicka, A.; Bohgard, M.; Pagels, J. H.; Dahl, A.; Löndahl, J.; Hussein, T.; Swietlicki, E.; Gudmundsson, A.

    2015-04-01

    For the assessment of personal exposure, information about the concentration of pollutants when people are in given indoor environments (occupancy time) are of prime importance. However this kind of data frequently is not reported. The aim of this study was to assess differences in particle characteristics between occupancy time and the total monitoring period, with the latter being the most frequently used averaging time in the published data. Seven indoor environments were selected in Sweden and Finland: an apartment, two houses, two schools, a supermarket, and a restaurant. They were assessed for particle number and mass concentrations and number size distributions. The measurements using a Scanning Mobility Particle Sizer and two photometers were conducted for seven consecutive days during winter in each location. Particle concentrations in residences and schools were, as expected, the highest during occupancy time. In the apartment average and median PM2.5 mass concentrations during the occupancy time were 29% and 17% higher, respectively compared to total monitoring period. In both schools, the average and medium values of the PM2.5 mass concentrations were on average higher during teaching hours compared to the total monitoring period by 16% and 32%, respectively. When it comes to particle number concentrations (PNC), in the apartment during occupancy, the average and median values were 33% and 58% higher, respectively than during the total monitoring period. In both houses and schools the average and median PNC were similar for the occupancy and total monitoring periods. General conclusions on the basis of measurements in the limited number of indoor environments cannot be drawn. However the results confirm a strong dependence on type and frequency of indoor activities that generate particles and site specificity. The results also indicate that the exclusion of data series during non-occupancy periods can improve the estimates of particle concentrations and

  6. On the Origin of Elementary Particle Masses

    Directory of Open Access Journals (Sweden)

    Hansson J.

    2014-04-01

    Full Text Available The oldest enigma in fundamental particle physics is: Where do the observed masses of elementary particles come from? Inspired by observation of the empirical particle mass spectrum we propose that the masses of elementary parti cles arise solely due to the self-interaction of the fields associated with a particle. We thus assume that the mass is proportional to the strength of the interaction of th e field with itself. A simple application of this idea to the fermions is seen to yield a mas s for the neutrino in line with constraints from direct experimental upper limits and correct order of magnitude predictions of mass separations between neutrinos, charge d leptons and quarks. The neutrino interacts only through the weak force, hence becom es light. The electron in- teracts also via electromagnetism and accordingly becomes heavier. The quarks also have strong interactions and become heavy. The photon is the only fundamental parti- cle to remain massless, as it is chargeless. Gluons gain mass comparable to quarks, or slightly larger due to a somewhat larger color charge. Inclu ding particles outside the standard model proper, gravitons are not exactly massless, but very light due to their very weak self-interaction. Some immediate and physically interesting consequences arise: i Gluons have an e ff ective range ∼ 1 fm, physically explaining why QCD has finite reach; ii Gravity has an effective range ∼ 100 Mpc coinciding with the largest known structures, the cosmic voids; iii Gravitational waves undergo dispersion even in vacuum, and have all five polarizations (not just the two of m = 0, which might explain why they have not yet been detected.

  7. Workplace aerosol mass concentration measurement using optical particle counters.

    Science.gov (United States)

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  8. Experiments for obtaining field influence mass particles.

    CERN Document Server

    Yahalomi, E

    2010-01-01

    Analyzing time dilation experiments the existence of a universal field interacting with moving mass particles is obtained. It is found that mass particle changes its properties depend on its velocity relative to this universal scalar field and not on its velocity relative to the laboratory. High energy proton momentum, energy and mass were calculated obtaining new results. Experiments in high energy accelerators are suggested as additional proofs for the existence of this universal field. This universal field may explain some results of other high energy experiments.

  9. Improved identification of primary biological aerosol particles using single-particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. A. Zawadowicz

    2017-06-01

    Full Text Available Measurements of primary biological aerosol particles (PBAP, especially at altitudes relevant to cloud formation, are scarce. Single-particle mass spectrometry (SPMS has been used to probe aerosol chemical composition from ground and aircraft for over 20 years. Here we develop a method for identifying bioaerosols (PBAP and particles containing fragments of PBAP as part of an internal mixture using SPMS. We show that identification of bioaerosol using SPMS is complicated because phosphorus-bearing mineral dust and phosphorus-rich combustion by-products such as fly ash produce mass spectra with peaks similar to those typically used as markers for bioaerosol. We have developed a methodology to differentiate and identify bioaerosol using machine learning statistical techniques applied to mass spectra of known particle types. This improved method provides far fewer false positives compared to approaches reported in the literature. The new method was then applied to two sets of ambient data collected at Storm Peak Laboratory and a forested site in Central Valley, California to show that 0.04–2 % of particles in the 200–3000 nm aerodynamic diameter range were identified as bioaerosol. In addition, 36–56 % of particles identified as biological also contained spectral features consistent with mineral dust, suggesting internal dust–biological mixtures.

  10. Mass spectrometer provided with an optical system for separating neutron particles against charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Reeher, J R; Story, M S; Smith, R D

    1977-03-03

    This invention concerns a mass spectrometer with an ion focusing optical system that efficiently separates the charged and neutral particles. It concerns an apparatus that can be used in ionisation areas operating at relatively high pressure (> 10/sup -2/ Torr). The invention relates more particularly to a mass spectrometer with an inlet device for the samples to be identified, a sample ionisation system for forming charged and neutral particles, a mass analyser and an optical system for focusing the ions formed in the mass analyser. The optics include several conducting components of which at least one has sides formed of grids, in the direction of the axis, towards the analyser the optics forming a potential well along the axis. The selected charged particles are focused in the analyser and the remaining particles can escape by the openings in the conducting grids.

  11. Electrospray ionizer for mass spectrometry of aerosol particles

    Science.gov (United States)

    He, Siqin; Hogan, Chris; Li, Lin; Liu, Benjamin Y. H.; Naqwi, Amir; Romay, Francisco

    2017-09-19

    A device and method are disclosed to apply ESI-based mass spectroscopy to submicrometer and nanometer scale aerosol particles. Unipolar ionization is utilized to charge the particles in order to collect them electrostatically on the tip of a tungsten rod. Subsequently, the species composing the collected particles are dissolved by making a liquid flow over the tungsten rod. This liquid with dissolved aerosol contents is formed into highly charged droplets, which release unfragmented ions for mass spectroscopy, such as time-of-flight mass spectroscopy. The device is configured to operate in a switching mode, wherein aerosol deposition occurs while solvent delivery is turned off and vice versa.

  12. Geometric representation of fundamental particles' inertial mass

    Energy Technology Data Exchange (ETDEWEB)

    Schachter, L. [Technion-Israel Inst. of Tech., Haifa (Israel); Spencer, James [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-07-22

    A geometric representation of the (N = 279) masses of quarks, leptons, hadrons and gauge bosons was introduced by employing a Riemann Sphere facilitating the interpretation of the N masses in terms of a single particle, the Masson, which might be in one of the N eigen-states. Geometrically, its mass is the radius of the Riemann Sphere. Dynamically, its derived mass is near the mass of the nucleon regardless of whether it is determined from all N particles of only the hadrons, the mesons or the baryons separately. Ignoring all the other properties of these particles, it is shown that the eigen-values, the polar representation θν of the masses on the Sphere, satisfy the symmetry θν + θN+1-ν = π within less than 1% relative error. In addition, these pair correlations include the pairs θγ + θtop ≃ π and θgluon + θH ≃ π as well as pairing the weak gauge bosons with the three neutrinos.

  13. Non-potential interactions and the origin of masses of elementary particles

    International Nuclear Information System (INIS)

    Sun, J.

    1982-01-01

    We propose a fundamental assumption on internal states of particles. It follows from the fundamental assumption that: (1) the constituents of particles become non-particle objects; and (2) there appear naturally non-potential interactions. This non-potential interaction leads to a series of interesting results, one of which is that it yields the origin of masses of elementary particles. All mass values are given by the theory without pre-assumed mass values of the constituents (except the rest mass of the electron; mass is a physical quantity which appears only in particles but not in their constituents). The theoretically calculated mass values are in excellent agreement with the experimental values. In all calculations, only one constant b = 0.99935867 is introduced (bc being the speed of internal motion)

  14. Considerations of particle vaporization and analyte diffusion in single-particle inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Ho, Koon-Sing; Lui, Kwok-On; Lee, Kin-Ho; Chan, Wing-Tat

    2013-01-01

    The intensity of individual gold nanoparticles with nominal diameters of 80, 100, 150, and 200 nm was measured using single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Since the particles are not perfectly monodisperse, a distribution of ICP-MS intensity was obtained for each nominal diameter. The distribution of particle mass was determined from the transmission electron microscopy (TEM) image of the particles. The distribution of ICP-MS intensity and the distribution of particle mass for each nominal diameter were correlated to give a calibration curve. The calibration curves are linear, but the slope decreases as the nominal diameter increases. The reduced slope is probably due to a smaller degree of vaporization of the large particles. In addition to the degree of particle vaporization, the rate of analyte diffusion in the ICP is an important factor that determines the measured ICP-MS intensity. Simulated ICP-MS intensity versus particle size was calculated using a simple computer program that accounts for the vaporization rate of the gold nanoparticles and the diffusion rate and degree of ionization of the gold atoms. The curvature of the simulated calibration curves changes with sampling depth because the effects of particle vaporization and analyte diffusion on the ICP-MS intensity are dependent on the residence time of the particle in the ICP. Calibration curves of four hypothetical particles representing the four combinations of high and low boiling points (2000 and 4000 K) and high and low analyte diffusion rates (atomic masses of 10 and 200 Da) were calculated to further illustrate the relative effects of particle vaporization and analyte diffusion. The simulated calibration curves show that the sensitivity of single-particle ICP-MS is smaller than that of the ICP-MS measurement of continuous flow of standard solutions by a factor of 2 or more. Calibration using continuous flow of standard solution is semi-quantitative at best. An

  15. Maximum mass-particle velocities in Kantor's information mechanics

    International Nuclear Information System (INIS)

    Sverdlik, D.I.

    1989-01-01

    Kantor's information mechanics links phenomena previously regarded as not treatable by a single theory. It is used here to calculate the maximum velocities υ m of single particles. For the electron, υ m /c ∼ 1 - 1.253814 x 10 -77 . The maximum υ m corresponds to υ m /c ∼ 1 -1.097864 x 10 -122 for a single mass particle with a rest mass of 3.078496 x 10 -5 g. This is the fastest that matter can move. Either information mechanics or classical mechanics can be used to show that υ m is less for heavier particles. That υ m is less for lighter particles can be deduced from an information mechanics argument alone

  16. Mass spectrum of elementary particles in a temperature-dependent model

    International Nuclear Information System (INIS)

    Malik, G.P.; Singh, Santokh; Varma, V.S.

    1994-01-01

    It is shown that the temperature-generalization of a popular model of quark-confinement seems to provide a rather interesting insight into the origin of mass of elementary particles: as the universe cooled, there was an era when particles did not have an identity since their masses were variable; the temperature at which the conversion of these 'nomadic' particles into 'elementary' particles took place seems to have been governed by the value of a dimensionless coupling constant C c . For C c =0.001(0.1) this temperature is of the order of 10 9 K (10 11 K), below which the particle masses do not change. (author). 27 refs., 1 tab

  17. Using Energy Peaks to Measure New Particle Masses

    CERN Document Server

    Agashe, Kaustubh; Kim, Doojin

    2014-01-01

    We discussed in arXiv:1209.0772 that the laboratory frame distribution of the energy of a massless particle from a two-body decay at a hadron collider has a peak whose location is identical to the value of this daughter's (fixed) energy in the rest frame of the corresponding mother particle. For that result to hold we assumed that the mother is unpolarized and has a generic boost distribution in the laboratory frame. In this work we discuss how this observation can be applied for determination of masses of new particles, without requiring a full reconstruction of their decay chains or information about the rest of the event. We focus on a two-step cascade decay of a massive particle that has one invisible particle in the final state: C -> Bb -> Aab, where C, B and A are new particles of which A is invisible and a, b are visible particles. Combining the measurements of the peaks of energy distributions of a and b with that of the edge in their invariant mass distribution, we demonstrate that it is in principle...

  18. Characterization of individual particles in gaseous media by mass spectrometry

    Science.gov (United States)

    Sinha, M. P.

    1990-01-01

    An introduction is given to a system for particle analysis by mass spectrometry (PAMS) which employs particle-beam techniques to measure mass spectra on a continuous real-time basis. The system is applied to particles of both organic and inorganic compounds, and the measurements give the chemical characteristics of particles in mixtures and indicate source apportionment. The PAMS system can be used for process control and studying heterogeneous/catalytic reactions in particles, and can be fitted to study the real-time attributes of PAMS.

  19. Physical consequences of the alpha/beta rule which accurately calculates particle masses

    Energy Technology Data Exchange (ETDEWEB)

    Greulich, Karl Otto [Fritz Lipmann Institute, Beutenbergstr.11, D07745 Jena (Germany)

    2015-07-01

    Using the fine structure constant α (=1/137.036), the proton vs. electron mass ratio β (= 1836.2) and the integers m and n, the α/β rule: m{sub particle} = α{sup -n} x β m x 27.2 eV/c{sup 2} allows almost exact calculation of particle masses. (K.O.Greulich, DPG Spring meeting 2014, Mainz, T99.4) With n=2, m=0 the electron mass becomes 510.79 keV/c{sup 2} (experimental 511 keV/c{sup 2}) With n=2, m=1 the proton mass is 937.9 MeV/c{sup 2} (literature 938.3 MeV/c{sup 2}). For n=3 and m=1 a particle with 128.6 GeV/c{sup 2} close to the reported Higgs mass, is expected. For n=14 and m=-1 the Planck mass results. The calculated masses for gauge bosons and for quarks have similar accuracy. All masses fit into the same scheme (the alpha/beta rule), indicating that non of these particle masses play an extraordinary role. Particularly, the Higgs Boson, often termed the *God particle* plays in this sense no extraordinary role. In addition, particle masses are intimately correlated with the fine structure constant α. If particle masses have been constant over all times, α must have been constant over these times. In addition, the ionization energy of the hydrogen atom (13.6 eV) needs to have been constant if particle masses have been unchanged or vice versa. In conclusion, the α/β rule needs to be taken into account when cosmological models are developed.

  20. Reconstructing particle masses in events with displaced vertices

    Science.gov (United States)

    Cottin, Giovanna

    2018-03-01

    We propose a simple way to extract particle masses given a displaced vertex signature in event topologies where two long-lived mother particles decay to visible particles and an invisible daughter. The mother could be either charged or neutral and the neutral daughter could correspond to a dark matter particle in different models. The method allows to extract the parent and daughter masses by using on-shell conditions and energy-momentum conservation, in addition to the displaced decay positions of the parents, which allows to solve the kinematic equations fully on an event-by-event basis. We show the validity of the method by means of simulations including detector effects. If displaced events are seen in discovery searches at the Large Hadron Collider (LHC), this technique can be applied.

  1. Particle growth in an isoprene-rich forest: Influences of urban, wildfire, and biogenic air masses

    Science.gov (United States)

    Gunsch, Matthew J.; Schmidt, Stephanie A.; Gardner, Daniel J.; Bondy, Amy L.; May, Nathaniel W.; Bertman, Steven B.; Pratt, Kerri A.; Ault, Andrew P.

    2018-04-01

    Growth of freshly nucleated particles is an important source of cloud condensation nuclei (CCN) and has been studied within a variety of environments around the world. However, there remains uncertainty regarding the sources of the precursor gases leading to particle growth, particularly in isoprene-rich forests. In this study, particle growth events were observed from the 14 total events (31% of days) during summer measurements (June 24 - August 2, 2014) at the Program for Research on Oxidants PHotochemistry, Emissions, and Transport (PROPHET) tower within the forested University of Michigan Biological Station located in northern Michigan. Growth events were observed within long-range transported air masses from urban areas, air masses impacted by wildfires, as well as stagnant, forested/regional air masses. Growth events observed during urban-influenced air masses were prevalent, with presumably high oxidant levels, and began midday during periods of high solar radiation. This suggests that increased oxidation of biogenic volatile organic compounds (BVOCs) likely contributed to the highest observed particle growth in this study (8 ± 2 nm h-1). Growth events during wildfire-influenced air masses were observed primarily at night and had slower growth rates (3 ± 1 nm h-1). These events were likely influenced by increased SO2, O3, and NO2 transported within the smoke plumes, suggesting a role of NO3 oxidation in the production of semi-volatile compounds. Forested/regional air mass growth events likely occurred due to the oxidation of regionally emitted BVOCs, including isoprene, monoterpenes, and sesquiterpenes, which facilitated multiday growth events also with slower rates (3 ± 2 nm h-1). Intense sulfur, carbon, and oxygen signals in individual particles down to 20 nm, analyzed by transmission electron microscopy with energy dispersive X-ray spectroscopy (TEM-EDX), suggest that H2SO4 and secondary organic aerosol contributed to particle growth. Overall, aerosol

  2. Theories of Variable Mass Particles and Low Energy Nuclear Phenomena

    Science.gov (United States)

    Davidson, Mark

    2014-02-01

    Variable particle masses have sometimes been invoked to explain observed anomalies in low energy nuclear reactions (LENR). Such behavior has never been observed directly, and is not considered possible in theoretical nuclear physics. Nevertheless, there are covariant off-mass-shell theories of relativistic particle dynamics, based on works by Fock, Stueckelberg, Feynman, Greenberger, Horwitz, and others. We review some of these and we also consider virtual particles that arise in conventional Feynman diagrams in relativistic field theories. Effective Lagrangian models incorporating variable mass particle theories might be useful in describing anomalous nuclear reactions by combining mass shifts together with resonant tunneling and other effects. A detailed model for resonant fusion in a deuterium molecule with off-shell deuterons and electrons is presented as an example. Experimental means of observing such off-shell behavior directly, if it exists, is proposed and described. Brief explanations for elemental transmutation and formation of micro-craters are also given, and an alternative mechanism for the mass shift in the Widom-Larsen theory is presented. If variable mass theories were to find experimental support from LENR, then they would undoubtedly have important implications for the foundations of quantum mechanics, and practical applications may arise.

  3. Real-Time Particle Mass Spectrometry Based on Resonant Micro Strings

    DEFF Research Database (Denmark)

    Schmid, Silvan; Dohn, Søren; Boisen, Anja

    2010-01-01

    by measuring the resonant frequency shifts of the first two bending modes. The method has been tested by detecting the mass spectrum of micro particles placed on a micro string. This method enables real-time mass spectrometry necessary for applications such as personal monitoring devices for the assessment......Micro- and nanomechanical resonators are widely being used as mass sensors due to their unprecedented mass sensitivity. We present a simple closed-form expression which allows a fast and quantitative calculation of the position and mass of individual particles placed on a micro or nano string...

  4. Possibility of faster-than-light particles with real mass

    International Nuclear Information System (INIS)

    Schommers, W.

    1982-01-01

    The author derives a new expression for the dependence of mass on velocity without using any space-time conception. This expression is more general than the corresponding law of the special theory of relativity (STR). The deviations from the STR increase with increasing rest mass. Thus one should measure the dependence of mass on velocity for particles (or systems) with a large rest mass. The theory predicts that particles with real mass can travel with hyperlight velocities. The space-time picture discussed here is very close to Mach's conception: it is assumed that the cause for the dynamical behaviour of a particle, which is in uniform translational motion, is due to the action of all the other masses in the universe. Space-time is eliminated as an active cause and, in contrast with the STR, space-time does not form an absolute continuum within the theory discussed here. It turns out that effects based on the transformation formulas (existing between the coordinates and time in a stationary frame and the coordinates and time in a moving frame) are identical to those expected from the Lorentz transformations. (Auth.)

  5. Photon structure functions with heavy particle mass effects

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Tsuneo, E-mail: uematsu@scphys.kyoto-u.jp [Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 (Japan); Maskawa Institute for Science and Culture, Kyoto Sangyo University, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan)

    2013-01-15

    In the framework of the perturbative QCD we investigate heavy particle mass effects on the unpolarized and polarized photon structure functions, F{sub 2}{sup γ} and g{sub 1}{sup γ}, respectively. We present our basic formalism to treat heavy particle mass effects to NLO in perturbative QCD. We also study heavy quark effects on the QCD sum rule for the first moment of g{sub 1}{sup γ}, which is related to axial anomaly. The photon structure function in supersymmetric QCD is also briefly discussed.

  6. Mass size distribution of particles emitted by diesel engines and determination of the contribution of diesel particles to the atmospheric aerosol in Vienna by using a tracer suitable for activation analysis

    International Nuclear Information System (INIS)

    Norek, C.

    1985-01-01

    In Vienna a large fraction of light absorbing aerosols has been found. The traffic could be a source for the high absorption coefficients, since the time dependent absorption coefficients varise similar to the traffic densities. Diesel vehicles have high soot emissions, so they may contribute considerably to light absorption during the summer. The emission factors of the vehicles were estimated by measurements at different motor and driving conditions by the Constant-Volume-Sampling-Method. To determine the size distributions a 10-stage-low pressure impactor with a lower cut size of 0.015 μm aerodynamic particle diameter was used. In order to estimate the contribution of diesel vehicles to the total mass concentrations all diesel fuel sold in Vienna and its vincinity was marked with an organic Dysprosium compound. This rare earth tracer was emitted by vehicles together with the soot particles and collected at eleven stations in Vienna. The filter samples were extracted with diluted HNO 3 and the extraction was analysed for Dy by neutron activation analysis. The mass size distributions of the particles and the soot emitted from diesel engines are only slightly influenced by motor and driving parameters. The total mass emissions showed considerable variations, but the mean emission factor obtained from the tests was 2.43 g per litre fuel; knowing also the concentration of the tracer in the fuel, the contribution of diesel particles to the mass of the suspended particulates could be estimated. During the measuring period the contribution was c. 25% to the total mass and c. 40% to the absorbing matter in the atmosphere. (Author)

  7. Real-time analysis of insoluble particles in glacial ice using single-particle mass spectrometry

    Science.gov (United States)

    Osman, Matthew; Zawadowicz, Maria A.; Das, Sarah B.; Cziczo, Daniel J.

    2017-11-01

    Insoluble aerosol particles trapped in glacial ice provide insight into past climates, but analysis requires information on climatically relevant particle properties, such as size, abundance, and internal mixing. We present a new analytical method using a time-of-flight single-particle mass spectrometer (SPMS) to determine the composition and size of insoluble particles in glacial ice over an aerodynamic size range of ˜ 0.2-3.0 µm diameter. Using samples from two Greenland ice cores, we developed a procedure to nebulize insoluble particles suspended in melted ice, evaporate condensed liquid from those particles, and transport them to the SPMS for analysis. We further determined size-dependent extraction and instrument transmission efficiencies to investigate the feasibility of determining particle-class-specific mass concentrations. We find SPMS can be used to provide constraints on the aerodynamic size, composition, and relative abundance of most insoluble particulate classes in ice core samples. We describe the importance of post-aqueous processing to particles, a process which occurs due to nebulization of aerosols from an aqueous suspension of originally soluble and insoluble aerosol components. This study represents an initial attempt to use SPMS as an emerging technique for the study of insoluble particulates in ice cores.

  8. Mass analysis of charged aerosol particles in NLC and PMSE during the ECOMA/MASS campaign

    Directory of Open Access Journals (Sweden)

    S. Robertson

    2009-03-01

    Full Text Available MASS (Mesospheric Aerosol Sampling Spectrometer is a multichannel mass spectrometer for charged aerosol particles, which was flown from the Andøya Rocket Range, Norway, through NLC and PMSE on 3 August 2007 and through PMSE on 6 August 2007. The eight-channel analyzers provided for the first time simultaneous measurements of the charge density residing on aerosol particles in four mass ranges, corresponding to ice particles with radii <0.5 nm (including ions, 0.5–1 nm, 1–2 nm, and >3 nm (approximately. Positive and negative particles were recorded on separate channels. Faraday rotation measurements provided electron density and a means of checking charge density measurements made by the spectrometer. Additional complementary measurements were made by rocket-borne dust impact detectors, electric field booms, a photometer and ground-based radar and lidar. The MASS data from the first flight showed negative charge number densities of 1500–3000 cm−3 for particles with radii >3 nm from 83–88 km approximately coincident with PMSE observed by the ALWIN radar and NLC observed by the ALOMAR lidar. For particles in the 1–2 nm range, number densities of positive and negative charge were similar in magnitude (~2000 cm−3 and for smaller particles, 0.5–1 nm in radius, positive charge was dominant. The occurrence of positive charge on the aerosol particles of the smallest size and predominately negative charge on the particles of largest size suggests that nucleation occurs on positive condensation nuclei and is followed by collection of negative charge during subsequent growth to larger size. Faraday rotation measurements show a bite-out in electron density that increases the time for positive aerosol particles to be neutralized and charged negatively. The larger particles (>3 nm are observed throughout the NLC region, 83–88 km, and the smaller particles are observed primarily at the high end of the range, 86–88 km

  9. Mass analysis of charged aerosol particles in NLC and PMSE during the ECOMA/MASS campaign

    Directory of Open Access Journals (Sweden)

    S. Robertson

    2009-03-01

    Full Text Available MASS (Mesospheric Aerosol Sampling Spectrometer is a multichannel mass spectrometer for charged aerosol particles, which was flown from the Andøya Rocket Range, Norway, through NLC and PMSE on 3 August 2007 and through PMSE on 6 August 2007. The eight-channel analyzers provided for the first time simultaneous measurements of the charge density residing on aerosol particles in four mass ranges, corresponding to ice particles with radii <0.5 nm (including ions, 0.5–1 nm, 1–2 nm, and >3 nm (approximately. Positive and negative particles were recorded on separate channels. Faraday rotation measurements provided electron density and a means of checking charge density measurements made by the spectrometer. Additional complementary measurements were made by rocket-borne dust impact detectors, electric field booms, a photometer and ground-based radar and lidar. The MASS data from the first flight showed negative charge number densities of 1500–3000 cm−3 for particles with radii >3 nm from 83–88 km approximately coincident with PMSE observed by the ALWIN radar and NLC observed by the ALOMAR lidar. For particles in the 1–2 nm range, number densities of positive and negative charge were similar in magnitude (~2000 cm−3 and for smaller particles, 0.5–1 nm in radius, positive charge was dominant. The occurrence of positive charge on the aerosol particles of the smallest size and predominately negative charge on the particles of largest size suggests that nucleation occurs on positive condensation nuclei and is followed by collection of negative charge during subsequent growth to larger size. Faraday rotation measurements show a bite-out in electron density that increases the time for positive aerosol particles to be neutralized and charged negatively. The larger particles (>3 nm are observed throughout the NLC region, 83–88 km, and the smaller particles are observed primarily at the high end of the range, 86–88 km. The second flight into

  10. Mass transfer effects in hygroscopic measurements of aerosol particles

    Directory of Open Access Journals (Sweden)

    M. N. Chan

    2005-01-01

    Full Text Available The tandem differential mobility analyzer (TDMA has been widely utilized to measure the hygroscopicity of laboratory-generated and atmospheric submicrometer particles. An important concern in investigating the hygroscopicity of the particles is if the particles have attained equilibrium state in the measurements. We present a literature survey to investigate the mass transfer effects in hygroscopicity measurements. In most TDMA studies, a residence time in the order of seconds is used for humidification (or dehumidification. NaCl and (NH42SO4 particles are usually used to verify the equilibrium measurements during this residence time, which is presumed to be sufficient for other particles. There have been observations that not all types of submicrometer particles, including atmospheric particles, attain their equilibrium sizes within this time scale. We recommend that experimentation with different residence times be conducted and that the residence time should be explicitly stated in future TDMA measurements. Mass transfer effects may also exist in the measurements of other properties related to the water uptake of atmospheric particles such as relative humidity dependent light scattering coefficients and cloud condensation nuclei activity.

  11. Motion of particles of non-zero rest masses exterior to ...

    African Journals Online (AJOL)

    In this article, we extend the metric tensor exterior to astrophysically real or imaginary spherical distributions of mass whose tensor field varies with polar angle only; to derive equations of motion for test particles in this field. The time, radial, polar and azimuthal equations of motion for particles of non-zero rest masses moving ...

  12. Exploring the Relationship between Skeletal Mass and Total Body Mass in Birds.

    Science.gov (United States)

    Martin-Silverstone, Elizabeth; Vincze, Orsolya; McCann, Ria; Jonsson, Carl H W; Palmer, Colin; Kaiser, Gary; Dyke, Gareth

    2015-01-01

    Total body mass (TBM) is known to be related to a number of different osteological features in vertebrates, including limb element measurements and total skeletal mass. The relationship between skeletal mass and TBM in birds has been suggested as a way of estimating the latter in cases where only the skeleton is known (e.g., fossils). This relationship has thus also been applied to other extinct vertebrates, including the non-avian pterosaurs, while other studies have used additional skeletal correlates found in modern birds to estimate TBM. However, most previous studies have used TBM compiled from the literature rather than from direct measurements, producing values from population averages rather than from individuals. Here, we report a new dataset of 487 extant birds encompassing 79 species that have skeletal mass and TBM recorded at the time of collection or preparation. We combine both historical and new data for analyses with phylogenetic control and find a similar and well-correlated relationship between skeletal mass and TBM. Thus, we confirm that TBM and skeletal mass are accurate proxies for estimating one another. We also look at other factors that may have an effect on avian body mass, including sex, ontogenetic stage, and flight mode. While data are well-correlated in all cases, phylogeny is a major control on TBM in birds strongly suggesting that this relationship is not appropriate for estimating the total mass of taxa outside of crown birds, Neornithes (e.g., non-avian dinosaurs, pterosaurs). Data also reveal large variability in both bird skeletal and TBM within single species; caution should thus be applied when using published mass to test direct correlations with skeletal mass and bone lengths.

  13. Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

    Science.gov (United States)

    Cross, E. S.; Onasch, T. B.; Canagaratna, M.; Jayne, J. T.; Kimmel, J.; Yu, X.-Y.; Alexander, M. L.; Worsnop, D. R.; Davidovits, P.

    2008-12-01

    during morning rush hour (04:00-08:00 LT) each day, and more processed particles of mixed composition from nonspecific sources. From 09:00-12:00 LT all particles within the ambient ensemble, including the locally produced HOA particles, became coated with NH4NO3 due to photochemical production of HNO3. The number concentration of externally mixed HOA particles remained low during daylight hours. Throughout the afternoon the OOA component dominated the organic fraction of the single particles, likely due to secondary organic aerosol formation and condensation. Single particle mass fractions of (NH4)2SO4 were lowest during the day and highest during the night. In one instance, gas-to-particle condensation of (NH4)2SO4 was observed on all measured particles within a strong SO2 plume arriving at T1 from the northwest. Particles with high NH4Cl mass fractions were identified during early morning periods. A limited number of particles (~5% of the total number) with mass spectral features characteristic of biomass burning were also identified.

  14. Upper bounds of supersymmetric particle masses in a gaugino-originated radiative breaking scenario

    International Nuclear Information System (INIS)

    Goto, T.

    1993-01-01

    The mass spectrum of supersymmetric particles is studied in the radiative breaking scenario of the minimal supersymmetric standard model, with an assumption that all soft supersymmetry-breaking parameters other than the gaugino masses are vanishing at the Planck scale. The U(1) gaugino mass M 1X is taken to be an independent parameter, while the SU(2) and SU(3) gaugino masses are supposed to be unified. Within the ''natural'' range, the whole parameter space is scanned numerically and the consistent particle mass spectra with the experimental bounds are obtained. The supersymmetric particle masses are tightly bounded above as m eR approx-lt 100 GeV, etc., if the top quark is sufficiently heavy m top approx-gt 100 GeV and the minimal grand unified theory relation for three gaugino masses is satisfied. For a large |M 1X |, there is no restriction other than the naturalness for the upper bounds of supersymmetric particle masses

  15. Particle masses without the Higgs mechanism and supersymmetry

    International Nuclear Information System (INIS)

    Winterberg, F

    2012-01-01

    The non-observation of the Higgs boson and supersymmetry in the most recent high-energy physics data suggests considering the conjectured Planck mass plasma as a potential alternative. In it supersymmetry is replaced by the assumption that the vacuum of space is densely filled in equal numbers with positive and negative Planck mass particles, and the Higgs field by the gravitational field of interacting large positive with likewise large negative mass quasiparticles of the Planck mass plasma, giving these positive-negative mass configurations a small positive gravitational field mass. From this configuration the Dirac equation can be derived, with the fermions of the standard model composed of large positive and negative masses. (paper)

  16. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    International Nuclear Information System (INIS)

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-01-01

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described

  17. What are the masses of elementary particles?

    International Nuclear Information System (INIS)

    Good, I.J.

    1988-01-01

    The paper concerns the numerology on the masses of elementary particles, and examines the formula m(n)-m(p)/m(p) 136α/6x120 (where m(n) and m(p) are the rest masses of the neutron and proton respectively and α is the fine structure constant). The author reports that this simple relationship between fundamental constants is correct to one part in at least 51,000, and is comfortably consistent with experimental results. (U.K.)

  18. Impenetrable Mass-Imbalanced Particles in One-Dimensional Harmonic Traps

    DEFF Research Database (Denmark)

    Salami Dehkharghani, Amin; Volosniev, A. G.; Zinner, N. T.

    2016-01-01

    Strongly interacting particles in one dimension subject to external confinement have become a topic of considerable interest due to recent experimental advances and the development of new theoretical methods to attack such systems. In the case of equal mass fermions or bosons with two or more...... internal degrees of freedom, one can map the problem onto the well-known Heisenberg spin models. However, many interesting physical systems contain mixtures of particles with different masses. Therefore, a generalization of the recent strong-coupling techniques would be highly desirable....... This is particularly important since such problems are generally considered non-integrable and thus the hugely successful Bethe ansatz approach cannot be applied. Here we discuss some initial steps towards this goal by investigating small ensembles of one-dimensional harmonically trapped particles where pairwise...

  19. Using Vertical Structure to Infer the Total Mass Hidden in a Debris Disk

    Science.gov (United States)

    Daley, Cail; Hughes, A. Meredith; Carter, Evan; Flaherty, Kevin; Stafford Lambros, Zachary; Pan, Margaret; Schlichting, Hilke; Chiang, Eugene; Wilner, David; Dent, Bill; Carpenter, John; Andrews, Sean; MacGregor, Meredith Ann; Moor, Attila; Kospal, Agnes

    2018-01-01

    Disks of optically thin debris dust surround ≥ 20% of main sequence stars and mark the final stage of planetary system evolution. The features of debris disks encode dynamical interactions between the dust and any unseen planets embedded in the disk. The vertical distribution of the dust is particularly sensitive to the total mass of planetesimal bodies in the disk, and is therefore well suited for constraining the prevalence of otherwise unobservable Uranus and Neptune analogs. Inferences of mass from debris disk vertical structure have previously been applied to infrared and optical observations of several systems, but the smaller particles traced by short-wavelength observations are ‘puffed up’ by radiation pressure, yielding only upper limits on the total embedded mass. The large grains that dominate the emission at millimeter wavelengths are essentially impervious to the effects of stellar radiation, and therefore trace the underlying mass distribution more directly. Here we present 1.3mm dust continuum observations of the debris disk around the nearby M star AU Mic with the Atacama Large Millimeter/submillimeter Array (ALMA). The 3 au spatial resolution of the observations, combined with the favorable edge-on geometry of the system, allows us to measure the vertical structure of a debris disk at millimeter wavelengths for the first time. We analyze the data using a ray-tracing code that translates a 2-D density and temperature structure into a model sky image of the disk. This model image is then compared directly to the interferometric data in the visibility domain, and the model parameters are explored using a Markov Chain Monte Carlo routine. We measure a scale height-to-radius ratio of 0.03, which we then compare to a theoretical model of steady-state, size-dependent velocity distributions in the collisional cascade to infer a total mass within the disk of ∼ 1.7 Earth masses. These measurements rule out the presence of a gas giant or Neptune

  20. Production cross-sections for high mass particles and transverse momentum spectra

    International Nuclear Information System (INIS)

    Arnold, R.C.; Halzen, F.

    1977-06-01

    The concept of transverse-mass (msub(T)) scaling is examined. It is suggested that: (1) experimental data on pion transverse momentum (psub(T)) spectra provide a reliable guide to expectations for high mass particle production; (2) dimensional scaling, e.g. implied by quark-gluon dynamics, yields an estimate of msub(T) -4 spectra at ultra-high energies; however, stronger damping is expected at currently accessible energies; (3) values increase linearly with the produced particle mass. The results of msub(T) scaling are compared with estimates for high mass production in the context of the Drell-Yan model. (author)

  1. Ion desorption induced by charged particle beams: mechanisms and mass spectroscopy

    International Nuclear Information System (INIS)

    Silveira, E.F. da; Schweikert, E.A.

    1988-01-01

    Surface analysis, through desorption, induced by fast particles, is presented and discussed. The stopping of projectils is essentially made by collisions with the target electrons. The desorbed particles are generally emmited with kinetic energy from 0.1 to 20 eV. Mass, charge, velocity and emission angle give information about the surface components, its structure as well as beam-solid interaction processes. Time-of-flight mass spectroscopy of desorbed ions, determine the mass of organic macromolecules and biomolecules. (A.C.A.S.) [pt

  2. Fundamental theories of waves and particles formulated without classical mass

    Science.gov (United States)

    Fry, J. L.; Musielak, Z. E.

    2010-12-01

    Quantum and classical mechanics are two conceptually and mathematically different theories of physics, and yet they do use the same concept of classical mass that was originally introduced by Newton in his formulation of the laws of dynamics. In this paper, physical consequences of using the classical mass by both theories are explored, and a novel approach that allows formulating fundamental (Galilean invariant) theories of waves and particles without formally introducing the classical mass is presented. In this new formulation, the theories depend only on one common parameter called 'wave mass', which is deduced from experiments for selected elementary particles and for the classical mass of one kilogram. It is shown that quantum theory with the wave mass is independent of the Planck constant and that higher accuracy of performing calculations can be attained by such theory. Natural units in connection with the presented approach are also discussed and justification beyond dimensional analysis is given for the particular choice of such units.

  3. Measurement of particle size distribution and mass concentration of nuclear fuel aerosols

    International Nuclear Information System (INIS)

    Pickering, S.

    1982-01-01

    The particle size distribution and particle mass concentration of a nuclear fuel aerosol is measured by admitting the aerosol into a vertically-extending container, positioning an alpha particle detector within the container so that its window is horizontal and directed vertically, stopping the admission of aerosol into the container, detecting the alpha-activity of the particles of the aerosol sedimenting onto the detector window (for example in a series of equal time intervals until a constant level is reached), and converting the alpha-activity measurements into particle size distribution and/or particle mass concentration measurements. The detector is attached to a pivotted arm and by raising a counterweight can be lowered from the container for cleaning. (author)

  4. Relic abundance of mass-varying cold dark matter particles

    International Nuclear Information System (INIS)

    Rosenfeld, Rogerio

    2005-01-01

    In models of coupled dark energy and dark matter the mass of the dark matter particle depends on the cosmological evolution of the dark energy field. In this Letter we exemplify in a simple model the effects of this mass variation on the relic abundance of cold dark matter

  5. Measuring Mass-Based Hygroscopicity of Atmospheric Particles through in situ Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Piens, Dominique` Y.; Kelly, Stephen T.; Harder, Tristan; Petters, Markus D.; O' Brien, Rachel; Wang, Bingbing; Teske, Ken; Dowell, Pat; Laskin, Alexander; Gilles, Mary K.

    2016-04-18

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental composition of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state determined for 158 particles broadly agreed with those of the humidified particles, indicating the potential to infer the atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicron atmospheric particles.

  6. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry

    Science.gov (United States)

    Abegglen, Manuel; Brem, B. T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B.

    2016-06-01

    Non-volatile aircraft engine emissions are an important anthropogenic source of soot particles in the upper troposphere and in the vicinity of airports. They influence climate and contribute to global warming. In addition, they impact air quality and thus human health and the environment. The chemical composition of non-volatile particulate matter emission from aircraft engines was investigated using single particle time-of-flight mass spectrometry. The exhaust from three different aircraft engines was sampled and analyzed. The soot particulate matter was sampled directly behind the turbine in a test cell at Zurich Airport. Single particle analyses will focus on metallic compounds. The particles analyzed herein represent a subset of the emissions composed of the largest particles with a mobility diameter >100 nm due to instrumental restrictions. A vast majority of the analyzed particles was shown to contain elemental carbon, and depending on the engine and the applied thrust the elemental carbon to total carbon ratio ranged from 83% to 99%. The detected metallic compounds were all internally mixed with the soot particles. The most abundant metals in the exhaust were Cr, Fe, Mo, Na, Ca and Al; V, Ba, Co, Cu, Ni, Pb, Mg, Mn, Si, Ti and Zr were also detected. We further investigated potential sources of the ATOFMS-detected metallic compounds using Inductively Coupled Plasma Mass Spectrometry. The potential sources considered were kerosene, engine lubrication oil and abrasion from engine wearing components. An unambiguous source apportionment was not possible because most metallic compounds were detected in several of the analyzed sources.

  7. Masses of charmed particles, decay modes and lifetimes

    International Nuclear Information System (INIS)

    Vajsenberg, A.O.

    1982-01-01

    Basic characteristics of charmed particles obtained up to the middle of 1981 are discussed in the survey. Stated in brief are main predictions of the theory on charmed particles properties. Experimental data on masses, decay modes and lifetimes of D and F mesons as well as charmed baryons are considered. Basic experiments are described. It is pointed out that in the experiments single and pair production events as well as charmed particle decay have been observed. The charmed particles lifetime lies within the limits of 10 -12 - 10 -13 C. The lifetime of D +- mesons is approximately three times longer than the D 0 mesons lifetime. The lifetime of F mesons and Λsub(e) baryons is close to D 0 mesons lifetime [ru

  8. A drop in the pond: the effect of rapid mass-loss on the dynamics and interaction rate of collisionless particles

    Science.gov (United States)

    Penoyre, Zephyr; Haiman, Zoltán

    2018-01-01

    In symmetric gravitating systems experiencing rapid mass-loss, particle orbits change almost instantaneously, which can lead to the development of a sharply contoured density profile, including singular caustics for collisionless systems. This framework can be used to model a variety of dynamical systems, such as accretion discs following a massive black hole merger and dwarf galaxies following violent early star formation feedback. Particle interactions in the high-density peaks seem a promising source of observable signatures of these mass-loss events (i.e. a possible EM counterpart for black hole mergers or strong gamma-ray emission from dark matter annihilation around young galaxies), because the interaction rate depends on the square of the density. We study post-mass-loss density profiles, both analytic and numerical, in idealized cases and present arguments and methods to extend to any general system. An analytic derivation is presented for particles on Keplerian orbits responding to a drop in the central mass. We argue that this case, with initially circular orbits, gives the most sharply contoured profile possible. We find that despite the presence of a set of singular caustics, the total particle interaction rate is reduced compared to the unperturbed system; this is a result of the overall expansion of the system dominating over the steep caustics. Finally, we argue that this result holds more generally, and the loss of central mass decreases the particle interaction rate in any physical system.

  9. Black holes evaporation and big mass particle (maximon, intermediate boson) creation in nonstationary universe

    International Nuclear Information System (INIS)

    Man'ko, V.I.; Markov, M.A.

    1984-01-01

    This chapter considers the process of creation of particles with maximally big masses (maximons, intermediate bosons) in the nonstationary Universe within the framework of neutral and charged scalar field theory. The conclusions of the matter creation model for real particles (resonances) and hypothetical particles (maximons, friedmons, intermediate bosons) are analyzed. It is determined that if the mechanism of maximon's creation exists, then these particles must be stable. The maximons could be the final states of decaying black holes. A possible mechanism of cosmic ray creation as a result of ''vacuum'' generation of known unstable particles is discussed. The limits upon the mass and the life time of intermediate bosons are calculated. It is demonstrated that the creation of masses greater than 10 GeV, and with life times less than 10- 24 sec and quantity of elementary particles greater than 100 are in contradiction with the particle creation mechanism and the experimental mass density in the Universe. The formalism of the examined method and its vacuum properties are discussed in an appendix

  10. Transverse Motion of a Particle with an Oscillating Charge and Variable Mass in a Magnetic Field

    Science.gov (United States)

    Alisultanov, Z. Z.; Ragimkhanov, G. B.

    2018-03-01

    The problem of motion of a particle with an oscillating electric charge and variable mass in an uniform magnetic field has been solved. Three laws of mass variation have been considered: linear growth, oscillations, and stepwise growth. Analytical expressions for the particle velocity at different time dependences of the particle mass are obtained. It is established that simultaneous consideration of changes in the mass and charge leads to a significant change in the particle trajectory.

  11. On measuring the masses of pair-produced semi-invisibly decaying particles at hadron colliders

    International Nuclear Information System (INIS)

    Tovey, Daniel R.

    2008-01-01

    A straightforward new technique is introduced which enables measurement at hadron colliders of an analytical combination of the masses of pair-produced semi-invisibly decaying particles and their invisible decay products. The new technique makes use of the invariance under contra-linear Lorentz boosts of a simple combination of the transverse momentum components of the aggregate visible products of each decay chain. In the general case where the invariant masses of the visible decay products are non-zero it is shown that in principle the masses of both the initial particles from the hard scattering and the invisible particles produced in the decay chains can be determined independently. This application is likely to be difficult to realise in practice however due to the contamination of the final state with ISR jets. The technique may be of most use for measurements of SUSY particle masses at the LHC, however the technique should be applicable to any class of hadron collider events in which heavy particles of unknown mass are pair-produced and decay to semi-invisible final states

  12. Dark-Matter Particles without Weak-Scale Masses or Weak Interactions

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kumar, Jason

    2008-01-01

    We propose that dark matter is composed of particles that naturally have the correct thermal relic density, but have neither weak-scale masses nor weak interactions. These models emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the dark-matter problem. The framework accommodates single or multiple component dark matter, dark-matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong. These candidates enhance many direct and indirect signals relative to weakly interacting massive particles and have qualitatively new implications for dark-matter searches and cosmological implications for colliders

  13. Analysis and differentiation of mineral dust by single particle laser mass spectrometry

    International Nuclear Information System (INIS)

    Gallavardin, S. J.; Lohmann, U.; Cziczo, Daniel J.

    2008-01-01

    This study evaluates the potential of single particle laser desorption/ionization mass spectrometry for the analysis of atmospherically relevant mineral dusts. Samples of hematite, goethite, calcium carbonate, calcium sulfate, silica, quartz, montmorrillonite, kaolinite, illite, hectorite, wollastonite and nephelinsyenit were investigated in positive and negative ion mode with a monopolar time-of-flight mass spectrometer where the desorption/ionization step was performed with a 193 nm excimer laser (∼10 9 W/cm 2 ). Particle size ranged from 500 nm to 3 (micro)m. Positive mass spectra mainly provide elemental composition whereas negative ion spectra provide information on element speciation and of a structural nature. The iron oxide, calcium-rich and aluminosilicate nature of particles is established in positive ion mode. The differentiation of calcium materials strongly relies on the calcium counter-ions in negative mass spectra. Aluminosilicates can be differentiated in both positive and negative ion mode using the relative abundance of various aluminum and silicon ions

  14. What is the physical meaning of mass in view of wave-particle duality? A proposed model

    OpenAIRE

    Chang, Donald C.

    2004-01-01

    Mass is an important concept in classical mechanics, which regards a particle as a corpuscular object. But according to wave-particle duality, we know a free particle can behave like a wave. Is there a wave property that corresponds to the mass of a particle? This is an interesting question that has not been extensively explored before. We suggest that this problem can be approached by treating the mass on the same footing as energy and momentum. Here we propose that, all particles are excita...

  15. Mass separated neutral particle energy analyser

    International Nuclear Information System (INIS)

    Takeuchi, Hiroshi; Matsuda, Toshiaki; Miura, Yukitoshi; Shiho, Makoto; Maeda, Hikosuke; Hashimoto, Kiyoshi; Hayashi, Kazuo.

    1983-09-01

    A mass separated neutral particle energy analyser which could simultaneously measure hydrogen and deuterium atoms emitted from tokamak plasma was constructed. The analyser was calibrated for the energy and mass separation in the energy range from 0.4 keV to 9 keV. In order to investigate the behavior of deuteron and proton in the JFT-2 tokamak plasma heated with ion cyclotron wave and neutral beam injection, this analyser was installed in JFT-2 tokamak. It was found that the energy spectrum could be determined with sufficient accuracy. The obtained ion temperature and ratio of deuteron and proton density from the energy spectrum were in good agreement with the value deduced from Doppler broadening of TiXIV line and the line intensities of H sub(α) and D sub(α) respectively. (author)

  16. Totally asymmetric exclusion processes with particles of arbitrary size

    CERN Document Server

    Lakatos, G

    2003-01-01

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or ...

  17. General circular velocity relation of a test particle in a 3D gravitational potential: application to the rotation curves analysis and total mass determination of UGC 8490 and UGC 9753

    Science.gov (United States)

    Repetto, P.; Martínez-García, E. E.; Rosado, M.; Gabbasov, R.

    2018-06-01

    In this paper, we derive a novel circular velocity relation for a test particle in a 3D gravitational potential applicable to every system of curvilinear coordinates, suitable to be reduced to orthogonal form. As an illustration of the potentiality of the determined circular velocity expression, we perform the rotation curves analysis of UGC 8490 and UGC 9753 and we estimate the total and dark matter mass of these two galaxies under the assumption that their respective dark matter haloes have spherical, prolate, and oblate spheroidal mass distributions. We employ stellar population synthesis models and the total H I density map to obtain the stellar and H I+He+metals rotation curves of both galaxies. The subtraction of the stellar plus gas rotation curves from the observed rotation curves of UGC 8490 and UGC 9753 generates the dark matter circular velocity curves of both galaxies. We fit the dark matter rotation curves of UGC 8490 and UGC 9753 through the newly established circular velocity formula specialized to the spherical, prolate, and oblate spheroidal mass distributions, considering the Navarro, Frenk, and White, Burkert, Di Cintio, Einasto, and Stadel dark matter haloes. Our principal findings are the following: globally, cored dark matter profiles Burkert and Einasto prevail over cuspy Navarro, Frenk, and White, and Di Cintio. Also, spherical/oblate dark matter models fit better the dark matter rotation curves of both galaxies than prolate dark matter haloes.

  18. Masses of particles in the SO(18) grand unified model

    International Nuclear Information System (INIS)

    Asatryan, G.M.

    1984-01-01

    The grand unified model based on the orthogonal group SO(18) is treated. The model involves four familiar and four mirror families of fermions. Arising of masses of familiar and mirror particles is studied. The mass of the right-handed Wsub(R) boson interacting via right-handed current way is estimated

  19. D-particle Recoil Space Times and "Glueball" Masses

    CERN Document Server

    Mavromatos, Nikolaos E; Mavromatos, Nick E.; Winstanley, Elizabeth

    2001-01-01

    We discuss the properties of matter in a D-dimensional anti-de-Sitter-type space time induced dynamically by the recoil of a very heavy D(irichlet)-particle defect embedded in it. The particular form of the recoil geometry, which from a world-sheet view point follows from logarithmic conformal field theory deformations of the pertinent sigma-models, results in the presence of both infrared and ultraviolet (spatial) cut-offs. These are crucial in ensuring the presence of mass gaps in scalar matter propagating in the D-particle recoil space time. The analogy of this problem with the Liouville-string approach to QCD, suggested earlier by John Ellis and one of the present authors, prompts us to identify the resulting scalar masses with those obtained in the supergravity approach based on the Maldacena's conjecture, but without the imposition of any supersymmetry in our case. Within reasonable numerical uncertainties, we observe that agreement is obtained between the two approaches for a particular value of the ra...

  20. The origin of mass elementary particles and fundamental symmetries

    CERN Document Server

    Iliopoulos, John

    2017-01-01

    The discovery of a new elementary particle at the Large Hadron Collider at CERN in 2012 made headlines in world media. Since we already know of a large number of elementary particles, why did this latest discovery generate so much excitement? This small book reveals that this particle provides the key to understanding one of the most extraordinary phenomena which occurred in the early Universe. It introduces the mechanism that made possible, within tiny fractions of a second after the Big Bang, the generation of massive particles. The Origin of Mass is a guided tour of cosmic evolution, from the Big Bang to the elementary particles we study in our accelerators today. The guiding principle of this book is a concept of symmetry which, in a profound and fascinating way, seems to determine the structure of the Universe.

  1. Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Farmer, D. K.; Rizzo, L. V.; Pauliqueivis, T.; Kuwata, Mikinori; Karl, Thomas G.; Guenther, Alex B.; Allan, James D.; Coe, H.; Andreae, M. O.; Poeschl, U.; Jiminez, J. L.; Artaxo, Paulo; Martin, Scot T.

    2015-01-01

    Real-time mass spectra of non-refractory component of submicron aerosol particles were recorded in a tropical rainforest in the central Amazon basin during the wet season of 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic components accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. Ammonium was present in sufficient quantities to halfway neutralize sulfate. In this acidic, isoprene-dominated, low-NOx environment the high-resolution mass spectra as well as mass closures with ion chromatography measurements did not provide evidence for significant contributions of organosulfate species, at least at concentrations above uncertainty levels. Positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the variance of the signal intensities of the organic constituents: a factor HOA having a hydrocarbon-like signature and identified as regional emissions of primary organic material, a factor OOA-1 associated with fresh production of secondary organic material by a mechanism of BVOC oxidation followed by gas-to-particle conversion, a factor OOA-2 consistent with reactive uptake of isoprene oxidation products, especially epoxydiols by acidic particles, and a factor OOA-3 associated with long range transport and atmospheric aging. The OOA-1, -2, and -3 factors had progressively more oxidized signatures. Diameter-resolved mass spectral markers also suggested enhanced reactive uptake of isoprene oxidation products to the accumulation mode for the OOA-2 factor, and such size partitioning can be indicative of in-cloud process. The campaign-average factor loadings were in a ratio of 1.1:1.0 for the OOA-1 compared to the OOA-2 pathway, suggesting the comparable importance of gas-phase compared to particle-phase (including cloud waters) production pathways of secondary organic material during

  2. Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles

    Science.gov (United States)

    Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M. O.; Kirchner, U.

    2006-12-01

    Various types of combustion-related particles in the size range between 100 and 850 nm were analyzed with an aerosol mass spectrometer and a differential mobility analyzer. The measurements were performed with particles originating from biomass burning, diesel engine exhaust, laboratory combustion of diesel fuel and gasoline, as well as from spark soot generation. Physical and morphological parameters like fractal dimension, effective density, bulk density and dynamic shape factor were derived or at least approximated from the measurements of electrical mobility diameter and vacuum aerodynamic diameter. The relative intensities of the mass peaks in the mass spectra obtained from particles generated by a commercial diesel passenger car, by diesel combustion in a laboratory burner, and by evaporating and re-condensing lubrication oil were found to be very similar. The mass spectra from biomass burning particles show signatures identified as organic compounds like levoglucosan but also others which are yet unidentified. The aerodynamic behavior yielded a fractal dimension (Df) of 2.09 +/- 0.06 for biomass burning particles from the combustion of dry beech sticks, but showed values around three, and hence more compact particle morphologies, for particles from combustion of more natural oak. Scanning electron microscope images confirmed the finding that the beech combustion particles were fractal-like aggregates, while the oak combustion particles displayed a much more compact shape. For particles from laboratory combusted diesel fuel, a Df value of 2.35 was found, for spark soot particles, Df [approximate] 2.10. The aerodynamic properties of fractal-like particles from dry beech wood combustion indicate an aerodynamic shape factor [chi] that increases with electrical mobility diameter, and a bulk density of 1.92 g cm-3. An upper limit of [chi] [approximate] 1.2 was inferred for the shape factor of the more compact particles from oak combustion.

  3. Stochastic mass-reconstruction: a new technique to reconstruct resonance masses of heavy particles decaying into tau lepton pairs

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Sho [Fermilab

    2015-12-15

    The invariant mass of tau lepton pairs turns out to be smaller than the resonant mass of their mother particle and the invariant mass distribution is stretched wider than the width of the resonant mass as significant fraction of tau lepton momenta are carried away by neutrinos escaping undetected at collider experiments. This paper describes a new approach to reconstruct resonant masses of heavy particles decaying to tau leptons at such experiments. A typical example is a Z or Higgs boson decaying to a tau pair. Although the new technique can be used for each tau lepton separately, I combine two tau leptons to improve mass resolution by requiring the two tau leptons are lined up in a transverse plane. The method is simple to implement and complementary to the collinear approximation technique that works well when tau leptons are not lined up in a transverse plane. The reconstructed mass can be used as another variable in analyses that already use a visible tau pair mass and missing transverse momentum as these variables are not explicitly used in the stochastic mass-reconstruction to select signal-like events.

  4. Size distributions of non-volatile particle residuals (Dp<800 nm at a rural site in Germany and relation to air mass origin

    Directory of Open Access Journals (Sweden)

    T. Tuch

    2007-11-01

    Full Text Available Atmospheric aerosol particle size distributions at a continental background site in Eastern Germany were examined for a one-year period. Particles were classified using a twin differential mobility particle sizer in a size range between 3 and 800 nm. As a novelty, every second measurement of this experiment involved the removal of volatile chemical compounds in a thermodenuder at 300°C. This concept allowed to quantify the number size distribution of non-volatile particle cores – primarily associated with elemental carbon, and to compare this to the original non-conditioned size distribution. As a byproduct of the volatility analysis, new particles originating from nucleation inside the thermodenuder can be observed, however, overwhelmingly at diameters below 6 nm. Within the measurement uncertainty, every particle down to particle sizes of 15 nm is concluded to contain a non-volatile core. The volume fraction of non-volatile particulate matter (non-conditioned diameter < 800 nm varied between 10 and 30% and was largely consistent with the experimentally determined mass fraction of elemental carbon. The average size of the non-volatile particle cores was estimated as a function of original non-conditioned size using a summation method, which showed that larger particles (>200 nm contained more non-volatile compounds than smaller particles (<50 nm, thus indicating a significantly different chemical composition. Two alternative air mass classification schemes based on either, synoptic chart analysis (Berliner Wetterkarte or back trajectories showed that the volume and number fraction of non-volatile cores depended less on air mass than the total particle number concentration. In all air masses, the non-volatile size distributions showed a more and a less volatile ("soot" mode, the latter being located at about 50 nm. During unstable conditions and in maritime air masses, smaller values were observed compared to stable or continental conditions

  5. Online differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-TOF single-particle mass spectrometer

    Science.gov (United States)

    Marsden, Nicholas A.; Flynn, Michael J.; Allan, James D.; Coe, Hugh

    2018-01-01

    Mineralogy of silicate mineral dust has a strong influence on climate and ecosystems due to variation in physiochemical properties that result from differences in composition and crystal structure (mineral phase). Traditional offline methods of analysing mineral phase are labour intensive and the temporal resolution of the data is much longer than many atmospheric processes. Single-particle mass spectrometry (SPMS) is an established technique for the online size-resolved measurement of particle composition by laser desorption ionisation (LDI) followed by time-of-flight mass spectrometry (TOF-MS). Although non-quantitative, the technique is able to identify the presence of silicate minerals in airborne dust particles from markers of alkali metals and silicate molecular ions in the mass spectra. However, the differentiation of mineral phase in silicate particles by traditional mass spectral peak area measurements is not possible. This is because instrument function and matrix effects in the ionisation process result in variations in instrument response that are greater than the differences in composition between common mineral phases.In this study, we introduce a novel technique that enables the differentiation of mineral phase in silicate mineral particles by ion formation mechanism measured from subtle changes in ion arrival times at the TOF-MS detector. Using a combination of peak area and peak centroid measurements, we show that the arrangement of the interstitial alkali metals in the crystal structure, an important property in silicate mineralogy, influences the ion arrival times of elemental and molecular ion species in the negative ion mass spectra. A classification scheme is presented that allowed for the differentiation of illite-smectite, kaolinite and feldspar minerals on a single-particle basis. Online analysis of mineral dust aerosol generated from clay mineral standards produced mineral fractions that are in agreement with bulk measurements reported by

  6. Optimizing parameter of particle damping based on Leidenfrost effect of particle flows

    Science.gov (United States)

    Lei, Xiaofei; Wu, Chengjun; Chen, Peng

    2018-05-01

    Particle damping (PD) has strongly nonlinearity. With sufficiently vigorous vibration conditions, it always plays excellent damping performance and the particles which are filled into cavity are on Leidenfrost state considered in particle flow theory. For investigating the interesting phenomenon, the damping effect of PD on this state is discussed by the developed numerical model which is established based on principle of gas and solid. Furtherly, the numerical model is reformed and applied to study the relationship of Leidenfrost velocity with characteristic parameters of PD such as particle density, diameter, mass packing ratio and diameter-length ratio. The results indicate that particle density and mass packing ratio can drastically improve the damping performance as opposed as particle diameter and diameter-length ratio, mass packing ratio and diameter-length ratio can low the excited intensity for Leidenfrost state. For discussing the application of the phenomenon in engineering, bound optimization by quadratic approximation (BOBYQA) method is employed to optimize mass packing ratio of PD for minimize maximum amplitude (MMA) and minimize total vibration level (MTVL). It is noted that the particle damping can drastically reduce the vibrating amplitude for MMA as Leidenfrost velocity equal to the vibrating velocity relative to maximum vibration amplitude. For MTVL, larger mass packing ratio is best option because particles at relatively wide frequency range is adjacent to Leidenfrost state.

  7. A comparative study of the number and mass of fine particles emitted with diesel fuel and marine gas oil (MGO)

    Science.gov (United States)

    Nabi, Md. Nurun; Brown, Richard J.; Ristovski, Zoran; Hustad, Johan Einar

    2012-09-01

    The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.

  8. Momentum, heat, and mass transfer analogy for vertical hydraulic transport of inert particles

    Directory of Open Access Journals (Sweden)

    Jaćimovski Darko R.

    2014-01-01

    Full Text Available Wall-to-bed momentum, heat and mass transfer in vertical liquid-solids flow, as well as in single phase flow, were studied. The aim of this investigation was to establish the analogy among those phenomena. Also, effect of particles concentration on momentum, heat and mass transfer was studied. The experiments in hydraulic transport were performed in a 25.4 mm I.D. cooper tube equipped with a steam jacket, using spherical glass particles of 1.94 mm in diameter and water as a transport fluid. The segment of the transport tube used for mass transfer measurements was inside coated with benzoic acid. In the hydraulic transport two characteristic flow regimes were observed: turbulent and parallel particle flow regime. The transition between two characteristic regimes (γ*=0, occurs at a critical voidage ε≈0.85. The vertical two-phase flow was considered as the pseudofluid, and modified mixture-wall friction coefficient (fw and modified mixture Reynolds number (Rem were introduced for explanation of this system. Experimental data show that the wall-to-bed momentum, heat and mass transfer coefficients, in vertical flow of pseudofluid, for the turbulent regime are significantly higher than in parallel regime. Wall-to-bed, mass and heat transfer coefficients in hydraulic transport of particles were much higher then in single-phase flow for lower Reynolds numbers (Re15000, there was not significant difference. The experimental data for wall-to-bed momentum, heat and mass transfer in vertical flow of pseudofluid in parallel particle flow regime, show existing analogy among these three phenomena. [Projekat Ministarstva nauke Republike Srbije, br. 172022

  9. Particle-two particle interaction in configuration space

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.

    1982-07-01

    The problem if three indentical particles with zero-range two-particle interaction is considered. An explicit expression for the effective potential between one particle and the remaining two-particle system is obtained in the coordinate representation. It is shown that for arbitrary energies, at small and, for zero energy, at large distances rho between the one particle and centre of mass of the other two particles the diagonal matrix element of the effective potential is attractive and proportional to 1/rho 2 . This property of the effective potenial explains both the Thomas singularity and the Efimov effect. In the case of zero total energy of the system the general form of the solution of the three-particle integral equation is found in configuration space. (orig.)

  10. Fine particle number and mass concentration measurements in urban Indian households.

    Science.gov (United States)

    Mönkkönen, P; Pai, P; Maynard, A; Lehtinen, K E J; Hämeri, K; Rechkemmer, P; Ramachandran, G; Prasad, B; Kulmala, M

    2005-07-15

    Fine particle number concentration (D(p)>10 nm, cm(-3)), mass concentrations (approximation of PM(2.5), microg m(-3)) and indoor/outdoor number concentration ratio (I/O) measurements have been conducted for the first time in 11 urban households in India, 2002. The results indicate remarkable high indoor number and mass concentrations and I/O number concentration ratios caused by cooking. Besides cooking stoves that used liquefied petroleum gas (LPG) or kerosene as the main fuel, high indoor concentrations can be explained by poor ventilation systems. Particle number concentrations of more than 300,000 cm(-3) and mass concentrations of more than 1000 microg m(-3) were detected in some cases. When the number and mass concentrations during cooking times were statistically compared, a correlation coefficient r>0.50 was observed in 63% of the households. Some households used other fuels like wood and dung cakes along with the main fuel, but also other living activities influenced the concentrations. In some areas, outdoor combustion processes had a negative impact on indoor air quality. The maximum concentrations observed in most cases were due to indoor combustion sources. Reduction of exposure risk and health effects caused by poor indoor air in urban Indian households is possible by improving indoor ventilation and reducing penetration of outdoor particles.

