WorldWideScience

Sample records for total ozone amounts

  1. Derivation of total ozone amounts over Japan from NOAA/TOVS data

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S; Taguchi, M; Okano, S; Fukunishi, H [Tohoku University, Sendai (Japan). Upper Atmosphere and Space Research Laboratory; Kawamura, H [Tohoku Univ., Sendai (Japan). Center for Atmospheric and Oceanic Studies

    1992-10-25

    A new method for the derivation of the horizontal distribution of total ozone amounts from the brightness temperature data obtained by the HIRS/2 sensor on board the NOAA satelites was developed. This method is based on the regression method considering a transmittance of the ozone layer, and also includes the second-order terms of the brightness temperatures and the transmittance of ozone layer into the regression calculation. The total ozone data obtained by TOMS were used as the true values in determinating the regression coefficients. The transmittance for the slantwise-looking condition was converted into that for the nadir-looking condition using the angle correction method. Subsequently, the angle correction was also made for the brightness temperature using the corrected transmittance. Horizontal distributions of total ozone amounts were derived by this method with around 4% of accuracy for the wide latitudinal region from 15[degree] to 60[degree], including Japan where total ozone varies largely with latitude. It was demonstrated that inclusion of the second-order terms into the regression improves the accuracy of retrieval, especially in the low-latitude regions. 15 refs., 5 figs., 1 tab.

  2. Estonian total ozone climatology

    Directory of Open Access Journals (Sweden)

    K. Eerme

    Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology

  3. Determination of total ozone from DMSP multichannel filter radiometer measurements

    International Nuclear Information System (INIS)

    Luther, F.M.; Weichel, R.L.

    1992-01-01

    The multichannel filter radiometer (MFR) infrared sensor was first flown in 1977 on a Defense Meteorological Satellite Program (DMSP) Block 5D series satellite operated by the US Air Force. The first four satellites in this series carried MFR sensors from which total atmospheric column ozone amounts may be derived. The MFR sensor was the first cross-track scanning sensor capable of measuring ozone. MFR sensor infrared measurements are taken day and night. The satellites are in polar sun-synchronous orbits providing daily global coverage. The series of four sensors spans a data period of nearly three years. The MFR sensor measures infrared radiances for 16 channels. Total ozone amounts are determined from sets of radiance measurements using an empirical relationship that is developed using linear regression analysis. Total ozone is modeled as a linear combination of terms involving functions of the MFR radiances for four channels (1, 3, 7 and 16) and the secant of the zenith angle. The MFR scans side to side in discrete steps of 40. The MFR sensor takes infrared radiance measurements at 25 cross-track scanning locations every 32 seconds. The instrument could take a theoretical maximum of 67,500 measurements per day, although typically 35,000 - 45,000 measurements are taken per day

  4. Defense meteorological satellite measurements of total ozone

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.; Luther, F.M.; Sullivan, R.J.; Weichel, R.L.

    1992-01-01

    A multichannel filter radiometer (MFR) on Defense Meteorological Satellites (DMS) that measured total ozone on a global-scale from March 1977 - February 1980 is described. The total ozone data measured by the MFR were compared with total ozone data taken by surfaced-based Dobson spectrophotometers. When comparisons were made for five months, the Dobson spectrophotometer measured 2-5% more total ozone than the MFR. Comparisons between the Dobson spectrophotometer and the MFR showed a reduced RMS difference as the comparisons were made at closer proximity. A Northern Hemisphere total ozone distribution obtained from MFR data is presented

  5. Tropospheric Ozone Pollution from Space: New Views from the TOMS (Total Ozone Mapping Spectrometer) Instrument

    Science.gov (United States)

    Thompson, Anne M.; Hudson, Robert D.; Frolov, Alexander D.; Witte, Jacquelyn C.; Kucsera, Tom L.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    New products from the TOMS (Total Ozone Mapping Spectrometer) >satellite instrument can resolve pollution events in tropical and mid-latitudes, Over the past several years, we have developed tropospheric ozone data sets by two methods. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMSdirect method [Hudson et at., 2000] represents a new algorithm that uses TOMS radiances to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution, Absorbing aerosols (dust and smoke; Herman et at., 1997 Hsu et al., 1999), a standard TOMS product, provide transport and/or source marker information to interpret tropospheric ozone. For the Nimbus 7/TOMS observing period (1979-1992), modified-residual TTO (tropical tropospheric ozone) appears as two maps/month at I-degree latitude 2-degree longitude resolution at a homepage and digital data are available (20S to 20N) by ftp at http://metosrv2. umd.edu/tropo/ 14y_data.d. Preliminary modified-residual TTO data from the operational Earth-Probe/TOMS (1996- present) are posted in near-real-time at the same website. Analyses with the new tropospheric ozone and aerosol data are illustrated by the following (I)Signals in tropical tropospheric ozone column and smoke amount during ENSO (El Nino-Southern Oscillation) events, e.g. 1982-1983 and the intense ENSO induced biomass fires of 1997-1998 over the Indonesian region [Thompson et a[, 2000a, Thompson and Hudson, 1999]. (2) Trends in tropospheric ozone and smoke aerosols in various tropical regions (Atlantic, Pacific, Africa, Brazil). No significant trends were found for ozone from1980-1990 [Thompson and Hudson, 19991 although smoke aerosols increased during the period [Hsu et al.,1999]. (3) Temporal and spatial offsets

  6. The total ozone and UV solar radiation over Stara Zagora, Bulgaria

    Science.gov (United States)

    Mendeva, B. D.; Gogosheva, Ts. N.; Petkov, B. H.; Krastev, D. G.

    The results from direct ground-based solar UV irradiance measurements and the total ozone content (TOC) over Stara Zagora (42° 25'N, 25° 37'E), Bulgaria are presented. During the period 1999-2003 the TOC data show seasonal variations, typical for the middle latitudes - maximum in the spring and minimum in the autumn. The comparison between TOC ground-based data and Global Ozone Monitoring Experiment (GOME) satellite-borne ones shows a seasonal dependence of the differences between them. A strong negative relationship between the total ozone and the 305 nm wavelength irradiance was found. The dependence between the two variables is significant ( r = -0.62 ± 0.18) at 98% confidence level. The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained. The estimation of the radiation amplification factor RAF shows that the ozone reduction by 1% increases the erythemal dose by 2.3%. The eye-damaging doses are more influenced by the TOC changes and in this case RAF = -2.7%. The amount of these biological doses depended on the solar altitude over the horizon. This dependence was not so strong when the total ozone content in the atmosphere was lower.

  7. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record

    Science.gov (United States)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.

    2014-01-01

    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  8. Multi sensor reanalysis of total ozone

    Directory of Open Access Journals (Sweden)

    R. J. van der A

    2010-11-01

    Full Text Available A single coherent total ozone dataset, called the Multi Sensor Reanalysis (MSR, has been created from all available ozone column data measured by polar orbiting satellites in the near-ultraviolet Huggins band in the last thirty years. Fourteen total ozone satellite retrieval datasets from the instruments TOMS (on the satellites Nimbus-7 and Earth Probe, SBUV (Nimbus-7, NOAA-9, NOAA-11 and NOAA-16, GOME (ERS-2, SCIAMACHY (Envisat, OMI (EOS-Aura, and GOME-2 (Metop-A have been used in the MSR. As first step a bias correction scheme is applied to all satellite observations, based on independent ground-based total ozone data from the World Ozone and Ultraviolet Data Center. The correction is a function of solar zenith angle, viewing angle, time (trend, and effective ozone temperature. As second step data assimilation was applied to create a global dataset of total ozone analyses. The data assimilation method is a sub-optimal implementation of the Kalman filter technique, and is based on a chemical transport model driven by ECMWF meteorological fields. The chemical transport model provides a detailed description of (stratospheric transport and uses parameterisations for gas-phase and ozone hole chemistry. The MSR dataset results from a 30-year data assimilation run with the 14 corrected satellite datasets as input, and is available on a grid of 1× 1 1/2° with a sample frequency of 6 h for the complete time period (1978–2008. The Observation-minus-Analysis (OmA statistics show that the bias of the MSR analyses is less than 1% with an RMS standard deviation of about 2% as compared to the corrected satellite observations used.

  9. Total ozone changes in the 1987 Antarctic ozone hole

    Science.gov (United States)

    Krueger, Arlin J.; Schoeberl, Mark R.; Doiron, Scott D.; Sechrist, Frank; Galimore, Reginald

    1988-01-01

    The development of the Antarctic ozone minimum was observed in 1987 with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument. In the first half of August the near-polar (60 and 70 deg S) ozone levels were similar to those of recent years. By September, however, the ozone at 70 and 80 deg S was clearly lower than any previous year including 1985, the prior record low year. The levels continued to decrease throughout September until October 5 when a new record low of 109 DU was established at a point near the South Pole. This value is 29 DU less than the lowest observed in 1985 and 48 DU less than the 1986 low. The zonal mean total ozone at 60 deg S remained constant throughout the time of ozone hole formation. The ozone decline was punctuated by local minima formed away from the polar night boundary at about 75 deg S. The first of these, on August 15 to 17, formed just east of the Palmer Peninsula and appears to be a mountain wave. The second major minimum formed on September 5 to 7 again downwind of the Palmer Peninsula. This event was larger in scale than the August minimum and initiated the decline of ozone across the polar region. The 1987 ozone hole was nearly circular and pole centered for its entire life. In previous years the hole was perturbed by intrusions of the circumpolar maximum into the polar regions, thus causing the hole to be elliptical. The 1987 hole also remained in place until the end of November, a few days longer than in 1985, and this persistence resulted in the latest time for recovery to normal values yet observed.

  10. Total ozone measurement: Intercomparison of prototype New Zealand filter instrument and Dobson spectrophotometer

    Science.gov (United States)

    Basher, R. E.

    1978-01-01

    A five month intercomparison showed that the total ozone amounts of a prototype narrowband interference filter instrument were 7% less than those of a Dobson instrument for an ozone range of 0.300 to 0.500 atm cm and for airmasses less than two. The 7% bias was within the intercomparison calibration uncertainty. An airmass dependence in the Dobson instrument made the bias relationship airmass-dependent but the filter instrument's ozone values were generally constant to 2% up to an airmass of four. Long term drift in the bias was negligible.

  11. 1979-1999 satellite total ozone column measurements over West Africa

    Directory of Open Access Journals (Sweden)

    P. Di Carlo

    2000-06-01

    Full Text Available Total Ozone Mapping Spectrometer (TOMS instruments have been flown on NASA/GSFC satellites for over 20 years. They provide near real-time ozone data for Atmospheric Science Research. As part of preliminary efforts aimed to develop a Lidar station in Nigeria for monitoring the atmospheric ozone and aerosol levels, the monthly mean TOMS total column ozone measurements between 1979 to 1999 have been analysed. The trends of the total column ozone showed a spatial and temporal variation with signs of the Quasi Biennial Oscillation (QBO during the 20-year study period. The values of the TOMS total ozone column, over Nigeria (4-14°N is within the range of 230-280 Dobson Units, this is consistent with total ozone column data, measured since April 1993 with a Dobson Spectrophotometer at Lagos (3°21¢E, 6°33¢N, Nigeria.

  12. On the link between martian total ozone and potential vorticity

    Science.gov (United States)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.

    2017-01-01

    We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable. The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone of the northern polar vortex can potentially be used to determine the origin of potential vorticity filaments.

  13. Highlights of TOMS Version 9 Total Ozone Algorithm

    Science.gov (United States)

    Bhartia, Pawan; Haffner, David

    2012-01-01

    The fundamental basis of TOMS total ozone algorithm was developed some 45 years ago by Dave and Mateer. It was designed to estimate total ozone from satellite measurements of the backscattered UV radiances at few discrete wavelengths in the Huggins ozone absorption band (310-340 nm). Over the years, as the need for higher accuracy in measuring total ozone from space has increased, several improvements to the basic algorithms have been made. They include: better correction for the effects of aerosols and clouds, an improved method to account for the variation in shape of ozone profiles with season, latitude, and total ozone, and a multi-wavelength correction for remaining profile shape errors. These improvements have made it possible to retrieve total ozone with just 3 spectral channels of moderate spectral resolution (approx. 1 nm) with accuracy comparable to state-of-the-art spectral fitting algorithms like DOAS that require high spectral resolution measurements at large number of wavelengths. One of the deficiencies of the TOMS algorithm has been that it doesn't provide an error estimate. This is a particular problem in high latitudes when the profile shape errors become significant and vary with latitude, season, total ozone, and instrument viewing geometry. The primary objective of the TOMS V9 algorithm is to account for these effects in estimating the error bars. This is done by a straightforward implementation of the Rodgers optimum estimation method using a priori ozone profiles and their error covariances matrices constructed using Aura MLS and ozonesonde data. The algorithm produces a vertical ozone profile that contains 1-2.5 pieces of information (degrees of freedom of signal) depending upon solar zenith angle (SZA). The profile is integrated to obtain the total column. We provide information that shows the altitude range in which the profile is best determined by the measurements. One can use this information in data assimilation and analysis. A side

  14. Total ozone retrieval from satellite multichannel filter radiometer measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Sullivan, T.J.; Weichel, R.L.; Ellis, J.S.; Huebel, J.G.; Korver, J.; Weidhaas, P.P.; Phelps, F.A.

    1978-01-01

    A total ozone retrieval model has been developed to process radiance data gathered by a satellite-mounted multichannel filter radiometer (MFR). Extensive effort went into theoretical radiative transfer modeling, a retrieval scheme was developed, and the technique was applied to the MFR radiance measurements. The high quality of the total ozone retrieval results was determined through comparisons with Dobson measurements. Included in the report are global total ozone maps for 20 days between May 12 and July 5, 1977. A comparison of MFR results for 13 days in June 1977 with Dobson spectrophotometer measurements of ozone for the same period showed good agreement: there was a root-mean-square difference of 6.2% (equivalent to 20.2 m.atm.cm). The estimated global total ozone value for June 1977 (296 m.atm.cm) was in good agreement with satellite backscatter ultraviolet data for June 1970 (304 m.atm.cm) and June 1971

  15. Northern hemisphere total ozone values from 1989-1993 determined with the NOAA-11 Solar Backscatter Ultraviolet (SBUV/2) instrument

    Science.gov (United States)

    Planet, W. G.; Lienesch, J. H.; Miller, A. J.; Nagatani, R.; Mcpeters, R. D.; Hilsenrath, E.; Cebula, R. P.; Deland, M. T.; Wellemeyer, C. G.; Horvath, K.

    1994-01-01

    Determinations of global total ozone amounts have been made from recently reprocessed measurements with the SBUV/2 on the NOAA-11 environmental satellite since January 1989. This data set employs a new algorithm and an updated calibration. Comparisons with total ozone amounts derived from a significant subset of the global network of Dobson spectrophotometers shows a 0.3% bias between the satellite and ground measurements for the period January 1989-May 1993. Comparisons with the data from individual stations exhibit differing degrees of agreement which could be due to the matchup procedures and also to the uncertainties in the Dobson data. The SBUV/2 data set discussed here traces the Northern Hemisphere total ozone from 1989 to the present, showing a marked decrease from the average of those years starting in the summer of 1992 and continuing into 1993, with an apparent returning to more normal levels in late 1993.

  16. The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations

    Science.gov (United States)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    The National Aeronautics and Space Administration Short-term Prediction Research and Transition Center (NASA SPoRT) has transitioned a total column ozone product from the Atmospheric Infrared Sounder (AIRS) retrievals to the Weather Prediction Center and Ocean Prediction Center. The total column ozone product is used to diagnose regions of warm, dry, ozone-rich, stratospheric air capable of descending to the surface to create high-impact non-convective winds. Over the past year, forecasters have analyzed the Red, Green, Blue (RGB) Air Mass imagery in conjunction with the AIRS total column ozone to aid high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. During the summer of 2013, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air. This paper describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the RGB Air Mass product to access the utility and transition of the products.

  17. Dobson spectrophotometer ozone measurements during international ozone rocketsonde intercomparison

    Science.gov (United States)

    Parsons, C. L.

    1980-01-01

    Measurements of the total ozone content of the atmosphere, made with seven ground based instruments at a site near Wallops Island, Virginia, are discussed in terms for serving as control values with which the rocketborne sensor data products can be compared. These products are profiles of O3 concentration with altitude. By integrating over the range of altitudes from the surface to the rocket apogee and by appropriately estimating the residual ozone amount from apogee to the top of the atmosphere, a total ozone amount can be computed from the profiles that can be directly compared with the ground based instrumentation results. Dobson spectrophotometers were used for two of the ground-based instruments. Preliminary data collected during the IORI from Dobson spectrophotometers 72 and 38 are presented. The agreement between the two and the variability of total ozone overburden through the experiment period are discussed.

  18. Solar Backscatter UV (SBUV total ozone and profile algorithm

    Directory of Open Access Journals (Sweden)

    P. K. Bhartia

    2013-10-01

    Full Text Available We describe the algorithm that has been applied to develop a 42 yr record of total ozone and ozone profiles from eight Solar Backscatter UV (SBUV instruments launched on NASA and NOAA satellites since April 1970. The Version 8 (V8 algorithm was released more than a decade ago and has been in use since then at NOAA to produce their operational ozone products. The current algorithm (V8.6 is basically the same as V8, except for updates to instrument calibration, incorporation of new ozone absorption cross-sections, and new ozone and cloud height climatologies. Since the V8 algorithm has been optimized for deriving monthly zonal mean (MZM anomalies for ozone assessment and model comparisons, our emphasis in this paper is primarily on characterizing the sources of errors that are relevant for such studies. When data are analyzed this way the effect of some errors, such as vertical smoothing of short-term variability, and noise due to clouds and aerosols diminish in importance, while the importance of others, such as errors due to vertical smoothing of the quasi-biennial oscillation (QBO and other periodic and aperiodic variations, become more important. With V8.6 zonal mean data we now provide smoothing kernels that can be used to compare anomalies in SBUV profile and partial ozone columns with models. In this paper we show how to use these kernels to compare SBUV data with Microwave Limb Sounder (MLS ozone profiles. These kernels are particularly useful for comparisons in the lower stratosphere where SBUV profiles have poor vertical resolution but partial column ozone values have high accuracy. We also provide our best estimate of the smoothing errors associated with SBUV MZM profiles. Since smoothing errors are the largest source of uncertainty in these profiles, they can be treated as error bars in deriving interannual variability and trends using SBUV data and for comparing with other measurements. In the V8 and V8.6 algorithms we derive total

  19. The DMSP/MFR total ozone and radiance data base

    International Nuclear Information System (INIS)

    Ellis, J.S.; Lovill, J.E.; Luther, F.M.; Sullivan, T.J.; Taylor, S.S.; Weichel, R.L.

    1992-01-01

    The radiance measurements by the multichannel filter radiometer (MFR), a scanning instrument carried on the Defense Meteorological Satellite Program (DMSP) Block 5D series of satellites (flight models F1, F2, F3 and F4), were used to calculate the total column ozone globally for the period March 1977 through February 1980. These data were then calibrated and mapped to earth coordinates at LLNL. Total column ozone was derived from these calibrated radiance data and placed both the ozone and calibrated radiance data into a computer data base called SOAC (Satellite Ozone Analysis Center) using the FRAMIS database manager. The uncalibrated radiance data tapes were initially sent on to the National Climate Center, Asheville, North Carolina and then to the Satellite Data Services Branch /EDS/NOAA in Suitland, Maryland where they were archived. Copies of the data base containing the total ozone and the calibrated radiance data reside both at LLNL and at the National Space Science Data Center, NASA Goddard Space Flight Center, Greenbelt, Maryland. This report describes the entries into the data base in sufficient detail so that the data base might be useful to others. The characteristics of the MFR sensor are briefly discussed and a complete index to the data base tapes is given

  20. Influence of turbidity and clouds on satellite total ozone data over Madrid (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, J.L. [Agencia Estatal de Meteorologia (AEMET), Madrid (Spain); Anton, M. [Granada Univ. (Spain). Dept. de Fisica Aplicada; Loyola, D. [German Aerospace Center (DLR), Wessling (DE). Remote Sensing Technology Inst. (IMF); Hernandez, E. [Madrid Univ. Complutense (Spain). Dept. Fisica de la Tierra II

    2010-07-01

    This article focuses on the comparison of the total ozone column data from three satellite instruments; Total Ozone Mapping Spectrometers (TOMS) on board the Earth Probe (EP), Ozone Monitoring Instrument (OMI) on board AURA and Global Ozone Monitoring Experiment (GOME) on board ERS/2, with ground-based measurement recorded by a well calibrated Brewer spectrophotometer located in Madrid during the period 1996-2008. A cluster classification based on solar radiation (global, direct and diffuse), cloudiness and aerosol index allow selecting hazy, cloudy, very cloudy and clear days. Thus, the differences between Brewer and satellite total ozone data for each cluster have been analyzed. The accuracy of EP-TOMS total ozone data is affected by moderate cloudiness, showing a mean absolute bias error (MABE) of 2.0%. In addition, the turbidity also has a significant influence on EP-TOMS total ozone data with a MABE {proportional_to}1.6%. Those data are in contrast with clear days with MABE {proportional_to}1.2%. The total ozone data derived from the OMI instrument show clear bias at clear and hazy days with small uncertainties ({proportional_to}0.8%). Finally, the total ozone observations obtained with the GOME instrument show a very smooth dependence with respect to clouds and turbidity, showing a robust retrieval algorithm over these conditions. (orig.)

  1. Error analysis of Dobson spectrophotometer measurements of the total ozone content

    Science.gov (United States)

    Holland, A. C.; Thomas, R. W. L.

    1975-01-01

    A study of techniques for measuring atmospheric ozone is reported. This study represents the second phase of a program designed to improve techniques for the measurement of atmospheric ozone. This phase of the program studied the sensitivity of Dobson direct sun measurements and the ozone amounts inferred from those measurements to variation in the atmospheric temperature profile. The study used the plane - parallel Monte-Carlo model developed and tested under the initial phase of this program, and a series of standard model atmospheres.

  2. Spatial regression analysis on 32 years of total column ozone data

    NARCIS (Netherlands)

    Knibbe, J.S.; van der A, J.R.; de Laat, A.T.J.

    2014-01-01

    Multiple-regression analyses have been performed on 32 years of total ozone column data that was spatially gridded with a 1 × 1.5° resolution. The total ozone data consist of the MSR (Multi Sensor Reanalysis; 1979-2008) and 2 years of assimilated SCIAMACHY (SCanning Imaging Absorption spectroMeter

  3. Extreme events in total ozone: Spatio-temporal analysis from local to global scale

    Science.gov (United States)

    Rieder, Harald E.; Staehelin, Johannes; Maeder, Jörg A.; Ribatet, Mathieu; di Rocco, Stefania; Jancso, Leonhardt M.; Peter, Thomas; Davison, Anthony C.

    2010-05-01

    Recently tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007) have been applied for the first time in the field of stratospheric ozone research, as statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not address the internal data structure concerning extremes adequately (Rieder et al., 2010a,b). A case study the world's longest total ozone record (Arosa, Switzerland - for details see Staehelin et al., 1998a,b) illustrates that tools based on extreme value theory are appropriate to identify ozone extremes and to describe the tails of the total ozone record. Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (e.g. Gunung Agung, El Chichón, Mt. Pinatubo). Furthermore, atmospheric loading in ozone depleting substances led to a continuous modification of column ozone in the northern hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions). It is shown that application of extreme value theory allows the identification of many more such fingerprints than conventional time series analysis of annual and seasonal mean values. Especially, the extremal analysis shows the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone (Rieder et al., 2010b). Overall the extremes concept provides new information on time series properties, variability, trends and the influence of dynamics and chemistry, complementing earlier analyses focusing only on monthly (or annual) mean values. Findings described above could be proven also for the total ozone records of 5 other long-term series (Belsk, Hohenpeissenberg, Hradec Kralove, Potsdam, Uccle) showing that strong influence of atmospheric

  4. Extreme events in total ozone over Arosa – Part 1: Application of extreme value theory

    Directory of Open Access Journals (Sweden)

    H. E. Rieder

    2010-10-01

    Full Text Available In this study ideas from extreme value theory are for the first time applied in the field of stratospheric ozone research, because statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values of total ozone data do not adequately address the structure of the extremes. We show that statistical extreme value methods are appropriate to identify ozone extremes and to describe the tails of the Arosa (Switzerland total ozone time series. In order to accommodate the seasonal cycle in total ozone, a daily moving threshold was determined and used, with tools from extreme value theory, to analyse the frequency of days with extreme low (termed ELOs and high (termed EHOs total ozone at Arosa. The analysis shows that the Generalized Pareto Distribution (GPD provides an appropriate model for the frequency distribution of total ozone above or below a mathematically well-defined threshold, thus providing a statistical description of ELOs and EHOs. The results show an increase in ELOs and a decrease in EHOs during the last decades. The fitted model represents the tails of the total ozone data set with high accuracy over the entire range (including absolute monthly minima and maxima, and enables a precise computation of the frequency distribution of ozone mini-holes (using constant thresholds. Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight into the time series properties. Fingerprints of dynamical (e.g. ENSO, NAO and chemical features (e.g. strong polar vortex ozone loss, and major volcanic eruptions, can be identified in the observed frequency of extreme events throughout the time series. Overall the new approach to analysis of extremes provides more information on time series properties and variability than previous approaches that use only monthly averages and/or mini-holes and mini-highs.

  5. Relationship between surface, free tropospheric and total column ozone in 2 contrasting areas in South-Africa

    CSIR Research Space (South Africa)

    Combrink, J

    1995-04-01

    Full Text Available Measurements of surface ozone in two contrasting areas of South Africa are compared with free tropospheric and Total Ozone Mapping Spectrometer (TOMS) total column ozone data. Cape Point is representative of a background monitoring station which...

  6. Global distribution of total ozone and lower stratospheric temperature variations

    Directory of Open Access Journals (Sweden)

    W. Steinbrecht

    2003-01-01

    Full Text Available This study gives an overview of interannual variations of total ozone and 50 hPa temperature. It is based on newer and longer records from the 1979 to 2001 Total Ozone Monitoring Spectrometer (TOMS and Solar Backscatter Ultraviolet (SBUV instruments, and on US National Center for Environmental Prediction (NCEP reanalyses. Multiple linear least squares regression is used to attribute variations to various natural and anthropogenic explanatory variables. Usually, maps of total ozone and 50 hPa temperature variations look very similar, reflecting a very close coupling between the two. As a rule of thumb, a 10 Dobson Unit (DU change in total ozone corresponds to a 1 K change of 50 hPa temperature. Large variations come from the linear trend term, up to -30 DU or -1.5 K/decade, from terms related to polar vortex strength, up to 50 DU or 5 K (typical, minimum to maximum, from tropospheric meteorology, up to 30 DU or 3 K, or from the Quasi-Biennial Oscillation (QBO, up to 25 DU or 2.5 K. The 11-year solar cycle, up to 25 DU or 2.5 K, or El Niño/Southern Oscillation (ENSO, up to 10 DU or 1 K, are contributing smaller variations. Stratospheric aerosol after the 1991 Pinatubo eruption lead to warming up to 3 K at low latitudes and to ozone depletion up to 40 DU at high latitudes. Variations attributed to QBO, polar vortex strength, and to a lesser degree to ENSO, exhibit an inverse correlation between low latitudes and higher latitudes. Variations related to the solar cycle or 400 hPa temperature, however, have the same sign over most of the globe. Variations are usually zonally symmetric at low and mid-latitudes, but asymmetric at high latitudes. There, position and strength of the stratospheric anti-cyclones over the Aleutians and south of Australia appear to vary with the phases of solar cycle, QBO or ENSO.

  7. Eight years of stratospheric ozone observations at Marambio, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Damski, J; Taalas, P [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research

    1996-12-31

    In this work behaviour of the stratospheric ozone using the total ozone and ozone sounding measurements from Marambio (64 deg 14`S, 56 deg 37`W) at Antarctic Peninsula has been studied. The effects of depleted stratospheric ozone to the UV-B-radiation are investigated employing a radiative transfer model, and the Marambio total ozone measurements. The levels of UV-B radiation have been studied from the point of the erythemal UV-B-doses on the horizontal human epidermis. The low values of total ozone at Marambio are also reflected to the received UV-doses which have increased roughly 20-80% (compared to long term average) during austral spring and summer. In respective to the total amount of ozone, the model calculations show that during October the UV-B-doses can be at the same level they should be during normal summer

  8. Eight years of stratospheric ozone observations at Marambio, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Damski, J.; Taalas, P. [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research

    1995-12-31

    In this work behaviour of the stratospheric ozone using the total ozone and ozone sounding measurements from Marambio (64 deg 14`S, 56 deg 37`W) at Antarctic Peninsula has been studied. The effects of depleted stratospheric ozone to the UV-B-radiation are investigated employing a radiative transfer model, and the Marambio total ozone measurements. The levels of UV-B radiation have been studied from the point of the erythemal UV-B-doses on the horizontal human epidermis. The low values of total ozone at Marambio are also reflected to the received UV-doses which have increased roughly 20-80% (compared to long term average) during austral spring and summer. In respective to the total amount of ozone, the model calculations show that during October the UV-B-doses can be at the same level they should be during normal summer

  9. Intercomparison of preliminary MFR, SBUV, TOMS, and TOVS total ozone data

    International Nuclear Information System (INIS)

    Luther, F.M.

    1992-01-01

    The High Altitude Pollution Program of the Federal Aviation Administration is sponsoring a comparative study of total ozone data derived from various satellite instruments. The instruments included in the study are the Defense Meteorological Satellite Program's Multichannel Filter Radiometer (MFR), the NASA Solar Backscatter Ultraviolet Ozone Experiment (SBUV), the NASA Total Ozone Mapping Spectrometer (TOMS), and the NOAA Tiros Operational Vertical Sounder (TOVS). The two periods chosen for data intercomparison are January 1 - February 15, 1979 and June 1-30, 1979. These two data periods cover summer and winter regimes in both hemispheres. The January 1 - February 15, 1979 period includes a significant stratospheric warming event that began about January 15. Each of the satellite instruments has its own strengths and weaknesses. No instrument is universally better than or worse than any other in terms of accuracy, although they appear to have definite biases in certain geographical areas. The differences between the satellite systems is greatest at high latitudes where cloudiness and ozone variabilities are greatest. The Dobson data show a bias and differing degrees of ozone variability between nearby Dobson stations, which indicates there may be problems with using the Dobson data as a standard for comparison. The data used in this comparative study are preliminary in nature

  10. Demonstration of AIRS Total Ozone Products to Operations to Enhance User Readiness

    Science.gov (United States)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive

  11. Total Ozone Data From a European Network 1951-1957

    Science.gov (United States)

    Brönnimann, S.; Brönnimann, S.; Farmer, S.