  11. Development and characterization of a single particle laser ablation mass spectrometer (SPLAM for organic aerosol studies

    Directory of Open Access Journals (Sweden)

    F. Gaie-Levrel

    2012-01-01

    Full Text Available A single particle instrument was developed for real-time analysis of organic aerosol. This instrument, named Single Particle Laser Ablation Mass Spectrometry (SPLAM, samples particles using an aerodynamic lens system for which the theoretical performances were calculated. At the outlet of this system, particle detection and sizing are realized by using two continuous diode lasers operating at λ = 403 nm. Polystyrene Latex (PSL, sodium chloride (NaCl and dioctylphtalate (DOP particles were used to characterize and calibrate optical detection of SPLAM. The optical detection limit (DL and detection efficiency (DE were determined using size-selected DOP particles. The DE ranges from 0.1 to 90% for 100 and 350 nm DOP particles respectively and the SPLAM instrument is able to detect and size-resolve particles as small as 110–120 nm. During optical detection, particle scattered light from the two diode lasers, is detected by two photomultipliers and the detected signals are used to trigger UV excimer laser (λ = 248 nm used for one-step laser desorption ionization (LDI of individual aerosol particles. The formed ions are analyzed by a 1 m linear time-of-flight mass spectrometer in order to access to the chemical composition of individual particles. The TOF-MS detection limit for gaseous aromatic compounds was determined to be 0.85 × 10−15 kg (∼4 × 103 molecules. DOP particles were also used to test the overall operation of the instrument. The analysis of a secondary organic aerosol, formed in a smog chamber by the ozonolysis of indene, is presented as a first application of the instrument. Single particle mass spectra were obtained with an effective hit rate of 8%. Some of these mass spectra were found to be very different from one particle to another possibly reflecting chemical differences within the investigated indene SOA particles. Our study shows that an exhaustive statistical analysis, over hundreds of particles

  12. Modelling of interactions between variable mass and density solid particles and swirling gas stream

    International Nuclear Information System (INIS)

    Wardach-Święcicka, I; Kardaś, D; Pozorski, J

    2011-01-01

    The aim of this work is to investigate the solid particles - gas interactions. For this purpose, numerical modelling was carried out by means of a commercial code for simulations of two-phase dispersed flows with the in-house models accounting for mass and density change of solid phase. In the studied case the particles are treated as spherical moving grains carried by a swirling stream of hot gases. Due to the heat and mass transfer between gas and solid phase, the particles are losing their mass and they are changing their volume. Numerical simulations were performed for turbulent regime, using two methods for turbulence modelling: RANS and LES.

  13. A p-Adic Metric for Particle Mass Scale Organization with Genetic Divisors

    International Nuclear Information System (INIS)

    Dai, Yang; Borisov, Alexey B.; Boyer, Keith; Rhodes, Charles K.

    2001-01-01

    The concept of genetic divisors can be given a quantitative measure with a non-Archimedean p-adic metric that is both computationally convenient and physically motivated. For two particles possessing distinct mass parameters x and y, the metric distance D(x, y) is expressed on the field of rational numbers Q as the inverse of the greatest common divisor [gcd (x , y)]. As a measure of genetic similarity, this metric can be applied to (1) the mass numbers of particle states and (2) the corresponding subgroup orders of these systems. The use of the Bezout identity in the form of a congruence for the expression of the gcd (x , y) corresponding to the v e and μ neutrinos (a) connects the genetic divisor concept to the cosmic seesaw congruence, (b) provides support for the δ-conjecture concerning the subgroup structure of particle states, and (c) quantitatively strengthens the interlocking relationships joining the values of the prospectively derived (i) electron neutrino (v e ) mass (0.808 meV), (ii) muon neutrino (v μ ) mass (27.68 meV), and (iii) unified strong-electroweak coupling constant (α* -1 = 34.26)

  14. Online differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-TOF single-particle mass spectrometer

    Directory of Open Access Journals (Sweden)

    N. A. Marsden

    2018-01-01

    Full Text Available Mineralogy of silicate mineral dust has a strong influence on climate and ecosystems due to variation in physiochemical properties that result from differences in composition and crystal structure (mineral phase. Traditional offline methods of analysing mineral phase are labour intensive and the temporal resolution of the data is much longer than many atmospheric processes. Single-particle mass spectrometry (SPMS is an established technique for the online size-resolved measurement of particle composition by laser desorption ionisation (LDI followed by time-of-flight mass spectrometry (TOF-MS. Although non-quantitative, the technique is able to identify the presence of silicate minerals in airborne dust particles from markers of alkali metals and silicate molecular ions in the mass spectra. However, the differentiation of mineral phase in silicate particles by traditional mass spectral peak area measurements is not possible. This is because instrument function and matrix effects in the ionisation process result in variations in instrument response that are greater than the differences in composition between common mineral phases.In this study, we introduce a novel technique that enables the differentiation of mineral phase in silicate mineral particles by ion formation mechanism measured from subtle changes in ion arrival times at the TOF-MS detector. Using a combination of peak area and peak centroid measurements, we show that the arrangement of the interstitial alkali metals in the crystal structure, an important property in silicate mineralogy, influences the ion arrival times of elemental and molecular ion species in the negative ion mass spectra. A classification scheme is presented that allowed for the differentiation of illite–smectite, kaolinite and feldspar minerals on a single-particle basis. Online analysis of mineral dust aerosol generated from clay mineral standards produced mineral fractions that are in agreement with bulk

  15. The impact of mass transfer limitations on size distributions of particle associated SVOCs in outdoor and indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Zhang, Yinping [Department of Building Science, Tsinghua University, Beijing (China); Weschler, Charles J., E-mail: weschlch@rwjms.rutgers.edu [Department of Building Science, Tsinghua University, Beijing (China); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ (United States); International Center for Indoor Environment and Energy, Technical University of Denmark, Lyngby (Denmark)

    2014-11-01

    Semi-volatile organic compounds (SVOCs) partition between the gas phase and airborne particles. The size distribution of particle-associated SVOCs impacts their fate in outdoor and indoor environments, as well as human exposure to these compounds and subsequent health risks. Allen et al. (1996) previously proposed that the rate of mass transfer can impact polycyclic aromatic hydrocarbon (PAH) partitioning among different sized particles, especially for time scales relevant to urban aerosols. The present study quantitatively builds on this idea, presenting a model that incorporates dynamic SVOC/particle interaction and applying this model to typical outdoor and indoor scenarios. The model indicates that the impact of mass transfer limitations on the size distribution of a particle-associated SVOC can be evaluated by the ratio of the time to achieve gas–particle equilibrium relative to the residence time of particles. The higher this ratio, the greater the influence of mass transfer limitations on the size distribution of particle-associated SVOCs. The influence of such constraints is largest on the fraction of particle-associated SVOCs in the coarse mode (> 2 μm). Predictions from the model have been found to be in reasonable agreement with size distributions measured for PAHs at roadside and suburban locations in Japan. The model also quantitatively explains shifts in the size distributions of particle associated SVOCs compared to those for particle mass, and the manner in which these shifts vary with temperature and an SVOC's molecular weight. - Highlights: • Rate of mass transfer can impact SVOC partitioning among different sized particles. • Model was developed that incorporates dynamic SVOC/particle sorption. • Key parameters: mass-transfer coefficients, partition coefficient, residence time • Model explains observed SVOC size distribution shifts with temperature and MW. • Largest impact of mass transfer constraints: SVOC sorption to coarse

  16. STELLAR AND TOTAL BARYON MASS FRACTIONS IN GROUPS AND CLUSTERS SINCE REDSHIFT 1

    International Nuclear Information System (INIS)

    Giodini, S.; Pierini, D.; Finoguenov, A.; Pratt, G. W.; Boehringer, H.; Leauthaud, A.; Guzzo, L.; Aussel, H.; Bolzonella, M.; Capak, P.; Elvis, M.; Hasinger, G.; Ilbert, O.; Kartaltepe, J. S.; Koekemoer, A. M.; Lilly, S. J.; Massey, R.; Rhodes, J.; Salvato, M.; McCracken, H. J.

    2009-01-01

    We investigate if the discrepancy between estimates of the total baryon mass fraction obtained from observations of the cosmic microwave background (CMB) and of galaxy groups/clusters persists when a large sample of groups is considered. To this purpose, 91 candidate X-ray groups/poor clusters at redshift 0.1 ≤ z ≤ 1 are selected from the COSMOS 2 deg 2 survey, based only on their X-ray luminosity and extent. This sample is complemented by 27 nearby clusters with a robust, analogous determination of the total and stellar mass inside R 500 . The total sample of 118 groups and clusters with z ≤ 1 spans a range in M 500 of ∼10 13 -10 15 M sun . We find that the stellar mass fraction associated with galaxies at R 500 decreases with increasing total mass as M -0.37±0.04 500 , independent of redshift. Estimating the total gas mass fraction from a recently derived, high-quality scaling relation, the total baryon mass fraction (f stars+gas 500 = f stars 500 + f gas 500 ) is found to increase by ∼25%, when M 500 increases from (M) = 5 x 10 13 M sun to (M) = 7 x 10 14 M sun . After consideration of a plausible contribution due to intracluster light (11%-22% of the total stellar mass) and gas depletion through the hierarchical assembly process (10% of the gas mass), the estimated values of the total baryon mass fraction are still lower than the latest CMB measure of the same quantity (WMAP5), at a significance level of 3.3σ for groups of (M) = 5 x 10 13 M sun . The discrepancy decreases toward higher total masses, such that it is 1σ at (M) = 7 x 10 14 M sun . We discuss this result in terms of nongravitational processes such as feedback and filamentary heating.

  17. Heat and Mass Transfer at Hot Surface Ignition of Coal Particle

    OpenAIRE

    Glushkov Dmitrii O.; Kosintsev Andrey. G.; Shlegel Nikita E.; Vershinina Ksenia Yu.

    2015-01-01

    This paper describes the experimental investigations of the characteristics of heat and mass transfer during the conductive heating of a coal particle. We have established the boundary conditions of combustion initiation, and the conditions of thermal decomposition and solid fuel particles decay, characterized by the temperature of a heat source, and the duration of the respective stages.

  18. New particle formation in air mass transported between two measurement sites in Northern Finland

    Directory of Open Access Journals (Sweden)

    M. Komppula

    2006-01-01

    Full Text Available This study covers four years of aerosol number size distribution data from Pallas and Värriö sites 250 km apart from each other in Northern Finland and compares new particle formation events between these sites. In air masses of eastern origin almost all events were observed to start earlier at the eastern station Värriö, whereas in air masses of western origin most of the events were observed to start earlier at the western station Pallas. This demonstrates that particle formation in a certain air mass type depends not only on the diurnal variation of the parameters causing the phenomenon (such as photochemistry but also on some properties carried by the air mass itself. The correlation in growth rates between the two sites was relatively good, which suggests that the amount of condensable vapour causing the growth must have been at about the same level in both sites. The condensation sink was frequently much higher at the downwind station. It seems that secondary particle formation related to biogenic sources dominate in many cases over the particle sinks during the air mass transport between the sites. Two cases of transport from Pallas to Värriö were further analysed with an aerosol dynamics model. The model was able to reproduce the observed nucleation events 250 km down-wind at Värriö but revealed some differences between the two cases. The simulated nucleation rates were in both cases similar but the organic concentration profiles that best reproduced the observations were different in the two cases indicating that divergent formation reactions may dominate under different conditions. The simulations also suggested that organic compounds were the main contributor to new particle growth, which offers a tentative hypothesis to the distinct features of new particles at the two sites: Air masses arriving from the Atlantic Ocean typically spent approximately only ten hours over land before arriving at Pallas, and thus the time for the

  19. Associations of Infant Subcutaneous Fat Mass with Total and Abdominal Fat Mass at School-Age: The Generation R Study.

    Science.gov (United States)

    Santos, Susana; Gaillard, Romy; Oliveira, Andreia; Barros, Henrique; Abrahamse-Berkeveld, Marieke; van der Beek, Eline M; Hofman, Albert; Jaddoe, Vincent W V

    2016-09-01

    Skinfold thickness enables the measurement of overall and regional subcutaneous fatness in infancy and may be associated with total and abdominal body fat in later childhood. We examined the associations of subcutaneous fat in infancy with total and abdominal fat at school-age. In a population-based prospective cohort study among 821 children, we calculated total subcutaneous fat (sum of biceps, triceps, suprailiacal, and subscapular skinfold thicknesses) and central-to-total subcutaneous fat ratio (sum of suprailiacal and subscapular skinfold thicknesses/total subcutaneous fat) at 1.5 and 24 months. At 6 years, we measured fat mass index (total fat/height(3) ), central-to-total fat ratio (trunk fat/total fat), and android-to-gynoid fat ratio (android fat/gynoid fat) by dual-energy X-ray absorptiometry and preperitoneal fat mass area by abdominal ultrasound. Central-to-total subcutaneous fat ratio at 1.5 months was positively associated with fat mass index and central-to-total fat ratio at 6 years, whereas both total and central-to-total subcutaneous fat ratio at 24 months were positively associated with all childhood adiposity measures. A 1-standard-deviation scores higher total subcutaneous fat at 24 months was associated with an increased risk of childhood overweight (odds ratio 1.70, 95% confidence interval 1.36, 2.12). These associations were weaker than those for body mass index and stronger among girls than boys. Subcutaneous fat in infancy is positively associated with total and abdominal fat at school-age. Our results also suggest that skinfold thicknesses add little value to estimate later body fat, as compared with body mass index. © 2016 John Wiley & Sons Ltd.

  20. Reactions and mass spectra of complex particles using Aerosol CIMS

    Science.gov (United States)

    Hearn, John D.; Smith, Geoffrey D.

    2006-12-01

    Aerosol chemical ionization mass spectrometry (CIMS) is used both on- and off-line for the analysis of complex laboratory-generated and ambient particles. One of the primary advantages of Aerosol CIMS is the low degree of ion fragmentation, making this technique well suited for investigating the reactivity of complex particles. To demonstrate the usefulness of this "soft" ionization, particles generated from meat cooking were reacted with ozone and the composition was monitored as a function of reaction time. Two distinct kinetic regimes were observed with most of the oleic acid in these particles reacting quickly but with 30% appearing to be trapped in the complex mixture. Additionally, detection limits are measured to be sufficiently low (100-200 ng/m3) to detect some of the more abundant constituents in ambient particles, including sulfate, which is measured in real-time at 1.2 [mu]g/m3. To better characterize complex aerosols from a variety of sources, a novel off-line collection method was also developed in which non-volatile and semi-volatile organics are desorbed from particles and concentrated in a cold U-tube. Desorption from the U-tube followed by analysis with Aerosol CIMS revealed significant amounts of nicotine in cigarette smoke and levoglucosan in oak and pine smoke, suggesting that this may be a useful technique for monitoring particle tracer species. Additionally, secondary organic aerosol formed from the reaction of ozone with R-limonene and volatile organics from orange peel were analyzed off-line showing large molecular weight products (m/z > 300 amu) that may indicate the formation of oligomers. Finally, mass spectra of ambient aerosol collected offline reveal a complex mixture of what appears to be highly processed organics, some of which may contain nitrogen.

  1. Photochemical aging of aerosol particles in different air masses arriving at Baengnyeong Island, Korea

    Science.gov (United States)

    Kang, Eunha; Lee, Meehye; Brune, William H.; Lee, Taehyoung; Park, Taehyun; Ahn, Joonyoung; Shang, Xiaona

    2018-05-01

    Atmospheric aerosol particles are a serious health risk, especially in regions like East Asia. We investigated the photochemical aging of ambient aerosols using a potential aerosol mass (PAM) reactor at Baengnyeong Island in the Yellow Sea during 4-12 August 2011. The size distributions and chemical compositions of aerosol particles were measured alternately every 6 min from the ambient air or through the highly oxidizing environment of a potential aerosol mass (PAM) reactor. Particle size and chemical composition were measured by using the combination of a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Inside the PAM reactor, O3 and OH levels were equivalent to 4.6 days of integrated OH exposure at typical atmospheric conditions. Two types of air masses were distinguished on the basis of the chemical composition and the degree of aging: air transported from China, which was more aged with a higher sulfate concentration and O : C ratio, and the air transported across the Korean Peninsula, which was less aged with more organics than sulfate and a lower O : C ratio. For both episodes, the particulate sulfate mass concentration increased in the 200-400 nm size range when sampled through the PAM reactor. A decrease in organics was responsible for the loss of mass concentration in 100-200 nm particles when sampled through the PAM reactor for the organics-dominated episode. This loss was especially evident for the m/z 43 component, which represents less oxidized organics. The m/z 44 component, which represents further oxidized organics, increased with a shift toward larger sizes for both episodes. It is not possible to quantify the maximum possible organic mass concentration for either episode because only one OH exposure of 4.6 days was used, but it is clear that SO2 was a primary precursor of secondary aerosol in northeast Asia, especially during long-range transport from China. In addition

  2. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography.

    Science.gov (United States)

    Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges

    2012-11-09

    The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems

  3. Associations of infant subcutaneous fat mass with total and abdominal fat mass at school-age. The Generation R Study

    Science.gov (United States)

    Santos, Susana; Gaillard, Romy; Oliveira, Andreia; Barros, Henrique; Abrahamse-Berkeveld, Marieke; van der Beek, Eline M; Hofman, Albert; Jaddoe, Vincent WV

    2017-01-01

    Background Skinfold thickness enables the measurement of overall and regional subcutaneous fatness in infancy and may be associated with total and abdominal body fat in later childhood. We examined the associations of subcutaneous fat in infancy with total and abdominal fat at school-age. Methods In a population-based prospective cohort study among 821 children, we calculated total subcutaneous fat (sum of biceps, triceps, suprailiacal and subscapular skinfold thicknesses) and central-to-total subcutaneous fat ratio (sum of suprailiacal and subscapular skinfold thicknesses/total subcutaneous fat) at 1.5 and 24 months. At 6 years, we measured fat mass index (total fat/height3), central-to-total fat ratio (trunk fat/total fat) and android-to-gynoid fat ratio (android fat/gynoid fat) by dual-energy X-ray absorptiometry and preperitoneal fat mass area by abdominal ultrasound. Results Central-to-total subcutaneous fat ratio at 1.5 months was positively associated with fat mass index and central-to-total fat ratio at 6 years, whereas both total and central-to-total subcutaneous fat ratio at 24 months were positively associated with all childhood adiposity measures (pfat at 24 months was associated with an increased risk of childhood overweight (Odds Ratio 1.70 [95% Confidence Interval 1.36, 2.12]). These associations were weaker than those for body mass index and stronger among girls than boys. Conclusions Subcutaneous fat in infancy is positively associated with total and abdominal fat at school-age. Our results also suggest that skinfold thicknesses add little value to estimate later body fat, as compared to body mass index. PMID:27225335

  4. Totally asymmetric exclusion processes with particles of arbitrary size

    International Nuclear Information System (INIS)

    Lakatos, Greg; Chou, Tom

    2003-01-01

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or the order of the phase transitions. However, we employ a refined mean-field approach to find apparently exact expressions for the steady-state currents, boundary densities, and phase diagrams of the d ≥ 1 TASEP. Extensive Monte Carlo simulations are performed to support our analytic, mean-field results

  5. Totally asymmetric exclusion processes with particles of arbitrary size

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, Greg; Chou, Tom [Department of Biomathematics and Institute for Pure and Applied Mathematics, UCLA, Los Angeles, CA 90095 (United States)

    2003-02-28

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or the order of the phase transitions. However, we employ a refined mean-field approach to find apparently exact expressions for the steady-state currents, boundary densities, and phase diagrams of the d {>=} 1 TASEP. Extensive Monte Carlo simulations are performed to support our analytic, mean-field results.

  6. Recovery of infective virus particles in ion-exchange and hydrophobic interaction monolith chromatography is influenced by particle charge and total-to-infective particle ratio.

    Science.gov (United States)

    Sviben, Dora; Forcic, Dubravko; Ivancic-Jelecki, Jelena; Halassy, Beata; Brgles, Marija

    2017-06-01

    Viral particles are used in medical applications as vaccines or gene therapy vectors. In order to obtain product of high purity, potency and safety for medical use purification of virus particles is a prerequisite, and chromatography is gaining increased attention to meet this aim. Here, we report on the use of ion-exchange and hydrophobic interaction chromatography on monolithic columns for purification of mumps virus (MuV) and measles virus (MeV). Efficiency of the process was monitored by quantification of infective virus particles (by 50% cell culture infective dose assay) and total virus particles, and monitoring of their size (by Nanoparticle Tracking Analysis). Ion-exchange chromatography was shown to be inefficient for MuV and best results for MeV were obtained on QA column with recovery around 17%. Purification of MuV and MeV by hydrophobic interaction chromatography resulted in recoveries around 60%. Results showed that columns with small channels (d=1.4μm) are not suitable for MuV and MeV, although their size is below 400nm, whereas columns with large channels (6μm) showed to be efficient and recoveries independent on the flow rate up to 10mL/min. Heterogeneity of the virus suspension and its interday variability mostly regarding total-to-infective particle ratio was observed. Interestingly, a trend in recovery depending on the day of the harvest was also observed for both viruses, and it correlated with the total-to-infective particle ratio, indicating influence of the virus sample composition on the chromatography results. Copyright © 2017. Published by Elsevier B.V.

  7. Total suspended particles (TSP) and breathable particles (PM10) in Aburra Valley, Colombia

    International Nuclear Information System (INIS)

    Saldarriaga Molina, Julio Cesar; Echeverri Londono, Carlos Alberto; Molina Perez Francisco Jose

    2004-01-01

    In the Aburra's valley, nor-western region of Colombia, inhabited by 3 million people, crossed by 400,000 vehicles; with the presence of establishments of industrial sectors: textile, foods and metal-mechanical; The concentrations of total suspended particles (PST) and breathable particles (PM 1 0) were evaluated, during the period: December of 2000 to June of 2001. The determinations of PST and PM 1 0 were performed in ten stations, distributed of north to the south, covering urban and rural zones with the municipalities of: Girardota, Bello, Medellin, Itagui, Sabaneta and Caldas. When analyzing relation PM 1 0/PST, was that the best statistical correlations are located in the zones center and the south of the valley. In addition the increasing tendency in relation PM 1 0/PST was observed, from 0.527 for the rural station Girardota (North), to 0.813 in the urban station Caldas (South). This gradient in relation PM 1 0/PST apparently this related to the wind regime that predominates in the Valley of Aburra with direction the north-south, which causes that the fine particles migrate of north to the south, increasing relation PM 1 0/PST in the same direction

  8. A lower limit on the dark particle mass from dSphs

    Energy Technology Data Exchange (ETDEWEB)

    Angus, G.W., E-mail: angus@ph.unito.it [Dipartimento di Fisica Generale ' ' Amedeo Avogadro' ' , Università degli Studi di Torino, Via P. Giuria 1, I-10125, Torino (Italy)

    2010-03-01

    We use dwarf spheroidal galaxies as a tool to attempt to put precise lower limits on the mass of the dark matter particle, assuming it is a sterile neutrino. We begin by making cored dark halo fits to the line of sight velocity dispersions as a function of projected radius (taken from Walker et al. 2007) for six of the Milky Way's dwarf spheroidal galaxies. We test Osipkov-Merritt velocity anisotropy profiles, but find that no benefit is gained over constant velocity anisotropy. In contrast to previous attempts, we do not assume any relation between the stellar velocity dispersions and the dark matter ones, but instead we solve directly for the sterile neutrino velocity dispersion at all radii by using the equation of state for a partially degenerate neutrino gas (which ensures hydrostatic equilibrium of the sterile neutrino halo). This yields a 1:1 relation between the sterile neutrino density profile and the velocity dispersion profile, and therefore gives us an accurate estimate of the Tremaine-Gunn limit at all radii. By varying the sterile neutrino particle mass, we locate the minimum mass for all six dwarf spheroidals such that the Tremaine-Gunn limit is not exceeded at any radius (in particular at the centre). We find sizeable differences between the ranges of feasible sterile neutrino particle mass for each dwarf, but interestingly there exists a small range 270-280eV which is consistent with all dSphs at the 1-σ level.

  9. A lower limit on the dark particle mass from dSphs

    International Nuclear Information System (INIS)

    Angus, G.W.

    2010-01-01

    We use dwarf spheroidal galaxies as a tool to attempt to put precise lower limits on the mass of the dark matter particle, assuming it is a sterile neutrino. We begin by making cored dark halo fits to the line of sight velocity dispersions as a function of projected radius (taken from Walker et al. 2007) for six of the Milky Way's dwarf spheroidal galaxies. We test Osipkov-Merritt velocity anisotropy profiles, but find that no benefit is gained over constant velocity anisotropy. In contrast to previous attempts, we do not assume any relation between the stellar velocity dispersions and the dark matter ones, but instead we solve directly for the sterile neutrino velocity dispersion at all radii by using the equation of state for a partially degenerate neutrino gas (which ensures hydrostatic equilibrium of the sterile neutrino halo). This yields a 1:1 relation between the sterile neutrino density profile and the velocity dispersion profile, and therefore gives us an accurate estimate of the Tremaine-Gunn limit at all radii. By varying the sterile neutrino particle mass, we locate the minimum mass for all six dwarf spheroidals such that the Tremaine-Gunn limit is not exceeded at any radius (in particular at the centre). We find sizeable differences between the ranges of feasible sterile neutrino particle mass for each dwarf, but interestingly there exists a small range 270-280eV which is consistent with all dSphs at the 1-σ level

  10. An equivalent method for optimization of particle tuned mass damper based on experimental parametric study

    Science.gov (United States)

    Lu, Zheng; Chen, Xiaoyi; Zhou, Ying

    2018-04-01

    A particle tuned mass damper (PTMD) is a creative combination of a widely used tuned mass damper (TMD) and an efficient particle damper (PD) in the vibration control area. The performance of a one-storey steel frame attached with a PTMD is investigated through free vibration and shaking table tests. The influence of some key parameters (filling ratio of particles, auxiliary mass ratio, and particle density) on the vibration control effects is investigated, and it is shown that the attenuation level significantly depends on the filling ratio of particles. According to the experimental parametric study, some guidelines for optimization of the PTMD that mainly consider the filling ratio are proposed. Furthermore, an approximate analytical solution based on the concept of an equivalent single-particle damper is proposed, and it shows satisfied agreement between the simulation and experimental results. This simplified method is then used for the preliminary optimal design of a PTMD system, and a case study of a PTMD system attached to a five-storey steel structure following this optimization process is presented.

  11. A lower bound on the mass of dark matter particles

    International Nuclear Information System (INIS)

    Boyarsky, Alexey; Ruchayskiy, Oleg; Iakubovskyi, Dmytro

    2009-01-01

    We discuss the bounds on the mass of Dark Matter (DM) particles, coming from the analysis of DM phase-space distribution in dwarf spheroidal galaxies (dSphs). After reviewing the existing approaches, we choose two methods to derive such a bound. The first one depends on the information about the current phase space distribution of DM particles only, while the second one uses both the initial and final distributions. We discuss the recent data on dSphs as well as astronomical uncertainties in relevant parameters. As an application, we present lower bounds on the mass of DM particles, coming from various dSphs, using both methods. The model-independent bound holds for any type of fermionic DM. Stronger, model-dependent bounds are quoted for several DM models (thermal relics, non-resonantly and resonantly produced sterile neutrinos, etc.). The latter bounds rely on the assumption that baryonic feedback cannot significantly increase the maximum of a distribution function of DM particles. For the scenario in which all the DM is made of sterile neutrinos produced via non-resonant mixing with the active neutrinos (NRP) this gives m NRP > 1.7 keV. Combining these results in their most conservative form with the X-ray bounds of DM decay lines, we conclude that the NRP scenario remains allowed in a very narrow parameter window only. This conclusion is independent of the results of the Lyman-α analysis. The DM model in which sterile neutrinos are resonantly produced in the presence of lepton asymmetry remains viable. Within the minimal neutrino extension of the Standard Model (the νMSM), both mass and the mixing angle of the DM sterile neutrino are bounded from above and below, which suggests the possibility for its experimental search

  12. Model independent particle mass measurements in missing energy events at hadron colliders

    Science.gov (United States)

    Park, Myeonghun

    2011-12-01

    This dissertation describes several new kinematic methods to measure the masses of new particles in events with missing transverse energy at hadron colliders. Each method relies on the measurement of some feature (a peak or an endpoint) in the distribution of a suitable kinematic variable. The first method makes use of the "Gator" variable s min , whose peak provides a global and fully inclusive measure of the production scale of the new particles. In the early stage of the LHC, this variable can be used both as an estimator and a discriminator for new physics over the standard model backgrounds. The next method studies the invariant mass distributions of the visible decay products from a cascade decay chain and the shapes and endpoints of those distributions. Given a sufficient number of endpoint measurements, one could in principle attempt to invert and solve for the mass spectrum. However, the non-linear character of the relevant coupled quadratic equations often leads to multiple solutions. In addition, there is a combinatorial ambiguity related to the ordering of the decay products from the cascade decay chain. We propose a new set of invariant mass variables which are less sensitive to these problems. We demonstrate how the new particle mass spectrum can be extracted from the measurement of their kinematic endpoints. The remaining methods described in the dissertation are based on "transverse" invariant mass variables like the "Cambridge" transverse mass MT2, the "Sheffield" contrasverse mass MCT and their corresponding one-dimensional projections MT2⊥, M T2||, MCT⊥ , and MCT|| with respect to the upstream transverse momentum U⃗T . The main advantage of all those methods is that they can be applied to very short (single-stage) decay topologies, as well as to a subsystem of the observed event. The methods can also be generalized to the case of non-identical missing particles, as demonstrated in Chapter 7. A complete set of analytical results for the

  13. The Total Mass of the Early-Type Galaxy NGC 4649 (M60

    Directory of Open Access Journals (Sweden)

    Ćirković, M. M.

    2008-12-01

    Full Text Available In this paper the problem of the total mass and the total mass-to-light ratio of the early-type galaxy NGC~4649 (M60 is analyzed. Use is made of two independent techniques: the X-ray methodology which is based on the temperature of the X-ray halo of NGC~4649 and the tracer mass estimator (TME which uses globular clusters (GCs observed in this galaxy. The mass is calculated in Newtonian and MOdified Newtonian Dynamics (MOND approaches and it is found that inside 3 effective radii ($R_e$ there is no need for large amounts of dark matter. Beyond $3R_e$ the dark matter starts to play important dynamical role. The possible reasons for the discrepancy between the estimates of the total mass based on X-rays and TME in the outer regions of NGC~4649 are also discussed.

  14. Single particle composition measurements of artificial Calcium Carbonate aerosols

    Science.gov (United States)

    Zorn, S. R.; Mentel, T. F.; Schwinger, T.; Croteau, P. L.; Jayne, J.; Worsnop, D. R.; Trimborn, A.

    2012-12-01

    Mineral dust, with an estimated total source from natural and anthropogenic emissions of up to 2800 Tg/yr, is one of the two largest contributors to total aerosol mass, with only Sea salt having a similar source strength (up to 2600 Tg/yr). The composition of dust particles varies strongly depending on the production process and, most importantly, the source location. Therefore, the composition of single dust particles can be used both to trace source regions of air masses as well as to identify chemical aging processes. Here we present results of laboratory studies on generating artificial calcium carbonate (CaCO3) particles, a model compound for carbonaceous mineral dust particles. Particles were generated by atomizing an aqueous hydrogen carbonate solution. Water was removed using a silica diffusion dryer., then the particles were processed in an oven at temperatures up to 900°C, converting the hydrogen carbonate to its anhydrous form. The resulting aerosol was analyzed using an on-line single particle laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The results confirm the conversion to calcium carbonate, and validate that the produced particles indeed can be used as a model compound for carbonaceous dust aerosols.

  15. Unitarity limits on the mass and radius of dark matter particles

    Science.gov (United States)

    Griest, Kim; Kamionkowski, Marc

    1989-01-01

    Using partial wave unitarity and the observed density of the Universe, it is show that a stable elementary particle which was once in thermal equilibrium cannot have a mass greater than 340 TeV. An extended object which was once in thermal equilibrium cannot have a radius less than 7.5 x 10(exp -7) fm. A lower limit to the relic abundance of such particles is also found.

  16. FORMATION OF MULTIPLE-SATELLITE SYSTEMS FROM LOW-MASS CIRCUMPLANETARY PARTICLE DISKS

    International Nuclear Information System (INIS)

    Hyodo, Ryuki; Ohtsuki, Keiji; Takeda, Takaaki

    2015-01-01

    Circumplanetary particle disks would be created in the late stage of planetary formation either by impacts of planetary bodies or disruption of satellites or passing bodies, and satellites can be formed by accretion of disk particles spreading across the Roche limit. Previous N-body simulation of lunar accretion focused on the formation of single-satellite systems from disks with large disk-to-planet mass ratios, while recent models of the formation of multiple-satellite systems from disks with smaller mass ratios do not take account of gravitational interaction between formed satellites. In the present work, we investigate satellite accretion from particle disks with various masses, using N-body simulation. In the case of accretion from somewhat less massive disks than the case of lunar accretion, formed satellites are not massive enough to clear out the disk, but can become massive enough to gravitationally shepherd the disk outer edge and start outward migration due to gravitational interaction with the disk. When the radial location of the 2:1 mean motion resonance of the satellite reaches outside the Roche limit, the second satellite can be formed near the disk outer edge, and then the two satellites continue outward migration while being locked in the resonance. Co-orbital satellites are found to be occasionally formed on the orbit of the first satellite. Our simulations also show that stochastic nature involved in gravitational interaction and collision between aggregates in the tidal environment can lead to diversity in the final mass and orbital architecture, which would be expected in satellite systems of exoplanets

  17. Localization of s-Wave and Quantum Effective Potential of a Quasi-free Particle with Position-Dependent Mass

    International Nuclear Information System (INIS)

    Ju Guoxing; Xiang Yang; Ren Zhongzhou

    2006-01-01

    The properties of the s-wave for a quasi-free particle with position-dependent mass (PDM) have been discussed in details. Differed from the system with constant mass in which the localization of the s-wave for the free quantum particle around the origin only occurs in two dimensions, the quasi-free particle with PDM can experience attractive forces in D dimensions except D = 1 when its mass function satisfies some conditions. The effective mass of a particle varying with its position can induce effective interaction, which may be attractive in some cases. The analytical expressions of the eigenfunctions and the corresponding probability densities for the s-waves of the two- and three-dimensional systems with a special PDM are given, and the existences of localization around the origin for these systems are shown.

  18. The Biologic Response to Polyetheretherketone (PEEK) Wear Particles in Total Joint Replacement: A Systematic Review.

    Science.gov (United States)

    Stratton-Powell, Ashley A; Pasko, Kinga M; Brockett, Claire L; Tipper, Joanne L

    2016-11-01

    Polyetheretherketone (PEEK) and its composites are polymers resistant to fatigue strain, radiologically transparent, and have mechanical properties suitable for a range of orthopaedic applications. In bulk form, PEEK composites are generally accepted as biocompatible. In particulate form, however, the biologic response relevant to joint replacement devices remains unclear. The biologic response to wear particles affects the longevity of total joint arthroplasties. Particles in the phagocytozable size range of 0.1 µm to 10 µm are considered the most biologically reactive, particularly particles with a mean size of PEEK-based wear debris from total joint arthroplasties. (1) What are the quantitative characteristics of PEEK-based wear particles produced by total joint arthroplasties? (2) Do PEEK wear particles cause an adverse biologic response when compared with UHMWPE or a similar negative control biomaterial? (3) Is the biologic response affected by particle characteristics? Embase and Ovid Medline databases were searched for studies that quantified PEEK-based particle characteristics and/or investigated the biologic response to PEEK-based particles relevant to total joint arthroplasties. The keyword search included brands of PEEK (eg, MITCH, MOTIS) or variations of PEEK types and nomenclature (eg, PAEK, CFR-PEEK) in combination with types of joint (eg, hip, knee) and synonyms for wear debris or immunologic response (eg, particles, cytotoxicity). Peer-reviewed studies, published in English, investigating total joint arthroplasty devices and cytotoxic effects of PEEK particulates were included. Studies investigating devices without articulating bearings (eg, spinal instrumentation devices) and bulk material or contact cytotoxicity were excluded. Of 129 studies, 15 were selected for analysis and interpretation. No studies were found that isolated and characterized PEEK wear particles from retrieved periprosthetic human tissue samples. In the four studies that

  19. High resolution study of high mass pairs and high transverse momentum particles

    International Nuclear Information System (INIS)

    Smith, S.R.

    1983-01-01

    Preliminary experiments involving the high resolution spectrometer (experiment 605) at Fermilab are described. The spectrometer is designed for the study of pairs of particles at large invariant masses and single particles at large transverse momenta. A number of applications of the apparatus in the study of Drell-Yan processes, e.g. transverse momentum measurement, are discussed

  20. Mass, Momentum and Kinetic Energy of a Relativistic Particle

    Science.gov (United States)

    Zanchini, Enzo

    2010-01-01

    A rigorous definition of mass in special relativity, proposed in a recent paper, is recalled and employed to obtain simple and rigorous deductions of the expressions of momentum and kinetic energy for a relativistic particle. The whole logical framework appears as the natural extension of the classical one. Only the first, second and third laws of…

  1. Radiationless Zitterbewegung of Dirac particles and mass formula

    International Nuclear Information System (INIS)

    Noboru Hokkyo.

    1987-06-01

    The Zitterbewegung of the Dirac particle is given a visual representation by solving the two-component difference form of the Dirac equation. It is seen that the space-time trajectory of a Dirac particle can be pictured as a correlated whole of a network of zigzags of left- and right-handed chiral neutrino-like line elements. These zigzags can feel the curl of the external electromagnetic vector potential and give rise to the spin magnetic interaction, confirming Schroedinger's earlier intuitive picture of the spin as the orbital angular momentum of the Zitterbewegung. The network of zigzags associated with an electron splits and reunites in passing through the slits in the electron beam interference experiment. It is proposed to interpret Nambu's empirical mass formula m n =(n/2)137m e =(n/2)((h/2π)/cL), n=integer, as a radiationless condition for the Zitterbewegung of the hadronic Dirac particle of the linear spatial extension of the order of the classical electron radius L=e 2 /m e c 2 . (author). 20 refs, 4 figs

  2. PDV-based estimation of ejecta particles' mass-velocity function from shock-loaded tin experiment

    Science.gov (United States)

    Franzkowiak, J.-E.; Prudhomme, G.; Mercier, P.; Lauriot, S.; Dubreuil, E.; Berthe, L.

    2018-03-01

    A metallic tin plate with a given surface finish of wavelength λ ≃ 60 μm and amplitude h ≃ 8 μm is explosively driven by an electro-detonator with a shock-induced breakout pressure PSB = 28 GPa (unsupported). The resulting dynamic fragmentation process, the so-called "micro-jetting," is the creation of high-speed jets of matter moving faster than the bulk metallic surface. Hydrodynamic instabilities result in the fragmentation of these jets into micron-sized metallic particles constituting a self-expanding cloud of droplets, whose areal mass, velocity, and particle size distributions are unknown. Lithium-niobate-piezoelectric sensor measured areal mass and Photonic Doppler Velocimetry (PDV) was used to get a time-velocity spectrogram of the cloud. In this article, we present both experimental mass and velocity results and we relate the integrated areal mass of the cloud to the PDV power spectral density with the assumption of a power law particle size distribution. Two models of PDV spectrograms are described. The first one accounts for the speckle statistics of the spectrum and the second one describes an average spectrum for which speckle fluctuations are removed. Finally, the second model is used for a maximum likelihood estimation of the cloud's parameters from PDV data. The estimated integrated areal mass from PDV data is found to agree well with piezoelectric results. We highlight the relevance of analyzing PDV data and correlating different diagnostics to retrieve the physical properties of ejecta particles.

  3. Comparison of STIM and particle backscattering spectrometry mass determination for quantitative microanalysis of cultured cells

    International Nuclear Information System (INIS)

    Deves, G.; Ortega, R.

    2001-01-01

    In biological sample microanalysis, a mass-normalisation method is commonly used as a quantitative index of elemental concentrations determined by particle-induced X-ray emission (PIXE). The organic mass can either be determined using particle backscattering spectrometry (BS) or scanning transmission ion microscopy (STIM). However, the accuracy of quantitative microanalysis in samples such as cultured cells is affected by beam-induced loss of organic mass during analysis. The aim of this paper is to compare mass measurements determined by particle BS or by STIM. In order to calibrate STIM and BS analyses, we measured by both techniques the thickness of standard foils of polycarbonate (3 and 6 μm), Mylar[reg] (4 μm), Kapton[reg] (7.5 μm) and Nylon[reg] (15 μm), as well as biological samples of mono-layered cultured cells. Non-damaging STIM analysis of samples before PIXE irradiation is certainly one of the most accurate ways to determine the sample mass, however, this requires strong experimental handling. On the other hand, BS performed simultaneously to PIXE is the simplest method to determine the local mass in polymer foils, but appears less accurate in the case of cultured cells

  4. Numerical investigation of the influence of particle-particle and particle-wall collisions in turbulent wall-bounded flows at high mass loadings

    International Nuclear Information System (INIS)

    Alletto, Michael

    2014-01-01

    The present work deals with the simulation of turbulent particle-laden flows at high mass loadings. In order to achieve this goal, the fluid flow is described by means of the eddy-resolving concept known as Large-Eddy Simulation (LES) and the particles are described in a Lagrangian frame of reference. Special emphasis is placed on the interparticle collisions and the impact of solid particles on rough walls. Both mechanisms are shown to be crucial for the correct description of the particle dynamics in wall-bounded flows. In order to distinguish the present methodology from the variety of methods available in the literature to treat turbulent flows laden with solid particles, the thesis starts with an overview of different simulation techniques to calculate this class of flows. In this overview special care is taken to underline the parameter space, where the different simulation methods are valid. After that, the governing equations and the boundary conditions applied for the continuous phase of the Euler-Lagrange approach used in the present thesis are given. In the subsequent section the governing equations for the solid particles and their interaction with smooth and rough walls are discussed. Here a new wall roughness model for the particles which incorporates an amplitude parameter used in technical applications such as the mean roughness height or the root-mean-squared roughness is presented. After that, the coupling mechanisms between the phases and the algorithmic realization are discussed. Furthermore, a new agglomeration model capable to treat interparticle collisions with friction is presented. However, the agglomeration model is not evaluated in such a detail as the interparticle collisions and the particle-wall collisions. The reason is that it does not represent a central aspect of this thesis. The numerical methods for the continuous and the disperse phase are presented in the subsequent section. The efficient algorithm to detect the interparticle

  5. Numerical investigation of the influence of particle-particle and particle-wall collisions in turbulent wall-bounded flows at high mass loadings

    Energy Technology Data Exchange (ETDEWEB)

    Alletto, Michael

    2014-05-16

    The present work deals with the simulation of turbulent particle-laden flows at high mass loadings. In order to achieve this goal, the fluid flow is described by means of the eddy-resolving concept known as Large-Eddy Simulation (LES) and the particles are described in a Lagrangian frame of reference. Special emphasis is placed on the interparticle collisions and the impact of solid particles on rough walls. Both mechanisms are shown to be crucial for the correct description of the particle dynamics in wall-bounded flows. In order to distinguish the present methodology from the variety of methods available in the literature to treat turbulent flows laden with solid particles, the thesis starts with an overview of different simulation techniques to calculate this class of flows. In this overview special care is taken to underline the parameter space, where the different simulation methods are valid. After that, the governing equations and the boundary conditions applied for the continuous phase of the Euler-Lagrange approach used in the present thesis are given. In the subsequent section the governing equations for the solid particles and their interaction with smooth and rough walls are discussed. Here a new wall roughness model for the particles which incorporates an amplitude parameter used in technical applications such as the mean roughness height or the root-mean-squared roughness is presented. After that, the coupling mechanisms between the phases and the algorithmic realization are discussed. Furthermore, a new agglomeration model capable to treat interparticle collisions with friction is presented. However, the agglomeration model is not evaluated in such a detail as the interparticle collisions and the particle-wall collisions. The reason is that it does not represent a central aspect of this thesis. The numerical methods for the continuous and the disperse phase are presented in the subsequent section. The efficient algorithm to detect the interparticle

  6. Quantum Gravity Effect on the Tunneling Particles from 2 + 1-Dimensional New-Type Black Hole

    Directory of Open Access Journals (Sweden)

    Ganim Gecim

    2018-01-01

    Full Text Available We investigate the generalized uncertainty principle (GUP effect on the Hawking temperature for the 2 + 1-dimensional new-type black hole by using the quantum tunneling method for both the spin-1/2 Dirac and the spin-0 scalar particles. In computation of the GUP correction for the Hawking temperature of the black hole, we modified Dirac and Klein-Gordon equations. We observed that the modified Hawking temperature of the black hole depends not only on the black hole properties, but also on the graviton mass and the intrinsic properties of the tunneling particle, such as total angular momentum, energy, and mass. Also, we see that the Hawking temperature was found to be probed by these particles in different manners. The modified Hawking temperature for the scalar particle seems low compared with its standard Hawking temperature. Also, we find that the modified Hawking temperature of the black hole caused by Dirac particle’s tunneling is raised by the total angular momentum of the particle. It is diminishable by the energy and mass of the particle and graviton mass as well. These intrinsic properties of the particle, except total angular momentum for the Dirac particle, and graviton mass may cause screening for the black hole radiation.

  7. LEP measurements on production, mass, lifetime of beauty particles

    International Nuclear Information System (INIS)

    Wormser, G.

    1993-10-01

    Present knowledge about the individual properties of the different beauty particles is discussed using the results of the LEP experiments. Individual lifetimes for B d 0 and B + are found to be equal within 10% whilst a 15% precision is reached for B s 0 and Λ b . The Λ b lifetime is found to be smaller than τ B + with a 2.7 σ significance. The production rate of each of these particles is measured at the 20% level. Preliminary evidence for Ξ b production has been reported. Finally, the B s 0 meson mass has been measured to be 5373 ± 4 MeV/c 2 . (author) 24 refs., 9 figs., 5 tabs

  8. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans

    Science.gov (United States)

    Walker, Ann C.; O'Connor-Semmes, Robin L.; Leonard, Michael S.; Miller, Ram R.; Stimpson, Stephen A.; Turner, Scott M.; Ravussin, Eric; Cefalu, William T.; Hellerstein, Marc K.; Evans, William J.

    2014-01-01

    Current methods for clinical estimation of total body skeletal muscle mass have significant limitations. We tested the hypothesis that creatine (methyl-d3) dilution (D3-creatine) measured by enrichment of urine D3-creatinine reveals total body creatine pool size, providing an accurate estimate of total body skeletal muscle mass. Healthy subjects with different muscle masses [n = 35: 20 men (19–30 yr, 70–84 yr), 15 postmenopausal women (51–62 yr, 70–84 yr)] were housed for 5 days. Optimal tracer dose was explored with single oral doses of 30, 60, or 100 mg D3-creatine given on day 1. Serial plasma samples were collected for D3-creatine pharmacokinetics. All urine was collected through day 5. Creatine and creatinine (deuterated and unlabeled) were measured by liquid chromatography mass spectrometry. Total body creatine pool size and muscle mass were calculated from D3-creatinine enrichment in urine. Muscle mass was also measured by magnetic resonance imaging (MRI), dual-energy x-ray absorptiometry (DXA), and traditional 24-h urine creatinine. D3-creatine was rapidly absorbed and cleared with variable urinary excretion. Isotopic steady-state of D3-creatinine enrichment in the urine was achieved by 30.7 ± 11.2 h. Mean steady-state enrichment in urine provided muscle mass estimates that correlated well with MRI estimates for all subjects (r = 0.868, P creatine dose determined by urine D3-creatinine enrichment provides an estimate of total body muscle mass strongly correlated with estimates from serial MRI with less bias than total lean body mass assessment by DXA. PMID:24764133

  9. Despina Hatzifotiadou: ALICE Master Class 1 - Theory: strange particles, V0 decays, invariant mass

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    This is the 1st of 4 short online videos. It contains an introduction to the first part of the exercise : what are strange particles, V0 decays, invariant mass. More details and related links on this indico event page. In more detail: What is Physics Master Classes Students after morning lectures, run programmes in the afternoon to do measurements. These tutorials are about how to use the software required to do these measurements. Background info and examples  Looking for strange particles with ALICE http://aliceinfo.cern.ch/Public/MasterCL/MasterClassWebpage.html Introduction to first part of the exercise : what are strange particles, V0 decays, invariant mass. Demonstration of the software for the 1st part of the exercise - visual identification of V0s Introduction to second part of the exercise : strangeness enhancement; centrality of lead-lead collisions; explanation of efficiency, yield, background etc Demonstration of the software for the 2nd part of the exercise - invariant mass spec...

  10. Phonon-particle coupling effects in odd-even mass differences of semi-magic nuclei

    Science.gov (United States)

    Saperstein, E. E.; Baldo, M.; Pankratov, S. S.; Tolokonnikov, S. V.

    2017-11-01

    A method to evaluate the particle-phonon coupling (PC) corrections to the single-particle energies in semi-magic nuclei, based on a direct solving the Dyson equation with PC corrected mass operator, is used for finding the odd-even mass difference between 18 even Pb isotopes and their odd-proton neighbors. The Fayans energy density functional (EDF) DF3-a is used which gives rather high accuracy of the predictions for these mass differences already on the mean-field level, with the average deviation from the existing experimental data equal to 0.389 MeV. It is only a bit worse than the corresponding value of 0.333 MeV for the Skyrme EDF HFB-17, which belongs to a family of Skyrme EDFs with the highest overall accuracy in describing the nuclear masses. Account for the PC corrections induced by the low-laying phonons 2 1 + and 3 1 - significantly diminishes the deviation of the theory from the data till 0.218 MeV.

  11. Total evaporation in thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Callis, E.L.; Cappis, J.H.

    1996-01-01

    Experiments were conducted to assess the effects of impurities on the total evaporation method for mass spectrometric measurement of the isotope ratio of uranium. Standard samples were spiked with Na, Ca, Fe, Zr and Ba. The results indicated that only Fe, and possible Na, displayed any interference, and then only at high concentrations. One problem limiting the accuracy of the method is the determination of the relative efficiency of the collectors in the multicollector system. 3 refs., 1 tab

  12. CCDM model from quantum particle creation: constraints on dark matter mass

    International Nuclear Information System (INIS)

    Jesus, J.F.; Pereira, S.H.

    2014-01-01

    In this work the results from the quantum process of matter creation have been used in order to constrain the mass of the dark matter particles in an accelerated Cold Dark Matter model (Creation Cold Dark Matter, CCDM). In order to take into account a back reaction effect due to the particle creation phenomenon, it has been assumed a small deviation ε for the scale factor in the matter dominated era of the form t 2/3+ε . Based on recent H(z) data, the best fit values for the mass of dark matter created particles and the ε parameter have been found as m = 1.6× 10 3 GeV, restricted to a 68.3% c.l. interval of 1.5 < m < 6.3× 10 7 ) GeV and ε = -0.250 +0.15 -0.096 at 68.3% c.l. For these best fit values the model correctly recovers a transition from decelerated to accelerated expansion and admits a positive creation rate near the present era. Contrary to recent works in CCDM models where the creation rate was phenomenologically derived, here we have used a quantum mechanical result for the creation rate of real massive scalar particles, given a self consistent justification for the physical process. This method also indicates a possible solution to the so called ''dark degeneracy'', where one can not distinguish if it is the quantum vacuum contribution or quantum particle creation which accelerates the Universe expansion

  13. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    Science.gov (United States)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  14. Allometric relationship between changes of visceral fat and total fat mass

    DEFF Research Database (Denmark)

    Hallgreen, C. E.; Hall, K. D.

    2008-01-01

    Objective: To elucidate the mathematical relationship between changes of visceral adipose tissue (VAT) and total body fat mass (FM) during weight loss. Design: We hypothesized that changes of VAT mass are allometrically related to changes of FM, regardless of the type of weight-loss intervention...

  15. The new classification of elementary particle resonance mass spectra

    International Nuclear Information System (INIS)

    Gareev, F.A.; Barabanov, M.Yu.; Kazacha, G.S.

    1997-01-01

    Elementary particle resonances have been systematically analyzed from the first principles: the conservation laws of energy-momentum and Ehrenfest adiabatic invariant. As a result, resonance decay product momenta and masses of resonances were established to be quantized. Radial excited states of resonances were revealed. These observations give us a possibility to formulate the strategy of experimental searches for new resonances and to systematize already known ones. (author)

  16. Single particle transfer for quantitative analysis with total-reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Esaka, Fumitaka; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu; Watanabe, Kazuo

    2006-01-01

    The technique of single particle transfer was applied to quantitative analysis with total-reflection X-ray fluorescence (TXRF) spectrometry. The technique was evaluated by performing quantitative analysis of individual Cu particles with diameters between 3.9 and 13.2 μm. The direct quantitative analysis of the Cu particle transferred onto a Si carrier gave a discrepancy between measured and calculated Cu amounts due to the absorption effects of incident and fluorescent X-rays within the particle. By the correction for the absorption effects, the Cu amounts in individual particles could be determined with the deviation within 10.5%. When the Cu particles were dissolved with HNO 3 solution prior to the TXRF analysis, the deviation was improved to be within 3.8%. In this case, no correction for the absorption effects was needed for quantification

  17. The origin of low mass particles within and beyond the dust coma envelopes of Comet Halley

    Science.gov (United States)

    Simpson, J. A.; Rabinowitz, D.; Tuzzolino, A. J.; Ksanfomality, L. V.; Sagdeev, R. Z.

    1987-01-01

    Measurements from the Dust Counter and Mass Analyzer (DUCMA) instruments on VEGA-1 and -2 revealed unexpected fluxes of low mass (up to 10 to the minus 13th power g) dust particles at very great distances from the nucleus (300,000 to 600,000 km). These particles are detected in clusters (10 sec duration), preceded and followed by relatively long time intervals during which no dust is detected. This cluster phenomenon also occurs inside the envelope boundaries. Clusters of low mass particles are intermixed with the overall dust distribution throughout the coma. The clusters account for many of the short-term small-scale intensity enhancements previously ascribed to microjets in the coma. The origin of these clusters appears to be emission from the nucleus of large conglomerates which disintegrate in the coma to yield clusters of discrete, small particles continuing outward to the distant coma.

  18. At the origins of mass: elementary particles and fundamental symmetries

    International Nuclear Information System (INIS)

    Iliopoulos, Jean; Englert, Francois

    2015-01-01

    After a brief recall of the history of cosmology, the author proposes an overview of the different symmetries (symmetries in space and in time, internal symmetries, local or gauge symmetries), describes the mass issue (gauge interactions, quarks and leptons as matter mass constituents, chirality), addresses the spontaneous symmetry breaking (the Curie theorem, spontaneous symmetry breaking in classical physics and in quantum physics, the Goldstone theorem, spontaneous symmetry breaking in presence of gauge interactions), presents the standard theory (electromagnetic and weak interactions, strong interactions, relationship with experiment). An appendix presents elementary particles, and notably reports the story of the neutrino

  19. Toxic assessment of urban atmospheric particle-bound PAHs: Relevance of composition and particle size in Barcelona (Spain)

    International Nuclear Information System (INIS)

    Mesquita, Sofia Raquel; Drooge, Barend L. van; Reche, Cristina; Guimarães, Laura; Grimalt, Joan O.; Barata, Carlos; Piña, Benjamin

    2014-01-01

    Zebrafish embryotoxicity and dioxin-like activity levels were tested for particulate air samples from an urban background site in Barcelona (Spain). Samples were collected during 14 months, and maximal values for both biological activities corresponded to samples collected during late autumn months, correlating with elevated PAH levels. Vehicle and combustion emissions appeared as the potentially most toxic sources, whereas total PM mass and mineral content appeared to be poor predictors of the biological activity of the samples. Samples simultaneously collected at different particle size cut-offs (10, 2.5, and 1 μm) did not differ significantly in dioxin-like PAH levels and biological activity, indicating that the sub-micron particle fraction (PM 1 ) concentrated essentially all observed toxicity. Our results support the need for a tighter control on sub-micron particle emissions and show that total PM mass and, particularly, PM 10 , may not fully characterize the toxic potential of air samples. Highlights: • Dioxin-like activity was found in all air particle samples collected in Barcelona. • 50% of the samples showed different levels of fish embryotoxicity. • Toxic effects associated to PAHs and linked to vehicle and combustion emissions. • The toxicity was not correlated to PM mass or mineral content. • The sub-micron particle fraction PM 1 concentrated essentially all observed toxicity. -- In vivo toxic effects associated to sub-micron urban air particles from combustion and vehicle emissions

  20. Expanding Single Particle Mass Spectrometer Analyses for the Identification of Microbe Signatures in Sea Spray Aerosol.

    Science.gov (United States)

    Sultana, Camille M; Al-Mashat, Hashim; Prather, Kimberly A

    2017-10-03

    Ocean-derived microbes in sea spray aersosol (SSA) have the potential to influence climate and weather by acting as ice nucleating particles in clouds. Single particle mass spectrometers (SPMSs), which generate in situ single particle composition data, are excellent tools for characterizing aerosols under changing environmental conditions as they can provide high temporal resolution and require no sample preparation. While SPMSs have proven capable of detecting microbes, these instruments have never been utilized to definitively identify aerosolized microbes in ambient sea spray aersosol. In this study, an aerosol time-of-flight mass spectrometer was used to analyze laboratory generated SSA produced from natural seawater in a marine aerosol reference tank. We present the first description of a population of biological SSA mass spectra (BioSS), which closely match the ion signatures observed in previous terrestrial microbe studies. The fraction of BioSS dramatically increased in the largest supermicron particles, consistent with field and laboratory measurements of microbes ejected by bubble bursting, further supporting the assignment of BioSS mass spectra as microbes. Finally, as supported by analysis of inorganic ion signals, we propose that dry BioSS particles have heterogeneous structures, with microbes adhered to sodium chloride nodules surrounded by magnesium-enriched coatings. Consistent with this structure, chlorine-containing ion markers were ubiquitous in BioSS spectra and identified as possible tracers for distinguishing recently aerosolized marine from terrestrial microbes.

  1. Comparison of Alcian blue and total carbohydrate assays for quantitation of transparent exopolymer particles (TEP) in biofouling studies.

    Science.gov (United States)

    Li, Xu; Skillman, Lucy; Li, Dan; Ela, Wendell P

    2018-04-15

    Transparent exopolymer particles (TEP) and their precursors are gel-like acidic polysaccharide particles. Both TEP precursors and TEP have been identified as causal factors in fouling of desalination and water treatment systems. For comparison between studies, it is important to accurately measure the amount and fouling capacity of both components. However, the accuracy and recovery of the currently used Alcian blue based TEP measurement of different surrogates and different size fractions are not well understood. In this study, we compared Alcian blue based TEP measurements with a total carbohydrate assay method. Three surrogates; xanthan gum, pectin and alginic acid; were evaluated at different salinities. Total carbohydrate concentrations of particulates (>0.4 μm) and their precursors (10 kDa) varied depending on water salinity and method of recovery. As xanthan gum is the most frequently used surrogate in fouling studies, TEP concentration is expressed as xanthan gum equivalents (mg XG eq /L) in this study. At a salinity of 35 mg/L sea salt, total carbohydrate assays showed a much higher particulate TEP fraction for alginic acid (38%) compared to xanthan gum (9%) and pectin (12%). The concentrations of particulate TEP therefore may only represent ∼10% of the total mass; while precursor TEP represents ∼80% of the total TEP. This highlights the importance of reporting both particulate and precursor TEP for membrane biofouling studies. The calculated concentrations of TEP and their precursors in seawater samples are also highly dependent on type of surrogate and resulting calibration factor. A linear correlation between TEP recovery and calibration factor was demonstrated in this study for all three surrogates. The relative importance and accuracy of measurement method, particulate size, surrogate type, and recovery are described in detail in this study. Copyright © 2017. Published by Elsevier Ltd.

  2. Direct Measurements of Gas/Particle Partitioning and Mass Accommodation Coefficients in Environmental Chambers.

    Science.gov (United States)

    Krechmer, Jordan E; Day, Douglas A; Ziemann, Paul J; Jimenez, Jose L

    2017-10-17

    Secondary organic aerosols (SOA) are a major contributor to fine particulate mass and wield substantial influences on the Earth's climate and human health. Despite extensive research in recent years, many of the fundamental processes of SOA formation and evolution remain poorly understood. Most atmospheric aerosol models use gas/particle equilibrium partitioning theory as a default treatment of gas-aerosol transfer, despite questions about potentially large kinetic effects. We have conducted fundamental SOA formation experiments in a Teflon environmental chamber using a novel method. A simple chemical system produces a very fast burst of low-volatility gas-phase products, which are competitively taken up by liquid organic seed particles and Teflon chamber walls. Clear changes in the species time evolution with differing amounts of seed allow us to quantify the particle uptake processes. We reproduce gas- and aerosol-phase observations using a kinetic box model, from which we quantify the aerosol mass accommodation coefficient (α) as 0.7 on average, with values near unity especially for low volatility species. α appears to decrease as volatility increases. α has historically been a very difficult parameter to measure with reported values varying over 3 orders of magnitude. We use the experimentally constrained model to evaluate the correction factor (Φ) needed for chamber SOA mass yields due to losses of vapors to walls as a function of species volatility and particle condensational sink. Φ ranges from 1-4.

  3. Effective mass of a #betta#-particle in nuclear matter and OBE #betta#-n interactions

    International Nuclear Information System (INIS)

    Bando, Hiroharu; Nagata, Sinobu.

    1982-01-01

    The effective mass of a lambda particle (M sub( lambda )*) in nuclear matter is investigated within the framework of the lowest-order Brueckner theory by employing the Nijmegen OBE lambda -N interaction model D and F. The non-locality mass (M tilde sub( lamda )) and the energy mass (anti M sub( lambda )) are evaluated and discussed in the light of the characteristics of the two models. In comparison with the model D, the model F yields smaller anti M sub( lambda ) and larger anti M sub( lamb da ) reflecting the stronger Majorana exchange force and the stronger lambda N- sigma N coupling tensor force. Final results of M sub( lambda )*/M sub( lambda ) are 0.85 for D and 0.79 for F. In view of the effective lambda mass inferred from observed properties of the single particle potential for lambda , the model D interaction seems to be more adequate. (author)

  4. Complex energy eigenstates in a model with two equal mass particles

    Energy Technology Data Exchange (ETDEWEB)

    Gleiser, R J; Reula, D A; Moreschi, O M [Universidad Nacional de Cordoba (Argentina). Inst. de Matematica, Astronomia y Fisica

    1980-09-01

    The properties of a simples quantum mechanical model for the decay of two equal mass particles are studied and related to some recent work on complex energy eigenvalues. It consists essentially in a generalization of the Lee-Friedrichs model for an unstable particle and gives a highly idealized version of the K/sup 0/-anti K/sup 0/ system, including CP violations. The model is completely solvable, thus allowing a comparison with the well known Weisskopf-Wigner formalism for the decay amplitudes. A different model, describing the same system is also briefly outlined.

  5. Mass Spectrometry of Single Particles Levitated in an Electrodynamic Balance: Applications to Laboratory Atmospheric Chemistry Research

    Science.gov (United States)

    Birdsall, A.; Krieger, U. K.; Keutsch, F. N.

    2017-12-01

    Dynamic changes to atmospheric aerosol particle composition (e.g., originating from evaporation/condensation, oxidative aging, or aqueous-phase chemical reactions) impact particle properties with importance for understanding particle effects on climate and human health. These changes can take place over the entire lifetime of an atmospheric particle, which can extend over multiple days. Previous laboratory studies of such processes have included analyzing single particles suspended in a levitation device, such as an electrodynamic balance (EDB), an optical levitator, or an acoustic trap, using optical detection techniques. However, studying chemically complex systems can require an analytical method, such as mass spectrometry, that provides more molecular specificity. Existing work coupling particle levitation with mass spectrometry is more limited and largely has consisted of acoustic levitation of millimeter-sized droplets.In this work an EDB has been coupled with a custom-built ionization source and commercial time-of-flight mass spectrometer (MS) as a platform for laboratory atmospheric chemistry research. Single charged particles (radius 10 μm) have been injected into an EDB, levitated for an arbitrarily long period of time, and then transferred to a vaporization-corona discharge ionization region for MS analysis. By analyzing a series of particles of identical composition, residing in the controlled environment of the EDB for varying times, we can trace the chemical evolution of a particle over hours or days, appropriate timescales for understanding transformations of atmospheric particles.To prove the concept of our EDB-MS system, we have studied the evaporation of particles consisting of polyethylene glycol (PEG) molecules of mixed chain lengths, used as a benchmark system. Our system can quantify the composition of single particles (see Figure for sample spectrum of a single PEG-200 particle: PEG parent ions labeled with m/z, known PEG fragment ions

  6. Number and mass analysis of particles emitted by aircraft engine

    Directory of Open Access Journals (Sweden)

    Jasiński Remigiusz

    2017-01-01

    Full Text Available Exhaust emissions from aircraft is a complex issue because of the limited possibility of measurements in flight conditions. Most of the studies on this subject were performed on the basis of stationary test. Engine certification data is used to calculate total emissions generated by air transport. However, it doesnt provide any information about the local effects of air traffic. The main threat to local communities is particulate matter emissions, which adversely affects human health. Emissions from air transport affect air quality, particularly in the vicinity of the airports; it also contributes to the greenhouse effect. The article presents the measurement results of the concentration and size distribution of particles emitted during aircraft landing operation. Measurements were carried out during the landings of aircraft at a civilian airport. It was found that a single landing operation causes particle number concentration value increase of several ten-fold in a short period of time. Using aircraft engine certification data, the methodology for determination of the total number of particles emitted during a single landing operation was introduced.

  7. Exploring the diphoton final state at the LHC at 13 TeV: searches for new particles, and the Higgs boson mass measurement with the ATLAS detector.

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00436367

    New high-mass states decaying into two photons are predicted in many extensions of the Standard Model (SM). The diphoton final state provides a clean experimental signature with excellent invariant mass resolution and well-known smooth backgrounds. This document presents a search for new particles with the diphoton final state at the Large Hadron Collider with the ATLAS detector. The $pp$ collision data used were collected during 2015 and 2016 runs with a center-of-mass energy of $\\sqrt{s}$=13 TeV. The total corresponding luminosity is 37 fb$^{-1}$. In this thesis, I show my contribution to the search of scalar particle. The studies of signal modeling for different mass and width hypothesis will be described in details. The estimation of selection efficiencies and statistical interpretations of results are performed. The data are consistent with the Standard Model background-only hypothesis. Limits on the production cross section times branching ratio to two photons of such resonances as a function of the res...

  8. Mass production of polymer nano-wires filled with metal nano-particles.

    Science.gov (United States)

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  9. Method for rapid particle size analysis by hydrosizing and nuclear sensing

    International Nuclear Information System (INIS)

    Daellenbach, C.B.; Mahan, W.M.

    1977-01-01

    A method and apparatus to practice the method for rapidly determining the size and mass distribution of a sample of randomly sized particles of a known total mass are described. A series of substantially identical hydrocyclones are connected by conduits to each other and to a temperature controlled water feed. By restricting the cross-sectional areas of these conduits to progressively smaller values, the slurry containing the sample particles is caused to increase its velocity as it moves from hydrocyclone to hydrocyclone. As described by the Stokesian theory which relates particle diameter and settling velocity, the largest sized particles are suspended in the closed apex of the first hydrocyclone with smaller sized particles, in given size ranges, being suspended in the next succeeding hydrocyclone's apexes. In this manner, the particles are separated into discrete fractional sizes with a residual slurry of the very smallest particles being discharged. Before the discrete fractions of particles are suspended in their hydrocyclone apexes, a combined photon source, like a gamma ray source, and detector are calibrated with the water temperature kept constant. When the suspension of particles takes place, an attenuation of the radiation from the source is observed at the detector. This attenuation can be related to the mass or weight of the discrete fractions of suspended particles. Electronic circuitry is used to indicate what this fractional mass or weight is as it relates to the total weight of the sample. 6 claims, 4 figs

  10. Fourier law in the alternate-mass hard-core potential chain

    OpenAIRE

    Li, Bw; Casati, G.; Wang, J; Prosen, T.

    2004-01-01

    We study energy transport in a one-dimensional model of elastically colliding particles with alternate masses $m$ and $M$. In order to prevent total momentum conservation we confine particles with mass $M$ inside a cell of finite size. We provide convincing numerical evidence for the validity of Fourier law of heat conduction in spite of the lack of exponential dynamical instability. Comparison with previous results on similar models shows the relevance of the role played by total momentum co...

  11. First passage times in homogeneous nucleation: Dependence on the total number of particles

    International Nuclear Information System (INIS)

    Yvinec, Romain; Bernard, Samuel; Pujo-Menjouet, Laurent; Hingant, Erwan

    2016-01-01

    Motivated by nucleation and molecular aggregation in physical, chemical, and biological settings, we present an extension to a thorough analysis of the stochastic self-assembly of a fixed number of identical particles in a finite volume. We study the statistics of times required for maximal clusters to be completed, starting from a pure-monomeric particle configuration. For finite volumes, we extend previous analytical approaches to the case of arbitrary size-dependent aggregation and fragmentation kinetic rates. For larger volumes, we develop a scaling framework to study the first assembly time behavior as a function of the total quantity of particles. We find that the mean time to first completion of a maximum-sized cluster may have a surprisingly weak dependence on the total number of particles. We highlight how higher statistics (variance, distribution) of the first passage time may nevertheless help to infer key parameters, such as the size of the maximum cluster. Finally, we present a framework to quantify formation of macroscopic sized clusters, which are (asymptotically) very unlikely and occur as a large deviation phenomenon from the mean-field limit. We argue that this framework is suitable to describe phase transition phenomena, as inherent infrequent stochastic processes, in contrast to classical nucleation theory

  12. A singular position-dependent mass particle in an infinite potential well

    International Nuclear Information System (INIS)

    Mustafa, Omar; Mazharimousavi, S. Habib

    2009-01-01

    An unusual singular position-dependent-mass particle in an infinite potential well is considered. The corresponding Hamiltonian is mapped through a point-canonical-transformation and an explicit correspondence between the target Hamiltonian and a Poeschl-Teller type reference Hamiltonian is obtained. New ordering ambiguity parametric setting are suggested

  13. Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events

    Science.gov (United States)

    Debnath, Dipsikha; Gainer, James S.; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2017-06-01

    We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain \\tilde{q}\\to {\\tilde{χ}}_2^0\\to \\tilde{ℓ}\\to {\\tilde{χ}}_1^0 , we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, \\overline{Σ} , which is the average RSD per unit area, calculated over the hypothesized boundary. We show that the location of the \\overline{Σ} maximum correlates very well with the true values of the new particle masses. Our approach represents the natural extension of the one-dimensional kinematic endpoint method to the relevant three dimensions of invariant mass phase space.

  14. Constraints on the dark matter particle mass from the number of Milky Way satellites

    International Nuclear Information System (INIS)

    Polisensky, Emil; Ricotti, Massimo

    2011-01-01

    We have conducted N-body simulations of the growth of Milky Way-sized halos in cold and warm dark matter cosmologies. The number of dark matter satellites in our simulated Milky Ways decreases with decreasing mass of the dark matter particle. Assuming that the number of dark matter satellites exceeds or equals the number of observed satellites of the Milky Way, we derive lower limits on the dark matter particle mass. We find with 95% confidence m s >13.3 keV for a sterile neutrino produced by the Dodelson and Widrow mechanism, m s >8.9 keV for the Shi and Fuller mechanism, m s >3.0 keV for the Higgs decay mechanism, and m WDM >2.3 keV for a thermal dark matter particle. The recent discovery of many new dark matter dominated satellites of the Milky Way in the Sloan Digital Sky Survey allows us to set lower limits comparable to constraints from the complementary methods of Lyman-α forest modeling and x-ray observations of the unresolved cosmic x-ray background and of dark matter halos from dwarf galaxy to cluster scales. Future surveys like LSST, DES, PanSTARRS, and SkyMapper have the potential to discover many more satellites and further improve constraints on the dark matter particle mass.

  15. Conditions for the classicality of the center of mass of many-particle quantum states

    International Nuclear Information System (INIS)

    Oriols, Xavier; Benseny, Albert

    2017-01-01

    We discuss the conditions for the classicality of quantum states with a very large number of identical particles. By defining the center of mass from a large set of Bohmian particles, we show that it follows a classical trajectory when the distribution of the Bohmian particle positions in a single experiment is always equal to the marginal distribution of the quantum state in physical space. This result can also be interpreted as a single experiment generalization of the well-known Ehrenfest theorem. We also demonstrate that the classical trajectory of the center of mass is fully compatible with a quantum (conditional) wave function solution of a classical non-linear Schrödinger equation. Our work shows clear evidence for a quantum–classical inter-theory unification, and opens new possibilities for practical quantum computations with decoherence. (paper)

  16. Operational parameters and their influence on particle-side mass transfer resistance in a packed bed bioreactor

    OpenAIRE

    Hussain, Amir; Kangwa, Martin; Yumnam, Nivedita; Fernandez-Lahore, Marcelo

    2015-01-01

    The influence of internal mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; chitosan coating, flow rate, glucose concentration and particle size. Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on particle side mass transfer on substrate consumption time, lag phase and ethanol production. The results indicate that chitosan coating, bead...

  17. Study of the effect of humidity, particle hygroscopicity and size on the mass loading capacity of HEPA filters

    International Nuclear Information System (INIS)

    Gupta, A.

    1992-01-01

    The effect of humidity, particle hygroscopicity and size on the mass loading capacity of glass fiber HEPA filters has been studied. At humidifies above the deliquescent point, the pressure drop across the HEPA filter increased non-linearly with the areal loading density (mass collected/filtration area) of NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or non-hygroscopic particle mass loadings. The specific cake resistance, K 2 , has been computed for different test conditions and used as a measure of the mass loading capacity. K. was found to decrease with increasing humidity for the non-hygroscopic aluminum oxide particles and the hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K 2 for lognormally distributed aerosols (parameters obtained from impactor data) is derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the non-hygroscopic aluminum oxide the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor

  18. Effect of humidity and particle hygroscopicity on the mass loading capacity of high efficiency particulate air (HEPA) filters

    International Nuclear Information System (INIS)

    Gupta, A.; Biswas, P.; Monson, P.R.; Novick, V.J.

    1993-01-01

    The effect of humidity, particle hygroscopicity, and size on the mass loading capacity of glass fiber high efficiency particulate air filters was studied. Above the deliquescent point, the pressure drop across the filter increased nonlinearly with areal loading density (mass collected/filtration area) of a NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or nonhygroscopic particle mass loadings. The specific cake resistance K 2 was computed for different test conditions and used as a measure of the mass loading capacity. K 2 was found to decrease with increasing humidity for nonhygroscopic aluminum oxide particles and for hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K 2 for lognormally distributed aerosols (parameters obtained from impactor data) was derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the nonhygroscopic aluminum oxide, the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor. 17 refs., 6 figs., 3 tabs

  19. Indoor emission, dispersion and exposure of total particle-bound polycyclic aromatic hydrocarbons during cooking

    Science.gov (United States)

    Gao, Jun; Jian, Yating; Cao, Changsheng; Chen, Lei; Zhang, Xu

    2015-11-01

    Cooking processes highly contribute to indoor polycyclic aromatic hydrocarbon (PAH) pollution. High molecular weight and potentially carcinogenic PAHs are generally found attached to small particles, i.e., particulate phase PAHs (PPAHs). Due to the fact that indoor particle dynamics have been clear, describing the indoor dynamics of cooking-generated PPAHs within a specific time span is possible. This paper attempted to quantify the dynamic emission rate, simultaneous spatial dispersion and individual exposure of PPAHs using a cooking source. Experiments were conducted in a real-scale kitchen chamber to elucidate the time-resolved emission and effect of edible oil temperature and mass. Numerical simulations based on indoor particle dynamics were performed to obtain the spatial dispersion and individual inhalation intake of PPAHs under different emission and ventilation conditions. The present work examined the preheating cooking stage, at which edible oil is heated up to beyond its smoke point. The dynamic emission rate peak point occurred much earlier than the oil heating temperature. The total PPAH emission ranged from 2258 to 6578 ng upon heating 40-85 g of edible oil. The overall intake fraction by an individual within a period of 10 min, including 3 min for heating and 7 min for natural cooling, was generally ∼1/10,000. An important outcome of this work was that the overall intake fraction could be represented by multiplying the range hood escape efficiency by the inhalation-to-ventilation rate ratio, which would be no greater than the same ratio. The methodology and results of this work were extendible for the number-based assessment of PPAHs. This work is expected to help us understand the health risks due to inhalation exposure to cooking-generated PPAHs in the kitchen.

  20. Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of α-pinene

    Directory of Open Access Journals (Sweden)

    J. E. Shilling

    2008-04-01

    Full Text Available The yield of particle mass in secondary organic aerosol (SOA formed by dark ozonolysis was measured for 0.3–22.8 ppbv of reacted α-pinene. Most experiments were conducted using a continuous-flow chamber, allowing nearly constant SOA concentration and chemical composition for several days. For comparison, some experiments were also conducted in batch mode. Reaction conditions were 25°C, 40% RH, dry (NH4SO4 seed particles, and excess 1-butanol. The organic particle loading was independently measured by an aerosol mass spectrometer and a scanning mobility particle sizer, and the two measurements agreed well. The observations showed that SOA formation occurred for even the lowest reacted α-pinene concentration of 0.3 ppbv. The particle mass yield was 0.09 at 0.15 μg m−3, increasing to 0.27 at 40 μg m−3. Compared to some results reported in the literature, the yields were 80 to 100% larger for loadings above 2 μg m−3. At lower loadings, the yields had an offset of approximately +0.07 from those reported in the literature. To as low as 0.15 μm−3, the yield curve had no inflection point toward null yield, implying the formation of one or several products having vapor pressures below this value. These observations of increased yields, especially for low loadings, are potentially important for accurate prediction by chemical transport models of organic particle concentrations in the ambient atmosphere.

  1. A Triple Iron Triathlon Leads to a Decrease in Total Body Mass but Not to Dehydration

    Science.gov (United States)

    Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas; Oliver, Senn

    2010-01-01

    A loss in total body mass during an ultraendurance performance is usually attributed to dehydration. We identified the changes in total body mass, fat mass, skeletal muscle mass, and selected markers of hydration status in 31 male nonprofessional ultratriathletes participating in a Triple Iron triathlon involving 11.4 km swimming, 540 km cycling…

  2. Mass fragmentographic analysis of total cholesterol in serum using a heptadeuterated internal standard

    International Nuclear Information System (INIS)

    Wolthers, B.G.; Hindriks, F.R.; Muskiet, F.A.J.; Groen, A.

    1980-01-01

    A mass fragmentographic method for the determination of total cholesterol in serum using heptadeuterated [25,26,26,26,27,27,27- 2 H] cholesterol as internal standard is presented. The results obtained are compared with a colorimetric and gas chromatographic method which were previously proposed as reference methods. Criteria for the development of absolute measurement by means of mass fragmentography and stable isotopically labelled internal standards are given. The conclusion is drawn that, at present, mass fragmentographic methods for the determination of total cholesterol in serum do not fulfil the criteria required for absolute methods. (Auth.)

  3. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1-3

    Science.gov (United States)

    Kinsey, John S.; Dong, Yuanji; Williams, D. Craig; Logan, Russell

    2010-06-01

    The fine particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine for PM mass and number concentration, particle size distribution, and total volatile matter using both time-integrated and continuous sampling techniques. The experimental results showed a PM mass emission index (EI) ranging from 10 to 550 mg kg -1 fuel depending on engine type and test parameters as well as a characteristic U-shaped curve of the mass EI with increasing fuel flow for the turbofan engines tested. Also, the Teflon filter sampling indicated that ˜40-80% of the total PM mass on a test-average basis was comprised of volatile matter (sulfur and organics) for most engines sampled. The number EIs, on the other hand, varied from ˜10 15 to 10 17 particles kg -1 fuel with the turbofan engines exhibiting a logarithmic decay with increasing fuel flow. Finally, the particle size distributions of the emissions exhibited a single primary mode that were lognormally distributed with a minor accumulation mode also observed at higher powers for all engines tested. The geometric (number) mean particle diameter ranged from 9.4 to 37 nm and the geometric standard deviation ranged from 1.3 to 2.3 depending on engine type, fuel flow, and test conditions.

  4. Evaluation of Aerosol Mixing State Classes in the GISS Modele-matrix Climate Model Using Single-particle Mass Spectrometry Measurements

    Science.gov (United States)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-01-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 micron, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 micron contain large fractions of organic material, internally-mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  5. Higgs and supersymmetric particle signals at the infrared fixed point of the top quark mass

    International Nuclear Information System (INIS)

    Carena, M.; Wagner, C.E.M.

    1995-01-01

    We study the properties of the Higgs and supersymmetric particle spectrum, associated with the infrared fixed point solution of the top quark mass in the Minimal Supersymmetric Standard Model. We concentrate on the possible detection of these particles, analysing the deviations from the Standard Model predictions for the leptonic and hadronic variables measured at LEP and for the b→sγ decay rate. We consider the low and moderate tan β regime, imposing the constraints derived from a proper radiative SU(2) L xU(1) Y symmetry breaking, and we study both the cases of universal and non-universal soft supersymmetry-breaking parameters at high energies. In the first case, for any given value of the top quark mass, the Higgs and supersymmetric particle spectrum is completely determined as a function of only two soft supersymmetry-breaking parameters, implying very definite experimental signatures. In the case of non-universal mass parameters at M GUT , instead, the strong correlations between the sparticle masses are relaxed, allowing a richer structure for the precision data variables. As a general feature, whenever a significant deviation from the Standard Model value of the precision data parameters is predicted, a light sparticle, which should be visible at LEP2, appears in the model. (orig.)

  6. Calculation of the mass transfer coefficient for the combustion of a carbon particle

    Energy Technology Data Exchange (ETDEWEB)

    Scala, Fabrizio [Istituto di Ricerche sulla Combustione - CNR, P.le Tecchio 80, 80125 Napoli (Italy)

    2010-01-15

    In this paper we address the calculation of the mass transfer coefficient around a burning carbon particle in an atmosphere of O{sub 2}, N{sub 2}, CO{sub 2}, CO, and H{sub 2}O. The complete set of Stefan-Maxwell equations is analytically solved under the assumption of no homogeneous reaction in the boundary layer. An expression linking the oxygen concentration and the oxygen flux at the particle surface (as a function of the bulk gas composition) is derived which can be used to calculate the mass transfer coefficient. A very simple approximate explicit expression is also given for the mass transfer coefficient, that is shown to be valid in the low oxygen flux limit or when the primary combustion product is CO{sub 2}. The results are given in terms of a correction factor to the equimolar counter-diffusion mass transfer coefficient, which is typically available in the literature for specific geometries and/or fluid-dynamic conditions. The significance of the correction factor and the accuracy of the different available expressions is illustrated for several cases of practical interest. Results show that under typical combustion conditions the use of the equimolar counter-diffusion mass transfer coefficient can lead to errors up to 10%. Larger errors are possible in oxygen-enriched conditions, while the error is generally low in oxy-combustion. (author)

  7. The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-ToF-MS)

    Science.gov (United States)

    Gemayel, Rachel; Hellebust, Stig; Temime-Roussel, Brice; Hayeck, Nathalie; Van Elteren, Johannes T.; Wortham, Henri; Gligorovski, Sasho

    2016-05-01

    Hyphenated laser ablation-mass spectrometry instruments have been recognized as useful analytical tools for the detection and chemical characterization of aerosol particles. Here we describe the performances of a laser ablation aerosol particle time-of-flight mass spectrometer (LAAP-ToF-MS) which was designed for aerodynamic particle sizing using two 405 nm scattering lasers and characterization of the chemical composition of single aerosol particle via ablation/ionization by a 193 nm excimer laser and detection in a bipolar time-of-flight mass spectrometer with a mass resolving power of m/Δm > 600.We describe a laboratory based optimization strategy for the development of an analytical methodology for characterization of atmospheric particles using the LAAP-ToF-MS instrument in combination with a particle generator, a differential mobility analyzer and an optical particle counter. We investigated the influence of particle number concentration, particle size and particle composition on the detection efficiency. The detection efficiency is a product of the scattering efficiency of the laser diodes and the ionization efficiency or hit rate of the excimer laser. The scattering efficiency was found to vary between 0.6 and 1.9 % with an average of 1.1 %; the relative standard deviation (RSD) was 17.0 %. The hit rate exhibited good repeatability with an average value of 63 % and an RSD of 18 %. In addition to laboratory tests, the LAAP-ToF-MS was used to sample ambient air during a period of 6 days at the campus of Aix-Marseille University, situated in the city center of Marseille, France. The optimized LAAP-ToF-MS methodology enables high temporal resolution measurements of the chemical composition of ambient particles, provides new insights into environmental science, and a new investigative tool for atmospheric chemistry and physics, aerosol science and health impact studies.

  8. The Synergy between Meteorological Parameters and the Total ...

    African Journals Online (AJOL)

    because of its origin from mostly non-urban areas that ... particles in the air are readily removed by falling rain drop ..... Their physics and Physical ... Mass. Concentrations and Metals Speciation of PM2.5. PM10 and total suspended solids in ...

  9. Sharpening m{sub T2} cusps. The mass determination of semi-invisibly decaying particles from a resonance

    Energy Technology Data Exchange (ETDEWEB)

    Harland-Lang, Lucian A. [Durham Univ. (United Kingdom). Dept. of Physics; Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Kom, Chun-Hay [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Sakurai, Kazuki [King' s College London (United Kingdom). Theoretical Particle Physics and Cosmology Group; Tonini, Marco [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-12-15

    We revisit mass determination techniques for the minimum symmetric event topology, namely X pair production followed by X{yields}lN, where X and N are unknown particles with the masses to be measured, and N is an invisible particle. We consider separate scenarios, with different initial constraints on the invisible particle momenta, and present a systematic method to identify the kinematically allowed mass regions in the (m{sub N},m{sub X}) plane. These allowed regions exhibit a cusp structure at the true mass point, which is equivalent to the one observed in the m{sub T2} endpoints in certain cases. By considering the boundary of the allowed mass region we systematically define kinematical variables which can be used in measuring the unknown masses, and find a new expression for the m{sub T2} variable as well as its inverse. We explicitly apply our method to the case that X is pair produced from a resonance, and as a case study, we consider the process pp {yields} A {yields} {chi}{sup +}{sub 1}{chi}{sup -}{sub 1}, followed by {chi}{sup {+-}}{sub 1} {yields} l{nu}, in the minimal supersymmetric standard model and show that our method provides a precise measurement of the chargino and sneutrino masses, m{sub X} and m{sub N}, at 14 TeV LHC with 300 fb{sup -1} luminosity.

  10. Role of particle masses in the magnetic field generation driven by the parity violating interaction

    Energy Technology Data Exchange (ETDEWEB)

    Dvornikov, Maxim, E-mail: maxdvo@izmiran.ru [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN), 142190 Troitsk, Moscow (Russian Federation); Physics Faculty, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk (Russian Federation); II. Institute for Theoretical Physics, University of Hamburg, 149 Luruper Chaussee, D-22761 Hamburg (Germany)

    2016-09-10

    Recently the new model for the generation of strong large scale magnetic fields in neutron stars, driven by the parity violating interaction, was proposed. In this model, the magnetic field instability results from the modification of the chiral magnetic effect in presence of the electroweak interaction between ultrarelativistic electrons and nucleons. In the present work we study how a nonzero mass of charged particles, which are degenerate relativistic electrons and nonrelativistic protons, influences the generation of the magnetic field in frames of this approach. For this purpose we calculate the induced electric current of these charged particles, electroweakly interacting with background neutrons and an external magnetic field, exactly accounting for the particle mass. This current is calculated by two methods: using the exact solution of the Dirac equation for a charged particle in external fields and computing the polarization operator of a photon in matter composed of background neutrons. We show that the induced current is vanishing in both approaches leading to the zero contribution of massive particles to the generated magnetic field. We discuss the implication of our results for the problem of the magnetic field generation in compact stars.

  11. Determination of organic compounds in nano-particles by laser breakdown and resonant ionization time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Deguchi, Yoshihiro; Tanaka, Nobuyuki

    2005-01-01

    Laser breakdown and resonance ionization time-of-flight mass spectrometry (TOFMS) with a differential mobility analyzer (DMA) was developed and applied to detect compositions and organic substances in nano-particles. The laser breakdown TOFMS method is capable of reaching pptv sensitivity, which is generally much better than the normal LIBS techniques. The system was demonstrated to successfully detect signals in the mass range of 1 to 300 amu for 60 and 140 nm particles in diesel engine exhaust. The detected signals showed that the nano-particles contained both aromatic and chain hydrocarbons

  12. Accurate particle speed prediction by improved particle speed measurement and 3-dimensional particle size and shape characterization technique

    DEFF Research Database (Denmark)

    Cernuschi, Federico; Rothleitner, Christian; Clausen, Sønnik

    2017-01-01

    Accurate particle mass and velocity measurement is needed for interpreting test results in erosion tests of materials and coatings. The impact and damage of a surface is influenced by the kinetic energy of a particle, i.e. particle mass and velocity. Particle mass is usually determined with optic...

  13. Vacuum instability, cosmology and constraints on particle masses in the Weinberg-Salam model

    International Nuclear Information System (INIS)

    Linde, A.D.

    1980-01-01

    A set of constraints on the masses of particles in the Weinberg-Salam model is obtained. It is shown in particular that in the absence of superheavy fermions (msub(F) 2 thetasub(W) approx. 0.23. (orig.)

  14. Convergence on the Prediction of Ice Particle Mass and Projected Area in Ice Clouds

    Science.gov (United States)

    Mitchell, D. L.

    2013-12-01

    Ice particle mass- and area-dimensional power law (henceforth m-D and A-D) relationships are building-blocks for formulating microphysical processes and optical properties in cloud and climate models, and they are critical for ice cloud remote sensing algorithms, affecting the retrieval accuracy. They can be estimated by (1) directly measuring the sizes, masses and areas of individual ice particles at ground-level and (2) using aircraft probes to simultaneously measure the ice water content (IWC) and ice particle size distribution. A third indirect method is to use observations from method 1 to develop an m-A relationship representing mean conditions in ice clouds. Owing to a tighter correlation (relative to m-D data), this m-A relationship can be used to estimate m from aircraft probe measurements of A. This has the advantage of estimating m at small sizes, down to 10 μm using the 2D-Sterio probe. In this way, 2D-S measurements of maximum dimension D can be related to corresponding estimates of m to develop ice cloud type and temperature dependent m-D expressions. However, these expressions are no longer linear in log-log space, but are slowly varying curves covering most of the size range of natural ice particles. This work compares all three of the above methods and demonstrates close agreement between them. Regarding (1), 4869 ice particles and corresponding melted hemispheres were measured during a field campaign to obtain D and m. Selecting only those unrimed habits that formed between -20°C and -40°C, the mean mass values for selected size intervals are within 35% of the corresponding masses predicted by the Method 3 curve based on a similar temperature range. Moreover, the most recent m-D expression based on Method 2 differs by no more than 50% with the m-D curve from Method 3. Method 3 appears to be the most accurate over the observed ice particle size range (10-4000 μm). An m-D/A-D scheme was developed by which self-consistent m-D and A-D power laws

  15. Aerosol particle mixing state, refractory particle number size distributions and emission factors in a polluted urban environment: Case study of Metro Manila, Philippines

    Science.gov (United States)

    Kecorius, Simonas; Madueño, Leizel; Vallar, Edgar; Alas, Honey; Betito, Grace; Birmili, Wolfram; Cambaliza, Maria Obiminda; Catipay, Grethyl; Gonzaga-Cayetano, Mylene; Galvez, Maria Cecilia; Lorenzo, Genie; Müller, Thomas; Simpas, James B.; Tamayo, Everlyn Gayle; Wiedensohler, Alfred

    2017-12-01

    Ultrafine soot particles (black carbon, BC) in urban environments are related to adverse respiratory and cardiovascular effects, increased cases of asthma and premature deaths. These problems are especially pronounced in developing megacities in South-East Asia, Latin America, and Africa, where unsustainable urbanization ant outdated environmental protection legislation resulted in severe degradation of urban air quality in terms of black carbon emission. Since ultrafine soot particles do often not lead to enhanced PM10 and PM2.5 mass concentration, the risks related to ultrafine particle pollution may therefore be significantly underestimated compared to the contribution of secondary aerosol constituents. To increase the awareness of the potential toxicological relevant problems of ultrafine black carbon particles, we conducted a case study in Metro Manila, the capital of the Philippines. Here, we present a part of the results from a detailed field campaign, called Manila Aerosol Characterization Experiment (MACE, 2015). Measurements took place from May to June 2015 with the focus on the state of mixing of aerosol particles. The results were alarming, showing the abundance of externally mixed refractory particles (soot proxy) at street site with a maximum daily number concentration of approximately 15000 #/cm3. That is up to 10 times higher than in cities of Western countries. We also found that the soot particle mass contributed from 55 to 75% of total street site PM2.5. The retrieved refractory particle number size distribution appeared to be a superposition of 2 ultrafine modes at 20 and 80 nm with a corresponding contribution to the total refractory particle number of 45 and 55%, respectively. The particles in the 20 nm mode were most likely ash from metallic additives in lubricating oil, tiny carbonaceous particles and/or nucleated and oxidized organic polymers, while bigger ones (80 nm) were soot agglomerates. To the best of the authors' knowledge, no other

  16. Source characterization of urban particles from meat smoking activities in Chongqing, China using single particle aerosol mass spectrometry.

    Science.gov (United States)

    Chen, Yang; Wenger, John C; Yang, Fumo; Cao, Junji; Huang, Rujin; Shi, Guangming; Zhang, Shumin; Tian, Mi; Wang, Huanbo

    2017-09-01

    A Single Particle Aerosol Mass Spectrometer (SPAMS) was deployed in the urban area of Chongqing to characterize the particles present during a severe particulate pollution event that occurred in winter 2014-2015. The measurements were made at a time when residents engaged in traditional outdoor meat smoking activities to preserve meat before the Chinese Spring Festival. The measurement period was predominantly characterized by stagnant weather conditions, highly elevated levels of PM 2.5 , and low visibility. Eleven major single particle types were identified, with over 92.5% of the particles attributed to biomass burning emissions. Most of the particle types showed appreciable signs of aging in the stagnant air conditions. To simulate the meat smoking activities, a series of controlled smoldering experiments was conducted using freshly cut pine and cypress branches, both with and without wood logs. SPAMS data obtained from these experiments revealed a number of biomass burning particle types, including an elemental and organic carbon (ECOC) type that proved to be the most suitable marker for meat smoking activities. The traditional activity of making preserved meat in southwestern China is shown here to be a major source of particulate pollution. Improved measures to reduce emissions from the smoking of meat should be introduced to improve air quality in regions where smoking meat activity prevails. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. An optimised set-up for total reflection particle induced X-ray emission

    International Nuclear Information System (INIS)

    Kan, J.A. van; Vis, R.D.

    1997-01-01

    MeV proton beams at small angles of incidence (0-35 mrad) are used to analyse trace elements on flat surfaces such as Si wafers or quartz substrates. In these experiments, the particle induced X-ray emission (PIXE) signal is used in a new optimized set-up. This set-up is constructed in such a way that the X-ray detector can reach very large solid angles, larger than 1 sr. Use of these large detector solid angles, combined with the reduction of bremsstrahlung background, affords limits of detection (LOD) of the order of 10 10 at cm -2 using total reflection particle induced X-ray emission (TPIXE). The LODs from earlier TPIXE measurements in a non-optimized set-up are used to estimate LODs in the new TPIXE set-up. Si wafers with low surface concentrations of V, Ni, Cu and Ag are used as standards to calibrate the LODs found with this set-up. The metal concentrations are determined by total reflection X-ray fluorescence (TXRF). The TPIXE measurements are compared with TXRF measurements on the same wafers. (Author)

  18. Influence of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in cyclone heat exchanger

    International Nuclear Information System (INIS)

    Mothilal, T.; Pitchandi, K.

    2015-01-01

    Present work elaborates the effect of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in a cyclone heat exchanger. The RNG k-ε turbulence model was adopted for modeling high turbulence flow and Discrete phase model (DPM) to track solid particles in a cyclone heat exchanger by ANSYS FLUENT software. The effect of inlet air velocity (5 to 25 m/s) and inlet solid particle feed rate of (0.2 to 2.5 g/s) at different particle diameter (300 to 500 μm) on holdup mass and heat transfer rate in cyclone heat exchanger was studied at air inlet temperature of 473 K. Results show that holdup mass and heat transfer rate increase with increase in inlet air velocity and inlet solid particle feed rate. Influence of solid particle feed rate on holdup mass has more significance. Experimental setup was built for high efficiency cyclone. Good agreement was found between experimental and simulation pressure drop. Empirical correlation was derived for dimensionless holdup mass and Nusselt number based on CFD data by regression technique. Correlation predicts dimensional holdup mass with +5% to -8% errors of experimental data and Nusselt number with +9% to -3%

  19. Influence of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in cyclone heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Mothilal, T. [T. J. S. Engineering College, Gummidipoond (India); Pitchandi, K. [Sri Venkateswara College of Engineering, Sriperumbudur (India)

    2015-10-15

    Present work elaborates the effect of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in a cyclone heat exchanger. The RNG k-ε turbulence model was adopted for modeling high turbulence flow and Discrete phase model (DPM) to track solid particles in a cyclone heat exchanger by ANSYS FLUENT software. The effect of inlet air velocity (5 to 25 m/s) and inlet solid particle feed rate of (0.2 to 2.5 g/s) at different particle diameter (300 to 500 μm) on holdup mass and heat transfer rate in cyclone heat exchanger was studied at air inlet temperature of 473 K. Results show that holdup mass and heat transfer rate increase with increase in inlet air velocity and inlet solid particle feed rate. Influence of solid particle feed rate on holdup mass has more significance. Experimental setup was built for high efficiency cyclone. Good agreement was found between experimental and simulation pressure drop. Empirical correlation was derived for dimensionless holdup mass and Nusselt number based on CFD data by regression technique. Correlation predicts dimensional holdup mass with +5% to -8% errors of experimental data and Nusselt number with +9% to -3%.

  20. On a model of a classical relativistic particle of constant and universal mass and spin

    Energy Technology Data Exchange (ETDEWEB)

    Kassandrov, V; Markova, N [Institute of Gravitation and Cosmology, Russian Peoples' Friendship University, Moscow (Russian Federation); Schaefer, G; Wipf, A [Institute of Theoretical Physics, Friedrich-Schiller University, Jena (Germany)

    2009-08-07

    The deformation of the classical action for a point-like particle recently suggested by Staruszkiewicz gives rise to a spin structure which constrains the values of the invariant mass and the invariant spin to be the same for any solution of the equations of motion. Both these Casimir invariants, the square of the 4-momentum vector and the square of the Pauli-Lubanski vector, are shown to preserve the same fixed values also in the presence of an arbitrary external electromagnetic field. In the 'free' case, in the centre-of-mass reference frame, the particle moves along a circle of fixed radius with arbitrary varying frequency. In a homogeneous magnetic field, a number of rotational 'states' are possible with frequencies slightly different from the cyclotron frequency, and 'phase-like' transitions with spin flops occur at some critical values of the particle's 3-momentum.

  1. The fine particle emissions of energy production in Finland

    International Nuclear Information System (INIS)

    Ohlstroem, M.

    1998-01-01

    as big influence. In pulverised coal combustion, at least an electrostatic precipitator is used as a fly ash collector and therefore particle emission is composed mainly of particles under 10 μm in diameter. About half of the total mass of particle emission is fine particles (PM2.5). Depending on boiler size category and particle separation devices, the specific emission factor for fine particles is 1-30 mg/MJ. For pulverised combustion of peat, ca. 20-25 % of the total mass of particle emission is fine particles, and then the specific emission factor is between 5-8 mg/MJ. For recovery boilers, the fine particle portion of the total particle emission is 50-60 % (by mass) and the specific emission factor for fine particles varies considerably according to the boiler size category, being between 12 and 77 mg/MJ. For oil burners, grate boilers and fluidized bed combustion processes, the fine particle portion of the total particle emission could not be determined, because there were no applicable measurement results to hand. For these combustion techniques, more public measurements would be needed in order to clarify the amount and composition of fine particles with different fuel varieties. Also small-scale combustion should be studied and measured more, because the fine particle exposure which it causes can be significant (due to the low emission height and absent dust separation devices), for example in densely populated areas, where the dominant heating form is individual wood or oil burning. Due to the low emission height traffic has clearly a larger influence on the fine particle concentration of urban air than the local energy production. Diesel-driven vehicles, especially heavy duty traffic (buses, trucks), have the biggest specific emissions. (orig.) 75 refs

  2. Wear particles and osteolysis in patients with total wrist arthroplasty

    DEFF Research Database (Denmark)

    Boeckstyns, Michel E H; Toxværd, Anders; Bansal, Manjula

    2014-01-01

    PURPOSE: To determine whether the amount of polyethylene debris in the interphase tissue between prosthesis and bone in patients with total wrist arthroplasty correlated with the degree of periprosthetic osteolysis (PPO); and to investigate the occurrence of metal particles in the periprosthetic...... tissue, the level of chrome and cobalt ions in the blood, and the possible role of infectious or rheumatoid activity in the development of PPO. METHODS: Biopsies were taken from the implant-bone interphase in 13 consecutive patients with total wrist arthroplasty and with at least 3 years' follow......-up. Serial annual radiographs were performed prospectively for the evaluation of PPO. We collected blood samples for white blood cell count, C-reactive protein, and metallic ion level. RESULTS: A radiolucent zone of greater than 2 mm was observed juxta-articular to the radial component in 4 patients...

  3. Measuring the masses of a pair of semi-invisibly decaying particles in central exclusive production with forward proton tagging

    International Nuclear Information System (INIS)

    Harland-Lang, L.A.; Stirling, W.J.

    2011-10-01

    We discuss how the mass of new physics particles involved in a pair of short decay chains leading to two invisible particles, for example slepton pair production, followed by the decay into two leptons and two neutralinos, may be measured in central exclusive production (CEP) with forward proton tagging. We show how the existing mass measurement strategies in CEP may be improved by making full use of the mass-shell constraints, and demonstrate that, with around 30 signal events, the masses of the slepton and neutralino can be measured with an accuracy of a few GeV. (orig.)

  4. Fractionation and characterization of particles simulating wear of total joint replacement (TJR) following ASTM standards.

    Science.gov (United States)

    Saha, Subrata; Musib, Mrinal

    2011-01-01

    Reactions of bone cells to orthopedic wear debris produced by the articulating motion of total joint replacements (TJRs) are largely responsible for the long-term failure of such replacements. Metal and polyethylene (PE) wear particles isolated from fluids from total joint simulators, as well as particles that are fabricated by other methods, are widely used to study such in vitro cellular response. Prior investigations have revealed that cellular response to wear debris depends on the size, shape, and dose of the particles. Hence, to have a better understanding of the wear-mediated osteolytic process it is important that these particles are well characterized and clinically relevant, both qualitatively, and quantitatively. In this study we have fractionated both ultra-high molecular weight polyethylene (UHMWPE) and Ti particles, into micron (1.0-10.0 μm), submicron (0.2-1.0 μm), and nanoparticle (0.01-0.2 μm) fractions, and characterized them based on the following size-shape descriptors as put forth in ASTM F1877: i) equivalent circle diameter (ECD), ii) aspect ratio (AR), iii) elongation (E), iv) roundness (R), and v) form factor (FF). The mean (± SD) ECDs (in μm) for micron, submicron, and nanoparticles of UHMWPE were 1.652 ± 0.553, 0.270 ± 0.180, and 0.061 ± 0.035, respectively, and for Ti were 1.894 ± 0.667, 0.278 ± 0.180, and 0.055 ± 0.029, respectively. The values for other descriptors were similar (no statistically significant difference). The nanofraction particles were found to be more sphere-like (higher R and FF values, and lower E and AR values) as compared to larger particles. Future experiments will involve use of these well characterized particles for in vitro studies.

  5. Spontaneous symmetry breaking as a basis of particle mass

    International Nuclear Information System (INIS)

    Quigg, Chris

    2007-01-01

    Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions-so different in their manifestations-to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the 'standard model' of particle physics was formulated in the 1960s by Higgs, by Brout and Englert and by Guralnik, Hagen, and Kibble: the agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leaving a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W ± and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story-though an incomplete story-and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some 'big questions' that will guide our explorations

  6. Spontaneous Symmetry Breaking as a Basis of Particle Mass

    International Nuclear Information System (INIS)

    Quigg, Chris

    2007-01-01

    Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions--so different in their manifestations--to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the ''standard model'' of particle physics was formulated in the 1960s by Higgs, by Brout and Englert, and by Guralnik, Hagen, and Kibble: The agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leaving a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W ± and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story--though an incomplete story--and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some ''Big Questions'' that will guide our explorations

  7. Spontaneous Symmetry Breaking as a Basis of Particle Mass

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab /CERN

    2007-04-01

    Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions--so different in their manifestations--to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the ''standard model'' of particle physics was formulated in the 1960s by Higgs, by Brout & Englert, and by Guralnik, Hagen, & Kibble: The agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leaving a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W{sup {+-}} and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story--though an incomplete story--and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some ''Big Questions'' that will guide our explorations.

  8. No difference in in vivo polyethylene wear particles between oxidized zirconium and cobalt-chromium femoral component in total knee arthroplasty.

    Science.gov (United States)

    Minoda, Yukihide; Hata, Kanako; Iwaki, Hiroyoshi; Ikebuchi, Mitsuhiko; Hashimoto, Yusuke; Inori, Fumiaki; Nakamura, Hiroaki

    2014-03-01

    Polyethylene wear particle generation is one of the most important factors affecting mid- to long-term results of total knee arthroplasties. Oxidized zirconium was introduced as a material for femoral components to reduce polyethylene wear generation. However, an in vivo advantage of oxidized zirconium on polyethylene wear particle generation is still controversial. The purpose of this study was to compare in vivo polyethylene wear particles between oxidized zirconium total knee prosthesis and conventional cobalt-chromium (Co-Cr) total knee prosthesis. Synovial fluid was obtained from the knees of 6 patients with oxidized zirconium total knee prosthesis and from 6 patients with conventional cobalt-chromium (Co-Cr) total knee prosthesis 12 months after the operation. Polyethylene particles were isolated and examined using a scanning electron microscope and image analyser. Total number of particles in each knee was 3.3 ± 1.3 × 10(7) in the case of oxidized zirconium (mean ± SD) and 3.4 ± 1.2 × 10(7) in that of Co-Cr (n.s.). The particle size (equivalent circle diameter) was 0.8 ± 0.3 μm in the case of oxidized zirconium and 0.6 ± 0.1 μm in that of Co-Cr (n.s.). The particle shape (aspect ratio) was 1.4 ± 0.0 in the case of oxidized zirconium and 1.4 ± 0.0 in that of metal Co-Cr (n.s). Although newly introduced oxidized zirconium femoral component did not reduce the in vivo polyethylene wear particles in early clinical stage, there was no adverse effect of newly introduced material. At this moment, there is no need to abandon oxidized zirconium femoral component. However, further follow-up of polyethylene wear particle generation should be performed to confirm the advantage of the oxidized zirconium femoral component. Therapeutic study, Level III.

  9. Total homocysteine is positively correlated with body mass index, waist-to-hip ratio, and fat mass among overweight reproductive women: A cross-sectional study.

    Science.gov (United States)

    Al-Bayyari, Nahla; Hamadneh, Jehan; Hailat, Rae'd; Hamadneh, Shereen

    2017-12-01

    Conflicting associations between total homocysteine (tHcy), body mass index (BMI) lean body mass, and fat mass in the general population have been reported. We investigated the hypothesis that elevated tHcy levels are associated with increased BMI, waist-to-hip ratio (WHR), and body fat mass percent. In Jordan, obesity and overweight are prevalent among reproductive women and hyperhomocysteinemia, along with obesity and overweight, are independent risk factors for cardiovascular diseases. The participants used in this cross-sectional study were 325 overweight Jordanian women aged between 18 and 49 years old. The main outcome measures were tHcy, BMI, WHR, fat mass, fat-free mass, and total body water. Serum tHcy was analyzed using a liquid chromatography tandem mass spectrophotometry (LC-MS/MS) complete kit. The body compositions were measured using a bioelectrical impedance analyzer. Study participants were stratified according to their tHcy level into two groups, ≤10 μmol/L and >10 μmol/L, and the difference between mean values of body compositions was evaluated. The tHcy was significantly and negatively correlated with age, fat-free mass, and total body water, and significantly and positively correlated with BMI, hip circumference, WHR, fat mass, and dry lean weight. The chi-square and the independent sample t-tests showed statistically significant (P ≤ .05) differences between tHcy and BMI, WHR, fat and fat-free mass, and total body water percentages. In conclusion, BMI, WHR and body fat mass were found to be associated with elevated tHcy levels among overweight reproductive women, and they might be used as independent predictors of the tHcy level. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Phantom dark energy with varying-mass dark matter particles: Acceleration and cosmic coincidence problem

    International Nuclear Information System (INIS)

    Leon, Genly; Saridakis, Emmanuel N.

    2010-01-01

    We investigate several varying-mass dark matter particle models in the framework of phantom cosmology. We examine whether there exist late-time cosmological solutions, corresponding to an accelerating universe and possessing dark energy and dark matter densities of the same order. Imposing exponential or power-law potentials and exponential or power-law mass dependence, we conclude that the coincidence problem cannot be solved or even alleviated. Thus, if dark energy is attributed to the phantom paradigm, varying-mass dark matter models cannot fulfill the basic requirement that led to their construction.

  11. Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers

    Directory of Open Access Journals (Sweden)

    A. T. Ahern

    2016-12-01

    Full Text Available Biomass burning is a large source of light-absorbing refractory black carbon (rBC particles with a wide range of morphologies and sizes. The net radiative forcing from these particles is strongly dependent on the amount and composition of non-light-absorbing material internally mixed with the rBC and on the morphology of the mixed particles. Understanding how the mixing state and morphology of biomass-burning aerosol evolves in the atmosphere is critical for constraining the influence of these particles on radiative forcing and climate. We investigated the response of two commercial laser-based particle mass spectrometers, the vacuum ultraviolet (VUV ablation LAAPTOF and the IR vaporization SP-AMS, to monodisperse biomass-burning particles as we sequentially coated the particles with secondary organic aerosol (SOA from α-pinene ozonolysis. We studied three mobility-selected soot core sizes, each with a number of successively thicker coatings of SOA applied. Using IR laser vaporization, the SP-AMS had different changes in sensitivity to rBC compared to potassium as a function of applied SOA coatings. We show that this is due to different effective beam widths for the IR laser vaporization region of potassium versus black carbon. The SP-AMS's sensitivity to black carbon (BC mass was not observed to plateau following successive SOA coatings, despite achieving high OA : BC mass ratios greater than 9. We also measured the ion fragmentation pattern of biomass-burning rBC and found it changed only slightly with increasing SOA mass. The average organic matter ion signal measured by the LAAPTOF demonstrated a positive correlation with the condensed SOA mass on individual particles, despite the inhomogeneity of the particle core compositions. This demonstrates that the LAAPTOF can obtain quantitative mass measurements of aged soot-particle composition from realistic biomass-burning particles with complex morphologies and composition.

  12. Technical Note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Gysel

    2012-12-01

    Full Text Available The single particle soot photometer (SP2 uses laser-induced incandescence (LII for the measurement of atmospheric black carbon (BC particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit. It is commonly accepted that a particle must contain at least several tenths of a femtogram BC in order to be detected by the SP2.

    Here we show the result that most BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM, is clearly above the typical lower detection limit of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST, fullerene soot and carbon black particles (Cabot Regal 400R reveals that particle morphology can affect the SP2's lower detection limit. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, most PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to their vaporisation temperature because of their small size (Dpp ≈ 5–10 nm. Previous knowledge from pulsed laser-induced incandescence indicated that particle morphology might have an effect on the SP2's lower detection limit, however, an increase of the lower detection limit by a factor of ∼5–10, as reported here for PALAS soot, was not expected.

    In conclusion, the SP2's lower detection limit at a certain laser power depends primarily on the total BC mass per particle for compact particles with sufficiently high effective

  13. Interferometry with particles of non-zero rest mass: topological experiments

    International Nuclear Information System (INIS)

    Opat, G.I.

    1994-01-01

    Interferometry as a space-time process is described, together with its topology. Starting from this viewpoint, a convenient unified formalism for the phase shifts which arise in particle interferometry is developed. This formalism is based on a covariant form of Hamilton's action principle and Lagrange's equations of motion. It will be shown that this Lorentz invariant formalism yields a simple perturbation theoretic expression for the general phase shift that arises in matter-wave interferometry. The Lagrangian formalism is compared with the more usual formalism based on the wave propagation vector and frequency. The resulting formalism will be used to analyse the Sagnac effect, gravitational field measurements, and several Aharonov-Bohm-like topological phase shifts. Several topological interferometric experiments using particles of non-zero rest mass are discussed. These experiments involve the use of electrons, neutrons and neutral atoms. Neutron experiments will be emphasised. 45 refs., 15 figs

  14. Relativistic gravitational potential and its relation to mass-energy

    International Nuclear Information System (INIS)

    Voracek, P.

    1979-01-01

    From the general theory of relativity a relation is deduced between the mass of a particle and the gravitational field at the position of the particle. For this purpose the fall of a particle of negligible mass in the gravitational field of a massive body is used. After establishing the relativistic potential and its relationship to the rest mass of the particle, we show, assuming conservation of mass-energy, that the difference between two potential-levels depends upon the value of the radial metric coefficient at the position of an observer. Further, it is proved that the relativistic potential is compatible with the general concept of the potential also from the standpoint of kinematics. In the third section it is shown that, although the mass-energy of a body is a function of the distance from it, this does not influence the relativistic potential of the body itself. From this conclusion it follows that the mass-energy of a particle in a gravitational field is anisotropic; isotropic is the mass only. Further, the possibility of an incidental feed-back between two masses is ruled out, and the law of the composition of the relativistic gravitational potentials is deduced. Finally, it is shown, by means of a simple model, that local inhomogeneities in the ideal fluid filling the Universe have negligible influence on the total potential in large regions. (orig.)

  15. Particle nature of light waves in dielectric media

    International Nuclear Information System (INIS)

    Tan, C.Z.

    2009-01-01

    Wave-particle duality is a foundation for modern science. The speed of light waves in dielectric media is less than c. The corresponding particles thus have mass. Combining wave-particle duality with the theory of relativity, an exactly solvable problem was proposed, concerning the transition from photons in vacuum to particles in dielectric media. The rest mass, the momentum, and the total energy of material particles are shown to be the functions of the refractive index of the medium and the wavelength of the incident light. The proposed relationships were applied to study the wavelength-dependent index of refraction of dielectrics and the correlation of the refractive indices of anisotropic crystals, which were confirmed by the experimental results. Variation of the refractive index with wavelength is found to obey the proposed relation. The refractive indices of anisotropic crystals are shown to be the correlated quantities.

  16. Fingerprint states of odd mass 115I nuclei in the framework of particle rotor model

    International Nuclear Information System (INIS)

    Goswami, R.; Saha Sarkar, M.; Sen, S.

    2008-01-01

    Extensive theoretical as well as experimental investigation of the nuclear structure of odd-mass iodine nuclei have revealed systematic presence of strongly coupled bands in all neutron deficient as well as neutron rich odd-mass iodine isotopes. The present work shows that the positive as well as the negative parity are fairly well reproduced in the framework of particle rotor model

  17. Improvement in momentum resolution of parent particles using mass constraint in the rest frame

    International Nuclear Information System (INIS)

    Bingül, Ahmet

    2017-01-01

    In particle physics, uncertainties in the reconstructed momentum of parent particles are introduced due to detector resolution. Traditionally, the momentum resolution of the parent particle is improved by minimizing a non-linear chi-square function via iterative methods. In this study, it is shown that the same chi-square minimization procedure results in a set of linear equations which can be solved non-iteratively in the center of mass frame of the parent particle. By using ALEPH full simulation data, the performance of the new method is compared with relatively slower iterative method for several decay channels. No significant difference between them is obtained in terms of improvement in momentum resolution. However, the new approach is found to be simple to implement and faster than that of traditional iterative method.

  18. Particle desorption mass spectrometric surface characterization

    International Nuclear Information System (INIS)

    Summers, W.R.

    1986-01-01

    The feasibility of utilizing 252 Cf-Particle Desorption Mass Spectrometry (PDMS) to characterize the surface region of solid samples has been evaluated. The PDMS experiment was adapted to an ultrahigh vacuum (UHV) environment and was configured so as to allow the analysis of thick as well as thin samples. This apparatus included an in situ sputter cleaning/depth profiling facility. The mass resolution was variable from 300 to 200 at 133 daltons by changing the drift length from 27 cm to 20 cm. Desorbed ions were focused by using either a dual grid assembly or an einzel lens. The overall instrumental transmission efficiency with the einzel lens operative was approximately 50%. The applicability of 252 Cf-PDMS to samples that were thick and insulating was demonstrated in the analysis of geological specimens. Pollucite, Microcline, Amblygonite, and Lepidolite were analyzed without complications associated with sample thickness or charge accumulation. Substitution occurring between the alkali metals in the environment was observed by PDMS and was corroborated by SIMS, XPS, and EMP analyses. The analysis of NBM SRM glasses addressed the suitability of combining the PDMS technique was sputter etching. This application demonstrated the ability of this technique to sense changes in the chemical environment brought about by sputter cleaning. The analysis of these samples also allowed the estimation of detection limits for lithium, rubidium, and cesium in a glass matrix as 300 ppm, 400 ppm, and 400 ppm, respectively. Sputter depth profiling combined with 252 Cf-PDMS analysis of an aluminum layer on a silicon substrate established the utility of the PDMS technique in surface characterization

  19. Correlation of total body potassium and leukemic cell mass in patients with chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Chandra, P.; Sawitsky, A.; Chanana, A.D.; Chikkappa, G.; Cohn, S.H.; Rai, K.R.; Cronkity, E.P.

    1979-01-01

    Total body leukemic mass in patients with chronic lymphocytic leukemia (CLL) was measured by quantitation of total body potassium (TBK) with a whole-body counter. In addition, the predicted normal total body potassium (Kp) for each patient was calculated from an empirically derived relationship involving height, weight age, and sex. Both the absolute TBK and the relative excess of total body potassium (TBK/Kp) were related to the stage of disease. Patients in the early stages of CLL were found to have lower TBK and TBK/Kp than patients in the late stages of disease. Both of these parameters increased with the successively advanced stages of the disease. The clinically monitored reduction of leukemic cell mass following therapy was accompanied by reductions in TBK and TBK/Kp. Data presented support the notion that TBK/Kp is a useful indicator of the total body leukemic mass. Futhermore, the results of these studies quantitatively validate the proposed clinical staging system for CLL. Quantitation of TBK by a whole-body counter is an accurate and noninvasive procedure and does not require administration of isotopes

  20. In-vivo determination of total body water and lean body mass in subjects by deuterium dilution

    International Nuclear Information System (INIS)

    Blagojevic, N.; Allen, B.J.; Baur, L.; Gaskin, K.

    1988-01-01

    Total body water (TBW) estimation is one of a number of basic techniques required for the determination of body composition in normal and malnourished subjects. When combined with total body nitrogen (TBN) analysis by prompt gamma neutron activation, an accurate compartmental model of in vivo body composition can be formed, providing valuable nutritional and other data. This study examines the role of TBW on its own in evaluating lean body mass. Total body water was studied in six male and five female subjects using deuterium oxide and a Fourier transform infrared spectrometer. The lean body mass calculated from the results was compared with the lean body mass deduced from established total body nitrogen measurements. A four-compartment model was also used to calculate lean body mass. Excellent agreement was shown between lean body mass derived from TBW, the four-compartment model and TBN. Hence, TBW can provide a fast, cost-efficient method for evaluating normal subjects. However, for disease-induced malnutrition, or highly developed athletes, both TBN and TBW measurements are essential to establish an accurate picture of their body composition. TBW measurements alone can monitor the hydration state of patients and as such have a useful diagnostic value

  1. In-vivo determination of total body water and lean body mass in subjects by deuterium dilution

    Energy Technology Data Exchange (ETDEWEB)

    Blagojevic, N; Allen, B J; Baur, L; Gaskin, K

    1988-12-01

    Total body water (TBW) estimation is one of a number of basic techniques required for the determination of body composition in normal and malnourished subjects. When combined with total body nitrogen (TBN) analysis by prompt gamma neutron activation, an accurate compartmental model of in vivo body composition can be formed, providing valuable nutritional and other data. This study examines the role of TBW on its own in evaluating lean body mass. Total body water was studied in six male and five female subjects using deuterium oxide and a Fourier transform infrared spectrometer. The lean body mass calculated from the results was compared with the lean body mass deduced from established total body nitrogen measurements. A four-compartment model was also used to calculate lean body mass. Excellent agreement was shown between lean body mass derived from TBW, the four-compartment model and TBN. Hence, TBW can provide a fast, cost-efficient method for evaluating normal subjects. However, for disease-induced malnutrition, or highly developed athletes, both TBN and TBW measurements are essential to establish an accurate picture of their body composition. TBW measurements alone can monitor the hydration state of patients and as such have a useful diagnostic value.

  2. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    Science.gov (United States)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From

  3. Mass transfer between gas and particles in a gas-solid trickle flow reactor

    NARCIS (Netherlands)

    Kiel, J.H.A.; Kiel, J.H.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    Gas-solids mass transfer was studied for counter-current flow of gas and millimetre-sized solid particles over an inert packing at dilute phase or trickle flow conditions. Experimental data were obtained from the adsorption of water vapour on 640 and 2200 ¿m diameter molecular sieve spheres at

  4. Acquiring Structural Information on Virus Particles with Charge Detection Mass Spectrometry

    Science.gov (United States)

    Keifer, David Z.; Motwani, Tina; Teschke, Carolyn M.; Jarrold, Martin F.

    2016-06-01

    Charge detection mass spectrometry (CDMS) is a single-molecule technique particularly well-suited to measuring the mass and charge distributions of heterogeneous, MDa-sized ions. In this work, CDMS has been used to analyze the assembly products of two coat protein variants of bacteriophage P22. The assembly products show broad mass distributions extending from 5 to 15 MDa for A285Y and 5 to 25 MDa for A285T coat protein variants. Because the charge of large ions generated by electrospray ionization depends on their size, the charge can be used to distinguish hollow shells from more compact structures. A285T was found to form T = 4 and T = 7 procapsids, and A285Y makes a small number of T = 3 and T = 4 procapsids. Owing to the decreased stability of the A285Y and A285T particles, chemical cross-linking was required to stabilize them for electrospray CDMS. Graphical Abstract[Figure not available: see fulltext.

  5. Fine Particle Matter (PM2.5) Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Fine particulate matter or PM2.5 (total mass of particles below 2.5 micron is diameter) is known to cause adverse health effects in humans.See the following websites...

  6. Characterisation of particle mass and number concentration on the east coast of the Malaysian Peninsula during the northeast monsoon

    Science.gov (United States)

    Dominick, Doreena; Latif, Mohd Talib; Juneng, Liew; Khan, Md Firoz; Amil, Norhaniza; Mead, Mohammed Iqbal; Nadzir, Mohd Shahrul Mohd; Moi, Phang Siew; Samah, Azizan Abu; Ashfold, Matthew J.; Sturges, William T.; Harris, Neil R. P.; Robinson, Andrew D.; Pyle, John A.

    2015-09-01

    Particle mass concentrations (PM10, PM2.5 and PM1) and particle number concentration ((PNC); 0.27 μm ≤ Dp ≤ 34.00 μm) were measured in the tropical coastal environment of Bachok, Kelantan on the Malaysian Peninsula bordering the southern edge of the South China Sea. Statistical methods were applied on a three-month hourly data set (9th January to 24th March 2014) to study the influence of north-easterly winds on the patterns of particle mass and PNC size distributions. The 24-h concentrations of particle mass obtained in this study were below the standard values detailed by the Recommended Malaysian Air Quality Guideline (RMAQG), United States Environmental Protection Agency (US EPA) and European Union (EU) except for PM2.5, which recorded a 24-h average of 30 ± 18 μg m-3 and exceeded the World Health Organisation (WHO) threshold value (25 μg m-3). Principal component analysis (PCA) revealed that PNC with smaller diameter sizes (0.27-4.50 μm) showed a stronger influence, accounting for 57.6% of the variability in PNC data set. Concentrations of both particle mass and PNC increased steadily in the morning with a distinct peak observed at around 8.00 h, related to a combination of dispersion of accumulated particles overnight and local traffic. In addition to local anthropogenic, agricultural burning and forest fire activities, long-range transport also affects the study area. Hotspot and backward wind trajectory observations illustrated that the biomass burning episode (around February-March) significantly influenced PNC. Meteorological parameters influenced smaller size particles (i.e. PM1 and Dp (0.27-0.43 μm)) the most.

  7. Search for supersymmetric particles in e+e- collisions at centre-of-mass energies of 130 and 136 GeV

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palla, Fabrizio; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Brient, J C; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Greene, A M; Hoffmann, C; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Höcker, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Lutters, G; Saraiva, P; Smolik, L; Stephan, F; Aleppo, M; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Ragusa, F; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    Search for supersymmetric particles in e+e- collisions at centre-of-mass energies of 130 and 136 GeV. Searches for supersymmetric particles produced in e+e- collisions at centre-of-mass energies of 130 and 136 GeV have been performed in a data sample of 5.7 pb-1 collected in the autumn of 1995 by the ALEPH detector at LEP. No candidate events were found, allowing limits to be set on the masses and production cross-sections of scalar leptons, scalar tops charginos and neutralinos. The domains previously excluded at LEP1 are substantially extended. For instance, masses of gaugino-like charginos smaller than 67.8 GeV/c2 are excluded at the 95% C.L. for scalar neutrino masses larger than 200 GeV/c2.

  8. Proton-proton total cross sections and the neglect of masses in data fitting in the Regge region

    International Nuclear Information System (INIS)

    Kamran, M.

    1981-01-01

    It is shown by taking the example of pp total cross sections that the use of the approximation s is appoximately equal to 2qsup(1/2) while fitting data in the Regge region can be misleading. Several standard fits to sigmasub(tot)pp data are based on the assumption of weak rho-f-ω-A 2 exchange degeneracy (EXD). However, these fits involve the use of the approximation mentioned. It is found that it is impossible to fit the sigmasub(tot)pp data in the range 6 2 EXD. This investigation shows that sigmasub(tot)pp data alone seem to indicate either a breaking of weak rho-f-ω-A 2 EXD or the presence of low-lying contributions, or both, provided the masses of the interacting particles in data fitting in the Regge region ((Pi)ab>=5GeV/c) are not ignored

  9. Maternal obesity influences the relationship between location of neonate fat mass and total fat mass.

    Science.gov (United States)

    Hull, H R; Thornton, J; Paley, C; Navder, K; Gallagher, D

    2015-08-01

    It is suggested that maternal obesity perpetuates offspring obesity to future generations. To determine whether location of neonate fat mass (FM: central vs. peripheral) is related to total neonate FM and whether maternal obesity influences this relationship. Neonate body composition and skin-fold thicknesses were assessed in healthy neonates (n = 371; 1-3 days old). Linear regression models examined the relationship between total FM and location of FM (central vs. peripheral). Location of FM was calculated by skin-folds: peripheral was the sum of (biceps and triceps)/2 and central was represented by the subscapular skin-fold. A significant interaction was found for location of FM and maternal obesity. Holding all predictors constant, in offspring born to non-obese mothers, a 0.5 mm increase in central FM predicted a 15 g greater total FM, whereas a 0.5 mm increase in peripheral FM predicted a 66 g greater total FM. However, in offspring born to obese mothers, a 0.5 mm increase in central FM predicted a 56 g total FM, whereas a 0.5 mm increase in peripheral FM predicted a 14 g greater total FM. The relationship between total FM and location of FM is influenced by maternal obesity. © 2014 The Authors. Pediatric Obesity © 2014 World Obesity.

  10. Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis.

    Science.gov (United States)

    Maillard, Florie; Pereira, Bruno; Boisseau, Nathalie

    2018-02-01

    High-intensity interval training (HIIT) is promoted as a time-efficient strategy to improve body composition. The aim of this meta-analysis was to assess the efficacy of HIIT in reducing total, abdominal, and visceral fat mass in normal-weight and overweight/obese adults. Electronic databases were searched to identify all related articles on HIIT and fat mass. Stratified analysis was performed using the nature of HIIT (cycling versus running, target intensity), sex and/or body weight, and the methods of measuring body composition. Heterogeneity was also determined RESULTS: A total of 39 studies involving 617 subjects were included (mean age 38.8 years ± 14.4, 52% females). HIIT significantly reduced total (p = 0.003), abdominal (p = 0.007), and visceral (p = 0.018) fat mass, with no differences between the sexes. A comparison showed that running was more effective than cycling in reducing total and visceral fat mass. High-intensity (above 90% peak heart rate) training was more successful in reducing whole body adiposity, while lower intensities had a greater effect on changes in abdominal and visceral fat mass. Our analysis also indicated that only computed tomography scan or magnetic resonance imaging showed significant abdominal and/or visceral fat-mass loss after HIIT interventions. HIIT is a time-efficient strategy to decrease fat-mass deposits, including those of abdominal and visceral fat mass. There was some evidence of the greater effectiveness of HIIT running versus cycling, but owing to the wide variety of protocols used and the lack of full details about cycling training, further comparisons need to be made. Large, multicenter, prospective studies are required to establish the best HIIT protocols for reducing fat mass according to subject characteristics.

  11. The minimum mass of a charged spherically symmetric object in D dimensions, its implications for fundamental particles, and holography

    International Nuclear Information System (INIS)

    Burikham, Piyabut; Cheamsawat, Krai; Harko, Tiberiu; Lake, Matthew J.