    2001-12-01

    Soon after its foundation in 1948, the International Ozone Commission (IOC) established a total ozone network in Europe, together with the Gassiot Committee of the Royal Socitey, UNESCO, the London Meteorological Office and national services. The network was built-up in 1950 with Dobson spectrophotometers equipped with photomultipliers, which were calibrated in Oxford before shipping to the stations. In 1957, some of the stations became part of the network of the IGY, and these data can be found today at the WOUDC. The earlier data were compiled and archived in Oxford by the secretary of the IOC, Charles Normand, but have never been published and only rarely appeared in the scientific literature [Normand, QJRMS 67 (1951) 474 and QJRMS 69 (1953) 39]. The copies of the data sheets stored at UK Met Office [MO/19/3/9 Part I] comprise daily values from the following stations/time periods: Aarhus (DK, 6/52-12/59, Dobson #41), Aldergrove (UK, 6/52-4/57, #35?), Arosa (CH, 6/52-12/58 #15), Cagliari/Elmas (IT, 12/54-5/59, #48), Camborne (UK, 1/52-12/59, #32), Eskdalemuir (UK, 9/57-12/59, #35), Hemsby (UK, 6/52-9/55), Lerwick (UK, 6/52-12/59, #7), Magny les Hameaux (FR, 1/55-9/57, #49?), Messina (IT, 7/54-6/58, #46), Oxford (UK, 6/52-12/59, #1), Paris/Montsouris (FR, 10/57-8/58, #49), Reykjavik (IS, 6/52-10/59, #50), Rome/Vigna di Valle (IT, 4/54-12/59 #47), Santa Maria/Azores (ES, 2/53-7/56, #13), Spitzbergen (NO, 11/50-7/58, #8), Tromsoe (NO, 6/52-5/59, #14), Uccle (BE, 6/52-12/58, #40), and Uppsala (SE, 6/52-12/58, #30). These data could be useful to supplement the currently available total ozone measurement series. Together with existing meteorological data, they enable us to study the relation between atmospheric circulation and total ozone in a chemically largely unperturbed time period. The daily values from 1951 to 1957 have now been digitized. Using appropriate statistical methods, the quality of each series will be addressed. The data will be homogenized and re

  12. NOAA JPSS Ozone Mapping and Profiler Suite (OMPS) Version 8 Total Ozone (V8TOz) Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of total column ozone from the Ozone Mapping and Profiling Suite (OMPS) instrument...

  13. Improvements in Total Column Ozone in GEOSCCM and Comparisons with a New Ozone-Depleting Substances Scenario

    Science.gov (United States)

    Oman, Luke D.; Douglass, Anne R.

    2014-01-01

    The evolution of ozone is examined in the latest version of the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) using old and new ozone-depleting substances (ODS) scenarios. This version of GEOSCCM includes a representation of the quasi-biennial oscillation, a more realistic implementation of ozone chemistry at high solar zenith angles, an improved air/sea roughness parameterization, and an extra 5 parts per trillion of CH3Br to account for brominated very short-lived substances. Together these additions improve the representation of ozone compared to observations. This improved version of GEOSCCM was used to simulate the ozone evolution for the A1 2010 and the newStratosphere-troposphere Processes and their Role in Climate (SPARC) 2013 ODS scenario derived using the SPARC Lifetimes Report 2013. This new ODS scenario results in a maximum Cltot increase of 65 parts per trillion by volume (pptv), decreasing slightly to 60 pptv by 2100. Approximately 72% of the increase is due to the longer lifetime of CFC-11. The quasi-global (60degS-60degN) total column ozone difference is relatively small and less than 1Dobson unit on average and consistent with the 3-4% larger 2050-2080 average Cly in the new SPARC 2013 scenario. Over high latitudes, this small change in Cly compared to the relatively large natural variabilitymakes it not possible to discern a significant impact on ozone in the second half of the 21st century in a single set of simulations.

  14. Observed atmospheric total column ozone distribution from SCIAMACHY over Peninsular Malaysia

    International Nuclear Information System (INIS)

    Chooi, T K; San, L H; Jafri, M Z M

    2014-01-01

    The increase in atmospheric ozone has received great attention because it degrades air quality and brings hazard to human health and ecosystems. The aim of this study was to assess the seasonal variations of ozone concentrations in Peninsular Malaysia from January 2003 to December 2009 using Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY). Level-2 data of total column ozone WFMD version 1.0 with spatial resolution 1° × 1.25° were acquired through SCIAMACHY. Analysis for trend of five selected sites exhibit strong seasonal variation in atmospheric ozone concentrations, where there is a significant difference between northeast monsoon and southwest monsoon. The highest ozone values occurred over industrial and congested urban zones (280.97 DU) on August at Bayan Lepas. The lowest ozone values were observed during northeast monsoon on December at Subang (233.08 DU). In addition, the local meteorological factors also bring an impact on the atmospheric ozone. During northeast monsoon, with the higher rate of precipitation, higher relative humidity, low temperature, and less sunlight hours let to the lowest ozone concentrations. Inversely, the highest ozone concentrations observed during southwest monsoon, with the low precipitation rate, lower relative humidity, higher temperature, and more sunlight hours. Back trajectories analysis is carried out, in order to trace the path of the air parcels with high ozone concentration event, suggesting cluster of trajectory (from southwest of the study area) caused by the anthropogenic sources associated with biogenic emissions from large tropical forests, which can make important contribution to regional and global pollution

  15. Total ozone derived from UV spectrophotometer measurements on the NASA CV-990 aircraft for the fall 1976 latitude survey flights

    Science.gov (United States)

    Hanser, F. A.

    1977-01-01

    An ultraviolet interference filter spectrophotometer was modified to use a photodiode and was flown on latitude survey flights in the fall of 1976. Comparison with Dobson station total ozone values shows agreement between UVS and Dobson total ozone of + or - 2 percent. The procedure used to convert UVS measured ozone above the aircraft altitude to total ozone above ground level introduces an additional 2 percent deviation for very high altitude UVS ozone data. Under stable aircraft operating conditions, the UVS derived ozone values have a variability, or reproducibility, of better than + or -1 percent. The UVS data from the latitude survey flights yield a detailed latitude profile of total ozone over the Pacific Ocean during November 1976. Significant latitudinal structure in total ozone is found at the middle latitudes (30 deg to 40 deg N and S).

  16. An assessment of the stray light in 25 years of Dobson total ozone data at Athens, Greece

    Science.gov (United States)

    Christodoulakis, J.; Varotsos, C.; Cracknell, A. P.; Tzanis, C.; Neofytos, A.

    2015-07-01

    In this study, we investigated the susceptibility of the Dobson spectrophotometer No. 118 to stray light interference. In this regard, a series of total ozone content measurements were carried out in Athens, Greece for air-mass values (μ) extending up to μ = 5. The monochromatic-heterochromatic stray light derived by Basher's model was used in order to evaluate the specific instrumental parameters which determine if this instrument suffers from this problem or not. The results obtained indicate that the measurements made by the Dobson instrument of the Athens station for air mass values up to 2.5, underestimates the total ozone content by 3.5 DU in average, or about 1 % of the station's mean total ozone content (TOC). The comparison of the values of the same parameters measured 15 years ago with the present ones indicates the good maintenance of the Dobson spectrophotometer No. 118. This fact is of crucial importance because the variability of the daily total ozone observations collected by the Athens Dobson Station since 1989 has proved to be representative to the variability of the mean total ozone observed over the whole mid-latitude zone of the Northern Hemisphere. This stresses the point that the Athens total ozone station, being the unique Dobson station in south-eastern Europe, may be assumed as a ground truth station for the reliable conversion of the satellite radiance observations to total ozone measurements.

  17. Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations

    Directory of Open Access Journals (Sweden)

    A. Boynard

    2009-08-01

    Full Text Available In this paper, we present measurements of total and tropospheric ozone, retrieved from infrared radiance spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI, which was launched on board the MetOp-A European satellite in October 2006. We compare IASI total ozone columns to Global Ozone Monitoring Experiment-2 (GOME-2 observations and ground-based measurements from the Dobson and Brewer network for one full year of observations (2008. The IASI total ozone columns are shown to be in good agreement with both GOME-2 and ground-based data, with correlation coefficients of about 0.9 and 0.85, respectively. On average, IASI ozone retrievals exhibit a positive bias of about 9 DU (3.3% compared to both GOME-2 and ground-based measurements. In addition to total ozone columns, the good spectral resolution of IASI enables the retrieval of tropospheric ozone concentrations. Comparisons of IASI tropospheric columns to 490 collocated ozone soundings available from several stations around the globe have been performed for the period of June 2007–August 2008. IASI tropospheric ozone columns compare well with sonde observations, with correlation coefficients of 0.95 and 0.77 for the [surface–6 km] and [surface–12 km] partial columns, respectively. IASI retrievals tend to overestimate the tropospheric ozone columns in comparison with ozonesonde measurements. Positive average biases of 0.15 DU (1.2% and 3 DU (11% are found for the [surface–6 km] and for the [surface–12 km] partial columns respectively.

  18. Beginning of the ozone recovery over Europe? − Analysis of the total ozone data from the ground-based observations, 1964−2004

    Directory of Open Access Journals (Sweden)

    J. W. Krzyścin

    2005-07-01

    Full Text Available The total ozone variations over Europe (~50° N in the period 1964–2004 are analyzed for detection of signals of ozone recovery. The ozone deviations from the long-term monthly means (1964–1980 for selected European stations, where the ozone observations (by the Dobson spectrophotometers have been carried out continuously for at least 3–4 decades, are averaged and examined by a regression model. A new method is proposed to disclose both the ozone trend variations and date of the trend turnaround. The regression model contains a piecewise linear trend component and the terms describing the ozone response to forcing by "natural" changes in the atmosphere. Standard proxies for the dynamically driven ozone variations are used. The Multivariate Adaptive Regression Splines (MARS methodology and principal component analysis are used to find an optimal set of the explanatory variables and the trend pattern. The turnaround of the ozone trend in 1994 is suggested from the pattern of the piecewise linear trend component. Thus, the changes in the ozone mean level are calculated over the periods 1970–1994 and 1994–2003, for both the original time series and the time series having "natural" variations removed. Statistical significance of the changes are derived by bootstrapping. A first stage of recovery (according to the definition of the International Ozone Commission, i.e. lessening of a negative trend, is found over Europe. It seems possible that the increase in the ozone mean level since 1994 of about 1–2% is due to superposition of the "natural" processes. Comparison of the total ozone ground-based network (the Dobson and Brewer spectrophotometers and the satellite (TOMS, version 8 data over Europe shows the small bias in the mean values for the period 1996–2004, but the differences between the daily ozone values from these instruments are not trendless, and this may hamper an identification of the next stage of the ozone recovery over

  19. 20 Years of Total and Tropical Ozone Time Series Based on European Satellite Observations

    Science.gov (United States)

    Loyola, D. G.; Heue, K. P.; Coldewey-Egbers, M.

    2016-12-01

    Ozone is an important trace gas in the atmosphere, while the stratospheric ozone layer protects the earth surface from the incident UV radiation, the tropospheric ozone acts as green house gas and causes health damages as well as crop loss. The total ozone column is dominated by the stratospheric column, the tropospheric columns only contributes about 10% to the total column.The ozone column data from the European satellite instruments GOME, SCIAMACHY, OMI, GOME-2A and GOME-2B are available within the ESA Climate Change Initiative project with a high degree of inter-sensor consistency. The tropospheric ozone columns are based on the convective cloud differential algorithm. The datasets encompass a period of more than 20 years between 1995 and 2015, for the trend analysis the data sets were harmonized relative to one of the instruments. For the tropics we found an increase in the tropospheric ozone column of 0.75 ± 0.12 DU decade^{-1} with local variations between 1.8 and -0.8. The largest trends were observed over southern Africa and the Atlantic Ocean. A seasonal trend analysis led to the assumption that the increase is caused by additional forest fires.The trend for the total column was not that certain, based on model predicted trend data and the measurement uncertainty we estimated that another 10 to 15 years of observations will be required to observe a statistical significant trend. In the mid latitudes the trends are currently hidden in the large variability and for the tropics the modelled trends are low. Also the possibility of diverging trends at different altitudes must be considered; an increase in the tropospheric ozone might be accompanied by decreasing stratospheric ozone.The European satellite data record will be extended over the next two decades with the atmospheric satellite missions Sentinel 5 Precursor (launch end of 2016), Sentinel 4 and Sentinel 5.

  20. Derivation of Tropospheric Ozone Climatology and Trends from TOMS Data

    Science.gov (United States)

    Newchurch, Michael J.; McPeters, Rich; Logan, Jennifer; Kim, Jae-Hwan

    2002-01-01

    This research addresses the following three objectives: (1) Derive tropospheric ozone columns from the TOMS instruments by computing the difference between total-ozone columns over cloudy areas and over clear areas in the tropics; (2) Compute secular trends in Nimbus-7 derived tropospheric Ozone column amounts and associated potential trends in the decadal-scale tropical cloud climatology; (3) Explain the occurrence of anomalously high ozone retrievals over high ice clouds.

  1. Comparison of GOME-2/MetOp total ozone data with Brewer spectroradiometer data over the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Anton, M.; Serrano, A. [Universidad de Extremadura, Badajoz (Spain). Dept. de Fisica; Loyola, D.; Zimmer, W. [German Aerospace Center (DLR), Wessling (DE). Remote Sensing Technology Inst. (IMF); Lopez, M.; Banon, M. [Agencia Estatal de Meteorologia (AEMet), Madrid (Spain); Vilaplana, J.M. [Instituto Nacional de Tecnica Aeroespacial (INTA), Huelva (Spain). Estacion de Sondeos Atmosferico ' ' El Arenosillo' '

    2009-07-01

    The main objective of this article is to compare the total ozone data from the new Global Ozone Monitoring Experiment instrument (GOME-2/MetOp) with reliable ground-based measurement recorded by five Brewer spectroradiometers in the Iberian Peninsula. In addition, a similar comparison for the predecessor instrument GOME/ERS-2 is described. The period of study is a whole year from May 2007 to April 2008. The results show that GOME-2/MetOp ozone data already has a very good quality, total ozone columns are on average 3.05% lower than Brewer measurements. This underestimation is higher than that obtained for GOME/ERS-2 (1.46%). However, the relative differences between GOME-2/MetOp and Brewer measurements show significantly lower variability than the differences between GOME/ERS-2 and Brewer data. Dependencies of these relative differences with respect to the satellite solar zenith angle (SZA), the satellite scan angle, the satellite cloud cover fraction (CF), and the ground-based total ozone measurements are analyzed. For both GOME instruments, differences show no significant dependence on SZA. However, GOME-2/MetOp data show a significant dependence on the satellite scan angle (+1.5%). In addition, GOME/ERS-2 differences present a clear dependence with respect to the CF and ground-based total ozone; such differences are minimized for GOME-2/MetOp. The comparison between the daily total ozone values provided by both GOME instruments shows that GOME-2/MetOp ozone data are on average 1.46% lower than GOME/ERS-2 data without any seasonal dependence. Finally, deviations of a priori climatological ozone profile used by the satellite retrieval algorithm from the true ozone profile are analyzed. Although excellent agreement between a priori climatological and measured partial ozone values is found for the middle and high stratosphere, relative differences greater than 15% are common for the troposphere and lower stratosphere. (orig.)

  2. Modeling of recovery mechanism of ozone zero phenomenaby adding small amount of nitrogen in atmospheric pressure oxygen dielectric barrier discharges

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu

    2013-09-01

    Ozone zero phenomena in an atmospheric pressure oxygen dielectric barrier discharges have been one of the major problems during a long time operation of ozone generators. But it is also known that the adding a small amount of nitrogen makes the recover from the ozone zero phenomena. To make clear the mechanism of recovery, authors have been simulated the discharges with using the results of Ref. 3. As a result, the recovery process can be seen and ozone density increased. It is found that the most important species would be nitrogen atoms. The reaction of nitrogen atoms and oxygen molecules makes oxygen atoms which is main precursor species of ozone. This generation of oxygen atoms is effective to increase ozone. The dependence of oxygen atom density (nO) and nitrogen atom density (nN) ratio was examined in this paper. In the condition of low nN/nO ratio case, generation of nitrogen oxide is low, and the quenching of ozone by the nitrogen oxide would be low. But in the high ratio condition, the quenching of ozone by nitrogen oxide would significant. This work was supported by KAKENHI(23560352).

  3. Caffeine degradation in water by gamma irradiation, ozonation and ozonation/gamma irradiation

    Directory of Open Access Journals (Sweden)

    Torun Murat

    2014-03-01

    Full Text Available Aqueous solutions of caffeine were treated with ozone and gamma irradiation. The amounts of remaining caffeine were determined after solid phase extraction as a function of absorbed dose and ozonation time. In addition to this, some important parameters such as inorganic ions, chemical oxygen demand (COD dissolved oxygen and total acidity changes were followed. Caffeine (50 ppm is found to be completely decomposed at 3.0 kGy and 1.2 kGy doses in the absence of H2O2 and in 1.20 mM H2O2 solutions, respectively. In the case of gamma irradiation after ozonation, 50 ppm caffeine was removed at 0.2 kGy when the solution was ozonized for 100 s at a rate of 10 g O3 h-1 in 400 mL 50 ppm paracetamol solution.

  4. NOAA JPSS Ozone Mapping and Profiler Suite (OMPS) Nadir Total Column Sensor Data Record (SDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ozone Mapping and Profiler Suite (OMPS) onboard the Suomi NPP satellite monitors ozone from space. OMPS will collect total column and vertical profile ozone data...

  5. Total-ozone and nitrogen-dioxide measurements at the Molodezhnaya and Mirnyi Antarctic stations during spring 1987-autumn 1988

    Energy Technology Data Exchange (ETDEWEB)

    Elokhov, A.S.; Gruzdev, A.N. (AN SSSR, Institut Fiziki Atmosfery, Moscow, (USSR))

    1991-09-01

    Results of measurements of the total-ozone and NO2 content during November-December (Molodezhnaya) and February-April 1988 (Mirnyi) are reported. During the November-December period an irregular total ozone increase was observed, which characterized the filling up of the ozone hole. Stratospheric warming and the total NO2 increase occurred simultaneously. During the summer-autumn period the total NO2 content decreased gradually. The evening total NO2 content was systematically greater than the morning one, which reflects changes in the NO2 abundance from day to night. 12 refs.

  6. Development of meteorological parameters and total ozone during the total solar eclipse of August 11, 1999

    Directory of Open Access Journals (Sweden)

    Peter Winkler

    2001-05-01

    Full Text Available During the total eclipse of August 11, 1999 frequent showers occurred due to a unstable stratification of the air mass. At different observation sites, meteorological effects from the eclipse (99.4% coverage at Hohenpeißenberg and from showers were superimposed making it partly difficult to unambiguously interpret the observations. The weather radar at Hohenpeißenberg observatory provided a general overview of the distribution of clouds and precipitation in this area (200 km diameter. From the Garching site in the zone of totality (100% temperature and wind data taken on a 50 m mast were evaluated. By selecting periods with relatively low cloud cover it was possible to approximately follow the development of the vertical temperature and wind profiles during the eclipse. The minimum temperature at Hohenpeißenberg (about 450 m above the altitude of Garching during the eclipse was comparable to that during the previous night, the corresponding value measured at Garching remained about 2 K above the minimum observed during clear sky conditions in the previous night. Showers before, during or after the eclipse may have induced vertical exchange of air parcels. Temperatures during a shower change towards the same direction at all altitudes, thus no inversion forms. Additionally, air parcels with relatively lower concentrations of trace constituents were transported down from aloft for time periods of 10–15 minutes. These mixing processes significantly determined the temporal variations of various trace substances measured during the eclipse. Total ozone measurements at Hohenpeißenberg were performed with both DOBSON and BREWER spectrophotometers and at another site within the zone of totality by using a portable Microtops II filter instrument. Different results were obtained for both sites. These differences can be to a large extend, but not exclusively, attributed to eclipse induced shifts (limb darkening and straylight effects in the atmosphere

  7. Effect of some climatic parameters on tropospheric and total ozone ...

    Indian Academy of Sciences (India)

    Effect of some climatic parameters on tropospheric and total ozone column over Alipore (22.52°N, 88.33°E), India ... insolation obtained from Solar Geophysical Data Book and El-ñ index collected from National Climatic Data Center, US Department of Commerce, National Oceanic and Atmospheric Administration, USA.

  8. Comparison of GOME total ozone data with ground data from the Spanish Brewer spectroradiometers

    Directory of Open Access Journals (Sweden)

    M. Antón

    2008-03-01

    Full Text Available This paper compares total ozone measurements from five Brewer spectroradiometers located at the Iberian Peninsula with satellite observations given by the GOME (Global Ozone Monitoring Experiment sensor. The analyzed period covers simultaneous ozone values from July 1995 until December 2004. The regression analysis shows an excellent agreement between Brewer-GOME values in the five locations; the coefficient of correlation is always higher than 0.92 and the root mean square error is about 3%. Moreover, the comparison shows that the satellite retrieval accuracy is within the uncertainty of current ground-based instruments. In addition, the effects of several variables, such as cloudiness, solar zenith angle (SZA, effective temperature and total ozone values in Brewer-GOME differences are analyzed. The results indicate that clouds induce a minor dependence of GOME values on the SZA. For example, during heavy cloudy conditions in Madrid station, GOME observations overestimate ground-based Brewer data for low AMF (low SZA values by 2% while for high AMF (high SZA values the satellite underestimates ground-based ozone values by 1%. Moreover, the dependence of Brewer-GOME differences with respect to SZA for cloud-free conditions may be due to the variability of effective temperature. This fact could indicate that the effective temperature estimated by GOME does not fully reflect the actual atmospheric temperature variability. Finally, GOME ozone observations slightly underestimate the highest values measured by the Brewer spectrophotometers and overestimates the lowest ground-based measurements.

  9. The Feasibility of Tropospheric and Total Ozone Determination Using a Fabry-perot Interferometer as a Satellite-based Nadir-viewing Atmospheric Sensor. Ph.D. Thesis

    Science.gov (United States)

    Larar, Allen Maurice

    1993-01-01

    Monitoring of the global distribution of tropospheric ozone (O3) is desirable for enhanced scientific understanding as well as to potentially lessen the ill-health impacts associated with exposure to elevated concentrations in the lower atmosphere. Such a capability can be achieved using a satellite-based device making high spectral resolution measurements with high signal-to-noise ratios; this would enable observation in the pressure-broadened wings of strong O3 lines while minimizing the impact of undesirable signal contributions associated with, for example, the terrestrial surface, interfering species, and clouds. The Fabry-Perot Interferometer (FPI) provides high spectral resolution and high throughput capabilities that are essential for this measurement task. Through proper selection of channel spectral regions, the FPI optimized for tropospheric O3 measurements can simultaneously observe a stratospheric component and thus the total O3 column abundance. Decreasing stratospheric O3 concentrations may lead to an increase in biologically harmful solar ultraviolet radiation reaching the earth's surface, which is detrimental to health. In this research, a conceptual instrument design to achieve the desired measurement has been formulated. This involves a double-etalon fixed-gap series configuration FPI along with an ultra-narrow bandpass filter to achieve single-order operation with an overall spectral resolution of approximately .068 cm(exp -1). A spectral region of about 1 cm(exp -1) wide centered at 1054.73 cm(exp -1) within the strong 9.6 micron ozone infrared band is sampled with 24 spectral channels. Other design characteristics include operation from a nadir-viewing satellite configuration utilizing a 9 inch (diameter) telescope and achieving horizontal spatial resolution with a 50 km nadir footprint. A retrieval technique has been implemented and is demonstrated for a tropical atmosphere possessing enhanced tropospheric ozone amounts. An error analysis

  10. Study of total column atmospheric aerosol optical depth, ozone and ...

    Indian Academy of Sciences (India)

    Extensive observations of the columnar aerosol optical depth (AOD), total column ozone (TCO) and precipitable water content (PWC) have been carried out using the on-line, multi-band solar radiometers onboard ORV Sagar Kanya (Cruise#SK 147B) over Bay of Bengal during 11th-28th August 1999. Aerosol optical and ...

  11. Tunable Diode Laser Heterodyne Spectrophotometry of Ozone

    Science.gov (United States)

    Fogal, P. F.; McElroy, C. T.; Goldman, A.; Murcray, D. G.

    1988-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (less than 0.0005/ cm) solar spectra in the 9.6 micron ozone band. Observations have shown that a signal-to-noise ratio of 95 : 1 (35% of theoretical) for an integration time of 1/8 second can be achieved at a resolution of 0.0005 wavenumbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that. measured at the nearby National Oceanographic and Atmospheric Administration (NOAA) ozone monitoring facility in Boulder, Colorado.

  12. Six years of total ozone column measurements from SCIAMACHY nadir observations

    Science.gov (United States)

    Lerot, C.; van Roozendael, M.; van Geffen, J.; van Gent, J.; Fayt, C.; Spurr, R.; Lichtenberg, G.; von Bargen, A.

    2009-04-01

    Total O3 columns have been retrieved from six years of SCIAMACHY nadir UV radiance measurements using SDOAS, an adaptation of the GDOAS algorithm previously developed at BIRA-IASB for the GOME instrument. GDOAS and SDOAS have been implemented by the German Aerospace Center (DLR) in the version 4 of the GOME Data Processor (GDP) and in version 3 of the SCIAMACHY Ground Processor (SGP), respectively. The processors are being run at the DLR processing centre on behalf of the European Space Agency (ESA). We first focus on the description of the SDOAS algorithm with particular attention to the impact of uncertainties on the reference O3 absorption cross-sections. Second, the resulting SCIAMACHY total ozone data set is globally evaluated through large-scale comparisons with results from GOME and OMI as well as with ground-based correlative measurements. The various total ozone data sets are found to agree within 2% on average. However, a negative trend of 0.2-0.4%/year has been identified in the SCIAMACHY O3 columns; this probably originates from instrumental degradation effects that have not yet been fully characterized.

  13. Six years of total ozone column measurements from SCIAMACHY nadir observations

    Directory of Open Access Journals (Sweden)

    G. Lichtenberg

    2009-04-01

    Full Text Available Total O3 columns have been retrieved from six years of SCIAMACHY nadir UV radiance measurements using SDOAS, an adaptation of the GDOAS algorithm previously developed at BIRA-IASB for the GOME instrument. GDOAS and SDOAS have been implemented by the German Aerospace Center (DLR in the version 4 of the GOME Data Processor (GDP and in version 3 of the SCIAMACHY Ground Processor (SGP, respectively. The processors are being run at the DLR processing centre on behalf of the European Space Agency (ESA. We first focus on the description of the SDOAS algorithm with particular attention to the impact of uncertainties on the reference O3 absorption cross-sections. Second, the resulting SCIAMACHY total ozone data set is globally evaluated through large-scale comparisons with results from GOME and OMI as well as with ground-based correlative measurements. The various total ozone data sets are found to agree within 2% on average. However, a negative trend of 0.2–0.4%/year has been identified in the SCIAMACHY O3 columns; this probably originates from instrumental degradation effects that have not yet been fully characterized.

  14. Total ozone trends from 1979 to 2016 derived from five merged observational datasets - the emergence into ozone recovery

    Science.gov (United States)

    Weber, Mark; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Burrows, John P.; Long, Craig S.; Loyola, Diego

    2018-02-01

    We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978-present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995-present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013-2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (˜ 1996 globally and ˜ 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 % decade-1 that are barely statistically significant at the 2σ uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 % decade-1, while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of ground-based data, are not accounted for in the trend

  15. Evaluating a New Homogeneous Total Ozone Climate Data Record from GOME/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A

    Science.gov (United States)

    Koukouli, M.E.; Lerot, C.; Granville, J.; Goutail, F.; Lambert, J.-C.; Pommereau, J.-P.; Balis, D.; Zyrichidou, I.; Van Roozendael, M.; Coldewey-Egbers, M.; hide

    2015-01-01

    The European Space Agency's Ozone Climate Change Initiative (O3-CCI) project aims at producing and validating a number of high-quality ozone data products generated from different satellite sensors. For total ozone, the O3-CCI approach consists of minimizing sources of bias and systematic uncertainties by applying a common retrieval algorithm to all level 1 data sets, in order to enhance the consistency between the level 2 data sets from individual sensors. Here we present the evaluation of the total ozone products from the European sensors Global Ozone Monitoring Experiment (GOME)/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A produced with the GOME-type Direct FITting (GODFIT) algorithm v3. Measurements from the three sensors span more than 16 years, from 1996 to 2012. In this work, we present the latest O3-CCI total ozone validation results using as reference ground-based measurements from Brewer and Dobson spectrophotometers archived at the World Ozone and UV Data Centre of the World Meteorological Organization as well as from UV-visible differential optical absorption spectroscopy (DOAS)/Système D'Analyse par Observations Zénithales (SAOZ) instruments from the Network for the Detection of Atmospheric Composition Change. In particular, we investigate possible dependencies in these new GODFIT v3 total ozone data sets with respect to latitude, season, solar zenith angle, and different cloud parameters, using the most adequate type of ground-based instrument. We show that these three O3-CCI total ozone data products behave very similarly and are less sensitive to instrumental degradation, mainly as a result of the new reflectance soft-calibration scheme. The mean bias to the ground-based observations is found to be within the 1 plus or minus 1 percent level for all three sensors while the near-zero decadal stability of the total ozone columns (TOCs) provided by the three European instruments falls well within the 1-3 percent requirement of the European Space

  16. Impact of parameterization choices on the restitution of ozone deposition over vegetation

    Science.gov (United States)

    Le Morvan-Quéméner, Aurélie; Coll, Isabelle; Kammer, Julien; Lamaud, Eric; Loubet, Benjamin; Personne, Erwan; Stella, Patrick

    2018-04-01

    Ozone is a potentially phyto-toxic air pollutant, which can cause leaf damage and drastically alter crop yields, causing serious economic losses around the world. The VULNOZ (VULNerability to OZone in Anthropised Ecosystems) project is a biology and modeling project that aims to understand how plants respond to the stress of high ozone concentrations, then use a set of models to (i) predict the impact of ozone on plant growth, (ii) represent ozone deposition fluxes to vegetation, and finally (iii) estimate the economic consequences of an increasing ozone background the future. In this work, as part of the VULNOZ project, an innovative representation of ozone deposition to vegetation was developed and implemented in the CHIMERE regional chemistry-transport model. This type of model calculates the average amount of ozone deposited on a parcel each hour, as well as the integrated amount of ozone deposited to the surface at the regional or country level. Our new approach was based on a refinement of the representation of crop types in the model and the use of empirical parameters specific to each crop category. The results obtained were compared with a conventional ozone deposition modeling approach, and evaluated against observations from several agricultural areas in France. They showed that a better representation of the distribution between stomatal and non-stomatal ozone fluxes was obtained in the empirical approach, and they allowed us to produce a new estimate of the total amount of ozone deposited on the subtypes of vegetation at the national level.