    2016-01-01

    We obtain bounds for the minimum and maximum mass/radius ratio of a stable, charged, spherically symmetric compact object in a D-dimensional space-time in the framework of general relativity, and in the presence of dark energy. The total energy, including the gravitational component, and the stability of objects with minimum mass/radius ratio is also investigated. The minimum energy condition leads to a representation of the mass and radius of the charged objects with minimum mass/radius ratio in terms of the charge and vacuum energy only. As applied to the electron in the four-dimensional case, this procedure allows one to re-obtain the classical electron radius from purely general relativistic considerations. By combining the lower mass bound, in four space-time dimensions, with minimum length uncertainty relations (MLUR) motivated by quantum gravity, we obtain an alternative bound for the maximum charge/mass ratio of a stable, gravitating, charged quantum mechanical object, expressed in terms of fundamental constants. Evaluating this limit numerically, we obtain again the correct order of magnitude value for the charge/mass ratio of the electron, as required by the stability conditions. This suggests that, if the electron were either less massive (with the same charge) or if its charge were any higher (for fixed mass), a combination of electrostatic and dark energy repulsion would destabilize the Compton radius. In other words, the electron would blow itself apart. Our results suggest the existence of a deep connection between gravity, the presence of the cosmological constant, and the stability of fundamental particles. (orig.)

  12. Light extinction by fine atmospheric particles in the White Mountains region of New Hampshire and its relationship to air mass transport.

    Science.gov (United States)

    Slater, John F; Dibb, Jack E; Keim, Barry D; Talbot, Robert W

    2002-03-27

    Chemical, optical, and physical measurements of fine aerosols (aerodynamic diameter mass origin. Filter-based, 24-h integrated samples were collected and analyzed for major inorganic ions, as well as organic (OC), elemental (EC), and total carbon. Light scattering and light absorption coefficients were measured at 5-min intervals using an integrating nephelometer and a light absorption photometer. Fine particle number density was measured with a condensation particle counter. Air mass origins and transport patterns were investigated through the use of 3-day backward trajectories and a synoptic climate classification system. Two distinct transport regimes were observed: (1) flow from the north/northeast (N/NE) occurred during 9 out of 18 sample-days; and (2) flow from the west/southwest (W/SW) occurred 8 out of 18 sample-days. All measured and derived aerosol and meteorological parameters were separated into two categories based on these different flow scenarios. During W/SW flow, higher values of aerosol chemical concentration, absorption and scattering coefficients, number density, and haziness were observed compared to N/NE flow. The highest level of haziness was associated with the climate classification Frontal Atlantic Return, which brought polluted air into the region from the mid-Atlantic corridor. Fine particle mass scattering efficiencies of (NH4)2SO4 and OC were 5.35 +/- 0.42 m2 g(-1) and 1.56 +/- 0.40 m2 g(-1), respectively, when transport was out of the N/NE. When transport was from the W/SW the values were 4.94 +/- 0.68 m2 g(-1) for (NH4)2SO4 and 2.18 +/- 0.91 m2 g(-1) for OC. EC mass absorption efficiency when transport was from the N/NE was 9.66 +/- 1.06 m2 g(-1) and 10.80 +/- 1.76 m2 g(-1) when transport was from the W/SW. Results from this work can be used to predict visual air quality in the White Mountain National Forest based on a forecasted synoptic climate classification and its associated visibility.

  13. Elementary particles, the concept of mass, and emergent spacetime

    Science.gov (United States)

    Żenczykowski, Piotr

    2015-07-01

    It is argued that the problem of space quantization should be considered in close connection with the problem of mass quantization. First, the nonlocality of quantum physics suggests that if spacetime emerges from the underlying quantum layer, this emergence should occur simultaneously at all distance and momentum scales, and not just at the Planck scale. Second, the spectrum of elementary particles provides us with a lot of important information, experimentally inaccessible at the Planck scale, that could be crucial in unravelling the mechanism of emergence. Accordingly, we start with a brief review of some fundamental issues appearing both in the spectroscopy of excited baryons and in connection with the concept of quark mass. It is pointed out that experiment suggests the inadequacy of the description of baryonic interior in terms of ordinary spacetime background. Thus, it is argued that one should be able to learn about the emergence of space from the studies of the quark/hadron transition. The problem of mass is then discussed from the point of view of nonrelativistic phase space and its Clifford algebra, which proved promising in the past. Connection with the Harari-Shupe explanation of the pattern of a single Standard Model generation is briefly reviewed and a proposal for the reintroduction of relativistic covariance into the phase-space scheme is presented.

  14. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    X.-F. Huang

    2010-09-01

    Full Text Available As part of Campaigns of Air Quality Research in Beijing and Surrounding Region-2008 (CAREBeijing-2008, an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS was deployed in urban Beijing to characterize submicron aerosol particles during the time of 2008 Beijing Olympic Games and Paralympic Games (24 July to 20 September 2008. The campaign mean PM1 mass concentration was 63.1 ± 39.8 μg m−3; the mean composition consisted of organics (37.9%, sulfate (26.7%, ammonium (15.9%, nitrate (15.8%, black carbon (3.1%, and chloride (0.87%. The average size distributions of the species (except BC were all dominated by an accumulation mode peaking at about 600 nm in vacuum aerodynamic diameter, and organics was characterized by an additional smaller mode extending below 100 nm. Positive Matrix Factorization (PMF analysis of the high resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., hydrocarbon-like (HOA, cooking-related (COA, and two oxygenated organic aerosols (OOA-1 and OOA-2, which on average accounted for 18.1, 24.4, 33.7 and 23.7% of the total organic mass, respectively. The HOA was identified to be closely associated with primary combustion sources, while the COA mass spectrum and diurnal pattern showed similar characteristics to that measured for cooking emissions. The OOA components correspond to aged secondary organic aerosol. Although the two OOA components have similar elemental (O/C, H/C compositions, they display differences in mass spectra and time series which appear to correlate with the different source regions sampled during the campaign. Back trajectory clustering analysis indicated that the southerly air flows were associated with the highest PM1 pollution during the campaign. Aerosol particles in southern airmasses were especially rich in inorganic and oxidized organic species. Aerosol particles in northern airmasses

  15. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer

    Science.gov (United States)

    Huang, X.-F.; He, L.-Y.; Hu, M.; Canagaratna, M. R.; Sun, Y.; Zhang, Q.; Zhu, T.; Xue, L.; Zeng, L.-W.; Liu, X.-G.; Zhang, Y.-H.; Jayne, J. T.; Ng, N. L.; Worsnop, D. R.

    2010-09-01

    As part of Campaigns of Air Quality Research in Beijing and Surrounding Region-2008 (CAREBeijing-2008), an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed in urban Beijing to characterize submicron aerosol particles during the time of 2008 Beijing Olympic Games and Paralympic Games (24 July to 20 September 2008). The campaign mean PM1 mass concentration was 63.1 ± 39.8 μg m-3; the mean composition consisted of organics (37.9%), sulfate (26.7%), ammonium (15.9%), nitrate (15.8%), black carbon (3.1%), and chloride (0.87%). The average size distributions of the species (except BC) were all dominated by an accumulation mode peaking at about 600 nm in vacuum aerodynamic diameter, and organics was characterized by an additional smaller mode extending below 100 nm. Positive Matrix Factorization (PMF) analysis of the high resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., hydrocarbon-like (HOA), cooking-related (COA), and two oxygenated organic aerosols (OOA-1 and OOA-2), which on average accounted for 18.1, 24.4, 33.7 and 23.7% of the total organic mass, respectively. The HOA was identified to be closely associated with primary combustion sources, while the COA mass spectrum and diurnal pattern showed similar characteristics to that measured for cooking emissions. The OOA components correspond to aged secondary organic aerosol. Although the two OOA components have similar elemental (O/C, H/C) compositions, they display differences in mass spectra and time series which appear to correlate with the different source regions sampled during the campaign. Back trajectory clustering analysis indicated that the southerly air flows were associated with the highest PM1 pollution during the campaign. Aerosol particles in southern airmasses were especially rich in inorganic and oxidized organic species. Aerosol particles in northern airmasses contained a large fraction of primary HOA

  16. Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Mohiuddin, Kazi, E-mail: kazi.mohiuddin@students.mq.edu.au [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia); Strezov, Vladimir; Nelson, Peter F. [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia); Stelcer, Eduard [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Evans, Tim [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia)

    2014-07-01

    The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 μm. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings. - Highlights: • Urban and

  17. Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia

    International Nuclear Information System (INIS)

    Mohiuddin, Kazi; Strezov, Vladimir; Nelson, Peter F.; Stelcer, Eduard; Evans, Tim

    2014-01-01

    The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 μm. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings. - Highlights: • Urban and

  18. Mass hysteria

    CERN Document Server

    Hellemans, Alexander

    2004-01-01

    Considerable research is being undertaken to identify the Higgs particle that is believed to give things their mass. According to the standard model, what we call mass is really an indication of how strongly particles interact with an invisible syrupy substance called the Higgs field. Quantum mechanics say that the mass-giving field can also be thought of as a sea of electrically neutral Higgs particles that should be dislodged in collisions between subatomic particles with high enough energies. Particle physicists expect the Higgs to exist only for a fleeting moment before decaying into other particles, which are caught in a detector. (Edited abstract).

  19. Long-term observation of water-soluble chemical components and acid-digested metals in the total suspended particles collected at Okinawa, Japan

    Science.gov (United States)

    Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Somada, Y.; Ijyu, M.; Azechi, S.; Oshiro, Y.; Nakaema, F.; Miyagi, Y.; Arakaki, T.; Tanahara, A.

    2011-12-01

    The economic growth and population increase in recent Asia have been increasing air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asia's air quality because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background clean air and can be compared with continental air masses which have been affected by anthropogenic activities. We collected total suspended particles (TSP) on quartz filters by using a high volume air sampler at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Okinawa, Japan during August 2005 and August 2010. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations, water-soluble organic carbon (WSOC) and acid-digested metals in TSP samples using ion chromatography, atomic absorption spectrometry, total organic carbon analyzer and Inductively Coupled Plasma Mass spectrometry (ICP-MS), respectively. Seasonal variation of water-soluble chemical components and acid-digested metals showed that the concentrations were the lowest in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian continent, the concentrations of water-soluble chemical components and acid-digested metals were much higher compared to the other directions, suggesting long-range transport of air pollutants from Asian continent. Also, when the air mass came from Asian continent (75-100% dominant), the mean concentrations of non-sea salt sulfate and nitrate increased ca. 1.8 times and ca. 3.7 times, respectively between 2005 and 2010, and the ratio of nitrate to

  20. Exposure to carbon monoxide, fine particle mass, and ultrafine particle number in Jakarta, Indonesia: effect of commute mode.

    Science.gov (United States)

    Both, Adam F; Westerdahl, Dane; Fruin, Scott; Haryanto, Budi; Marshall, Julian D

    2013-01-15

    We measured real-time exposure to PM(2.5), ultrafine PM (particle number) and carbon monoxide (CO) for commuting workers school children, and traffic police, in Jakarta, Indonesia. In total, we measured exposures for 36 individuals covering 93 days. Commuters in private cars experienced mean (st dev) exposures of 22 (9.4) ppm CO, 91 (38) μg/m(3)PM(2.5), and 290 (150)×10(3) particles cm(-3). Mean concentrations were higher in public transport than in private cars for PM(2.5) (difference in means: 22%) and particle counts (54%), but not CO, likely reflecting in-vehicle particle losses in private cars owing to air-conditioning. However, average commute times were longer for private car commuters than public transport commuters (in our sample, 24% longer: 3.0 vs. 2.3 h per day). Commute and traffic-related exposures experienced by Jakarta residents are among the highest in the world, owing to high on-road concentrations and multi-hour commutes. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Two-Step Single Particle Mass Spectrometry for On-Line Monitoring of Polycyclic Aromatic Hydrocarbons Bound to Ambient Fine Particulate Matter

    Science.gov (United States)

    Zimmermann, R.; Bente, M.; Sklorz, M.

    2007-12-01

    Polycyclic aromatic hydrocarbons (PAH) are formed as trace products in combustion processes and are emitted to the atmosphere. Larger PAH have low vapour pressure and are predominantly bound to the ambient fine particulate matter (PM). Upon inhalation, PAH show both, chronic human toxicity (i.e. many PAH are potent carcinogens) as well as acute human toxicity (i.e. inflammatory effects due to oxi-dative stress) and are discussed to be relevant for the observed health effect of ambient PM. Therefore a better understanding of the occurrence, dynamics and particle size dependence of particle bound-PAH is of great interest. On-line aerosol mass spectrometry in principle is the method of choice to investigate the size resolved changes in the chemical speciation of particles as well the status of internal vs. external mixing of chemical constituents. However the present available aerosol mass spectrometers (ATOFMS and AMS) do not allow detection of PAH from ambient air PM. In order to allow a single particle based monitoring of PAH from ambient PM a new single particle laser ionisation mass spectrometer was built and applied. The system is based on ATOFMS principle but uses a two- step photo-ionization. A tracked and sized particle firstly is laser desorbed (LD) by a IR-laser pulse (CO2-laser, λ=10.2 μm) and subsequently the released PAH are selectively ionized by an intense UV-laser pulse (ArF excimer, λ=248 nm) in a resonance enhanced multiphoton ionisation process (REMPI). The PAH-ions are detected in a time of flight mass spectrometer (TOFMS). A virtual impactor enrichment unit is used to increase the detection frequency of the ambient particles. With the current inlet system particles from about 400 nm to 10 μm are accessible. Single particle based temporal profiles of PAH containing particles ion (size distribution and PAH speciation) have been recorded in Oberschleissheim, Germany from ambient air. Furthermore profiles of relevant emission sources (e

  2. The classical centre-of-mass separation for two particles in a homogeneous magnetic field

    International Nuclear Information System (INIS)

    Dickinson, A.S.; Patterson, J.M.

    1986-01-01

    The authors investigate classically the problem of the centre-of-mass separation for a two-body system with net charge in a homogeneous magnetic field. Particular attention is paid to the case where one particle is much heavier than the other. Alternative momenta involving a suggested near-constant of the motion are investigated for use with a translation-invariant internal potential. These lead to a 'near separation' in terms of two coupled particles characterised by vectors which possess a simple classical interpretation, even in the presence of an interaction potential. However it is found that the coupling is not small and is not reduced when one of the particles is much heavier than the other, although the frequencies of the two motions then differ widely. (author)

  3. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors

    Directory of Open Access Journals (Sweden)

    Jian Li

    2015-12-01

    Full Text Available The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within −3%–8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.

  4. Chemical effect on total mass attenuation coefficients of V, Cr, Mn, Co and Ni

    International Nuclear Information System (INIS)

    Soeguet, Oe.; Colak, S.; Bueyuekkasap, E.; Kuecuekoender, A.

    2002-01-01

    Detailed interpretation of data obtained from X-ray transmission measurements usually depends on the assumption that the contribution of each element is additive. This assumption yields the mixture rule for X-ray attenuation coefficients which is valid if molecular and chemical effects are negligible. Total mass attenuation coefficients of V, Cr, Mn, Co and Ni in various their compounds was measured. Absorption corrections were carried on data for ligands in the compounds. It was found that V, Cr, Mn, Co and Ni had different total mass attenuation coefficients in the different compounds. Results were compared with theoretical values of HUBBELL and SELTZER. (author)

  5. Effects of intraparticle heat and mass transfer during devolatilization of a single coal particle

    NARCIS (Netherlands)

    Bliek, A.; Poelje, W.M.; van Swaaij, Willibrordus Petrus Maria; van Beckum, F.P.H.

    1985-01-01

    The objective of the present work is to elucidate the influence of intraparticle mass and heat transfer phenomena on the overall rate and product yields during devolatilization of a single coal particle in an inert atmosphere. To this end a mathematical model has been formulated which covers

  6. Measurement of the atmospheric aerosol particle size distribution in a highly polluted mega-city in Southeast Asia (Dhaka-Bangladesh)

    Science.gov (United States)

    Salam, Abdus; Mamoon, Hassan Al; Ullah, Md. Basir; Ullah, Shah M.

    2012-11-01

    Aerosol particle size distribution was measured with an aerodynamic particle sizer (APS) spectrometer continuously from January 21 to April 24, 2006 in Dhaka, Bangladesh. Particles number, surface and mass distributions data were stored automatically with Aerosol Instrument Manager (AIM) software on average every half an hour in a computer attached to the APS. The grand total average of number, surface and mass concentrations were 8.2 × 103 ± 7.8 × 103 particles cm-3, 13.3 × 103 ± 11.8 × 103 μm2 cm-3 and 3.04 ± 2.10 mg m-3, respectively. Fine particles with diameter smaller than 1.0 μm aerodynamic diameter (AD) dominated the number concentration, accounted for 91.7% of the total particles indicating vehicular emissions were dominating in Dhaka air either from fossil fuel burning or compressed natural gas (CNGs). The surface and mass concentrations between 0.5 and 1.0 μm AD were about 56.0% and 26.4% of the total particles, respectively. Remarkable seasonal differences were observed between winter and pre-monsoon seasons with the highest monthly average in January and the lowest in April. Aerosol particles in winter were 3.79 times higher for number, 3.15 times for surface and 2.18 times for mass distributions than during the pre-monsoon season. Weekends had lower concentrations than weekdays due to less vehicular traffic in the streets. Aerosol particles concentrations were about 15.0% (ranging from 9.4% to 17.3%) higher during traffic peak hours (6:00am-8:00pm) than off hours (8:00pm-6:00am). These are the first aerosol size distribution measurements with respect to number, surface and mass concentrations in real time at Dhaka, Bangladesh.

  7. [Relationship between atmospheric particles and rain water chemistry character].

    Science.gov (United States)

    Huo, Ming-Qun; Sun, Qian; Xie, Peng; Bai, Yu-Hua; Liu, Zhao-Rong; Li, Ji-Long; Lu, Si-Hua

    2009-11-01

    Rain and atmospheric particle samples were collected in the rural area of Taian and Shenzhen in 2007, respectively. Rain sampling was carried out during the precipitation process and several samples were got from the beginning of one precipitation to the end. The chemical character changes during precipitation and the changes of concentration of particles before and after rain were studied in this research to understand the contribution of particles on the rain chemical character and the rain-out effect for particles. The volume-weighted mean pH of rainwater in Taian was 5.97 and the total concentration of ions was 1 187.96 microeq x L(-1). The mass concentration of PM10 in Taian was 131.76 microg/m3 and that of PM2.5 was 103.84 microg/m3. The volume-weighted mean pH of rainwater in Shenzhen was 4.72 and the total concentration of ions was 175.89 microeq x L(-1). The mass concentration of PM10 in Shenzhen was 56.66 microg/m3 and that of PM2.5 was 41.52 microg/m3. During precipitation process pH and ion concentration of rain decrease and it is shown the neutralizing effect happens. The difference between rainwater of Taian and Shenzhen is due to cloud water acidity, atmospheric particles character and atmospheric acid-basic gases concentration. The clean-up effect of Na+ and Ca2+ by rain is high and which of NH4+ and NO3- is low. The clean-up effect for mass concentration, ions concentration and element concentration of particles by rain are significant.

  8. Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    Science.gov (United States)

    Lewis, K. A.; Arnott, W. P.; Moosmüller, H.; Chakrabarty, R. K.; Carrico, C. M.; Kreidenweis, S. M.; Day, D. E.; Malm, W. C.; Laskin, A.; Jimenez, J. L.; Ulbrich, I. M.; Huffman, J. A.; Onasch, T. B.; Trimborn, A.; Liu, L.; Mishchenko, M. I.

    2009-11-01

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used were Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients revealed a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: (1) shielding of inner monomers after particle consolidation or collapse with water uptake; (2) the lower case contribution of mass transfer through evaporation and condensation at high relative humidity (RH) to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  9. Reduction in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    Energy Technology Data Exchange (ETDEWEB)

    lewis, Kristen A.; Arnott, W. P.; Moosmuller, H.; Chakrabarti, Raj; Carrico, Christian M.; Kreidenweis, Sonia M.; Day, Derek E.; Malm, William C.; Laskin, Alexander; Jimenez, Jose L.; Ulbrich, Ingrid M.; Huffman, John A.; Onasch, Timothy B.; Trimborn, Achim; Liu, Li; Mishchenko, M.

    2009-11-27

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  10. Total cholesterol in serum determined by isotope dilution/mass spectrometry, with liquid-chromatographic separation

    International Nuclear Information System (INIS)

    Takatsu, Akiko; Nishi, Sueo

    1988-01-01

    We describe an accurate, precise method for determination of total serum cholesterol by isotope dilution/mass spectrometry (IDMS) with liquid chromatographic separation. After adding [3,4- 13 C] cholesterol to serum and hydrolyzing the cholesterol esters, we extract the total cholesterol. High-performance liquid chromatography (HPLC) is used to separate the extracted cholesterol for measurement by electron-impact mass spectrometry with use of a direct-insertion device. To evaluate the specificity and the accuracy of this method, we also studied the conventional IDMS method, which involves converting cholesterol to the trimethylsilyl ether and assay by gas chromatography-mass spectrometry with use of a capillary column. The coefficient of variation for the HPLC method was a little larger than for the conventional method, but mean values by each method agreed within 1% for all sera tested. (author)

  11. Size-resolved particle emission factors for individual ships

    Science.gov (United States)

    Jonsson, Åsa M.; Westerlund, Jonathan; Hallquist, Mattias

    2011-07-01

    In these experiments size-resolved emission factors for particle number (EFPN) and mass (EFPM) have been determined for 734 individual ship passages for real-world dilution. The method used is an extractive sampling method of the passing ship plumes where particle number/mass and CO2 were measured with high time resolution (1 Hz). The measurements were conducted on a small island located in the entrance to the port of Gothenburg (N57.6849, E11.838), the largest harbor in Scandinavia. This is an emission control area (ECA) and in close vicinity to populated areas. The average EFPN and EFPM were 2.55 ± 0.11 × 1016 (kg fuel)-1 and 2050 ± 110 mg (kg fuel)-1, respectively. The determined EF for ships with multiple passages showed a great reproducibility. Size-resolved EFPN were peaking at small particle sizes ˜35 nm. Smaller particle sizes and hence less mass were observed by a gas turbine equipped ship compared to diesel engine equipped ships. On average 36 to 46% of the emitted particles by number were non-volatile and 24% by mass (EFPN 1.16 ± 0.19 × 1016 [kg fuel]-1 and EFPM 488 ± 73 mg [kg fuel]-1, respectively). This study shows a great potential to gain large data-sets regarding ship emission determining parameters that can improve current dispersion modeling for health assessments on local and regional scales. The global contributions of total and non-volatile particle mass from shipping using this extensive data-set from an ECA were estimated to be at least 0.80 Tgy-1 and 0.19 Tgy-1.

  12. A mass transfer based variable porosity model with particle radius change for a Lithium-ion battery

    International Nuclear Information System (INIS)

    Ashwin, T.R.; McGordon, A.; Jennings, P.A.

    2017-01-01

    Highlights: • Mass transfer based model to calculate the porosity variation and radius change. • Can be used with any model that calculates Lithium concentration in electrolyte. • Considers SEI as a mass deposition rather than simply an internal resistance. • Brings more accuracy to the volume specific area and the Butler-Volmer kinetics • Practical applicability in pre-lithiation, lithium plating and stress calculation. - Abstract: Micro pore-clogging in the electrodes due to SEI growth and other side reactions can cause adverse effects on the performance of a Lithium-ion battery. The fundamental problem of volume fraction variation and particle radius change during the charge-discharge process in a lithium-ion battery is modelled in this paper with the help of mass transfer based formulation and demonstrated on a battery with LiCoO_2 chemistry. The model can handle the volume fraction change due to intercalation reaction, solvent reduction side reaction and the electrolyte density change due to side reaction contamination in the battery. The entire calculation presented in this paper models particle radius and volume fraction together and therefore gives greater accuracy in calculating the volume-specific-area of the reacting particles which is an important parameter controlling the Butler-Volmer kinetics. The mass deposit on the electrode (or loss of lithium) gives an indication of the amount of pre-lithiation required to maintain cell performance while the amount of mass deposited on the SEI helps to decide the safe operating condition for which the clogging of pores and capacity fade will be minimal. Moreover the model presented in this paper has wide applicability in analysing the stress development inside the battery due to irreversible porous filling.

  13. Investigation of mass and energy coupling between soot particles and gas species in modelling ethylene counterflow diffusion flames

    NARCIS (Netherlands)

    Zimmer, L.; Pereira, F.M.; van Oijen, J.A.; de Goey, L.P.H.

    2017-01-01

    A numerical model is developed aiming at investigating soot formation in ethylene counterflow diffusion flames. The mass and energy coupling between soot solid particles and gas-phase species is investigated in detail. A semi-empirical two-equation model is chosen for predicting soot mass fraction

  14. In situ chemical composition measurement of individual cloud residue particles at a mountain site, southern China

    Directory of Open Access Journals (Sweden)

    Q. Lin

    2017-07-01

    Full Text Available To investigate how atmospheric aerosol particles interact with chemical composition of cloud droplets, a ground-based counterflow virtual impactor (GCVI coupled with a real-time single-particle aerosol mass spectrometer (SPAMS was used to assess the chemical composition and mixing state of individual cloud residue particles in the Nanling Mountains (1690 m a. s. l. , southern China, in January 2016. The cloud residues were classified into nine particle types: aged elemental carbon (EC, potassium-rich (K-rich, amine, dust, Pb, Fe, organic carbon (OC, sodium-rich (Na-rich and Other. The largest fraction of the total cloud residues was the aged EC type (49.3 %, followed by the K-rich type (33.9 %. Abundant aged EC cloud residues that mixed internally with inorganic salts were found in air masses from northerly polluted areas. The number fraction (NF of the K-rich cloud residues increased within southwesterly air masses from fire activities in Southeast Asia. When air masses changed from northerly polluted areas to southwesterly ocean and livestock areas, the amine particles increased from 0.2 to 15.1 % of the total cloud residues. The dust, Fe, Pb, Na-rich and OC particle types had a low contribution (0.5–4.1 % to the total cloud residues. Higher fraction of nitrate (88–89 % was found in the dust and Na-rich cloud residues relative to sulfate (41–42 % and ammonium (15–23 %. Higher intensity of nitrate was found in the cloud residues relative to the ambient particles. Compared with nonactivated particles, nitrate intensity decreased in all cloud residues except for dust type. To our knowledge, this study is the first report on in situ observation of the chemical composition and mixing state of individual cloud residue particles in China.

  15. Total and Lower Extremity Lean Mass Percentage Positively Correlates With Jump Performance.

    Science.gov (United States)

    Stephenson, Mitchell L; Smith, Derek T; Heinbaugh, Erika M; Moynes, Rebecca C; Rockey, Shawn S; Thomas, Joi J; Dai, Boyi

    2015-08-01

    Strength and power have been identified as valuable components in both athletic performance and daily function. A major component of strength and power is the muscle mass, which can be assessed with dual-energy x-ray absorptiometry (DXA). The primary purpose of this study was to quantify the relationship between total body lean mass percentage (TBLM%) and lower extremity lean mass percentage (LELM%) and lower extremity force/power production during a countermovement jump (CMJ) in a general population. Researchers performed a DXA analysis on 40 younger participants aged 18-35 years, 28 middle-aged participants aged 36-55 years, and 34 older participants aged 56-75 years. Participants performed 3 CMJ on force platforms. Correlations revealed significant and strong relationships between TBLM% and LELM% compared with CMJ normalized peak vertical ground reaction force (p lean mass percentages. The findings have implications in including DXA-assessed lean mass percentage as a component for evaluating lower extremity strength and power. A paired DXA analysis and CMJ jump test may be useful for identifying neuromuscular deficits that limit performance.

  16. Development of an ash particle deposition model considering build-up and removal mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Strandstroem, Kjell; Mueller, Christian; Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Biskopsgatan 8, FI-20500 Aabo (Finland)

    2007-12-15

    Slagging and fouling on heat exchanger surfaces in power boilers fired with fossil fuels and fuel mixtures has a significant influence on boiler efficiency and availability. Mathematical modelling is since long considered a suitable method to assist boiler operators to determine optimized operating conditions for an existing furnace. The ultimate goal in ash deposition prediction is hereby the determination of the total amount of material deposited and hence the determination of the total reduction in efficiency. Depending on the fuels fired the total deposited mass is a combination of ash particle deposition and ash particle erosion due to non-sticky particles. The novel ash particle deposition model presented in this work considers deposition of sticky ash particles, cleansing of deposit by non-sticky sand particles and sticking of sand due to contact with sticky ash. The steady-state modelling results for the total amount of ash deposited on the deposition probe of an entrained flow reactor presented in this work agree well with the experimental data. Only at very high fractions of sand added as non-sticky material, a significant influence of the sand on the overall mass deposited was found. Since the model considers sticking of non-sticking sand due to contact with sticky ash, the fraction of sand deposited on the probe was especially studied. Using a correction factor to consider the influence of operating time on the steady-state simulations led to good agreement between simulations and experimental data. (author)

  17. Development of an ash particle deposition model considering build-up and removal mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Kjell Strandstroem; Christian Muellera; Mikko Hupa [Abo Akademi Process Chemistry Centre, Abo (Finland)

    2007-12-15

    Slagging and fouling on heat exchanger surfaces in power boilers fired with fossil fuels and fuel mixtures has a significant influence on boiler efficiency and availability. Mathematical modelling has long been considered a suitable method to assist boiler operators to determine optimized operating conditions for an existing furnace. The ultimate goal in ash deposition prediction is hereby the determination of the total amount of material deposited and hence the determination of the total reduction in efficiency. Depending on the fuels fired the total deposited mass is a combination of ash particle deposition and ash particle erosion due to non-sticky particles. The novel ash particle deposition model presented in this work considers deposition of sticky ash particles, cleansing of deposit by non-sticky sand particles and sticking of sand due to contact with sticky ash. The steady-state modelling results for the total amount of ash deposited on the deposition probe of an entrained flow reactor presented in this work agree well with the experimental data. Only at very high fractions of sand added as non-sticky material, a significant influence of the sand on the overall mass deposited was found. Since the model considers sticking of non-sticking sand due to contact with sticky ash, the fraction of sand deposited on the probe was especially studied. Using a correction factor to consider the influence of operating time on the steady-state simulations led to good agreement between simulations and experimental data. 12 refs., 10 figs.

  18. Improvements in in-situ filter test methods using a total light-scattering detector

    International Nuclear Information System (INIS)

    Marshall, M.; Stevens, D.C.

    1986-01-01

    This paper presents research aimed at providing useful data on a commonly used technique; a DOP (di-2-ethylhexyl phthalate) aerosol and a total light-scattering photometer. Methods of increasing the sensitivity of this technique are described. Alternative methods of in-situ filter testing are also considered. The sensitivity of a typical, modern, total light-scattering photometer, as a function of particle diameter, has a broad maximum in mass terms between 0.1 and 0.4 um. At its maximum usable sensitivity the instrument can detect approx. 1 particle/cm 3 . This response can be explained by light scattering theory and particle loss in the instrument inlet. The mass median diameter of the aerosols produced by various DOP generators varies from 0.2 to 1.0μm. Experiments with good quality HEPA filters indicate a maximum penetration for particles of 0.15 - 0.2μm. Details of the studies are given and the consequences discussed. It is shown that filter penetration of -3 % can be measured in-situ with existing equipment. Methods of extending the sensitivity to measure a penetration of approx.10 -5 % are described. (author)

  19. Search for a neutral particle of mass 33.9 MeV in pion decay

    Energy Technology Data Exchange (ETDEWEB)

    Daum, M [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    We have measured the muon momentum distribution in charged pion decay in flight in order to search for a small branching fraction {eta} of pion decays {pi}{sup +}{yields}{mu}{sup +} 1 X, in which a heavy neutral particle X with a mass of 33.9 MeV would be emitted. Such a particle was postulated by the KARMEN collaboration as a possible explanation for an anomaly in their time-of-flight spectrum. In a first experiment we found an upper limit of {eta}{<=}2.6.10{sup -8} at a confidence level of 95%. (author) 4 figs., 9 refs.

  20. Laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF): performance, reference spectra and classification of atmospheric samples

    Science.gov (United States)

    Shen, Xiaoli; Ramisetty, Ramakrishna; Mohr, Claudia; Huang, Wei; Leisner, Thomas; Saathoff, Harald

    2018-04-01

    The laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF, AeroMegt GmbH) is able to identify the chemical composition and mixing state of individual aerosol particles, and thus is a tool for elucidating their impacts on human health, visibility, ecosystem, and climate. The overall detection efficiency (ODE) of the instrument we use was determined to range from ˜ (0.01 ± 0.01) to ˜ (4.23 ± 2.36) % for polystyrene latex (PSL) in the size range of 200 to 2000 nm, ˜ (0.44 ± 0.19) to ˜ (6.57 ± 2.38) % for ammonium nitrate (NH4NO3), and ˜ (0.14 ± 0.02) to ˜ (1.46 ± 0.08) % for sodium chloride (NaCl) particles in the size range of 300 to 1000 nm. Reference mass spectra of 32 different particle types relevant for atmospheric aerosol (e.g. pure compounds NH4NO3, K2SO4, NaCl, oxalic acid, pinic acid, and pinonic acid; internal mixtures of e.g. salts, secondary organic aerosol, and metallic core-organic shell particles; more complex particles such as soot and dust particles) were determined. Our results show that internally mixed aerosol particles can result in spectra with new clusters of ions, rather than simply a combination of the spectra from the single components. An exemplary 1-day ambient data set was analysed by both classical fuzzy clustering and a reference-spectra-based classification method. Resulting identified particle types were generally well correlated. We show how a combination of both methods can greatly improve the interpretation of single-particle data in field measurements.

  1. Evaluation of methods for the physical characterization of the fine particle emissions from two residential wood combustion appliances

    Science.gov (United States)

    Kinsey, John S.; Kariher, Peter H.; Dong, Yuanji

    The fine particle emissions from a U. S. certified non-catalytic wood stove and a zero-clearance fireplace burning Quercus rubra L. (northern red oak) and Pseudotsuga menziesii (Douglas fir) cordwood each at two different moisture levels were determined. Emission testing was performed using both time-integrated and continuous instrumentation for total particle mass, particle number, particle size distribution, and fixed combustion gases using an atmospheric wind tunnel, full-flow laboratory dilution tunnel, and dilution stack sampler with a comparison made between the three dilution systems and two sampling filter types. The total mass emission factors (EFs) for all dilution systems and filter media are extremely variable ranging from fireplace emissions burning wet oak averaged 11 g kg -1. A substantial number of ultrafine particles in the accumulation size range were also observed during all tests as determined by an Electrical Low Pressure Impactor (ELPI) and Scanning Mobility Particle Sizer. The PM-2.5 (particles ≤2.5 μm in aerodynamic diameter) fractions determined from the ELPI electrometer data ranged from 93 to 98% (mass) depending on appliance type as reported previously by Hays et al. (Aerosol Science, 34, 1061, 2003).

  2. Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    Directory of Open Access Journals (Sweden)

    L. Liu

    2009-11-01

    Full Text Available Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used were Montana ponderosa pine (Pinus ponderosa, southern California chamise (Adenostoma fasciculatum, and Florida saw palmetto (Serenoa repens. Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients revealed a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: (1 shielding of inner monomers after particle consolidation or collapse with water uptake; (2 the lower case contribution of mass transfer through evaporation and condensation at high relative humidity (RH to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  3. Microphysical processing of aerosol particles in orographic clouds

    Science.gov (United States)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-08-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases

  4. A NEW MEASUREMENT OF THE W BOSON MASS FROM CDF

    CERN Multimedia

    Ashutosh Kotwal

    CDF has measured the W boson mass using approx. 200pb-1 of data collected at  s = 1.96 TeV. The preliminary result mW = 80.413 ± 0.034(stat) ± 0.034(syst) GeV supports and strengthens the hypothesis of a light Higgs boson, based on the global electroweak fit in the standard model framework. The total measurement uncertainty of 48 MeV makes this result the most precise single measurement of the W boson mass to date. The mass of the W boson is a very interesting quantity. Experimentally, it can be measured precisely because of the two-body decay of the W boson into a charged lepton and a neutrino. Theoretically, it receives self-energy corrections due to vacuum fluctuations involving virtual particles. Thus the W boson mass probes the particle spectrum in nature, including those particles that have yet to be observed directly. The hypothetical particle of most immediate interest is the Higgs boson, representing the quantum of the Higgs field that spontaneously acquires a vacuu...

  5. Limits on the Masses of Supersymmetric Particles at $\\sqrt{s}$=189 GeV

    CERN Document Server

    Abreu, P.; Adye, T.; Adzic, P.; Azhinenko, I.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, D.Yu.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Beilliere, P.; Belokopytov, Yu.; Benekos, N.C.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Bilenky, Mikhail S.; Bizouard, M.A.; Bloch, D.; Blom, H.M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bourdarios, C.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Bracko, M.; Branchini, P.; Brenner, R.A.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buran, T.; Buschbeck, B.; Buschmann, P.; Cabrera, S.; Caccia, M.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Charpentier, P.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Shlyapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Costa, M.; Crawley, H.B.; Crennell, D.; Crosetti, G.; Cuevas Maestro, J.; Czellar, S.; D'Hondt, J.; Dalmau, J.; Davenport, M.; Da Silva, W.; Della Ricca, G.; Delpierre, P.; Demaria, N.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Dolbeau, J.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Engel, J.P.; Espirito Santo, M.C.; Fanourakis, G.K.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferrer-Ribas, E.; Ferro, F.; Firestone, A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Galloni, A.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Geralis, T.; Gerdyukov, L.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Gouz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Gris, P.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Hansen, J.; Harris, F.J.; Hauler, F.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Huber, M.; Hughes, G.J.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Janik, R.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Jeans, D.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Jungermann, L.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Khokhlov, Yu.A.; Khomenko, B.A.; Khovansky, N.N.; Kiiskinen, A.; King, B.J.; Kinvig, A.; Kjaer, N.J.; Klapp, O.; Kluit, P.; Kokkinias, P.; Kostyukhin, V.; Kourkoumelis, C.; Kuznetsov, O.; Krammer, M.; Kriznic, E.; Krumshtein, Z.; Kubinec, P.; Kurowska, J.; Kurvinen, K.; Lamsa, J.W.; Lane, D.W.; Laugier, J.P.; Lauhakangas, R.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leisos, A.; Leitner, R.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lippi, I.; Lorstad, B.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Maltezos, S.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Marti i Garcia, S.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; McPherson, G.; Merle, E.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjornmark, U.; Moa, T.; Moch, M.; Moller, Rasmus; Monig, Klaus; Monge, M.R.; Moraes, D.; Morettini, P.; Morton, G.; Muller, U.; Munich, K.; Mulders, M.; Mulet-Marquis, C.; Mundim, L.M.; Muresan, R.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Naraghi, F.; Nassiakou, M.; Navarria, F.L.; Nawrocki, K.; Negri, P.; Neufeld, N.; Nicolaidou, R.; Nielsen, B.S.; Niezurawski, P.; Nikolenko, M.; Nomokonov, V.; Nygren, A.; Obraztsov, V.F.; Olshevsky, A.G.; Onofre, A.; Orava, R.; Orazi, G.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Pavel, T.; Pegoraro, M.; Peralta, L.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdnyakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Rames, J.; Ratoff, P.N.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Rehn, J.; Reid, D.; Reinertsen, P.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Ripp-Baudot, Isabelle; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovsky, A.; Sajot, G.; Salt, J.; Sampsonidis, D.; Sannino, M.; Savoy-Navarro, A.; Schwemling, P.; Schwering, B.; Schwickerath, U.; Scuri, Fabrizio; Seager, P.; Sedykh, Yu.; Segar, A.M.; Seibert, N.; Sekulin, R.; Sette, G.; Shellard, R.C.; Siebel, M.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Smadja, G.; Smirnov, N.; Smirnova, O.; Smith, G.R.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassoff, T.; Spiriti, E.; Squarcia, S.; Stanescu, C.; Stanitzki, M.; Stevenson, K.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli, T.; Taffard, A.; Chikilev, O.; Tegenfeldt, F.; Terranova, F.; Timmermans, Jan; Tinti, N.; Tkachev, L.G.; Tobin, M.; Todorova, S.; Tome, B.; Tonazzo, A.; Tortora, L.; Tortosa, P.; Transtromer, G.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Vander Velde, C.; Van Dam, Piet; Van Den Boeck, W.; Van Eldik, J.; Van Lysebetten, A.; Van Remortel, N.; Van Vulpen, I.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verdier, P.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zinchenko, A.; Zoller, P.; Zumerle, G.; Zupan, M.

    2000-01-01

    Searches for charginos, neutralinos and sleptons at LEP2 centre-of-mass energies from 130 GeV to 189 GeV have been used to set lower limits on the mass of the Lightest Supersymmetric Particle and other supersymmetric particles within the MSSM framework. R-parity conservation has been assumed. The lightest neutralino was found to be heavier than 32.3~\\mbox{$ {\\mathrm{GeV}}/c^2$} independent of the $m_0$ value. The lightest chargino, the second-to-lightest neutralino, the next-to-heaviest neutralino, the heaviest neutralino, the sneutrino and the right-handed selectron %{\\mbox{$ {\\tilde{\\mathrm e}_R} $}} were found to be heavier than 62.4~\\mbox{$ {\\mathrm{GeV}}/c^2$}, 62.4~\\mbox{$ {\\mathrm{GeV}}/c^2$}, 99.9~\\mbox{$ {\\mathrm{GeV}}/c^2$}, 116.0~\\mbox{$ {\\mathrm{GeV}}/c^2$}, 61.0~\\mbox{$ {\\mathrm{GeV}}/c^2$}, and 87.0 GeV=c$^{2}$ , respectively. These limits do not depend on m0 or M2 and are valid for 1 $\\le tan\\beta \\le 40$, in the $\\mu$ region where the lightest neutralino is the LSP. If the sneutrino is heavier...

  6. Are particle rest masses variable: Theory and constraints from solar system experiments

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1977-01-01

    Particle rest mass variation in spacetime is considered. According to Dicke, if this is the case various null experiments indicate that all masses vary in the same way. Their variation relative to the Planck-Wheeler mass defines a universal scalar rest-mass field. We construct the relativistic dynamics for this field based on very general assumptions. In addition, we assume Einstein's equations to be valid in Planck-Wheeler units. A special case of the theory coincides with Dicke's reformulation of Brans-Dicke theory as general relativity with variable rest masses. In the general case the rest-mass field is some power r of a scalar field which obeys an ordinary scalar equation with coupling to the curvature of strength q. The r and q are the only parameters of the theory. Comparison with experiment is facilitated by recasting the theory into units in which rest masses are constant, the Planck-Wheeler mass varies, and the metric satisfies the equations of a small subset of the scalar-tensor theories of gravitation. The results of solar system experiments, usually used to test general relativity, are here used to delimit the acceptable values of r and q. We conclude that if cosmological considerations are not invoked, then the solar system experiments do not rule out the possibility of rest-mass variability. That is, there are theories which agree with all null and solar system experiments, and yet contradict the strong equivalence principle by allowing rest masses to vary relative to the Planck-Wheeler mass. We show that the field theory of the rest-mass field can be quantized and interpreted in terms of massless scalar quanta which interact very weakly with matter. This explains why they have not turned up in high-energy experiments. In future reports we shall investigate the implications of various cosmological and astrophysical data for the theory of variable rest masses. The ultimate goal is a firm decision on whether rest masses vary or not

  7. Novel fabrication techniques for low-mass composite structures in silicon particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Neal, E-mail: neal.hartman@cern.ch; Silber, Joseph; Anderssen, Eric; Garcia-Sciveres, Maurice; Gilchriese, Murdock; Johnson, Thomas; Cepeda, Mario

    2013-12-21

    The structural design of silicon-based particle detectors is governed by competing demands of reducing mass while maximizing stability and accuracy. These demands can only be met by fiber reinforced composite laminates (CFRP). As detecting sensors and electronics become lower mass, the motivation to reduce structure as a proportion of overall mass pushes modern detector structures to the lower limits of composite ply thickness, while demanding maximum stiffness. However, classical approaches to composite laminate design require symmetric laminates and flat structures, in order to minimize warping during fabrication. This constraint of symmetry in laminate design, and a “flat plate” approach to fabrication, results in more massive structures. This study presents an approach to fabricating stable and accurate, geometrically complex composite structures by bonding warped, asymmetric, but ultra-thin component laminates together in an accurate tool, achieving final overall precision normally associated with planar structures. This technique has been used to fabricate a prototype “I-beam” that supports two layers of detecting elements, while being up to 20 times stiffer and up to 30% lower mass than comparable, independent planar structures (typically known as “staves”)

  8. Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Wang

    2016-07-01

    Full Text Available In this work, the Aerodyne soot particle – aerosol mass spectrometer (SP-AMS was deployed for the first time during the spring of 2015 in urban Nanjing, a megacity in the Yangtze River Delta (YRD of China, for online characterization of the submicron aerosols (PM1. The SP-AMS enables real-time and fast quantification of refractory black carbon (rBC simultaneously with other non-refractory species (ammonium, sulfate, nitrate, chloride, and organics. The average PM1 concentration was found to be 28.2 µg m−3, with organics (45 % as the most abundant component, following by sulfate (19.3 %, nitrate (13.6 %, ammonium (11.1 %, rBC (9.7 %, and chloride (1.3 %. These PM1 species together can reconstruct ∼ 44 % of the light extinction during this campaign based on the IMPROVE method. Chemically resolved mass-based size distributions revealed that small particles especially ultrafine ones (< 100 nm vacuum aerodynamic diameter were dominated by organics and rBC, while large particles had significant contributions from secondary inorganic species. Source apportionment of organic aerosols (OA yielded four OA subcomponents, including hydrocarbon-like OA (HOA, cooking-related OA (COA, semi-volatile oxygenated OA (SV-OOA, and low-volatility oxygenated OA (LV-OOA. Overall, secondary organic aerosol (SOA, equal to the sum of SV-OOA and LV-OOA dominated the total OA mass (55.5 %, but primary organic aerosol (POA, equal to the sum of HOA and COA can outweigh SOA in the early morning and evening due to enhanced human activities. High OA concentrations were often associated with high mass fractions of POA and rBC, indicating the important role of anthropogenic emissions during heavy pollution events. The diurnal cycles of nitrate, chloride, and SV-OOA both showed good anti-correlations with air temperatures, suggesting their variations were likely driven by thermodynamic equilibria and gas-to-particle partitioning. On the other hand

  9. Operational parameters and their influence on particle-side mass transfer resistance in a packed bed bioreactor.

    Science.gov (United States)

    Hussain, Amir; Kangwa, Martin; Yumnam, Nivedita; Fernandez-Lahore, Marcelo

    2015-12-01

    The influence of internal mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; chitosan coating, flow rate, glucose concentration and particle size. Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on particle side mass transfer on substrate consumption time, lag phase and ethanol production. The results indicate that chitosan coating, beads size, glucose concentration and flow rate have a significant effect on lag phase duration. The duration of lag phase for different size of beads (0.8, 2 and 4 mm) decreases by increasing flow rate and by decreasing the size of beads. Moreover, longer lag phase were found at higher glucose medium concentration and also with chitosan coated beads. It was observed that by increasing flow rates; lag phase and glucose consumption time decreased. The reason is due to the reduction of external (fluid side) mass transfer as a result of increase in flow rate as glucose is easily transported to the surface of the beads. Varying the size of beads is an additional factor: as it reduces the internal (particle side) mass transfer by reducing the size of beads. The reason behind this is the distance for reactants to reach active site of catalyst (cells) and the thickness of fluid created layer around alginate beads is reduced. The optimum combination of parameters consisting of smaller beads size (0.8 mm), higher flow rate of 90 ml/min and glucose concentration of 10 g/l were found to be the maximum condition for ethanol production.

  10. Helium Mass Spectrometer Leak Detection: A Method to Quantify Total Measurement Uncertainty

    Science.gov (United States)

    Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    In applications where leak rates of components or systems are evaluated against a leak rate requirement, the uncertainty of the measured leak rate must be included in the reported result. However, in the helium mass spectrometer leak detection method, the sensitivity, or resolution, of the instrument is often the only component of the total measurement uncertainty noted when reporting results. To address this shortfall, a measurement uncertainty analysis method was developed that includes the leak detector unit's resolution, repeatability, hysteresis, and drift, along with the uncertainty associated with the calibration standard. In a step-wise process, the method identifies the bias and precision components of the calibration standard, the measurement correction factor (K-factor), and the leak detector unit. Together these individual contributions to error are combined and the total measurement uncertainty is determined using the root-sum-square method. It was found that the precision component contributes more to the total uncertainty than the bias component, but the bias component is not insignificant. For helium mass spectrometer leak rate tests where unit sensitivity alone is not enough, a thorough evaluation of the measurement uncertainty such as the one presented herein should be performed and reported along with the leak rate value.

  11. Genotoxic effects of daily personal exposure to particle mass and number concentrations on buccal cells

    Science.gov (United States)

    de Almeida, Daniela S.; da Costa, Silvano César; Ribeiro, Marcos; Moreira, Camila A. B.; Beal, Alexandra; Squizzato, Rafaela; Rudke, Anderson Paulo; Rafee, Sameh Adib Abou; Martins, Jorge A.; Palioto, Graciana Freitas; Kumar, Prashant; Martins, Leila D.

    2018-03-01

    The aim of this study is to assess personal exposure to Particle Number Concentrations (PNC) in four size ranges between 0.3 and 10 μm, and particulate matter (PM1; PM2.5; PM4; PM10) in order to evaluate possible genotoxic effects through a comet assay in buccal cells. A convenience cohort of 30 individuals from a Brazilian medium-sized city was selected. These individuals aged between 20 and 61 and worked in typical job categories (i.e., administrative, commerce, education, general services and transport). They were recruited to perform personal exposure measurements during their typical daily routine activities, totaling 240 h of sampling. The 8-h average mass concentrations in air for volunteers ranged from 2.4 to 31.8 μg m-3 for PM1, 4.2-45.1 μg m-3 for PM2.5, 7.9-66.1 μg m-3 for PM4 and from 23.1 to 131.7 μg m-3 for PM10. The highest PNC variation was found for 0.3-0.5 range, between 14 and 181 particles cm-3, 1 to 14 particles cm-3 for the 0.5-1.0 range, 0.2 to 2 particles cm-3 for the 1.0-2.5 range, and 0.06 to 0.7 particles cm-3 for the 2.5-10 range. Volunteers in the 'education' category experienced the lowest inhaled dose of PM2.5, as opposed to those involved in 'commercial' activities with the highest doses for PM10 (1.63 μg kg-1 h-1) and PM2.5 (0.61 μg kg-1 h-1). The predominant cause for these high doses was associated with the proximity of the workplace to the street and vehicle traffic. The comet assay performed in buccal cells indicated that the volunteers in 'commerce' category experienced the highest damage to their DeoxyriboNucleic Acid (DNA) compared with the control category (i.e. 'education'). These results indicate the variability in personal exposure of the volunteers in different groups, and the potential damage to DNA was much higher for those spending time in close proximity to the vehicle sources (e.g. commercial services) leading to exposure to a higher fraction of fine particles. This study builds understanding on the exposure

  12. Search for dark matter particle candidates production in association with a Z boson in pp collisions at center-of-mass energy of 13 TeV with the ATLAS detector

    CERN Document Server

    Basalaev, Artem; The ATLAS collaboration

    2017-01-01

    A search for dark matter particle candidates produced in association with a Z boson in proton-proton collisions at the total center-of-mass energy of 13 TeV is presented. The search uses 36.1 inverse femtobarn of data collected by the ATLAS experiment at the Large Hadron Collider in 2015 and 2016. Events with large missing transverse momentum and consistent with the decay of a Z boson into oppositely charged electron or muon pairs were selected in the analysis. Background estimates and corresponding systematic uncertainties are shown. Exclusion limits on the dark matter candidate and mediator masses are reported.

  13. Predicting mass loading as a function of pressure difference across prefilter/HEPA filter systems

    International Nuclear Information System (INIS)

    Novick, V.J.; Klassen, J.F.; Monson, P.R.

    1992-01-01

    The purpose of this work is to develop a methodology for predicting the mass loading and pressure drop effects on a prefilter/ HEPA filter system. The methodology relies on the use of empirical equations for the specific resistance of the aerosol loaded filter as a function of the particle diameter. These correlations relate the pressure difference across a filter to the mass loading on the filter and accounts for aerosol particle density effects. These predictions are necessary for the efficient design of new filtration systems and for risk assessment studies of existing filter systems. This work specifically addresses the prefilter/HEPA filter Airborne Activity Confinement Systems (AACS) at the Savannah River Plant. In order to determine the mass loading on the system, it is necessary to establish the efficiency characteristics for the prefilter, the mass loading characteristics of the prefilter measured as a function of pressure difference across the prefilter, and the mass loading characteristics of the HEPA filter as a function of pressure difference across the filter. Furthermore, the efficiency and mass loading characteristics need to be determined as a function of the aerosol particle diameter. A review of the literature revealed that no previous work had been performed to characterize the prefilter material of interest. In order to complete the foundation of information necessary to predict total mass loadings on prefilter/HEPA filter systems, it was necessary to determine the prefilter efficiency and mass loading characteristics. The measured prefilter characteristics combined with the previously determined HEPA filter characteristics allowed the resulting pressure difference across both filters to be predicted as a function of total particle mass for a given particle distribution. These predictions compare favorably to experimental measurements (±25%)

  14. Feasibility study of the single particle analysis of uranium by laser ionization time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Ha, Yeong Keong; Han, Sun Ho; Pyo, Hyung Yeol; Park, Yong Joon; Song, Kyu Seok

    2004-01-01

    The control of activities in nuclear facilities worldwide is one of the most important tasks of nuclear safeguard. To meet the needs for nuclear safeguard, International Atomic Energy Agency (IAEA) strengthened the control of nuclear activities to detect these activities earlier. Thus, it is very important to develop analytical techniques to determine the isotopic composition of hot particles from swipe samples. The precise measurement of the 234 U/ 238 U, 235 U/ 238 U and 236 U/ 238 U ratios is important because it provides information about the initial enrichment of reactor uranium, core history, and post accident story. Because conventional α-spectrometry is not sufficiently sensitive for the determination of long-lived radionuclides in environmental samples, several analytical techniques, such as SNMS (Sputtered Neutral Mass Spectrometry), RIMS (Resonance Ionization Mass Spectrometry), AMS (Accelerator Mass Spectrometry) etc., have been proposed for uranium isotope measurements. In case of microparticles, analytical techniques such as SIMS (Secondary Ion Mass Spectrometry) have been applied for the isotopic characterization. The aim of this work was the development of a sensitive analytical technique for determination of isotopic ratio of uranium in swipe samples. In this work, feasibility of LIMS (Laser Ionization Mass Spectrometry) for the determination of such particles has been evaluated using a reference material of natural uranium

  15. Ice particle mass-dimensional parameter retrieval and uncertainty analysis using an Optimal Estimation framework applied to in situ data

    Science.gov (United States)

    Xu, Zhuocan; Mace, Jay; Avalone, Linnea; Wang, Zhien

    2015-04-01

    The extreme variability of ice particle habits in precipitating clouds affects our understanding of these cloud systems in every aspect (i.e. radiation transfer, dynamics, precipitation rate, etc) and largely contributes to the uncertainties in the model representation of related processes. Ice particle mass-dimensional power law relationships, M=a*(D ^ b), are commonly assumed in models and retrieval algorithms, while very little knowledge exists regarding the uncertainties of these M-D parameters in real-world situations. In this study, we apply Optimal Estimation (OE) methodology to infer ice particle mass-dimensional relationship from ice particle size distributions and bulk water contents independently measured on board the University of Wyoming King Air during the Colorado Airborne Multi-Phase Cloud Study (CAMPS). We also utilize W-band radar reflectivity obtained on the same platform (King Air) offering a further constraint to this ill-posed problem (Heymsfield et al. 2010). In addition to the values of retrieved M-D parameters, the associated uncertainties are conveniently acquired in the OE framework, within the limitations of assumed Gaussian statistics. We find, given the constraints provided by the bulk water measurement and in situ radar reflectivity, that the relative uncertainty of mass-dimensional power law prefactor (a) is approximately 80% and the relative uncertainty of exponent (b) is 10-15%. With this level of uncertainty, the forward model uncertainty in radar reflectivity would be on the order of 4 dB or a factor of approximately 2.5 in ice water content. The implications of this finding are that inferences of bulk water from either remote or in situ measurements of particle spectra cannot be more certain than this when the mass-dimensional relationships are not known a priori which is almost never the case.

  16. Smashing Protons to Smithereens: Searching for the Origin of Mass Using the ATLAS Particle Detector

    International Nuclear Information System (INIS)

    Pleier, Marc-Andre

    2010-01-01

    During a free and public talk, Marc-Andre Pleier, a physicist at the U.S. Department of Energy's Brookhaven National Laboratory, will discuss the extraordinary research taking place at the Large Hadron Collider (LHC) - the world's newest, biggest, and highest energy particle accelerator located at CERN, the European physics lab in Switzerland. On March 30, 2010, the Large Hadron Collider launched a new era of particle physics by colliding protons at an energy that's three-and-a-half times greater than has ever been achieved. Smashing such high-energy protons to smithereens is providing the LHC's four particle detectors - including ATLAS - with lots of data to analyze in their search for the Higgs boson and other new physics phenomena. The goal of this particle smashing is to answer fundamental questions about the origin of mass, the nature of dark matter, and the earliest moments of the universe.

  17. Laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF: performance, reference spectra and classification of atmospheric samples

    Directory of Open Access Journals (Sweden)

    X. Shen

    2018-04-01

    Full Text Available The laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF, AeroMegt GmbH is able to identify the chemical composition and mixing state of individual aerosol particles, and thus is a tool for elucidating their impacts on human health, visibility, ecosystem, and climate. The overall detection efficiency (ODE of the instrument we use was determined to range from  ∼  (0.01 ± 0.01 to  ∼  (4.23 ± 2.36 % for polystyrene latex (PSL in the size range of 200 to 2000 nm,  ∼  (0.44 ± 0.19 to  ∼  (6.57 ± 2.38 % for ammonium nitrate (NH4NO3, and  ∼  (0.14 ± 0.02 to  ∼  (1.46 ± 0.08 % for sodium chloride (NaCl particles in the size range of 300 to 1000 nm. Reference mass spectra of 32 different particle types relevant for atmospheric aerosol (e.g. pure compounds NH4NO3, K2SO4, NaCl, oxalic acid, pinic acid, and pinonic acid; internal mixtures of e.g. salts, secondary organic aerosol, and metallic core–organic shell particles; more complex particles such as soot and dust particles were determined. Our results show that internally mixed aerosol particles can result in spectra with new clusters of ions, rather than simply a combination of the spectra from the single components. An exemplary 1-day ambient data set was analysed by both classical fuzzy clustering and a reference-spectra-based classification method. Resulting identified particle types were generally well correlated. We show how a combination of both methods can greatly improve the interpretation of single-particle data in field measurements.

  18. Aerosol trace metals, particle morphology and total gaseous mercury in the atmosphere of Oxford, UK

    Science.gov (United States)

    Witt, M. L. I.; Meheran, N.; Mather, T. A.; de Hoog, J. C. M.; Pyle, D. M.

    2010-04-01

    An investigation of atmospheric trace metals was conducted in Oxford, UK, a small city ˜60 miles northwest of London, in 2007 and 2008. Concentrations of Sr, Mo, Cd, Pb, V, Cr, Mn, Fe, Co, Ni, Cu and Zn in aerosol were measured in bulk and size segregated samples. In addition, total gaseous mercury (TGM) concentrations were monitored semi-continuously by cold vapour-atomic fluorescence spectroscopy. Metal concentrations in Oxford were intermediate between previously reported levels of UK rural and urban areas for most metals studied and levels of Cd, Ni and Pb were within European guidelines. Metal concentrations appeared to be influenced by higher traffic volume on a timescale of hours. The influence of traffic on the aerosols was also suggested by the observation of carbonaceous particles via scanning electron microscopy (SEM). Air mass back trajectories suggest air masses arriving in Oxford from London and mainland Europe contained the highest metal concentrations. Aerosol samples collected over Bonfire Weekend, a period of intense firework use and lighting of bonfires in the UK, showed metal concentrations 6-46 times higher than at other times. Strontium, a tracer of firework release, was present at higher concentrations and showed a change in its size distribution from the coarse to fine mode over Bonfire Weekend. The presence of an abundance of spherical Sr particles was also confirmed in SEM images. The average TGM concentration in Oxford was 3.17 ng m -3 (st. dev. 1.59) with values recorded between 1.32 and 23.2 ng m -3. This is a higher average value than reported from nearby rural locations, although during periods when air was arriving from the west, similar concentrations to these rural areas were seen in Oxford. Comparison to meteorological data suggests that TGM in Oxford's air is highest when wind is arriving from the east/southeast. This may be due to emissions from London/mainland Europe with a possible contribution from emissions from a local

  19. ERNE observations of energetic particles associated with Earth-directed coronal mass ejections in April and May, 1997

    Directory of Open Access Journals (Sweden)

    A. Anttila

    2000-11-01

    Full Text Available Two Earth-directed coronal mass ejections (CMEs, which were most effective in energetic (~1–50 MeV particle acceleration during the first 18 months since the Solar and Heliospheric Observatory (SOHO launch, occurred on April 7 and May 12, 1997. In the analysis of these events we have deconvoluted the injection spectrum of energetic protons by using the method described by Anttila et al. In order to apply the method developed earlier for data of a rotating satellite (Geostationary Operational Environmental Satellites, GOES, we first had to develop a method to calculate the omnidirectional energetic particle intensities from the observations of Energetic and Relativistic Nuclei and Electrons (ERNE, which is an energetic particle detector onboard the three-axis stabilized SOHO spacecraft. The omnidirectional intensities are calculated by fitting an exponential pitch angle distribution from directional information of energetic protons observed by ERNE. The results of the analysis show that, compared to a much faster and more intensive CMEs observed during the previous solar maximum, the acceleration efficiency decreases fast when the shock propagates outward from the Sun. The particles injected at distances <0.5 AU from the Sun dominate the particle flux during the whole period, when the shock propagates to the site of the spacecraft. The main portion of particles injected by the shock during its propagation further outward from the Sun are trapped around the shock, and are seen as an intensity increase at the time of the shock passage.Key words: Interplanetary physics (interplanetary shocks – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections

  20. ERNE observations of energetic particles associated with Earth-directed coronal mass ejections in April and May, 1997

    Directory of Open Access Journals (Sweden)

    A. Anttila

    Full Text Available Two Earth-directed coronal mass ejections (CMEs, which were most effective in energetic (~1–50 MeV particle acceleration during the first 18 months since the Solar and Heliospheric Observatory (SOHO launch, occurred on April 7 and May 12, 1997. In the analysis of these events we have deconvoluted the injection spectrum of energetic protons by using the method described by Anttila et al. In order to apply the method developed earlier for data of a rotating satellite (Geostationary Operational Environmental Satellites, GOES, we first had to develop a method to calculate the omnidirectional energetic particle intensities from the observations of Energetic and Relativistic Nuclei and Electrons (ERNE, which is an energetic particle detector onboard the three-axis stabilized SOHO spacecraft. The omnidirectional intensities are calculated by fitting an exponential pitch angle distribution from directional information of energetic protons observed by ERNE. The results of the analysis show that, compared to a much faster and more intensive CMEs observed during the previous solar maximum, the acceleration efficiency decreases fast when the shock propagates outward from the Sun. The particles injected at distances <0.5 AU from the Sun dominate the particle flux during the whole period, when the shock propagates to the site of the spacecraft. The main portion of particles injected by the shock during its propagation further outward from the Sun are trapped around the shock, and are seen as an intensity increase at the time of the shock passage.

    Key words: Interplanetary physics (interplanetary shocks – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections

  1. Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009: meteorology and air mass origin dominate aerosol particle composition and size distribution

    Directory of Open Access Journals (Sweden)

    F. Freutel

    2013-01-01

    Full Text Available During July 2009, a one-month measurement campaign was performed in the megacity of Paris. Amongst other measurement platforms, three stationary sites distributed over an area of 40 km in diameter in the greater Paris region enabled a detailed characterization of the aerosol particle and gas phase. Simulation results from the FLEXPART dispersion model were used to distinguish between different types of air masses sampled. It was found that the origin of air masses had a large influence on measured mass concentrations of the secondary species particulate sulphate, nitrate, ammonium, and oxygenated organic aerosol measured with the Aerodyne aerosol mass spectrometer in the submicron particle size range: particularly high concentrations of these species (about 4 μg m−3, 2 μg m−3, 2 μg m−3, and 7 μg m−3, respectively were measured when aged material was advected from continental Europe, while for air masses originating from the Atlantic, much lower mass concentrations of these species were observed (about 1 μg m−3, 0.2 μg m−3, 0.4 μg m−3, and 1–3 μg m−3, respectively. For the primary emission tracers hydrocarbon-like organic aerosol, black carbon, and NOx it was found that apart from diurnal source strength variations and proximity to emission sources, local meteorology had the largest influence on measured concentrations, with higher wind speeds leading to larger dilution and therefore smaller measured concentrations. Also the shape of particle size distributions was affected by wind speed and air mass origin. Quasi-Lagrangian measurements performed under connected flow conditions between the three stationary sites were used to estimate the influence of the Paris emission plume onto its surroundings, which was found to be rather small. Rough estimates for the impact of the Paris emission plume on the suburban areas can be

  2. Increase of Total Body Water with Decrease of Body Mass while Running 100 km Nonstop--Formation of Edema?

    Science.gov (United States)

    Knechtle, Beat; Wirth, Andrea; Knechtle, Patrizia; Rosemann, Thomas

    2009-01-01

    We investigated whether ultraendurance runners in a 100-km run suffer a decrease of body mass and whether this loss consists of fat mass, skeletal muscle mass, or total body water. Male ultrarunners were measured pre- and postrace to determine body mass, fat mass, and skeletal muscle mass by using the anthropometric method. In addition,…

  3. First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain

    Directory of Open Access Journals (Sweden)

    X. J. Shen

    2011-02-01

    Full Text Available Atmospheric particle number size distributions (size range 0.003–10 μm were measured between March 2008 and August 2009 at Shangdianzi (SDZ, a rural research station in the North China Plain. These measurements were made in an attempt to better characterize the tropospheric background aerosol in Northern China. The mean particle number concentrations of the total particle, as well as the nucleation, Aitken, accumulation and coarse mode were determined to be 1.2 ± 0.9 × 104, 3.6 ± 7.9 × 103, 4.4 ± 3.4 × 103, 3.5 ± 2.8 × 103 and 2 ± 3 cm−3, respectively. A general finding was that the particle number concentration was higher during spring compared to the other seasons. The air mass origin had an important effect on the particle number concentration and new particle formation events. Air masses from northwest (i.e. inner Asia favored the new particle formation events, while air masses from southeast showed the highest particle mass concentration. Significant diurnal variations in particle number were observed, which could be linked to new particle formation events, i.e. gas-to-particle conversion. During particle formation events, the number concentration of the nucleation mode rose up to maximum value of 104 cm−3. New particle formation events were observed on 36% of the effective measurement days. The formation rate ranged from 0.7 to 72.7 cm−3 s−1, with a mean value of 8.0 cm−3 s−1. The value of the nucleation mode growth rate was in the range of 0.3–14.5 nm h−1, with a mean value of 4.3 nm h−1. It was an essential observation that on many occasions the nucleation mode was able to grow into the size of cloud condensation nuclei (CCN within a matter of several hours. Furthermore, the new particle formation was regularly followed by a measurable increase in particle mass

  4. Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles

    International Nuclear Information System (INIS)

    Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.

    2009-01-01

    The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.

  5. Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles

    Science.gov (United States)

    Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.

    2009-12-01

    The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.

  6. Chemical composition modulates the adverse effects of particles on the mucociliary epithelium

    Directory of Open Access Journals (Sweden)

    Regiani Carvalho-Oliveira

    2015-10-01

    Full Text Available OBJECTIVE:We compared the adverse effects of two types of real ambient particles; i.e., total suspended particles from an electrostatic precipitator of a steel mill and fine air particles from an urban ambient particulate matter of 2.5 µm, on mucociliary clearance.METHOD:Mucociliary function was quantified by mucociliary transport, ciliary beating frequency and the amount of acid and neutral mucous in epithelial cells through morphometry of frog palate preparations. The palates were immersed in one of the following solutions: total suspended particles (0.1 mg/mL, particulate matter 2.5 µm 0.1 mg/mL (PM0.1 or 3.0 mg/mL (PM3.0 and amphibian Ringer’s solution (control. Particle chemical compositions were determined by X-ray fluorescence and gas chromatography/mass spectrometry.RESULTS:Exposure to total suspended particles and PM3.0 decreased mucociliary transport. Ciliary beating frequency was diminished by total suspended particles at all times during exposure, while particulate matter of 2.5 µm did not elicit changes. Particulate matter of 2.5 µm reduced epithelial mucous and epithelium thickness, while total suspended particles behaved similarly to the control group. Total suspended particles exhibited a predominance of Fe and no organic compounds, while the particulate matter 2.5 µm contained predominant amounts of S, Fe, Si and, to a lesser extent, Cu, Ni, V, Zn and organic compounds.CONCLUSION:Our results showed that different compositions of particles induced different airway epithelial responses, emphasizing that knowledge of their individual characteristics may help to establish policies aimed at controlling air pollution.

  7. Origins of mass

    Science.gov (United States)

    Wilczek, Frank

    2012-10-01

    Newtonian mechanics posited mass as a primary quality of matter, incapable of further elucidation. We now see Newtonian mass as an emergent property. That mass-concept is tremendously useful in the approximate description of baryon-dominated matter at low energy — that is, the standard "matter" of everyday life, and of most of science and engineering — but it originates in a highly contingent and non-trivial way from more basic concepts. Most of the mass of standard matter, by far, arises dynamically, from back-reaction of the color gluon fields of quantum chromodynamics (QCD). Additional quantitatively small, though physically crucial, contributions come from the intrinsic masses of elementary quanta (electrons and quarks). The equations for massless particles support extra symmetries — specifically scale, chiral, and gauge symmetries. The consistency of the standard model relies on a high degree of underlying gauge and chiral symmetry, so the observed non-zero masses of many elementary particles ( W and Z bosons, quarks, and leptons) requires spontaneous symmetry breaking. Superconductivity is a prototype for spontaneous symmetry breaking and for mass-generation, since photons acquire mass inside superconductors. A conceptually similar but more intricate form of all-pervasive ( i.e. cosmic) superconductivity, in the context of the electroweak standard model, gives us a successful, economical account of W and Z boson masses. It also allows a phenomenologically successful, though profligate, accommodation of quark and lepton masses. The new cosmic superconductivity, when implemented in a straightforward, minimal way, suggests the existence of a remarkable new particle, the so-called Higgs particle. The mass of the Higgs particle itself is not explained in the theory, but appears as a free parameter. Earlier results suggested, and recent observations at the Large Hadron Collider (LHC) may indicate, the actual existence of the Higgs particle, with mass m H

  8. Development of a totally computer-controlled triple quadrupole mass spectrometer system

    International Nuclear Information System (INIS)

    Wong, C.M.; Crawford, R.W.; Barton, V.C.; Brand, H.R.; Neufeld, K.W.; Bowman, J.E.

    1983-01-01

    A totally computer-controlled triple quadrupole mass spectrometer (TQMS) is described. It has a number of unique features not available on current commercial instruments, including: complete computer control of source and all ion axial potentials; use of dual computers for data acquisition and data processing; and capability for self-adaptive control of experiments. Furthermore, it has been possible to produce this instrument at a cost significantly below that of commercial instruments. This triple quadrupole mass spectrometer has been constructed using components commercially available from several different manufacturers. The source is a standard Hewlett-Packard 5985B GC/MS source. The two quadrupole analyzers and the quadrupole CAD region contain Balzers QMA 150 rods with Balzers QMG 511 rf controllers for the analyzers and a Balzers QHS-511 controller for the CAD region. The pulsed-positive-ion-negative-ion-chemical ionization (PPINICI) detector is made by Finnigan Corporation. The mechanical and electronics design were developed at LLNL for linking these diverse elements into a functional TQMS as described. The computer design for total control of the system is unique in that two separate LSI-11/23 minicomputers and assorted I/O peripherals and interfaces from several manufacturers are used. The evolution of this design concept from totally computer-controlled instrumentation into future self-adaptive or ''expert'' systems for instrumental analysis is described. Operational characteristics of the instrument and initial results from experiments involving the analysis of the high explosive HMX (1,3,5,7-Tetranitro-1,3,5,7-Tetrazacyclooctane) are presented

  9. Observations of linear dependence between sulfate and nitrate in atmospheric particles

    Science.gov (United States)

    Kong, Lingdong; Yang, Yiwei; Zhang, Shuanqin; Zhao, Xi; Du, Huanhuan; Fu, Hongbo; Zhang, Shicheng; Cheng, Tiantao; Yang, Xin; Chen, Jianmin; Wu, Dui; Shen, Jiandong; Hong, Shengmao; Jiao, Li

    2014-01-01

    Hourly measurements of water-soluble inorganic ionic species in ambient atmospheric particles were conducted at Shanghai, Hangzhou, and Guangzhou sampling sites in China during the period of 2009-2011. The relation between sulfate and nitrate in particulate matter (PM10 and PM2.5) was examined based on these measurements. Results showed that the mass fraction of sulfate was strongly negatively correlated with that of nitrate in atmospheric particles on most of the sampling days, especially when sulfate and nitrate made up the vast majority of the total soluble anions and cations (Na+, K+, Ca2+, and Mg2+) made a small contribution to the total water-soluble ions, revealing that the formation mechanisms of sulfate and nitrate in the atmosphere are highly correlated, and there exists a significant negative correlation trend between sulfate and nitrate mass fractions in the atmospheric particles. We found that local meteorological conditions presented opposite influences on the mass fractions of sulfate and nitrate. Further analysis indicated that the two mass fractions were modulated by the neutralizing level of atmospheric aerosols, and the negative correlation could be found in acidic atmospheric particles. Strong negative correlation was usually observed on clear days, hazy days, foggy days, and respirable particulate air pollution days, whereas poor negative correlation was often observed during cloud, rain, snow, dust storm, and suspended dust events. The results can help to better understand the formation mechanisms of atmospheric sulfate and nitrate during air pollution episodes and to better explain field results of atmospheric chemistry concerning sulfate and nitrate.

  10. Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields

    Institute of Scientific and Technical Information of China (English)

    M Eshghi; H Mehraban; S M Ikhdair

    2017-01-01

    We solve the Schr(o)dinger equation with a position-dependent mass (PDM) charged particle interacted via the superposition of the Morse-plus-Coulomb potentials and is under the influence of external magnetic and Aharonov-Bohm (AB) flux fields.The nonrelativistic bound state energies together with their wave functions are calculated for two spatially-dependent mass distribution functions.We also study the thermal quantifies of such a system.Further,the canonical formalism is used to compute various thermodynamic variables for second choosing mass by using the Gibbs formalism.We give plots for energy states as a function of various physical parameters.The behavior of the internal energy,specific heat,and entropy as functions of temperature and mass density parameter in the inverse-square mass case for different values of magnetic field are shown.

  11. Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields

    International Nuclear Information System (INIS)

    Eshghi, M; Mehraban, H; Ikhdair, S M

    2017-01-01

    We solve the Schrödinger equation with a position-dependent mass (PDM) charged particle interacted via the superposition of the Morse-plus-Coulomb potentials and is under the influence of external magnetic and Aharonov–Bohm (AB) flux fields. The nonrelativistic bound state energies together with their wave functions are calculated for two spatially-dependent mass distribution functions. We also study the thermal quantities of such a system. Further, the canonical formalism is used to compute various thermodynamic variables for second choosing mass by using the Gibbs formalism. We give plots for energy states as a function of various physical parameters. The behavior of the internal energy, specific heat, and entropy as functions of temperature and mass density parameter in the inverse-square mass case for different values of magnetic field are shown. (paper)

  12. Search for dark matter particle candidates produced in association with a Z boson in pp collisions at a center-of-mass energy of 13 TeV with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00399337; The ATLAS collaboration

    2017-01-01

    A search for dark matter particle candidates produced in association with a Z boson in proton-proton collisions at the total center-of-mass energy of 13 TeV is presented. The search uses 36.1 inverse femtobarn of data collected by the ATLAS experiment at the Large Hadron Collider in 2015 and 2016. Events with large missing transverse momentum and consistent with the decay of a Z boson into oppositely charged electron or muon pairs were selected in the analysis. Background estimates and corresponding systematic uncertainties are shown. Exclusion limits on the dark matter candidate and mediator masses are reported.

  13. Contribution of ship traffic to aerosol particle concentrations downwind of a major shipping lane

    DEFF Research Database (Denmark)

    Kivekäs, N.; Massling, Andreas; Grythe, H.

    2014-01-01

    at a remote location. We studied the particle number concentration (12 to 490 nm in diameter), the mass concentration (12 to 150 nm in diameter) and number and volume size distribution of aerosol particles in ship plumes for a period of 4.5 months at Hovsore, a coastal site on the western coast of Jutland...... in Denmark. During episodes of western winds, the site is about 50 km downwind of a major shipping lane and the plumes are approximately 1 hour old when they arrive at the site. We have used a sliding percentile-based method for separating the plumes from the measured background values and to calculate...... the ship plume contribution to the total particle number and PM0.15 mass concentration (mass of particles below 150 nm in diameter, converted from volume assuming sphericity) at the site. The method is not limited to particle number or volume concentration, but can also be used for different chemical...

  14. Bounds on the charmed particles masses from the Ksub(L) → 2μ decay width and Ksub(L)-Ksub(S) mass difference in an asymptotically free theory of strong interactions

    International Nuclear Information System (INIS)

    Vainshtein, A.I.; Zakharov, V.I.; Novikov, V.A.; Shifman, M.A.

    1975-01-01

    Bounds on the masses of charmed particles are derived from the calculation of the amplitudes of the Ksub(L) → 2μ and Ksub(L)-Ksub(S) transitions within the framework of the Weinberg-Salam model. The strong interactions are assumed to be connected with the color SU(3) group and mediated by octet of massless gluons. The account of strong interactions is shown to have almost no effect on the bound on the masses of charmed particles μsub(c). From the Ksub(L) → 2μ decay rate the upper bound on μsub(c) is μsub(c) (<=) 8 GeV, and from the Ksub(L)-Ksub(S) mass difference the bound is found to be μsub(c) (<=) 2.3 GeV

  15. Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry

    Science.gov (United States)

    Wang, Junfeng; Ge, Xinlei; Chen, Yanfang; Shen, Yafei; Zhang, Qi; Sun, Yele; Xu, Jianzhong; Ge, Shun; Yu, Huan; Chen, Mindong

    2016-07-01

    In this work, the Aerodyne soot particle - aerosol mass spectrometer (SP-AMS) was deployed for the first time during the spring of 2015 in urban Nanjing, a megacity in the Yangtze River Delta (YRD) of China, for online characterization of the submicron aerosols (PM1). The SP-AMS enables real-time and fast quantification of refractory black carbon (rBC) simultaneously with other non-refractory species (ammonium, sulfate, nitrate, chloride, and organics). The average PM1 concentration was found to be 28.2 µg m-3, with organics (45 %) as the most abundant component, following by sulfate (19.3 %), nitrate (13.6 %), ammonium (11.1 %), rBC (9.7 %), and chloride (1.3 %). These PM1 species together can reconstruct ˜ 44 % of the light extinction during this campaign based on the IMPROVE method. Chemically resolved mass-based size distributions revealed that small particles especially ultrafine ones (cooking-related OA (COA), semi-volatile oxygenated OA (SV-OOA), and low-volatility oxygenated OA (LV-OOA). Overall, secondary organic aerosol (SOA, equal to the sum of SV-OOA and LV-OOA) dominated the total OA mass (55.5 %), but primary organic aerosol (POA, equal to the sum of HOA and COA) can outweigh SOA in the early morning and evening due to enhanced human activities. High OA concentrations were often associated with high mass fractions of POA and rBC, indicating the important role of anthropogenic emissions during heavy pollution events. The diurnal cycles of nitrate, chloride, and SV-OOA both showed good anti-correlations with air temperatures, suggesting their variations were likely driven by thermodynamic equilibria and gas-to-particle partitioning. On the other hand, in contrast to other species, sulfate, and LV-OOA concentrations increased in the afternoon, and showed no positive correlations with relative humidity (RH), likely indicating the contribution from photochemical oxidation is dominant over that of aqueous-phase processing for their formations. The

  16. Total Particle Number Emissions from Modern Diesel, Natural Gas, and Hybrid Heavy-Duty Vehicles During On-Road Operation.

    Science.gov (United States)

    Wang, Tianyang; Quiros, David C; Thiruvengadam, Arvind; Pradhan, Saroj; Hu, Shaohua; Huai, Tao; Lee, Eon S; Zhu, Yifang

    2017-06-20

    Particle emissions from heavy-duty vehicles (HDVs) have significant environmental and public health impacts. This study measured total particle number emission factors (PNEFs) from six newly certified HDVs powered by diesel and compressed natural gas totaling over 6800 miles of on-road operation in California. Distance-, fuel- and work-based PNEFs were calculated for each vehicle. Distance-based PNEFs of vehicles equipped with original equipment manufacturer (OEM) diesel particulate filters (DPFs) in this study have decreased by 355-3200 times compared to a previous retrofit DPF dynamometer study. Fuel-based PNEFs were consistent with previous studies measuring plume exhaust in the ambient air. Meanwhile, on-road PNEF shows route and technology dependence. For vehicles with OEM DPFs and Selective Catalytic Reduction Systems, PNEFs under highway driving (i.e., 3.34 × 10 12 to 2.29 × 10 13 particles/mile) were larger than those measured on urban and drayage routes (i.e., 5.06 × 10 11 to 1.31 × 10 13 particles/mile). This is likely because a significant amount of nucleation mode volatile particles were formed when the DPF outlet temperature reached a critical value, usually over 310 °C, which was commonly achieved when vehicle speed sustained over 45 mph. A model year 2013 diesel HDV produced approximately 10 times higher PNEFs during DPF active regeneration events than nonactive regeneration.

  17. Total deposition of inhaled particles related to age: comparison with age-dependent model calculations

    International Nuclear Information System (INIS)

    Becquemin, M.H.; Bouchikhi, A.; Yu, C.P.; Roy, M.

    1991-01-01

    To compare experimental data with age-dependent model calculations, total airway deposition of polystyrene aerosols (1, 2.05 and 2.8 μm aerodynamic diameter) was measured in ten adults, twenty children aged 12 to 15 years, ten children aged 8 to 12, and eleven under 8 years old. Ventilation was controlled, and breathing patterns were appropriate for each age, either at rest or at light exercise. Individually, deposition percentages increased with particle size and also from rest to exercise, except in children under 12 years, in whom they decreased from 20-21.5 to 14-14.5 for 1 μm particles and from 36.8-36.9 to 32.2-33.1 for 2.05 μm particles. Comparisons with the age-dependent model showed that, at rest, the observed data concerning children agreed with those predicted and were close to the adults' values, when the latter were higher than predicted. At exercise, child data were lower than predicted and lower than adult experimental data, when the latter agreed fairly well with the model. (author)

  18. On particle emission in the time-dependent Hartree-Fock approximation

    International Nuclear Information System (INIS)

    Maedler, P.

    1984-01-01

    Investigations of fast particle emission in the time-dependent Hartree-Fock mean-field approximation (TDHF) have been performed for one-dimensional slab collisions. For a fixed target mass number and incident velocity the total yields of PEP exhibit pronounced srtructures as a function of the pro ectile mass number, which strongly correcate with the binding energy of the last nucleon in the projectnle. This is in explicit disagreement with experiment. The conclusion has been drawn that the Fermi-jet mechanism cannot be responsible for most of the fast particles observed in experiment, even if quantum diffraction is taken into account (as in TDHF). After PEP emission large amplitude density oscillations, which are the only possible modes in the slab geometry, are found to be damped by further particle emission

  19. Evolution of Cometary Dust Particles to the Orbit of the Earth: Particle Size, Shape, and Mutual Collisions

    Science.gov (United States)

    Yang, Hongu; Ishiguro, Masateru

    2018-02-01

    In this study, we numerically investigated the orbital evolution of cometary dust particles, with special consideration of the initial size–frequency distribution (SFD) and different evolutionary tracks according to the initial orbit and particle shape. We found that close encounters with planets (mostly Jupiter) are the dominating factor determining the orbital evolution of dust particles. Therefore, the lifetimes of cometary dust particles (∼250,000 yr) are shorter than the Poynting–Robertson lifetime, and only a small fraction of large cometary dust particles can be transferred into orbits with small semimajor axes. The exceptions are dust particles from 2P/Encke and, potentially, active asteroids that have little interaction with Jupiter. We also found that the effects of dust shape, mass density, and SFD were not critical in the total mass supply rate to the interplanetary dust particle (IDP) cloud complex when these quantities are confined by observations of zodiacal light brightness and SFD around the Earth’s orbit. When we incorporate a population of fluffy aggregates discovered in the Earth’s stratosphere and the coma of 67P/Churyumov–Gerasimenko within the initial ejection, the initial SFD measured at the comae of comets (67P and 81P/Wild 2) can produce the observed SFD around the Earth’s orbit. Considering the above effects, we derived the probability of mutual collisions among dust particles within the IDP cloud for the first time in a direct manner via numerical simulation and concluded that mutual collisions can mostly be ignored.

  20. Emissions from Ethanol-Gasoline Blends: A Single Particle Perspective

    Directory of Open Access Journals (Sweden)

    Peter H. McMurry

    2011-06-01

    Full Text Available Due to its agricultural origin and function as a fuel oxygenate, ethanol is being promoted as an alternative biomass-based fuel for use in spark ignition engines, with mandates for its use at state and regional levels. While it has been established that the addition of ethanol to a fuel reduces the particulate mass concentration in the exhaust, little attention has been paid to changes in the physicochemical properties of the emitted particles. In this work, a dynamometer-mounted GM Quad-4 spark ignition engine run without aftertreatment at 1,500 RPM and 100% load was used with four different fuel blends, containing 0, 20, 40 and 85 percent ethanol in gasoline. This allowed the effects of the fuel composition to be isolated from other effects. Instrumentation employed included two Aerosol Time-of-Flight Mass Spectrometers covering different size ranges for analysis of single particle composition, an Aethalometer for black carbon, a Scanning Mobility Particle Sizer for particle size distributions, a Photoelectric Aerosol Sensor for particle-bound polycyclic aromatic hydrocarbon (PAH species and gravimetric filter measurements for particulate mass concentrations. It was found that, under the conditions investigated here, additional ethanol content in the fuel changes the particle size distribution, especially in the accumulation mode, and decreases the black carbon and total particulate mass concentrations. The molecular weight distribution of the PAHs was found to decrease with added ethanol. However, PAHs produced from higher ethanol-content fuels are associated with NO2− (m/z—46 in the single-particle mass spectra, indicating the presence of nitro-PAHs. Compounds associated with the gasoline (e.g., sulfur-containing species are diminished due to dilution as ethanol is added to the fuel relative to those associated with the lubricating oil (e.g., calcium, zinc, phosphate in the single particle spectra. These changes have potential

  1. Detecting kinematic boundary surfaces in phase space and particle mass measurements in SUSY-like events

    CERN Document Server

    Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2017-06-19

    We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain $\\tilde q\\to \\tilde\\chi^0_2\\to \\tilde \\ell \\to \\tilde \\chi^0_1$, we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, $\\bar\\Sigma$, which is ...

  2. Amplified CPEs enhancement of chorioamnion membrane mass transport by encapsulation in nano-sized PLGA particles.

    Science.gov (United States)

    Azagury, Aharon; Amar-Lewis, Eliz; Appel, Reut; Hallak, Mordechai; Kost, Joseph

    2017-08-01

    Chemical penetration enhancers (CPEs) have long been used for mass transport enhancement across membranes. Many CPEs are used in a solution or gel and could be a solvent. The use of CPEs is mainly limited due to their toxicity/irritation levels. This study presents the evaluation of encapsulated CPEs in nano-sized polymeric particles on the chorioamnion (CA) membrane mass transport. CPEs' mass encapsulated in nanoparticles was decreased by 10,000-fold. Interestingly, this approach resulted in a 6-fold increase in mass transport across the CA. This approach may also be used with other CPEs' base applications necessitating lower CPE concentration. Applying Ultrasound (US) has shown to increase the release rate of and also the mass transport across the CA membrane. It is proposed that encapsulated CPEs penetrate into the CA membrane thus prolonging their exposure, possibly extending their penetration into the CA membrane, while insonation also deepens their penetration into the CA membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Deriving the mass of particles from Extended Theories of Gravity in LHC era

    CERN Document Server

    Capozziello, S; De Laurentis, M

    2011-01-01

    We derive a geometrical approach to produce the mass of particles that could be suitably tested at LHC. Starting from a 5D unification scheme, we show that all the known interactions could be suitably deduced as an induced symmetry breaking of the non-unitary GL(4)-group of diffeomorphisms. The deformations inducing such a breaking act as vector bosons that, depending on the gravitational mass states, can assume the role of interaction bosons like gluons, electroweak bosons or photon. The further gravitational degrees of freedom, emerging from the reduction mechanism in 4D, eliminate the hierarchy problem since generate a cut-off comparable with electroweak one at TeV scales. In this "economic" scheme, gravity should induce the other interactions in a non-perturbative way.

  4. Standard test method for analysis of total and isotopic uranium and total thorium in soils by inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the measurement of total uranium (U) and thorium (Th) concentrations in soils, as well as the determination of the isotopic weight percentages of 234U, 235U, 236U, and 238U, thereby allowing for the calculation of individual isotopic uranium activity or total uranium activity. This inductively coupled plasma-mass spectroscopy (ICP-MS) method is intended as an alternative analysis to methods such as alpha spectroscopy or thermal ionization mass spectroscopy (TIMS). Also, while this test method covers only those isotopes listed above, the instrumental technique may be expanded to cover other long-lived radioisotopes since the preparation technique includes the preconcentration of the actinide series of elements. The resultant sample volume can be further reduced for introduction into the ICP-MS via an electrothermal vaporization (ETV) unit or other sample introduction device, even though the standard peristaltic pump introduction is applied for this test method. The sample preparatio...

  5. Dependence of the quasipotential on the total energy of a two-particle system

    International Nuclear Information System (INIS)

    Kapshai, V.N.; Savrin, V.I.; Skachkov, N.B.

    1987-01-01

    For a system of two relativistic particles described in the Logunov-Tavkhelidze one-time approach the dependence of the quasipotential of one-boson exchange on the total energy of the system is calculated. It is shown that despite the nonlocal form of the obtained quasipotential the three-dimensional equations for the waves function can be reduced by a partial expansion to one-dimensional equations. The influence of the energy dependence of the quasipotential on its behavior in the coordinate representation is discussed

  6. Angular correlation between the heavy fragments and the light charged particles in tripartition of 236U and 252Cf

    International Nuclear Information System (INIS)

    Sowinski, M.

    1975-05-01

    The energy distributions and relative intensities of protons, deuterons, tritons and alpha-particles emitted along the fission axis during thermal neutron fission of 236 U are measured simultaneously with the energies of the two fission fragments. The mass distributions of the fragments, the total kinetic energy (TKE), the dependence of the mean TKE on the fragment mass, as well as the mean kinetic energy dependence of polar particles on the fragment mass and energy are deduced from these data. Although some experimental results agree remarkably well with the hypothesis that polar particles are evaporated in-flight from fission fragments, the general conclusion is that these particles are emitted according to some other mechanism

  7. Total β-decay energies and atomic masses in regions far from β-stability

    International Nuclear Information System (INIS)

    Aleklett, K.

    1977-01-01

    This thesis is a summary of experimental investigations on total β-decay energies and deduced atomic masses of nuclei far from the region of β-stability. The Qsub(β) values are given for isotopes of Zn, Ga, Ge, As, Br, Rb, In, Sn, Sb, Te, Cs, Fr, Ra and Ac, with β-unstable nuclei. These unstable nuclei have very short half-lives, often below 10s, and the experimental techniques for the production, separation and collection of these short-lived nuclei are described. Neutron deficient nuclides were produced by spallation, in the ISOLDE facility, and neutron deficient nuclides were produced by thermal neutron induced fission of 235 U in the OSIRIS facility. β-spectra were recorded using an Si(Li)-detector and a coincidence system. Qsub(β) values obtained from mass formulae have been compared with experimental values obtained in different mass regions and a comparison made between results obtained from different droplet mass formulae. (B.D.)

  8. A better understanding of biomass co-firing by developing an advanced non-spherical particle tracking model

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen

    2004-01-01

    -area-to-volume ratio and thus experiences a totally different motion and reaction as a non-spherical particle. Therefore, an advanced non-spherical particle-tracking model is developed to calculate the motion and reaction of nonspherical biomass particles. The biomass particles are assumed as solid or hollow cylinders......-gradient force. Since the drag and lift forces are both shape factor- and orientation-dependent, coupled particle rotation equations are resolved to update particle orientation. In the reaction of biomass particles, the actual particle surface area available and the average oxygen mass flux at particle surface...

  9. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. C. Moffet

    2008-08-01

    Full Text Available Continuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS were made in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area-2006 campaign (MCMA-2006. Results are presented for the period of 15–27 March 2006. The submicron size mode contained both fresh and aged biomass burning, aged organic carbon (OC mixed with nitrate and sulfate, elemental carbon (EC, nitrogen-organic carbon, industrial metal, and inorganic NaK inorganic particles. Overall, biomass burning and aged OC particle types comprised 40% and 31%, respectively, of the submicron mode. In contrast, the supermicron mode was dominated by inorganic NaK particle types (42% which represented a mixture of dry lake bed dust and industrial NaK emissions mixed with soot. Additionally, aluminosilicate dust, transition metals, OC, and biomass burning contributed to the supermicron particles. Early morning periods (2–6 a.m. showed high fractions of inorganic particles from industrial sources in the northeast, composed of internal mixtures of Pb, Zn, EC and Cl, representing up to 73% of the particles in the 0.2–3μm size range. A unique nitrogen-containing organic carbon (NOC particle type, peaking in the early morning hours, was hypothesized to be amines from local industrial emissions based on the time series profile and back trajectory analysis. A strong dependence on wind speed and direction was observed in the single particle types that were present during different times of the day. The early morning (3:30–10 a.m. showed the greatest contributions from industrial emissions. During mid to late mornings (7–11 a.m., weak northerly winds were observed along with the most highly aged particles. Stronger winds from the south picked up in the late morning (after 11 a.m., resulting in a decrease in the concentrations of the major aged particle types and an increase in the number fraction of fresh

  10. Classical relativistic constituent particles and composite-particle scattering

    International Nuclear Information System (INIS)

    King, M.J.

    1984-01-01

    A nonlocal Lagrangian formalism is developed to describe a classical many-particle system. The nonstandard Lagrangian is a function of a single parameter s which is not, in general, associated with the physical clock. The particles are constrained to be constituents of composite systems, which in turn can decompose into asymptotic composite states representing free observable particles. To demonstrate this, explicit models of composite-composite particle scattering are constructed. Space-time conservation laws are not imposed separately on the system, but follow upon requiring the constituents to ''pair up'' into free composites at s = +infinity,-infinity. One model is characterized by the appearance of an ''external'' zero-mass composite particle which participates in the scattering process without affecting the space-time conservation laws of the two-composite system. Initial conditions on the two incoming composite particles and the zero-mass participant determine the scattering angle and the final states of the two outgoing composite particles. Although the formalism is classical, the model displays some features usually associated with quantum field theory, such as particle scattering by means of constituent exchange, creation and annihilation of particles, and restriction of values of angular momentum

  11. Inductively Coupled Plasma: Fundamental Particle Investigations with Laser Ablation and Applications in Magnetic Sector Mass Spectrometry

    International Nuclear Information System (INIS)

    Nathan Joe Saetveit

    2008-01-01

    Particle size effects and elemental fractionation in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are investigated with nanosecond and femtosecond laser ablation, differential mobility analysis, and magnetic sector ICP-MS. Laser pulse width was found to have a significant influence on the LA particle size distribution and the elemental composition of the aerosol and thus fractionation. Emission from individual particles from solution nebulization, glass, and a pressed powder pellet are observed with high speed digital photography. The presence of intact particles in an ICP is shown to be a likely source of fractionation. A technique for the online detection of stimulated elemental release from neural tissue using magnetic sector ICP-MS is described. Detection limits of 1 (micro)g L -1 or better were found for P, Mn, Fe, Cu, and Zn in a 60 (micro)L injection in a physiological saline matrix

  12. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  13. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  14. [Diagnosis and therapy of particle disease in total hip arthroplasty].

    Science.gov (United States)

    Müller, M; Wassilew, G; Perka, C

    2015-04-01

    Particle disease is caused by periarticular accumulation of attrition particles and the inflammatory reaction of the body's tissue. This process may result in osteolysis or soft tissue transformation which presents itself symptomless in the beginning and can proceed to aseptic implant loosening, fracture, implant breaking as a result of the inappropriate osseous support and to algetic and destructive soft tissue reactions as well. Attrition particles originate from tribological pairing, and the extent of the attrition or the particle concentration depend on different factors as there are the tribological pairing's material, the head size, the patient's level of activity, and the implant position. Attrition particles can also be found in the range of any modular connection. Particle disease and its resulting morphological alterations of the tribological pairing is one of the most frequent reasons for re-operation in hip endoprosthetics. Georg Thieme Verlag KG Stuttgart · New York.

  15. Total reflection x-ray fluorescence (TXRF) - a tool to obtain information about different air masses and air pollution

    International Nuclear Information System (INIS)

    Schmeling, M.

    2000-01-01

    Aerosols are solid particles dissolved in the atmosphere and have strong influence in the earth climate. Their solid surfaces are the only atmospheric medium for condensation of water leading to cloud formation and ultimately to precipitation. Besides their role in cloud formation, the elemental composition of aerosols reveals useful information about air masses and their transport patterns as well as air pollution. The elemental composition can be considered like a fingerprint of an air mass telling the story about its origin and fate. The presence of Al, Ti and Fe for instance indicates a source located in a highly exposed soil or often desert region, whereas Ni, V and Pb can be traced back to anthropogenic activities like fuel combustion or industrial processes. Other important source regions are the oceans, which emit the main aerosol constituents Na, Cl, and S. The concentrations of these elements in the atmosphere are extremely low and long sampling times are necessary to gain reliable results with most of the common analysis techniques. In contrast to this total reflection x-ray fluorescence (TXRF), as a technique capable to cope with tiny sample amounts, offers the unique possibility to reduce collection times to a minimum of minutes to hours. Such short sampling times in turn render it possible to monitor different air masses either passing through a ground based station or -in the ideal case- flown into by a small research aircraft. Different aerosol samples were taken by aircraft during the second aerosol characterization experiment (ACE-2) with sampling times ranging from 15 minutes up to one hour. These filter samples were analyzed by TXRF for trace elements subsequently. Together with background information about back trajectories and size distribution covering the time of sampling the presence of different air masses could be detected. In another project, short-term samples in the Chicago/Lake Michigan area are collected to study the air mass

  16. First Searches for Axions and Axionlike Particles with the LUX Experiment

    Science.gov (United States)

    Akerib, D. S.; Alsum, S.; Aquino, C.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fallon, S. R.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2017-06-01

    The first searches for axions and axionlike particles with the Large Underground Xenon experiment are presented. Under the assumption of an axioelectric interaction in xenon, the coupling constant between axions and electrons gAe is tested using data collected in 2013 with an exposure totaling 95 live days ×118 kg . A double-sided, profile likelihood ratio statistic test excludes gAe larger than 3.5 ×10-12 (90% C.L.) for solar axions. Assuming the Dine-Fischler-Srednicki-Zhitnitsky theoretical description, the upper limit in coupling corresponds to an upper limit on axion mass of 0.12 eV /c2 , while for the Kim-Shifman-Vainshtein-Zhakharov description masses above 36.6 eV /c2 are excluded. For galactic axionlike particles, values of gAe larger than 4.2 ×10-13 are excluded for particle masses in the range 1 - 16 keV /c2 . These are the most stringent constraints to date for these interactions.

  17. Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris

    Science.gov (United States)

    Healy, R. M.; Sciare, J.; Poulain, L.; Kamili, K.; Merkel, M.; Müller, T.; Wiedensohler, A.; Eckhardt, S.; Stohl, A.; Sarda-Estève, R.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J. C.

    2012-02-01

    An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS) data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150-1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and Multi-Angle Absorption Photometer (MAAP) mass concentration measurements of organic carbon (OC), inorganic ions and black carbon (BC) (R2 = 0.91). Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC) particles into four classes: (i) EC attributed to biomass burning (ECbiomass), (ii) EC attributed to traffic (ECtraffic), (iii) EC internally mixed with OC and ammonium sulfate (ECOCSOx), and (iv) EC internally mixed with OC and ammonium nitrate (ECOCNOx). Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65-0.68 respectively, n = 552). The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568). Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle mass was apportioned to fossil fuel and biomass burning respectively using the ATOFMS data

  18. Question of neutrino mass

    International Nuclear Information System (INIS)

    Branco, G.C.; Senjanovic, G.

    1978-01-01

    We investigate the question of neutrino mass in theories in which neutrinos are four-component Dirac particles. Our analysis is done in the framework of left-right--symmetric theories. The requirement of calculability and natural smallness of neutrino mass leads to the following constraints: (i) left and right charged weak currents must be ''orthogonal'' to each other, and (ii) there should be no W/sub L/-W/sub R/ mixing at the three level. Finally, we exhibit a model in which, due to the existence of an unbroken symmetry of the total Lagrangian, the electron and muon neutrinos remain massless to all orders in perturbation theory

  19. Arsenic speciation in total contents and bioaccessible fractions in atmospheric particles related to human intakes

    International Nuclear Information System (INIS)

    Huang, Minjuan; Chen, Xunwen; Zhao, Yinge; Yu Chan, Chuen; Wang, Wei; Wang, Xuemei; Wong, Ming Hung

    2014-01-01

    Speciation of inorganic trivalent arsenicals (iAs III ), inorganic pentavalent arsenicals (iAs V ), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in total arsenic (As) content and its bioaccessible fractions contained in road dust, household air-conditioning (AC) filter dust and PM 2.5 was investigated. Inorganic As, especially iAs V , was observed as the dominant species. Physiologically based extraction test (PBET), an in-vitro gastrointestinal method, was used to estimate the oral As bioaccessibility in coarse particles and the species present in the oral bioaccessible fraction. A composite lung simulating serum was used to mimic the pulmonary condition to extract the respiratory bioaccessible As and its species in PM 2.5 . Reduction of iAs V to iAs III occurred in both in-vitro gastrointestinal and lung simulating extraction models. The inorganic As species was the exclusive species for absorption through ingestion and inhalation of atmospheric particles, which was an important exposure route to inorganic As, in addition to drinking water and food consumption. - Highlights: • Inorganic As species was the predominant species in dust and airborne particles. • Existence of iAs III in dust and airborne particles increases human health risks. • Reduction from iAs V to iAs III occurred through in-vitro gastrointestinal model. • Reduction from iAs V to iAs III occurred in the simulating pulmonary region. • Atmospheric particles were important exposure sources of inorganic As. - Atmospheric particles are important exposure sources of inorganic As, of which the bioaccessibility is dependent on the extraction phases and models used

  20. Evaluating the Sensitivity of the Mass-Based Particle Removal Calculations for HVAC Filters in ISO 16890 to Assumptions for Aerosol Distributions

    Directory of Open Access Journals (Sweden)

    Brent Stephens

    2018-02-01

    Full Text Available High efficiency particle air filters are increasingly being recommended for use in heating, ventilating, and air-conditioning (HVAC systems to improve indoor air quality (IAQ. ISO Standard 16890-2016 provides a methodology for approximating mass-based particle removal efficiencies for PM1, PM2.5, and PM10 using size-resolved removal efficiency measurements for 0.3 µm to 10 µm particles. Two historical volume distribution functions for ambient aerosol distributions are assumed to represent ambient air in urban and rural areas globally. The goals of this work are to: (i review the ambient aerosol distributions used in ISO 16890, (ii evaluate the sensitivity of the mass-based removal efficiency calculation procedures described in ISO 16890 to various assumptions that are related to indoor and outdoor aerosol distributions, and (iii recommend several modifications to the standard that can yield more realistic estimates of mass-based removal efficiencies for HVAC filters, and thus provide a more realistic representation of a greater number of building scenarios. The results demonstrate that knowing the PM mass removal efficiency estimated using ISO 16890 is not sufficient to predict the PM mass removal efficiency in all of the environments in which the filter might be used. The main reason for this insufficiency is that the assumptions for aerosol number and volume distributions can substantially impact the results, albeit with some exceptions.

  1. Single Particle Laser Mass Spectrometry Applied to Differential Ice Nucleation Experiments at the AIDA Chamber

    International Nuclear Information System (INIS)

    Gallavardin, S. J.; Froyd, Karl D.; Lohmann, U.; Moehler, Ottmar; Murphy, Daniel M.; Cziczo, Dan

    2008-01-01

    Experiments conducted at the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) chamber located in Karlsruhe, Germany permit investigation of particle properties that affect the nucleation of ice at temperature and water vapor conditions relevant to cloud microphysics and climate issues. Ice clouds were generated by heterogeneous nucleation of Arizona test dust (ATD), illite, and hematite and homogeneous nucleation of sulfuric acid. Ice crystals formed in the chamber were inertially separated from unactivated, or 'interstitial' aerosol particles with a pumped counterflow virtual impactor (PCVI), then evaporated. The ice residue (i.e., the aerosol which initiated ice nucleation plus any material which was scavenged from the gas- and/or particle-phase), was chemically characterized at the single particle level using a laser ionization mass spectrometer. In this manner the species that first nucleated ice could be identified out of a mixed aerosol population in the chamber. Bare mineral dust particles were more effective ice nuclei (IN) than similar particles with a coating. Metallic particles from contamination in the chamber initiated ice nucleation before other species but there were few enough that they did not compromise the experiments. Nitrate, sulfate, and organics were often detected on particles and ice residue, evidently from scavenging of trace gas-phase species in the chamber. Hematite was a more effective ice nucleus than illite. Ice residue was frequently larger than unactivated test aerosol due to the formation of aggregates due to scavenging, condensation of contaminant gases, and the predominance of larger aerosol in nucleation

  2. Determining size-specific emission factors for environmental tobacco smoke particles

    Energy Technology Data Exchange (ETDEWEB)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.; Sextro, Richard G.; Nazaroff, William W.

    2002-07-07

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured every minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.

  3. Particle dark matter signal in DAMA/LIBRA

    International Nuclear Information System (INIS)

    Bernabei, R.; Belli, P.; Di Marco, A.; Montecchia, F.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Prosperi, D.; Cerulli, R.; Dai, C.J.; He, H.L.; Ma, X.H.; Sheng, X.D.; Wang, R.G.; Ye, Z.P.

    2012-01-01

    The DAMA/LIBRA experiment, running at LNGS, has a sensitive mass of about 250 kg highly radiopure NaI(Tl) and it is mainly devoted to the investigation of Dark Matter (DM) particles in the Galactic halo by exploiting the model independent DM annual modulation signature. The present DAMA/LIBRA experiment and the former DAMA/NaI one have released so far results corresponding to a total exposure of 1.17 ton×yr over 13 annual cycles. They provide a model independent evidence of the presence of DM particles in the galactic halo at 8.9σ C.L.

  4. Taking account of the recoil effect under a light particle scattering on two heavy particles

    International Nuclear Information System (INIS)

    Peresypkin, V.V.

    1978-01-01

    Proceeding from the Faddeev equations the derivation of the Bruekner formula describing a light particle scattering by a system of two fixed force centers is presented. Using the zero-range two-particle potential and assuming the ratio of the incident particle mass to the heavy particle mass to be a small perturbation parameter the correction to the Bruekner formula is obtained taking into account the heavy particle recoil

  5. Characterization of aerosol particles at the forested site in Lithuania

    Science.gov (United States)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  6. An active one-particle microrheometer: incorporating magnetic tweezers to total internal reflection microscopy.

    Science.gov (United States)

    Gong, Xiangjun; Hua, Li; Wu, Chi; Ngai, To

    2013-03-01

    We present a novel microrheometer by incorporating magnetic tweezers in the total internal reflection microscopy (TIRM) that enables measuring of viscoelastic properties of materials near solid surface. An evanescent wave generated by a solid∕liquid interface in the TIRM is used as the incident light source in the microrheometer. When a probe particle (of a few micrometers diameter) moves near the interface, it can interact with the evanescent field and reflect its position with respect to the interface by the scattered light intensity. The exponential distance dependence of the evanescent field, on the one hand, makes this technique extremely sensitive to small changes from z-fluctuations of the probe (with a resolution of several nanometers), and on the other, it does not require imaging of the probe with high lateral resolution. Another distinct advantage is the high sensitivity in determining the z position of the probe in the absence of any labeling. The incorporated magnetic tweezers enable us to effectively manipulate the distance of the embedded particle from the interface either by a constant or an oscillatory force. The force ramp is easy to implement through a coil current ramp. In this way, the local viscous and elastic properties of a given system under different confinements can therefore be measured by resolving the near-surface particle motion. To test the feasibility of applying this microrheology to soft materials, we measured the viscoelastic properties of sucrose and poly(ethylene glycol) solutions and compared the results to bulk rheometry. In addition, we applied this technique in monitoring the structure and properties of deformable microgel particles near the flat surface.

  7. J/psi particle production by 70 GeV/c protons

    International Nuclear Information System (INIS)

    Antipov, Yu.M.; Bessubov, V.A.; Bubanov, N.P.; Bushmin, Yu.B.; Denisov, S.P.; Gorin, Yu.P.; Lebedev, A.A.; Lednev, A.A.; Mikhailov, Yu.V.; Petrukhin, A.I.

    1975-01-01

    Invariant mass spectrum of μ + μ - pairs produced by 70 GeV/c protons in Be target are presented. Distinct enhancements in the mass region of rho, ω mesons, PHI meson and J/psi particle are observed. For J/psi production, x, ysup(*) and p 2 distributions are given. The total cross section for the reaction p + Be → (J/psi → μ + μ - ) + ... is equal to 9.5 +- 2.5 nb/nucleus

  8. Identification of platinum nanoparticles in road dust leachate by single particle inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Folens, Karel; Van Acker, Thibaut; Bolea-Fernandez, Eduardo; Cornelis, Geert; Vanhaecke, Frank; Du Laing, Gijs; Rauch, Sebastien

    2018-02-15

    Elevated platinum (Pt) concentrations are found in road dust as a result of emissions from catalytic converters in vehicles. This study investigates the occurrence of Pt in road dust collected in Ghent (Belgium) and Gothenburg (Sweden). Total Pt contents, determined by tandem ICP-mass spectrometry (ICP-MS/MS), were in the range of 5 to 79ngg -1 , comparable to the Pt content in road dust of other medium-sized cities. Further sample characterization was performed by single particle (sp) ICP-MS following an ultrasonic extraction procedure using stormwater runoff for leaching. The method was found to be suitable for the characterization of Pt nanoparticles in road dust leachates. The extraction was optimized using road dust reference material BCR-723, for which an extraction efficiency of 2.7% was obtained by applying 144kJ of ultrasonic energy. Using this method, between 0.2% and 18% of the Pt present was extracted from road dust samples. spICP-MS analysis revealed that Pt in the leachate is entirely present as nanoparticles of sizes between 9 and 21nm. Although representing only a minor fraction of the total content in road dust, the nanoparticulate Pt leachate is most susceptible to biological uptake and hence most relevant in terms of bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Induced singularities of mass distributions of unstable particles connected with cascade decay and the CP-problem

    International Nuclear Information System (INIS)

    Khalfin, L.A.

    1975-01-01

    On the basis of the strong energy-momentum conservation law, the induced singularities of mass distributions of unstable particles connected with cascade decay are investigated. The possible solution of the CP-problem in the decay of Kaon neutral - Antikaon neutral mesons based on the mechanism of the induced singularities is proposed

  10. The role of total body fat mass and trunk fat mass, combined with other endocrine factors, in menstrual recovery and psychopathology of adolescents with Anorexia Nervosa.

    Science.gov (United States)

    Karountzos, Vasileios; Lambrinoudaki, Irene; Tsitsika, Artemis; Deligeoroglou, Efthimios

    2017-10-01

    To determine the threshold of total body and trunk fat mass required for menstrual recovery and to assess the impact of body composition in psychopathology of adolescents with Anorexia Nervosa (AN). Prospective study of 60 adolescents presented with secondary amenorrhea and diagnosed with AN. Anthropometrics, body composition by dual-energy X-ray absorptiometry, hormonal studies and responses to mental health screens (EAT-26), were obtained at the beginning and at complete weight restoration, in all adolescents, independently of menstrual recovery (Group A) or not (Group B). At weight restoration, Group A total body fat mass, trunk fat mass, and trunk/extremities fat ratio were significantly higher (p psychopathology of adolescents with AN.

  11. Rare particles

    International Nuclear Information System (INIS)

    Kutschera, W.

    1984-01-01

    The use of Accelerator Mass Spectrometry (AMS) to search for hypothetical particles and known particles of rare processes is discussed. The hypothetical particles considered include fractionally charged particles, anomalously heavy isotopes, and superheavy elements. The known particles produced in rare processes discussed include doubly-charged negative ions, counting neutrino-produced atoms in detectors for solar neutrino detection, and the spontaneous emission of 14 C from 223 Ra. 35 references

  12. Single-particle characterization of summertime Antarctic aerosols collected at King George Island using quantitative energy-dispersive electron probe X-ray microanalysis and attenuated total reflection Fourier transform-infrared imaging techniques.

    Science.gov (United States)

    Maskey, Shila; Geng, Hong; Song, Young-Chul; Hwang, Heejin; Yoon, Young-Jun; Ahn, Kang-Ho; Ro, Chul-Un

    2011-08-01

    Single-particle characterization of Antarctic aerosols was performed to investigate the impact of marine biogenic sulfur species on the chemical compositions of sea-salt aerosols in the polar atmosphere. Quantitative energy-dispersive electron probe X-ray microanalysis was used to characterize 2900 individual particles in 10 sets of aerosol samples collected between March 12 and 16, 2009 at King Sejong Station, a Korean scientific research station located at King George Island in the Antarctic. Two size modes of particles, i.e., PM(2.5-10) and PM(1.0-2.5), were analyzed, and four types of particles were identified, with sulfur-containing sea-salt particles being the most abundant, followed by genuine sea-salt particles without sulfur species, iron-containing particles, and other species including CaCO(3)/CaMg(CO(3))(2), organic carbon, and aluminosilicates. When a sulfur-containing sea-salt particle showed an atomic concentration ratio of sulfur to sodium of >0.083 (seawater ratio), it is regarded as containing nonsea-salt sulfate (nss-SO(4)(2-)) and/or methanesulfonate (CH(3)SO(3)(-)), which was supported by attenuated total reflection Fourier transform-infrared imaging measurements. These internal mixture particles of sea-salt/CH(3)SO(3)(-)/SO(4)(2-) were very frequently encountered. As nitrate-containing particles were not encountered, and the air-masses for all of the samples originated from the Pacific Ocean (based on 5-day backward trajectories), the oxidation of dimethylsulfide (DMS) emitted from phytoplanktons in the ocean is most likely to be responsible for the formation of the mixed sea-salt/CH(3)SO(3)(-)/SO(4)(2-) particles.

  13. The Origin of Mass

    Energy Technology Data Exchange (ETDEWEB)

    Giese, Albrecht

    2010-07-01

    The world of physics presently looks to the LHC (CERN), where many expect the Higgs boson to be found. The Higgs is supposed to (partly) explain the cause of mass. There are indications that neither the Higgs nor Supersymmetric Particles will be found. In order to understand mass, the Higgs is not needed. Inertial mass is caused by a fundamental process. Binding fields propagate at the finite speed of light. An inevitable consequence is that every expanded object has an inertial behaviour, even if the constituents of the object are mass-less. To explain the mass of elementary particles, we have to accept that these particles are expanded. This is on the one hand in conflict with the concept of present physics; on the other hand it is in no conflict with any experiment. And it conforms to the analysis of Schroedinger with respect to the Dirac function of the electron. The corresponding particle model explains particle properties, like the magnetic moment (and therefore also the Bohr Magneton) and the constancy of the spin, correctly without any use of QM. Also the dynamic properties of mass, i.e. the relativistic increase of mass at motion and the mass-energy-relation, follow in a straight way from this concept.

  14. Charge, mass and energy measured in the Plastic Ball

    International Nuclear Information System (INIS)

    Gustafsson, H.A.; Gutbrod, H.H.; Kolb, B.

    1984-01-01

    In relativistic nuclear collisions the multiplicity of charged particles reflects the violence of the reaction and, presumably, the impact parameter. Furthermore, the total transverse energy in a collision might be a signature of compression. Both quantities are global features that can be measured in the Plastic Ball. The total mass in an event in light charge fragments can be detected (with assumptions made in certain kinematic regions) through particle identification. In addition, the neutron detection efficiency is quite high because of the large thickness of the plastic scintillator in the Plastic Ball. Here the authors present several global quantities for the reaction of 400 MeV/nucleon Nb + Nb

  15. Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2012-02-01

    Full Text Available An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150–1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS and Multi-Angle Absorption Photometer (MAAP mass concentration measurements of organic carbon (OC, inorganic ions and black carbon (BC (R2 = 0.91. Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC particles into four classes: (i EC attributed to biomass burning (ECbiomass, (ii EC attributed to traffic (ECtraffic, (iii EC internally mixed with OC and ammonium sulfate (ECOCSOx, and (iv EC internally mixed with OC and ammonium nitrate (ECOCNOx. Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65–0.68 respectively, n = 552. The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568. Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle

  16. Bandwagon effects and error bars in particle physics

    Science.gov (United States)

    Jeng, Monwhea

    2007-02-01

    We study historical records of experiments on particle masses, lifetimes, and widths, both for signs of expectation bias, and to compare actual errors with reported error bars. We show that significant numbers of particle properties exhibit "bandwagon effects": reported values show trends and clustering as a function of the year of publication, rather than random scatter about the mean. While the total amount of clustering is significant, it is also fairly small; most individual particle properties do not display obvious clustering. When differences between experiments are compared with the reported error bars, the deviations do not follow a normal distribution, but instead follow an exponential distribution for up to ten standard deviations.

  17. Bandwagon effects and error bars in particle physics

    International Nuclear Information System (INIS)

    Jeng, Monwhea

    2007-01-01

    We study historical records of experiments on particle masses, lifetimes, and widths, both for signs of expectation bias, and to compare actual errors with reported error bars. We show that significant numbers of particle properties exhibit 'bandwagon effects': reported values show trends and clustering as a function of the year of publication, rather than random scatter about the mean. While the total amount of clustering is significant, it is also fairly small; most individual particle properties do not display obvious clustering. When differences between experiments are compared with the reported error bars, the deviations do not follow a normal distribution, but instead follow an exponential distribution for up to ten standard deviations

  18. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Gray, Evan P; Coleman, Jessica G; Bednar, Anthony J; Kennedy, Alan J; Ranville, James F; Higgins, Christopher P

    2013-12-17

    Expanded use of engineered nanoparticles (ENPs) in consumer products increases the potential for environmental release and unintended biological exposures. As a result, measurement techniques are needed to accurately quantify ENP size, mass, and particle number distributions in biological matrices. This work combines single particle inductively coupled plasma mass spectrometry (spICPMS) with tissue extraction to quantify and characterize metallic ENPs in environmentally relevant biological tissues for the first time. ENPs were extracted from tissues via alkaline digestion using tetramethylammonium hydroxide (TMAH). Method development was performed using ground beef and was verified in Daphnia magna and Lumbriculus variegatus . ENPs investigated include 100 and 60 nm Au and Ag stabilized by polyvynylpyrrolidone (PVP). Mass- and number-based recovery of spiked Au and Ag ENPs was high (83-121%) from all tissues tested. Additional experiments suggested ENP mixtures (60 and 100 nm Ag ENPs) could be extracted and quantitatively analyzed. Biological exposures were also conducted to verify the applicability of the method for aquatic organisms. Size distributions and particle number concentrations were determined for ENPs extracted from D. magna exposed to 98 μg/L 100 nm Au and 4.8 μg/L 100 nm Ag ENPs. The D. magna nanoparticulate body burden for Au ENP uptake was 613 ± 230 μg/kgww, while the measured nanoparticulate body burden for D. magna exposed to Ag ENPs was 59 ± 52 μg/kgww. Notably, the particle size distributions determined from D. magna tissues suggested minimal shifts in the size distributions of ENPs accumulated, as compared to the exposure media.

  19. Average transverse momentum vs. dNc/dη for mass-identified particles at Tevatron energies

    International Nuclear Information System (INIS)

    Cole, P.; Allen, C.; Bujak, A.; Carmony, D.D.; Choi, Y.; Debonte, R.; Gutay, L.J.; Hirsch, A.S.; McMahon, T.; Morgan, N.K.; Porile, N.T.; Rimai, A.; Scharenberg, R.P.; Stringfellow, B.C.; Alexopoulos, T.; Erwin, A.R.; Findeisen, C.; Jennings, J.R.; Nelson, K.; Thompson, M.A.; Anderson, E.W.; Lindsey, C.S.; Wang, C.H.; Areti, H.; Hojvat, C.; Reeves, D.; Turkot, F.; Banerjee, S.; Beery, P.D.; Bishop, J.; Biswas, N.N.; Kenney, V.P.; LoSecco, J.M.; McManus, A.P.; Piekarz, J.; Stampke, S.R.; Zuong, H.; Bhat, P.; Carter, T.; Goshaw, A.T.; Loomis, C.; Oh, S.H.; Robertson, W.R.; Walker, W.D.; Wesson, D.K.; DeCarlo, V.

    1992-01-01

    The transverse momentum of charged mesons and anti p's produced within the pseudorapidity range of η=-0.36 to η=+1.0 and azimuthal range of φ=+2deg to φ=+18deg has been measured in anti pp collisions at √s=1.8 TeV. The charged multiplicity of each event was measured by either the 240 element cylindrical hodoscope covering the range -3.25<η<+3.25 or the central drift chamber, which spans a pseudorapidity range of 3.2 units. The average transverse momentum as a function of the pseudorapidity density for mass-identified particles is presented. We have observed pseudorapidity densities as high as 30 particles per unit pseudorapidity. (orig.)

  20. Hadron production by e+e- annihilation at center-of-mass energies between 2.6 and 7.8 GeV. I. Total cross section, multiplicities, and inclusive momentum distributions

    International Nuclear Information System (INIS)

    Siegrist, J.L.; Schwitters, R.F.; Alam, M.S.; Boyarski, A.M.; Breidenbach, M.; Bulos, F.; Dakin, J.T.; Dorfan, J.M.; Feldman, G.J.; Fryberger, D.; Hanson, G.; Jaros, J.A.; Jean-Marie, B.; Larsen, R.R.; Lueth, V.; Lynch, H.L.; Lyon, D.; Morehouse, C.C.; Perl, M.L.; Peruzzi, I.; Piccolo, M.; Pun, T.P.; Rapidis, P.; Richter, B.; Schindler, R.H.; Tanenbaum, W.; Vannucci, F.; Chinowsky, W.; Abrams, G.S.; Briggs, D.; Carithers, W.C.; Cooper, S.; DeVoe, R.G.; Friedberg, C.E.; Goldhaber, G.; Hollebeek, R.J.; Johnson, A.D.; Kadyk, J.A.; Litke, A.M.; Madaras, R.J.; Nguyen, H.K.; Pierre, F.M.; Sadoulet, B.; Trilling, G.H.; Whitaker, J.S.; Wiss, J.E.

    1982-01-01

    Measurements of multihadron production in e + e - annihilation at center-of-mass energies between 2.6 and 7.8 GeV are presented. Aside from the narrow resonances psi(3095) and psi(3684), the total hadronic cross section is found to be approximately 2.7 times the cross section for the production of muon pairs at c.m. energies below 3.7 GeV and 4.3 times the muon-pair cross section at c.m. energies above 5.5 GeV. Complicated structure is found at intermediate energies. Charged-particle multiplicities and inclusive momentum distributions are presented

  1. The origin of mass

    International Nuclear Information System (INIS)

    Cashmore, R.; Sutton, C.

    1992-01-01

    The existence of mass in the Universe remains unexplained but recent high-energy experiments, described in this article, are close to testing the most plausible explanation for the masses of fundamental particles, which may, in turn, lead to a clearer understanding of mass on the macro-scale. The Standard Model includes the concept of the Higgs mechanism which endows particles with mass. Actual evidence for the existence of the postulated particle known as the Higgs boson would lead to confirmation of the theory and efforts to detect it at CERN are complex and determined. (UK)

  2. The discovery of the Higgs particle. Or how the universe got its mass. 3. ed.; Die Entdeckung des Higgs-Teilchens. Oder wie das Universum seine Masse bekam

    Energy Technology Data Exchange (ETDEWEB)

    Lesch, Harald (ed.) [Muenchen Univ. (Germany). Inst. fuer Astronomie und Astrophysik

    2013-07-01

    Higgs - that is a physicist, a field, a particle. 1964 only the idea of Peter Higgs and some other physicists existed: A theory for specialists of particle physics. Since the 1980th years then in the underground at Geneva the largest machine of mankind was built - consisting of a nearly 27 kilometers long ring tunnel and gigantic detectors. In this enormous facility, called LHC (Large Hadron Collider), particles were accelerated nearly to light velocity. In its collisions they should produce the predicted Higgs particle. Finally in 2012 the detection succeeded - the Higgs particle exists really. And also a Higgs field exists. It penetrates the whole cosmos and mediates to the particles the property of the rest mass. Nearly men have never came to the big bang. And Peter Higgs received 2013 with Francois Englert the Nobel prize of physics. Harald Lesch and his coworkers report from the expensive search for the Higgs particle, the theoretical conditions and consequences for the particle physics. They clarify what it's called ''God particle'' or fears about a black hole arising in the LHC experiment. An exciting narrative about the foundations of our universe and the fascination at the fringe of the recognizable reality.

  3. Exposure assessment and heart rate variability monitoring in workers handling titanium dioxide particles: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, Sahoko [Mie University, Graduate School of Regional Innovation Studies (Japan); Li, Weihua [WHO Collaborating Centre for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research (China); Omura, Seiichi [Tokyo Institute of Technology (Japan); Fujitani, Yuji [National Institute for Environmental Studies (Japan); Liu, Ying; Wang, Qiangyi [WHO Collaborating Centre for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research (China); Hiraku, Yusuke [Mie University Graduate School of Medicine, Department of Environmental and Molecular Medicine (Japan); Hisanaga, Naomi [Aichi Gakusen University, Faculty of Human Science and Design (Japan); Wakai, Kenji [Nagoya University Graduate School of Medicine, Department of Preventive Medicine (Japan); Ding, Xuncheng [WHO Collaborating Centre for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research (China); Kobayashi, Takahiro, E-mail: takakoba@airies.or.jp [Association for International Research Initiatives for Environmental Studies (Japan); Ichihara, Gaku, E-mail: gak@rs.tus.ac.jp [Tokyo University of Science, Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences (Japan)

    2016-03-15

    Titanium dioxide (TiO{sub 2}) particles are used for surface coating and in a variety of products such as inks, fibers, food, and cosmetics. The present study investigated possible respiratory and cardiovascular effects of TiO{sub 2} particles in workers exposed to this particle at high concentration in a factory in China. The diameter of particles collected on filters was measured by scanning electron microscopy. Real-time size-dependent particle number concentration was monitored in the nostrils of four workers using condensation particle counter and optical particle counter. Electrocardiogram was recorded using Holter monitors for the same four workers to record heart rate variability. Sixteen workers underwent assessment of the respiratory and cardiovascular systems. Mass-based individual exposure levels were also measured with personal cascade impactors. The primary particle diameter ranged from 46 to 562 nm. Analysis of covariance of the pooled data of the four workers showed that number of particles with a diameter <300 nm was associated positively with total number of N–N and negatively with total number of increase or decrease in successive RR intervals greater than 50 ms (RR50+/−) or percentage of RR 50+/− that were parameters of parasympathetic function. The total mass concentration was 9.58–30.8 mg/m{sup 3} during work, but significantly less before work (0.36 mg/m{sup 3}). The clear abnormality in respiratory function was not observed in sixteen workers who had worked for 10 months to 13 years in the factory. The study showed that exposure to particles with a diameter <300 nm might affect HRV in workers handling TiO{sub 2} particles. The results highlight the need to investigate the possible impact of exposure to nano-scaled particles on the autonomic nervous system.

  4. Limits on the masses of supersymmetric particles at $\\sqrt{s}$ up to 202 GeV

    CERN Document Server

    Espirito-Santo, M C; Johansson, P; Lipniacka, A; Mazzucato, F

    2001-01-01

    Searches for charginos, neutralinos, sleptons and squarks at LEP2 centre-of-mass energies ($\\sqrt{s}$) from 130 GeV to 202 GeV have been used to exclude regions of the MSSM parameter space and to set lower limits on the mass of the Lightest Supersymmetric Particle (LSP) and other supersymmetric particles within the MSSM framework. R-parity conservation has been assumed. The lightest neutralino was found to be heavier than 36.3~\\mbox{$ {\\mathrm{GeV}}/c^2$} independent of the $m_0$ value. The lightest chargino, the the sneutrino and the right-handed selectron were found to be heavier than 69.5~\\mbox{$ {\\mathrm{GeV}}/c^2$}, 83.0~\\mbox{$ {\\mathrm{GeV}}/c^2$}, and 91.0~\\mbox{$ {\\mathrm{GeV}}/c^2$}, respectively. The results do not depend on $m_0$ and are valid for $1 \\le $~tan$\\beta \\le 40 $, $M_2 \\le $~1000~\\mbox{${\\mathrm{GeV}}/c^2$}, and in the $\\mu$ region where the lightest neutralino is the LSP. The effects of mixings in the third family of sfermions are discussed. The confidence level of all limits given is...