  17. Variability of the total ozone trend over Europe for the period 1950─2004 derived from reconstructed data

    Directory of Open Access Journals (Sweden)

    J. L. Borkowski

    2008-06-01

    Full Text Available The total ozone data over Europe are available for only few ground-based stations in the pre-satellite era disallowing examination of the spatial trend variability over the whole continent. A need of having gridded ozone data for a trend analysis and input to radiative transfer models stimulated a reconstruction of the daily ozone values since January 1950. Description of the reconstruction model and its validation were a subject of our previous paper. The data base used was built within the objectives of the COST action 726 "Long-term changes and climatology of UV radiation over Europe". Here we focus on trend analyses. The long-term variability of total ozone is discussed using results of a flexible trend model applied to the reconstructed total ozone data for the period 1950–2004. The trend pattern, which comprises both anthropogenic and "natural" component, is not a priori assumed but it comes from a smooth curve fit to the zonal monthly means and monthly grid values. The ozone long-term changes are calculated separately for cold (October–next year April and warm (May–September seasons. The confidence intervals for the estimated ozone changes are derived by the block bootstrapping. The statistically significant negative trends are found almost over the whole Europe only in the period 1985–1994. Negative trends up to −3% per decade appeared over small areas in earlier periods when the anthropogenic forcing on the ozone layer was weak . The statistically positive trends are found only during warm seasons 1995–2004 over Svalbard archipelago. The reduction of ozone level in 2004 relative to that before the satellite era is not dramatic, i.e., up to ~−5% and ~−3.5% in the cold and warm subperiod, respectively. Present ozone level is still depleted over many popular resorts in southern Europe and northern Africa. For high latitude regions the trend overturning could be inferred in last decade (1995–2004 as the ozone depleted

  18. TOMS/Nimbus-7 Total Column Ozone Monthly L3 Global 1x1.25 deg Lat/Lon Grid V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Nimbus-7 Total Column Ozone Monthly L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. The Total Ozone Mapping...

  19. TOMS/Nimbus-7 Total Column Ozone Daily L3 Global 1x1.25 deg Lat/Lon Grid V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Nimbus-7 Total Column Ozone Daily L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. The Total Ozone Mapping...

  20. Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases

    Directory of Open Access Journals (Sweden)

    D. A. Plummer

    2010-09-01

    Full Text Available A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs and Ozone Depleting Substances (ODSs. The experiments are designed to quantify the separate effects of GHGs and ODSs on the evolution of ozone, as well as the extent to which these effects are independent of each other, by alternately holding one set of these two forcings constant in combination with a third experiment where both ODSs and GHGs vary. We estimate that up to the year 2000 the net decrease in the column amount of ozone above 20 hPa is approximately 75% of the decrease that can be attributed to ODSs due to the offsetting effects of cooling by increased CO2. Over the 21st century, as ODSs decrease, continued cooling from CO2 is projected to account for more than 50% of the projected increase in ozone above 20 hPa. Changes in ozone below 20 hPa show a redistribution of ozone from tropical to extra-tropical latitudes with an increase in the Brewer-Dobson circulation. In addition to a latitudinal redistribution of ozone, we find that the globally averaged column amount of ozone below 20 hPa decreases over the 21st century, which significantly mitigates the effect of upper stratospheric cooling on total column ozone. Analysis by linear regression shows that the recovery of ozone from the effects of ODSs generally follows the decline in reactive chlorine and bromine levels, with the exception of the lower polar stratosphere where recovery of ozone in the second half of the 21st century is slower than would be indicated by the decline in reactive chlorine and bromine concentrations. These results also reveal the degree to which GHG-related effects mute the chemical effects of N2O on ozone in the standard future scenario used for the WMO Ozone Assessment. Increases in the

  1. Influence of the ozone profile above Madrid (Spain) on Brewer estimation of ozone air mass factor

    Energy Technology Data Exchange (ETDEWEB)

    Anton, M. [Univ. de Extremadura, Badajoz (Spain). Dept. de Fisica; Evora Univ. (PT). Goephysics Centre of Evora (CGE); Lopez, M.; Banon, M. [Agenica Estatal de Meteorologia (AEMET), Madrid (Spain); Costa, M.J.; Silva, A.M. [Evora Univ. (PT). Goephysics Centre of Evora (CGE); Evora Univ. (Portugal). Dept. of Physics; Serrano, A. [Univ. de Extremadura, Badajoz (Spain). Dept. de Fisica; Bortoli, D. [Evora Univ. (PT). Goephysics Centre of Evora (CGE); Vilaplana, J.M. [Instituto Nacional de Tecnica Aeroespacial (INTA), Huelva (Spain). Estacion de Sondeos Atmosferico ' ' El Arenosillo' '

    2009-07-01

    The methodology used by Brewer spectroradiometers to estimate the ozone column is based on differential absorption spectroscopy. This methodology employs the ozone air mass factor (AMF) to derive the total ozone column from the slant path ozone amount. For the calculating the ozone AMF, the Brewer algorithm assumes that the ozone layer is located at a fixed height of 22 km. However, for a real specific site the ozone presents a certain profile, which varies spatially and temporally depending on the latitude, altitude and dynamical conditions of the atmosphere above the site of measurements. In this sense, this work address the reliability of the mentioned assumption and analyses the influence of the ozone profiles measured above Madrid (Spain) in the ozone AMF calculations. The approximated ozone AMF used by the Brewer algorithm is compared with simulations obtained using the libRadtran radiative transfer model code. The results show an excellent agreement between the simulated and the approximated AMF values for solar zenith angle lower than 75 . In addition, the relative differences remain lower than 2% at 85 . These good results are mainly due to the fact that the altitude of the ozone layer assumed constant by the Brewer algorithm for all latitudes notably can be considered representative of the real profile of ozone above Madrid (average value of 21.7{+-}1.8 km). The operational ozone AMF calculations for Brewer instruments are limited, in general, to SZA below 80 . Extending the usable SZA range is especially relevant for Brewer instruments located at high mid-latitudes. (orig.)

  2. Constructing a coherent long-term global total ozone climatology from the BUV, MFR, and SBUV/TOMS data sets

    International Nuclear Information System (INIS)

    Ellis, J.S.; Luther, F.M.

    1986-02-01

    The backscatter ultraviolet spectrometer (BUV) aboard the NIMBUS 4 satellite provided global ozone data until mid-1977. The Total Ozone Mapping Spectrometer (TOMS) and Solar Backscattered Ultraviolet (SBUV) instrument aboard the NIMBUS 7 satellite began providing global ozone in November 1978. The only satellite derived global total ozone data available between the termination of the BUV data and the startup of the SBUV/TOMS data is that from the Multichannel Filter Radiometer (MFR) instrument aboard the Defense Meteorological Satellite Program (DMSP) series of satellites. The MFR and the SBUV/TOMS data are compared during the data overlap period in order to determine how well the MFR data might be used to represent the SBUV/TOMS and BUV data during the data gap period. 5 refs., 3 figs., 3 tabs

  3. First Reprocessing of Southern Hemisphere ADditional OZonesondes Profile Records: 3. Uncertainty in Ozone Profile and Total Column

    Science.gov (United States)

    Witte, Jacquelyn C.; Thompson, Anne M.; Smit, Herman G. J.; Vömel, Holger; Posny, Françoise; Stübi, Rene

    2018-03-01

    Reprocessed ozonesonde data from eight SHADOZ (Southern Hemisphere ADditional OZonesondes) sites have been used to derive the first analysis of uncertainty estimates for both profile and total column ozone (TCO). The ozone uncertainty is a composite of the uncertainties of the individual terms in the ozone partial pressure (PO3) equation, those being the ozone sensor current, background current, internal pump temperature, pump efficiency factors, conversion efficiency, and flow rate. Overall, PO3 uncertainties (ΔPO3) are within 15% and peak around the tropopause (15 ± 3 km) where ozone is a minimum and ΔPO3 approaches the measured signal. The uncertainty in the background and sensor currents dominates the overall ΔPO3 in the troposphere including the tropopause region, while the uncertainties in the conversion efficiency and flow rate dominate in the stratosphere. Seasonally, ΔPO3 is generally a maximum in the March-May, with the exception of SHADOZ sites in Asia, for which the highest ΔPO3 occurs in September-February. As a first approach, we calculate sonde TCO uncertainty (ΔTCO) by integrating the profile ΔPO3 and adding the ozone residual uncertainty, derived from the McPeters and Labow (2012, doi:10.1029/2011JD017006) 1σ ozone mixing ratios. Overall, ΔTCO are within ±15 Dobson units (DU), representing 5-6% of the TCO. Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument (TOMS and OMI) satellite overpasses are generally within the sonde ΔTCO. However, there is a discontinuity between TOMS v8.6 (1998 to September 2004) and OMI (October 2004-2016) TCO on the order of 10 DU that accounts for the significant 16 DU overall difference observed between sonde and TOMS. By comparison, the sonde-OMI absolute difference for the eight stations is only 4 DU.

  4. High Precision, Absolute Total Column Ozone Measurements from the Pandora Spectrometer System: Comparisons with Data from a Brewer Double Monochromator and Aura OMI

    Science.gov (United States)

    Tzortziou, Maria A.; Herman, Jay R.; Cede, Alexander; Abuhassan, Nader

    2012-01-01

    We present new, high precision, high temporal resolution measurements of total column ozone (TCO) amounts derived from ground-based direct-sun irradiance measurements using our recently deployed Pandora single-grating spectrometers. Pandora's small size and portability allow deployment at multiple sites within an urban air-shed and development of a ground-based monitoring network for studying small-scale atmospheric dynamics, spatial heterogeneities in trace gas distribution, local pollution conditions, photochemical processes and interdependencies of ozone and its major precursors. Results are shown for four mid- to high-latitude sites where different Pandora instruments were used. Comparisons with a well calibrated double-grating Brewer spectrometer over a period of more than a year in Greenbelt MD showed excellent agreement and a small bias of approximately 2 DU (or, 0.6%). This was constant with slant column ozone amount over the full range of observed solar zenith angles (15-80), indicating adequate Pandora stray light correction. A small (1-2%) seasonal difference was found, consistent with sensitivity studies showing that the Pandora spectral fitting TCO retrieval has a temperature dependence of 1% per 3K, with an underestimation in temperature (e.g., during summer) resulting in an underestimation of TCO. Pandora agreed well with Aura-OMI (Ozone Measuring Instrument) satellite data, with average residuals of <1% at the different sites when the OMI view was within 50 km from the Pandora location and OMI-measured cloud fraction was <0.2. The frequent and continuous measurements by Pandora revealed significant short-term (hourly) temporal changes in TCO, not possible to capture by sun-synchronous satellites, such as OMI, alone.

  5. Trend and recovery of the total ozone column in South America and Antarctica

    Science.gov (United States)

    Toro A., Richard; Araya, Consuelo; Labra O., Felipe; Morales, Luis; Morales, Raúl G. E.; Leiva G., Manuel A.

    2017-12-01

    South America is one of the most vulnerable areas to stratospheric ozone depletion; consequently, an increased amount of UV radiation reaches the Earth's surface in this region. In this study, we analyzed the long-term trend in the total ozone column (TOC) over the southern part of the South American continent from 1980 to 2009. The database used was obtained by combining several satellite measurements of the TOC on a 1° (latitude) × 1.25° (longitude) grid. Analysis of the long-term trend was performed by applying the Theil-Sen estimator and the Mann-Kendall significance test to the deseasonalized time series. The long-term trend was also analyzed over several highly populated urban zones in the study area. Finally, multiple linear regression (MLR) modeling was used to identify and quantify the drivers of interannual variability in the TOC over the study area with a pixel-by-pixel approach. The results showed a decrease in the TOC ranging from -0.3 to -4% dec-1 from 1980 to 2009. On a decadal timescale, there is significant variability in this trend, and a decrease of more than -10% dec-1 was found at high latitudes (1980-1989). However, the trends obtained over much of the study area were not statistically significant. Considering the period from 1980 to 1995, we found a decrease in the TOC of -2.0 ± 0.6% dec-1 at latitudes below 40° S and -6.9 ± 2.0% dec-1 at latitudes above 40° S, for a 99.9% confidence level over most of the study area. Analysis of the period from 1996 to 2009 showed a statistically significant increase of 2.3 ± 0.1% dec-1 at high latitudes (> 60° S), confirming the initial TOC recovery in the Antarctic. Despite evidence for initial recovery of the TOC in some parts of the study area between 1996 and 2009, the long-term increase from September to November is not yet statistically significant. In addition, large parts of the study area and most of the urban areas continue to show a decreasing trend in the TOC. The MLR results show that

  6. First Reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Profiles (1998-2016): 2. Comparisons With Satellites and Ground-Based Instruments

    Science.gov (United States)

    Thompson, Anne M.; Witte, Jacquelyn C.; Sterling, Chance; Jordan, Allen; Johnson, Bryan J.; Oltmans, Samuel J.; Fujiwara, Masatomo; Vömel, Holger; Allaart, Marc; Piters, Ankie; Coetzee, Gert J. R.; Posny, Françoise; Corrales, Ernesto; Diaz, Jorge Andres; Félix, Christian; Komala, Ninong; Lai, Nga; Ahn Nguyen, H. T.; Maata, Matakite; Mani, Francis; Zainal, Zamuna; Ogino, Shin-ya; Paredes, Francisco; Penha, Tercio Luiz Bezerra; da Silva, Francisco Raimundo; Sallons-Mitro, Sukarni; Selkirk, Henry B.; Schmidlin, F. J.; Stübi, Rene; Thiongo, Kennedy

    2017-12-01

    The Southern Hemisphere ADditional OZonesonde (SHADOZ) network was assembled to validate a new generation of ozone-monitoring satellites and to better characterize the vertical structure of tropical ozone in the troposphere and stratosphere. Beginning with nine stations in 1998, more than 7,000 ozone and P-T-U profiles are available from 14 SHADOZ sites that have operated continuously for at least a decade. We analyze ozone profiles from the recently reprocessed SHADOZ data set that is based on adjustments for inconsistencies caused by varying ozonesonde instruments and operating techniques. First, sonde-derived total ozone column amounts are compared to the overpasses from the Earth Probe/Total Ozone Mapping Spectrometer, Ozone Monitoring Instrument, and Ozone Mapping and Profiler Suite satellites that cover 1998-2016. Second, characteristics of the stratospheric and tropospheric columns are examined along with ozone structure in the tropical tropopause layer (TTL). We find that (1) relative to our earlier evaluations of SHADOZ data, in 2003, 2007, and 2012, sonde-satellite total ozone column offsets at 12 stations are 2% or less, a significant improvement; (2) as in prior studies, the 10 tropical SHADOZ stations, defined as within ±19° latitude, display statistically uniform stratospheric column ozone, 229 ± 3.9 DU (Dobson units), and a tropospheric zonal wave-one pattern with a 14 DU mean amplitude; (3) the TTL ozone column, which is also zonally uniform, masks complex vertical structure, and this argues against using satellites for lower stratospheric ozone trends; and (4) reprocessing has led to more uniform stratospheric column amounts across sites and reduced bias in stratospheric profiles. As a consequence, the uncertainty in total column ozone now averages 5%.

  7. OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003 NRT

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2 Total Column Ozone Data Product OMTO3 Near Real Time data is made available from the OMI SIPS NASA for the public access. The Ozone Monitoring...

  8. When will the Antarctic Ozone Hole Recover?

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve

    2006-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the .TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to, both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. The ozone hole will begin to show first signs of recovery in about 2023, and the hole will fully recover to pre-1980 levels in approximately 2070. This 2070 recovery is 20 years later than recent projections.

  9. Latitudinal distribution of total ozone and NO[sub 2] over the Atlantic Ocean according to measurements in May 1988

    Energy Technology Data Exchange (ETDEWEB)

    Elokhov, A.S; Gruzdev, A.N. (Inst. Fiziki Atmosfery, Moscow (Russian Federation))

    1992-07-01

    Measurements of the total ozone and NO[sub 2] content conducted on board a ship in the 40 deg S - 40 deg N latitudinal belt in the Atlantic Ocean in the second half of May 1988 are reported. The main features of the latitudinal distributions of total ozone and NO[sub 2] are similar. Both distributions have minima in the equatorial zone of the Southern Hemisphere, and both the ozone and NO[sub 2] contents increase from tropical to subtropical latitudes. This increase is the strongest in the subtropical jet stream zone. The fine structure of the studied distributions is also revealed, and its relationship to stratosphere-troposphere exchange processes in the tropopause folding region is discussed. The evening total NO[sub 2] content systematically exceeds that of the morning due to diurnal variations. 20 refs.

  10. TOMS/Earth-Probe Total Ozone Aerosol Index UV-Reflectivity UV-B Erythemal Irradiance Daily L3 Global 1x1.25 deg V008

    Data.gov (United States)

    National Aeronautics and Space Administration — The Total Ozone Mapping Spectrometer (TOMS) version 8 daily global gridded data consist of total column ozone, aerosol index, Lambertian effective surface...

  11. Extreme events in total ozone over the Northern mid-latitudes: an analysis based on long-term data sets from five European ground-based stations

    Energy Technology Data Exchange (ETDEWEB)

    Rieder, Harald E. (Inst. for Atmospheric and Climate Science, ETH Zurich, Zurich (Switzerland)), e-mail: hr2302@columbia.edu; Jancso, Leonhardt M. (Inst. for Atmospheric and Climate Science, ETH Zurich, Zurich (Switzerland); Inst. for Meteorology and Geophysics, Univ. of Innsbruck, Innsbruck (Austria)); Di Rocco, Stefania (Inst. for Atmospheric and Climate Science, ETH Zurich, Zurich (Switzerland); Dept. of Geography, Univ. of Zurich, Zurich (Switzerland)) (and others)

    2011-11-15

    We apply methods from extreme value theory to identify extreme events in high (termed EHOs) and low (termed ELOs) total ozone and to describe the distribution tails (i.e. very high and very low values) of five long-term European ground-based total ozone time series. The influence of these extreme events on observed mean values, long-term trends and changes is analysed. The results show a decrease in EHOs and an increase in ELOs during the last decades, and establish that the observed downward trend in column ozone during the 1970-1990s is strongly dominated by changes in the frequency of extreme events. Furthermore, it is shown that clear 'fingerprints' of atmospheric dynamics (NAO, ENSO) and chemistry [ozone depleting substances (ODSs), polar vortex ozone loss] can be found in the frequency distribution of ozone extremes, even if no attribution is possible from standard metrics (e.g. annual mean values). The analysis complements earlier analysis for the world's longest total ozone record at Arosa, Switzerland, confirming and revealing the strong influence of atmospheric dynamics on observed ozone changes. The results provide clear evidence that in addition to ODS, volcanic eruptions and strong/moderate ENSO and NAO events had significant influence on column ozone in the European sector

  12. A statistical model to predict total column ozone in Peninsular Malaysia

    Science.gov (United States)

    Tan, K. C.; Lim, H. S.; Mat Jafri, M. Z.

    2016-03-01

    This study aims to predict monthly columnar ozone in Peninsular Malaysia based on concentrations of several atmospheric gases. Data pertaining to five atmospheric gases (CO2, O3, CH4, NO2, and H2O vapor) were retrieved by satellite scanning imaging absorption spectrometry for atmospheric chartography from 2003 to 2008 and used to develop a model to predict columnar ozone in Peninsular Malaysia. Analyses of the northeast monsoon (NEM) and the southwest monsoon (SWM) seasons were conducted separately. Based on the Pearson correlation matrices, columnar ozone was negatively correlated with H2O vapor but positively correlated with CO2 and NO2 during both the NEM and SWM seasons from 2003 to 2008. This result was expected because NO2 is a precursor of ozone. Therefore, an increase in columnar ozone concentration is associated with an increase in NO2 but a decrease in H2O vapor. In the NEM season, columnar ozone was negatively correlated with H2O (-0.847), NO2 (0.754), and CO2 (0.477); columnar ozone was also negatively but weakly correlated with CH4 (-0.035). In the SWM season, columnar ozone was highly positively correlated with NO2 (0.855), CO2 (0.572), and CH4 (0.321) and also highly negatively correlated with H2O (-0.832). Both multiple regression and principal component analyses were used to predict the columnar ozone value in Peninsular Malaysia. We obtained the best-fitting regression equations for the columnar ozone data using four independent variables. Our results show approximately the same R value (≈ 0.83) for both the NEM and SWM seasons.

  13. TOMS/Nimbus-7 Total Ozone Aerosol Index UV-Reflectivity UV-B Erythemal Irradiances Daily L3 Global 1x1.25 deg V008

    Data.gov (United States)

    National Aeronautics and Space Administration — The Total Ozone Mapping Spectrometer (TOMS) version 8 Daily Gridded Data consist of daily, global coverage of total column ozone, aerosol index, Lambertian effective...

  14. Retrieval of Surface Ozone from UV-MFRSR Irradiances using Deep Learning

    Science.gov (United States)

    Chen, M.; Sun, Z.; Davis, J.; Zempila, M.; Liu, C.; Gao, W.

    2017-12-01

    High concentration of surface ozone is harmful to humans and plants. USDA UV-B Monitoring and Research Program (UVMRP) uses Ultraviolet (UV) version of Multi-Filter Rotating Shadowband Radiometer (UV-MFRSR) to measure direct, diffuse, and total irradiances every three minutes at seven UV channels (i.e. 300, 305, 311, 317, 325, 332, and 368 nm channels with 2 nm full width at half maximum). Based on the wavelength dependency of aerosol optical depths, there have been plenty of literatures exploring retrieval methods of total column ozone from UV-MFRSR measurements. However, few has explored the retrieval of surface ozone. The total column ozone is the integral of the multiplication of ozone concentration (varying by height and time) and cross section (varying by wavelength and temperature) over height. Because of the distinctive values of ozone cross section in the UV region, the irradiances at seven UV channels have the potential to resolve the ozone concentration at multiple vertical layers. If the UV irradiances at multiple time points are considered together, the uncertainty or the vertical resolution of ozone concentrations can be further improved. In this study, the surface ozone amounts at the UVMRP station located at Billings, Oklahoma are estimated from the adjacent (i.e. within 200 miles) US Environmental Protection Agency (EPA) surface ozone observations using the spatial analysis technique. Then, the (direct normal) irradiances of UVMRP at one or more time points as inputs and the corresponding estimated surface ozone from EPA as outputs are fed into a pre-trained (dense) deep neural network (DNN) to explore the hidden non-linear relationship between them. This process could improve our understanding of their physical/mathematical relationship. Finally, the optimized DNN is tested with the preserved 5% of the dataset, which are not used during training, to verify the relationship.

  15. Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Climatology (2005-2009): Tropospheric and Tropical Tropopause Layer (TTL) Profiles with Comparisons to Omi-based Ozone Products

    Science.gov (United States)

    Thompson, Anne M.; Miller, Sonya K.; Tilmes, Simone; Kollonige, Debra W.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Johnson, Brian J.; Fujiwara, Masatomo; Schmidlin, F. J.; Coetzee, G. J. R.; hide

    2012-01-01

    We present a regional and seasonal climatology of SHADOZ ozone profiles in the troposphere and tropical tropopause layer (TTL) based on measurements taken during the first five years of Aura, 2005-2009, when new stations joined the network at Hanoi, Vietnam; Hilo, Hawaii; Alajuela Heredia, Costa Rica; Cotonou, Benin. In all, 15 stations operated during that period. A west-to-east progression of decreasing convective influence and increasing pollution leads to distinct tropospheric ozone profiles in three regions: (1) western Pacific eastern Indian Ocean; (2) equatorial Americas (San Cristobal, Alajuela, Paramaribo); (3) Atlantic and Africa. Comparisons in total ozone column from soundings, the Ozone Monitoring Instrument (OMI, on Aura, 2004-) satellite and ground-based instrumentation are presented. Most stations show better agreement with OMI than they did for EPTOMS comparisons (1998-2004; Earth-ProbeTotal Ozone Mapping Spectrometer), partly due to a revised above-burst ozone climatology. Possible station biases in the stratospheric segment of the ozone measurement noted in the first 7 years of SHADOZ ozone profiles are re-examined. High stratospheric bias observed during the TOMS period appears to persist at one station. Comparisons of SHADOZ tropospheric ozone and the daily Trajectory-enhanced Tropospheric Ozone Residual (TTOR) product (based on OMIMLS) show that the satellite-derived column amount averages 25 low. Correlations between TTOR and the SHADOZ sondes are quite good (typical r2 0.5-0.8), however, which may account for why some published residual-based OMI products capture tropospheric interannual variability fairly realistically. On the other hand, no clear explanations emerge for why TTOR-sonde discrepancies vary over a wide range at most SHADOZ sites.

  16. Temporal Variability of Total Ozone in the Asian Region Inferred from Ground-Based and Satellite Measurement Data

    Science.gov (United States)

    Visheratin, K. N.; Nerushev, A. F.; Orozaliev, M. D.; Zheng, Xiangdong; Sun, Shumen; Liu, Li

    2017-12-01

    This paper reports investigation data on the temporal variability of total ozone content (TOC) in the Central Asian and Tibet Plateau mountain regions obtained by conventional methods, as well as by spectral, cross-wavelet, and composite analyses. The data of ground-based observation stations located at Huang He, Kunming, and Lake Issyk-Kul, along with the satellite data obtained at SBUV/SBUV2 (SBUV merged total and profile ozone data, Version 8.6) for 1980-2013 and OMI (Ozone Monitoring Instrument) and TOU (Total Ozone Unit) for 2009-2013 have been used. The average relative deviation from the SBUV/SBUV2 data is less than 1% in Kunming and Issyk-Kul for the period of 1980-2013, while the Huang He Station is characterized by an excess of the satellite data over the ground-based information at an average deviation of 2%. According to the Fourier analysis results, the distribution of amplitudes and the periods of TOC oscillations within a range of over 14 months is similar for all series analyzed. Meanwhile, according to the cross-wavelet and composite analyses results, the phase relationships between the series may considerably differ, especially in the periods of 5-7 years. The phase of quasi-decennial oscillations in the Kunming Station is close to the 11-year oscillations of the solar cycle, while in the Huang He and Issyk-Kul stations the TOC variations go ahead of the solar cycle.

  17. Chloroplastic responses of ponderosa pine (Pinus ponderosa) seedlings to ozone exposure.

    Science.gov (United States)

    Anderson, Paul D; Palmer, Brent; Houpis, James L J; Smith, Mary K; Pushnik, James C

    2003-06-01

    Integrity of chloroplast membranes is essential to photosynthesis. Loss of thylakoid membrane integrity has been proposed as a consequence of ozone (O(3)) exposure and therefore may be a mechanistic basis for decreased photosynthetic rates commonly associated with ozone exposure. To investigate this hypothesis, Pinus ponderosa seedlings were exposed to ambient air or ozone concentrations maintained at 0.15 or 0.30 microliter l(-1) for 10 h day(-1) for 51 days during their second growing season. Over the course of the study, foliage samples were periodically collected for thylakoid membrane, chlorophyll and protein analyses. Additionally, gas-exchange measurements were made in conjunction with foliage sampling to verify that observed chloroplastic responses were associated with ozone-induced changes in photosynthesis. Needles exposed to elevated ozone exhibited decreases in chlorophyll a and b content. The decreases were dependent on the duration and intensity of ozone exposure. When based on equal amounts of chlorophyll, ozone-exposed sample tissue exhibited an increase in total protein. When based on equal amounts of protein, ozone-exposed samples exhibited an increase in 37 kDa proteins, possibly consisting of breakdown products, and a possible decrease in 68 kDa proteins, Rubisco small subunit. There was also a change in the ratio of Photosystem I protein complexes CPI and CPII that may have contributed to decreased photosynthesis. Net photosynthetic rates were decreased in the high ozone treatment suggesting that observed structural and biochemical changes in the chloroplast were associated with alterations of the photosynthetic process.

  18. Trends in total column ozone over Australia and New Zealand and its influence on clear-sky surface erythemal irradiance

    International Nuclear Information System (INIS)

    Bodeker, G. E.

    1995-01-01

    Australia and New Zealand are two of the countries closest to the Antarctic ozone depletion and may therefore be 'at risk' as a result of the associated increases in surface ultraviolet (UV) radiation. To investigate the possible impact of mid-latitude ozone decreases on surface erythemal irradiances, monthly mean total ozone has been calculated from daily total ozone mapping spectrometer data for 5 Australian cities (Canberra, Hobart, Melbourne, Perth and Sydney) and 3 New Zealand cities (Auckland, Christchurch and Wellington) from 1979 to 1992. These values have then been used as inputs to a single layer model to calculate noon clear-sky global UV irradiances and associated erythemal irradiances. In addition, the monthly mean ozone data have been modelled statistically for each location to reveal a long-term linear trend, an annual variation, a Quasi-Biennial Oscillation (QBO), a solar cycle component and a semi-annual (6 month) signal. Coefficients from these statistical models have been used to estimate monthly mean ozone and noon clear-sky erythemal irradiances to the year 2000 for each city. It is assumed that the rate of increase of stratospheric chlorine over the remainder of the century will remain constant. Given that there is some evidence that the rate of increase is decreasing, the results present here should be regarded as an upper limit. 33 refs., 7 tabs., 4 figs

  19. Tropical intercontinental optical measurement network of aerosol, precipitable water and total column ozone

    Science.gov (United States)

    Holben, B. N.; Tanre, D.; Reagan, J. A.; Eck, T. F.; Setzer, A.; Kaufman, Y. A.; Vermote, E.; Vassiliou, G. D.; Lavenu, F.

    1992-01-01

    A new generation of automatic sunphotometers is used to systematically monitor clear sky total column aerosol concentration and optical properties, precipitable water and total column ozone diurnally and annually in West Africa and South America. The instruments are designed to measure direct beam sun, solar aureole and sky radiances in nine narrow spectral bands from the UV to the near infrared on an hourly basis. The instrumentation and the algorithms required to reduce the data for subsequent analysis are described.

  20. Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models

    Directory of Open Access Journals (Sweden)

    V. Eyring

    2010-10-01

    return of total column ozone to its 1980 level. The latest return of total column ozone is projected to occur over Antarctica (~2045–2060 whereas it is not likely that full ozone recovery is reached by the end of the 21st century in this region. Arctic total column ozone is projected to return to 1980 levels well before polar stratospheric halogen loading does so (~2025–2030 for total column ozone, cf. 2050–2070 for Cly+60×Bry and it is likely that full recovery of total column ozone from the effects of ODSs has occurred by ~2035. In contrast to the Antarctic, by 2100 Arctic total column ozone is projected to be above 1960 levels, but not in the fixed GHG simulation, indicating that climate change plays a significant role.

  1. Errors resulting from assuming opaque Lambertian clouds in TOMS ozone retrieval

    International Nuclear Information System (INIS)

    Liu, X.; Newchurch, M.J.; Loughman, R.; Bhartia, P.K.