  5. Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S. Suresh, E-mail: s_sureshbabu@vssc.gov.in [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022 (India); Kompalli, Sobhan Kumar [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022 (India); Moorthy, K. Krishna [Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012 (India)

    2016-09-01

    Number-size distribution is one of the important microphysical properties of atmospheric aerosols that influence aerosol life cycle, aerosol-radiation interaction as well as aerosol-cloud interactions. Making use of one-yearlong measurements of aerosol particle number-size distributions (PNSD) over a broad size spectrum (~ 15–15,000 nm) from a tropical coastal semi-urban location-Trivandrum (Thiruvananthapuram), the size characteristics, their seasonality and response to mesoscale and synoptic scale meteorology are examined. While the accumulation mode contributed mostly to the annual mean concentration, ultrafine particles (having diameter < 100 nm) contributed as much as 45% to the total concentration, and thus constitute a strong reservoir, that would add to the larger particles through size transformation. The size distributions were, in general, bimodal with well-defined modes in the accumulation and coarse regimes, with mode diameters lying in the range 141 to 167 nm and 1150 to 1760 nm respectively, in different seasons. Despite the contribution of the coarse sized particles to the total number concentration being meager, they contributed significantly to the surface area and volume, especially during transport of marine air mass highlighting the role of synoptic air mass changes. Significant diurnal variation occurred in the number concentrations, geometric mean diameters, which is mostly attributed to the dynamics of the local coastal atmospheric boundary layer and the effect of mesoscale land/sea breeze circulation. Bursts of ultrafine particles (UFP) occurred quite frequently, apparently during periods of land-sea breeze transitions, caused by the strong mixing of precursor-rich urban air mass with the cleaner marine air mass; the resulting turbulence along with boundary layer dynamics aiding the nucleation. These ex-situ particles were observed at the surface due to the transport associated with boundary layer dynamics. The particle growth rates from

  6. Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts

    International Nuclear Information System (INIS)

    Babu, S. Suresh; Kompalli, Sobhan Kumar; Moorthy, K. Krishna

    2016-01-01

    Number-size distribution is one of the important microphysical properties of atmospheric aerosols that influence aerosol life cycle, aerosol-radiation interaction as well as aerosol-cloud interactions. Making use of one-yearlong measurements of aerosol particle number-size distributions (PNSD) over a broad size spectrum (~ 15–15,000 nm) from a tropical coastal semi-urban location-Trivandrum (Thiruvananthapuram), the size characteristics, their seasonality and response to mesoscale and synoptic scale meteorology are examined. While the accumulation mode contributed mostly to the annual mean concentration, ultrafine particles (having diameter < 100 nm) contributed as much as 45% to the total concentration, and thus constitute a strong reservoir, that would add to the larger particles through size transformation. The size distributions were, in general, bimodal with well-defined modes in the accumulation and coarse regimes, with mode diameters lying in the range 141 to 167 nm and 1150 to 1760 nm respectively, in different seasons. Despite the contribution of the coarse sized particles to the total number concentration being meager, they contributed significantly to the surface area and volume, especially during transport of marine air mass highlighting the role of synoptic air mass changes. Significant diurnal variation occurred in the number concentrations, geometric mean diameters, which is mostly attributed to the dynamics of the local coastal atmospheric boundary layer and the effect of mesoscale land/sea breeze circulation. Bursts of ultrafine particles (UFP) occurred quite frequently, apparently during periods of land-sea breeze transitions, caused by the strong mixing of precursor-rich urban air mass with the cleaner marine air mass; the resulting turbulence along with boundary layer dynamics aiding the nucleation. These ex-situ particles were observed at the surface due to the transport associated with boundary layer dynamics. The particle growth rates from

  7. Size-exclusion chromatography using core-shell particles.

    Science.gov (United States)

    Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J

    2017-02-24

    Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. General relativistic fields of an isolated spin-half charged particle near the spin axis with application to the rest-mass of the electron and positron

    International Nuclear Information System (INIS)

    Lynch, J.T.

    1999-01-01

    Using a lowest-order approximation, the field equations of a general relativistic spinor-connection theory are solved semi-analytically for the fields of a stable, spin-half changed particle near the spin axis. With the exception of the atomic fine-structure constant, all parameters arising in the solution, including the rest mass of the source particle, are found by imposing the standard junction conditions of general relativity and electromagnetism. Using the empirical value for the fine-structure constant, the value derived for the rest mass gives some reason to identify the source particle with the electron. Moreover, since the rest mass is independent of the sign of the electron charge carried by the source, the solution is equally applicable to the positron

  9. Escherichia coli pyruvate dehydrogenase complex: particle masses of the complex and component enzymes measured by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    CaJacob, C.A.; Frey, P.A.; Hainfeld, J.F.; Wall, J.S.; Yang, H.

    1985-01-01

    Particle masses of the Escherichia coli pyruvate dehydrogenase (PDH) complex and its component enzymes have been measured by scanning transmission electron microscopy (STEM). The particle mass of PDH complex measured by STEM is 5.28 X 10(6) with a standard deviation of 0.40 X 10(6). The masses of the component enzymes are 2.06 X 10(5) for the dimeric pyruvate dehydrogenase (E1), 1.15 X 10(5) for dimeric dihydrolipoyl dehydrogenase (E3), and 2.20 X 10(6) for dihydrolipoyl transacetylase (E2), the 24-subunit core enzyme. STEM measurements on PDH complex incubated with excess E3 or E1 failed to detect any additional binding of E3 but showed that the complex would bind additional E1 under forcing conditions. The additional E1 subunits were bound too weakly to represent binding sites in an isolated or isolable complex. The mass measurements by STEM are consistent with the subunit composition 24:24:12 when interpreted in the light of the flavin content of the complex and assuming 24 subunits in the core enzyme (E2)

  10. Exotic Long-lived Particles

    DEFF Research Database (Denmark)

    Jørgensen, Morten Dam

    A search for hadronising long-lived massive particles at the Large Hadron Collider is conducted with the ATLAS detector. No excess events are found. Based on statistical analysis, upper limits on the production cross section are observed to be between 0.01 pb and 0.006 pb for colour octet particles...... (gluinos) with masses ranging from 300 GeV/c2 to 1400 GeV/c2, and 0.01 pb to 0.004 pb for colour triplet particles (stops and sbottoms) with masses ranging from 200 GeV/c2 to 900 GeV/c2. In the context of Supersymmetry with decoupled sfermion and sboson sectors (Split-SUSY), this gives a lower limit...... on the gluino mass of 989 GeV/c2, and 683 GeV/c2 for the stop mass and 618 GeV/c2 for the sbottom mass. In addition, a new method is presented that improves the speed (b ) estimation for long-lived particles in the ATLAS tile calorimeter with a factor of 7 improvement in resolution at low-b and a factor of 2...

  11. Mass, matter, materialization, mattergenesis and conservation of charge

    International Nuclear Information System (INIS)

    Tsan, Ung Chan

    2013-01-01

    Conservation of mass in classical physics and in chemistry is considered to be equivalent to conservation of matter and is a necessary condition together with other universal conservation laws to account for observed experiments. Indeed matter conservation is associated to conservation of building blocks (molecules, atoms, nucleons, quarks and leptons). Matter is massive but mass and matter are two distinct concepts even if conservation of mass and conservation of matter represent the same reality in classical physics and chemistry. Conservation of mass is a consequence of conservation of atoms. Conservation of mass is valid because in these cases it is a very good approximation, the variation of mass being tiny and undetectable by weighing. However, nuclear physics and particle physics clearly show that conservation of mass is not valid to express conservation of matter. Mass is one form of energy, is a positive quantity and plays a fundamental role in dynamics allowing particles to be accelerated. Origin of mass may be linked to recently discovered Higgs bosons. Matter conservation means conservation of baryonic number A and leptonic number L, A and L being algebraic numbers. Positive A and L are associated to matter particles, negative A and L are associated to antimatter particles. All known interactions do conserve matter thus could not generate, from pure energy, a number of matter particles different from that of number of antimatter particles. But our universe is material and neutral, this double message has to be deciphered simultaneously. Asymmetry of our universe demands an interaction which violates matter conservation but obeys all universal conservation laws, in particular conservation of electric charge Q. Expression of Q shows that conservation of (A–L) and total flavor TF are necessary and sufficient to conserve Q. Conservation of A and L is indeed a trivial case of conservation of (A–L) and is valid for all known interactions of the standard

  12. MPAI (mass probes aided ionization) method for total analysis of biomolecules by mass spectrometry.

    Science.gov (United States)

    Honda, Aki; Hayashi, Shinichiro; Hifumi, Hiroki; Honma, Yuya; Tanji, Noriyuki; Iwasawa, Naoko; Suzuki, Yoshio; Suzuki, Koji

    2007-01-01

    We have designed and synthesized various mass probes, which enable us to effectively ionize various molecules to be detected with mass spectrometry. We call the ionization method using mass probes the "MPAI (mass probes aided ionization)" method. We aim at the sensitive detection of various biological molecules, and also the detection of bio-molecules by a single mass spectrometry serially without changing the mechanical settings. Here, we review mass probes for small molecules with various functional groups and mass probes for proteins. Further, we introduce newly developed mass probes for proteins for highly sensitive detection.

  13. Music of elementary particles

    International Nuclear Information System (INIS)

    Sternheimer, J.

    1983-01-01

    This Note offers a new point of view on particle masses. It is shown that they are distributed following a musical scale, the chromatic tempered scale -for stable particles- subdivided into microintervals including unstable particles. A theoretical explanation, based on causality, allows one also to calculate their global distribution along the mass scale, in agreement with experiment, and indicating the existence of ''musical'' laws in the vibratory organisation of matter [fr

  14. Experimental investigation of the effect of inlet particle properties on the capture efficiency in an exhaust particulate filter

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Sandeep; Rothamer, David; Zelenyuk, Alla; Stewart, Mark; Bell, David

    2017-11-01

    The impact of inlet particle properties on the filtration performance of clean and particulate matter (PM) laden cordierite filter samples was evaluated using PM generated by a spark-ignition direct-injection (SIDI) engine fuelled with tier II EEE certification gasoline. Prior to the filtration experiments, a scanning mobility particle spectrometer (SMPS) was used to measure the electrical-mobility based particle size distribution (PSD) in the SIDI exhaust from distinct engine operating conditions. An advanced aerosol characterization system that comprised of a centrifugal particle mass analyser (CPMA), a differential mobility analyser (DMA), and a single particle mass spectrometer (SPLAT II) was used to obtain additional information on the SIDI particulate, including particle composition, mass, and dynamic shape factors (DSFs) in the transition () and free-molecular () flow regimes. During the filtration experiments, real-time measurements of PSDs upstream and downstream of the filter sample were used to estimate the filtration performance and the total trapped mass within the filter using an integrated particle size distribution method. The filter loading process was paused multiple times to evaluate the filtration performance in the partially loaded state. The change in vacuum aerodynamic diameter () distribution of mass-selected particles was examined for flow through the filter to identify whether preferential capture of particles of certain shapes occurred in the filter. The filter was also probed using different inlet PSDs to understand their impact on particle capture within the filter sample. Results from the filtration experiment suggest that pausing the filter loading process and subsequently performing the filter probing experiments did not impact the overall evolution of filtration performance. Within the present distribution of particle sizes, filter efficiency was independent of particle shape potentially due to the diffusion-dominant filtration

  15. Perinatal, sociodemographic and lifestyle correlates of increased total and visceral fat mass levels in schoolchildren in Greece: the Healthy Growth Study.

    Science.gov (United States)

    Moschonis, George; Kaliora, Adriana C; Karatzi, Kalliopi; Michaletos, Aggelos; Lambrinou, Christina-Paulina; Karachaliou, Alexandra K; Chrousos, George P; Lionis, Christos; Manios, Yannis

    2017-03-01

    To identify possibly independent associations of perinatal, sociodemographic and lifestyle factors with childhood total and visceral body fat. A representative sample of 2655 schoolchildren (9-13 years) participated in the Healthy Growth Study, a cross-sectional epidemiological study. Seventy-seven primary schools in four large regions in Greece. A sample of 1228 children having full data on total and visceral fat mass levels, as well as on anthropometric, dietary, physical activity, physical examination, socio-economic and perinatal indices, was examined. Maternal (OR=3·03 and 1·77) and paternal obesity (OR=1·62 and 1·78), maternal smoking during pregnancy (OR=1·72 and 1·93) and rapid infant weight gain (OR=1·42 and 1·96) were significantly and positively associated with children's increased total and visceral fat mass levels, respectively. Children's television watching for >2 h/d (OR=1·40) and maternal pre-pregnancy obesity (OR=2·46) were associated with children's increased total and visceral fat mass level, respectively. Furthermore, increased children's physical activity (OR=0·66 and 0·47) were significantly and negatively associated with children's total and visceral fat mass levels, respectively. Lastly, both father's age >46 years (OR=0·57) and higher maternal educational level (OR=0·45) were associated with children's increased total visceral fat mass level. Parental sociodemographic characteristics, perinatal indices and pre-adolescent lifestyle behaviours were associated with children's abnormal levels of total and visceral fat mass. Any future programme for childhood prevention either from the perinatal age or at late childhood should take these indices into consideration.

  16. Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics

    Science.gov (United States)

    Alanen, Jenni; Simonen, Pauli; Saarikoski, Sanna; Timonen, Hilkka; Kangasniemi, Oskari; Saukko, Erkka; Hillamo, Risto; Lehtoranta, Kati; Murtonen, Timo; Vesala, Hannu; Keskinen, Jorma; Rönkkö, Topi

    2017-07-01

    Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM) chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6-268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA) formation potential was measured to be 9-20 mg kgfuel-1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize - more than half an hour - which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission source and system temperatures. Sulfate was

  17. Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics

    Directory of Open Access Journals (Sweden)

    J. Alanen

    2017-07-01

    Full Text Available Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6–268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA formation potential was measured to be 9–20 mg kgfuel−1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize – more than half an hour – which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission

  18. Global dependence of optical potential parameters for alpha particles with energies up to 80 MeV

    International Nuclear Information System (INIS)

    Kuterbekov, K.A.; Zholdybaev, T.K.; Sadykov, B.M.; Mukhambetzhan, A.; Kukhtina, I.N.; Penionzhkevich, Yu.Eh.

    2002-01-01

    Global (energy and mass) dependences of optical potential for α-particles with energies up to 80 MeV have been received. A Woods-Saxon form factor for macroscopic potential has been used. Energy and mass dependences of the semi-microscopic α-particle potential parameters have been investigated for the first time. In general, a good description of elastic and inelastic differential and total reactions cross sections for different nuclei using the revealed global parameters has been received within the framework of macroscopic and semi-microscopic approaches

  19. On the simultaneous deployment of two single-particle mass spectrometers at an urban background and a roadside site during SAPUSS

    Directory of Open Access Journals (Sweden)

    M. Dall'Osto

    2016-08-01

    Full Text Available The aerosol time-of-flight mass spectrometer (ATOFMS provides size-resolved information on the chemical composition of single particles with high time resolution. Within SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies, continuous ATOFMS measurements of ambient particles were made simultaneously at two urban locations: urban background (UB site and roadside (RS site in the city of Barcelona (Spain from 17 September to 18 October 2010. Two different instrumental configurations were used: ATOFMS (TSI 3800 with a converging nozzle inlet (high efficiency at about 800–2000 nm at the UB site and ATOFMS (TSI 3800-100 with an aerodynamic lens inlet (high efficiency at about 300–700 nm at the RS site. This is the first time, to our knowledge, that two ATOFMS instruments have been deployed in the same field study. The different instrument configurations had an impact on the observed particle types at the two sites. Nevertheless, 10 particle types were detected at both locations, including local and regional elemental carbon (22.7–58.9 % of total particles, fresh and aged sea salt (1.0–14.6 %, local and regional nitrate-containing aerosols (3–11.6 %, local lead-containing metallic particles (0.1–0.2 %, and transported Fe-nitrate particles (0.8–2.5 %. The ATOFMS at the UB also characterized four particle types: calcium-containing dust (0.9 %, Saharan dust (1.3 %, vanadium-containing particles (0.9 %, and vegetative debris (1.7 %. By contrast, the high statistical counts of fine particles detected at the RS allowed identification of eight particle types. Four of these contained organic nitrogen of primary and secondary origin, which highlights the complex nature of the sources and processes that contribute to this aerosol chemical component. Aminium salts were found related to coarse sulfate-rich particle types, suggesting heterogeneous reaction mechanisms for their formation. The other four particle

  20. Some problems of high-energy elementary particle physics

    International Nuclear Information System (INIS)

    Isaev, P.S.

    1995-01-01

    The problems of high-energy elementary particle physics are discussed. It is pointed out that the modern theory of elementary-particle physics has no solutions of some large physical problems: origin of the mass, electric charge, identity of particle masses, change of the mass of elementary particles in time and others. 7 refs

  1. Preliminary observations of organic gas-particle partitioning from biomass combustion smoke using an aerosol mass spectrometer

    Science.gov (United States)

    T. Lee; S. M. Kreidenweis; J. L. Collett; A. P. Sullivan; C. M. Carrico; J. L. Jimenez; M. Cubison; S. Saarikoski; D. R. Worsnop; T. B. Onasch; E. Fortner; W. C. Malm; E. Lincoln; Cyle Wold; WeiMin Hao

    2010-01-01

    Aerosols play important roles in adverse health effects, indirect and direct forcing of Earth’s climate, and visibility degradation. Biomass burning emissions from wild and prescribed fires can make a significant contribution to ambient aerosol mass in many locations and seasons. In order to better understand the chemical properties of particles produced by combustion...

  2. Finite-width effects in unstable-particle production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Falgari, P. [Utrecht Univ. (Netherlands). Inst. for Theoretical Physics; Utrecht Univ. (Netherlands). Spinoza Inst.; Papanastasiou, A.S. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Signer, A. [Paul Scherrer Institut, Villigen (Switzerland); Zuerich Univ. (Switzerland). Inst. for Theoretical Physics

    2013-03-15

    We present a general formalism for the calculation of finite-width contributions to the differential production cross sections of unstable particles at hadron colliders. In this formalism, which employs an effective-theory description of unstable-particle production and decay, the matrix element computation is organized as a gauge-invariant expansion in powers of {Gamma}{sub X}/m{sub X}, with {Gamma}{sub X} and m{sub X} the width and mass of the unstable particle. This framework allows for a systematic inclusion of off-shell and non-factorizable effects whilst at the same time keeping the computational effort minimal compared to a full calculation in the complex-mass scheme. As a proof-of-concept example, we give results for an NLO calculation of top-antitop production in the q anti q partonic channel. As already found in a similar calculation of single-top production, the finite-width effects are small for the total cross section, as expected from the naive counting {proportional_to}{Gamma}{sub t}/m{sub t}{proportional_to}1%. However, they can be sizeable, in excess of 10%, close to edges of certain kinematical distributions. The dependence of the results on the mass renormalization scheme, and its implication for a precise extraction of the top-quark mass, is also discussed.

  3. Finite-width effects in unstable-particle production at hadron colliders

    International Nuclear Information System (INIS)

    Falgari, P.; Signer, A.; Zuerich Univ.

    2013-03-01

    We present a general formalism for the calculation of finite-width contributions to the differential production cross sections of unstable particles at hadron colliders. In this formalism, which employs an effective-theory description of unstable-particle production and decay, the matrix element computation is organized as a gauge-invariant expansion in powers of Γ X /m X , with Γ X and m X the width and mass of the unstable particle. This framework allows for a systematic inclusion of off-shell and non-factorizable effects whilst at the same time keeping the computational effort minimal compared to a full calculation in the complex-mass scheme. As a proof-of-concept example, we give results for an NLO calculation of top-antitop production in the q anti q partonic channel. As already found in a similar calculation of single-top production, the finite-width effects are small for the total cross section, as expected from the naive counting ∝Γ t /m t ∝1%. However, they can be sizeable, in excess of 10%, close to edges of certain kinematical distributions. The dependence of the results on the mass renormalization scheme, and its implication for a precise extraction of the top-quark mass, is also discussed.

  4. Live Imaging of Cellular Internalization of Single Colloidal Particle by Combined Label-Free and Fluorescence Total Internal Reflection Microscopy.

    Science.gov (United States)

    Byrne, Gerard D; Vllasaliu, Driton; Falcone, Franco H; Somekh, Michael G; Stolnik, Snjezana

    2015-11-02

    In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 μm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.

  5. The role of dust storms in total atmospheric particle concentrations at two sites in the western U.S.

    Science.gov (United States)

    Neff, Jason C.; Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Belnap, Jayne

    2013-01-01

    Mineral aerosols are produced during the erosion of soils by wind and are a common source of particles (dust) in arid and semiarid regions. The size of these particles varies widely from less than 2 µm to larger particles that can exceed 50 µm in diameter. In this study, we present two continuous records of total suspended particle (TSP) concentrations at sites in Mesa Verde and Canyonlands National Parks in Colorado and Utah, USA, respectively, and compare those values to measurements of fine and coarse particle concentrations made from nearby samplers. Average annual concentrations of TSP at Mesa Verde were 90 µg m−3 in 2011 and at Canyonlands were 171 µg m−3 in 2009, 113 µg m−3 in 2010, and 134 µg m−3 in 2011. In comparison, annual concentrations of fine (diameter of 2.5 µm and below) and coarse (2.5–10 µm diameter) particles at these sites were below 10 µg m−3 in all years. The high concentrations of TSP appear to be the result of regional dust storms with elevated concentrations of particles greater than 10 µm in diameter. These conditions regularly occur from spring through fall with 2 week mean TSP periodically in excess of 200 µg m−3. Measurement of particles on filters indicates that the median particle size varies between approximately 10 µm in winter and 40 µm during the spring. These persistently elevated concentrations of large particles indicate that regional dust emission as dust storms and events are important determinants of air quality in this region.

  6. A numerical study of the segregation phenomenon of lognormal particle size distributions in the rotating drum

    Science.gov (United States)

    Yang, Shiliang; Sun, Yuhao; Zhao, Ya; Chew, Jia Wei

    2018-05-01

    Granular materials are mostly polydisperse, which gives rise to phenomena such as segregation that has no monodisperse counterpart. The discrete element method is applied to simulate lognormal particle size distributions (PSDs) with the same arithmetic mean particle diameter but different PSD widths in a three-dimensional rotating drum operating in the rolling regime. Despite having the same mean particle diameter, as the PSD width of the lognormal PSDs increases, (i) the steady-state mixing index, the total kinetic energy, the ratio of the active region depth to the total bed depth, the mass fraction in the active region, the steady-state active-passive mass-based exchanging rate, and the mean solid residence time (SRT) of the particles in the active region increase, while (ii) the steady-state gyration radius, the streamwise velocity, and the SRT in the passive region decrease. Collectively, these highlight the need for more understanding of the effect of PSD width on the granular flow behavior in the rotating drum operating in the rolling flow regime.

  7. Resonance ionization mass spectrometry of ion beam sputtered neutrals for element- and isotope-selective analysis of plutonium in micro-particles

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, N. [Institute for Transuranium Elements, European Commission Joint Research Centre, Karlsruhe (Germany); Kratz, J.V.; Trautmann, N. [Johannes Gutenberg-University Mainz, Institute of Nuclear Chemistry, Mainz (Germany); Passler, G. [Johannes Gutenberg-University Mainz, Institute of Physics, Mainz (Germany)

    2009-11-15

    Micro-particles containing actinides are of interest for risk assessments of contaminated areas, nuclear forensic analyses, and IAEA as well as Euratom safeguards programs. For their analysis, secondary ion mass spectrometry (SIMS) has been established as the state-of-the-art standard technique. In the case of actinide mixtures within the particles, however, SIMS suffers from isobaric interferences (e.g., {sup 238}U/{sup 238}Pu, {sup 241}Am/{sup 241}Pu). This can be eliminated by applying resonance ionization mass spectrometry which is based on stepwise resonant excitation and ionization of atoms with laser light, followed by mass spectrometric detection of the produced ions, combining high elemental selectivity with the analysis of isotopic compositions. This paper describes the instrumental modifications for coupling a commercial time-of-flight (TOF)-SIMS apparatus with three-step resonant post-ionization of the sputtered neutrals using a high-repetition-rate (kHz) Nd:YAG laser pumped tunable titanium:sapphire laser system. Spatially resolved ion images obtained from actinide-containing particles in TOF-SIMS mode demonstrate the capability for isotopic and spatial resolution. Results from three-step resonant post-ionization of bulk Gd and Pu samples successfully demonstrate the high elemental selectivity of this process. (orig.)

  8. On the dependence of quasipotential on the total energy of a two-particle system

    International Nuclear Information System (INIS)

    Kapshaj, V.N.; Savrin, V.I.

    1986-01-01

    For a system of two relativistic particles described in the framework of the Logunov-Tavkhelidze one-time approach the dependence is calculated of the one-boson exchange potential on the total energy of the system. It is shown that in spite of a nonlocal form of the quasipotential obtained, three-dimensional equations for the wave function are reduced to one-dimensional ones by means of partial expansion. Influence of the energy dependence of the quasipotential on its behaviour in the coordinate representation is discussed

  9. g factors and the interplay of collective and single-particle degrees of freedom in superdeformed mass-190 nuclei

    International Nuclear Information System (INIS)

    Sun, Yang; Zhang, Jing-ye; Guidry, Mike

    2001-01-01

    Interplay of collective and single-particle degrees of freedom is a common phenomenon in strongly correlated many-body systems. Despite many successful efforts in the study of superdeformed nuclei, there is still unexplored physics that can be best understood only through the nuclear magnetic properties. We point out that study of the gyromagnetic factor (g factor) may open a unique opportunity for understanding superdeformed structure. Our calculations suggest that investigation of the g-factor dependence on spin and particle number can provide important information on single-particle structure and its interplay with collective motion in the superdeformed mass-190 nuclei. Modern experimental techniques combined with the new generation of sensitive detectors should be capable of testing our predictions

  10. The Splashback Radius of Halos from Particle Dynamics. II. Dependence on Mass, Accretion Rate, Redshift, and Cosmology

    Science.gov (United States)

    Diemer, Benedikt; Mansfield, Philip; Kravtsov, Andrey V.; More, Surhud

    2017-07-01

    The splashback radius R sp, the apocentric radius of particles on their first orbit after falling into a dark matter halo, has recently been suggested to be a physically motivated halo boundary that separates accreting from orbiting material. Using the Sparta code presented in Paper I, we analyze the orbits of billions of particles in cosmological simulations of structure formation and measure R sp for a large sample of halos that span a mass range from dwarf galaxy to massive cluster halos, reach redshift 8, and include WMAP, Planck, and self-similar cosmologies. We analyze the dependence of R sp/R 200m and M sp/M 200m on the mass accretion rate Γ, halo mass, redshift, and cosmology. The scatter in these relations varies between 0.02 and 0.1 dex. While we confirm the known trend that R sp/R 200m decreases with Γ, the relationships turn out to be more complex than previously thought, demonstrating that R sp is an independent definition of the halo boundary that cannot trivially be reconstructed from spherical overdensity definitions. We present fitting functions for R sp/R 200m and M sp/M 200m as a function of accretion rate, peak height, and redshift, achieving an accuracy of 5% or better everywhere in the parameter space explored. We discuss the physical meaning of the distribution of particle apocenters and show that the previously proposed definition of R sp as the radius of the steepest logarithmic density slope encloses roughly three-quarters of the apocenters. Finally, we conclude that no analytical model presented thus far can fully explain our results.

  11. On the identification of carbonaceous aerosols via 14C accelerator mass spectrometry, and laser microprobe mass spectrometry

    International Nuclear Information System (INIS)

    Currie, L.A.; Fletcher, R.A.; Klouda, G.A.

    1987-01-01

    Carbon isotopic measurements ( 12 C, 14 C), derived from chemical measurements of total carbon plus AMS measurements of 14 C/ 12 C have become an accepted means for estimating fossil and contemporary carbon source contributions to atmospheric carbon. Because of the limited sensitivity of these techniques, however, such measurements are restricted to 'bulk' samples comprising at least 10-100 μg of carbon. Laser microprobe mass spectrometry (LMMS) offers an important complementary opportunity to investigate the chemical nature of individual particles as small as 0.1 μm in diameter. Although there is little hope to measure 14 C/ 12 C in such small samples, the compositional and structural information available with the laser microprobe is of interest for possible source discrimination. Also, the analysis of individual particles, which may reflect individual sources, yields significant potential increases in spatial, temporal and source resolution, in comparison to bulk sample analysis. Results of our exploratory investigation of known sources of carbonaceous particles, using LMMS, are presented. By applying multivariate techniques to laser mass spectra of soot from the combustion of heptane and wood, we found striking differences in the alkali metals (notably potassium) in the positive ion mass spectra. For ambient particles, 14 C has proved to be a crucial adjunct for the development and validation of the LMMS approach to single particle source assignment via carbon cluster pattern recognition. The combined techniques offer great promise for objective modeling (number and types of carbon sources) and for extension of the dichotomous carbon apportionment (fossil, contemporary) to subclasses such as soot from wood and agricultural burning, and that from coal and petroleum combustion. (orig.)

  12. Music of elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Sternheimer, J.

    1983-12-12

    This note offers a new point of view on particle masses. It is shown that they are distributed following a musical scale, the chromatic tempered scale -for stable particles- subdivided into microintervals including unstable particles. A theoretical explanation, based on causality, allows one also to calculate their global distribution along the mass scale, in agreement with experiment, and indicating the existence of ''musical'' laws in the vibratory organisation of matter.

  13. Mass number dependence of total neutron cross section; a discussion based on the semi-classical optical model

    International Nuclear Information System (INIS)

    Angeli, Istvan

    1990-01-01

    The dependence of total neutron cross section on mass number can be calculated by the black nucleus formula, according to the optical model. The fine structure of mass number dependence is studied, and a correction factor formula is given on the basis of a semi-classical optical model. Yielding results in good agreement with experimental data. In addition to the mass number dependence, the neutron-energy dependence can also be calculated using this model. (K.A.)

  14. Primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range

    Science.gov (United States)

    Sakaguchi, T.; Ehara, K.

    2011-02-01

    The national primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range has been developed at the National Institute of Advanced Industrial Science and Technology (AIST), Japan. The standard consists of a total number counting type flow cytometer (T-FCM) and an electronic balance. The T-FCM is a commercial flow cytometer modified so that the total number of particles in an aqueous suspension sampled in a test tube can be counted, and the electronic balance is used to determine the mass of the suspension. This standard is intended to be used for calibrating commercial standard suspensions of monodisperse polystyrene latex (PSL) particles. The measurand in the calibration is the mass-based number concentration (the particle number in a unit mass of a suspension), and the calibration capability covers the concentration range from 5 × 102 to 2 × 106 particles g-1. When the concentration of the suspension is higher than 2 × 103 particles g-1, the suspension is first diluted to about 1 × 103 particles g-1 to suppress the coincidence loss in particle counting by the T-FCM. The validity of the calibration with the T-FCM was examined by comparison with an independent method in which a scanning electron microscope (SEM) was used to determine the number concentration of particles deposited on a silicon wafer. For a suspension of 10 µm PSL particles with a concentration of approximately 1 × 106 particles g-1, the concentration values determined by the T-FCM and SEM methods were 1.042 × 106 and 1.035 × 106 particles g-1, respectively: The difference was less than 0.7%. The relative expanded uncertainty of the measurement by the T-FCM method with the coverage factor k = 2 was 4.4%.

  15. Distribution of polyethylene wear debris and bone particles in granuloma tissue around total hip joint replacements

    Czech Academy of Sciences Publication Activity Database

    Zolotarevova, E.; Lapčíková, Monika; Šlouf, Miroslav; Entlicher, G.; Pokorný, D.; Veselý, F.; Sosna, A.

    2008-01-01

    Roč. 18, č. 2 (2008), s. 173-174 ISSN 1120-7000. [Domestic Meeting of the European Hip Society /8./. 11.06.2008-13.06.2008, Madrid] R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : wear debris * bone particles * total hip joint replacement Subject RIV: CD - Macromolecular Chemistry www. hip -int.com

  16. Numerology of the light particles masses

    International Nuclear Information System (INIS)

    Anoshin, A.I.

    2002-01-01

    The empirical formulae for the masses of light mesons, barions and u-, d-, s-'current' quarks was obtained. The using of calculated 'precise' current quark masses in QCD is given as an example. (author)

  17. Elementary Particles A New Approach

    Directory of Open Access Journals (Sweden)

    FranciscoMartnezFlores.

    2015-07-01

    Full Text Available ABSTRACT It is shown the inexistence of neutrinos to define precisely the concept of relativistics mass under this scheme to elementarys particles as electron and interactions particles like photons correspond an electromagnetic and virtual mass. Nucleons protons and neutrons have real or inertial mass for being composite particles since inertia needs structure it is provided by an interactive network originated by strong and weak forces. This mass is building up atoms and all the material world under Classical Physics and Chemistrys laws.These actual masses may be considered as electromagnetic and virtual one thanks to its charge in order to establish the high energies level needed to obtain all particles physics elementary or not which are governed by the laws of Quantum Physics. With all this one may set up amore reasonable and understandable new Standard Model which being projected into Cosmological Model can get rid of some inconsistencies and concepts difficult to be admitted.

  18. Microphysical processing of aerosol particles in orographic clouds

    Directory of Open Access Journals (Sweden)

    S. Pousse-Nottelmann

    2015-08-01

    aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO. The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener–Bergeron–Findeisen (WBF process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice crystal number

  19. Use of GSR particle analysis program on an analytical SEM to identify sources of emission of airborne particles

    International Nuclear Information System (INIS)

    Chan, Y.C.; Trumper, J.; Bostrom, T.

    2002-01-01

    Full text: High concentrations of airborne particles, in particular PM 10 (particulate matter 10 , but has been little used in Australia for airborne particulates. Two sets of 15 mm PM 10 samples were collected in March and April 2000 from two sites in Brisbane, one within a suburb and one next to an arterial road. The particles were collected directly onto double-sided carbon tapes with a cascade impactor attached to a high-volume PM 10 sampler. The carbon tapes were analysed in a JEOL 840 SEM equipped with a Be-window energy-dispersive X-ray detector and Moran Scientific microanalysis system. An automated Gun Shot Residue (GSR) program was used together with backscattered electron imaging to characterise and analyse individual particulates. About 6,000 particles in total were analysed for each set of impactor samples. Due to limitations of useful pixel size, only particles larger than about 0.5 μm could be analysed. The size, shape and estimated elemental composition (from Na to Pb) of the particles were subjected to non-hierarchical cluster analysis and the characteristics of the clusters were related to their possible sources of emission. Both samples resulted in similar particle clusters. The particles could be classified into three main categories non-spherical (58% of the total number of analysed particles, shape factor >1 1), spherical (15%) and 'carbonaceous' (27%, ie with unexplained % of elemental mass >75%). Non-spherical particles were mainly sea salt and soil particles, and a small amount of iron, lead and mineral dust. The spherical particles were mainly sea salt particles and flyash, and a small amount of iron, lead and secondary sulphate dust. The carbonaceous particles included carbon material mixed with secondary aerosols, roadside dust, sea salt or industrial dust. The arterial road sample also contained more roadside dust and less secondary aerosols than the suburb sample. Current limitations with this method are the minimum particle size

  20. Effects of the application of different particle sizes of mill scale (residue) in mass red ceramic

    International Nuclear Information System (INIS)

    Arnt, A.B.C.; Rocha, M.R.; Meller, J.G.

    2012-01-01

    This study aims to evaluate the influence of particle size of mill scale, residue, when added to a mass ceramic. This residue rich in iron oxide may be used as pigment in the ceramics industry. The use of pigments in ceramic products is related to the characteristics of non-toxicity, chemical stability and determination of tone. The tendency to solubilize the pigment depends on the specific surface area. The residue study was initially subjected to physical and chemical characterization and added in a proportion of 5% at a commercial ceramic white burning, with different particle sizes. Both formulations were sintered at a temperature of 950 ° C and evaluated for: loss on ignition, firing linear shrinkage, water absorption, flexural strength and difference of tone. Samples with finer particles of mill scale 0.038 μ showed higher mechanical strength values in the order of 18 MPa. (author)

  1. Correlation between the Total Gravitating Mass of Groups and Clusters and the Supermassive Black Hole Mass of Brightest Galaxies

    Science.gov (United States)

    Bogdán, Ákos; Lovisari, Lorenzo; Volonteri, Marta; Dubois, Yohan

    2018-01-01

    Supermassive black holes (BHs) residing in the brightest cluster galaxies are over-massive relative to the stellar bulge mass or central stellar velocity dispersion of their host galaxies. As BHs residing at the bottom of the galaxy cluster’s potential well may undergo physical processes that are driven by the large-scale characteristics of the galaxy clusters, it is possible that the growth of these BHs is (indirectly) governed by the properties of their host clusters. In this work, we explore the connection between the mass of BHs residing in the brightest group/cluster galaxies (BGGs/BCGs) and the virial temperature, and hence total gravitating mass, of galaxy groups/clusters. To this end, we investigate a sample of 17 BGGs/BCGs with dynamical BH mass measurements and utilize XMM-Newton X-ray observations to measure the virial temperatures and infer the {M}500 mass of the galaxy groups/clusters. We find that the {M}{BH}{--}{kT} relation is significantly tighter and exhibits smaller scatter than the {M}{BH}{--}{M}{bulge} relations. The best-fitting power-law relations are {{log}}10({M}{BH}/{10}9 {M}ȯ )=0.20+1.74{{log}}10({kT}/1 {keV}) and {{log}}10({M}{BH}/{10}9 {M}ȯ ) = -0.80+1.72{{log}}10({M}{bulge}/{10}11 {M}ȯ ). Thus, the BH mass of BGGs/BCGs may be set by physical processes that are governed by the properties of the host galaxy group/cluster. These results are confronted with the Horizon-AGN simulation, which reproduces the observed relations well, albeit the simulated relations exhibit notably smaller scatter.

  2. NLO predictions for the production of a (750 GeV) spin-two particle at the LHC

    CERN Document Server

    Das, Goutam; Hirschi, Valentin; Maltoni, Fabio; Shao, Hua-Sheng

    2017-07-10

    We obtain predictions accurate at the next-to-leading order in QCD for the production of a generic spin-two particle in the most relevant channels at the LHC: production in association with colored particles (inclusive, one jet, two jets and $t\\bar t$), with vector bosons ($Z,W^\\pm,\\gamma$) and with the Higgs boson. We present total and differential cross sections as well as branching ratios corresponding to a spin-2 particle of 750 GeV of mass, possibly with non-universal couplings to standard model particles, at 13 TeV of center-of-mass energy. We find that the next-to-leading order corrections give rise to sizeable $K$ factors for many channels, in some cases exposing the unitarity-violating behaviour of non-universal couplings scenarios, and in general greatly reduce the theoretical uncertainties. Our predictions are publicly available in the \\amc\\ framework and can, therefore, be directly used in experimental simulations for any value of the mass and couplings.

  3. Nano-objects emitted during maintenance of common particle generators: direct chemical characterization with aerosol mass spectrometry and implications for risk assessments

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Patrik T., E-mail: patrik.nilsson@design.lth.se; Isaxon, Christina [Lund University, Ergonomics and Aerosol Technology (Sweden); Eriksson, Axel C. [Lund University, Nuclear Physics (Sweden); Messing, Maria E. [Lund University, Solid State Physics (Sweden); Ludvigsson, Linus; Rissler, Jenny [Lund University, Ergonomics and Aerosol Technology (Sweden); Hedmer, Maria; Tinnerberg, Håkan [Lund University, Division of Occupational and Environmental Medicine, Department of Laboratory Medicine (Sweden); Gudmundsson, Anders [Lund University, Ergonomics and Aerosol Technology (Sweden); Deppert, Knut [Lund University, Solid State Physics (Sweden); Bohgard, Mats; Pagels, Joakim H. [Lund University, Ergonomics and Aerosol Technology (Sweden)

    2013-11-15

    Nanotechnology gives us materials with enhanced or completely new properties. At the same time, inhalation of manufactured nano-objects has been related to an array of adverse biological effects. We characterized particle emissions, which occurred during maintenance of common metal nanoparticle generators and contrasted the properties of the emitted particles with those originally produced by the generators. A new approach using online aerosol mass spectrometry (AMS), for time- and size-resolved measurements of the particle chemical composition, was applied in combination with more conventional techniques for particle sampling and analysis, including electron microscopy. Emissions during maintenance work, in terms of mass and surface area concentration in the size range of 0.02–10 μm, were dominated by large agglomerates (1–5 μm). With AMS, we show that the particle composition depends on both generator type and maintenance task being performed and that the instrument can be used for highly time-resolved selective studies of metal nanoparticle emissions. The emitted agglomerates have a relatively high probability to be deposited in the lower respiratory tract, since the mean particle diameter coincided with a peak in the lung deposition curve. Each of these agglomerates consisted of a very high number (10{sup 3}–10{sup 5}/agglomerate) of nanometer-sized primary particles originating from the particle synthesis process. This made them possess large surface areas, one of the key properties in nanotoxicology. Similar agglomerates may be emitted in a wide range of processes when nanoparticles are manufactured or handled. The fate of such agglomerates, once deposited in the respiratory tract, is unknown and should therefore be considered in future particle toxicological studies. Our results highlight the importance of including micrometer-sized particles in exposure and emission assessments.

  4. Nano-objects emitted during maintenance of common particle generators: direct chemical characterization with aerosol mass spectrometry and implications for risk assessments

    International Nuclear Information System (INIS)

    Nilsson, Patrik T.; Isaxon, Christina; Eriksson, Axel C.; Messing, Maria E.; Ludvigsson, Linus; Rissler, Jenny; Hedmer, Maria; Tinnerberg, Håkan; Gudmundsson, Anders; Deppert, Knut; Bohgard, Mats; Pagels, Joakim H.

    2013-01-01

    Nanotechnology gives us materials with enhanced or completely new properties. At the same time, inhalation of manufactured nano-objects has been related to an array of adverse biological effects. We characterized particle emissions, which occurred during maintenance of common metal nanoparticle generators and contrasted the properties of the emitted particles with those originally produced by the generators. A new approach using online aerosol mass spectrometry (AMS), for time- and size-resolved measurements of the particle chemical composition, was applied in combination with more conventional techniques for particle sampling and analysis, including electron microscopy. Emissions during maintenance work, in terms of mass and surface area concentration in the size range of 0.02–10 μm, were dominated by large agglomerates (1–5 μm). With AMS, we show that the particle composition depends on both generator type and maintenance task being performed and that the instrument can be used for highly time-resolved selective studies of metal nanoparticle emissions. The emitted agglomerates have a relatively high probability to be deposited in the lower respiratory tract, since the mean particle diameter coincided with a peak in the lung deposition curve. Each of these agglomerates consisted of a very high number (10 3 –10 5 /agglomerate) of nanometer-sized primary particles originating from the particle synthesis process. This made them possess large surface areas, one of the key properties in nanotoxicology. Similar agglomerates may be emitted in a wide range of processes when nanoparticles are manufactured or handled. The fate of such agglomerates, once deposited in the respiratory tract, is unknown and should therefore be considered in future particle toxicological studies. Our results highlight the importance of including micrometer-sized particles in exposure and emission assessments

  5. Characterization of key aerosol, trace gas and meteorological properties and particle formation and growth processes dependent on air mass origins in coastal Southern Spain

    Science.gov (United States)

    Diesch, J.; Drewnick, F.; Sinha, V.; Williams, J.; Borrmann, S.

    2011-12-01

    The chemical composition and concentration of aerosols at a certain site can vary depending on season, the air mass source region and distance from sources. Regardless of the environment, new particle formation (NPF) events are one of the major sources for ultrafine particles which are potentially hazardous to human health. Grown particles are optically active and efficient CCN resulting in important implications for visibility and climate (Zhang et al., 2004). The study presented here is intended to provide information about various aspects of continental, urban and marine air masses reflected by wind patterns of the air arriving at the measurement site. Additionally we will be focusing on NPF events associated with different types of air masses affecting their emergence and temporal evolution. Measurements of the ambient aerosol, various trace gases and meteorological parameters were performed within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from mid-November to mid-December 2008 at the atmospheric research station "El Arenosillo" located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean. Number and mass as well as PAH and black carbon concentrations were measured in PM1 and size distribution instruments covered the size range 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (AMS). In order to evaluate the characteristics of different air masses linking local and regional sources as well as NPF processes, characteristic air mass types were classified dependent on backwards trajectory pathways and local meteorology. Large nuclei mode concentrations in the number size distribution were found within continental and urban influenced air mass types due to frequently occurring NPF events. Exploring individual production and sink variables, sulfuric

  6. Model independent search for new particles in two-dimensional mass space using events with missing energy, two jets and two leptons with the CMS detector

    CERN Document Server

    AUTHOR|(CDS)2080070; Hebbeker, Thomas

    2017-07-07

    The discovery of a new particle consistent with the standard model Higgs boson at the Large Hadron Collider in 2012 completed the standard model of particle physics (SM). Despite its remarkable success many questions remain unexplained. Numerous theoretical models, predicting the existence of new heavy particles, provide answers to these unresolved questions and are tested at high energy experiments such as the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC). In this thesis a model independent search method for new particles in two-dimensional mass space in events with missing transverse energy is presented using 19.7 $\\mbox{fb}^{-1}$ of proton-proton collision data recorded by the CMS detector at a centre of mass energy $\\sqrt{s}$ = 8 TeV at the LHC. The analysis searches for signatures of pair-produced new heavy particles $\\mbox{T}^\\prime$ which decay further into unknown heavy particles $\\mbox{W}^\\prime$ and SM quarks $q$ ($\\mbox{T}^\\prime\\overline{\\mbox{T}^\\prime} \\rightarrow {...

  7. Characteristics of Ambient Black Carbon Mass and Size-Resolved Particle Number Concentrations during Corn Straw Open-Field Burning Episode Observations at a Rural Site in Southern Taiwan.

    Science.gov (United States)

    Cheng, Yu-Hsiang; Yang, Li-Sing

    2016-07-08

    Information on the effect of open-field burning of agricultural residues on ambient black carbon (BC) mass and size-resolved particle number concentrations is scarce. In this study, to understand the effect of such open-field burning on short-term air quality, real-time variations of the BC mass and size-resolved particle number concentrations were monitored before and during a corn straw open-field burning episode at a rural site. Correlations between the BC mass and size-resolved particle number concentrations during the episode were investigated. Moreover, the particle number size distribution and absorption Ångström exponent were determined for obtaining the characteristics of aerosol emissions from the corn straw open-field burning. The results can be used to address public health concerns and as a reference for managing similar episodes of open-field burning of agricultural residues.

  8. Nuclear masses and the number of valence nucleons

    International Nuclear Information System (INIS)

    Mendoza-Temis, J.; Frank, A.; Hirsch, J.G.; Lopez Vieyra, J.C.; Morales, I.; Barea, J.; Van Isacker, P.; Velazquez, V.

    2008-01-01

    An improved version of the liquid drop model is presented. The addition of two terms, linear and quadratic in the total number of valence nucleons (particles or holes), improves the description of atomic masses, which can be fitted with an r.m.s. error of 1.2 MeV. Predictions are analysed an compared with those of established models

  9. Structure of proton-proton events at high center-of-mass energy with an identified particle of large transverse momentum

    International Nuclear Information System (INIS)

    Hanke, P.

    1977-01-01

    At the CERN-ISR events of pp-collisions, in which particles of large transverse momentum psub(T) are produced, were studied at √S = 52 GeV center-of-mass energy, using the 'Split-Field'-magnetspectrometer. The lorentz-invariant production cross-section of positive particles with high psub(T) was measured in the fragmentation region (average* approximately 20 0 ). In the same kinematical region the pion-fraction of produced particles for both charges was determined. In these events the effect of 'strangeness'-conservation on the dynamics of additionally produced particles was investigated. The comparison of events with negative pions and events with heavier particles - mainly kaons - at high psub(T) indicates, that the compensation of transverse momentum does not depend on the 'strangeness' of the particle at high psub(T). The quantum-number conservation rather influences the particle-content from the hadronic rest inside longitudinal phase-space. This was shown by reconstruction of decay-vertices of neutral kaons. The results obtained can be interpreted by 'constituent'-models of the proton-structure. (orig.) [de

  10. Exotic Long - Lived Particles

    CERN Document Server

    Jørgensen, Morten Dam

    A search for hadronising long-lived massive particles at the Large Hadron Collider is conducted with the ATLAS detector. No excess events are found. Based on statistical analysis, upper limits on the production cross section are observed to be between $0.01$ pb and $0.006$ pb for colour octet particles (gluinos) with masses ranging from $300 \\ \\mathrm{GeV/c}^2$ to $1400 \\ \\mathrm{GeV/c}^2$, and $0.01$ pb to $0.004$ pb for colour triplet particles (stops and sbottoms) with masses ranging from $200 \\ \\mathrm{GeV/c}^2$ to $900 \\ \\mathrm{GeV/c}^2$. In the context of Supersymmetry with decoupled sfermion and sboson sectors (Split-SUSY), this gives a lower limit on the gluino mass of $989 \\ \\mathrm{GeV/c}^2$, and $683 \\ \\mathrm{GeV/c}^2$ for the stop mass and $618 \\ \\mathrm{GeV/c}^2$ for the sbottom mass. In addition, a new method is presented that improves the speed ($\\beta$) estimation for long-lived particles in the ATLAS tile calorimeter with a factor of $7$ improvement in resolution at low-$\\beta$ and ...

  11. Traffic generated non-exhaust particulate emissions from concrete pavement: A mass and particle size study for two-wheelers and small cars

    Science.gov (United States)

    Aatmeeyata; Kaul, D. S.; Sharma, Mukesh

    This study aimed to understand the non-exhaust (NE) emission of particles from wear of summer tire and concrete pavement, especially for two wheelers and small cars. A fully enclosed laboratory-scale model was fabricated to simulate road tire interaction with a facility to collect particles in different sizes. A road was cast using the M-45 concrete mixture and the centrifugal casting method. It was observed that emission of large particle non exhaust emission (LPNE) as well as PM 10 and PM 2.5 increased with increasing load. The LPNE was 3.5 mg tire -1 km -1 for a two wheeler and 6.4 mg tire -1 km -1 for a small car. The LPNE can lead to water pollution through water run-off from the roads. The contribution of the PM 10 and PM 2.5 was smaller compared to the LPNE particles (less than 0.1%). About 32 percent of particle mass of PM 10 was present below 1 μm. The number as well as mass size distribution for PM 10 was observed to be bi-modal with peaks at 0.3 μm and 4-5 μm. The NE emissions did not show any significant trend with change in tire pressure.

  12. Seasonal variations in aerosol particle composition at the puy-de-Dôme research station in France

    Directory of Open Access Journals (Sweden)

    E. J. Freney

    2011-12-01

    Full Text Available Detailed investigations of the chemical and microphysical properties of atmospheric aerosol particles were performed at the puy-de-Dôme (pdD research station (1465 m in autumn (September and October 2008, winter (February and March 2009, and summer (June 2010 using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS. Over the three campaigns, the average mass concentrations of the non-refractory submicron particles ranged from 10 μg m−3 up to 27 μg m−3. Highest nitrate and ammonium mass concentrations were measured during the winter and during periods when marine modified airmasses were arriving at the site, whereas highest concentrations of organic particles were measured during the summer and during periods when continental airmasses arrived at the site. The measurements reported in this paper show that atmospheric particle composition is strongly influenced by both the season and the origin of the airmass. The total organic mass spectra were analysed using positive matrix factorisation to separate individual organic components contributing to the overall organic particle mass concentrations. These organic components include a low volatility oxygenated organic aerosol particle (LV-OOA and a semi-volatile organic aerosol particle (SV-OOA. Correlations of the LV-OOA components with fragments of m/z 60 and m/z 73 (mass spectral markers of wood burning during the winter campaign suggest that wintertime LV-OOA are related to aged biomass burning emissions, whereas organic aerosol particles measured during the summer are likely linked to biogenic sources. Equivalent potential temperature calculations, gas-phase, and LIDAR measurements define whether the research site is in the planetary boundary layer (PBL or in the free troposphere (FT/residual layer (RL. We observe that SV-OOA and nitrate particles are associated with air masses arriving from the PBL where as particle composition measured from RL

  13. Green's functions for theories with massless particles (in perturbation theory). [Growth properties, momentum space, mass renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P [European Organization for Nuclear Research, Geneva (Switzerland); Seneor, R [European Organization for Nuclear Research, Geneva (Switzerland); Ecole Polytechnique, 75 - Paris (France). Centre de Physique Theorique)

    1975-01-01

    With the method of perturbative renormalization developed by Epstein and Glaser it is shown that Green's functions exist for theories with massless particles such as Q.E.D. and lambda:PHI/sup 2n/ theories. Growth properties are given in momentum space. In the case of Q.E.D., it is also shown that one can perform the physical mass renormalization.

  14. Quantitative characterization of TiO2 nanoparticle release from textiles by conventional and single particle ICP-MS

    Science.gov (United States)

    Mackevica, Aiga; Olsson, Mikael Emil; Hansen, Steffen Foss

    2018-01-01

    TiO2 is ubiquitously present in a wide range of everyday items, both as an intentionally incorporated additive and naturally occurring constituent. It can be found in a wide range of consumer products, including personal care products, food contact materials, and textiles. Normal use of these products may lead to consumer and/or environmental exposure to TiO2, possibly in form of nanoparticles. The aim of this study is to perform a leaching test and apply state-of-the-art methods to investigate nano-TiO2 and total Ti release from five types of commercially available conventional textiles: table placemats, wet wipes, microfiber cloths, and two types of baby bodysuits, with Ti contents ranging from 2.63 to 1448 μg/g. Released particle analysis was performed using conventional and single particle inductively coupled plasma mass spectrometry (ICP-MS and spICP-MS), in conjunction with transmission electron microscopy (TEM), to measure total and particulate TiO2 release by mass and particle number, as well as size distribution. Less than 1% of the initial Ti content was released over 24 h of leaching, with the highest releases reaching 3.13 μg/g. The fraction of nano-TiO2 released varied among fabric types and represented 0-80% of total TiO2 release. Particle mode sizes were 50-75 nm, and TEM imaging revealed particles in sizes of 80-200 nm. This study highlights the importance of using a multi-method approach to obtain quantitative release data that is able to provide an indication regarding particle number, size distribution, and mass concentration, all of which can help in understanding the fate and exposure of nanoparticles.

  15. The effect of non-uniform mass loading on the linear, temporal development of particle-laden shear layers

    Energy Technology Data Exchange (ETDEWEB)

    Senatore, Giacomo [Department of Aerospace Engineering, Universita di Pisa, Pisa 56122 (Italy); Davis, Sean; Jacobs, Gustaaf, E-mail: gjacobs@mail.sdsu.edu [Department of Aerospace Engineering and Engineering Mechanics, San Diego State University, San Diego, 92182 California (United States)

    2015-03-15

    The effect of non-uniformity in bulk particle mass loading on the linear development of a particle-laden shear layer is analyzed by means of a stochastic Eulerian-Eulerian model. From the set of governing equations of the two-fluid model, a modified Rayleigh equation is derived that governs the linear growth of a spatially periodic disturbance. Eigenvalues for this Rayleigh equation are determined numerically using proper conditions at the co-flowing gas and particle interface locations. For the first time, it is shown that non-uniform loading of small-inertia particles (Stokes number (St) <0.2) may destabilize the inviscid mixing layer development as compared to the pure-gas flow. The destabilization is triggered by an energy transfer rate that globally flows from the particle phase to the gas phase. For intermediate St (1 < St < 10), a maximum stabilizing effect is computed, while at larger St, two unstable modes may coexist. The growth rate computations from linear stability analysis are verified numerically through simulations based on an Eulerian-Lagrangian (EL) model based on the inviscid Euler equations and a point particle model. The growth rates found in numerical experiments using the EL method are in very good agreement with growth rates from the linear stability analysis and validate the destabilizing effect induced by the presence of particles with low St.

  16. Mass size distribution of particle-bound water

    Science.gov (United States)

    Canepari, S.; Simonetti, G.; Perrino, C.

    2017-09-01

    The thermal-ramp Karl-Fisher method (tr-KF) for the determination of PM-bound water has been applied to size-segregated PM samples collected in areas subjected to different environmental conditions (protracted atmospheric stability, desert dust intrusion, urban atmosphere). This method, based on the use of a thermal ramp for the desorption of water from PM samples and the subsequent analysis by the coulometric KF technique, had been previously shown to differentiate water contributes retained with different strength and associated to different chemical components in the atmospheric aerosol. The application of the method to size-segregated samples has revealed that water showed a typical mass size distribution in each one of the three environmental situations that were taken into consideration. A very similar size distribution was shown by the chemical PM components that prevailed during each event: ammonium nitrate in the case of atmospheric stability, crustal species in the case of desert dust, road-dust components in the case of urban sites. The shape of the tr-KF curve varied according to the size of the collected particles. Considering the size ranges that better characterize the event (fine fraction for atmospheric stability, coarse fraction for dust intrusion, bi-modal distribution for urban dust), this shape is coherent with the typical tr-KF shape shown by water bound to the chemical species that predominate in the same PM size range (ammonium nitrate, crustal species, secondary/combustion species - road dust components).

  17. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere.

    Science.gov (United States)

    Lü, Senlin; Zhang, Rui; Yao, Zhenkun; Yi, Fei; Ren, Jingjing; Wu, Minghong; Feng, Man; Wang, Qingyue

    2012-01-01

    Ambient coarse particles (diameter 1.8-10 microm), fine particles (diameter 0.1-1.8 microm), and ultrafine particles (diameter Source apportionment of the chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 +/- 2.18, 8.82 +/- 3.52, and 2.02 +/- 0.41 microg/m3, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.

  18. Characterization of urban aerosol in Cork city (Ireland) using aerosol mass spectrometry

    Science.gov (United States)

    Dall'Osto, M.; Ovadnevaite, J.; Ceburnis, D.; Martin, D.; Healy, R. M.; O'Connor, I. P.; Kourtchev, I.; Sodeau, J. R.; Wenger, J. C.; O'Dowd, C.

    2013-05-01

    Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62%), followed by nitrate (15%), sulphate (9%) and ammonium (9%), and chloride (5%). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18%, "biomass burning" organic aerosol (BBOA) comprised 23%, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21%, and finally a species type characterized by primary {m/z} peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).

  19. Characterization of urban aerosol in Cork city (Ireland using aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. Dall'Osto

    2013-05-01

    Full Text Available Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC, sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS and was also found to comprise organic aerosol as the most abundant species (62%, followed by nitrate (15%, sulphate (9% and ammonium (9%, and chloride (5%. Positive matrix factorization (PMF was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA comprised 18%, "biomass burning" organic aerosol (BBOA comprised 23%, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA comprised 21%, and finally a species type characterized by primary extit{m/z}~peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA, but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively.

  20. Search for supersymmetric particles in e +e - collisions at centre-of-mass energies of 130 and 136 GeV

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palla, F.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J. C.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Greene, A. M.; Hoffmann, C.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Lutters, G.; Saraiva, P.; Smolik, L.; Stephan, F.; Aleppo, M.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Ragusa, F.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    Searches for supersymmetric particles produced in e +e - collisions at centre-of-mass energies of 130 and 136 GeV have been performed in a data sample of 5.7 pb -1 collected in the autumn of 1995 by the ALEPH detector at LEP. No candidate events were found, allowing limits to be set on the masses and production cross-sections of scalar leptons, scalar tops, charginos and neutralinos. The domains previously excluded at LEP1 are substantially extended. For instance, masses of gaugino-like charginos smaller than 67.8 GeV/ c2 are excluded at the 95% C.L. for scalar neutrino masses larger than 200 GeV/ c2.

  1. Search for anomalously interacting stable particles in the mass range from 1.0 to 1.8 GeV/c2

    International Nuclear Information System (INIS)

    Abramov, V.V.; Arbuzov, V.A.; Baldin, B.Yu.

    1986-01-01

    A search for stable (r > 10 -8 s) anomalously interacting particles with the charge Z=±1 has been performed in the mass range from 1.0 to 1.8 GeV/c 2 . Secondary positive and negative particles with mean transverse momentum of 3 GeV/c produced in the collision of 70 GeV protons with the lead target have been investigated. Upper limits for invariant differential production cross-sections of anomalously interacting particles (1.8x10 -33 -9.5x10 -32 cm 2 xGeV -2 ) per lead nucleus have been obtained at the 90 % considence level

  2. Constraints on the Dark Matter Particle Mass from the Number of Milky Way Satellites

    Science.gov (United States)

    2010-04-12

    assuming dark matter only simulations (we do not include the effect of baryons in our simulations). We adopted values for cosmological parameters from the...ar X iv :1 00 4. 14 59 v1 [ as tr o- ph .C O ] 9 A pr 2 01 0 Constraints on the Dark Matter Particle Mass from the Number of Milky Way...simulations of the growth of Milky Way-sized halos in cold and warm dark matter cosmologies. The number of dark matter satellites in our simulated Milky

  3. Fractionation and Characterization of High Aspect Ratio Gold Nanorods Using Asymmetric-Flow Field Flow Fractionation and Single Particle Inductively Coupled Plasma Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Thao M. Nguyen

    2015-07-01

    Full Text Available Gold nanorods (GNRs are of particular interest for biomedical applications due to their unique size-dependent longitudinal surface plasmon resonance band in the visible to near-infrared. Purified GNRs are essential for the advancement of technologies based on these materials. Used in concert, asymmetric-flow field flow fractionation (A4F and single particle inductively coupled mass spectrometry (spICP-MS provide unique advantages for fractionating and analyzing the typically complex mixtures produced by common synthetic procedures. A4F fractions collected at specific elution times were analyzed off-line by spICP-MS. The individual particle masses were obtained by conversion of the ICP-MS pulse intensity for each detected particle event, using a defined calibration procedure. Size distributions were then derived by transforming particle mass to length assuming a fixed diameter. The resulting particle lengths correlated closely with ex situ transmission electron microscopy. In contrast to our previously reported observations on the fractionation of low-aspect ratio (AR GNRs (AR < 4, under optimal A4F separation conditions the results for high-AR GNRs of fixed diameter (≈20 nm suggest normal, rather than steric, mode elution (i.e., shorter rods with lower AR generally elute first. The relatively narrow populations in late eluting fractions suggest the method can be used to collect and analyze specific length fractions; it is feasible that A4F could be appropriately modified for industrial scale purification of GNRs.

  4. Total and size-resolved particle number and black carbon concentrations in urban areas near Schiphol airport (the Netherlands)

    NARCIS (Netherlands)

    Keuken, M.P.; Moerman, M.; Zandveld, P.; Henzing, J.S.; Hoek, G.

    2015-01-01

    The presence of black carbon, and size-resolved and total particle number concentrations (PNC) were investigated in the vicinity of Schiphol airport in the Netherlands, the fourth busiest airport in Europe. Continuous measurements were conducted between March and May 2014at Adamse Bos, located 7km

  5. Implicit and explicit schemes for mass consistency preservation in hybrid particle/finite-volume algorithms for turbulent reactive flows

    International Nuclear Information System (INIS)

    Popov, Pavel P.; Pope, Stephen B.

    2014-01-01

    This work addresses the issue of particle mass consistency in Large Eddy Simulation/Probability Density Function (LES/PDF) methods for turbulent reactive flows. Numerical schemes for the implicit and explicit enforcement of particle mass consistency (PMC) are introduced, and their performance is examined in a representative LES/PDF application, namely the Sandia–Sydney Bluff-Body flame HM1. A new combination of interpolation schemes for velocity and scalar fields is found to better satisfy PMC than multilinear and fourth-order Lagrangian interpolation. A second-order accurate time-stepping scheme for stochastic differential equations (SDE) is found to improve PMC relative to Euler time stepping, which is the first time that a second-order scheme is found to be beneficial, when compared to a first-order scheme, in an LES/PDF application. An explicit corrective velocity scheme for PMC enforcement is introduced, and its parameters optimized to enforce a specified PMC criterion with minimal corrective velocity magnitudes

  6. Relativistic and separable classical hamiltonian particle dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1981-01-01

    We show within the Hamiltonian formalism the existence of classical relativistic mechanics of N scalar particles interacting at a distance which satisfies the requirements of Poincare invariance, separability, world-line invariance and Einstein causality. The line of approach which is adopted here uses the methods of the theory of systems with constraints applied to manifestly covariant systems of particles. The study is limited to the case of scalar interactions remaining weak in the whole phase space and vanishing at large space-like separation distances of the particles. Poincare invariance requires the inclusion of many-body, up to N-body, potentials. Separability requires the use of individual or two-body variables and the construction of the total interaction from basic two-body interactions. Position variables of the particles are constructed in terms of the canonical variables of the theory according to the world-line invariance condition and the subsidiary conditions of the non-relativistic limit and separability. Positivity constraints on the interaction masses squared of the particles ensure that the velocities of the latter remain always smaller than the velocity of light

  7. From Particle Flow to Colour Flow in Top Events

    CERN Document Server

    Lofberg, Henrik Johan

    2013-01-01

    A deeper understanding of the underlying event in $t\\overline{t}$ pair production is expected to improve the current uncertainty on the measurements of the top quark mass. By selecting events with an electron, a muon and two b-tagged jets a high purity signal is obtained. The main properties of the underlying event are isolated and compared between data and different Pythia Monte Carlo Tunes. Discrepancies between the total number of charged particles for different models is observed. Furthermore a contribution of colour reconnection to the modeling of the average transverse momentum of the charged particles is identified.

  8. Physicochemical characteristics and occupational exposure to coarse, fine and ultrafine particles during building refurbishment activities

    Energy Technology Data Exchange (ETDEWEB)

    Azarmi, Farhad; Kumar, Prashant, E-mail: p.kumar@surrey.ac.uk, E-mail: prashant.kumar@cantab.net; Mulheron, Mike [University of Surrey, Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences (United Kingdom); Colaux, Julien L.; Jeynes, Chris [University of Surrey, Faculty of Engineering and Physical Sciences, Ion Beam Centre (United Kingdom); Adhami, Siavash; Watts, John F. [University of Surrey, The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences (United Kingdom)

    2015-08-15

    Understanding of the emissions of coarse (PM{sub 10} ≤10 μm), fine (PM{sub 2.5} ≤2.5 μm) and ultrafine particles (UFP <100 nm) from refurbishment activities and their dispersion into the nearby environment is of primary importance for developing efficient risk assessment and management strategies in the construction and demolition industry. This study investigates the release, occupational exposure and physicochemical properties of particulate matter, including UFPs, from over 20 different refurbishment activities occurring at an operational building site. Particles were measured in the 5–10,000-nm-size range using a fast response differential mobility spectrometer and a GRIMM particle spectrometer for 55 h over 8 days. The UFPs were found to account for >90 % of the total particle number concentrations and <10 % of the total mass concentrations released during the recorded activities. The highest UFP concentrations were 4860, 740, 650 and 500 times above the background value during wall-chasing, drilling, cementing and general demolition activities, respectively. Scanning electron microscopy, X-ray photoelectron spectroscopy and ion beam analysis were used to identify physicochemical characteristics of particles and attribute them to probable sources considering the size and the nature of the particles. The results confirm that refurbishment activities produce significant levels (both number and mass) of airborne particles, indicating a need to develop appropriate regulations for the control of occupational exposure of operatives undertaking building refurbishment.

  9. The SLUGGS survey: a comparison of total-mass profiles of early-type galaxies from observations and cosmological simulations, to ˜4 effective radii

    Science.gov (United States)

    Bellstedt, Sabine; Forbes, Duncan A.; Romanowsky, Aaron J.; Remus, Rhea-Silvia; Stevens, Adam R. H.; Brodie, Jean P.; Poci, Adriano; McDermid, Richard; Alabi, Adebusola; Chevalier, Leonie; Adams, Caitlin; Ferré-Mateu, Anna; Wasserman, Asher; Pandya, Viraj

    2018-06-01

    We apply the Jeans Anisotropic Multi-Gaussian Expansion dynamical modelling method to SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey data of early-type galaxies in the stellar mass range 1010 physical processes shaping the mass distributions of galaxies in cosmological simulations are still incomplete. For galaxies with M* > 1010.7 M⊙ in the Magneticum simulations, we identify a significant anticorrelation between total-mass density profile slopes and the fraction of stellar mass formed ex situ (i.e. accreted), whereas this anticorrelation is weaker for lower stellar masses, implying that the measured total-mass density slopes for low-mass galaxies are less likely to be determined by merger activity.

  10. Dynamical mechanism of symmetry breaking and particle mass generation in gauge field theories

    International Nuclear Information System (INIS)

    Miranskij, V.A.; Fomin, P.I.

    1985-01-01

    The dynamics of the spotaneous symmetry breaking and the particle mass generation in gauge theories with no fundamental scalar fields is considered. The emphasis is on the consideration of the symmetry breaking mechanism connected with the dynamics of the supercritical Coulomb-like forces caused by the gauge boson exchange between fermions. This mechanism is applied to different gauge theories, in particular, to the description of the spontaneous chira symmetry breaking in quantum chromodynamics. The mass relations for pseudoscalar meson nonet are obtained and it is shown that this mechanism resuls in the dynamical realisation of the hypothesis of the partial conservation of the axial-vector currents. The qualitative description of scalar mesons is given. The nature of the ultraviolet divergencies in quantum electrodynamics (QED) is investigated from the viewpoint of the dynamics of the fermion mass generation. The mechanism of the appearance of the additional (in comparison with perturbation theory) ultraviolet divergencies in QED with large bare coupling constant is indicated. The physical phenomenon underlying this mechanism is identified as the field theory analogue of the quantum mechanical ''fall into the centre'' (collapse) phenomenon. The similr phenomenon is shown to take place in some two-dimensional quantum field models. The dynamics of the bifermion condensates formation in tumblin gauge theories is briefly discussed

  11. Effect of particle-particle shearing on the bioleaching of sulfide minerals.

    Science.gov (United States)

    Chong, N; Karamanev, D G; Margaritis, A

    2002-11-05

    The biological leaching of sulfide minerals, used for the production of gold, copper, zinc, cobalt, and other metals, is very often carried out in slurry bioreactors, where the shearing between sulfide particles is intensive. In order to be able to improve the efficiency of the bioleaching, it is of significant importance to know the effect of particle shearing on the rate of leaching. The recently proposed concept of ore immobilization allowed us to study the effect of particle shearing on the rate of sulfide (pyrite) leaching by Thiobacillus ferrooxidans. Using this concept, we designed two very similar bioreactors, the main difference between which was the presence and absence of particle-particle shearing. It was shown that when the oxygen mass transfer was not the rate-limiting step, the rate of bioleaching in the frictionless bioreactor was 2.5 times higher than that in a bioreactor with particle friction (shearing). The concentration of free suspended cells in the frictionless bioreactor was by orders of magnitude lower than that in the frictional bioreactor, which showed that particle friction strongly reduces the microbial attachment to sulfide surface, which, in turn, reduces the rate of bioleaching. Surprisingly, it was found that formation of a layer of insoluble iron salts on the surface of sulfide particles is much slower under shearless conditions than in the presence of particle-particle shearing. This was explained by the effect of particle friction on liquid-solid mass transfer rate. The results of this study show that reduction of the particle friction during bioleaching of sulfide minerals can bring important advantages not only by increasing significantly the bioleaching rate, but also by increasing the rate of gas-liquid oxygen mass transfer, reducing the formation of iron precipitates and reducing the energy consumption. One of the efficient methods for reduction of particle friction is ore immobilization in a porous matrix. Copyright 2002

  12. Three-particle one-hole multiple scattering contribution to the nuclear effective interaction in mass-18 nuclei

    International Nuclear Information System (INIS)

    Bando, H.; Krenciglowa, E.M.; Ando, K.

    1979-01-01

    Within the systematic framework of the double partition approach, the three-particle one-hole multiple scattering and Q-box formalisms are combined to give the valence-linked and connected energy-independent effective interaction. All low-lying [2p+3p1h] contributions to the mass-18 effective interaction are evaluated using an essentially exact energy-dependent reaction matrix based on the Reid SC potential. The low-lying one-body field of the core nucleus is treated consistently with the underlying reaction matrix G through particle- and hole-line self-energy insertions. Center-of-mass motion, folded diagrams and starting energy dependence are properly taken into account throughout. The low-lying [2p+3p1h] correlations are strongly damped by self-energy insertions. By incorporating only the folded diagram contributions with origins in the low-lying space, the net effect of all low-lying [2p+3p1h] correlations is to give back the bare-G plus second-order core-polarization spectra which are found to be in respectable agreement with the experimental spectra. However, including the full folded diagram contribution, which has additional contributions from the high-lying space through the energy dependence of G, leads to final spectra which deviate sizably from experiment. The present results are conclusive in the sense that the treatment is essentially exact for low-lying [2p+3p1h] correlations which originate from the high-lying two-particle correlations through the reaction matrix G. (Auth.)

  13. Lecture II. Charmed particle spectroscopy

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The discussion of charmed particle spectroscopy covers the particle properties and interrelations from a charmed quark composition point of view including SU(4)-symmetry generalities, mesons, baryons, charmed particle masses, and decays of charmed particles. 6 references

  14. Mass of neutrino and particle physics

    CERN Document Server

    Yanagida, T

    2003-01-01

    We give a brief review on the seesaw mechanism in a grand unified theory which predicts small neutrino masses. In the seesaw mechanism the lepton-number conservation is broken and neutrinos have Majorana type masses. We also explain why the lepton-number nonconservation can be an origin of the baryon-number asymmetry in the present universe. (author)

  15. Determination of total alpha activity index in samples of radioactive wastes; Determinacion del indice de actividad alfa total en muestras de desechos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Galicia C, F. J.

    2015-07-01

    This study aimed to develop a methodology of preparation and quantification of samples containing radionuclides beta and/or alpha emitters, to determine the rates of alpha and beta total activity of radioactive waste samples. For this, a device of planchettes preparer was designed, to assist the planchettes preparation in a controlled environment and free of corrosive vapors. Planchettes were prepared in three means: nitrate, carbonate and sulfate, to different mass thickness, natural uranium (alpha and beta emitter) and in case of Sr-90 (beta emitter pure) only in half nitrate; and these planchettes were quantified in an alpha/beta counter, in order to construct the self-absorption curves for alpha and beta particles. These curves are necessary to determine the rate of alpha-beta activity of any sample because they provide the self-absorption correction factor to be applied in calculating the index. Samples with U were prepared with the help of the device of planchettes preparer and subsequently were analyzed in the proportional counter Mpc-100 Pic brand. Samples with Sr-90 were prepared without the device to see if there was a different behavior with respect to obtaining mass thickness. Similarly they were calcined and carried out count in the Mpc-100. To perform the count, first the parameters of counter operating were determined: operating voltages for alpha and beta particles 630 and 1500 V respectively, a count routine was generated where the time and count type were adjusted, and counting efficiencies for alpha and beta particles, with the aid of calibration sources of {sup 210}Po for alphas and {sup 90}Sr for betas. According to the results, the counts per minute will decrease as increasing the mass thickness of the sample (self-absorption curve), adjusting this behavior to an exponential function in all cases studied. The minor self-absorption of alpha and beta particles in the case of U was obtained in sulfate medium. The self-absorption curves of Sr-90

  16. Particle number and particulate mass emissions of heavy duty vehicles in real operating conditions

    Directory of Open Access Journals (Sweden)

    Rymaniak Lukasz

    2017-01-01

    Full Text Available The article investigates the issue of PM emissions from HDV vehicles. The theoretical part discusses the problem of emission of this toxic compound in terms of particle structure taking into account the mass and dimensions of PM. Next, the methodology of the research and the results of the measurements performed under the conditions of actual operation were presented. The test drive routes were chosen in accordance with the operational purpose of the selected test vehicles. Two heavy vehicles were used for the study: a tractor with trailer and an eighteen meter long city bus. The test vehicles complied with the Euro V standard, with the second vehicle additionally complying with the EEV standard and being equipped with a DPF. The analysis of the research results was performed in the aspect of determining the operating time densities of vehicles and their drive systems as well as defining their emission characteristics and ecological indicators. PM and PN emissions were measured in the tests and particle size distribution was determined. It was shown that the exhaust gas after treatment system used in the city bus had a positive influence on the ecological indicators and had contributed to the reduction of PN emissions for heavier particles.

  17. Particle-number conservation in odd mass proton-rich nuclei in the isovector pairing case

    International Nuclear Information System (INIS)

    Fellah, M.; Allal, N.H.; Oudih, M.R.

    2015-01-01

    An expression of a wave function which describes odd–even systems in the isovector pairing case is proposed within the BCS approach. It is shown that it correctly generalizes the one used in the pairing between like-particles case. It is then projected on the good proton and neutron numbers using the Sharp-BCS (SBCS) method. The expressions of the expectation values of the particle-number operator and its square, as well as the energy, are deduced in both approaches. The formalism is applied to study the isovector pairing effect and the number projection one on the ground state energy of odd mass N ≈ Z nuclei using the single-particle energies of a deformed Woods–Saxon mean-field. It is shown that both effects on energy do not exceed 2%, however, the absolute deviations may reach several MeV. Moreover, the np pairing effect rapidly diminishes as a function of (N - Z). The deformation effect is also studied. It is shown that the np pairing effect, either before or after the projection, as well as the projection effect, when including or not the isovector pairing, depends upon the deformation. However, it seems that the predicted ground state deformation will remain the same in the four approaches. (author)

  18. New particle searches

    International Nuclear Information System (INIS)

    Derrick, M.

    1985-01-01

    The Standard Model is a remarkable result of decades of work in particle physics, but it is clearly an incomplete representation of the world. Exploring possibilities beyond the Standard Model is a major preoccupation of both theorists and experimentalists. Despite the many suggestions that are extant about the missing links within the Standard Model as well as extensions beyond it, no hard experimental evidence exists. In particular, in more than five years of experimentation both at PETRA and PEP no new particles have been found that would indicate new physics. Several reasons are possible for these negative results: the particles may be too heavy; the experiments may not be looking in the proper way; the cross sections may be too small or finally the particles may not exist. A continuing PEP program, at high luminosity will ensure that the second and third reason continue to be addressed. The higher energy e + e - storage rings such as TRISTAN and LEP will extend the mass limits. High mass particles can also be produced at the CERN collider and soon with the Tevatron collider. A concise summary of the mass limits from the PETRA experiments has been given in a recent Mark J publication. The results shown provide a convenient yardstick against which to measure future search experiments

  19. Real-time aerosol photometer and optical particle counter comparison

    International Nuclear Information System (INIS)

    Santi, E.; Belosi, F.; Santachiara, G.; Prodi, F.; Berico, M.

    2010-01-01

    The paper presents the results of a comparison exercise among real-time aerosol samplers, based on different light scattering techniques. The comparison was carried out near to the ISAC institute in a box positioned inside the CNR research area in Bologna. Two nephelometers (Dust Trak from TSI, and Air Genius from Unitec) and an optical particle counter (ENVIRO-check from Grimm) were used for P M1 and P M10 fraction assessment. In the case of the optical particle counter, the particle number concentration in each size bin was also used. In parallel, two manual sampling lines were employed for reference (gravimetric) measurements. The results highlight different factor scales for the dust monitors, in comparison with gravimetric assessment, underlining the importance of a user calibration of such monitors as a function of the specific aerosol sampled. Moreover, the relative fluctuations of the hourly P M 10 and P M1 concentrations, against daily average concentrations, were studied in order to compare the ability of each sampler to follow changes in the aerosol size distribution. It was found that the photometers and optical particle counter revealed different behaviours. In the latter, a small increase in the particle concentration number in the coarse fraction gave a relatively high increase in the mass concentration that was not measured by the photometers. The explanation could be the relatively slight influence of a small particle number variation on the total scattered light for the photometers, unlike the case of the optical particle counter, where each particle contributes to the mass concentration. This aspect merits future research in order to better understand optical particle counter output used in P Mx monitoring activities.

  20. Statistical modeling of road contribution as emission sources to total suspended particles (TSP) under MCF model downtown Medellin - Antioquia - Colombia, 2004

    International Nuclear Information System (INIS)

    Gomez, Miryam; Saldarriaga, Julio; Correa, Mauricio; Posada, Enrique; Castrillon M, Francisco Javier

    2007-01-01

    Sand fields, constructions, carbon boilers, roads, and biologic sources are air-contaminant-constituent factors in down town Valle de Aburra, among others. the distribution of road contribution data to total suspended particles according to the source receptor model MCF, source correlation modeling, is nearly a gamma distribution. Chi-square goodness of fit is used to model statistically. This test for goodness of fit also allows estimating the parameters of the distribution utilizing maximum likelihood method. As convergence criteria, the estimation maximization algorithm is used. The mean of road contribution data to total suspended particles according to the source receptor model MCF, is straightforward and validates the road contribution factor to the atmospheric pollution of the zone under study

  1. The transition probability and the probability for the left-most particle's position of the q-totally asymmetric zero range process

    Energy Technology Data Exchange (ETDEWEB)

    Korhonen, Marko [Department of Mathematics and Statistics, University of Helsinki, FIN-00014 (Finland); Lee, Eunghyun [Centre de Recherches Mathématiques (CRM), Université de Montréal, Quebec H3C 3J7 (Canada)

    2014-01-15

    We treat the N-particle zero range process whose jumping rates satisfy a certain condition. This condition is required to use the Bethe ansatz and the resulting model is the q-boson model by Sasamoto and Wadati [“Exact results for one-dimensional totally asymmetric diffusion models,” J. Phys. A 31, 6057–6071 (1998)] or the q-totally asymmetric zero range process (TAZRP) by Borodin and Corwin [“Macdonald processes,” Probab. Theory Relat. Fields (to be published)]. We find the explicit formula of the transition probability of the q-TAZRP via the Bethe ansatz. By using the transition probability we find the probability distribution of the left-most particle's position at time t. To find the probability for the left-most particle's position we find a new identity corresponding to identity for the asymmetric simple exclusion process by Tracy and Widom [“Integral formulas for the asymmetric simple exclusion process,” Commun. Math. Phys. 279, 815–844 (2008)]. For the initial state that all particles occupy a single site, the probability distribution of the left-most particle's position at time t is represented by the contour integral of a determinant.

  2. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation

    Directory of Open Access Journals (Sweden)

    E. Asmi

    2010-05-01

    Full Text Available The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.

  3. Size distribution and total number concentration of ultrafine and accumulation mode particles and hospital admissions in children and the elderly in Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Andersen, Zorana Jovanovic; Wåhlin, Peter; Raaschou-Nielsen, O

    2008-01-01

    (15 May 2001 to 31 December 2004) and hospital admissions due to cardiovascular (CVD) and respiratory disease (RD) in the elderly (age >or=65 years), and due to asthma in children (age 5-18 years). We examined these associations in the presence of PM(10), PM(2.5) (particulate matter ... that particle volume/mass from long-range transported air pollution is relevant for CVD and RD admissions in the elderly, and possibly particle numbers from traffic sources for paediatric asthma....

  4. Classification and Processing Optimization of Barley Milk Production Using NIR Spectroscopy, Particle Size, and Total Dissolved Solids Analysis

    Directory of Open Access Journals (Sweden)

    Jasenka Gajdoš Kljusurić

    2015-01-01

    Full Text Available Barley is a grain whose consumption has a significant nutritional benefit for human health as a very good source of dietary fibre, minerals, vitamins, and phenolic and phytic acids. Nowadays, it is more and more often used in the production of plant milk, which is used to replace cow milk in the diet by an increasing number of consumers. The aim of the study was to classify barley milk and determine the optimal processing conditions in barley milk production based on NIR spectra, particle size, and total dissolved solids analysis. Standard recipe for barley milk was used without added additives. Barley grain was ground and mixed in a blender for 15, 30, 45, and 60 seconds. The samples were filtered and particle size of the grains was determined by laser diffraction particle sizing. The plant milk was also analysed using near infrared spectroscopy (NIRS, in the range from 904 to 1699 nm. Furthermore, conductivity of each sample was determined and microphotographs were taken in order to identify the structure of fat globules and particles in the barley milk. NIR spectra, particle size distribution, and conductivity results all point to 45 seconds as the optimal blending time, since further blending results in the saturation of the samples.

  5. Application of two-component phase doppler interferometry to the measurement of particle size, mass flux, and velocities in two-phase flows

    OpenAIRE

    McDonell, VG; Samuelsen, GS

    1989-01-01

    The application of two-component interferometry is described for the spatially-resolved measurement of particle size, velocity and mass flux as well as continuous phase velocity. Such a capability is important to develop an understanding of the physical processes attendant to two-phase flow systems, especially those involving liquid atomization typical of a wide class of combustion systems. Adapted from laser anemometry, the technique (phase Doppler interferometry) measures single particle ev...

  6. The Structure of Nuclei Joint Analysis of Elastic, Inelastic Scattering and Total Reactions Cross-Sections for ^{90,94}Zr-Particles Data

    CERN Document Server

    Duysebaev, A D; Kuchtina, I N; Sadykov, B M; Slusarenko, L I; Tokarevsky, V V; Fayans, S A

    2001-01-01

    A complex analysis of experimental data of elastic, inelastic scattering and total reactions cross-sections of alpha-particles on ^{90,94}Zr nuclei is performed. Values of the deformation lengths and neutron-proton multipole matrix elements relations for 2_{1}^{+}- and 3_{1}^{+}-states of ^{90,92,94,96}Zr nuclei for different types of particles are obtained. A comparative analysis is made. Experimental data for inelastic scattering of 35.4, 40.0, 50.1 and 65.0 MeV alpha-particles on ^{90,94}Zr nuclei are analysed for understanding the phase shifts in frames of the unified approach.

  7. Effects of suspended particles on the rate of mass transfer to a rotating disk electrode. [Ferric cyanide

    Energy Technology Data Exchange (ETDEWEB)

    Roha, D.J.

    1981-06-01

    Limiting currents for the reduction of ferric cyanide at a rotating disk were determined in the presence of 0 to 40 percent by volume of spherical glass beads. Experiments were conducted with six different particle diameters, and with rotation speeds in the range of 387 to 270 rpm, usong both a 0.56 cm and a 1.41 cm radius disk electrode. It was established that at a given rpm upon addition of glass beads in the limiting current, i/sub L/, may increase to more than three times its value without solids. This increase in limiting current density is greater at high rotation speeds and with the larger disk electrode. i/sub L/ as a function of particle diameter yields at maximum at approx. 10 ..mu..m. Two mass transfer models are offered to explain this behavior, both of which assume that the beads are in contact with the disk electrode and moving parallel to its surface. In the surface renewal model it is assumed that complete mixing takes place with the passage of each bead and the boundary layer is replaced with fresh bulk solution. While with the particle film model it is assumed the bead and a clinging film of fluid rotate together. The film promotes mass transfer by alternately absorbing and desorbing the diffusing species. The particle film model best explains the observed behavior of the limiting current density. Calculations of stirring power required verses i/sub L/ observed, show that adding beads to increase i/sub L/ consumes less additional power than simply increasing the rotation speed alone and even permits a decrease in the amount of stirring energy required per unit reactant consumed, at limiting current conditions.

  8. Multifield stochastic particle production: beyond a maximum entropy ansatz

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Mustafa A.; Garcia, Marcos A.G.; Xie, Hong-Yi; Wen, Osmond, E-mail: mustafa.a.amin@gmail.com, E-mail: marcos.garcia@rice.edu, E-mail: hxie39@wisc.edu, E-mail: ow4@rice.edu [Physics and Astronomy Department, Rice University, 6100 Main Street, Houston, TX 77005 (United States)

    2017-09-01

    We explore non-adiabatic particle production for N {sub f} coupled scalar fields in a time-dependent background with stochastically varying effective masses, cross-couplings and intervals between interactions. Under the assumption of weak scattering per interaction, we provide a framework for calculating the typical particle production rates after a large number of interactions. After setting up the framework, for analytic tractability, we consider interactions (effective masses and cross couplings) characterized by series of Dirac-delta functions in time with amplitudes and locations drawn from different distributions. Without assuming that the fields are statistically equivalent, we present closed form results (up to quadratures) for the asymptotic particle production rates for the N {sub f}=1 and N {sub f}=2 cases. We also present results for the general N {sub f} >2 case, but with more restrictive assumptions. We find agreement between our analytic results and direct numerical calculations of the total occupation number of the produced particles, with departures that can be explained in terms of violation of our assumptions. We elucidate the precise connection between the maximum entropy ansatz (MEA) used in Amin and Baumann (2015) and the underlying statistical distribution of the self and cross couplings. We provide and justify a simple to use (MEA-inspired) expression for the particle production rate, which agrees with our more detailed treatment when the parameters characterizing the effective mass and cross-couplings between fields are all comparable to each other. However, deviations are seen when some parameters differ significantly from others. We show that such deviations become negligible for a broad range of parameters when N {sub f}>> 1.

  9. Inter-particle gap distribution and spectral rigidity of the totally asymmetric simple exclusion process with open boundaries

    International Nuclear Information System (INIS)

    Krbalek, Milan; Hrabak, Pavel

    2011-01-01

    We consider the one-dimensional totally asymmetric simple exclusion process (TASEP model) with open boundary conditions and present the analytical computations leading to the exact formula for distance clearance distribution, i.e. probability density for a clear distance between subsequent particles of the model. The general relation is rapidly simplified for the middle part of the one-dimensional lattice. Both the analytical formulas and their approximations are compared with the numerical representation of the TASEP model. Such a comparison is presented for particles occurring in the internal part as well as in the boundary part of the lattice. Furthermore, we introduce the pertinent estimation for the so-called spectral rigidity of the model. The results obtained are sequentially discussed within the scope of vehicular traffic theory.

  10. Toward Quantifying the Mass-Based Hygroscopicity of Individual Submicron Atmospheric Aerosol Particles with STXM/NEXAFS and SEM/EDX

    Science.gov (United States)

    Yancey Piens, D.; Kelly, S. T.; OBrien, R. E.; Wang, B.; Petters, M. D.; Laskin, A.; Gilles, M. K.

    2014-12-01

    The hygroscopic behavior of atmospheric aerosols influences their optical and cloud-nucleation properties, and therefore affects climate. Although changes in particle size as a function of relative humidity have often been used to quantify the hygroscopic behavior of submicron aerosol particles, it has been noted that calculations of hygroscopicity based on size contain error due to particle porosity, non-ideal volume additivity and changes in surface tension. We will present a method to quantify the hygroscopic behavior of submicron aerosol particles based on changes in mass, rather than size, as a function of relative humidity. This method results from a novel experimental approach combining scanning transmission x-ray microscopy with near-edge x-ray absorption fine spectroscopy (STXM/NEXAFS), as well as scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDX) on the same individual particles. First, using STXM/NEXAFS, our methods are applied to aerosol particles of known composition ‒ for instance ammonium sulfate, sodium bromide and levoglucosan ‒ and validated by theory. Then, using STXM/NEXAFS and SEM/EDX, these methods are extended to mixed atmospheric aerosol particles collected in the field at the DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility at the Southern Great Planes sampling site in Oklahoma, USA. We have observed and quantified a range of hygroscopic behaviors which are correlated to the composition and morphology of individual aerosol particles. These methods will have implications for parameterizing aerosol mixing state and cloud-nucleation activity in atmospheric models.

  11. Primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range

    International Nuclear Information System (INIS)

    Sakaguchi, T; Ehara, K

    2011-01-01

    The national primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range has been developed at the National Institute of Advanced Industrial Science and Technology (AIST), Japan. The standard consists of a total number counting type flow cytometer (T-FCM) and an electronic balance. The T-FCM is a commercial flow cytometer modified so that the total number of particles in an aqueous suspension sampled in a test tube can be counted, and the electronic balance is used to determine the mass of the suspension. This standard is intended to be used for calibrating commercial standard suspensions of monodisperse polystyrene latex (PSL) particles. The measurand in the calibration is the mass-based number concentration (the particle number in a unit mass of a suspension), and the calibration capability covers the concentration range from 5 × 10 2 to 2 × 10 6 particles g −1 . When the concentration of the suspension is higher than 2 × 10 3 particles g −1 , the suspension is first diluted to about 1 × 10 3 particles g −1 to suppress the coincidence loss in particle counting by the T-FCM. The validity of the calibration with the T-FCM was examined by comparison with an independent method in which a scanning electron microscope (SEM) was used to determine the number concentration of particles deposited on a silicon wafer. For a suspension of 10 µm PSL particles with a concentration of approximately 1 × 10 6 particles g −1 , the concentration values determined by the T-FCM and SEM methods were 1.042 × 10 6 and 1.035 × 10 6 particles g −1 , respectively: The difference was less than 0.7%. The relative expanded uncertainty of the measurement by the T-FCM method with the coverage factor k = 2 was 4.4%

  12. Aging of combustion particles in the atmosphere - results from a field study in Zuerich

    International Nuclear Information System (INIS)

    Burtscher, H.; Leonardi, A.; Steiner, D.; Baltensperger, U.; Weber, A.

    1993-01-01

    At different locations in Zurich (urban and suburban area) ambient aerosol has been measured by a variety of methods. Total mass concentration, black carbon mass concentration, size distribution, Fuchs surface and photoelectric charging of particles (as a measure for the PAH concentration) have been determined. As a reference for 'fresh' aerosol, measurements have also been carried out in a car parking garage. By comparing the data obtained at different locations and different times of the day aging processes can be investigated. All measured signals show significant peaks during the rush-hours, indicating that the majority of the particles arise from automotive traffic. Aging is expressed by decreasing number concentrations, increasing diameter (coagulation) and decreasing black carbon and PAH content of the particles. The decrease in PAH and black carbon fraction may be due to mixing of the aerosol with non-combustion particles or by condensation of material from the gas phase on the particle; the decrease in PAH concentration may also be due to degradation of the PAHs. 11 refs., 6 figs

  13. Fasting gall bladder volume and lithogenicity in relation to glucose tolerance, total and intra-abdominal fat masses in obese non-diabetic subjects

    DEFF Research Database (Denmark)

    Hendel, H W; Højgaard, L; Andersen, T

    1998-01-01

    OBJECTIVE: To investigate whether total body fat mass or fat distribution and associated metabolic disturbances in glucose and lipid metabolism influence the well known gallstone pathogenetic factors in obese subjects in order to explain why some obese subjects develop gallstones and some do not...... with a specific radioimmunoassay. Insulin sensitivity was measured by the Minimal Model and glucose tolerance by an oral glucose tolerance test (OGTT). Serum lipid concentrations were measured by standard methods. RESULTS: The gallbladder volume in the fasting state increased with increasing intra-abdominal fat...... mass (P=0.006) and was increased in subjects with impaired glucose tolerance (41 vs 27 ml, P=0.001). The lithogenic index was > 1 in all subjects and correlated with total fat mass (P=0.04). CONCLUSION: Gallstone pathogenesis in obesity seems to be influenced by the total body fat mass and its regional...

  14. Characterization of the compounds of nitrogen and total suspended particles in the municipality Regla, Havana

    International Nuclear Information System (INIS)

    Wallo Vazquez, Antonio; Cuesta Santos, Osvaldo

    2006-01-01

    The questions related with the atmospheric contamination in urban areas every day they charge bigger importance for the affectations that it can take place so much in the health of the human beings as in the materials, constructions, etc. In the city of Havana those made up of nitrogen and the particles suspended totals are of the pollutants whose concentrations are elevated in the atmosphere. Inside this context, the present work intends the analysis of the behavior of this concentrations, taken as experimental polygon the municipality Regla in city of Havana

  15. Quality control for total evaporation technique by surface/thermal ionization mass spectrometer

    International Nuclear Information System (INIS)

    Kato, Seikou; Inoue, Sinichi; Yamaguchi, Katsuyuki; Tsutaki, Yasuhiro

    2007-01-01

    For the measurement of uranium and plutonium isotopic composition, the surface/thermal ionization mass spectrometry is widely used at the both nuclear facilities and safeguards verification laboratories. The progress of instrument specification makes higher sensitivity. The total evaporation technique is one of the latest measurement techniques by using this progress, in which all of uranium or plutonium on the filament would be evaporated by increasing the filament current. The accuracy and precision of this technique is normally checked by using the certified isotope reference materials measurement. But the fluctuation of ion beam is very different by each filament, depending on the chemical form of evaporation. So, it should be considered how to check the measurement quality of unknown samples which has no certified values. This presentation is focused on the monitoring of ion yields and pattern of isotope ratio fluctuation to attain the traceability between reference material and unknown sample as quality control approach of total evaporation technique. (author)

  16. Seasonal variations of total suspended particles (TSP) and heavy metals under tropical conditions in Rio de Janeiro, Brazil

    International Nuclear Information System (INIS)

    Pfeiffer, W.C.; Trindade, H.A.; Costa-Ribeiro, C.; Londres, H.; Oliveira, A.E.

    The total suspended particle (TSP) and heavy metal concentrations are studied in Rio de Janeiro, Brazil from 1974 until 1981. The principal aims are to determine how these things vary in two different areas and how meteorological parameters responsible for the transport and dilution of atmospheric pollutants affect these areas. (M.A.C.) [pt

  17. Ultra-low mass drift chambers

    Science.gov (United States)

    Assiro, R.; Cappelli, L.; Cascella, M.; De Lorenzis, L.; Grancagnolo, F.; Ignatov, F.; L'Erario, A.; Maffezzoli, A.; Miccoli, A.; Onorato, G.; Perillo, M.; Piacentino, G.; Rella, S.; Rossetti, F.; Spedicato, M.; Tassielli, G.; Zavarise, G.

    2013-08-01

    We present a novel low mass drift chamber concept, developed in order to fulfill the stringent requirements imposed by the experiments for extremely rare processes, which require high resolutions (order of 100-200 keV/c) for particle momenta in a range (50-100 MeV/c) totally dominated by the multiple scattering contribution. We describe a geometry optimization procedure and a new wiring strategy with a feed-through-less wire anchoring system developed and tested on a drift chamber prototype under completion at INFN-Lecce .

  18. Particle Pusher for the Investigation of Wave-Particle Interactions in the Magnetic Centrifugal Mass Filter (MCMF)

    Science.gov (United States)

    Kulp-McDowall, Taylor; Ochs, Ian; Fisch, Nathaniel

    2016-10-01

    A particle pusher was constructed in MATLAB using a fourth order Runge-Kutta algorithm to investigate the wave-particle interactions within theoretical models of the MCMF. The model simplified to a radial electric field and a magnetic field focused in the z direction. Studies on an average velocity calculation were conducted in order to test the program's behavior in the large radius limit. The results verified that the particle pusher was behaving correctly. Waves were then simulated on the rotating particles with a periodic divergenceless perturbation in the Bz component of the magnetic field. Preliminary runs indicate an agreement of the particle's motion with analytical predictions-ie. cyclic contractions of the doubly rotating particle's gyroradius.The next stage of the project involves the implementation of particle collisions and turbulence within the particle pusher in order to increase its accuracy and applicability. This will allow for a further investigation of the alpha channeling electrode replacement thesis first proposed by Abraham Fetterman in 2011. Made possible by Grants from the Princeton Environmental Institute (PEI) and the Program for Plasma Science and Technology (PPST).

  19. Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    Directory of Open Access Journals (Sweden)

    O. E. Malandraki

    2003-06-01

    Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields

  20. Experimental investigation of particle emissions under different EGR ratios on a diesel engine fueled by blends of diesel/gasoline/n-butanol

    International Nuclear Information System (INIS)

    Huang, Haozhong; Liu, Qingsheng; Wang, Qingxin; Zhou, Chengzhong; Mo, Chunlan; Wang, Xueqiang

    2016-01-01

    Highlights: • The effects of EGR and blend fuels on particulate emission were studied in CI engine. • EGR ⩽ 20%, gasoline or n-butanol increases total particulate number concentration. • EGR ⩾ 30%, gasoline or n-butanol reduces total particulate number concentration. • As EGR ratio increased, the particulate mass concentrations of four fuels increased. • Gasoline or n-butanol increases the ratio of sub-25 nm particles number concentration. - Abstract: The particle emission characteristics of a high-pressure common-rail engine under different EGR conditions were investigated, using pure diesel (D100), diesel/gasoline (with a volume ratio of 70:30, D70G30), diesel/n-butanol (with a volume ratio of 70:30, D70B30) and diesel/gasoline/n-butanol (with a volume ratio of 70:15:15, D70G15B15) for combustion. Our results show that, with increasing EGR ratios, the in-cylinder pressure peak decreases and the heat release is delayed for the combustion of each fuel. At an EGR ratio of 30%, the combustion pressure peaks of D70G30, D70B30, D70G15B15 and D100 have similar values; with an EGR ratio of 40%, the combustion pressure peaks and release rate peaks of D70G30 and D70G15B15 are both lower with respect to D100. For small and medium EGR ratios (⩽20%), after the addition of gasoline and/or n-butanol to the fuel, the total particle number concentration (TPNC) increases, while both the soot emissions and the average geometric size of particles decrease. At large EGR ratios (30% and 40%), the TPNC of D70B30, D70G15B15 and D70G20 compared to D100 are reduced by a maximum amount of 74.7%, 66.7% and 28.6%, respectively. As the EGR ratio increases, the total particle mass concentration increases gradually for all four fuels. Blending gasoline or/and n-butanol into diesel induces an increase in the number concentration of sub-25 nm particles (PN25) which may be harmful in terms of health. However, the PN25 decreases with increasing the EGR ratio for all the tested fuels

  1. Physical and chemical characterization of particles in producer gas

    DEFF Research Database (Denmark)

    Hindsgaul, Claus; Henriksen, Ulrik B.; Bentzen, Jens Dall

    2000-01-01

    ) engines fueled by the gas. The implications of the findings on engine wear are discussed.The majority (85%) of the total particulate matter (TPM) mass was identified, using scanning electron microscopy (SEM), as mono-sized spherical primary soot particles with diameters of 70 nm. Soot agglomerates, up...... to 30 um were present. 77% of the TPM was determined, by thermogravimetric analysis (TGA) to be carbon structures.The dichloromethane (DCM)-soluble fraction (11% of the TPM) was extracted, separated into fractions of varying polarities using adsorption column chromatography and analyzed using gas...... of the particles showed that a 3-7% of the DCM-insoluble TPM was dissolved using this solvent....

  2. Balance of dark and luminous mass in rotating galaxies.

    Science.gov (United States)

    McGaugh, Stacy S

    2005-10-21

    A fine balance between dark and baryonic mass is observed in spiral galaxies. As the contribution of the baryons to the total rotation velocity increases, the contribution of the dark matter decreases by a compensating amount. This poses a fine-tuning problem for galaxy formation models, and may point to new physics for dark matter particles or even a modification of gravity.

  3. Total β-decay energies and masses of tin, antimony and tellurium isotopes in the vicinity of 50132Sn82

    International Nuclear Information System (INIS)

    Lund, E.; Aleklett, K.; Rudstam, G.

    1977-01-01

    Experimental β-decay energies for short-lived isotopes of tin, antimony and tellurium are presented. Mass-separated sources were produced at the on-line isotope separator OSIRIS. By applying β-γ coincidence methods, total β-decay energies have been determined for the following nuclides: 127-131 Sn, 128 130 131 134 Sb and 134 135 Te. The atomic mass excess has been derived for these nuclei, and comparisons are made with mass formula predictions. (Auth.)

  4. Total cross-sections for reactions of high energy particles (including elastic, topological, inclusive and exclusive reactions). Subvol. b

    International Nuclear Information System (INIS)

    Schopper, H.; Moorhead, W.G.; Morrison, D.R.O.

    1988-01-01

    The aim of this report is to present a compilation of cross-sections (i.e. reaction rates) of elementary particles at high energy. The data are presented in the form of tables, plots and some fits, which should be easy for the reader to use and may enable him to estimate cross-sections for presently unmeasured energies. We have analyzed all the data published in the major Journals and Reviews for momenta of the incoming particles larger than ≅ 50 MeV/c, since the early days of elementary particle physics and, for each reaction, we have selected the best cross-section data available. We have restricted our attention to integrated cross-sections, such as total cross-sections, exclusive and inclusive cross-sections etc., at various incident beam energies. We have disregarded data affected by geometrical and/or kinematical cuts which would make them not directly comparable to other data at different energies. Also, in the case of exclusive reactions, we have left out data where not all of the particles in the final state were unambiguously identified. This work contains reactions induced by neutrinos, gammas, charged pions, kaons, nucleons, antinucleons and hyperons. (orig./HSI)

  5. Fluctuations in non-ideal pion gas with dynamically fixed particle number

    Science.gov (United States)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2018-05-01

    We consider a non-ideal hot pion gas with the dynamically fixed number of particles in the model with the λϕ4 interaction. The effective Lagrangian for the description of such a system is obtained after dropping the terms responsible for the change of the total particle number. Reactions π+π- ↔π0π0, which determine the isospin balance of the medium, are permitted. Within the self-consistent Hartree approximation we compute the effective pion mass, thermodynamic characteristics of the system and the variance of the particle number at temperatures above the critical point of the induced Bose-Einstein condensation when the pion chemical potential reaches the value of the effective pion mass. We analyze conditions for the condensate formation in the process of thermalization of an initially non-equilibrium pion gas. The normalized variance of the particle number increases with a temperature decrease but remains finite in the critical point of the Bose-Einstein condensation. This is due to the non-perturbative account of the interaction and is in contrast to the ideal-gas case. In the kinetic regime of the condensate formation the variance is shown to stay finite also.

  6. Towards reproducible experimental studies for non-convex polyhedral shaped particles

    Directory of Open Access Journals (Sweden)

    Wilke Daniel N.

    2017-01-01

    Full Text Available The packing density and flat bottomed hopper discharge of non-convex polyhedral particles are investigated in a systematic experimental study. The motivation for this study is two-fold. Firstly, to establish an approach to deliver quality experimental particle packing data for non-convex polyhedral particles that can be used for characterization and validation purposes of discrete element codes. Secondly, to make the reproducibility of experimental setups as convenient and readily available as possible using affordable and accessible technology. The primary technology for this study is fused deposition modeling used to 3D print polylactic acid (PLA particles using readily available 3D printer technology. A total of 8000 biodegradable particles were printed, 1000 white particles and 1000 black particles for each of the four particle types considered in this study. Reproducibility is one benefit of using fused deposition modeling to print particles, but an extremely important additional benefit is that specific particle properties can be explicitly controlled. As an example in this study the volume fraction of each particle can be controlled i.e. the effective particle density can be adjusted. In this study the particle volumes reduces drastically as the non-convexity is increased, however all printed white particles in this study have the same mass within 2% of each other.

  7. Towards reproducible experimental studies for non-convex polyhedral shaped particles

    Science.gov (United States)

    Wilke, Daniel N.; Pizette, Patrick; Govender, Nicolin; Abriak, Nor-Edine

    2017-06-01

    The packing density and flat bottomed hopper discharge of non-convex polyhedral particles are investigated in a systematic experimental study. The motivation for this study is two-fold. Firstly, to establish an approach to deliver quality experimental particle packing data for non-convex polyhedral particles that can be used for characterization and validation purposes of discrete element codes. Secondly, to make the reproducibility of experimental setups as convenient and readily available as possible using affordable and accessible technology. The primary technology for this study is fused deposition modeling used to 3D print polylactic acid (PLA) particles using readily available 3D printer technology. A total of 8000 biodegradable particles were printed, 1000 white particles and 1000 black particles for each of the four particle types considered in this study. Reproducibility is one benefit of using fused deposition modeling to print particles, but an extremely important additional benefit is that specific particle properties can be explicitly controlled. As an example in this study the volume fraction of each particle can be controlled i.e. the effective particle density can be adjusted. In this study the particle volumes reduces drastically as the non-convexity is increased, however all printed white particles in this study have the same mass within 2% of each other.

  8. Big Bang Day: 5 Particles - 3. The Anti-particle

    CERN Multimedia

    Franck Close

    2008-01-01

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

  9. Dynamic effect of total solid content, low substrate/inoculum ratio and particle size on solid-state anaerobic digestion.

    Science.gov (United States)

    Motte, J-C; Escudié, R; Bernet, N; Delgenes, J-P; Steyer, J-P; Dumas, C

    2013-09-01

    Among all the process parameters of solid-state anaerobic digestion (SS-AD), total solid content (TS), inoculation (S/X ratio) and size of the organic solid particles can be optimized to improve methane yield and process stability. To evaluate the effects of each parameter and their interactions on methane production, a three level Box-Behnken experimental design was implemented in SS-AD batch tests degrading wheat straw by adjusting: TS content from 15% to 25%, S/X ratio (in volatile solids) between 28 and 47 and particle size with a mean diameter ranging from 0.1 to 1.4mm. A dynamic analysis of the methane production indicates that the S/X ratio has only an effect during the start-up phase of the SS-AD. During the growing phase, TS content becomes the main parameter governing the methane production and its strong interaction with the particle size suggests the important role of water compartmentation on SS-AD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The Association between Total Protein and Vegetable Protein Intake and Low Muscle Mass among the Community-Dwelling Elderly Population in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Ru-Yi Huang

    2016-06-01

    Full Text Available Sarcopenia, highly linked with fall, frailty, and disease burden, is an emerging problem in aging society. Higher protein intake has been suggested to maintain nitrogen balance. Our objective was to investigate whether pre-sarcopenia status was associated with lower protein intake. A total of 327 community-dwelling elderly people were recruited for a cross-sectional study. We adopted the multivariate nutrient density model to identify associations between low muscle mass and dietary protein intake. The general linear regression models were applied to estimate skeletal muscle mass index across the quartiles of total protein and vegetable protein density. Participants with diets in the lowest quartile of total protein density (<13.2% were at a higher risk for low muscle mass (odds ratio (OR 3.03, 95% confidence interval (CI 1.37–6.72 than those with diets in the highest quartile (≥17.2%. Similarly, participants with diets in the lowest quartile of vegetable protein density (<5.8% were at a higher risk for low muscle mass (OR 2.34, 95% CI 1.14–4.83 than those with diets in the highest quartile (≥9.4%. Furthermore, the estimated skeletal muscle mass index increased significantly across the quartiles of total protein density (p = 0.023 and vegetable protein density (p = 0.025. Increasing daily intakes of total protein and vegetable protein densities appears to confer protection against pre-sarcopenia status.

  11. Aerosol particles generated by diesel-powered school buses at urban schools as a source of children's exposure.

    Science.gov (United States)

    Hochstetler, Heather A; Yermakov, Mikhail; Reponen, Tiina; Ryan, Patrick H; Grinshpun, Sergey A

    2011-03-01

    Various heath effects in children have been associated with exposure to traffic-related particulate matter (PM), including emissions from school buses. In this study, the indoor and outdoor aerosol at four urban elementary schools serviced by diesel-powered school buses was characterized with respect to the particle number concentrations and size distributions as well as the PM2.5 mass concentrations and elemental compositions. It was determined that the presence of school buses significantly affected the outdoor particle size distribution, specifically in the ultrafine fraction. The time-weighted average of the total number concentration measured outside the schools was significantly associated with the bus and the car counts. The concentration increase was consistently observed during the morning drop-off hours and in most of the days during the afternoon pick-up period (although at a lower degree). Outdoor PM2.5 mass concentrations measured at schools ranged from 3.8 to 27.6 µg m -3 . The school with the highest number of operating buses exhibited the highest average PM2.5 mass concentration. The outdoor mass concentrations of elemental carbon (EC) and organic carbon (OC) were also highest at the school with the greatest number of buses. Most (47/55) correlations between traffic-related elements identified in the outdoor PM2.5 were significant with elements identified in the indoor PM2.5. Significant associations were observed between indoor and outdoor aerosols for EC, EC/OC, and the total particle number concentration. Day-to-day and school-to-school variations in Indoor/Outdoor (I/O) ratios were related to the observed differences in opening windows and doors, which enhanced the particle penetration, as well as indoor activities at schools. Overall, the results on I/O ratio obtained in this study reflect the sizes of particles emitted by diesel-powered school bus engines (primarily, an ultrafine fraction capable of penetrating indoors).

  12. STAR FORMATION AND FEEDBACK IN SMOOTHED PARTICLE HYDRODYNAMIC SIMULATIONS. II. RESOLUTION EFFECTS

    International Nuclear Information System (INIS)

    Christensen, Charlotte R.; Quinn, Thomas; Bellovary, Jillian; Stinson, Gregory; Wadsley, James

    2010-01-01

    We examine the effect of mass and force resolution on a specific star formation (SF) recipe using a set of N-body/smooth particle hydrodynamic simulations of isolated galaxies. Our simulations span halo masses from 10 9 to 10 13 M sun , more than 4 orders of magnitude in mass resolution, and 2 orders of magnitude in the gravitational softening length, ε, representing the force resolution. We examine the total global SF rate, the SF history, and the quantity of stellar feedback and compare the disk structure of the galaxies. Based on our analysis, we recommend using at least 10 4 particles each for the dark matter (DM) and gas component and a force resolution of ε ∼ 10 -3 R vir when studying global SF and feedback. When the spatial distribution of stars is important, the number of gas and DM particles must be increased to at least 10 5 of each. Low-mass resolution simulations with fixed softening lengths show particularly weak stellar disks due to two-body heating. While decreasing spatial resolution in low-mass resolution simulations limits two-body effects, density and potential gradients cannot be sustained. Regardless of the softening, low-mass resolution simulations contain fewer high density regions where SF may occur. Galaxies of approximately 10 10 M sun display unique sensitivity to both mass and force resolution. This mass of galaxy has a shallow potential and is on the verge of forming a disk. The combination of these factors gives this galaxy the potential for strong gas outflows driven by supernova feedback and makes it particularly sensitive to any changes to the simulation parameters.

  13. Dynamical Mass Generation.

    Science.gov (United States)

    Mendel Horwitz, Roberto Ruben

    1982-03-01

    In the framework of the Glashow-Weinberg-Salem model without elementary scalar particles, we show that masses for fermions and intermediate vector bosons can be generated dynamically. The mechanism is the formation of fermion-antifermion pseudoscalar bound states of zero total four momentum, which form a condensate in the physical vacuum. The force responsible for the binding is the short distance part of the net Coulomb force due to photon and Z exchange. Fermions and bosons acquire masses through their interaction with this condensate. The neutrinos remain massless because their righthanded components have no interactions. Also the charge -1/3 quarks remain massless because the repulsive force from the Z exchange dominates over the Coulomb force. To correct this, we propose two possible modifications to the theory. One is to cut off the Z exchange at very small distances, so that all fermions except the neutrinos acquire masses, which are then, purely electromagnetic in origin. The other is to introduce an additional gauge boson that couples to all quarks with a pure vector coupling. To make this vector boson unobservable at usual energies, at least two new fermions must couple to it. The vector boson squared masses receive additive contributions from all the fermion squared masses. The photon remains massless and the masses of the Z and W('(+OR -)) bosons are shown to be related through the Weinberg angle in the conventional way. Assuming only three families of fermions, we obtain estimates for the top quark mass.

  14. The Study of Prompt and Delayed Muon Induced Fission. I.Total kinetic energies and mass distributions

    NARCIS (Netherlands)

    David, P; Hartfiel, J.; Janszen, H.; Petitjean, C.; Reist, H.W.; Polikanov, S.M.; Konijn, J.; Laat, de C.T.A.M.; Taal, A.; Krogulski, T.; Johansson, T.; Tibell, G.; Achard van Enschut, d' J.F.M.

    1987-01-01

    Mass yield and total kinetic energy release (TKE) distributions of fragments from prompt and delayed muon induced fission, separately, have been measured for the isotopes235U,238U,237Np and242Pu. The distributions from prompt muon induced fission are compared with the corresponding distributions

  15. [Comparison of in vivo characteristics of polyethylene wear particles produced by a metal and a ceramic femoral component in total knee replacement].

    Science.gov (United States)

    Veigl, D; Vavřík, P; Pokorný, D; Slouf, M; Pavlova, E; Landor, I

    2011-01-01

    The aim of the study was to evaluate in vivo and compare, in terms of the quality and number of ultra high-molecular polyethylene (UHMWPE) wear particles, total knee replacements of identical construction differing only in the material used for femoral component production, i.e., CoCrMo alloy or ZrO2 ceramics. Samples of peri-prosthetic granuloma tissue were collected in two patients with total knee replacement suffering from implant migration, who were matched in relevant characteristics. The primary knee replacement in Patient 1 with a CoCrMo femoral component was done 7.2 years and in Patient 2 with a ZrO2 implant 6.8 years before this assessment. The polyethylene wear-induced granuloma was analysed by the MORF method enabling us to assess the shape and size of wear debris and the IRc method for assessment of particle concentration. In the granuloma tissue samples of Patient 1, on the average, particles were 0.30 mm in size and their relative volume was 0.19. In the Patient 2 tissue samples, the average size of particles was 0.33 mm and their relative volume was 0.26. There was no significant difference in either particle morphology or their concentration in the granuloma tissue between the two patients. One of the options of how to reduce the production of polyethylene wear particles is to improve the tribological properties of contacting surfaces in total knee replacement by substituting a cobalt-chrome femoral component with a zirconia ceramic femoral component. The previous in vitro testing carried out with a mechanical simulator under conditions approaching real weight-bearing in the human body did show a nearly three-fold decrease in the number of UHMWPE wear particles in zirconia components. The evaluation of granuloma tissue induced by the activity of a real prosthetic joint for nearly seven years, however, did not reveal any great difference in either quality or quantity of polyethylene debris between the two replacements. The difference of surface

  16. Determining total hemoglobin mass by means of {sup 13}CO breath analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Marcus; Hering, Peter [Institut fuer Lasermedizin, Universitaetsklinikum Duesseldorf (Germany)

    2010-07-01

    The aim of our investigations is the development of a non-invasive method for the determination of the total hemoglobin mass in the human body by means of Cavity Leak-Out Spectroscopy (CALOS). The mentioned CALOS system utilizes a CO gas laser in the mid infrared region around 5{mu}m. This system allows isotopologue selective online measurements of {sup 13}CO with a sensitivity of 7 ppb.Hz{sup -1/2}. {sup 13}CO is a non radioactive isotopologue occurring in a ratio of about 1.1 % of the natural CO composition. CO is commonly known as a highly toxic gas but it is also endogenously produced during heme degradation. About 80 % of this CO is exhaled yielding to CO concentrations between 1 ppm to 4 ppm in healthy humans. Transportation of CO through the body is established by hemoglobin which has a high affinity towards CO. Because of this fact inhaled CO is taken up by the blood until equilibrium between the alveolar air and the blood is reached. By determining the exhaled CO concentrations before and after the inhalation of a certain amount of CO a measure for the t-Hb mass can be calculated. The enormous advantage of the isotopologue measurement is the very small amount of {sup 13}CO which can be used for harmless CO inhalation. All data necessary for calculating the t-Hb mass are obtained from breath measurements making this method non invasive.

  17. Search for substructure in anti pp total cross section in the 2200 MeV mass region

    International Nuclear Information System (INIS)

    Peaslee, D.C.; DeMarzo, C.; Guerriero, L.

    1975-01-01

    The anti pp total cross section is measured in an apparatus with a small target and high resolution beam in order to supplement previous work by looking for narrow structure that might be hidden in broad-mass bins. One could set limits on the partial widths of bosons coupling to the anti pp system. The product of an unknown production cross section and a partial width was determined. From the data the existence of resolution-sized structure above the smooth fit with the product of cross section and width greater than 7 MeV mb. It can be shown that a Breit--Wigner resonance of spin J coupled to the anti pp system in this region must have partial width GAMMA/sub anti pp/ less than 1.8/(2J + 1) MeV. Also it is found that the broad enhancement observed in the anti pp total cross section persists without modification in an observation with mass resolution six times that of previous work

  18. Top quark mass measurement

    International Nuclear Information System (INIS)

    Maki, Tuula; Helsinki Inst. of Phys.; Helsinki U. of Tech.

    2008-01-01

    The top quark is the heaviest elementary particle. Its mass is one of the fundamental parameters of the standard model of particle physics, and an important input to precision electroweak tests. This thesis describes three measurements of the top-quark mass in the dilepton decay channel. The dilepton events have two neutrinos in the final state; neutrinos are weakly interacting particles that cannot be detected with a multipurpose experiment. Therefore, the signal of dilepton events consists of a large amount of missing energy and momentum carried off by the neutrinos. The top-quark mass is reconstructed for each event by assuming an additional constraint from a top mass independent distribution. Template distributions are constructed from simulated samples of signal and background events, and parameterized to form continuous probability density functions. The final top-quark mass is derived using a likelihood fit to compare the reconstructed top mass distribution from data to the parameterized templates. One of the analyses uses a novel technique to add top mass information from the observed number of events by including a cross-section-constraint in the likelihood function. All measurements use data samples collected by the CDF II detector

  19. Mass spectrometry with particle accelerator

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The heavy ion accelerator use is renewing the ultrasensitive mass spectrometry in extending the detection limits. These new devices allow the measurement of rare isotope ratio, as 10 Be, 14 C, 26 Al, 36 Cl or 41 Ca, from the earth natural reservoirs [fr

  20. Ultra-low mass drift chambers

    International Nuclear Information System (INIS)

    Assiro, R.; Cappelli, L.; Cascella, M.; De Lorenzis, L.; Grancagnolo, F.; Ignatov, F.; L'Erario, A.; Maffezzoli, A.; Miccoli, A.; Onorato, G.; Perillo, M.; Piacentino, G.; Rella, S.; Rossetti, F.; Spedicato, M.; Tassielli, G.

    2013-01-01

    We present a novel low mass drift chamber concept, developed in order to fulfill the stringent requirements imposed by the experiments for extremely rare processes, which require high resolutions (order of 100–200 keV/c) for particle momenta in a range (50–100 MeV/c) totally dominated by the multiple scattering contribution. We describe a geometry optimization procedure and a new wiring strategy with a feed-through-less wire anchoring system developed and tested on a drift chamber prototype under completion at INFN-Lecce

  1. Pharmaceutical/food grade titanium dioxide particles are absorbed into the bloodstream of human volunteers.

    Science.gov (United States)

    Pele, Laetitia C; Thoree, Vinay; Bruggraber, Sylvaine F A; Koller, Dagmar; Thompson, Richard P H; Lomer, Miranda C; Powell, Jonathan J

    2015-09-02

    Exposure to persistent engineered nano and micro particles via the oral route is well established. Animal studies have demonstrated that, once ingested, a small proportion of such particles translocate from the gastrointestinal tract to other tissues. Exposure to titanium dioxide is widespread via the oral route, but only one study has provided indirect evidence (total titanium analyses) of absorption into the blood stream in humans. We sought to replicate these observations and to provide additional evidence for particulate uptake. Human volunteers with normal intestinal permeability were orally administered 100 mg pharmaceutical/food grade titanium dioxide. Blood samples were collected from 0.5 to 10 h post ingestion and analysed for the presence of reflectant bodies (particles) by dark field microscopy, and for total titanium by inductively coupled plasma mass spectrometry (ICP-MS). Blood film analyses implied early absorption of particles (2 h) with a peak maximum at 6 h following ingestion. The presence of these reflectant particles in blood roughly mirrored the levels of total titanium by ICP-MS, providing good evidence for the latter being a measure of whole particle (titanium dioxide) absorption. This study shows that a fraction of pharmaceutical/food grade titanium dioxide is absorbed systemically by humans following ingestion. It confirms that at least two routes of particle uptake may exist in the human gut- one proximal and one distal. Further work should quantify human exposure and uptake of such persistent particles.

  2. Rayleigh-Bénard turbulence modified by two-way coupled inertial, nonisothermal particles

    Science.gov (United States)

    Park, Hyungwon John; O'Keefe, Kevin; Richter, David H.

    2018-03-01

    Direct numerical simulation (DNS) combined with the Lagrangian point particle model is used to study Rayleigh-Bénard convection in order to understand modifications due to the interaction of inertial, nonisothermal particles with buoyancy-driven turbulence. In this system, turbulence can be altered through direct momentum coupling, as well as through buoyancy modification via thermal coupling between phases. We quantify the effect of the dispersed phase by changes to the total integrated turbulent kinetic energy (TKE) and Nusselt number (Nu). The dispersed particles experience gravitational settling and are introduced at the lower wall so that turbulence must overcome the settling velocity for the particles to vertically distribute throughout the domain. We focus primarily on particle inertia, settling velocity, mass fraction, and the ratio of the particle to fluid specific heat. Furthermore, individual contributions by the momentum coupling and thermal coupling are studied to see which most significantly changes Nu and TKE. Our results show that particles with Stokes number of order unity maximize Nu, corresponding to a peak of clustering and attenuation of TKE. Increased mass fractions lead to a linear increase of Nu and decrease of TKE. With varying specific heat ratio, Nu and TKE exhibit monotonic behaviors, where in the high limit particles become isothermal and depend upon the initialized particle temperature. It is also shown that particles two-way coupled only through momentum attenuate Nu and weaken TKE, while thermal-only coupling also weakens TKE but enhances Nu. When both couplings are present, however, thermal coupling overwhelms the momentum coupling attenuation, and the net result is an enhancement of Nu.

  3. On the description of classical Einstein relativistic two-particle systems

    International Nuclear Information System (INIS)

    Aaberge, T.

    1978-01-01

    The author starts by considering the system of one free particle, and gives a sufficiently general description of this system to include the center of mass of systems of several particles. He then passes to the system of two particles. The coordinates separating the center of mass and the internal system are defined and the dynamics discussed. Finally the author outlines the construction of a more restrictive two-particle theory, and studies some consequences of the definition of a particle in an external field as a two-particle system in the limit where the mass of one of the particles becomes infinite. (Auth.)

  4. Comparison between polluted and clean air masses over Lake Michigan

    International Nuclear Information System (INIS)

    Alkezweeny, A.J.; Laulainen, N.S.

    1981-01-01

    Clean and polluted air masses, advected over Lake Michigan, were studied using instrumental aircraft during the summers of 1976 and 1978. The results show that regardless of the degree of pollution, the particle size distribution is bimodal. The concentrations of sulfate, nitrate and trace metals in a clean air mass are more than an order of magnitude lower than those in polluted air masses. Furthermore, these concentrations are comparable with those measured in remote areas of the world. In clean air the ratio of the total light scattering to Rayleigh scattering is very close to one, indicating very low concentrations of particulates in the optically active size classes

  5. The mass-action-law theory of micellization revisited.

    Science.gov (United States)

    Rusanov, Anatoly I

    2014-12-09

    Among numerous definitions of the critical micelle concentration (CMC), there is one related to the constant K of the mass action law as CMC = K(1-n) (n is the aggregation number). In this paper, the generalization of this definition for multicomponent micelles and the development of the mass-action-law theory of micellization based on this definition and the analysis of a multiple-equilibrium polydisperse micellar system have been presented. This variant of the theory of micellization looks more consistent than the earlier one. In addition, two thermodynamic findings are reported: the stability conditions for micellar systems and the dependence of aggregation numbers on the surfactant concentrations. The growth of the monomer concentration with the total surfactant concentration is shown to be a thermodynamic rule only in the case of a single sort of aggregative particles or at adding a single surfactant to a mixture. The stability condition takes more complex form when adding a mixture of aggregative particles. For the aggregation number of a micelle, it has been deduced a thermodynamic rule obeying it to increase with the total surfactant concentration. However, if the monomer concentration increases slowly, the aggregation number increases much more slowly and the more slowly the more pronounced is a maximum corresponding to a micelle on the distribution hypersurface (curve in the one-component case). This forms grounding for the quasi-chemical approximation in the mass-action-law theory (the constancy of aggregation numbers).

  6. A REVIEW ON MASS SPECTROMETRY DETECTORS

    OpenAIRE

    Khatri Neetu; Gupta Ankit; Taneja Ruchi; Bilandi Ajay; Beniwal Prashant

    2012-01-01

    Mass spectrometry is an analytical technique for "weighing" molecules. Obviously, this is not done with a conventional scale or balance. Instead, mass spectrometry is based upon the principle of the motion of a charged particle that is called an ion, in an electric or magnetic field. The mass to charge ratio (m/z) of the ion affects particles motion. Since the charge of an electron is known, the mass to charge ratio (m/z) is a measurement of mass of an ion. Mass spectrometry research focuses ...

  7. Higgs : the mystery of mass Conference MT17

    CERN Multimedia

    2001-01-01

    What causes particles to have mass? Why do the masses of fundamental particles differ so enormously -the top quark is more than 200,000 times heavier than the electron? A solution has been developed by several physicists and takes the name of Peter Higgs. According to this, the whole of space is permeated by a field, similar in some ways to the electromagnetic field. As particles move through space they travel through this field. The interaction between the particles and the field is similar to the action of a viscous force felt by a particle moving through a thick liquid. The stronger the interaction of the particles with the Higgs field, the more mass they appear to have. We know from quantum theory that fields have particles associated with them, so if the Higgs idea is right, there must be a Higgs particle. Finding it is the key to verifying whether our best hypothesis for the origin of mass is indeed correct.

  8. Pre-Hawking radiation may allow for reconstruction of the mass distribution of the collapsing object

    Energy Technology Data Exchange (ETDEWEB)

    Dai, De-Chang, E-mail: diedachung@gmail.com [Institute of Natural Sciences, Shanghai Key Lab for Particle Physics and Cosmology, and Center for Astrophysics and Astronomy, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Stojkovic, Dejan [HEPCOS, Department of Physics, SUNY, University at Buffalo, Buffalo, NY 14260-1500 (United States)

    2016-07-10

    Hawking radiation explicitly depends only on the black hole's total mass, charge and angular momentum. It is therefore generally believed that one cannot reconstruct the information about the initial mass distribution of an object that made the black hole. However, instead of looking at radiation from a static black hole, we can study the whole time-dependent process of the gravitational collapse, and pre-Hawking radiation which is excited because of the time-dependent metric. We compare radiation emitted by a single collapsing shell with that emitted by two concentric shells of the equivalent total mass. We calculate the gravitational trajectory and the momentum energy tensor. We show that the flux of energy emitted during the collapse by a single shell is significantly different from the flux emitted by two concentric shells of the equivalent total mass. When the static black hole is formed, the fluxes become indistinguishable. This implies that an observer studying the flux of particles from a collapsing object could in principle reconstruct information not only about the total mass of the collapsing object, but also about the mass distribution.