    2004-01-01

    Accurate remote sensing retrieval of atmospheric constituents over cloudy areas is very challenging because of insufficient knowledge of cloud parameters. Cloud treatments are highly idealized in most retrieval algorithms. Using a radiative transfer model treating clouds as scattering media, we investigate the effects of assuming opaque Lambertian clouds and employing a Partial Cloud Model (PCM) on Total Ozone Mapping Spectrometer (TOMS) ozone retrievals, especially for tropical high-reflectivity clouds. Assuming angularly independent cloud reflection is good because the Ozone Retrieval Errors (OREs) are within 1.5% of the total ozone (i.e., within TOMS retrieval precision) when Cloud Optical Depth (COD)≥20. Because of Intra-Cloud Ozone Absorption ENhancement (ICOAEN), assuming opaque clouds can introduce large OREs even for optically thick clouds. For a water cloud of COD 40 spanning 2-12 km with 20.8 Dobson Unit (DU) ozone homogeneously distributed in the cloud, the ORE is 17.8 DU in the nadir view. The ICOAEN effect depends greatly on solar zenith angle, view zenith angle, and intra-cloud ozone amount and distribution. The TOMS PCM is good because negative errors from the cloud fraction being underestimated partly cancel other positive errors. At COD≤5, the TOMS algorithm retrieves approximately the correct total ozone because of compensating errors. With increasing COD up to 20-40, the overall positive ORE increases and is finally dominated by the ICOAEN effect. The ICOAEN effect is typically 5-13 DU on average over the Atlantic and Africa and 1-7 DU over the Pacific for tropical high-altitude (cloud top pressure ≤300 hPa) and high-reflectivity (reflectivity ≥ 80%) clouds. Knowledge of TOMS ozone retrieval errors has important implications for remote sensing of ozone/trace gases from other satellite instruments

  2. Detecting the Recovery of the Antarctic Ozone Hole

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve

    2004-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. We will show estimates of both when the ozone hole will begin to show first signs of recovery, and when the hole will fully recover to pre-1980 levels.

  3. Tropical Tropospheric Ozone from SHADOZ (Southern Hemisphere ADditional Ozonesondes) Network: A Project for Satellite Research, Process Studies, Education

    Science.gov (United States)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Coetzee, G. J. R.; Hoegger, Bruno; Kirchhoff, V. W. J. H.; Ogawa, Toshihiro; Kawakami, Shuji; Posny, Francoise

    2002-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at: . SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone. Prominent features are highly variable tropospheric ozone and a zonal wave-one pattern in total (and tropospheric) column ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole and convective mixing. Pollution transport from Africa and South America is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.

  4. Removal of total and antibiotic resistant bacteria in advanced wastewater treatment by ozonation in combination with different filtering techniques.

    Science.gov (United States)

    Lüddeke, Frauke; Heß, Stefanie; Gallert, Claudia; Winter, Josef; Güde, Hans; Löffler, Herbert

    2015-02-01

    Elimination of bacteria by ozonation in combination with charcoal or slow sand filtration for advanced sewage treatment to improve the quality of treated sewage and to reduce the potential risk for human health of receiving surface waters was investigated in pilot scale at the sewage treatment plant Eriskirch, Baden-Wuerttemberg/Germany. To determine the elimination of sewage bacteria, inflowing and leaving wastewater of different treatment processes was analysed in a culture-based approach for its content of Escherichia coli, enterococci and staphylococci and their resistance against selected antibiotics over a period of 17 month. For enterococci, single species and their antibiotic resistances were identified. In comparison to the established flocculation filtration at Eriskirch, ozonation plus charcoal or sand filtration (pilot-scale) reduced the concentrations of total and antibiotic resistant E. coli, enterococci and staphylococci. However, antibiotic resistant E. coli and staphylococci apparently survived ozone treatment better than antibiotic sensitive strains. Neither vancomycin resistant enterococci nor methicillin resistant Staphylococcus aureus (MRSA) were detected. The decreased percentage of antibiotic resistant enterococci after ozonation may be explained by a different ozone sensitivity of species: Enterococcus faecium and Enterococcus faecalis, which determined the resistance-level, seemed to be more sensitive for ozone than other Enterococcus-species. Overall, ozonation followed by charcoal or sand filtration led to 0.8-1.1 log-units less total and antibiotic resistant E. coli, enterococci and staphylococci, as compared to the respective concentrations in treated sewage by only flocculation filtration. Thus, advanced wastewater treatment by ozonation plus charcoal or sand filtration after common sewage treatment is an effective tool for further elimination of microorganisms from sewage before discharge in surface waters. Copyright © 2014 Elsevier

  5. The roles of ozone and zeolite on reactive dye degradation in electrical discharge reactors.

    Science.gov (United States)

    Peternel, L; Kusic, H; Koprivanac, N; Locke, B R

    2006-05-01

    In this study high voltage pulsed corona electrical discharge advanced oxidation processes (AOPs) were applied to bleach and degrade C.I. Reactive Green 8 and C.I. Reactive Red 45 organic dyes in water solutions. Two types of hybrid gas/liquid high voltage electrical discharge (corona) reactors, known as hybrid series and hybrid parallel were studied. The difference between these reactors relates to electrode configuration, which affects the amounts of ozone, hydrogen peroxide and hydroxyl radicals produced. Experiments were conducted using dye concentrations of 20 mgl(-1) and 75 mgl(-1), with and without NH4ZSM5 zeolite addition in order to determine possible effects of added solid particles to total process efficiency. The role of ozone in combination with zeolites was assessed through comparative direct ozonation experiments with ozone supplied by an ozone generator. UV/VIS spectrophotometric measurements and measurements of total organic carbon (TOC) were used for the determination of decolorization and mineralization rates.

  6. Total column ozone retrieval using INSAT-3D sounder in the tropics ...

    Indian Academy of Sciences (India)

    important for ozone estimation and lower instrument noise results in better ozone ... the Indian Space Research Organisation (ISRO) ... tivity of the sounder ozone band corresponding to .... NOAA Climate Monitoring and Diagnostics Labo-.

  7. Quality assessment of the Ozone_cci Climate Research Data Package (release 2017) - Part 1: Ground-based validation of total ozone column data products

    Science.gov (United States)

    Garane, Katerina; Lerot, Christophe; Coldewey-Egbers, Melanie; Verhoelst, Tijl; Elissavet Koukouli, Maria; Zyrichidou, Irene; Balis, Dimitris S.; Danckaert, Thomas; Goutail, Florence; Granville, Jose; Hubert, Daan; Keppens, Arno; Lambert, Jean-Christopher; Loyola, Diego; Pommereau, Jean-Pierre; Van Roozendael, Michel; Zehner, Claus

    2018-03-01

    The GOME-type Total Ozone Essential Climate Variable (GTO-ECV) is a level-3 data record, which combines individual sensor products into one single cohesive record covering the 22-year period from 1995 to 2016, generated in the frame of the European Space Agency's Climate Change Initiative Phase II. It is based on level-2 total ozone data produced by the GODFIT (GOME-type Direct FITting) v4 algorithm as applied to the GOME/ERS-2, OMI/Aura, SCIAMACHY/Envisat and GOME-2/Metop-A and Metop-B observations. In this paper we examine whether GTO-ECV meets the specific requirements set by the international climate-chemistry modelling community for decadal stability long-term and short-term accuracy. In the following, we present the validation of the 2017 release of the Climate Research Data Package Total Ozone Column (CRDP TOC) at both level 2 and level 3. The inter-sensor consistency of the individual level-2 data sets has mean differences generally within 0.5 % at moderate latitudes (±50°), whereas the level-3 data sets show mean differences with respect to the OMI reference data record that span between -0.2 ± 0.9 % (for GOME-2B) and 1.0 ± 1.4 % (for SCIAMACHY). Very similar findings are reported for the level-2 validation against independent ground-based TOC observations reported by Brewer, Dobson and SAOZ instruments: the mean bias between GODFIT v4 satellite TOC and the ground instrument is well within 1.0 ± 1.0 % for all sensors, the drift per decade spans between -0.5 % and 1.0 ± 1.0 % depending on the sensor, and the peak-to-peak seasonality of the differences ranges from ˜ 1 % for GOME and OMI to ˜ 2 % for SCIAMACHY. For the level-3 validation, our first goal was to show that the level-3 CRDP produces findings consistent with the level-2 individual sensor comparisons. We show a very good agreement with 0.5 to 2 % peak-to-peak amplitude for the monthly mean difference time series and a negligible drift per decade of the differences in the Northern Hemisphere

  8. New dynamic NNORSY ozone profile climatology

    Science.gov (United States)

    Kaifel, A. K.; Felder, M.; Declercq, C.; Lambert, J.-C.

    2012-01-01

    Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology. The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY) widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors) and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile). The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes) and satellite based (SAGE II, HALOE, and POAM-III) measurements over the years 1995-2007. In total, four different combinations (modes) for input parameters (date, geolocation, total ozone column and temperature profile) are available. The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS) for individual and time series comparisons as well as for analysing the vertical and meridian structure of different modes of

  9. Total ozone column derived from GOME and SCIAMACHY using KNMI retrieval algorithms: Validation against Brewer measurements at the Iberian Peninsula

    Science.gov (United States)

    Antón, M.; Kroon, M.; López, M.; Vilaplana, J. M.; Bañón, M.; van der A, R.; Veefkind, J. P.; Stammes, P.; Alados-Arboledas, L.

    2011-11-01

    This article focuses on the validation of the total ozone column (TOC) data set acquired by the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite remote sensing instruments using the Total Ozone Retrieval Scheme for the GOME Instrument Based on the Ozone Monitoring Instrument (TOGOMI) and Total Ozone Retrieval Scheme for the SCIAMACHY Instrument Based on the Ozone Monitoring Instrument (TOSOMI) retrieval algorithms developed by the Royal Netherlands Meteorological Institute. In this analysis, spatially colocated, daily averaged ground-based observations performed by five well-calibrated Brewer spectrophotometers at the Iberian Peninsula are used. The period of study runs from January 2004 to December 2009. The agreement between satellite and ground-based TOC data is excellent (R2 higher than 0.94). Nevertheless, the TOC data derived from both satellite instruments underestimate the ground-based data. On average, this underestimation is 1.1% for GOME and 1.3% for SCIAMACHY. The SCIAMACHY-Brewer TOC differences show a significant solar zenith angle (SZA) dependence which causes a systematic seasonal dependence. By contrast, GOME-Brewer TOC differences show no significant SZA dependence and hence no seasonality although processed with exactly the same algorithm. The satellite-Brewer TOC differences for the two satellite instruments show a clear and similar dependence on the viewing zenith angle under cloudy conditions. In addition, both the GOME-Brewer and SCIAMACHY-Brewer TOC differences reveal a very similar behavior with respect to the satellite cloud properties, being cloud fraction and cloud top pressure, which originate from the same cloud algorithm (Fast Retrieval Scheme for Clouds from the Oxygen A-Band (FRESCO+)) in both the TOSOMI and TOGOMI retrieval algorithms.

  10. Comparison of Ozone Retrievals from the Pandora Spectrometer System and Dobson Spectrophotometer in Boulder, Colorado

    Science.gov (United States)

    Herman, J.; Evans, R.; Cede, A.; Abuhassan, N.; Petropavlovskikh, I.; McConville, G.

    2015-01-01

    A comparison of retrieved total column ozone (TCO) amounts between the Pandora #34 spectrometer system and the Dobson #061 spectrophotometer from direct-sun observations was performed on the roof of the Boulder, Colorado, NOAA building. This paper, part of an ongoing study, covers a 1-year period starting on 17 December 2013. Both the standard Dobson and Pandora TCO retrievals required a correction, TCO(sub corr) = TCO (1 + C(T)), using a monthly varying effective ozone temperature, T(sub E), derived from a temperature and ozone profile climatology. The correction is used to remove a seasonal difference caused by using a fixed temperature in each retrieval algorithm. The respective corrections C(T(sub E)) are C(sub Pandora) = 0.00333(T(sub E) - 225) and C(sub Dobson) = -0.0013(T(sub E) - 226.7) per degree K. After the applied corrections removed most of the seasonal retrieval dependence on ozone temperature, TCO agreement between the instruments was within 1% for clear-sky conditions. For clear-sky observations, both co-located instruments tracked the day-to-day variation in total column ozone amounts with a correlation of r(exp 2) = 0.97 and an average offset of 1.1 +/- 5.8 DU. In addition, the Pandora TCO data showed 0.3% annual average agreement with satellite overpass data from AURA/OMI (Ozone Monitoring Instrument) and 1% annual average offset with Suomi-NPP/OMPS (Suomi National Polar-orbiting Partnership, the nadir viewing portion of the Ozone Mapper Profiler Suite).

  11. Tropospheric Ozone from the TOMS TDOT (TOMS-Direct-Ozone-in-Troposphere) Technique During SAFARI-2000

    Science.gov (United States)

    Stone, J. B.; Thompson, A. M.; Frolov, A. D.; Hudson, R. D.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    There are a number of published residual-type methods for deriving tropospheric ozone from TOMS (Total Ozone Mapping Spectrometer). The basic concept of these methods is that within a zone of constant stratospheric ozone, the tropospheric ozone column can be computed by subtracting stratospheric ozone from the TOMS Level 2 total ozone column, We used the modified-residual method for retrieving tropospheric ozone during SAFARI-2000 and found disagreements with in-situ ozone data over Africa in September 2000. Using the newly developed TDOT (TOMS-Direct-Ozone-in-Troposphere) method that uses TOMS radiances and a modified lookup table based on actual profiles during high ozone pollution periods, new maps were prepared and found to compare better to soundings over Lusaka, Zambia (15.5 S, 28 E), Nairobi and several African cities where MOZAIC aircraft operated in September 2000. The TDOT technique and comparisons are described in detail.

  12. Secondary maxima in ozone profiles

    Directory of Open Access Journals (Sweden)

    R. Lemoine

    2004-01-01

    Full Text Available Ozone profiles from balloon soundings as well as SAGEII ozone profiles were used to detect anomalous large ozone concentrations of ozone in the lower stratosphere. These secondary ozone maxima are found to be the result of differential advection of ozone-poor and ozone-rich air associated with Rossby wave breaking events. The frequency and intensity of secondary ozone maxima and their geographical distribution is presented. The occurrence and amplitude of ozone secondary maxima is connected to ozone variability and trend at Uccle and account for a large part of the total ozone and lower stratospheric ozone variability.

  13. Observation of enhanced ozone in an electrically active storm over Socorro, NM: Implications for ozone production from corona discharges

    Science.gov (United States)

    Minschwaner, K.; Kalnajs, L. E.; Dubey, M. K.; Avallone, L. M.; Sawaengphokai, P. C.; Edens, H. E.; Winn, W. P.

    2008-09-01

    Enhancements in ozone were observed between about 3 and 10 km altitude within an electrically active storm in central New Mexico. Measurements from satellite sensors and ground-based radar show cloud top pressures between 300 and 150 mb in the vicinity of an ozonesonde launched from Socorro, NM, and heavy precipitation with radar reflectivities exceeding 50 dBZ. Data from a lightning mapping array and a surface electric field mill show a large amount of electrical activity within this thunderstorm. The observed ozone enhancements are large (50% above the mean) and could have resulted from a number of possible processes, including the advection of polluted air from the urban environments of El Paso and Juarez, photochemical production by lightning-generated NOx from aged thunderstorm outflow, downward mixing of stratospheric air, or local production from within the thunderstorm. We find that a large fraction of the ozone enhancement is consistent with local production from corona discharges, either from cloud particles or by corona associated with lightning. The implied global source of ozone from thunderstorm corona discharge is estimated to be 110 Tg O3 a-1 with a range between 40 and 180 Tg O3 a-1. This value is about 21% as large as the estimated ozone production rate from lightning NOx, and about 3% as large as the total chemical production rate of tropospheric ozone. Thus while the estimated corona-induced production of ozone may be significant on local scales, it is unlikely to be as important to the global ozone budget as other sources.

  14. Late spring ultraviolet levels over the United Kingdom and the link to ozone

    Directory of Open Access Journals (Sweden)

    J. Austin

    1999-09-01

    Full Text Available Erythemally-weighted ultraviolet (UVery levels measured over southern England, during anticyclonic weather between 30 April and 2 May, 1997, were almost 50 higher than normally expected for clear skies and were similar to mid-summer values for the first time since measurements began in 1990. Investigation of this episode suggests that a combination of both meteorological and chemical effects were responsible for generating record low ozone amounts for the time of year. Further, comparisons between the A band ultraviolet (315 to 400 nm wavelength amounts, and radiative calculations confirm that the high UVery was primarily due to the reduction in total ozone. These results are contrasted with a similar period for 1998, in which near climatological ozone amounts were measured. The prospects for enhanced UVery levels in future years are briefly reviewed in the light of expected increases in stratospheric halogen levels and greenhouse gases.Key words. Atmospheric composition and structure (middle atmosphere · composition and chemistry · Meterology and atmospheric dynamics (middle atmosphere dynamics; radiative processes

  15. Correlative studies of satellite ozone sensor measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.

    1983-01-01

    Comparisons are made between total ozone measurements made by four satellite ozone sensors (TOMS, SBUV, TOVS and MFR). The comparisons were made during July 1979 when all sensors were operating simultaneously. The TOMS and SBUV sensors were observed to measure less total ozone than the MFR sensor, 10 and 15 Dobson units (DU) respectively. The MFR and TOMS sensors measured less ozone than the TOVS sensor, 19 an 28 DU, respectively. Latitudinal variability of the total ozone comparisons is discussed

  16. Effect of ozone on leaf cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, E S; Thomson, W W; Mudd, J B

    1973-01-01

    The objective of this study was to determine the effects of ozone on membrane lipids and on the electron-density patterns of cell membranes in electron micrographs. Analysis of fatty acids from tobacco leaves fumigated with ozone indicated that there was no significant difference between the ozone-treated and the control plants in the relative amounts of the fatty acids. This suggests that if the primary site of ozone action is unsaturated lipids in membranes then the amounts of affected unsaturated fatty acids are too small to be detected by gas chromatography. In support of this, characteristic electron-microscopic images of membranes are observed in cells of fumigated leaves. However, measurements of the length and width of the chloroplasts and the determination of axial ratios indicated that the ozone treatment resulted in a shrinkage of the chloroplasts. In contrast, mitochondrial changes are apparently explained in terms of ozone-induced swelling. 33 references, 3 figures, 1 table.

  17. OMI/Aura Ozone(O3) Total Column 1-Orbit L2 Swath 13x24 km V003 (OMTO3) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Aura Ozone Monitoring Instrument (OMI) Level-2 Total Column Ozone Data Product OMTO3 (Version 003) is available from the NASA Goddard Earth Sciences Data and...

  18. Study on the Ozonation of Organic Wastes (1)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Hong; Kang, Il Sik; Hong, Dae Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ozone is often used in combination with H{sub 2}O{sub 2}, UV, peroxides, and the catalyst. These combined processes have the purpose to increase OH radicals, so this combination process is called the advanced oxidation process (AOP, Advanced Oxidation Process). In this study, the possibility of the oxidation treatment of LSC Cocktail solution by using a combination of ozone and hydrogen peroxide was investigated. The addition of a suitable amount of hydrogen peroxide increases the efficiency of the oxidation process during ozonation of the organic materials. But on the contrary, the excess addition of hydrogen they can play a role as a scavenger consuming the hydroxyl radicals generated during the ozonation process. So it is very important to find the amount of volume of hydrogen peroxide. The efficiency of oxidation treatment of organic materials is greatly depended on the properties of liquid waste (pH, concentration and chemical type of organics), the process temperature, the flow rate (waste and ozone gas), the ozone concentration, the hydrogen peroxide concentration and the presence or absence of scavengers. In this study, by using an ozone contactor (hydrophobic hollow fiber membrane type), the basic experiments were carried out to evaluate the applicability of ozonation to the organic wastes. First of all, the oxidation treatment was evaluated by ozone alone, and secondly was evaluated according to the changes of the amount of hydrogen peroxide and a pH of wastes.

  19. Study on the Ozonation of Organic Wastes (1)

    International Nuclear Information System (INIS)

    Kim, Ki Hong; Kang, Il Sik; Hong, Dae Seok

    2014-01-01

    Ozone is often used in combination with H 2 O 2 , UV, peroxides, and the catalyst. These combined processes have the purpose to increase OH radicals, so this combination process is called the advanced oxidation process (AOP, Advanced Oxidation Process). In this study, the possibility of the oxidation treatment of LSC Cocktail solution by using a combination of ozone and hydrogen peroxide was investigated. The addition of a suitable amount of hydrogen peroxide increases the efficiency of the oxidation process during ozonation of the organic materials. But on the contrary, the excess addition of hydrogen they can play a role as a scavenger consuming the hydroxyl radicals generated during the ozonation process. So it is very important to find the amount of volume of hydrogen peroxide. The efficiency of oxidation treatment of organic materials is greatly depended on the properties of liquid waste (pH, concentration and chemical type of organics), the process temperature, the flow rate (waste and ozone gas), the ozone concentration, the hydrogen peroxide concentration and the presence or absence of scavengers. In this study, by using an ozone contactor (hydrophobic hollow fiber membrane type), the basic experiments were carried out to evaluate the applicability of ozonation to the organic wastes. First of all, the oxidation treatment was evaluated by ozone alone, and secondly was evaluated according to the changes of the amount of hydrogen peroxide and a pH of wastes

  20. Stratospheric ozone intrusion events and their impacts on tropospheric ozone in the Southern Hemisphere

    Directory of Open Access Journals (Sweden)

    J. W. Greenslade

    2017-09-01

    Full Text Available Stratosphere-to-troposphere transport (STT provides an important natural source of ozone to the upper troposphere, but the characteristics of STT events in the Southern Hemisphere extratropics and their contribution to the regional tropospheric ozone budget remain poorly constrained. Here, we develop a quantitative method to identify STT events from ozonesonde profiles. Using this method we estimate the seasonality of STT events and quantify the ozone transported across the tropopause over Davis (69° S, 2006–2013, Macquarie Island (54° S, 2004–2013, and Melbourne (38° S, 2004–2013. STT seasonality is determined by two distinct methods: a Fourier bandpass filter of the vertical ozone profile and an analysis of the Brunt–Väisälä frequency. Using a bandpass filter on 7–9 years of ozone profiles from each site provides clear detection of STT events, with maximum occurrences during summer and minimum during winter for all three sites. The majority of tropospheric ozone enhancements owing to STT events occur within 2.5 and 3 km of the tropopause at Davis and Macquarie Island respectively. Events are more spread out at Melbourne, occurring frequently up to 6 km from the tropopause. The mean fraction of total tropospheric ozone attributed to STT during STT events is  ∼ 1. 0–3. 5 % at each site; however, during individual events, over 10 % of tropospheric ozone may be directly transported from the stratosphere. The cause of STTs is determined to be largely due to synoptic low-pressure frontal systems, determined using coincident ERA-Interim reanalysis meteorological data. Ozone enhancements can also be caused by biomass burning plumes transported from Africa and South America, which are apparent during austral winter and spring and are determined using satellite measurements of CO. To provide regional context for the ozonesonde observations, we use the GEOS-Chem chemical transport model, which is too coarsely

  1. Estimation of total amounts of anthropogenic radionuclides in the Japan Sea

    International Nuclear Information System (INIS)

    Ito, Toshimichi; Otosaka, Shigeyoshi; Kawamura, Hideyuki

    2007-01-01

    We estimated the total amounts of anthropogenic radionuclides, consisting of 90 Sr, 137 Cs, and 239+240 Pu, in the Japan Sea for the first time based on experimental data on their concentrations in seawater and seabed sediment. The radionuclide inventories in seawater and seabed sediment at each sampling site varied depending on the water depth, with total inventories for 90 Sr, 137 Cs, and 239+240 Pu in the range of 0.52-2.8 kBq m -2 , 0.64-4.1 kBq m -2 , and 27-122 Bq m -2 , respectively. Based on the relationship between the inventories and the water depths, the total amounts in the Japan Sea were estimated to be about 1.2±0.4 PBq for 90 Sr, 1.8±0.7 PBq for 137 Cs, and 69±14 TBq for 239+240 Pu, respectively; the amount ratio, 90 Sr: 137 Cs: 239+240 Pu, was 1.0:1.6:0.059. The amounts of 90 Sr and 137 Cs in the Japan Sea were in balance with those supplied from global fallout, whereas the amount of 239+240 Pu exceeded that supplied by fallout by nearly 40%. These results suggest a preferential accumulation of the plutonium isotopes. The data used in this study were obtained through a wide-area research project, named the 'Japan Sea expeditions (phase I),' covering the Japanese and Russian exclusive economic zones. (author)

  2. Ozone depletion calculations

    International Nuclear Information System (INIS)

    Luther, F.M.; Chang, J.S.; Wuebbles, D.J.; Penner, J.E.

    1992-01-01

    Models of stratospheric chemistry have been primarily directed toward an understanding of the behavior of stratospheric ozone. Initially this interest reflected the diagnostic role of ozone in the understanding of atmospheric transport processes. More recently, interest in stratospheric ozone has arisen from concern that human activities might affect the amount of stratospheric ozone, thereby affecting the ultraviolet radiation reaching the earth's surface and perhaps also affecting the climate with various potentially severe consequences for human welfare. This concern has inspired a substantial effort to develop both diagnostic and prognostic models of stratospheric ozone. During the past decade, several chemical agents have been determined to have potentially significant impacts on stratospheric ozone if they are released to the atmosphere in large quantities. These include oxides of nitrogen, oxides of hydrogen, chlorofluorocarbons, bromine compounds, fluorine compounds and carbon dioxide. In order to assess the potential impact of the perturbations caused by these chemicals, mathematical models have been developed to handle the complex coupling between chemical, radiative, and dynamical processes. Basic concepts in stratospheric modeling are reviewed

  3. SBUV/Nimbus-7 Ozone Profile, Ozone Total Column 1-Orbit L2 200x200 km V008

    Data.gov (United States)

    National Aeronautics and Space Administration — The version 8 SBUV Nimbus-7 ozone data were first released at the 2004 Quadrennial Ozone Symposium on DVD. The DVD contained all of the SBUV/2 data from NOAA-9,...

  4. Ozone Production and Control Strategies for Southern Taiwan

    Science.gov (United States)

    Shiu, C.; Liu, S.; Chang, C.; Chen, J.; Chou, C. C.; Lin, C.

    2006-12-01

    An observation-based modeling (OBM) approach is used to estimate the ozone production efficiency and production rate of O3 (P(O3)) in southern Taiwan. The approach can also provide an indirect estimate of the concentration of OH. Measured concentrations of two aromatic hydrocarbons, i.e. ethylbenzene/m,p-xylene, are used to estimate the degree of photochemical processing and the amounts of photochemically consumed NOx and NMHCs. In addition, a one-dimensional (1d) photochemical model is used to compare with the OBM results. The average ozone production efficiency during the field campaign in Kaohsiung-Pingtung area in Fall 2003 is found to be about 5, comparable to previous works. The relationship of P(O3) with NOx is examined in detail and compared to previous studies. The derived OH concentrations from this approach are in fair agreement with values calculated from the 1d photochemical model. The relationship of total oxidants (e.g. O3+NO2) versus initial NOx and NMHCs suggests that reducing NMHCs are more effective in controlling total oxidants than reducing NOx. For O3 control, reducing NMHC is even more effective than NOx due to the NO titration effect. This observation-based approach provides a good alternative for understanding the production of ozone and formulating ozone control strategy in urban and suburban environment without measurements of peroxy radicals.

  5. Stratospheric ozone profile and total ozone trends derived from the SAGE I and SAGE II data

    Science.gov (United States)

    Mccormick, M. P.; Veiga, Robert E.; Chu, William P.

    1992-01-01

    Global trends in both stratospheric column ozone and as a function of altitude are derived on the basis of SAGE I/II ozone data from the period 1979-1991. A statistical model containing quasi-biennial, seasonal, and semiannual oscillations, a linear component, and a first-order autoregressive noise process was fit to the time series of SAGE I/II monthly zonal mean data. The linear trend in column ozone above 17-km altitude, averaged between 65 deg S and 65 deg N, is -0.30 +/-0.19 percent/yr, or -3.6 percent over the time period February 1979 through April 1991. The data show that the column trend above 17 km is nearly zero in the tropics and increases towards the high latitudes with values of -0.6 percent/yr at 60 deg S and -0.35 percent/yr at 60 deg N. Both these results are in agreement with the recent TOMS results. The profile trend analyses show that the column ozone losses are occurring below 25 km, with most of the loss coming from the region between 17 and 20 km. Negative trend values on the order of -2 percent/yr are found at 17 km in midlatitudes.

  6. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stübi, Rene; Stenke, Andrea; Anderson, John; Bourassa, Adam; Davis, Sean M.; Degenstein, Doug; Frith, Stacey; Froidevaux, Lucien; Roth, Chris; Sofieva, Viktoria; Wang, Ray; Wild, Jeannette; Yu, Pengfei; Ziemke, Jerald R.; Rozanov, Eugene V.

    2018-02-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60-90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  7. Evidence for a Continuous Decline in Lower Stratospheric Ozone Offsetting Ozone Layer Recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stuebi, Rene; Stenke, Andrea; Anderson, John; hide

    2018-01-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective "ozone layer" around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60degS and 60degN outside the polar regions (60-90deg). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60degS and 60degN has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60degS and 60degN. We find that total column ozone between 60degS and 60degN appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  8. Comparison of ultraviolet Bi-directional Reflectance Distribution Function (BRDF) measurements of diffusers used in the calibration of the Total Ozone Mapping Spectrometer (TOMS)

    OpenAIRE

    Butler, J.J.; Park, H.; Barnes, P.Y.; Early, E.A.; Eijk-Olij, C. van; Zoutman, A.E.; Buller-Leeuwen, S. van; Groote Schaarsberg, J.

    2002-01-01

    The measurement and long-term monitoring of global total ozone by ultraviolet albedo measuring satellite instruments require accurate and precise determination of the Bi-directional Reflectance Distribution Function (BRDF) of laboratory-based diffusers used in the pre-launch calibration of those instruments. To assess the ability of laboratories to provide accurate Ultra Violet (UV) diffuse BRDF measurements, a BRDF measurement comparison was initiated by the NASA Total Ozone Mapping Spectrom...