  9. Pre-Hawking radiation may allow for reconstruction of the mass distribution of the collapsing object

    Directory of Open Access Journals (Sweden)

    De-Chang Dai

    2016-07-01

    Full Text Available Hawking radiation explicitly depends only on the black hole's total mass, charge and angular momentum. It is therefore generally believed that one cannot reconstruct the information about the initial mass distribution of an object that made the black hole. However, instead of looking at radiation from a static black hole, we can study the whole time-dependent process of the gravitational collapse, and pre-Hawking radiation which is excited because of the time-dependent metric. We compare radiation emitted by a single collapsing shell with that emitted by two concentric shells of the equivalent total mass. We calculate the gravitational trajectory and the momentum energy tensor. We show that the flux of energy emitted during the collapse by a single shell is significantly different from the flux emitted by two concentric shells of the equivalent total mass. When the static black hole is formed, the fluxes become indistinguishable. This implies that an observer studying the flux of particles from a collapsing object could in principle reconstruct information not only about the total mass of the collapsing object, but also about the mass distribution.

  10. Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment

    Science.gov (United States)

    Schmidt, Susan; Schneider, Johannes; Klimach, Thomas; Mertes, Stephan; Schenk, Ludwig Paul; Kupiszewski, Piotr; Curtius, Joachim; Borrmann, Stephan

    2017-01-01

    In situ single particle analysis of ice particle residuals (IPRs) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January-February 2013. During the 4-week campaign more than 70 000 out-of-cloud aerosol particles and 595 IPRs were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPRs were sampled during 273 h while the station was covered by mixed-phase clouds at ambient temperatures between -27 and -6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. The outcome of these laboratory studies was characteristic marker peaks for each investigated particle type. These marker peaks were applied to the field data. In the sampled IPRs we identified a larger number fraction of primary aerosol particles, like soil dust (13 ± 5 %) and minerals (11 ± 5 %), in comparison to out-of-cloud aerosol particles (2.4 ± 0.4 and 0.4 ± 0.1 %, respectively). Additionally, anthropogenic aerosol particles, such as particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPRs than in the out-of-cloud aerosol. In the out-of-cloud aerosol we identified a large fraction of aged particles (31 ± 5 %), including organic material and secondary inorganics, whereas this particle type was much less abundant (2.7 ± 1.3 %) in the IPRs. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPRs in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPRs.

  11. Physical and chemical characteristics of interplanetary dust particles

    International Nuclear Information System (INIS)

    Gruen, E.

    1981-01-01

    For the first time, the micrometeoroid experiment on board of Helios allowed the measurement of physical and chemical characteristics of interplanetary dust particles between 0.3AU and 1AU solar distance. During the first 10 orbits of Helios 1,235 impacts of micrometeoroids have been detected. 83 particles have been registered by the ecliptic sensor and 152 by the south sensor. Most of the particles detected by the ecliptic sensor had masses 10 -13 g -10 g and impacted the sensor from the apex direction. The particles observed by the south sensor had masses 10 -15 g -9 g and impacted the sensor from all directions with a slightly enhanced flux from solar direction. The average impact speed of particles with masses 10 -13 g -10 g was 15km/s. From 1AU to.3AU, the observed paritcle flux increased by a factor 5-10. The orbits of the registered particles are highly eccentric, e approx. >= 0.6, and some are hyperbolic. The mass spectra measured upon impact allow the classification of chondritic and iron-rich particles. Approx. 20% of the particles had low densities rho 3 . On 4 particles, a positive electric charge has been observed. (orig.) [de

  12. Vibro-spring particle size distribution analyser

    International Nuclear Information System (INIS)

    Patel, Ketan Shantilal

    2002-01-01

    This thesis describes the design and development of an automated pre-production particle size distribution analyser for particles in the 20 - 2000 μm size range. This work is follow up to the vibro-spring particle sizer reported by Shaeri. In its most basic form, the instrument comprises a horizontally held closed coil helical spring that is partly filled with the test powder and sinusoidally vibrated in the transverse direction. Particle size distribution data are obtained by stretching the spring to known lengths and measuring the mass of the powder discharged from the spring's coils. The size of the particles on the other hand is determined from the spring 'intercoil' distance. The instrument developed by Shaeri had limited use due to its inability to measure sample mass directly. For the device reported here, modifications are made to the original configurations to establish means of direct sample mass measurement. The feasibility of techniques for measuring the mass of powder retained within the spring are investigated in detail. Initially, the measurement of mass is executed in-situ from the vibration characteristics based on the spring's first harmonic resonant frequency. This method is often erratic and unreliable due to the particle-particle-spring wall interactions and the spring bending. An much more successful alternative is found from a more complicated arrangement in which the spring forms part of a stiff cantilever system pivoted along its main axis. Here, the sample mass is determined in the 'static mode' by monitoring the cantilever beam's deflection following the wanton termination of vibration. The system performance has been optimised through the variations of the mechanical design of the key components and the operating procedure as well as taking into account the effect of changes in the ambient temperature on the system's response. The thesis also describes the design and development of the ancillary mechanisms. These include the pneumatic

  13. In-line monitoring of effluents from HTGR fuel particle preparation processes using a time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Lee, D.A.; Costanzo, D.A.; Stinton, D.P.; Carpenter, J.A.; Rainey, W.T. Jr.; Canada, D.C.; Carter, J.A.

    1976-08-01

    The carbonization, conversion, and coating processes in the manufacture of HTGR fuel particles have been studied with the use of a time-of-flight mass spectrometer. Non-condensable effluents from these fluidized-bed processes have been monitored continuously from the beginning to the end of the process. The processes which have been monitored are these: uranium-loaded ion exchange resin carbonization, the carbothermic reduction of UO 2 to UC 2 , buffer and low temperature isotropic pyrocarbon coatings of fuel kernels, SiC coating of the kernels, and high-temperature particle annealing. Changes in concentrations of significant molecules with time and temperature have been useful in the interpretation of reaction mechanisms and optimization of process procedures

  14. Gravitational particle production in braneworld cosmology.

    Science.gov (United States)

    Bambi, C; Urban, F R

    2007-11-09

    Gravitational particle production in a time variable metric of an expanding universe is efficient only when the Hubble parameter H is not too small in comparison with the particle mass. In standard cosmology, the huge value of the Planck mass M{Pl} makes the mechanism phenomenologically irrelevant. On the other hand, in braneworld cosmology, the expansion rate of the early Universe can be much faster, and many weakly interacting particles can be abundantly created. Cosmological implications are discussed.

  15. Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    Directory of Open Access Journals (Sweden)

    O. E. Malandraki

    Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.

    Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields

  16. Unbound particles in dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S.; Loeb, Abraham; Wechsler, Risa H.

    2013-06-13

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches for intergalactic supernovae.

  17. Determining the Particle Size of Debris from a Tunnel Boring Machine Through Photographic Analysis and Comparison Between Excavation Performance and Rock Mass Properties

    Science.gov (United States)

    Rispoli, A.; Ferrero, A. M.; Cardu, M.; Farinetti, A.

    2017-10-01

    This paper presents the results of a study carried out on a 6.3-m-diameter exploratory tunnel excavated in hard rock by an open tunnel boring machine (TBM). The study provides a methodology, based on photographic analysis, for the evaluation of the particle size distribution of debris produced by the TBM. A number of tests were carried out on the debris collected during the TBM advancement. In order to produce a parameter indicative of the particle size of the debris, the coarseness index (CI) was defined and compared with some parameters representative of the TBM performance [i.e. the excavation specific energy (SE) and field penetration index (FPI)] and rock mass features, such as RMR, GSI, uniaxial compression strength and joint spacing. The results obtained showed a clear trend between the CI and some TBM performance parameters, such as SE and FPI. On the contrary, due to the rock mass fracturing, a clear relationship between the CI and rock mass characteristics was not found.

  18. Determination of neonicotinoid insecticides and strobilurin fungicides in particle phase atmospheric samples by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Raina-Fulton, Renata

    2015-06-03

    A liquid chromatography-tandem mass spectrometry method has been developed for the determination of neonicotinoids and strobilurin fungicides in the particle phase fraction of atmosphere samples. Filter samples were extracted with pressurized solvent extraction, followed by a cleanup step with solid phase extraction. Method detection limits for the seven neonicotinoid insecticides and six strobilurin fungicides were in the range of 1.0-4.0 pg/m(3). Samples were collected from June to September 2013 at two locations (Osoyoos and Oliver) in the southern Okanagan Valley Agricultural Region of British Columbia, where these insecticides and fungicides are recommended for use on tree fruit crops (apples, pears, cherries, peaches, apricots) and vineyards. This work represents the first detection of acetamiprid, imidacloprid, clothianidin, kresoxim-methyl, pyraclostrobin, and trifloxystrobin in particle phase atmospheric samples collected in the Okanagan Valley in Canada. The highest particle phase atmospheric concentrations were observed for imidacloprid, pyraclostrobin, and trifloxystrobin at 360.0, 655.6, and 1908.2 pg/m(3), respectively.

  19. Analysis of Base-Case Particle Tracking Results of the Base-Case Flow Fields (ID:U0160)

    International Nuclear Information System (INIS)

    C.K. Ho

    2000-01-01

    The purpose of this analysis is to provide insight into the unsaturated-zone (UZ) subsystem performance through particle tracking analyses of the base-case flow fields. The particle tracking analyses will not be used directly in total-system performance-assessment (TSPA) calculations per se. The objective of this activity is to evaluate the transport of radionuclides through the unsaturated zone and to determine how different system parameters such as matrix diffusion, sorption, water-table rise, and perched water influence the transport to the water table. Plots will be generated to determine normalized cumulative breakthrough curves for selected radionuclides. The scope of this work is limited to the particle tracking analyses of ''base-case'' flow fields that are to be used by the code FEHM (Finite Element Heat and Mass; Zyvoloski 1997) for particle tracking simulations in ''Total System Performance Assessment-Site Recommendation Report'' (TSPA-SR)

  20. A midrapidity source of intermediate mass fragments in highly central collisions of Au+Au at 150 A MeV

    Energy Technology Data Exchange (ETDEWEB)

    Alard, J P; Bastid, N; Crouau, M; Dupieux, P; Fraysse, L; Jorio, M; Montarou, G; Morel, P [Laboratoire de Physique Corpusculaire, 63 - Clermont-Ferrand (France); Basrak, Z; Caplar, R; Cindro, N; Hoelbling, S [Rudjer Boskovic Inst., Zagreb (Yugoslavia); Belayev, I M; Frolov, S; Korchagin, Y; Lebedev, A; Smolyankin, S; Zhilin, A V [Institute for Experimental and Theoretical Physics, Moscow (Russia); Bini, M; Olmi, A; Pasquali, G; Poggi, G; Taccetti, N [Florence Univ. (Italy); [INFN, Florence (Italy); Blaich, T [Mainz Univ. (Germany); Buta, A; Legrand, I; Moisa, D; Petrovici, M; Simion, V [Institute for Physics and Nuclear Engineering, Bucharest (Romania); Cerruti, C; Coffin, J P; Fintz, P; Guillaume, G; Houari, O; Jundt, F; Kuhn, C; Maguire, C; Rami, F; Tezkratt, R; Wagner, P [Centre de Recherches Nucleaires, 67 - Strasbourg (France); [Strasbourg Univ., 67 (France); Eroe, J; Fodor, Z; Kecskemeti, J; Koncz, P; Seres, Z [Central Research Inst. for Physics, Budapest (Hungary); Grigoriyan, Y; Manko, V; Mgebrishvili, G; Sadchikov, A; Vasiliev, M A [Kurchatov Inst. for Atomic Energy, Moscow (Russia); Herrmann, N; Pelte, D; Trzaska, M; Wienold, T [Heidelberg Univ. (Germany). Physikalisches Inst.; Kotte, R; Moesner, J; Neubert, W; Wohlfarth, D [Forschungszentrum Rossendorf (Germany); Matulewicz, T; Sikora, B; Wilhelmi, Z [Warsaw Univ. (Poland). Inst. of Experimental Physics; Bock, R; Fan, Z G; Freifelder, R; Gobbi, A; Hildenbrand, K D; Jeong, S C; Kraemer, M; Reisdorf, W; Schuell, D; Sodan, U; Teh, K; Wessels, J P; FOPI Collaboration at GSI

    1992-02-01

    Charged particles have been observed in collisions of Au on Au at incident energy of 150 A MeV using a high-granularity detector system covering approximatley the forward hemisphere in the center-of-mass system. Highly central collisions have been studied using a double selection criterion which combines large charged particle multiplicities with small transverse momentum directivities. In this class of events about one quarter of the total nuclear charge emerges as intermediate mass fragments with nuclear charges Z>2. These fragments are centred at midrapidity and are produced with large transverse velocities. (orig.).

  1. A midrapidity source of intermediate mass fragments in highly central collisions of Au+Au at 150 A MeV

    International Nuclear Information System (INIS)

    Alard, J.P.; Bastid, N.; Crouau, M.; Dupieux, P.; Fraysse, L.; Jorio, M.; Montarou, G.; Morel, P.; Basrak, Z.; Caplar, R.; Cindro, N.; Hoelbling, S.; Belayev, I.M.; Frolov, S.; Korchagin, Y.; Lebedev, A.; Smolyankin, S.; Zhilin, A.V.; Bini, M.; Olmi, A.; Pasquali, G.; Poggi, G.; Taccetti, N.; Blaich, T.; Buta, A.; Legrand, I.; Moisa, D.; Petrovici, M.; Simion, V.; Cerruti, C.; Coffin, J.P.; Fintz, P.; Guillaume, G.; Houari, O.; Jundt, F.; Kuhn, C.; Maguire, C.; Rami, F.; Tezkratt, R.; Wagner, P.; Eroe, J.; Fodor, Z.; Kecskemeti, J.; Koncz, P.; Seres, Z.; Grigoriyan, Y.; Manko, V.; Mgebrishvili, G.; Sadchikov, A.; Vasiliev, M.A.; Herrmann, N.; Pelte, D.; Trzaska, M.; Wienold, T.; Matulewicz, T.; Sikora, B.; Wilhelmi, Z.; Bock, R.; Fan, Z.G.; Freifelder, R.; Gobbi, A.; Hildenbrand, K.D.; Jeong, S.C.; Kraemer, M.; Reisdorf, W.; Schuell, D.; Sodan, U.; Teh, K.; Wessels, J.P.

    1992-02-01

    Charged particles have been observed in collisions of Au on Au at incident energy of 150 A MeV using a high-granularity detector system covering approximatley the forward hemisphere in the center-of-mass system. Highly central collisions have been studied using a double selection criterion which combines large charged particle multiplicities with small transverse momentum directivities. In this class of events about one quarter of the total nuclear charge emerges as intermediate mass fragments with nuclear charges Z>2. These fragments are centred at midrapidity and are produced with large transverse velocities. (orig.)

  2. Total molecular gas masses of Planck - Herschel selected strongly lensed hyper luminous infrared galaxies

    Science.gov (United States)

    Harrington, K. C.; Yun, M. S.; Magnelli, B.; Frayer, D. T.; Karim, A.; Weiß, A.; Riechers, D.; Jiménez-Andrade, E. F.; Berman, D.; Lowenthal, J.; Bertoldi, F.

    2018-03-01

    We report the detection of CO(1-0) line emission from seven Planck and Herschel selected hyper luminous ({L_{IR (8-1000{μ m})} > 10^{13} L_{⊙}) infrared galaxies with the Green Bank Telescope (GBT). CO(1-0) measurements are a vital tool to trace the bulk molecular gas mass across all redshifts. Our results place tight constraints on the total gas content of these most apparently luminous high-z star-forming galaxies (apparent IR luminosities of LIR > 1013 - 14 L⊙), while we confirm their predetermined redshifts measured using the Large Millimeter Telescope, LMT (zCO = 1.33-3.26). The CO(1-0) lines show similar profiles as compared to Jup = 2-4 transitions previously observed with the LMT. We report enhanced infrared to CO line luminosity ratios of = 110 ± 22 L_{⊙} (K km s^{-1} pc^{-2})^{-1} compared to normal star-forming galaxies, yet similar to those of well-studied IR-luminous galaxies at high-z. We find average brightness temperature ratios of 〈 r21〉 = 0.93 (2 sources), 〈 r31〉 = 0.34 (5 sources), and 〈 r41〉 = 0.18 (1 source). The r31 and r41 values are roughly half the average values for SMGs. We estimate the total gas mass content as {μ M_{H2} = (0.9-27.2) × 10^{11} (α _CO/0.8) M_{⊙}, where μ is the magnification factor and αCO is the CO line luminosity to molecular hydrogen gas mass conversion factor. The rapid gas depletion times, = 80} Myr, reveal vigorous starburst activity, and contrast the Gyr depletion time-scales observed in local, normal star-forming galaxies.

  3. Determination of total alpha activity index in samples of radioactive wastes

    International Nuclear Information System (INIS)

    Galicia C, F. J.

    2015-01-01

    This study aimed to develop a methodology of preparation and quantification of samples containing radionuclides beta and/or alpha emitters, to determine the rates of alpha and beta total activity of radioactive waste samples. For this, a device of planchettes preparer was designed, to assist the planchettes preparation in a controlled environment and free of corrosive vapors. Planchettes were prepared in three means: nitrate, carbonate and sulfate, to different mass thickness, natural uranium (alpha and beta emitter) and in case of Sr-90 (beta emitter pure) only in half nitrate; and these planchettes were quantified in an alpha/beta counter, in order to construct the self-absorption curves for alpha and beta particles. These curves are necessary to determine the rate of alpha-beta activity of any sample because they provide the self-absorption correction factor to be applied in calculating the index. Samples with U were prepared with the help of the device of planchettes preparer and subsequently were analyzed in the proportional counter Mpc-100 Pic brand. Samples with Sr-90 were prepared without the device to see if there was a different behavior with respect to obtaining mass thickness. Similarly they were calcined and carried out count in the Mpc-100. To perform the count, first the parameters of counter operating were determined: operating voltages for alpha and beta particles 630 and 1500 V respectively, a count routine was generated where the time and count type were adjusted, and counting efficiencies for alpha and beta particles, with the aid of calibration sources of 210 Po for alphas and 90 Sr for betas. According to the results, the counts per minute will decrease as increasing the mass thickness of the sample (self-absorption curve), adjusting this behavior to an exponential function in all cases studied. The minor self-absorption of alpha and beta particles in the case of U was obtained in sulfate medium. The self-absorption curves of Sr-90 follow the

  4. Total dissolved atmospheric nitrogen deposition in the anoxic Cariaco basin

    Science.gov (United States)

    Rasse, R.; Pérez, T.; Giuliante, A.; Donoso, L.

    2018-04-01

    Atmospheric deposition of total dissolved nitrogen (TDN) is an important source of nitrogen for ocean primary productivity that has increased since the industrial revolution. Thus, understanding its role in the ocean nitrogen cycle will help assess recent changes in ocean biogeochemistry. In the anoxic Cariaco basin, the place of the CARIACO Ocean Time-Series Program, the influence of atmospherically-deposited TDN on marine biogeochemistry is unknown. In this study, we measured atmospheric TDN concentrations as dissolved organic (DON) and inorganic (DIN) nitrogen (TDN = DIN + DON) in atmospheric suspended particles and wet deposition samples at the northeast of the basin during periods of the wet (August-September 2008) and dry (March-April 2009) seasons. We evaluated the potential anthropogenic N influences by measuring wind velocity and direction, size-fractionated suspended particles, chemical traces and by performing back trajectories. We found DIN and DON concentration values that ranged between 0.11 and 0.58 μg-N m-3 and 0.11-0.56 μg-N m-3 in total suspended particles samples and between 0.08 and 0.54 mg-N l-1 and 0.02-1.3 mg-N l-1 in wet deposition samples, respectively. Continental air masses increased DON and DIN concentrations in atmospheric suspended particles during the wet season. We estimate an annual TDN atmospheric deposition (wet + particles) of 3.6 × 103 ton-N year-1 and concluded that: 1) Atmospheric supply of TDN plays a key role in the C and N budget of the basin because replaces a fraction of the C (20% by induced primary production) and N (40%) removed by sediment burial, 2) present anthropogenic N could contribute to 30% of TDN atmospheric deposition in the basin, and 3) reduced DON (gas + particles) should be a significant component of bulk N deposition.

  5. Superconducting nano-strip particle detectors

    International Nuclear Information System (INIS)

    Cristiano, R; Ejrnaes, M; Casaburi, A; Zen, N; Ohkubo, M

    2015-01-01

    We review progress in the development and applications of superconducting nano-strip particle detectors. Particle detectors based on superconducting nano-strips stem from the parent devices developed for single photon detection (SSPD) and share with them ultra-fast response times (sub-nanosecond) and the ability to operate at a relatively high temperature (2–5 K) compared with other cryogenic detectors. SSPDs have been used in the detection of electrons, neutral and charged ions, and biological macromolecules; nevertheless, the development of superconducting nano-strip particle detectors has mainly been driven by their use in time-of-flight mass spectrometers (TOF-MSs) where the goal of 100% efficiency at large mass values can be achieved. Special emphasis will be given to this case, reporting on the great progress which has been achieved and which permits us to overcome the limitations of existing mass spectrometers represented by low detection efficiency at large masses and charge/mass ambiguity. Furthermore, such progress could represent a breakthrough in the field. In this review article we will introduce the device concept and detection principle, stressing the peculiarities of the nano-strip particle detector as well as its similarities with photon detectors. The development of parallel strip configuration is introduced and extensively discussed, since it has contributed to the significant progress of TOF-MS applications. (paper)

  6. Hyphenating size‐exclusion chromatography with electrospray mass spectrometry; using on‐line liquid‐liquid extraction to study the lipid composition of lipoprotein particles

    Science.gov (United States)

    Osei, Michael; Griffin, Julian L.

    2015-01-01

    Rationale Lipoproteins belong to the most commonly measured clinical biochemical parameters. Lipidomics is an orthogonal approach and aims to profile the individual lipid molecules that jointly form the lipoprotein particles. However, in the first step of the extraction of lipid molecules from serum, an organic solvent is used leading to dissociation of the lipoproteins. Thus far it has been impossible to combine lipidomics and lipoprotein analysis in one analytical system. Methods Human plasma was diluted in phosphate‐buffered saline (PBS) and injected onto a Superose 6 PC 3.2 column with PBS as a mobile phase to separate lipoproteins. The eluent was led to a Syrris FLLEX module, which also received CHCl3/MeOH (3:1). The two phases were mixed and subsequently separated using a Teflon membrane in an especially designed pressurized flow chamber. The organic phase was led to a standard electrospray source of an Orbitrap mass spectrometer. Results Size‐exclusion chromatography (SEC) has been commonly applied to separate lipoproteins and is considered a practical alternative to ultracentrifugation. Through the on‐line liquid‐liquid extraction method it becomes possible to obtained detailed mass spectra of lipids across different lipoprotein fractions. The extracted ion chromatograms of specific lipid signals showed their distribution against the size of lipoprotein particles. Conclusions The application of on‐line liquid‐liquid extraction allows for the continuous electrospray‐based mass spectral analysis of SEC eluent, providing the detailed lipid composition of lipoprotein particles separated by size. This approach provides new possibilities for the study of the biochemistry of lipoproteins. © 2015 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:26443395

  7. Do interacting coronal mass ejections play a role in solar energetic particle events?

    International Nuclear Information System (INIS)

    Kahler, S. W.; Vourlidas, A.

    2014-01-01

    Gradual solar energetic (E > 10 MeV) particle (SEP) events are produced in shocks driven by fast and wide coronal mass ejections (CMEs). With a set of western hemisphere 20 MeV SEP events, we test the possibility that SEP peak intensities, Ip, are enhanced by interactions of their associated CMEs with preceding CMEs (preCMEs) launched during the previous 12 hr. Among SEP events with no, 1, or 2 or more (2+) preCMEs, we find enhanced Ip for the groups with preCMEs, but no differences in TO+TR, the time from CME launch to SEP onset and the time from onset to SEP half-peak Ip. Neither the timings of the preCMEs relative to their associated CMEs nor the preCME widths W pre , speeds V pre , or numbers correlate with the SEP Ip values. The 20 MeV Ip of all the preCME groups correlate with the 2 MeV proton background intensities, consistent with a general correlation with possible seed particle populations. Furthermore, the fraction of CMEs with preCMEs also increases with the 2 MeV proton background intensities. This implies that the higher SEP Ip values with preCMEs may not be due primarily to CME interactions, such as the 'twin-CME' scenario, but are explained by a general increase of both background seed particles and more frequent CMEs during times of higher solar activity. This explanation is not supported by our analysis of 2 MeV proton backgrounds in two earlier preCME studies of SEP events, so the relevance of CME interactions for larger SEP event intensities remains unclear.

  8. Experimental Study on Effects of Particle Shape and Operating Conditions on Combustion Characteristics of Single Biomass Particles

    DEFF Research Database (Denmark)

    Momeni, M.; Yin, Chungen; Kær, Søren Knudsen

    2013-01-01

    An experimental study is performed to investigate the ignition, devolatilization, and burnout of single biomass particles of various shapes and sizes under process conditions that are similar to those in an industrial combustor. A chargecoupled device (CCD) camera is used to record the whole...... combustion process. For the particles with similar volume (mass), cylindrical particles are found to lose mass faster than spherical particles and the burnout time is shortened by increasing the particle aspect ratio (surface area). The conversion times of cylindrical particles with almost the same surface...... area/volume ratio are very close to each other. The ignition, devolatilization, and burnout times of cylindrical particles are also affected by the oxidizer temperature and oxygen concentration, in which the oxygen concentration is found to have a more pronounced effect on the conversion times at lower...

  9. Effect of corn grain particle size on ruminal fermentation and blood metabolites of Holstein steers fed total mixed ration

    Directory of Open Access Journals (Sweden)

    Do Hyung Kim

    2018-01-01

    Full Text Available Objective This study was conducted to investigate the effect of corn grain particle size on ruminant fermentation and blood metabolites in Holstein steers fed total mixed ration (TMR as a basal diet to explain fundamental data of corn grain for cattle in Korea. Methods Four ruminally cannulated Holstein steers (body weight 592±29.9 kg fed TMR as a basal diet were housed individually in an auto temperature and humidity modulated chamber (24°C and 60% for 22 h/d. Treatments in a 4×4 Latin square design were TMR only (control, TMR with whole corn grain (WC, coarsely ground corn grain (CC, and finely ground corn grain (FC, respectively. The corn feeds substituted for 20% energy intake of TMR intake. To measure the ruminal pH, ammonia N, and volatile fatty acids (VFA, ruminal digesta was sampled through ruminal cannula at 1 h intervals after the morning feeding to determine ruminal fermentation characteristics. Blood was sampled via the jugular vein after the ruminal digesta sampling. Results There was no difference in dry matter (DM intake between different corn particle size because the DM intake was restricted to 1.66% of body weight. Different corn particle size did not change mean ammonia N and total VFA concentrations whereas lower (p<0.05 ruminal pH and a ratio of acetate to propionate, and higher (p<0.05 propionate concentration were noted when the steers consumed CC compared with WC and FC. Concentration of blood metabolites were not affected by different particle size of corn grain except for blood triglyceride concentration, which was significantly (p<0.05 increased by FC. Conclusion Results indicate that feeding CC may increase feed digestion in the rumen, whereas the FC group seemed to obtain inadequate corn retention time for microbial degradation in the rumen.

  10. [Are inhaled dust particles harmful for our lungs?].

    Science.gov (United States)

    Brändli, O

    1996-12-14

    Particles with diameters ranging from less than 0.02 to more than 100 microns and in concentration up to 120 micrograms/m3 daily average TSP (total suspended particles) are measurable in the air of Swiss cities and responsible for the decrease of visibility on the Swiss Plateau and south of the Alps. The particle size shows a typical distribution: the coarse particles (> 2.5 microns mass median diameter) are mostly of natural origin (plants, pollen, earth particles) and are deposited in the upper airways. The fine particles (PM2.5 annual concentrations of 14-53 micrograms/m3 TSP or 10-33 micrograms/m3 PM10, well below the national standard (annual mean TSP 70 micrograms/m3) have been measured in rural and urban areas. Even at these concentrations an increase in respiratory symptoms and a decrease in lung function, without evidence for a "safe" threshold, have been observed in the Swiss study of air pollution and lung diseases in adults (SAPALDIA). Although the noxious effects of the particles cannot be clearly separated from the effect of other pollutants (e.g. NOx, SO2, ozone) in complex pollutant mixtures, the emission standards and national standards for ambient air should be revised, in particular by adding a standard for fine particles (e.g. PM10 or PM2.5).

  11. A totally automated data acquisition/reduction system for routine treatment of mass spectroscopic data by factor analysis

    International Nuclear Information System (INIS)

    Tway, P.C.; Love, L.J.C.; Woodruff, H.B.

    1980-01-01

    Target transformation factor analysis is applied to typical data from gas chromatography-mass spectrometry and solid-probe mass spectrometry to determine rapidly the number of components in unresolved or partially resolved peaks. This technique allows the detection of hidden impurities which often make interpretation or quantification impossible. The error theory of Malinowski is used to assess the reliability of the results. The totally automated system uses a commercially available g.c.-m.s. data system interfaced to the large computer, and the number of components under a peak can be determined routinely and rapidly. (Auth.)

  12. Are PEEK-on-Ceramic Bearings an Option for Total Disc Arthroplasty? An In Vitro Tribology Study.

    Science.gov (United States)

    Siskey, Ryan; Ciccarelli, Lauren; Lui, Melissa K C; Kurtz, Steven M

    2016-11-01

    Most contemporary total disc replacements (TDRs) use conventional orthopaedic bearing couples such as ultrahigh-molecular-weight polyethylene (polyethylene) and cobalt-chromium (CoCr). Cervical total disc replacements incorporating polyetheretherketone (PEEK) bearings (specifically PEEK-on-PEEK bearings) have been previously investigated, but little is known about PEEK-on-ceramic bearings for TDR. (1) What is the tribologic behavior of a PEEK-on-ceramic bearing for cervical TDR under idealized, clean wear test conditions? (2) How does the PEEK-on-ceramic design perform under impingement conditions? (3) How is the PEEK-on-ceramic bearing affected by abrasive wear? (4) Is the particle morphology from PEEK-on-ceramic bearings for TDRs affected by adverse wear scenarios? PEEK-on-ceramic cervical TDR bearings were subjected to a 10 million cycle ideal wear test based on ASTM F2423 and ISO 181912-1 using a six-station spine wear simulator (MTS, Eden Prairie, MN, USA) with 5 g/L bovine serum concentration at 23° ± 2° C (ambient temperature). Validated 1 million cycle impingement and 5 million cycle abrasive tests were conducted on the PEEK-on-ceramic bearings based, in part, on retrieval analysis of a comparable bearing design as well as finite element analyses. The ceramic-on-PEEK couple was characterized for damage modes, mass and volume loss, and penetration and the lubricant was subjected to particle analysis. The resulting mass wear rate, volumetric wear rate, based on material density, and particle analysis were compared with clinically available cervical disc bearing couples. The three modes of wear (idealized, impingement, and abrasive) resulted in mean mass wear rates of 0.9 ± 0.2 mg/MC, 1.9 ± 0.5 mg/MC, and 2.8 ± 0.6 mg/MC, respectively. The mass wear rates were converted to volumetric wear rates using density and found to be 0.7 ± 0.1 mm 3 /MC, 1.5 ± 0.4 mm 3 /MC, and 2.1 ± 0.5 mm 3 /MC, respectively. During each test, the PEEK

  13. Search milli-charged particles at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Langeveld, W.G.J. [Stanford Univ., CA (United States)

    1997-01-01

    Particles with electric charge q {triple_bond} Qe {le} 10{sup -3} e and masses in the range 1-1000 MeV/c{sup 2} are not excluded by present experiments or by astrophysical or cosmological arguments. A beam dump experiment uniquely suited to the detection of such {open_quotes}milli-charged{close_quotes} particles has been carried out at SLAC, utilizing the short-duration pulses of the SLC electron beam to establish a tight coincidence window for the signal. The detector, a large scintillation counter sensitive to very small energy depositions, provided much greater sensitivity than previous searches. Analysis of the data leads to the exclusion of a substantial portion of the charge-mass plane. In this report, a preliminary mass-dependent upper limit is presented for the charge of milli-charged particles, ranging from Q = 1.7 x 10{sup -5} at milli-charged particle mass 0.1 MeV/c{sup 2} to Q = 9.5 x 10{sup -4} at 100 MeV/c{sup 2}.

  14. Comparison of nodal staging with lean body mass based and with total body weight based in lung cancer

    International Nuclear Information System (INIS)

    Lee, H. Y.; Chung, J. K.; Kang, W. J.; So, Y.; Lee, D. S.; Lee, M. C.

    2004-01-01

    The standardized uptake (SUV) is semiquantitative evaluation parameter in positron emission tomography (PET). But there is no consensus about the application or process of SUV measurement. In this study, we used measured lean body mass (LBM) and total weight for application in SUV measurement. Also we compared the each nodal staging with SUV between measured LBM, and total weight, in non small cell lung cancer (NSCLC). Total 21 patients with lung cancer were enrolled (M:F=17:4, age 45[+-]8 years). PET-CT was done before operation with Gemini (Philips, Milpitas, U.S.). Each image was reconstructed twice with measured weight and lean body mass. Maximum SUVs of 103 dissected lymph nodes were measured and compared with histological result. For the deciding on the cut off value, receiver operating characteristic (ROC) analysis was done. 14 lymph nodes in the 103 dissected lymph nodes were metastatic lesions. From the ROC analysis, the cut off value of SUV was 1.7 with measured LBM and 2.3 with total weight. With measured LBM, Sensitivity and specificity were 92.5%. 78.2% and area under curve was 0.881. With total weight, sensitivity and specificity was 92.5% and 77%, Area under curve was 0.859. The normalization of SUV could be done with measured LBM. With the normalization of SUV with LBM, the nodal staging of NSCLC using SUV could be more accurate than using total weight in the reconstruction and measurement of SUV for lymph node lesions

  15. Beyond the God particle

    CERN Document Server

    Lederman, Leon M

    2013-01-01

    On July 4, 2012, the long-sought Higgs Boson--aka "the God Particle"--was discovered at the world's largest particle accelerator, the LHC, in Geneva, Switzerland. On March 14, 2013, physicists at CERN confirmed it. This elusive subatomic particle forms a field that permeates the entire universe, creating the masses of the elementary particles that are the basic building blocks of everything in the known world--from viruses to elephants, from atoms to quasars.

  16. Search for quark compositeness, axigluons, and heavy particles using the dijet invariant mass spectrum observed in p bar p collisions

    International Nuclear Information System (INIS)

    Abe, F.; Albrow, M.; Akimoto, H.; Amidei, D.; Anway-Wiese, C.; Apollinari, G.; Areti, H.; Auchincloss, P.; Azfar, F.; Azzi, P.; Bacchetta, N.; Badgett, W.; Bailey, M.W.; Bao, J.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Benton, D.; Beretvas, A.; Berge, J.P.; Bertolucci, S.; Bhatti, A.; Biery, K.; Binkley, M.; Bird, F.; Bisello, D.; Blair, R.E.; Blocker, C.; Bodek, A.; Bolognesi, V.; Bortoletto, D.; Boswell, C.; Boulos, T.; Brandenburg, G.; Bromberg, C.; Buckley-Geer, E.; Budd, H.S.; Burkett, K.; Busetto, G.; Byon-Wagner, A.; Byrum, K.L.; Campagnari, C.; Campbell, M.; Caner, A.; Carithers, W.; Carlsmith, D.; Castro, A.; Cen, Y.; Cervelli, F.; Chapman, J.; Chiarelli, G.; Chikamatsu, T.; Cihangir, S.; Clark, A.G.; Cobal, M.; Contreras, M.; Conway, J.; Cooper, J.; Cordelli, M.; Coupal, D.P.; Crane, D.; Cunningham, J.D.; Daniels, T.; Deninno, M.; DeJongh, F.; Dell'Agnello, S.; Dell'Orso, M.; Demortier, L.; Denby, B.; Derwent, P.F.; Devlin, T.; Dickson, M.; Done, J.P.; Drucker, R.B.; Dunn, A.; Einsweiler, K.; Elias, J.E.; Engels, E. Jr.; Ely, R.; Eno, S.; Errede, D.; Errede, S.; Etchegoyen, A.; Fan, Q.; Farhat, B.; Fiori, I.; Flaugher, B.; Foster, G.W.; Franklin, M.; Frautschi, M.; Freeman, J.; Freidman, J.; Frisch, H.; Fry, A.; Fuess, T.A.; Fukui, Y.; Funaki, S.; Garfinkel, A.F.; Geer, S.; Gerdes, D.W.; Giannetti, P.; Giokaris, N.; Giormini, P.; Gladney, L.; Glenzinski, D.; Gold, M.; Gonzalez, J.; Goshaw, A.T.; Goulianos, K.; Grassmann, H.; Grewal, A.; Grieco, G.; Groer, L.; Grosso-Pilcher, C.; Haber, C.; Hahn, S.R.; Hamilton, R.; Handler, R.; Hans, R.M.; Hara, K.; Harral, B.; Harris, R.M.; Hauger, S.A.; Hauser, J.; Hawk, C.; Heinrich, J.; Hennessy, D.; Hipple, R.; Hollebeek, R.; Hoelscher, A.; Hong, S.; Houk, G.; Hu, P.; Huston, J.; Huffman, B.T.; Hughes, R.; Hurst, P.; Huth, J.; Hylen, J.; Incagli, M.

    1993-01-01

    The dijet invariant mass distribution has been measured in the region between 140 and 1000 GeV/c 2 , in 1.8 TeV p bar p collisions. Data collected with the Collider Detector at Fermilab show agreement with QCD calculations. A limit on quark compositeness of Λ c >1.3 TeV is obtained. Axigluons with masses between 240 and 640 GeV/c 2 are excluded at 95% C.L. if we assume ten open decay channels. Model-independent limits on the production of heavy particles decaying into two jets are also presented

  17. Single particle distributions, ch.2

    International Nuclear Information System (INIS)

    Blokzijl, R.

    1977-01-01

    A survey of inclusive single particle distributions is given for various particles. A comparison of particle cross-sections measured in K - p experiments at different center of mass energies shows that some of these cross-sections remain almost constant over a wide range of incoming K - momenta

  18. Increased body mass index is a predisposition for treatment by total hip replacement

    DEFF Research Database (Denmark)

    Jacobsen, Steffen; Sonne-Holm, Stig

    2005-01-01

    We investigated the radiological and epidemiological data of 4,151 subjects followed up from 1976 to 2003 to determine individual risk factors for hip osteoarthritis (OA), hip pain and/or treatment by total hip replacement (THR). Pelvic radiographs recorded in 1992 were assessed for evidence of hip......-joint degeneration and dysplasia. Sequential body mass index (BMI) measurements from 1976 to 1992, age, exposure to daily lifting and hip dysplasia were entered into logistic regression analyses. The prevalence of hip dysplasia ranged from 5.4% to 12.8% depending on the radiographical index used. Radiological hip OA...

  19. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    International Nuclear Information System (INIS)

    Hallock, K.A.; Mazurek, M.A.; Cass, G.R.

    1992-05-01

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon

  20. Theoretical analysis of the distribution of isolated particles in totally asymmetric exclusion processes: Application to mRNA translation rate estimation

    Science.gov (United States)

    Dao Duc, Khanh; Saleem, Zain H.; Song, Yun S.

    2018-01-01

    The Totally Asymmetric Exclusion Process (TASEP) is a classical stochastic model for describing the transport of interacting particles, such as ribosomes moving along the messenger ribonucleic acid (mRNA) during translation. Although this model has been widely studied in the past, the extent of collision between particles and the average distance between a particle to its nearest neighbor have not been quantified explicitly. We provide here a theoretical analysis of such quantities via the distribution of isolated particles. In the classical form of the model in which each particle occupies only a single site, we obtain an exact analytic solution using the matrix ansatz. We then employ a refined mean-field approach to extend the analysis to a generalized TASEP with particles of an arbitrary size. Our theoretical study has direct applications in mRNA translation and the interpretation of experimental ribosome profiling data. In particular, our analysis of data from Saccharomyces cerevisiae suggests a potential bias against the detection of nearby ribosomes with a gap distance of less than approximately three codons, which leads to some ambiguity in estimating the initiation rate and protein production flux for a substantial fraction of genes. Despite such ambiguity, however, we demonstrate theoretically that the interference rate associated with collisions can be robustly estimated and show that approximately 1% of the translating ribosomes get obstructed.

  1. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Salati, P.

    1986-01-01

    If the hot Big Bang model is correct, the very early universe provides us with a good laboratory to test our ideas on particle physics. The temperature and the density at that time are so high that each known particle must exist in chemical and in thermal equilibrium with the others. When the universe cools, the particles freeze out, leaving us today with a cosmic background. Such a kind of relic is of great interest because we can probe the Big Bang Model by studying the fossilized gas of a known particle. Conversely we can use that model to derive information about a hypothetical particle. Basically the freezing of a gas occurs a temperature T o and may be thermal or chemical. Studying the decoupling of a stable neutrino brings information on its mass: if the mass M ν lies in the forbidden range, the neutrino has to be unstable and its lifetime is constrained by cosmology. As for the G.U.T. Monopole, cosmology tells us that its present mass density is either to big or to small (1 monopole/observable universe) owing to a predicted flux far from the Parker Limit. Finally, the super red-giant star life time constrains the axion or the Higgs to be more massive than .2 MeV [fr

  2. Internal Structure of Charged Particles in a GRT Gravitational Model

    Science.gov (United States)

    Khlestkov, Yu. A.; Sukhanova, L. A.

    2018-05-01

    With the help of an exact solution of the Einstein and Maxwell equations, the internal structure of a multiply connected space of wormhole type with two unclosed static throats leading out of it into two parallel vacuum spaces or into one space is investigated in GRT for a free electric field and dust-like matter. The given geometry is considered as a particle-antiparticle pair with fundamental constants arising in the form of first integrals in the solution of the Cauchy problem - electric charges ±e of opposite sign in the throats and rest mass m0 - the total gravitational mass of the inner world of the particle in the throat. With the help of the energy conservation law, the unremovable rotation of the internal structure is included and the projection of the angular momentum of which onto the rotation axis is identified with the z-projection of the spin of the charged particle. The radius of 2-Gaussian curvature of the throat R* is identified with the charge radius of the particle, and the z-projection of the magnetic moment and the g-factor are found. The feasibility of the given gravitational model is confirmed by the found condition of independence of the spin quantum number of the electron and the proton s = 1/2 of the charge radius R* and the relativistic rest mass m* of the rotating throat, which is reliably confirmed experimentally, and also by the coincidence with high accuracy of the proton radius calculated in the model R*p = 0.8412·10-13 cm with the value of the proton charge radius obtained experimentally by measuring the Lamb shift on muonic hydrogen. The electron in the given model also turns out to be a structured particle with radius R*e = 3.8617·10-11 cm.

  3. Atmospheric occurrence, transport and gas-particle partitioning of polychlorinated biphenyls over the northwestern Pacific Ocean

    Science.gov (United States)

    Wu, Zilan; Lin, Tian; Li, Zhongxia; Li, Yuanyuan; Guo, Tianfeng; Guo, Zhigang

    2017-10-01

    Ship-board air samples were collected during March to May 2015 from the East China Sea (ECS) to the northwestern Pacific Ocean (NWP) to explore the atmospheric occurrence and gas-particle partitioning of polychlorinated biphenyls (PCBs) when the westerly East Asian Monsoon prevailed. Total PCB concentrations in the atmosphere ranged from 56.8 to 261 pg m-3. Higher PCB levels were observed off the coast and minor temperature-induced changes showed that continuous emissions from East Asia remain as an important source to the regional atmosphere. A significant relationship between Koa (octanol-air partition coefficient) and KP (gas-particle partition coefficient) for PCBs was observed under continental air masses, suggesting that land-derived organic aerosols affected the PCB gas-particle partitioning after long-range transport, while an absence of this correlation was identified in marine air masses. The PCB partitioning cannot be fully explained by the absorptive mechanism as the predicted KP were found to be 2-3 orders of magnitude lower than the measured Kp, while the prediction was closely matched when soot adsorption was considered. The results suggested the importance of soot carbon as a transport medium for PCBs during their long-range transport and considerable impacts of continental outflows on PCBs across the downwind area. The estimated transport mass of particulate PCBs into the ECS and NWP totals 2333 kg during the spring, constituting ca. 17% of annual emission inventories of unintentionally produced PCB in China.

  4. Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Beddows, D.C.S.; Telle, H.H.

    2005-01-01

    In this paper we discuss the prospects of real-time, in situ laser-induced breakdown spectroscopy applied for the identification and classification of bio-aerosols (including species of potential bio-hazard) within common urban aerosol mixtures. In particular, we address the issues associated with the picking out of bio-aerosols against common background aerosol particles, comparing laser-induced breakdown spectroscopy measurements with data from a mobile single-particle aerosol mass spectrometer (ATOFMS). The data from the latter provide statistical data over an extended period of time, highlighting the variation of the background composition. While single-particle bio-aerosols are detectable in principle, potential problems with small (∼ 1 μm size) bio-aerosols have been identified; constituents of the air mass other than background aerosols, e.g. gaseous CO 2 in conjunction with common background aerosols, may prevent unique recognition of the bio-particles. We discuss whether it is likely that laser-induced breakdown spectroscopy on its own can provide reliable, real-time identification of bio-aerosol in an urban environment, and it is suggested that more than one technique should be or would have to be used. A case for using a combination of laser-induced breakdown spectroscopy and Raman (and/or) laser-induced fluorescence spectroscopy is made

  5. Exposure assessment of workplace manufacturing titanium dioxide particles

    International Nuclear Information System (INIS)

    Xu, Huadong; Zhao, Lin; Chen, Zhangjian; Zhou, Jingwen; Tang, Shichuan; Kong, Fanling; Li, Xinwei; Yan, Ling; Zhang, Ji; Jia, Guang

    2016-01-01

    With the widespread use of titanium dioxide (TiO 2 ) human exposure is inevitable, but the exposure data on TiO 2 are still limited. This study adopted off-line filter-based sampling combined with real-time activity-based monitoring to measure the concentrations in a workplace manufacturing TiO 2 (primary diameter: 194 ± 108 nm). Mass concentrations (MCs) of aerosol particles in the packaging workshop (total dust: 3.17 mg/m 3 , nano dust: 1.22 mg/m 3 ) were much higher than those in the milling workshop (total dust: 0.79 mg/m 3 , nano dust: 0.31 mg/m 3 ) and executive office (total dust: 0.44 mg/m 3 , nano dust: 0.19 mg/m 3 ). However, the MCs of TiO 2 were at a relatively low level in the packaging workshop (total TiO 2 : 46.4 μg/m 3 , nano TiO 2 : 16.7 μg/m 3 ) and milling workshop (total TiO 2 : 39.4 μg/m 3 , nano TiO 2 : 19.4 μg/m 3 ) by ICP-MS. The number concentration (NC), surface area concentration (SAC) of aerosol particles potentially deposited in alveolar (SAC A ), and tracheobronchial (SAC TB ) regions of lungs in the packaging workshop were (1.04 ± 0.89) × 10 5 particles/cm 3 , 414.49 ± 395.07, and 86.01 ± 83.18 μm 2 /cm 3 , respectively, which were all significantly higher than those of the milling workshop [(0.12 ± 0.40) × 10 5 particles/cm 3 , 75.38 ± 45.23, and 17.60 ± 9.22 μm 2 /cm 3 , respectively] as well as executive office and outdoor background (p < 0.05). Activity-related characteristics were found in both workshops, and the time-variant characteristics showed very similar trends for 3 days in the packaging workshop. Our study provides important data of TiO 2 particles exposure in the workplace.

  6. Sources and composition of submicron organic mass in marine aerosol particles

    Science.gov (United States)

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-01

    The sources and composition of atmospheric marine aerosol particles (aMA) have been investigated with a range of physical and chemical measurements from open-ocean research cruises. This study uses the characteristic functional group composition (from Fourier transform infrared spectroscopy) of aMA from five ocean regions to show the following: (i) The organic functional group composition of aMA that can be identified as mainly atmospheric primary marine (ocean derived) aerosol particles (aPMA) is 65 ± 12% hydroxyl, 21 ± 9% alkane, 6 ± 6% amine, and 7 ± 8% carboxylic acid functional groups. Contributions from photochemical reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. (ii) The organic composition of aPMA is nearly identical to model-generated primary marine aerosol particles from bubbled seawater (gPMA, which has 55 ± 14% hydroxyl, 32 ± 14% alkane, and 13 ± 3% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the gPMA remained nearly constant over a broad range of chlorophyll a concentrations, the gPMA alkane group fraction appeared to increase with chlorophyll a concentrations (r = 0.66). gPMA from productive seawater had a larger fraction of alkane functional groups (42 ± 9%) compared to gPMA from nonproductive seawater (22 ± 10%), perhaps due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of

  7. Distribution of lead in single atmospheric particles

    Science.gov (United States)

    Murphy, D. M.; Hudson, P. K.; Cziczo, D. J.; Gallavardin, S.; Froyd, K. D.; Johnston, M. V.; Middlebrook, A. M.; Reinard, M. S.; Thomson, D. S.; Thornberry, T.; Wexler, A. S.

    2007-06-01

    Three independent single particle mass spectrometers measured Pb in individual aerosol particles. These data provide unprecedented sensitivity and statistical significance for the measurement of Pb in single particles. This paper explores the reasons for the frequency of Pb in fine particles now that most gasoline is unleaded. Trace amounts of Pb were found in 5 to 25% of 250 to 3000 nm diameter particles sampled by both aircraft and surface instruments in the eastern and western United States. Over 5% of particles at a mountain site in Switzerland contained Pb. Particles smaller than 100 nm with high Pb content were also observed by an instrument that was only operated in urban areas. Lead was found on all types of particles, including Pb present on biomass burning particles from remote fires. Less common particles with high Pb contents contributed a majority of the total amount of Pb. Single particles with high Pb content often also contained alkali metals, Zn, Cu, Sn, As, and Sb. The association of Pb with Zn and other metals is also found in IMPROVE network filter data from surface sites. Sources of airborne Pb in the United States are reviewed for consistency with these data. The frequent appearance of trace Pb is consistent with widespread emissions of fine Pb particles from combustion sources followed by coagulation with larger particles during long-range transport. Industrial sources that directly emit Pb-rich particles also contribute to the observations. Clean regions of the western United States show some transport of Pb from Asia but most Pb over the United States comes from North American sources. Resuspension of Pb from soil contaminated by the years of leaded gasoline was not directly apparent.

  8. Distribution of lead in single atmospheric particles

    Directory of Open Access Journals (Sweden)

    D. M. Murphy

    2007-06-01

    Full Text Available Three independent single particle mass spectrometers measured Pb in individual aerosol particles. These data provide unprecedented sensitivity and statistical significance for the measurement of Pb in single particles. This paper explores the reasons for the frequency of Pb in fine particles now that most gasoline is unleaded. Trace amounts of Pb were found in 5 to 25% of 250 to 3000 nm diameter particles sampled by both aircraft and surface instruments in the eastern and western United States. Over 5% of particles at a mountain site in Switzerland contained Pb. Particles smaller than 100 nm with high Pb content were also observed by an instrument that was only operated in urban areas. Lead was found on all types of particles, including Pb present on biomass burning particles from remote fires. Less common particles with high Pb contents contributed a majority of the total amount of Pb. Single particles with high Pb content often also contained alkali metals, Zn, Cu, Sn, As, and Sb. The association of Pb with Zn and other metals is also found in IMPROVE network filter data from surface sites. Sources of airborne Pb in the United States are reviewed for consistency with these data. The frequent appearance of trace Pb is consistent with widespread emissions of fine Pb particles from combustion sources followed by coagulation with larger particles during long-range transport. Industrial sources that directly emit Pb-rich particles also contribute to the observations. Clean regions of the western United States show some transport of Pb from Asia but most Pb over the United States comes from North American sources. Resuspension of Pb from soil contaminated by the years of leaded gasoline was not directly apparent.

  9. Mechanism of 238U disintegration induced by relativistic particles

    International Nuclear Information System (INIS)

    Andronenko, L.N.; Zhdanov, A.A.; Kravtsov, A.V.; Solyakin, G.E.

    2002-01-01

    In heavy-nucleus disintegration induced by a relativistic projectile particle, the production of collinear massive fragments accompanied by numerous charged particles and neutrons is explained in terms of the mechanism of projectile-momentum compensation due to the emission of a particle whose mass is greater than the projectile mass

  10. Particle deposition and clearance of atmospheric particles in the human respiratory tract during LACE 98

    Science.gov (United States)

    Bundke, U.; Hänel, G.

    2003-04-01

    During the LACE 98footnote{Lindenberg Aerosol Characterization Experiment, (Germany) 1998} experiment microphysical, chemical and optical properties of atmospheric particles were measured by several groups. (Bundke et al.). The particle deposition and clearance of the particles in the human respiratory tract was calculated using the ICRP (International Commission on Radiological Protection) deposition and clearance model (ICRP 1994). Particle growth as function of relative humidity outside the body was calculated from measurement data using the model introduced by Bundke et al.. Particle growth inside the body was added using a non-equilibrium particle growth model. As a result of the calculations, time series of the total dry particle mass and -size distribution were obtained for all compartments of the human respiratory tract defined by ICRP 1994. The combined ICRP deposition and clearance model was initialized for different probationers like man, woman, children of different ages and several circumstances like light work, sitting, sleeping etc. Keeping the conditions observed during LACE 98 constant a approximation of the aerosol burdens of the different compartments was calculated up to 4 years of exposure and compared to the results from Snipes et al. for the "Phoenix" and "Philadelphia" aerosol. References: footnotesize{ Bundke, U. et al.,it{Aerosol Optical Properties during the Lindenberg Aerosol Characterization Experiment (LACE 98)} ,10.1029/2000JD000188, JGR, 2002 ICRP,it{Human Respiratory Tract Model for Radiological Protection, Bd. ICRP Publication 66}, Annals of the ICRP, 24,1-3, Elsevier Science, Ocford, 1994 Snipes et al. ,it{The 1994 ICRP66 Human Respiratory Tract Model as a Tool for predicting Lung Burdens from Exposure to Environmental Aerosols}, Appl. Occup. Environ. Hyg., 12, 547-553,1997}

  11. Classification of new particles

    International Nuclear Information System (INIS)

    Karl, G.

    1976-01-01

    A classification of the new particles is proposed. Hadrons are constructed from quarks corresponding to several different representations of an SU 3 color group, with confined color. The new family of resonances, related to psi/J, is assigned to color-antisextet quarks Q. These new quarks Q do not form mixed mesons q-barQ with old antiquarks but can form mixed baryons Qqq. We speculate on the relation between color and mass. High-mass recurrences of the psi/J family are expected to have associated large changes in the cross section for electron-positron annihilation (ΔR > 4). A conjectured mass formula, which relates the masses of psi/J and ω, predicts the masses of possible recurrences of the psi/J particle. Other experimental implications at presently available energies are discussed, especially the necessity for an isovector partner for psi/J, and for pseudoscalar mesons at 1.8--2.2 GeV, some of which can decay into two photons

  12. Experimental study of high spin states in low-medium mass nuclei by use of charge particle induced reactions

    International Nuclear Information System (INIS)

    Alenius, N.G.

    1975-01-01

    For the test of nuclear models the study of the properties of nuclear states of high angular momentum is especially important, because such states can often be given very simple theoretical descriptions. High spin states are easily populated by use of reactions initiated by alpha particles or heavy ions. In this thesis a number of low-medium mass nuclei have been studied, with emphasis on high spin states. (Auth.)

  13. The missing mass of the universe

    International Nuclear Information System (INIS)

    Lachieze-Rey, M.

    2002-01-01

    The existence of dark matter is suggested by 2 facts: 1) the real mass of matter inside galaxies must be 10 times greater than the observed mass to explain the values of the spinning velocity of galaxies around their centers. Furthermore the value of this velocity does not depend a lot on the distance to the center of the galaxy, this implies that the missing mass is uniformly distributed inside galaxies; 2) According to general relativity, massive celestial bodies produce a curvature of space-time that generates a deviation of light beams. These deviations have been studied and it appears that they require the presence of a far more important quantity of matter than the quantity reduced to visible matter. The missing mass issue arises 3 problems, the first problem comes from the existence of a great part of ordinary (baryonic) matter that is invisible: the global mass of stars represents only 10 % of the total baryonic mass of the universe. This invisible ordinary matter might exist in condensed form in black-hole, giant planets or brown dwarfs roaming the galaxies. The second problem arose when most scientists were convinced of the existence of huge quantity of non-baryonic matter, 10 times more abundant than the baryonic matter. The supersymmetric extension of the standard model allows the existence of particles that might be candidate for carrying this non-baryonic mass. The third problem appeared recently when measurement of the curvature of the space-time has shown that the 3 forms of matter: visible matter, invisible ordinary matter and non-baryonic matter contribute together to only one third of the total energy of the universe. (A.C.)

  14. Is the Field of Numbers a Real Physical Field? On the Frequent Distribution and Masses of the Elementary Particles

    Directory of Open Access Journals (Sweden)

    Belyakov A. V.

    2010-04-01

    Full Text Available Frequent distributions of the databases of the numerical values obtained by resolving algorithms, which describe physical and other processes, give a possibility for bonding the probability of that results the algorithms get. In the frequent distribution of the fractions of integers (rational numbers, local maxima which meet the ratios of masses of the elementary particles have been found.

  15. Single particle analysis of eastern Mediterranean aerosol particles: Influence of the source region on the chemical composition

    Science.gov (United States)

    Clemen, Hans-Christian; Schneider, Johannes; Köllner, Franziska; Klimach, Thomas; Pikridas, Michael; Stavroulas, Iasonas; Sciare, Jean; Borrmann, Stephan

    2017-04-01

    The Mediterranean region is one of the most climatically sensitive areas and is influenced by air masses of different origin. Aerosol particles are one important factor contributing to the Earth's radiative forcing, but knowledge about their composition and sources is still limited. Here, we report on results from the INUIT-BACCHUS-ACTRIS campaign, which was conducted at the Cyprus Atmospheric Observatory (CAO, Agia Marina Xyliatou) in Cyprus in April 2016. Our results show that the chemical composition of the aerosol particles in the eastern Mediterranean is strongly dependent on their source region. The composition of particles in a size range between 150 nm and 3 μm was measured using the Aircraft-based Laser ABlation Aerosol MAss spectrometer (ALABAMA), which is a single particle laser ablation instrument using a bipolar time-of-flight mass spectrometer. The mass spectral information on cations and anions allow for the analysis of different molecular fragments. The information about the source regions results from backward trajectories using HYSPLIT Trajectory Model (Trajectory Ensemble) on hourly basis. To assess the influence of certain source regions on the air masses arriving at CAO, we consider the number of trajectories that crossed the respective source region within defined time steps. For a more detailed picture also the height and the velocity of the air masses during their overpass above the source regions will be considered. During the campaign at CAO in April 2016 three main air mass source regions were observed: 1) Northern Central Europe, likely with an enhanced anthropogenic influence (e.g. sulfate and black carbon from combustion processes, fly ash particles from power plants, characterized by Sr and Ba), 2) Southwest Europe, with a higher influence of the Mediterranean Sea including sea salt particles (characterized by, e.g., NaxCly, NaClxNOy), 3) Northern Africa/Sahara, with air masses that are expected to have a higher load of mineral dust

  16. Absolute values of neutrino masses: status and prospects

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Giunti, C.; Grifols, J.A.; Masso, E.

    2003-01-01

    Compelling evidences in favor of neutrino masses and mixing obtained in the last years in Super-Kamiokande, SNO, KamLAND and other neutrino experiments made the physics of massive and mixed neutrinos a frontier field of research in particle physics and astrophysics. There are many open problems in this new field. In this review we consider the problem of the absolute values of neutrino masses, which apparently is the most difficult one from the experimental point of view. We discuss the present limits and the future prospects of β-decay neutrino mass measurements and neutrinoless double-β decay. We consider the important problem of the calculation of nuclear matrix elements of neutrinoless double-β decay and discuss the possibility to check the results of different model calculations of the nuclear matrix elements through their comparison with the experimental data. We discuss the upper bound of the total mass of neutrinos that was obtained recently from the data of the 2dF Galaxy Redshift Survey and other cosmological data and we discuss future prospects of the cosmological measurements of the total mass of neutrinos. We discuss also the possibility to obtain information on neutrino masses from the observation of the ultra high-energy cosmic rays (beyond the GZK cutoff). Finally, we review the main aspects of the physics of core-collapse supernovae, the limits on the absolute values of neutrino masses from the observation of SN1987A neutrinos and the future prospects of supernova neutrino detection

  17. Quantification of total hexose on dry blood spot by tandem mass spectrometry.

    Science.gov (United States)

    Gong, Zhenhua; Tian, Guoli; Huang, Qiwei; Wang, Yanmin; Ge, Qingwei

    2012-12-01

    Because hypoglycemia and hyperglycemia are harmful and not always associated with overt clinical signs, it is necessary to have methods available to screen for glucose levels to detect hypoglycemia and diabetes as early as possible. A new method for such screening and the clinical determination of blood total hexose on a dry blood spot (DBS) using tandem mass spectrometry (MS/MS) was developed. The serum glucose controls and blood were prepared as DBS and then extracted into a methanol solution containing isotope-labeled internal standards. The methanolic extraction was subjected to HPLC, followed by MS/MS in positive ion mode. Multiple-reaction monitoring of m/z 203.1→23 was used to detect hexose, and m/z 209.0→23 was used for 13C6-D-glucose. The recoveries of blood glucose by MS/MS were 90%-102% with an R(2) value of 0.999 after linear regression (pblood total hexose in neonates aged 3-7 days (6.41±1.46 mmol/L) was lower than that in neonates aged 8-30 days (6.66±1.38 mmol/L), and it was lower in neonates than in children aged 1-72 months (7.19±1.87 mmol/L). Quantification of total hexose on a dry blood spot by MS/MS is accurate, reliable and feasible for screening and clinical tests. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  18. Positive, Neutral, and Negative Mass-Charges in General Relativity

    Directory of Open Access Journals (Sweden)

    Borissova L.

    2006-07-01

    Full Text Available As shown, any four-dimensional proper vector has two observable projections onto time line, attributed to our world and the mirror world (for a mass-bearing particle, the projections posses are attributed to positive and negative mass-charges. As predicted, there should be a class of neutrally mass-charged particles that inhabit neither our world nor the mirror world. Inside the space-time area (membrane the space rotates at the light speed, and all particles move at as well the light speed. So, the predicted particles of the neutrally mass-charged class should seem as light-like vortices.

  19. Deriving mass-energy equivalence and mass-velocity relation without light

    Science.gov (United States)

    Dai, Youshan; Dai, Liang

    2018-04-01

    Relativity requires that a particle's momentum and energy are the same functions of the particle's velocity in all inertial frames. Using the fact that momentum and energy must transform linearly between reference frames, we present a novel derivation of the mass-energy equivalence, namely, the relation that the energy is proportional to the moving mass, with no postulate about the existence of light or its properties. We further prove the mass-velocity relation without relying on momentum and energy conservation or on the Lorentz transformation. It is demonstrated that neither conservation laws nor the Lorentz transformation are necessary to establish those relations, and that those relations have a wider scope of validity than that of the conservation laws and the invariance of the speed of light.

  20. Efficiency of cloud condensation nuclei formation from ultrafine particles

    Directory of Open Access Journals (Sweden)

    J. R. Pierce

    2007-01-01

    Full Text Available Atmospheric cloud condensation nuclei (CCN concentrations are a key uncertainty in the assessment of the effect of anthropogenic aerosol on clouds and climate. The ability of new ultrafine particles to grow to become CCN varies throughout the atmosphere and must be understood in order to understand CCN formation. We have developed the Probability of Ultrafine particle Growth (PUG model to answer questions regarding which growth and sink mechanisms control this growth, how the growth varies between different parts of the atmosphere and how uncertainties with respect to the magnitude and size distribution of ultrafine emissions translates into uncertainty in CCN generation. The inputs to the PUG model are the concentrations of condensable gases, the size distribution of ambient aerosol, particle deposition timescales and physical properties of the particles and condensable gases. It was found in most cases that condensation is the dominant growth mechanism and coagulation with larger particles is the dominant sink mechanism for ultrafine particles. In this work we found that the probability of a new ultrafine particle generating a CCN varies from <0.1% to ~90% in different parts of the atmosphere, though in the boundary layer a large fraction of ultrafine particles have a probability between 1% and 40%. Some regions, such as the tropical free troposphere, are areas with high probabilities; however, variability within regions makes it difficult to predict which regions of the atmosphere are most efficient for generating CCN from ultrafine particles. For a given mass of primary ultrafine aerosol, an uncertainty of a factor of two in the modal diameter can lead to an uncertainty in the number of CCN generated as high as a factor for eight. It was found that no single moment of the primary aerosol size distribution, such as total mass or number, is a robust predictor of the number of CCN ultimately generated. Therefore, a complete description of the