  9. Geophysical validation and long-term consistency between GOME-2/MetOp-A total ozone column and measurements from the sensors GOME/ERS-2, SCIAMACHY/ENVISAT and OMI/Aura

    Directory of Open Access Journals (Sweden)

    M. E. Koukouli

    2012-09-01

    Full Text Available The main aim of the paper is to assess the consistency of five years of Global Ozone Monitoring Experiment-2/Metop-A [GOME-2] total ozone columns and the long-term total ozone satellite monitoring database already in existence through an extensive inter-comparison and validation exercise using as reference Brewer and Dobson ground-based measurements. The behaviour of the GOME-2 measurements is being weighed against that of GOME (1995–2011, Ozone Monitoring Experiment [OMI] (since 2004 and the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY [SCIAMACHY] (since 2002 total ozone column products. Over the background truth of the ground-based measurements, the total ozone columns are inter-evaluated using a suite of established validation techniques; the GOME-2 time series follow the same patterns as those observed by the other satellite sensors. In particular, on average, GOME-2 data underestimate GOME data by about 0.80%, and underestimate SCIAMACHY data by 0.37% with no seasonal dependence of the differences between GOME-2, GOME and SCIAMACHY. The latter is expected since the three datasets are based on similar DOAS algorithms. This underestimation of GOME-2 is within the uncertainty of the reference data used in the comparisons. Compared to the OMI sensor, on average GOME-2 data underestimate OMI_DOAS (collection 3 data by 1.28%, without any significant seasonal dependence of the differences between them. The lack of seasonality might be expected since both the GOME data processor [GDP] 4.4 and OMI_DOAS are DOAS-type algorithms and both consider the variability of the stratospheric temperatures in their retrievals. Compared to the OMI_TOMS (collection 3 data, no bias was found. We hence conclude that the GOME-2 total ozone columns are well suitable to continue the long-term global total ozone record with the accuracy needed for climate monitoring studies.

  10. Interrelation of changes in the total content of ozone in the northern hemisphere with the velocity of the stratosphere circumpolar vortex

    Science.gov (United States)

    Kolyada, Maria N.; Kashkin, Valentin B.

    2004-12-01

    Considering the high significance of the ozone for preservation and maintenance of the biosphere and the temperature balance of the atmosphere the investigation of the ozone layer is a very important part of the investigation of the planet"s atmosphere. In this work results of investigations of TOC variability in the Northern Hemisphere and the influence of variability of the circumpolar vortex rotation velocity on the ozone layer are presented. Mean values of total ozone concentration in the Northern Hemisphere (by satellite data) and rotation velocities of the circumpolar vortex are calculated for each month from February to April during 1998-2004. Also in this work the mechanism of the influence of the natural factors on TOC variability solar activity during the spring is suggested.

  11. Late spring ultraviolet levels over the United Kingdom and the link to ozone

    Directory of Open Access Journals (Sweden)

    J. Austin

    Full Text Available Erythemally-weighted ultraviolet (UVery levels measured over southern England, during anticyclonic weather between 30 April and 2 May, 1997, were almost 50 higher than normally expected for clear skies and were similar to mid-summer values for the first time since measurements began in 1990. Investigation of this episode suggests that a combination of both meteorological and chemical effects were responsible for generating record low ozone amounts for the time of year. Further, comparisons between the A band ultraviolet (315 to 400 nm wavelength amounts, and radiative calculations confirm that the high UVery was primarily due to the reduction in total ozone. These results are contrasted with a similar period for 1998, in which near climatological ozone amounts were measured. The prospects for enhanced UVery levels in future years are briefly reviewed in the light of expected increases in stratospheric halogen levels and greenhouse gases.

    Key words. Atmospheric composition and structure (middle atmosphere · composition and chemistry · Meterology and atmospheric dynamics (middle atmosphere dynamics; radiative processes

  12. Total ozone trends over the USA during 1979-1991 from Dobson spectrophotometer observations

    Science.gov (United States)

    Komhyr, Walter D.; Grass, Robert D.; Koenig, Gloria L.; Quincy, Dorothy M.; Evans, Robert D.; Leonard, R. Kent

    1994-01-01

    Ozone trends for 1979-1991, determined from Dobson spectrophotometer observations made at eight stations in the United States, are augmented with trend data from four foreign cooperative stations operated by NOAA/CMDL. Results are based on provisional data archived routinely throughout the years at the World Ozone Data Center in Toronto, Canada, with calibration corrections applied to some of the data. Trends through 1990 exhibit values of minus 0.3 percent to minus 0.5 percent yr(exp -1) at mid-to-high latitudes in the northern hemisphere. With the addition of 1991 data, however, the trends become less negative, indicating that ozone increased in many parts of the world during 1991. Stations located within the plus or minus 20 deg N-S latitude band exhibit no ozone trends. Early 1992 data show decreased ozone values at some of the stations. At South Pole, Antarctica, October ozone values have remained low during the past 3 years.

  13. SBUV2/NOAA-09 Ozone Profile, Ozone Total Column 1-Orbit L2 200x200 km V008

    Data.gov (United States)

    National Aeronautics and Space Administration — The version 8 SBUV/2 NOAA-9 ozone data were first released at the 2004 Quadrennial Ozone Symposium on DVD. The DVD contained all of the SBUV/2 data from NOAA-9,...

  14. SBUV2/NOAA-16 Ozone Profile, Ozone Total Column 1-Orbit L2 200x200 km V008

    Data.gov (United States)

    National Aeronautics and Space Administration — The version 8 SBUV/2 NOAA-16 ozone data were first released at the 2004 Quadrennial Ozone Symposium on DVD. The DVD contained all of the SBUV/2 data from NOAA-9,...

  15. Are we approaching an Arctic ozone hole

    International Nuclear Information System (INIS)

    Braathen, Geir

    1999-01-01

    Observations during the last decade in the Arctic areas mainly made by satellite, on the ground and by probes and sensors in the stratosphere are presented. Future perspectives are deducted from the results. Factors that may influence the ozone layer negatively are: Emission rate of ozone destroying compounds, the rapidly increasing use of some substitutes, increased concentrations of steam from aeroplanes and increased amount of methane, decreasing temperature in the stratosphere due to increasing amounts of climatic gases, large volcanic eruptions and altered timing for the polar whirl dissolution. It is concluded that the ozone reduction will be larger than observed at present in the next 10 to 20 years

  16. Importance of energetic solar protons in ozone depletion

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, J A.E.; Scourfield, M W.J. [Natal Univ., Durban (South Africa). Space Physics Research Inst.

    1991-07-11

    CHLORINE-catalysed depletion of the stratospheric ozone layer has commanded considerable attention since 1985, when Farman et al. observed a decrease of 50% in the total column ozone over Antarctica in the austral spring. Here we examine the depletion of stratospheric ozone caused by the reaction of ozone with nitric oxide generated by energetic solar protons, associated with solar flares. During large solar flares in March 1989, satellite observations indicated that total column ozone was depleted by {approx} 9% over {approx} 20% of the total area between the South Pole and latitude 70{sup o}S. Chlorine-catalysed ozone depletion takes place over a much larger area, but our results indicate that the influence of solar protons on atmospheric ozone concentrations should not be ignored. (author).

  17. Importance of energetic solar protons in ozone depletion

    International Nuclear Information System (INIS)

    Stephenson, J.A.E.; Scourfield, M.W.J.

    1991-01-01

    CHLORINE-catalysed depletion of the stratospheric ozone layer has commanded considerable attention since 1985, when Farman et al. observed a decrease of 50% in the total column ozone over Antarctica in the austral spring. Here we examine the depletion of stratospheric ozone caused by the reaction of ozone with nitric oxide generated by energetic solar protons, associated with solar flares. During large solar flares in March 1989, satellite observations indicated that total column ozone was depleted by ∼ 9% over ∼ 20% of the total area between the South Pole and latitude 70 o S. Chlorine-catalysed ozone depletion takes place over a much larger area, but our results indicate that the influence of solar protons on atmospheric ozone concentrations should not be ignored. (author)

  18. Extreme events in total ozone over Arosa: Application of extreme value theory and fingerprints of atmospheric dynamics and chemistry and their effects on mean values and long-term changes

    Science.gov (United States)

    Rieder, Harald E.; Staehelin, Johannes; Maeder, Jörg A.; Peter, Thomas; Ribatet, Mathieu; Davison, Anthony C.; Stübi, Rene; Weihs, Philipp; Holawe, Franz

    2010-05-01

    In this study tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007) are applied for the first time in the field of stratospheric ozone research, as statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not address the internal data structure concerning extremes adequately. The study illustrates that tools based on extreme value theory are appropriate to identify ozone extremes and to describe the tails of the world's longest total ozone record (Arosa, Switzerland - for details see Staehelin et al., 1998a,b) (Rieder et al., 2010a). A daily moving threshold was implemented for consideration of the seasonal cycle in total ozone. The frequency of days with extreme low (termed ELOs) and extreme high (termed EHOs) total ozone and the influence of those on mean values and trends is analyzed for Arosa total ozone time series. The results show (a) an increase in ELOs and (b) a decrease in EHOs during the last decades and (c) that the overall trend during the 1970s and 1980s in total ozone is strongly dominated by changes in these extreme events. After removing the extremes, the time series shows a strongly reduced trend (reduction by a factor of 2.5 for trend in annual mean). Furthermore, it is shown that the fitted model represents the tails of the total ozone data set with very high accuracy over the entire range (including absolute monthly minima and maxima). Also the frequency distribution of ozone mini-holes (using constant thresholds) can be calculated with high accuracy. Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight in time series properties. Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (e.g. Gunung Agung, El Chich

  19. Quality assessment of the Ozone_cci Climate Research Data Package (release 2017 – Part 1: Ground-based validation of total ozone column data products

    Directory of Open Access Journals (Sweden)

    K. Garane

    2018-03-01

    Full Text Available The GOME-type Total Ozone Essential Climate Variable (GTO-ECV is a level-3 data record, which combines individual sensor products into one single cohesive record covering the 22-year period from 1995 to 2016, generated in the frame of the European Space Agency's Climate Change Initiative Phase II. It is based on level-2 total ozone data produced by the GODFIT (GOME-type Direct FITting v4 algorithm as applied to the GOME/ERS-2, OMI/Aura, SCIAMACHY/Envisat and GOME-2/Metop-A and Metop-B observations. In this paper we examine whether GTO-ECV meets the specific requirements set by the international climate–chemistry modelling community for decadal stability long-term and short-term accuracy. In the following, we present the validation of the 2017 release of the Climate Research Data Package Total Ozone Column (CRDP TOC at both level 2 and level 3. The inter-sensor consistency of the individual level-2 data sets has mean differences generally within 0.5 % at moderate latitudes (±50°, whereas the level-3 data sets show mean differences with respect to the OMI reference data record that span between −0.2 ± 0.9 % (for GOME-2B and 1.0 ± 1.4 % (for SCIAMACHY. Very similar findings are reported for the level-2 validation against independent ground-based TOC observations reported by Brewer, Dobson and SAOZ instruments: the mean bias between GODFIT v4 satellite TOC and the ground instrument is well within 1.0 ± 1.0 % for all sensors, the drift per decade spans between −0.5 % and 1.0 ± 1.0 % depending on the sensor, and the peak-to-peak seasonality of the differences ranges from ∼ 1 % for GOME and OMI to  ∼ 2 % for SCIAMACHY. For the level-3 validation, our first goal was to show that the level-3 CRDP produces findings consistent with the level-2 individual sensor comparisons. We show a very good agreement with 0.5 to 2 % peak-to-peak amplitude for the monthly mean difference time series and a

  20. OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2 Total Column Ozone Data Product OMTO3 (Version 003) is made available (http://disc.gsfc.nasa.gov/Aura/OMI/omto3_v003.shtml) from the NASA...

  1. Milk intake in kits: not only the total amount matters

    Directory of Open Access Journals (Sweden)

    Alberto Arnau Bonachera

    2017-06-01

    Full Text Available The aim of this work was to identify milk intake variation patterns in kits throughout lactation, to evaluate their permanent maternal component and their relationships with the performance of kits before and after weaning. To achieve this goal, we used 73 rabbit does, controlled between the 1st and the 4th lactation, which kindled 229 litters with a total of 2225 kits. The daily milk intake records per young rabbit were analysed using a principal component analysis (PCA. We found that 72.3% of the variability was explained by the first 3 principal components (PCs. PC1 explained 46.4% of the total variability, was associated with the total amount of milk intake during lactation and presented a repeatability of 0.27 (P0.05. This component was little related to performance traits. Therefore, it seems that milk plays 2 different roles at the beginning of feed intake; the most important would affect development of the kits and thus is related with high intake. The second one, for a given total amount of milk intake during lactation, would create a kind of competition between milk and feed intake at the end of lactation. The effects of both components still persist during the growing period and seem to be moderately affected by the mother.

  2. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    Science.gov (United States)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  3. Principal component analysis and neurocomputing-based models for total ozone concentration over different urban regions of India

    Science.gov (United States)

    Chattopadhyay, Goutami; Chattopadhyay, Surajit; Chakraborthy, Parthasarathi

    2012-07-01

    The present study deals with daily total ozone concentration time series over four metro cities of India namely Kolkata, Mumbai, Chennai, and New Delhi in the multivariate environment. Using the Kaiser-Meyer-Olkin measure, it is established that the data set under consideration are suitable for principal component analysis. Subsequently, by introducing rotated component matrix for the principal components, the predictors suitable for generating artificial neural network (ANN) for daily total ozone prediction are identified. The multicollinearity is removed in this way. Models of ANN in the form of multilayer perceptron trained through backpropagation learning are generated for all of the study zones, and the model outcomes are assessed statistically. Measuring various statistics like Pearson correlation coefficients, Willmott's indices, percentage errors of prediction, and mean absolute errors, it is observed that for Mumbai and Kolkata the proposed ANN model generates very good predictions. The results are supported by the linearly distributed coordinates in the scatterplots.

  4. The behaviour of stratospheric and upper tropospheric ozone in high and mid latitudes; the role of ozone as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Kyroe, M; Rummukainen, M; Kivi, R; Turunen, T; Karhu, J [Finnish Meteorological Inst., Sodankylae (Finland); Taalas, P [Finnish Meteorological Inst., Helsinki (Finland)

    1997-12-31

    During the past few years, the dual role that ozone plays in climate change has been becoming increasingly obvious. First, continuous thinning of the ozone layer has been evident, even in the high and middle latitudes in the northern hemisphere. Secondly, ozone is also a greenhouse gas, affecting radiative transfer. Increases in tropospheric ozone have a positive forcing, whereas decreases in stratospheric ozone cause a negative forcing. During the last six years, measurements on total ozone and the vertical distribution of ozone have been performed at the Sodankylae Observatory. At Jokioinen Observatory, measurements on total ozone have been performed since 1990 and measurements on the vertical distribution of ozone since 1993. The overall project has focused on extending the national data series on total ozone and the vertical distribution of ozone. At the same time, the study has contributed to the study of interannual variability of the ozone layer. This SILMU project took part in the large-scale research activities, in addition to performing national studies. The results confirm that there has been fast chemical ozone destruction in the high latitudes in the northern hemisphere. This was particularly evident in the last two winters, 1994/95 and 1995/96. The new data also allows better trend analyses to be made on ozone in high and mid latitudes

  5. The behaviour of stratospheric and upper tropospheric ozone in high and mid latitudes; the role of ozone as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Kyroe, M.; Rummukainen, M.; Kivi, R.; Turunen, T.; Karhu, J. [Finnish Meteorological Inst., Sodankylae (Finland); Taalas, P. [Finnish Meteorological Inst., Helsinki (Finland)

    1996-12-31

    During the past few years, the dual role that ozone plays in climate change has been becoming increasingly obvious. First, continuous thinning of the ozone layer has been evident, even in the high and middle latitudes in the northern hemisphere. Secondly, ozone is also a greenhouse gas, affecting radiative transfer. Increases in tropospheric ozone have a positive forcing, whereas decreases in stratospheric ozone cause a negative forcing. During the last six years, measurements on total ozone and the vertical distribution of ozone have been performed at the Sodankylae Observatory. At Jokioinen Observatory, measurements on total ozone have been performed since 1990 and measurements on the vertical distribution of ozone since 1993. The overall project has focused on extending the national data series on total ozone and the vertical distribution of ozone. At the same time, the study has contributed to the study of interannual variability of the ozone layer. This SILMU project took part in the large-scale research activities, in addition to performing national studies. The results confirm that there has been fast chemical ozone destruction in the high latitudes in the northern hemisphere. This was particularly evident in the last two winters, 1994/95 and 1995/96. The new data also allows better trend analyses to be made on ozone in high and mid latitudes

  6. Particle Events as a Possible Source of Large Ozone Loss during Magnetic Polarity Transitions

    Science.gov (United States)

    vonKoenig, M.; Burrows, J. P.; Chipperfield, M. P.; Jackman, C. H.; Kallenrode, M.-B.; Kuenzi, K. F.; Quack, M.

    2002-01-01

    The energy deposition in the mesosphere and stratosphere during large extraterrestrial charged particle precipitation events has been known for some time to contribute to ozone losses due to the formation of potential ozone destroying species like NO(sub x), and HO(sub x). These impacts have been measured and can be reproduced with chemistry models fairly well. In the recent past, however, even the impact of the largest solar proton events on the total amount of ozone has been small compared to the dynamical variability of ozone, and to the anthropogenic induced impacts like the Antarctic 'ozone hole'. This is due to the shielding effect of the magnetic field. However, there is evidence that the earth's magnetic field may approach a reversal. This could lead to a decrease of magnetic field strength to less than 25% of its usual value over a period of several centuries . We show that with realistic estimates of very large solar proton events, scenarios similar to the Antarctic ozone hole of the 1990s may occur during a magnetic polarity transition.

  7. New Directions: Ozone-initiated reaction products indoors may be more harmful than ozone itself

    Science.gov (United States)

    Weschler, Charles J.

    2004-10-01

    Epidemiological studies have found associations between ozone concentrations measured at outdoor monitoring stations and certain adverse health outcomes. As a recent example, Gent et al. (2003, Journal of the American Medical Association 290, 1859-1867) have observed an association between ozone levels and respiratory symptoms as well as the use of maintenance medication by 271 asthmatic children living in Connecticut and the Springfield area of Massachusetts. In another example, Gilliland et al. (2001, Epidemiology 12, 43-54) detected an association between short-term increases in ozone levels and increased absences among 4th grade students from 12 southern California communities during the period from January to June 1996. Although children may spend a significant amount of time outdoors, especially during periods when ozone levels are elevated, they spend a much larger fraction of their time indoors. I hypothesize that exposure to the products of ozone-initiated indoor chemistry is more directly responsible for the health effects observed in the cited epidemiological studies than is exposure to outdoor ozone itself.

  8. Heterodyne spectrophotometry of ozone in the 9.6-micron band using a tunable diode laser

    Science.gov (United States)

    Mcelroy, C. T.; Goldman, A.; Fogal, P. F.; Murcray, D. G.

    1990-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (0.0003/cm) solar spectra in the 9.6-micron ozone band. Observations have shown that a signal-to-noise ratio of 120:1 (about 30 percent of theoretical) for an integration time of 1/8 s can be achieved at a resolution of 0.0013 wave numbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that measured at the nearby NOAA ozone monitoring facility in Boulder, Colorado. Line positions for several ozone lines in the spectral region 996-997/cm are reported. Recent improvements have produced a signal-to-noise ratio of 95:1 (about 40 percent of theoretical) at 0.0003/cm and extended the range of wavelengths which can be observed.

  9. Monitoring of the ozone layer. Annual report 1997

    International Nuclear Information System (INIS)

    Braathen, Geir O.; Svenoee, Trond; Hansen, Georg H.; Dahlback, Arne

    1998-10-01

    The three stations in Oslo, Tromsoe and at Ny-Aalesund at Svalbard measure the total ozone levels and these show low monthly averages in 1997 compared to the long-term monthly averages. In Oslo the averages for January to April were 3-13 % below those from 1979 to 1989. Detailed measurements are presented. Analyses based on model calculations and measurements both in Norway and at other places are presented and show the low spring ozone values largely to be a result of chemical oxone decomposition. Particularly in 1997 the polar whirl lasted longer than usual. This lead to reduced ozone transport from the equator to the poles which normally is strongest in spring. At the same time the ozone was decomposed through natural processes where NO x is involved. The report concludes that the extremely low values registered are caused by a combination of chemical decomposition due to chlorofluorocarbons and halon and the particularly dynamic meteorological situation. A trend analysis for the period of 1979 to 1997 was carried out. The trend has been declining unevenly. In Oslo, Tromsoe and Ny-Aalesund the UV radiation from the sun is continually measured using GUV instrumentation. The measurements confirm that the main factors influencing the UV level are the height of the sun, the amount of clouds, the thickness of the ozone layer and the reflection properties at the earth surface. Monthly radiation doses are presented as well. Both at the Oslo and Tromsoe universities two ozone layer measuring instruments of the Dobson and Brewer types, are used. Instrumental comparisons are made. From the Bjoernoeya and the Gardermoen there are regularly lifted balloons which may reach a 35 km altitude carrying ozone probes. The ozone altitude distribution is registered. Similar measurements in the Antarctic show that the yearly ozone decomposition from September to November occurs at the heights of 14 to 24 km. Studies show there is extensive ozone decomposition in the Arctic as well

  10. Cosmic rays and total ozone at higher middle latitudes

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Križan, Peter; Kudela, K.

    2003-01-01

    Roč. 31, č. 9 (2003), s. 2139-2144 ISSN 0273-1177 R&D Projects: GA AV ČR KSK3012103 Keywords : cosmic rays * ozone Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.483, year: 2003

  11. Antarctic ozone loss in 1989-2010: evidence for ozone recovery?

    Science.gov (United States)

    Kuttippurath, J.; Lefèvre, F.; Pommereau, J.-P.; Roscoe, H. K.; Goutail, F.; Pazmiño, A.; Shanklin, J. D.

    2012-04-01

    We present a detailed estimation of chemical ozone loss in the Antarctic polar vortex from 1989 to 2010. The analyses include ozone loss estimates for 12 Antarctic ground-based (GB) stations. All GB observations show minimum ozone in the late September-early October period. Among the stations, the lowest minimum ozone values are observed at South Pole and the highest at Dumont d'Urville. The ozone loss starts by mid-June at the vortex edge and then progresses towards the vortex core with time. The loss intensifies in August-September, peaks by the end of September-early October, and recovers thereafter. The average ozone loss in the Antarctic is revealed to be about 33-50% in 1989-1992 in agreement with the increase in halogens during this period, and then stayed at around 48% due to saturation of the loss. The ozone loss in the warmer winters (e.g. 2002, and 2004) is lower (37-46%) and in the colder winters (e.g. 2003, and 2006) is higher (52-55%). Because of small inter-annual variability, the correlation between ozone loss and the volume of polar stratospheric clouds yields ~0.51. The GB ozone and ozone loss values are in good agreement with those found from the space-based observations of the Total Ozone Mapping Spectrometer/Ozone Monitoring Instrument (TOMS/OMI), the Global Ozone Monitoring Experiment (GOME), the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and the Aura Microwave Limb Sounder (MLS), where the differences are within ±5% and are mostly within the error bars of the measurements. The piece-wise linear trends computed from the September-November vortex average GB and TOMS/OMI ozone show about -4 to -5.6 DU (Dobson Unit) yr-1 in 1989-1996 and about +1 DU yr-1 in 1997-2010. The trend during the former period is significant at 95% confidence intervals, but the trend in 1997-2010 is significant only at 85% confidence intervals. Our analyses suggest a period of about 9-10 yr to get the first detectable ozone

  12. Possible changes in the dose of biologically active ultraviolet radiation received by the biosphere in the summertime Arctic due to total ozone interannual variability

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, Aleksandr N. (Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation))

    1994-12-01

    Data for total ozone measurements since 1972 from the world ozone measuring network have been analyzed to study ozone interannual variability and estimate its possible effect on the UV-B dose received by the arctic biosphere. Possible interannual changes in the UV-B dose received by DNA associated with overall interannual ozone variability, as well as with the quasi-biennial oscillation (QBO) in total ozone were computed for different summer months. In general, the largest interannual variations in UV-B dose may occur in the Russian Arctic, whereas the possible variations in the Canadian Arctic are the smallest. Overall variations in the UV-B dose received by DNA can exceed 25% (2[sigma] criterion) in the Taimyr and Severnaya Zemlya for June and July, and 30% in the Laptev Sea for August. In the European sector of the Arctic, the possible variations are greater than 10%, and can exceed 15% in the north Norwegian Sea for July and 20% in Spitsbergen for August. Possible overall variations in the Canadian Arctic and Alaska are [<=]10%, reaching 15% in Alaska for August, however. The total ozone QBO can also cause essential and (statistically) predicted changes in UV-B radiation. In general, the UV-B dose received by DNA is found to be greater in the Arctic during the westerly phase of the QBO of the equatorial stratospheric wind at 50 mb level than during the easterly phase. The difference can reach or exceed 15% (relative to the mean value) in Taimyr for June and in Severnaya Zemlya for July and August. In northern Europe and Iceland, the difference can reach 10% for August. In the Canadian Arctic, the QBO-related effect is small. In Alaska, the appropriate difference in UV-B dose has an opposite sign for August, exceeding 5% in magnitude

  13. OMI/Aura Ozone (O3) Total Column Daily L2 Global 0.25 deg Lat/Lon Grid V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2G Total Column Ozone Data Product OMTO3G (Version 003) is made available ( http://disc.gsfc.nasa.gov/Aura/OMI/omto3g_v003.shtml ) from the NASA...

  14. Degradation of 4-chlorophenol by ozonation, γ radiation as well as ozonation combined with γ radiation

    International Nuclear Information System (INIS)

    Hu, J.; Wang, J.L.

    2005-01-01

    The radiolysis of aqueous 4-chlorophenol (4-CP) by gamma radiation in the presence of air and ozone was investigated. The 4-CP degradation, release of chloride ion, UV absorption spectrum, total organic carbon (TOC) and adsorbable organic halogens (AOX) was measured. Under the conditions of synergistic effect of ozone and radiation a complete degradation of 100 mg/L 4-CP was obtained at a dose of 6 kGy, without ozone the 4-chlorophenol was completely decomposed at 15 kGy. The total organic carbon (TOC) was reduced by 26% when ionizing radiation (at 15 kGy) combined with ozonation, and by 17% without ozone, respectively. Analysis of intermediate products resulting from synergistic effect of ozone and radiation of 4-CP was performed by using the GC/MS method. Some primary influencing factors such as irradiation time and initial 4-CP concentration were also discussed. The results showed that the degradation of 4-chlorophenol could described by first-order reaction kinetic model. There is potential for combination of irradiation with ozonation, which can remarkably reduce the irradiation dose increase the degradation efficiency of 4-CP.

  15. Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2005-01-01

    Full Text Available A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM ECHAM4.L39(DLR/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropics after volcanic eruptions are modeled. In order to understand the resulting effects of the water vapor changes on lower stratospheric ozone chemistry, different perturbation simulations were performed with the CCM ECHAM4.L39(DLR/CHEM feeding the water vapor perturbations only to the chemistry part. Two different long-term perturbations of lower stratospheric water vapor, +1 ppmv and +5 ppmv, and a short-term perturbation of +2 ppmv with an e-folding time of two months were applied. An additional stratospheric water vapor amount of 1 ppmv results in a 5–10% OH increase in the tropical lower stratosphere between 100 and 30 hPa. As a direct consequence of the OH increase the ozone destruction by the HOx cycle becomes 6.4% more effective. Coupling processes between the HOx-family and the NOx/ClOx-family also affect the ozone destruction by other catalytic reaction cycles. The NOx cycle becomes 1.6% less effective, whereas the effectiveness of the ClOx cycle is again slightly enhanced. A long-term water vapor increase does not only affect gas-phase chemistry, but also heterogeneous ozone chemistry in polar regions. The model results indicate an enhanced heterogeneous ozone depletion during antarctic spring due to a longer PSC existence period. In contrast, PSC formation in the northern hemisphere polar vortex and therefore heterogeneous ozone depletion during arctic spring are not affected by the water vapor increase, because of the less PSC activity. Finally, this study shows that 10% of the global total ozone decline in the transient model run

  16. Solar dynamics influence on the atmospheric ozone

    International Nuclear Information System (INIS)

    Gogosheva, T.; Grigorieva, V.; Mendeva, B.; Krastev, D.; Petkov, B.

    2007-01-01

    A response of the atmospheric ozone to the solar dynamics has been studied using the total ozone content data, taken from the satellite experiments GOME on ERS-2 and TOMS-EP together with data obtained from the ground-based spectrophotometer Photon operating in Stara Zagora, Bulgaria during the period 1999-2005. We also use data from surface ozone observations performed in Sofia, Bulgaria. The solar activity was characterized by the sunspot daily numbers W, the solar radio flux at 10.7 cm (F10.7) and the MgII wing-to-core ratio solar index. The impact of the solar activity on the total ozone has been investigated analysing the ozone response to sharp changes of these parameters. Some of the examined cases showed a positive correlation between the ozone and the solar parameters, however, a negative correlation in other cases was found. There were some cases when the sharp increases of the solar activity did not provoke any ozone changes. The solar radiation changes during an eclipse can be considered a particular case of the solar dynamics as this event causes a sharp change of irradiance within a comparatively short time interval. The results of both - the total and surface ozone measurements carried out during the eclipses on 11 August 1999, 31 May 2003 and 29 March 2006 are presented. It was found that the atmospheric ozone behavior shows strong response to the fast solar radiation changes which take place during solar eclipse. (authors)

  17. Influence of ozone on RNA and protein content of Lemna minor L

    Energy Technology Data Exchange (ETDEWEB)

    Craker, L E

    1972-01-01

    The amount of RNA and protein in Lemna minor L. plants decreased after exposure to ozone, as compared with control plants receiving no ozone treatment. Differences in RNA and protein content between control and ozone-treated Lemna plants were detectable immediately following ozone treatments and remained throughout the 24 h sampling time.

  18. Assessment of crop yield losses in Punjab and Haryana using two years of continuous in-situ ozone measurements

    Science.gov (United States)

    Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.

    2015-01-01

    In this study we use a high quality dataset of in-situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We inter-compare crop yield loss estimates according to different exposure metrics such as AOT40 and M7 for the two major crop growing seasons of Kharif (June-October) and Rabi (November-April) and establish a new crop yield exposure relationship for South Asian wheat and rice cultivars. These are a factor of two more sensitive to ozone induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27-41% for wheat, 21-26% for rice, 9-11% for maize and 47-58% for cotton. Crop production losses for wheat amounted to 20.8 million t in fiscal year 2012-2013 and 10.3 million t in fiscal year 2013-2014 for Punjab and Haryana jointly. Crop production losses for rice totalled 5.4 million t in fiscal year 2012-2013 and 3.2 million t year 2013-2014 for Punjab and Haryana jointly. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice/wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. Mitigation of ozone related crop production losses in Punjab and Haryana alone could provide >50% of the wheat and ~10% of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 billion in the fiscal year 2012-2013 and USD 3.7 billion in the fiscal year 2013-2014. This economic loss estimate represents a very conservative lower limit based on the minimum support price of the crop, which is lower than the actual production costs. The upper limit for ozone related crop yield losses in entire India currently amounts to 3.5-20% of India's GDP. Mitigation of high surface ozone

  19. ROCOZ-A (improved rocket launched ozone sensor) for middle atmosphere ozone measurements

    International Nuclear Information System (INIS)

    Lee, H.S.; Parsons, C.L.

    1987-01-01

    An improved interference filter based ultraviolet photometer (ROCOZ-A) for measuring stratospheric ozone is discussed. The payload is launched aboard a Super-Loki to a typical apogee of 70 km. The instrument measures the solar ultraviolet irradiance as it descends on a parachute. The total cumulative ozone is then calculated based on the Beer-Lambert law. The cumulative ozone precision measured in this way is 2.0% to 2.5% over an altitude range of 20 and 55 km. Results of the intercomparison with the SBUV overpass data and ROCOZ-A data are also discussed

  20. Effects of local meteorology and aerosols on ozone and nitrogen dioxide retrievals from OMI and pandora spectrometers in Maryland, USA during DISCOVER-AQ 2011.

    Science.gov (United States)

    Reed, Andra J; Thompson, Anne M; Kollonige, Debra E; Martins, Douglas K; Tzortziou, Maria A; Herman, Jay R; Berkoff, Timothy A; Abuhassan, Nader K; Cede, Alexander

    An analysis is presented for both ground- and satellite-based retrievals of total column ozone and nitrogen dioxide levels from the Washington, D.C., and Baltimore, Maryland, metropolitan area during the NASA-sponsored July 2011 campaign of D eriving I nformation on S urface CO nditions from Column and VER tically Resolved Observations Relevant to A ir Q uality (DISCOVER-AQ). Satellite retrievals of total column ozone and nitrogen dioxide from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used, while Pandora spectrometers provide total column ozone and nitrogen dioxide amounts from the ground. We found that OMI and Pandora agree well (residuals within ±25 % for nitrogen dioxide, and ±4.5 % for ozone) for a majority of coincident observations during July 2011. Comparisons with surface nitrogen dioxide from a Teledyne API 200 EU NO x Analyzer showed nitrogen dioxide diurnal variability that was consistent with measurements by Pandora. However, the wide OMI field of view, clouds, and aerosols affected retrievals on certain days, resulting in differences between Pandora and OMI of up to ±65 % for total column nitrogen dioxide, and ±23 % for total column ozone. As expected, significant cloud cover (cloud fraction >0.2) was the most important parameter affecting comparisons of ozone retrievals; however, small, passing cumulus clouds that do not coincide with a high (>0.2) cloud fraction, or low aerosol layers which cause significant backscatter near the ground affected the comparisons of total column nitrogen dioxide retrievals. Our results will impact post-processing satellite retrieval algorithms and quality control procedures.

  1. TOMS/Earth Probe Total Column Ozone Daily L3 Global 1x1.25 deg Lat/Lon Grid V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Earth Probe Total Column Ozone Daily L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. (The shortname for this...

  2. The use of ozone in an artificial seawater environment and its ability to degrade Gymnodinium breve toxins

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.R.

    1991-01-01

    The objectives of this research were to establish the practicality of currently used oxidant tests for ozone-treated artificial seawater and to determine the effectiveness of using ozone to reduce toxins associated with Gymnodinium breve, the red tide-causing dinoflagellate found in the Gulf of Mexico off the coast of Florida. In addition to its beneficial role, some emphasis was placed on ascertaining if any harmful by-products could be formed during the ozonation process. Three tests using amperometric titration, potassium iodide (KI) and N,N-diethyl-p-phenylene-diamine (DPD) were performed to determine their ability to detect ozone-produced oxidants in various solutions. These methods yielded different results when bromine and ammonia concentrations were varied in an artificial seawater (ASW) environment. The KI test yielded up to 100 percent higher estimates for each sample than did the amperometric and DPD tests. To test for the possible production of harmful by-products during the ozonation process, ASW samples were spiked with 1 gram of hesperetin. In experiments where the seawater mix was exposed to 27 ppm of ozone prior to the introduction of the organic precursor, small but measurable amounts of tribromomethane were detected via gas chromatography/mass spectroscopy. As the ozone dose was increased to 135 ppm, the recoverable levels of tribromomethane increased. When G. breve toxins were exposed to ozone treatment, samples displayed a three log reduction in the total amount of toxin recovered after ten minutes. Reduction in toxin levels directly correlated with reduction of toxicity as determined by a fish bioassay. It is significant to report that even after 10 minutes of ozonation, comparable to dose levels of that might be used in a commercial depuration facility, some toxins were still recoverable by HPLC analysis.

  3. Ozone exposure, uptake, and response of different-sized black cherry trees

    Science.gov (United States)

    Todd S. Frederickson; John M. Skelly; Kim C. Steiner; Thomas E. Kolb

    1996-01-01

    Differences in exposure, uptake and relative sensitivity to ozone between seedling, sapling, and canopy black cherry (Prunus serotina Ehrh.) trees were characterized during two growing seasons in north central Pennsylvania. Open-grown trees of all sizes received a similar amount of ozone exposure. Seedlings had greater foliar ozone injury, expressed...

  4. Oxidation of Ce(III) in Foam Decontaminant by Ozone

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chong Hun; Yoon, I. H.; Choi, W. K.; Moon, J. K.; Yang, H. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, J. S. [Gachon University, Seongnam (Korea, Republic of)

    2016-10-15

    A nanoparticle-based foam decontaminant is composed of a surfactant and nanoparticles for the generation and maintenance of foam, and a chemical decontamination agent made of Ce(IV) dissolved in nitric acid. Ce(IV) will be reduced to Ce(III) through the decontamination process. Oxidizing cerium(III) can be reused as a decontamination agent, Ce(IV). Oxidation treatment technology by ozone uses its strong oxidizing power. It can be regarded as an environmentally friendly process, because ozone cannot be stored and transported like other industrial gases (because it quickly decays into diatomic oxygen) and must therefore be produced on site, and used ozone can decompose immediately. The ozonation treatment of Ce(III) in foam decontaminant containing a surfactant is necessary for the effective regeneration of Ce(III). Thus, the present study was undertaken to determine the optimal conditions for ozonation treatment in the regeneration of Ce(III) into Ce(IV) in the nanoparticle-based foam decontaminant containing surfactant. This study was undertaken to determine the optimal conditions for ozonation treatment in the regeneration of Ce(III) to Ce(IV) in nanoparticle-based foam decontaminant containing a TBS surfactant. The oxidation conversion rate of Ce(III) was increased with an increase in the flow rate of the gas mixture and ozone injection amount. The oxidation time required for the 100% oxidation conversion of Ce(III) to Ce(IV) at a specific ozone injection amount can be predicted from these experimental data.

  5. Oxidation of Ce(III) in Foam Decontaminant by Ozone

    International Nuclear Information System (INIS)

    Jung, Chong Hun; Yoon, I. H.; Choi, W. K.; Moon, J. K.; Yang, H. B.; Lee, J. S.

    2016-01-01

    A nanoparticle-based foam decontaminant is composed of a surfactant and nanoparticles for the generation and maintenance of foam, and a chemical decontamination agent made of Ce(IV) dissolved in nitric acid. Ce(IV) will be reduced to Ce(III) through the decontamination process. Oxidizing cerium(III) can be reused as a decontamination agent, Ce(IV). Oxidation treatment technology by ozone uses its strong oxidizing power. It can be regarded as an environmentally friendly process, because ozone cannot be stored and transported like other industrial gases (because it quickly decays into diatomic oxygen) and must therefore be produced on site, and used ozone can decompose immediately. The ozonation treatment of Ce(III) in foam decontaminant containing a surfactant is necessary for the effective regeneration of Ce(III). Thus, the present study was undertaken to determine the optimal conditions for ozonation treatment in the regeneration of Ce(III) into Ce(IV) in the nanoparticle-based foam decontaminant containing surfactant. This study was undertaken to determine the optimal conditions for ozonation treatment in the regeneration of Ce(III) to Ce(IV) in nanoparticle-based foam decontaminant containing a TBS surfactant. The oxidation conversion rate of Ce(III) was increased with an increase in the flow rate of the gas mixture and ozone injection amount. The oxidation time required for the 100% oxidation conversion of Ce(III) to Ce(IV) at a specific ozone injection amount can be predicted from these experimental data

  6. OMI/Aura Ozone (O3) DOAS Total Column Daily L2 Global 0.25 deg Lat/Lon Grid V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2G Total Column Ozone Data Product OMDOAO3G (Version 003) is now available ( http://disc.gsfc.nasa.gov/Aura/OMI/omdoao3g_v003.shtml ) from the...

  7. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  8. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  9. Study on the total amount control of atmospheric pollutant based on GIS.

    Science.gov (United States)

    Wang, Jian-Ping; Guo, Xi-Kun

    2005-08-01

    To provide effective environmental management for total amount control of atmospheric pollutants. An atmospheric diffusion model of sulfur dioxide on the surface of the earth was established and tested in Shantou of Guangdong Province on the basis of an overall assessment of regional natural environment, social economic state of development, pollution sources and atmospheric environmental quality. Compared with actual monitoring results in a studied region, simulation values fell within the range of two times of error and were evenly distributed in the two sides of the monitored values. Predicted with the largest emission model method, the largest emission of sulfur dioxide would be 54,279.792 tons per year in 2010. The mathematical model established and revised on the basis of GIS is more rational and suitable for the regional characteristics of total amount control of air pollutants.

  10. Energy Inputs Uncertainty: Total Amount, Distribution and Correlation Between Different Forms of Energy

    Science.gov (United States)

    Deng, Yue

    2014-01-01

    Describes solar energy inputs contributing to ionospheric and thermospheric weather processes, including total energy amounts, distributions and the correlation between particle precipitation and Poynting flux.

  11. The Ecophysiology Of A Pinus Ponderosa Ecosystem Exposed To High Tropospheric Ozone: Implications For Stomatal And Non-Stomatal Ozone Fluxes

    Science.gov (United States)

    Fares, S.; McKay, M.; Goldstein, A.

    2008-12-01

    Ecosystems remove ozone from the troposphere through both stomatal and non-stomatal deposition. The portion of ozone taken up through stomata has an oxidative effect causing damage. We used a multi-year dataset to assess the physiological controls over ozone deposition. Environmental parameters, CO2 and ozone fluxes were measured continuously from January 2001 to December 2006 above a ponderosa pine plantation near Blodgett Forest, Georgetown, California. We studied the dynamic of NEE (Net Ecosystem Exchange, -838 g C m-2 yr-1) and water evapotranspiration on an annual and daily basis. These processes are tightly coupled to stomatal aperture which also controlled ozone fluxes. High levels of ozone concentrations (~ 100 ppb) were observed during the spring-summer period, with corresponding high levels of ozone fluxes (~ 30 μmol m-2 h-1). During the summer season, a large portion of the total ozone flux was due to non-stomatal processes, and we propose that a plant physiological control, releasing BVOC (Biogenic Volatile Organic Compounds), is mainly responsible. We analyzed the correlations of common ozone exposure metrics based on accumulation of concentrations (AOT40 and SUM0) with ozone fluxes (total, stomatal and non-stomatal). Stomatal flux showed poorer correlation with ozone concentrations than non-stomatal flux during summer and fall seasons, which largely corresponded to the growing period. We therefore suggest that AOT40 and SUM0 are poor predictors of ozone damage and that a physiologically based metric would be more effective.

  12. Urban and Rural Ozone Pollution Over Lusaka (Zambia, 15.5S, 25E) During SAFARI-2000 (September 2000)

    Science.gov (United States)

    Thompson, Anne M.; Herman, J. R.; Witte, J. C.; Phahlane, A.; Coetzee, G. J. R.; Mukula, C.; Hudson, R. D.; Frolov, A. D.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka during a six-day period in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, interspersed by a frontal passage that reduced boundary layer ozone by 30 percent. Smoke aerosol column variations aloft and total ozone were monitored by a sun photometer. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39- 54 Dobson Units (note 1.3 km elevation at the launch site). High ozone concentrations above the mixed and inversion layers were advected from rural burning regions in western Zambia where SAFARI aircraft and ground-based instruments observed intense biomass fires and elevated aerosol and trace gas amounts. TOMS tropospheric ozone and smoke aerosols products show the distribution of biomass burning and associated pollution throughout southern Africa in September 2000. Animations of satellite images and trajectories confirm pollutant recirculation over south central African fires, exit of ozone from Mozambique and Tanzania to the Indian Ocean and the characteristic buildup of tropospheric ozone over the Atlantic from western African outflow.

  13. Full-Physics Inverse Learning Machine for Satellite Remote Sensing of Ozone Profile Shapes and Tropospheric Columns

    Science.gov (United States)

    Xu, J.; Heue, K.-P.; Coldewey-Egbers, M.; Romahn, F.; Doicu, A.; Loyola, D.

    2018-04-01

    Characterizing vertical distributions of ozone from nadir-viewing satellite measurements is known to be challenging, particularly the ozone information in the troposphere. A novel retrieval algorithm called Full-Physics Inverse Learning Machine (FP-ILM), has been developed at DLR in order to estimate ozone profile shapes based on machine learning techniques. In contrast to traditional inversion methods, the FP-ILM algorithm formulates the profile shape retrieval as a classification problem. Its implementation comprises a training phase to derive an inverse function from synthetic measurements, and an operational phase in which the inverse function is applied to real measurements. This paper extends the ability of the FP-ILM retrieval to derive tropospheric ozone columns from GOME- 2 measurements. Results of total and tropical tropospheric ozone columns are compared with the ones using the official GOME Data Processing (GDP) product and the convective-cloud-differential (CCD) method, respectively. Furthermore, the FP-ILM framework will be used for the near-real-time processing of the new European Sentinel sensors with their unprecedented spectral and spatial resolution and corresponding large increases in the amount of data.

  14. Ozone sonde cell current measurements and implications for observations of near-zero ozone concentrations in the tropical upper troposphere

    Directory of Open Access Journals (Sweden)

    H. Vömel

    2010-04-01

    Full Text Available Laboratory measurements of the Electrochemical Concentration Cell (ECC ozone sonde cell current using ozone free air as well as defined amounts of ozone reveal that background current measurements during sonde preparation are neither constant as a function of time, nor constant as a function of ozone concentration. Using a background current, measured at a defined timed after exposure to high ozone may often overestimate the real background, leading to artificially low ozone concentrations in the upper tropical troposphere, and may frequently lead to operator dependent uncertainties. Based on these laboratory measurements an improved cell current to partial pressure conversion is proposed, which removes operator dependent variability in the background reading and possible artifacts in this measurement. Data from the Central Equatorial Pacific Experiment (CEPEX have been reprocessed using the improved background treatment based on these laboratory measurements. In the reprocessed data set near-zero ozone events no longer occur. At Samoa, Fiji, Tahiti, and San Cristóbal, nearly all near-zero ozone concentrations occur in soundings with larger background currents. To a large extent, these events are no longer observed in the reprocessed data set using the improved background treatment.

  15. Enhanced treatment of secondary municipal wastewater effluent: comparing (biological) filtration and ozonation in view of micropollutant removal, unselective effluent toxicity, and the potential for real-time control.

    Science.gov (United States)

    Chys, Michael; Demeestere, Kristof; Ingabire, Ange Sabine; Dries, Jan; Van Langenhove, Herman; Van Hulle, Stijn W H

    2017-07-01

    Ozonation and three (biological) filtration techniques (trickling filtration (TF), slow sand filtration (SSF) and biological activated carbon (BAC) filtration) have been evaluated in different combinations as tertiary treatment for municipal wastewater effluent. The removal of 18 multi-class pharmaceuticals, as model trace organic contaminants (TrOCs), has been studied. (Biological) activated carbon filtration could reduce the amount of TrOCs significantly (>99%) but is cost-intensive for full-scale applications. Filtration techniques mainly depending on biodegradation mechanisms (TF and SSF) are found to be inefficient for TrOCs removal as a stand alone technique. Ozonation resulted in 90% removal of the total amount of quantified TrOCs, but a post-ozonation step is needed to cope with an increased unselective toxicity. SSF following ozonation showed to be the only technique able to reduce the unselective toxicity to the same level as before ozonation. In view of process control, innovative correlation models developed for the monitoring and control of TrOC removal during ozonation, are verified for their applicability during ozonation in combination with TF, SSF or BAC. Particularly for the poorly ozone reactive TrOCs, statistically significant models were obtained that correlate TrOC removal and reduction in UVA 254 as an online measured surrogate parameter.

  16. Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements

    Science.gov (United States)

    Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.

    2015-08-01

    In this study we use a high-quality data set of in situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone-related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We intercompare crop yield loss estimates according to different exposure metrics, such as AOT40 (accumulated ozone exposure over a threshold of 40) and M7 (mean 7-hour ozone mixing ratio from 09:00 to 15:59), for the two major crop growing seasons of kharif (June-October) and rabi (November-April) and establish a new crop-yield-exposure relationship for southern Asian wheat, maize and rice cultivars. These are a factor of 2 more sensitive to ozone-induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27 to 41 % for wheat, 21 to 26 % for rice, 3 to 5 % for maize and 47 to 58 % for cotton. Crop production losses for wheat amounted to 20.8 ± 10.4 million t in the fiscal year of 2012-2013 and 10.3 ± 4.7 million t in the fiscal year of 2013-2014 for Punjab and Haryana taken together. Crop production losses for rice totalled 5.4 ± 1.2 million t in the fiscal year of 2012-2013 and 3.2 ± 0.8 million t in the year 2013-2014 for Punjab and Haryana taken together. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice or wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. The mitigation of ozone-related crop production losses in Punjab and Haryana alone could provide > 50 % of the wheat and ~ 10 % of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 ± 2.2 billion in the fiscal year of 2012-2013 and USD 3.7 ± 1.2 billion in the fiscal year of 2013-2014. This economic loss estimate represents a very conservative lower limit based on

  17. Ozone from fireworks: Chemical processes or measurement interference?

    Science.gov (United States)

    Xu, Zheng; Nie, Wei; Chi, Xuguang; Huang, Xin; Zheng, Longfei; Xu, Zhengning; Wang, Jiaping; Xie, Yuning; Qi, Ximeng; Wang, Xinfeng; Xue, Likun; Ding, Aijun

    2018-08-15

    Fireworks have been identified as one ozone source by photolyzing NO 2 or O 2 and are believed to potentially be important for the nighttime ozone during firework events. In this study, we conducted both lab and field experiments to test two types of fireworks with low and high energy with the goal to distinguish whether the visible ozone signal during firework displays is real. The results suggest that previous understanding of the ozone formation mechanism during fireworks is misunderstood. Ultraviolet ray (UV)-based ozone monitors are interfered by aerosols and some specific VOCs. High-energy fireworks emit high concentrations of particular matters and low VOCs that the artificial ozone can be easily removed by an aerosol filter. Low-energy fireworks emit large amounts of VOCs mostly from the combustion of the cardboard from fireworks that largely interferes with the ozone monitor. Benzene and phenol might be major contributors to the artificial ozone signal. We further checked the nighttime ozone concentration in Jinan and Beijing, China, during Chinese New Year, a period with intense fireworks. A signal of 3-8ppbv ozone was detected and positively correlated to NO and SO 2 , suggesting a considerable influence of these chemicals in interfering with ambient ozone monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Effect of the Fe Nanoparticles Generated by Pulsed Plasma in Liquid in the Catalyzed Ozone Removal of Phenolphthalein

    Directory of Open Access Journals (Sweden)

    O. Olea-Mejia

    2017-01-01

    Full Text Available We have synthesized, in this work, zero valent iron (ZVI nanoparticles to improve the efficiency of degradation of phenolphthalein catalyzed by ozone in aqueous solution. The Fe nanoparticles were obtained using the pulsed plasma in liquid (PPL method with water as the liquid medium. Such nanoparticles have a mean size of 12 nm and are composed of ~80% Fe0, while the rest are a mixture of Fe+2 and Fe+3 oxides. The degradation of phenolphthalein was carried on a glass reactor injecting a constant amount of ozone and introducing different concentrations of Fe nanoparticles to the system. When using pure ozone, the percentage of degradation of phenolphthalein measured by colorimetry after one hour of reaction was 84%. However, when Fe nanoparticles are used, such percentage can be as high as 98% in 50 minutes of reaction. Furthermore, the degradation rate constant was 0.0334 min−1 with only ozone and it can be as high as 0.0733 min−1 with Fe nanoparticles. Finally, the total mineralization of phenolphthalein was obtained by total organic carbon (TOC determinations. It is shown that when using only ozone, we obtained a percentage of mineralization of 49% and 96% when using the highest concentration of Fe nanoparticles.

  19. Variability of the stratospheric ozone in Colombia

    International Nuclear Information System (INIS)

    Aristizabal, Gloria Leon

    2002-01-01

    In this study has been examined the causes of ozone variations and the sign that represent in the short-term, seasonal, interannual, decadal and long-term variability. The analysis of NASA satellite data sets, obtained with the total ozone mapping spectrometer toms, for the period 1979-1999, they permit to deduce to the total column ozone that in Colombia, varies among 255 and 267 U.D., and presents synchronous variations with the quasi biennial oscillation (QBO) and in the series not any tendency with the time is recognized

  20. Electrical discharges of plasma ozonizer and its application

    Directory of Open Access Journals (Sweden)

    Tirawanichakul, S.

    2007-05-01

    Full Text Available Ozone synthesis is one of the applications of near atmospheric plasma processing. An ozone generator in this research comprised two annular cylindrical-shaped electrodes. The inner electrode was made ofstainless steel covered with the dielectric glass and the outer electrode was also made of stainless steel. The electric spacing gap was 0.0075 m and length of ozonizer was 0.21 m. Oxygen gas passing through thedischarge gap between two electrodes supplied by an alternating current (AC high voltage power supply, frequency 50 Hz, ranging of 6-10 kVAC was used for producing ozone. The amount of ozone was determinedby the KI standard method. The result showed that the concentration of ozone is proportional to the AC applied voltage. For determining effect of purified oxygen feed rate of 6-10 L/min on quantity of ozone, theresults indicated that at the volumetric flow rate of 8 L/min produced the largest amount of ozone. In addition, ozone concentration at a flow rate of 8 L/min and an electrical discharge time of 3 minutes wasapproximately determined as 41, 60, 80 and 135 mg/L at 8, 9, 10 and 11 kVAC, respectively. Moreover, study of dye wastewater of Krajud mat was proposed and treated by three different methods. Firstly, dye wastewater was solely treated by a plasma ozonation. Secondly, a combination ofozonation and alum coagulation was used for dye wastewater treatment. Finally, the combined ozonation and activated carbon adsorption were used for dye wastewater treatment. The experimental results showedthat the percentage of light absorbance reduction of pink dyed wastewater for these three different methods was about 56%, 35% and 10%, respectively compared to the reference sample. In addition, For thesemethods, the percentage of BOD of treated dye wastewater could be reduced to 64%, 54% and 46% respectively, the percentage of COD could be reduced to approximately 78%, 62% and 27%, respectively, comparedto the reference sample. In conclusion, the

  1. A closer look at Arctic ozone loss and polar stratospheric clouds

    Directory of Open Access Journals (Sweden)

    N. R. P. Harris

    2010-09-01

    Full Text Available The empirical relationship found between column-integrated Arctic ozone loss and the potential volume of polar stratospheric clouds inferred from meteorological analyses is recalculated in a self-consistent manner using the ERA Interim reanalyses. The relationship is found to hold at different altitudes as well as in the column. The use of a PSC formation threshold based on temperature dependent cold aerosol formation makes little difference to the original, empirical relationship. Analysis of the photochemistry leading to the ozone loss shows that activation is limited by the photolysis of nitric acid. This step produces nitrogen dioxide which is converted to chlorine nitrate which in turn reacts with hydrogen chloride on any polar stratospheric clouds to form active chlorine. The rate-limiting step is the photolysis of nitric acid: this occurs at the same rate every year and so the interannual variation in the ozone loss is caused by the extent and persistence of the polar stratospheric clouds. In early spring the ozone loss rate increases as the solar insolation increases the photolysis of the chlorine monoxide dimer in the near ultraviolet. However the length of the ozone loss period is determined by the photolysis of nitric acid which also occurs in the near ultraviolet. As a result of these compensating effects, the amount of the ozone loss is principally limited by the extent of original activation rather than its timing. In addition a number of factors, including the vertical changes in pressure and total inorganic chlorine as well as denitrification and renitrification, offset each other. As a result the extent of original activation is the most important factor influencing ozone loss. These results indicate that relatively simple parameterisations of Arctic ozone loss could be developed for use in coupled chemistry climate models.

  2. Adaption of an array spectroradiometer for total ozone column retrieval using direct solar irradiance measurements in the UV spectral range

    Science.gov (United States)

    Zuber, Ralf; Sperfeld, Peter; Riechelmann, Stefan; Nevas, Saulius; Sildoja, Meelis; Seckmeyer, Gunther

    2018-04-01

    A compact array spectroradiometer that enables precise and robust measurements of solar UV spectral direct irradiance is presented. We show that this instrument can retrieve total ozone column (TOC) accurately. The internal stray light, which is often the limiting factor for measurements in the UV spectral range and increases the uncertainty for TOC analysis, is physically reduced so that no other stray-light reduction methods, such as mathematical corrections, are necessary. The instrument has been extensively characterised at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. During an international total ozone measurement intercomparison at the Izaña Atmospheric Observatory in Tenerife, the high-quality applicability of the instrument was verified with measurements of the direct solar irradiance and subsequent TOC evaluations based on the spectral data measured between 12 and 30 September 2016. The results showed deviations of the TOC of less than 1.5 % from most other instruments in most situations and not exceeding 3 % from established TOC measurement systems such as Dobson or Brewer.

  3. The use of satellite data to determine the distribution of ozone in the troposphere

    Science.gov (United States)

    Fishman, Jack; Watson, Catherine E.; Brackett, Vincent G.; Fakhruzzaman, Khan; Veiga, Robert E.

    1991-01-01

    Measurements from two independent satellite data sets have been used to derive the climatology of the integrated amount of ozone in the troposphere. These data have led to the finding that large amounts of ozone pollution are generated by anthropogenic activity originating from both the industrialized regions of the Northern Hemisphere and from the southern tropical regions of Africa. To verify the existence of this ozone anomaly at low latitudes, an ozonesonde capability has been established at Ascension Island (8 deg S, 15 deg W) since July 1990. According to the satellite analyses, Ascension Island is located downwind of the primary source region of this ozone pollution, which likely results from the photochemical oxidation of emissions emanating from the widespread burning of savannas and other biomass. These in situ measurements confirm the existence of large amounts of ozone in the lower atmosphere. A summary of these ozonesonde data to date will be presented. In addition, we will present some ozone profile measurements from SAGE II which can be used to provide upper tropospheric ozone measurements directly in the tropical troposphere. A preliminary comparison between the satellite observations and the ozonesonde profiles in the upper troposphere and lower stratosphere will also be presented.

  4. On the compatibility of Brewer total column ozone measurements in two adjacent valleys (Arosa and Davos in the Swiss Alps

    Directory of Open Access Journals (Sweden)

    R. Stübi

    2017-11-01

    Full Text Available The Arosa site is well known in the ozone community for its continuous total ozone column observations that have been recorded since 1926. Originally based on Dobson sun spectrophotometers, the site has been gradually complemented by three automatic Brewer instruments, in operation since 1998. To secure the long-term ozone monitoring in this Alpine region and to benefit from synergies with the World Radiation Center, the feasibility of moving this activity to the nearby site at Davos (aerial distance of 13 km has been explored. Concerns about a possible rupture of the 90-year-long record has motivated a careful comparison of the two sites, since great attention to the data continuity and quality has always been central to the operations of the observatory at Arosa. To this end, one element of the Arosa Brewer triad has been set up at the Davos site since November 2011 to realize a campaign of parallel measurements and to study the deviations between the three Brewer instruments. The analysis of the coincident measurement shows that the differences between Arosa and Davos remain within the range of the long-term stability of the Brewer instruments. A nonsignificant seasonal cycle is observed, which could possibly be induced by a stray-light bias and the altitude difference between the two sites. These differences are shown to be lower than the short-term variability of the time series and the overall uncertainty from individual Brewer instruments and therefore are not statistically significant. It is therefore concluded that the world's longest time series of the total ozone column obtained at Arosa site could be safely extended and continued with measurements taken from instruments located at the nearby Davos site without introducing a bias to this unique record.

  5. Influence of ambient ozone on the incidence of bone fractures especially among the elderly

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, E.J.

    1979-02-01

    Elevated levels of breatheable ozone will reduce the amount of uv radiation in the range of 280 to 305 nm reaching the surface of earth. This range of uv converts the provitamin 7-dehydrocholesterol to vitamin D, within the human. Since most typical diets contain low levels of vitamin D, the role of uv-related vitamin D synthesis in the skin is considered to provide very important contributions to the total vitamin D content of the blood. Thus, elevated levels of ambient ozone should result in a decreased level of vitamin D synthesis which may be expressed as an increase in the incidence of histological osteomalacia and ultimately bone fractures, especially among the elderly.

  6. Effect of coupled anthropogenic perturbations on stratospheric ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Luther, F.M.; Penner, J.E.

    1992-01-01

    Since 1976 the greatest concern about potential perturbations to stratospheric ozone has been in regard to the atmospheric release of chlorofluorocarbons. Consequently, atmospheric measurements of ozone have usually been compared with model calculations in which only chlorocarbon perturbations are considered. However, in order to compare theoretical calculations with recent measurements of ozone and to project expected changes to atmospheric ozone levels over the next few decades, one must consider the effect from other perturbations as well. In this paper, the authors consider the coupling between several possible anthropogenic atmospheric perturbations. Namely, they examine the effects of past and possible future increases of chlorocarbons, CO 2 , N 2 O, and NO x . The focus of these calculations is on the potential changes in ozone due to chlorocarbon emissions, how other anthropogenic perturbations may have influenced the actual change in ozone over the last decade, and how these perturbations may influence future changes in ozone. Although calculations including future chlorocarbon emissions alone result in significant reductions in ozone, there is very little change in total ozone over the coming decades when other anthropogenic sources are included. Increasing CO 2 concentrations have the largest offsetting effect on the change in total ozone due to chlorocarbons. Owing to the necessity of considering emissions from a number of trace gases simultaneously, determining expected global-scale chemical and climatic effects is more complex than was previously recognized

  7. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  8. Development of a portable instrument to measure ozone production rates in the troposphere

    Science.gov (United States)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip; Kumar, Vinod; Sinha, Vinayak; Dusanter, Sébastien

    2015-04-01

    Ground-level ozone is a key species related to air pollution, causing respiratory problems, damaging crops and forests, and affecting the climate. Our current understanding of the tropospheric ozone-forming chemistry indicates that net ozone production occurs via reactions of peroxy radicals (HO2 + RO2) with NO producing NO2, whose photolysis leads to O3 formation. Production rates of tropospheric ozone, P(O3), depend on concentrations of oxides of nitrogen (NOx = NO + NO2) and Volatile Organic Compounds (V OCs), but also on production rates of ROx radicals (OH + HO2 + RO2). The formation of ozone follows a complex nonlinear chemistry that makes strategies for reducing ozone difficult to implement. In this context, atmospheric chemistry models are used to develop emission regulations, but there are still uncertainties associated with the chemical mechanisms used in these models. Testing the ozone formation chemistry in atmospheric models is needed, in order to ensure the development of effective strategies for ozone reduction. We will present the development of an instrument for direct measurements of ozone production rates (OPR) in ambient air. The OPR instrument is made of three components: (i) two quartz flow tubes to sample ambient air, one exposed to solar radiation and one covered by a UV filter, (ii) a NO2-to-O3 conversion unit, and (iii) an ozone analyzer. The total amount of ozone exiting each flow tube is conserved in the form of Ox = NO2 + O3. Ozone production rates P(O3) are derived from the difference in Ox concentration between the two flow tubes, divided by the exposure time of air inside the flow tubes. We will present studies that were carried out in the laboratory to characterize each part of the instrument and we will discuss the performances of the OPR instrument based on experiments carried out using synthetic air mixtures of known composition (NOx and V OCs). Chemical modeling will also be presented to assess the reliability of ozone

  9. Effect of ozone and granular activated coal (GAC) on the bioactivity of drinking water.

    Science.gov (United States)

    Sallanko, Jarmo; Iivari, Pekka; Heiska, Eeva

    2009-02-15

    In this research, the appearance of easily biodegradable organic material in ozonation and granular activated coal (GAC) filtration was studied. The amount of bioactivity was measured by conventional AOC analyses used in two different modes and also using quite a new growth potential (GP) method. GAC filtration without ozone doubled the amount of AOC of the chemically treated surface water, whereas by ozonation with GAC filtration it was possible to halve the amount of the AOC. The measurement of GP was noticeably simpler than measuring AOC, but for wider use more parallel studies are needed for the comparability of the results of the analysis.

  10. Pyrolytic citrate synthesis and ozone annealing

    International Nuclear Information System (INIS)

    Celani, F.; Saggese, A.; Giovannella, C.; Messi, R.; Merlo, V.

    1988-01-01

    A pyrolytic procedure is described that via a citrate synthesis allowed us to obtain very fine grained YBCO powders that, after a first furnace thermal treatment in ozone, results already to contain a large amount of superconducting microcrystals. A second identical thermal treatment gives a final product strongly textured, as shown by magnetic torque measurements. Complementary structural and diamagnetic measurement show the high quality of these sintered pellets. The role covered by both the pyrolytic preparation and the ozone annealing are discussed

  11. Satellite Ozone Analysis Center (SOAC)

    International Nuclear Information System (INIS)

    Lovill, J.E.; Sullivan, T.J.; Knox, J.B.; Korver, J.A.

    1976-08-01

    Many questions have been raised during the 1970's regarding the possible modification of the ozonosphere by aircraft operating in the stratosphere. Concern also has been expressed over the manner in which the ozonosphere may change in the future as a result of fluorocarbon releases. There are also other ways by which the ozonosphere may be significantly altered, both anthropogenic and natural. Very basic questions have been raised, bearing upon the amount of ozone which would be destroyed by the NO/sub x/ produced in atmospheric nuclear explosions. Studies of the available satellite data have suggested that the worldwide increase of ozone during the past decade, which was observed over land stations, may have been biased by a poor distribution of stations and/or a shift of the planetary wave. Additional satellite data will be required to resolve this issue. Proposals are presented for monitoring of the Earth's ozone variability from the present time into the 1980's to establish a baseline upon which regional, as well as global, ozone trends can be measured

  12. A differential absorption technique to estimate atmospheric total water vapor amounts

    Science.gov (United States)

    Frouin, Robert; Middleton, Elizabeth

    1990-01-01

    Vertically integrated water-vapor amounts can be remotely determined by measuring the solar radiance reflected by the earth's surface with satellites or aircraft-based instruments. The technique is based on the method by Fowle (1912, 1913) and utilizes the 0.940-micron water-vapor band to retrieve total-water-vapor data that is independent of surface reflectance properties and other atmospheric constituents. A channel combination is proposed to provide more accurate results, the SE-590 spectrometer is used to verify the data, and the effects of atmospheric photon backscattering is examined. The spectrometer and radiosonde data confirm the accuracy of using a narrow and a wide channel centered on the same wavelength to determine water vapor amounts. The technique is suitable for cloudless conditions and can contribute to atmospheric corrections of land-surface parameters.

  13. FULL-PHYSICS INVERSE LEARNING MACHINE FOR SATELLITE REMOTE SENSING OF OZONE PROFILE SHAPES AND TROPOSPHERIC COLUMNS

    Directory of Open Access Journals (Sweden)

    J. Xu

    2018-04-01

    Full Text Available Characterizing vertical distributions of ozone from nadir-viewing satellite measurements is known to be challenging, particularly the ozone information in the troposphere. A novel retrieval algorithm called Full-Physics Inverse Learning Machine (FP-ILM, has been developed at DLR in order to estimate ozone profile shapes based on machine learning techniques. In contrast to traditional inversion methods, the FP-ILM algorithm formulates the profile shape retrieval as a classification problem. Its implementation comprises a training phase to derive an inverse function from synthetic measurements, and an operational phase in which the inverse function is applied to real measurements. This paper extends the ability of the FP-ILM retrieval to derive tropospheric ozone columns from GOME- 2 measurements. Results of total and tropical tropospheric ozone columns are compared with the ones using the official GOME Data Processing (GDP product and the convective-cloud-differential (CCD method, respectively. Furthermore, the FP-ILM framework will be used for the near-real-time processing of the new European Sentinel sensors with their unprecedented spectral and spatial resolution and corresponding large increases in the amount of data.

  14. A New ENSO Index Derived from Satellite Measurements of Column Ozone

    Science.gov (United States)

    Ziemke, J. R.; Chandra, S.; Oman, L. D.; Bhartia, P. K.

    2010-01-01

    Column Ozone measured in tropical latitudes from Nimbus 7 total ozone mapping spectrometer (TOMS), Earth Probe TOMS, solar backscatter ultraviolet (SBUV), and Aura ozone monitoring instrument (OMI) are used to derive an El Nino-Southern Oscillation (ENSO) index. This index, which covers a time period from 1979 to the present, is defined as the Ozone ENSO Index (OEI) and is the first developed from atmospheric trace gas measurements. The OEI is constructed by first averaging monthly mean column ozone over two broad regions in the western and eastern Pacific and then taking their difference. This differencing yields a self-calibrating ENSO index which is independent of individual instrument calibration offsets and drifts in measurements over the long record. The combined Aura OMI and MLS ozone data confirm that zonal variability in total column ozone in the tropics caused by ENSO events lies almost entirely in the troposphere. As a result, the OEI can be derived directly from total column ozone instead of tropospheric column ozone. For clear-sky ozone measurements a +1K change in Nino 3.4 index corresponds to +2.9 Dobson Unit (DU) change in the OEI, while a +1 hPa change in SOI coincides with a -1.7DU change in the OEI. For ozone measurements under all cloud conditions these numbers are +2.4DU and -1.4 DU, respectively. As an ENSO index based upon ozone, it is potentially useful in evaluating climate models predicting long term changes in ozone and other trace gases.

  15. Ozone production process in pulsed positive dielectric barrier discharge

    Science.gov (United States)

    Ono, Ryo; Oda, Tetsuji

    2007-01-01

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O2 + M → O3 + M, is estimated to be 2.5 × 10-34 cm6 s-1.

  16. Ozone production process in pulsed positive dielectric barrier discharge

    International Nuclear Information System (INIS)

    Ono, Ryo; Oda, Tetsuji

    2007-01-01

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O 2 + M → O 3 + M, is estimated to be 2.5 x 10 -34 cm 6 s -1

  17. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations

    Directory of Open Access Journals (Sweden)

    C. Vigouroux

    2008-12-01

    Full Text Available Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network, six ground-based stations in Western Europe, from 79° N to 28° N, all equipped with Fourier Transform infrared (FTIR instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC, have joined their efforts to evaluate the trends of several direct and indirect greenhouse gases over the period 1995–2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar. The observed total column ozone trends are in agreement with previous studies: 1 no total column ozone trend is seen at the lowest latitude station Izaña (28° N; 2 slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47° N, only one of them being significant; 3 the highest latitude stations Harestua (60° N, Kiruna (68° N and Ny-Ålesund (79° N show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10–18 km, 18–27 km, and 27–42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground-10 km layer for five out of the six ground-based stations. We find significant positive trends for the lowermost

  18. "OZONE SOURCE APPORTIONMENT IN CMAQ' | Science ...

    Science.gov (United States)

    Ozone source attribution has been used to support various policy purposes including interstate transport (Cross State Air Pollution Rule) by U.S. EPA and ozone nonattainment area designations by State agencies. Common scientific applications include tracking intercontinental transport of ozone and ozone precursors and delineating anthropogenic and non-anthropogenic contribution to ozone in North America. As in the public release due in September 2013, CMAQ’s Integrated Source Apportionment Method (ISAM) attributes PM EC/OC, sulfate, nitrate, ammonium, ozone and its precursors NOx and VOC, to sectors/regions of users’ interest. Although the peroxide-to-nitric acid productions ratio has been the most common indicator to distinguish NOx-limited ozone production from VOC-limited one, other indicators are implemented in addition to allowing for an ensemble decision based on a total of 9 available indicator ratios. Moreover, an alternative approach of ozone attribution based on the idea of chemical sensitivity in a linearized system that has formed the basis of chemical treatment in forward DDM/backward adjoint tools has been implemented in CMAQ. This method does not require categorization into either ozone regime. In this study, ISAM will simulate the 2010 North America ozone using all of the above gas-phase attribution methods. The results are to be compared with zero-out difference out of those sectors in the host model runs. In addition, ozone contribution wil

  19. Lidar Measurements of Tropospheric Ozone in the Arctic

    Directory of Open Access Journals (Sweden)

    Seabrook Jeffrey

    2016-01-01

    Full Text Available This paper reports on differential absorption lidar (DIAL measurements of tropospheric ozone in the Canadian Arctic during springtime. Measurements at Eureka Weather Station revealed that mountains have a significant effect on the vertical structure of ozone above Ellesmere Island. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when the flow of air from over the sea ice was blocked by mountains. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be shown in the presentation, while one is described in this paper.

  20. NESDIS Total Ozone from Analysis of Stratospheric and Tropospheric components (TOAST)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TOAST combines UV and IR ozone retrievals from an algorithm using the Solar Backscatter Ultraviolet Version 2 (SBUV/2) and the Cross-track Infrared Sounder (CrIS)...

  1. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Freshour, A.; West, D.

    1995-01-01

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  2. Disappearing threat to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Gribbin, J

    1979-02-15

    Concern that human activities might disturb the dynamic natural equilibrium of the ozone layer has stemmed from the fact that this layer plays a key part in the ecology of the earth by absorbing harmful ultraviolet radiation which would otherwise penetrate to the ground. Apparently, however, a decline of as much at 15% in total global ozone would have very little effect on climate. A 50% reduction would produce a marked cooling of the stratosphere at 40 km altitude over the tropics, but barely detectable changes in temperature and rainfall in the lower atmosphere. Therefore, biological effects of more uv light at ground level is the only hazard associated with ozone depletion on the scale which might take place.

  3. Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra

    Directory of Open Access Journals (Sweden)

    J. Bak

    2013-02-01

    Full Text Available South Korea is planning to launch the GEMS (Geostationary Environment Monitoring Spectrometer instrument into the GeoKOMPSAT (Geostationary Korea Multi-Purpose SATellite platform in 2018 to monitor tropospheric air pollutants on an hourly basis over East Asia. GEMS will measure backscattered UV radiances covering the 300–500 nm wavelength range with a spectral resolution of 0.6 nm. The main objective of this study is to evaluate ozone profiles and stratospheric column ozone amounts retrieved from simulated GEMS measurements. Ozone Monitoring Instrument (OMI Level 1B radiances, which have the spectral range 270–500 nm at spectral resolution of 0.42–0.63 nm, are used to simulate the GEMS radiances. An optimal estimation-based ozone profile algorithm is used to retrieve ozone profiles from simulated GEMS radiances. Firstly, we compare the retrieval characteristics (including averaging kernels, degrees of freedom for signal, and retrieval error derived from the 270–330 nm (OMI and 300–330 nm (GEMS wavelength ranges. This comparison shows that the effect of not using measurements below 300 nm on retrieval characteristics in the troposphere is insignificant. However, the stratospheric ozone information in terms of DFS decreases greatly from OMI to GEMS, by a factor of ∼2. The number of the independent pieces of information available from GEMS measurements is estimated to 3 on average in the stratosphere, with associated retrieval errors of ~1% in stratospheric column ozone. The difference between OMI and GEMS retrieval characteristics is apparent for retrieving ozone layers above ~20 km, with a reduction in the sensitivity and an increase in the retrieval errors for GEMS. We further investigate whether GEMS can resolve the stratospheric ozone variation observed from high vertical resolution Earth Observing System (EOS Microwave Limb Sounder (MLS. The differences in stratospheric ozone profiles between GEMS and MLS are comparable to those

  4. Effect of increased carbon dioxide concentrations on stratospheric ozone

    International Nuclear Information System (INIS)

    Boughner, R.E.

    1978-01-01

    During the past several years, much attention has been focused on the destruction of ozone by anthropogenic pollutants such as the nitrogen oxides and chlorofluoromethane. Little or no attention has been given to the influence on ozone of an increased carbon dioxide concentration for which a measurable growth has been observed. Increased carbon dioxide can directly affect ozone by perturbing atmospheric temperatures, which will alter ozone production, whose rate displays a fairly strong temperature dependence. This paper presents one-dimensional model results for the steady state ozone behavior when the CO 2 concentration is twice its ambient level which account for coupling between chemistry and temperature. When the CO 2 level doubled, the total ozone burden increased in relation to the ambient burden by 1.2--2.5%, depending on the vertical diffusion coefficient used. Above 30 km. In this region the relation variations were insensitive to the choice of diffusion coefficient. Below 30 km, ozone concentrations were smaller than the unperturbed values and were sensitive to the vertical diffusion profile in this region (10--30 km). Ozone decreases in the lower stratosphere because of a reduction in ozone-producing solar radiation, which results in smaller downward ozone fluxes from the region at 25--30 km relative to the flux values for the ambient atmosphere. These offsetting changes occurring in the upper and lower stratosphere act to minimize the variation in total ozone

  5. Ozone production process in pulsed positive dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ryo [High Temperature Plasma Center, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 227-8568 (Japan); Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2007-01-07

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O{sub 2} + M {yields} O{sub 3} + M, is estimated to be 2.5 x 10{sup -34} cm{sup 6} s{sup -1}.

  6. To total amount of activity ..... and beyond: Perspectives on measuring physical behaviour

    Directory of Open Access Journals (Sweden)

    Johannes B.J. Bussmann

    2013-07-01

    Full Text Available The aim of this paper is to describe and discuss some perspectives on definitions, constructs and outcome parameters of physical behaviour. The paper focuses on the following constructs: Physical activity & active lifestyle vs. sedentary behaviour & sedentary lifestyle; Amount of physical activity vs. amount of walking; Detailed body posture & movement data vs. overall physical activity data; Behavioural context of activities; Quantity vs. quality; Physical behaviour vs. physiological response.Subsequently, the following outcome parameters provided by data reduction procedures are discussed: Distribution of length of bouts; Variability in bout length; Time window; Intensity and intensity threshold.The overview indicates that physical behaviour is a multi-dimensional construct, and it stresses the importance and relevance of constructs and parameters other than total amount of physical activity.It is concluded that the challenge for the future will be to determine which parameters are most relevant, valid and responsive. This is a matter for physical behaviour researchers to consider, that is critical to multi-disciplinary collaboration.

  7. Dependence of biologically active UV radiation on the atmospheric ozone in 2000 - 2001 over Stara Zagora, Bulgaria

    International Nuclear Information System (INIS)

    Gogosheva, Tz.; Petkov, B.; Mendeva, B.; Krastev, D.

    2003-01-01

    This study investigates how the changes in simultaneously measured ozone columns influence the biologically active UV irradiance. Spectral ground-based measurements of direct solar ultraviolet radiation performed at Stara Zagora (42 o N, 25 o E), Bulgaria in 2000 - 2001 are used in conjunction with the total ozone content to investigate the relation to the biologically active UV radiation, depending on the solar zenith angle (SZA) and the ozone. The device measures the direct solar radiation in the range 290 - 360 nm at 1 nm resolution. The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained as the integral in the wavelength interval between 290 and 330 nm of the UV solar spectrum weighted with an action spectrum, typical of each effect. For estimation of the sensitivity of biological doses to the atmospheric ozone we calculate the radiation amplification factor (RAF) defined as the percentage increase in the column amount of the atmospheric ozone. The biological doses increase significantly with the decrease of the SZA. The doses of SZA=20 o are about three times larger than doses at SZA=50 o . The RAF derived from our spectral measurements shows an increase of RAF along with the decreasing ozone. For example, the ozone reduction by 1% increases the erythemal dose by about 2%. (authors)

  8. Modulations of stratospheric ozone by volcanic eruptions

    Science.gov (United States)

    Blanchette, Christian; Mcconnell, John C.

    1994-01-01

    We have used a time series of aerosol surface based on the measurements of Hofmann to investigate the modulation of total column ozone caused by the perturbation to gas phase chemistry by the reaction N2O5(gas) + H2O(aero) yields 2HNO3(gas) on the surface of stratospheric aerosols. We have tested a range of values for its reaction probability, gamma = 0.02, 0.13, and 0.26 which we compared to unperturbed homogeneous chemistry. Our analysis spans a period from Jan. 1974 to Oct. 1994. The results suggest that if lower values of gamma are the norm then we would expect larger ozone losses for highly enhanced aerosol content that for larger values of gamma. The ozone layer is more sensitive to the magnitude of the reaction probability under background conditions than during volcanically active periods. For most conditions, the conversion of NO2 to HNO3 is saturated for reaction probability in the range of laboratory measurements, but is only absolutely saturated following major volcanic eruptions when the heterogeneous loss dominates the losses of N2O5. The ozone loss due to this heterogeneous reaction increases with the increasing chlorine load. Total ozone losses calculated are comparable to ozone losses reported from TOMS and Dobson data.

  9. Ozone uptake (flux) as it relates to ozone-induced foliar symptoms of Prunus serotina and Populus maximowizii x trichocarpa

    International Nuclear Information System (INIS)

    Orendovici-Best, T.; Skelly, J.M.; Davis, D.D.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.

    2008-01-01

    Field studies were conducted during 2003 and 2004 from early June to the end of August, at 20 sites of lower or higher elevation within north-central Pennsylvania, using seedlings of black cherry (Prunus serotina, Ehrh.) and ramets of hybrid poplar (Populus maximowizii x trichocarpa). A linear model was developed to estimate the influence of local environmental conditions on stomatal conductance. The most significant factors explaining stomatal variance were tree species, air temperature, leaf vapor pressure deficit, elevation, and time of day. Overall, environmental factors explained less than 35% of the variation in stomatal conductance. Ozone did not affect gas exchange rates in either poplar or cherry. Ozone-induced foliar injury was positively correlated with cumulative ozone exposures, expressed as SUM40. Overall, the amount of foliar injury was better correlated to a flux-based approach rather than to an exposure-based approach. More severe foliar injuries were observed on plants growing at higher elevations. - Within heterogeneous environments, ozone flux does not completely explain the variation observed in ozone-induced visible injury

  10. Operational Use of the AIRS Total Column Ozone Retrievals Along with the RGB Air Mass Product as Part of the GOES-R Proving Ground

    Science.gov (United States)

    Folmer, Michael; Zavodsky, Bradley; Molthan, Andrew

    2012-01-01

    The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Hydrometeorological Prediction Center (HPC) and Ocean Prediction Center (OPC) provide short-term and medium-range forecast guidance of heavy precipitation, strong winds, and other features often associated with mid-latitude cyclones over both land and ocean. As a result, detection of factors that lead to rapid cyclogenesis and high wind events is key to improving forecast skill. One phenomenon that has been identified with these events is the stratospheric intrusion that occurs near tropopause folds. This allows for deep mixing near the top of the atmosphere where dry air high in ozone concentrations and potential vorticity descends (sometimes rapidly) deep into the mid-troposphere. Observations from satellites can aid in detection of these stratospheric air intrusions (SAI) regions. Specifically, multispectral composite imagery assign a variety of satellite spectral bands to the red, green, and blue (RGB) color components of imagery pixels and result in color combinations that can assist in the detection of dry stratospheric air associated with PV advection, which in turn may alert forecasters to the possibility of a rapidly strengthening storm system. Single channel or RGB satellite imagery lacks quantitative information about atmospheric moisture unless the sampled brightness temperatures or other data are converted to estimates of moisture via a retrieval process. Thus, complementary satellite observations are needed to capture a complete picture of a developing storm system. Here, total column ozone retrievals derived from a hyperspectral sounder are used to confirm the extent and magnitude of SAIs. Total ozone is a good proxy for defining locations and intensity of SAIs and has been used in studies evaluating that phenomenon (e.g. Tian et al. 2007, Knox and Schmidt 2005). Steep gradients in values of total ozone seen by satellites have been linked

  11. Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations

    Directory of Open Access Journals (Sweden)

    O. Morgenstern

    2018-01-01

    Full Text Available Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1 will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.

  12. Ozone Sensitivity to Varying Greenhouse Gases and Ozone-Depleting Substances in CCMI-1 Simulations

    Science.gov (United States)

    Morgenstern, Olaf; Stone, Kane A.; Schofield, Robyn; Akiyoshi, Hideharu; Yamashita, Yousuke; Kinnison, Douglas E.; Garcia, Rolando R.; Sudo, Kengo; Plummer, David A.; Scinocca, John; hide

    2018-01-01

    Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.

  13. Production and Transport of Ozone From Boreal Forest Fires

    Science.gov (United States)

    Tarasick, David; Liu, Jane; Osman, Mohammed; Sioris, Christopher; Liu, Xiong; Najafabadi, Omid; Parrington, Mark; Palmer, Paul; Strawbridge, Kevin; Duck, Thomas

    2013-04-01

    In the summer of 2010, the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) mission was planned by several universities and government agencies in the United Kingdom, Canada, and USA. Nearly 100 ozone soundings were made at 13 stations through the BORTAS Intensive Sounding Network, although aircraft measurements were unfortunately cancelled due to the volcanic eruption in Iceland. 2010 was actually an exceptional year for Canadian boreal fires. MODIS (Moderate Resolution Imaging Spectroradiometer) fire count data shows large fire events in Saskatchewan on several days in July. High amounts of NO2 close to the large fires are observed from OMI satellite data, indicating that not all NO2 is converted to PAN. Also associated with the fires, large amounts of CO, another precursor of ozone, are observed in MOPITT (Measurements Of Pollution In The Troposphere), AIRS and TES (Tropospheric Emission Spectrometer) satellite data in the middle to upper troposphere. These chemical conditions combined with sunny weather all favour ozone production. Following days with large fire activity, layers of elevated ozone mixing ratio (over 100 ppbv) are observed downwind at several sites. Back-trajectories suggest the elevated ozone in the profile is traceable to the fires in Saskatchewan. Lidar profiles also detect layers of aerosol at the same heights. However, the layers of high ozone are also associated with low humidity, which is not expected from a combustion source, and suggests the possibility of entrainment of stratospheric air.

  14. Comparison of ultraviolet Bi-directional Reflectance Distribution Function (BRDF) measurements of diffusers used in the calibration of the Total Ozone Mapping Spectrometer (TOMS)

    NARCIS (Netherlands)

    Butler, J.J.; Park, H.; Barnes, P.Y.; Early, E.A.; Eijk-Olij, C. van; Zoutman, A.E.; Buller-Leeuwen, S. van; Groote Schaarsberg, J.

    2002-01-01

    The measurement and long-term monitoring of global total ozone by ultraviolet albedo measuring satellite instruments require accurate and precise determination of the Bi-directional Reflectance Distribution Function (BRDF) of laboratory-based diffusers used in the pre-launch calibration of those

  15. Global long-term ozone trends derived from different observed and modelled data sets

    Science.gov (United States)

    Coldewey-Egbers, M.; Loyola, D.; Zimmer, W.; van Roozendael, M.; Lerot, C.; Dameris, M.; Garny, H.; Braesicke, P.; Koukouli, M.; Balis, D.

    2012-04-01

    The long-term behaviour of stratospheric ozone amounts during the past three decades is investigated on a global scale using different observed and modelled data sets. Three European satellite sensors GOME/ERS-2, SCIAMACHY/ENVISAT, and GOME-2/METOP are combined and a merged global monthly mean total ozone product has been prepared using an inter-satellite calibration approach. The data set covers the 16-years period from June 1995 to June 2011 and it exhibits an excellent long-term stability, which is required for such trend studies. A multiple linear least-squares regression algorithm using different explanatory variables is applied to the time series and statistically significant positive trends are detected in the northern mid latitudes and subtropics. Global trends are also estimated using a second satellite-based Merged Ozone Data set (MOD) provided by NASA. For few selected geographical regions ozone trends are additionally calculated using well-maintained measurements of individual Dobson/Brewer ground-based instruments. A reasonable agreement in the spatial patterns of the trends is found amongst the European satellite, the NASA satellite, and the ground-based observations. Furthermore, two long-term simulations obtained with the Chemistry-Climate Models E39C-A provided by German Aerospace Center and UMUKCA-UCAM provided by University of Cambridge are analysed.

  16. Merging of OMI and AIRS Ozone Data

    Science.gov (United States)

    Labow, Gordon J.; Fisher, Bradford; Susskind, Joel

    2014-01-01

    The OMI Instrument measures ozone using the backscattered light in the UV part of the spectrum. In polar night there are no OMI measurements so we hope to incorporate the AIRS ozone data to fill in these missing regions. AIRS is on the Aqua platform and has been operating since May 2002. AIRS is a multi-detector array grating spectrometer containing 2378 IR channels between 650 per centimeter and 2760 per centimeter which measures atmospheric temperature, precipitable water, water vapor, CO, CH4, CO2 and ozone profiles and column amount. It can also measure effective cloud fraction and cloud top pressure for up to two cloud layers and sea-land skin temperature. Since 2008, OMI has had part of its aperture occulted with a piece of the thermal blanket resulting in several scan positions being unusable. We hope to use the AIRS data to fill in the missing ozone values for those missing scan positions.

  17. Ozone zonal asymmetry and planetary wave characterization during Antarctic spring

    Directory of Open Access Journals (Sweden)

    I. Ialongo

    2012-03-01

    Full Text Available A large zonal asymmetry of ozone has been observed over Antarctica during winter-spring, when the ozone hole develops. It is caused by a planetary wave-driven displacement of the polar vortex. The total ozone data by OMI (Ozone Monitoring Instrument and the ozone profiles by MLS (Microwave Limb Sounder and GOMOS (Global Ozone Monitoring by Occultation of Stars were analysed to characterize the ozone zonal asymmetry and the wave activity during Antarctic spring. Both total ozone and profile data have shown a persistent zonal asymmetry over the last years, which is usually observed from September to mid-December. The largest amplitudes of planetary waves at 65° S (the perturbations can achieve up to 50% of zonal mean values is observed in October. The wave activity is dominated by the quasi-stationary wave 1 component, while the wave 2 is mainly an eastward travelling wave. Wave numbers 1 and 2 generally explain more than the 90% of the ozone longitudinal variations. Both GOMOS and MLS ozone profile data show that ozone zonal asymmetry covers the whole stratosphere and extends up to the altitudes of 60–65 km. The wave amplitudes in ozone mixing ratio decay with altitude, with maxima (up to 50% below 30 km.

    The characterization of the ozone zonal asymmetry has become important in the climate research. The inclusion of the polar zonal asymmetry in the climate models is essential for an accurate estimation of the future temperature trends. This information might also be important for retrieval algorithms that rely on ozone a priori information.

  18. Use of Ozone to Treat Ileostomy Dermatitis in an Experimental Rat Model.

    Science.gov (United States)

    Biçer, Şenol; Sayar, İlyas; Gürsul, Cebrail; Işık, Arda; Aydın, Merve; Peker, Kemal; Demiryilmaz, İsmail

    2016-03-07

    Dermatitis associated with ileostomy is an important problem that affects many people, especially children. The aim of this study was to investigate the therapeutic effects of ozone on dermatitis due to ileostomy, and to develop an alternative treatment option. A total of 28 rats were divided into 4 groups: control, ileostomy, ozone, and zinc oxide. Ileostomy was performed in all rats except the control group. After a 1-week waiting time, the ozone group was administered ozone therapy and the zinc oxide group was administered zinc oxide cream locally once a day for a total of 7 days. All rats were sacrificed at the end of this period. The efficacy of treatment was examined by biochemical, histopathological, and immunohistochemical parameters. The levels of malondialdehyde (MDA), total glutathione (tGSH), total antioxidant capacity (TAC), and total oxidant status (TOS) were measured from tissue. Vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) were examined immunohistochemically. Dermatitis occurred pathologically in all rats that underwent ileostomy surgery. The lowest dermatitis score was in the ozone treatment group (p<0.05). Ileostomy dermatitis caused increased levels of MDA and TOS. Ozone treatment resulted in reduced MDA and TOS levels, while the levels of tGSH and TAC were increased (p<0.05). Both VEGF and PCNA immunostaining were augmented in the ozone treatment group (p<0.05). Local ozone application may be a good alternative compared to the conventional treatment methods for the prevention of skin lesions that develop after ileostomy.

  19. A case study to determine the efficacy of ozonation in purification ...

    African Journals Online (AJOL)

    It was found that pre- and intermediate ozonation had no significant effect on pH, conductivity, dissolved organic carbon (DOC) and total organic carbon (TOC). Chlorophyll-a, total chlorophyll, spectral absorbance coefficient (SAC 254) and total algal cells were not influenced by pre-ozonation (as desired) but were greatly ...

  20. Longitude-dependent decadal ozone changes and ozone trends in boreal winter months during 1960–2000

    Directory of Open Access Journals (Sweden)

    D. H. W. Peters

    2008-05-01

    Full Text Available This study examines the longitude-dependent decadal changes and trends of ozone for the boreal winter months during the period of 1960–2000. These changes are caused primarily by changes in the planetary wave structure in the upper troposphere and lower stratosphere. The decadal changes and trends over 4 decades of geopotential perturbations, defined as a deviation from the zonal mean, are estimated by linear regression with time. The decadal changes in longitude-dependent ozone were calculated with a simple transport model of ozone based on the known planetary wave structure changes and prescribed zonal mean ozone gradients. For December of the 1960s and 1980s a statistically significant Rossby wave track appeared over the North Atlantic and Europe with an anticyclonic disturbance over the Eastern North Atlantic and Western Europe, flanked by cyclonic disturbances. In the 1970s and 1990s statistically significant cyclonic disturbances appeared over the Eastern North Atlantic and Europe, surrounded by anticyclonic anomalies over Northern Africa, Central Asia and Greenland. Similar patterns have been found for January. The Rossby wave track over the North Atlantic and Europe is stronger in the 1980s than in the 1960s. For February, the variability of the regression patterns is higher. For January we found a strong alteration in the modelled decadal changes in total ozone over Central and Northern Europe, showing a decrease of about 15 DU in the 1960s and 1980s and an increase of about 10 DU in the 1970s and 1990s. Over Central Europe the positive geopotential height trend (increase of 2.3 m/yr over 40 years is of the same order (about 100 m as the increase in the 1980s alone. This is important to recognize because it implies a total ozone decrease over Europe of the order of 14 DU for the 1960–2000 period, for January, if we use the standard change regression relation that about a 10-m geopotential height increase at 300 hPa is related to

  1. Studies on the Biological Effects of Ozone: 10. Release of Factors from Ozonated Human Platelets

    Directory of Open Access Journals (Sweden)

    G. Valacchi

    1999-01-01

    Full Text Available In a previous work we have shown that heparin, in the presence of ozone (O3, promotes a dose-dependent platelet aggregation, while after Ca2+ chelation with citrate, platelet aggregation is almost negligible. These results led us to think that aggregation may enhance the release of platelet components. We have here shown that indeed significantly higher amount of platelet-derived growth factor (PDGF, transforming growth factor β1 (TGF-β1 and interleukin-8(IL-8 are released in a dose-dependent manner after ozonation of heparinised platelet-rich plasma samples. These findings may explain the enhanced healing of torpid ulcers in patients with chronic limbischemia treated with O3 autohaemoteraphy (O3-AHT.

  2. Climate Prediction Center (CPC)Stratospheric Monitoring Ozone Blended Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 3-D global ozone mixing ratio (ppm) and total column ozone (DU) dataset analyzed from daily Solar Backscatter Ultraviolet Instrument(SBUV/2) and TIROS Operational...

  3. Lightweight ozonizer for field and airborne use

    Science.gov (United States)

    Stone, E. J.; Caldwell, J. R.; de Waal, C.; Horvath, J. J.; Pearson, R., Jr.; Stedman, D. H.

    1982-12-01

    An efficient, lightweight apparatus for the production of ozone in flowing oxygen or air has been constructed and tested. The exciter is an automotive electronic ignition running from a 28-V dc power source. The discharge tube consists of coaxial conductive-coated flint glass tubing fitting into Teflon end pieces. A single such unit will produce 4% ozone in oxygen flowing at 0.2 l/min, or a maximum of 0.020 l of ozone per minute in a total flow of 1.0 l/min.

  4. Study of Ozone Layer Variability near St. Petersburg on the Basis of SBUV Satellite Measurements and Numerical Simulation (2000-2014)

    Science.gov (United States)

    Virolainen, Y. A.; Timofeyev, Y. M.; Smyshlyaev, S. P.; Motsakov, M. A.; Kirner, O.

    2017-12-01

    A comparison between the numerical simulation results of ozone fields with different experimental data makes it possible to estimate the quality of models for their further use in reliable forecasts of ozone layer evolution. We analyze time series of satellite (SBUV) measurements of the total ozone column (TOC) and the ozone partial columns in two atmospheric layers (0-25 and 25-60 km) and compare them with the results of numerical simulation in the chemistry transport model (CTM) for the low and middle atmosphere and the chemistry climate model EMAC. The daily and monthly average ozone values, short-term periods of ozone depletion, and long-term trends of ozone columns are considered; all data sets relate to St. Petersburg and the period between 2000 and 2014. The statistical parameters (means, standard deviations, variations, medians, asymmetry parameter, etc.) of the ozone time series are quite similar for all datasets. However, the EMAC model systematically underestimates the ozone columns in all layers considered. The corresponding differences between satellite measurements and EMAC numerical simulations are (5 ± 5)% and (7 ± 7)% and (1 ± 4)% for the ozone column in the 0-25 and 25-60 km layers, respectively. The correspondent differences between SBUV measurements and CTM results amount to (0 ± 7)%, (1 ± 9)%, and (-2 ± 8)%. Both models describe the sudden episodes of the ozone minimum well, but the EMAC accuracy is much higher than that of the CTM, which often underestimates the ozone minima. Assessments of the long-term linear trends show that they are close to zero for all datasets for the period under study.

  5. What Is the Best Strategy for Enhancing the Effects of Topically Applied Ozonated Oils in Cutaneous Infections?

    Directory of Open Access Journals (Sweden)

    I. Zanardi

    2013-01-01

    Full Text Available Owing to diabetes, atherosclerosis, and ageing, there are several million patients undergoing skin lesions degenerated into infected ulcers with very little tendency to heal and implying a huge socioeconomical cost. Previous medical experience has shown that the daily application of ozonated oil eliminates the infection and promotes a rapid healing. The purpose of the study is the optimization of the antimicrobial effect of ozonated oils by testing in vitro four bacterial species and one yeast without or in the presence of different amounts of human serum. The results obtained suggest that a gentle and continuous removal of debris and exudate is an essential condition for the potent bactericidal effect of ozonated oils. In fact, even small amounts of human serum inactivate ozone derivatives and protect bacteria. The application of ozonated oil preparations is very promising in a variety of skin and mucosal infections. Moreover, ozonated oils are far less expensive than antibiotic preparations.

  6. Ozone fumigation for safety and quality of wine grapes in postharvest dehydration.

    Science.gov (United States)

    Botondi, Rinaldo; De Sanctis, Federica; Moscatelli, Niccolò; Vettraino, Anna Maria; Catelli, Cesare; Mencarelli, Fabio

    2015-12-01

    This paper proposes postharvest ozone fumigation (as a method) to control microorganisms and evaluate the effect on polyphenols, anthocyanins, carotenoids and cell wall enzymes during the grape dehydration for wine production. Pignola grapes were ozone-treated (1.5 g/h) for 18 h (A=shock treatment), then dehydrated or ozone-treated (1.5 g/h) for 18 h and at 0.5 g/h for 4 h each day (B=long-term treatment) during dehydration. Treatment and dehydration were performed at 10 °C. No significant difference was found for total carotenoid, total phenolic and total anthocyanin contents after 18 h of O3 treatment. A significant decrease in phenolic and anthocyanin contents occurred during treatment B. Also carotenoids were affected by B ozone treatment. Pectin methylesterase (PME) and polygalacturonase (PG) activities were higher in A-treated grapes during dehydration. Finally, ozone reduced fungi and yeasts by 50%. Shock ozone fumigation (A treatment) before dehydration can be used to reduce the microbial count during dehydration without affecting polyphenol and carotenoid contents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE

    Directory of Open Access Journals (Sweden)

    E. Dupuy

    2009-01-01

    Full Text Available This paper presents extensive {bias determination} analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45–60 km, the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about +20% on average. For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within ±10% (average values within ±6% between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes (~35–55 km, systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to −10%, the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30% in the 45–55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements.

  8. Combined treatment of mezcal vinasses by ozonation and activated sludge.

    Science.gov (United States)

    2017-10-18

    In Mexico, mezcal production generates huge amounts of vinasses (MV) that cause negative environmental impacts. Thus, MV treatment is necessary before discharge to water bodies. Although there is no information for mezcal vinasses, similar effluents have been treated by biological processes (i.e. anaerobic and aerobic) usually complemented by oxidative chemical pretreatments (ozonation) and physico-chemical methods. In this work MV were first ozonated and followed by batch aerobic biological degradation. In the ozonation stage, organic matter removals were 4.5-11 % as COD, whereas the removal of aromatic compounds and phenols were 16-32 % and 48-83 % respectively. In the aerobic post-treatment, COD depletions up to 85 % were achieved; removals in ozone pre-treated vinasses were higher (80 to 85 %) than that of raw vinasse (69 %). It seems that ozonation preferentially attacked the recalcitrant fraction of organic matter present in the vinasses and increased its aerobic biodegradability.

  9. A preliminary comparison between TOVS and GOME level 2 ozone data

    Science.gov (United States)

    Rathman, William; Monks, Paul S.; Llewellyn-Jones, David; Burrows, John P.

    1997-09-01

    A preliminary comparison between total column ozone concentration values derived from TIROS Operational Vertical Sounder (TOVS) and Global Ozone Monitoring Experiment (GOME) has been carried out. Two comparisons of ozone datasets have been made: a) TOVS ozone analysis maps vs. GOME level 2 data; b) TOVS data located at Northern Hemisphere Ground Ozone Stations (NHGOS) vs. GOME data. Both analyses consistently showed an offset in the value of the total column ozone between the datasets [for analyses a) 35 Dobson Units (DU); and for analyses b) 10 DU], despite a good correlation between the spatial and temporal features of the datasets. A noticeably poor correlation in the latitudinal bands 10°/20° North and 10°/20° South was observed—the reasons for which are discussed. The smallest region which was statistically representative of the ozone value correlation dataset of TOVS data at NHGOS and GOME level-2 data was determined to be a region that was enclosed by effective radius of 0.75 arc-degrees (83.5km).

  10. Interannual variations in the zonal asymmetry of the subpolar latitudes total ozone column during the austral spring

    Directory of Open Access Journals (Sweden)

    Eduardo A. Agosta

    2010-06-01

    Full Text Available The Southern Hemisphere midlatitude Total Ozone Column (TOC shows a horseshoe like structure with a minimum which appears to have two preferential extreme positions during October: one, near southern South America, the other, near the Greenwich Meridian approximately. The interannual zonal ozone asymmetry exists independently of the variations induced by the 11-year solar cycle, the Quasi-Biennial Oscillation (QBO and planetary wave activity inducing the Brewer-Dobson circulation. The classification and climatological composition of these two extreme ozone-minimum positions allows for the observations of statistically significant patterns in geopotential height and zonal winds associated with the quasi-stationary wave 1, extending throughout lower stratosphere. The changes in the quasi-stationary wave 1 associated with the extreme TOC positions appear to have sinks and sources determining transient interactions between troposphere and the stratosphere. Thus, distinct climate states in the troposphere seem to be dynamically linked with the state of the stratosphere and ozone layer. The migration of the TOC trough from southern South America to the east during the 1990s can be related to changes in the troposphere/stratosphere coupling through changes in the Southern Annular Mode variability in spring.La Columna Total de Ozono (CTO de las latitudes medias del Hemisferio Sur muestra una estructura de herradura con un mínimo que muestra tener dos posiciones preferenciales extremas durante octubre: uno, en las cercanías del sur de Sudamérica, y el otro, cerca del meridiano de Greenwich. La asimetría zonal de ozono existe independientemente de las variaciones inducidas por el ciclo solar de 11 años, la Oscilación Cuasi-Bianual (QBO y la actividad de onda planetaria asociada a la circulación de Brewer-Dobson. La clasificación y composición climatológica de estas dos situaciones longitudinalmente extremas de mínimo de ozono permite observar

  11. Effect of ozonation on the reactivity of lignocellulose substrates in enzymatic hydrolyses to sugars

    Science.gov (United States)

    Ben'ko, E. M.; Manisova, O. R.; Lunin, V. V.

    2013-07-01

    The efficiency of pre-treatment of aspen wood with ozone for subsequent enzymatic hydrolysis into sugars is determined by the amount of absorbed ozone. The ozone absorption rate depended on the water content in the sample being ozonized and was maximum at a relative humidity of wood of ˜40%. As a result of ozone pre-treatment, the initial rate of the enzymatic hydrolysis of wood under the action of a cellulase complex increased eightfold, and the maximum yield of sugars increased tenfold depending on the ozone dose. The ozonation at ozone doses of more than 3 mol/PPU (phenylpropane structural unit of lignin) led to a decrease in the yield of sugars because of the oxidative destruction of cellulose and hemicellulose. The alkaline ozonation in 2 and 12% NaOH was inefficient because of the accompanying oxidation of carbohydrates and considerably decreased the yield of sugars.

  12. Ozone flux of an urban orange grove: multiple scaled measurements and model comparisons

    Science.gov (United States)

    Alstad, K. P.; Grulke, N. E.; Jenerette, D. G.; Schilling, S.; Marrett, K.

    2009-12-01

    There is significant uncertainty about the ozone sink properties of the phytosphere due to a complexity of interactions and feedbacks with biotic and abiotic factors. Improved understanding of the controls on ozone fluxes is critical to estimating and regulating the total ozone budget. Ozone exchanges of an orange orchard within the city of Riverside, CA were examined using a multiple-scaled approach. We access the carbon, water, and energy budgets at the stand- to leaf- level to elucidate the mechanisms controlling the variability in ozone fluxes of this agro-ecosystem. The two initial goals of the study were 1. To consider variations and controls on the ozone fluxes within the canopy; and, 2. To examine different modeling and scaling approaches for totaling the ozone fluxes of this orchard. Current understanding of the total ozone flux between the atmosphere near ground and the phytosphere (F-total) include consideration of a fraction which is absorbed by vegetation through stomatal uptake (F-absorb), and fractional components of deposition on external, non-stomatal, surfaces of the vegetation (F-external) and soil (F-soil). Multiplicative stomatal-conductance models have been commonly used to estimate F-absorb, since this flux cannot be measured directly. We approach F-absorb estimates for this orange orchard using chamber measurement of leaf stomatal-conductance, as well as non-chamber sap-conductance collected on branches of varied aspect and sun/shade conditions within the canopy. We use two approaches to measure the F-total of this stand. Gradient flux profiles were measured using slow-response ozone sensors collecting within and above the canopy (4.6 m), and at the top of the tower (8.5 m). In addition, an eddy-covariance system fitted with a high-frequency chemiluminescence ozone system will be deployed (8.5 m). Preliminary ozone gradient flux profiles demonstrate a substantial ozone sink strength of this orchard, with diurnal concentration differentials

  13. Options to Accelerate Ozone Recovery: Ozone and Climate Benefits

    Science.gov (United States)

    Fleming, E. L.; Daniel, J. S.; Portmann, R. W.; Velders, G. J. M.; Jackman, C. H.; Ravishankara, A. R.

    2010-01-01

    The humankind or anthropogenic influence on ozone primarily originated from the chlorofluorocarbons and halons (chlorine and bromine). Representatives from governments have met periodically over the years to establish international regulations starting with the Montreal Protocol in 1987, which greatly limited the release of these ozone-depleting substances (DDSs). Two global models have been used to investigate the impact of hypothetical reductions in future emissions of ODSs on total column ozone. The investigations primarily focused on chlorine- and bromine-containing gases, but some computations also included nitrous oxide (N2O). The Montreal Protocol with ODS controls have been so successful that further regulations of chlorine- and bromine-containing gases could have only a fraction of the impact that regulations already in force have had. if all anthropogenic ODS emissions were halted beginning in 2011, ozone is calculated to be higher by about 1-2% during the period 2030-2100 compared to a case of no additional ODS restrictions. Chlorine- and bromine-containing gases and nitrous oxide are also greenhouse gases and lead to warming of the troposphere. Elimination of N 20 emissions would result in a reduction of radiative forcing of 0.23 W/sq m in 2100 than presently computed and destruction of the CFC bank would produce a reduction in radiative forcing of 0.005 W/sq m in 2100. This paper provides a quantitative way to consider future regulations of the CFC bank and N 20 emissions

  14. Massive global ozone loss predicted following regional nuclear conflict

    Science.gov (United States)

    Mills, Michael J.; Toon, Owen B.; Turco, Richard P.; Kinnison, Douglas E.; Garcia, Rolando R.

    2008-01-01

    We use a chemistry-climate model and new estimates of smoke produced by fires in contemporary cities to calculate the impact on stratospheric ozone of a regional nuclear war between developing nuclear states involving 100 Hiroshima-size bombs exploded in cities in the northern subtropics. We find column ozone losses in excess of 20% globally, 25–45% at midlatitudes, and 50–70% at northern high latitudes persisting for 5 years, with substantial losses continuing for 5 additional years. Column ozone amounts remain near or <220 Dobson units at all latitudes even after three years, constituting an extratropical “ozone hole.” The resulting increases in UV radiation could impact the biota significantly, including serious consequences for human health. The primary cause for the dramatic and persistent ozone depletion is heating of the stratosphere by smoke, which strongly absorbs solar radiation. The smoke-laden air rises to the upper stratosphere, where removal mechanisms are slow, so that much of the stratosphere is ultimately heated by the localized smoke injections. Higher stratospheric temperatures accelerate catalytic reaction cycles, particularly those of odd-nitrogen, which destroy ozone. In addition, the strong convection created by rising smoke plumes alters the stratospheric circulation, redistributing ozone and the sources of ozone-depleting gases, including N2O and chlorofluorocarbons. The ozone losses predicted here are significantly greater than previous “nuclear winter/UV spring” calculations, which did not adequately represent stratospheric plume rise. Our results point to previously unrecognized mechanisms for stratospheric ozone depletion. PMID:18391218

  15. Design of a rocket-borne radiometer for stratospheric ozone measurements

    International Nuclear Information System (INIS)

    Barnes, R.A.; Simeth, P.G.

    1989-01-01

    A four-filter ultraviolet radiometer for measuring stratospheric ozone is described. The payload is launched aboard a Super-Loki rocket to an apogee of 70 km. The instrument measures the solar ultraviolet irradiance over its filter wavelengths as it descends on a parachute. The amount of ozone in the path between the radiometer and the sun is calculated from the attenuation of solar flux using the Beer-Lambert law. Radar at the launch site measures the height of the instrument throughout its flight. The fundamental ozone value measured by the ROCOZ-A radiometer is the vertical ozone overburden as a function of geometric altitude. Ozone measurements are obtained for altitudes from 55 to 20 km, extending well above the altitude range of balloon-borne ozone-measuring instruments. The optics and electronics in the radiometer have been designed within relatively severe size and weight limitations imposed by the launch vehicle. The electronics in the improved rocket ozonesonde (ROCOZ-A) provide essentially drift-free outputs throughout 40-min ozone soundings at stratospheric temperatures. The modest cost of the payload precludes recovery and makes the instrument a versatile tool compared to larger ozonesondes

  16. Natural zeolite reactivity towards ozone: the role of compensating cations.

    Science.gov (United States)

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A

    2012-08-15

    Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Ozone depletion potentials of halocarbons

    International Nuclear Information System (INIS)

    Karol, I.L.; Kiselev, A.A.

    1992-01-01

    The concept of ozone depletion potential (ODP) is widely used in the evaluation of numerous halocarbons and of their replacements for effects on ozone, but the methods, model assumptions and conditions of ODP calculation have not been analyzed adequately. In this paper, a model study of effects on ozone after the instantaneous releases of various amounts of CH 3 CCl 3 and of CHF 2 Cl(HCFC-22) in the several conditions of the background atmosphere are presented, aimed to understand the main connections of ODP values with the methods of their calculations. To facilitate the ODP computation in numerous versions for long after the releases, the above rather short-lived gases have been used. The variation of released gas global mass from 1 Mt to 1 Gt leads to ODP value increase atmosphere. The same variations are analyzed for the CFC-free atmosphere of 1960s conditions for the anthropogenically loaded atmosphere in the 21st century according to the known IPCC- A scenario (business as usual). Recommendations of proper ways of ODP calculations are proposed for practically important cases

  18. Exposure-Relevant Ozone Chemistry in Occupied Spaces

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Beverly Kaye [Univ. of California, Berkeley, CA (United States)

    2009-04-01

    Ozone, an ambient pollutant, is transformed into other airborne pollutants in the indoor environment. In this dissertation, the type and amount of byproducts that result from ozone reactions with common indoor surfaces, surface residues, and vapors were determined, pollutant concentrations were related to occupant exposure, and frameworks were developed to predict byproduct concentrations under various indoor conditions. In Chapter 2, an analysis is presented of secondary organic aerosol formation from the reaction of ozone with gas-phase, terpene-containing consumer products in small chamber experiments under conditions relevant for residential and commercial buildings. The full particle size distribution was continuously monitored, and ultrafine and fine particle concentrations were in the range of 10 to>300 mu g m-3. Particle nucleation and growth dynamics were characterized.Chapter 3 presents an investigation of ozone reactions with aircraft cabin surfaces including carpet, seat fabric, plastics, and laundered and worn clothing fabric. Small chamber experiments were used to determine ozone deposition velocities, ozone reaction probabilities, byproduct emission rates, and byproduct yields for each surface category. The most commonly detected byproducts included C1?C10 saturated aldehydes and skin oil oxidation products. For all materials, emission rates were higher with ozone than without. Experimental results were used to predict byproduct exposure in the cabin and compare to other environments. Byproduct levels are predicted to be similar to ozone levels in the cabin, which have been found to be tens to low hundreds of ppb in the absence of an ozone converter. In Chapter 4, a model is presented that predicts ozone uptake by and byproduct emission from residual chemicals on surfaces. The effects of input parameters (residue surface concentration, ozone concentration, reactivity of the residue and the surface, near-surface airflow conditions, and

  19. Effect of low concentrations of ozone on the enzymes catalase, peroxidase, papain and urease

    Energy Technology Data Exchange (ETDEWEB)

    Todd, G W

    1958-01-01

    The enzymes catalase, peroxidase, papain and urease were treated in vitro with low concentrations of ozone gas. Wide variations were found in the sensitivity of the enzymes to the inhibitory action of the gas. Papain showed the greatest sensitivity; the rest required a much greater amount of ozone for inactivation. Comparisons of ozone and hydrogen peroxide as inhibitors of papain and urease showed ozone to be 30 times as effective as hydrogen peroxide on papain and 3 times as effective on urease. 14 references, 2 figures, 3 tables.

  20. 45 CFR 2526.50 - Is there a limit on the total amount of education awards an individual may receive?

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Is there a limit on the total amount of education... Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE ELIGIBILITY FOR AN EDUCATION AWARD § 2526.50 Is there a limit on the total amount of education awards an individual may receive? (a) General...

  1. A depleted ozone layer absorbs less UV-B, cooling the ozone layer, increasing the amount of UV-B observed to reach Earth, heating air by dissociating tropospheric and ground-level ozone, and heating oceans very efficiently by penetrating tens of meters into the mixed layer. UV-B is 48 times more energetic ("hotter") than IR absorbed by greenhouse gases

    Science.gov (United States)

    Ward, P. L.

    2017-12-01

    This new insight into the physics of radiation shows why changes in stratospheric ozone are observed to cause changes in global temperature. By 1970, manufactured CFC gases and ozone depletion began increasing. By 1993, increases in CFCs stopped as mandated by the Montreal Protocol. By 1995, increases in ozone depletion stopped. By 1998, increases in temperature stopped until 2014. Ozone is also depleted by halogen gases emitted from major basaltic lava flows, the largest of which, since 1783, occurred at Bardarbunga in Iceland in 2014, causing 2015 and 2016 to be the hottest years on record. Throughout Earth history, the largest basaltic lava flows were contemporaneous with periods of greatest warming and greatest levels of mass extinctions. Planck's empirical law shows that temperature of matter results from oscillation of all the bonds holding matter together. The higher the temperature, the higher the frequencies and amplitudes of oscillation. Thus, radiation from a nearby hotter body will make the absorbing body hotter than radiation from a cooler body. According to the Planck-Einstein relation, thermal energy (E) in matter and in radiation equals frequency of oscillation (ν) times the Planck constant (h), E=hν—the energy of a frictionless atomic oscillator. Since frequency is observed to be a very broad continuum extending from radio signals through visible light to gamma rays, thermal energy (E=hν) must also be a very broad continuum. Thermal flux cannot be represented properly by a single number of watts per square meter, as commonly assumed throughout the physical sciences, because all frequencies coexist and the number of watts increases with frequency. Thus, UV-B solar radiation is 48 times more energetic than IR terrestrial radiation absorbed by greenhouse gases and can make the absorbing body 48 times hotter. UV-B causes sunburn; no amount of IR can cause sunburn. Furthermore, in a basic experiment, I show that air containing more than 23 times

  2. Oxidation by UV and ozone of organic contaminants dissolved in deionized and raw mains water

    International Nuclear Information System (INIS)

    Francis, P.D.

    1987-01-01

    Organic contaminants dissolved in deionized pretreated and raw mains water were reacted with ultraviolet light and ozone. Ozone first was used for partial oxidation followed by ozone combined with ultraviolet radiation to produce total oxidation. The reduction of total organic carbon (TOC) level and direct oxidation of halogenated compounds were measured throughout the treatment process. The rate of TOC reduction was compared for ozone injected upstream and inside the reactor

  3. Ozone decomposition kinetics on alumina: effects of ozone partial pressure, relative humidity and repeated oxidation cycles

    Directory of Open Access Journals (Sweden)

    R. C. Sullivan

    2004-01-01

    Full Text Available The room temperature kinetics of gas-phase ozone loss via heterogeneous interactions with thin alumina films has been studied in real-time using 254nm absorption spectroscopy to monitor ozone concentrations. The films were prepared from dispersions of fine alumina powder in methanol and their surface areas were determined by an in situ procedure using adsorption of krypton at 77K. The alumina was found to lose reactivity with increasing ozone exposure. However, some of the lost reactivity could be recovered over timescales of days in an environment free of water, ozone and carbon dioxide. From multiple exposures of ozone to the same film, it was found that the number of active sites is large, greater than 1.4x1014 active sites per cm2 of surface area or comparable to the total number of surface sites. The films maintain some reactivity at this point, which is consistent with there being some degree of active site regeneration during the experiment and with ozone loss being catalytic to some degree. The initial uptake coefficients on fresh films were found to be inversely dependent on the ozone concentration, varying from roughly 10-6 for ozone concentrations of 1014 molecules/cm3 to 10-5 at 1013 molecules/cm3. The initial uptake coefficients were not dependent on the relative humidity, up to 75%, within the precision of the experiment. The reaction mechanism is discussed, as well as the implications these results have for assessing the effect of mineral dust on atmospheric oxidant levels.

  4. North American Tropospheric Ozone Profiles from IONS (INTEX Ozonesonde Network Study, 2004, 2006): Ozone Budgets, Polution Statistics, Satellite Retrievals

    Science.gov (United States)

    Dougherty, M.; Thompson, A. M.; Witte, J. C.; Miller, S. K.; Oltmans, S. J.; Cooper, O. R.; Tarasick, D. W.; Chatfield, R. B.; Taubman, B. F.; Joseph, E.; Baumgardner, D.; Merrill, J. T.; Morris, G. A.; Rappenglueck, B.; Lefer, B.; Forbes, G.; Newchurch, M. J.; Schmidlin, F. J.; Pierce, R. B.; Leblanc, T.; Dubey, M.; Minschwaner, K.

    2007-12-01

    During INTEX-B (both Milagro and IMPEX phases in Spring 2006) and during the summer TEXAQS- 2006/GOMACCS period, the INTEX Ozonesonde Network Study (IONS-06) coordinated ozonesonde launches over North America for Aura overpasses. IONS-06 supported aircraft operations and provided profiles for ozone budgets and pollution transport, satellite validation and evaluation of models. In contrast to IONS-04, IONS-06 had a greater range (all but one 2004 IONS site plus a dozen in California, New Mexico, Mexico City, Barbados and southwestern Canada), yielding more than 700 profiles. Tropospheric pollution statistics to guide Aura satellite retrievals and contrasts in UT-LS (upper tropospheric-lower stratospheric) ozone between 2004 and 2006 are presented. With IONS-04 dominated by low-pressure conditions over northeastern North America, UT ozone originated 25% from the stratosphere [Thompson et al., 2007a,b] with significant amounts from aged or relatively fresh pollution and lightning [Cooper et al., 2006; Morris et al., 2006]. Both IONS-04 and IONS-06 summer periods displayed a persistent UT ozone maximum [Cooper et al., 2007] over the south-central US. March 2006 IONS sondes over Mexico manifested persistent UT/LS gravity wave influence and more sporadic pollution. Regional and seasonal contrasts in IONS-06 ozone distributions are described. intexb/ions06.html

  5. 26 CFR 25.2503-1 - General definitions of “taxable gifts” and of “total amount of gifts.”

    Science.gov (United States)

    2010-04-01

    ... âtotal amount of gifts.â 25.2503-1 Section 25.2503-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) ESTATE AND GIFT TAXES GIFT TAX; GIFTS MADE AFTER DECEMBER 31, 1954 Determination of Tax Liability § 25.2503-1 General definitions of “taxable gifts” and of “total amount of gifts...

  6. Interaction of ozone with plastic and metallic materials in a dynamic flow system

    Energy Technology Data Exchange (ETDEWEB)

    Altshuller, A P; Wartburg, A F

    1961-01-01

    The loss of ozone in the p.p.h.m. range after passing through or over various plastic and metallic substances has been investigated. The materials used include Teflon, glass, stainless steel, aluminium, polyethylene and polyvinyl tubing, Mylar film, and aluminium foil. Unused Teflon passes ozone without loss. Glass tubing, after a short exposure to ozone, passes ozone without loss. Stainless steel tubing, aluminum tubing or foil and Mylar film must be exposed to ozone in the p.p.h.m. range for several hours before 90% or more of the ozone initially present can be passed through or over these materials. More rapid conditioning to ozone can be achieved by several five to fifteen-minute exposures to about 10 p.p.m. of ozone. Polyethylene and Nalgon tubing even after many hours of exposure to ozone will pass only 75 to 80% of the ozone initially present in the gas stream. Some types of polyvinyl tubing are unsatisfactory for use with ozone irrespective of the amount of exposure to ozone. Flowrates below 1000 c/sup 3//min. will increase losses of ozone. Except for Teflon and glass, materials should not be used in ozone analysis under any circumstances at low flowrates until they are thoroughly conditioned. Results obtained with stainless steel, aluminium and polyethylene indicate that conditioning to ozone once obtained will persist for at least two weeks.

  7. OZONE CONCENTRATION ATTRIBUTABLE PREMATURE DEATH IN POLAND

    Directory of Open Access Journals (Sweden)

    Krzysztof Skotak

    2010-03-01

    Full Text Available Ozone in the lower part of the atmosphere (troposphere, strong photochemical oxidant, is not directly emitted to the atmosphere but formed through a series of complex reactions. Ozone concentrations depends on ozone precursors air contamination (mainly nitrogen dioxide and non-methane volatile organic compounds and meteorological conditions (temperature and solar radiation. The main sectors emitted ozone precursors are road transport, power and heat generation plants, household (heating, industry, and petrol storage and distribution. Ozone and some of its precursors are also transported long distances in the atmosphere and are therefore considered a transboundary problem. As a result, the ozone concentrations are often low in busy urban areas and higher in suburban and rural areas. Nowadays, instead of particulate matter, ozone is one of the most widespread global air pollution problems. In and around urban areas, relatively large gradients of ozone can be observed. Because of its high reactivity in elevated concentrations ozone causes serious health problems and damage to ecosystems, agricultural crops and materials. Main ill-health endpoints as a results of ozone concentrations can be characterised as an effect of pulmonary and cardiovascular system, time morbidity and mortality series, development of atherosclerosis and asthma and finally reduction in life expectancy. The associations with increased daily mortality due to ozone concentrations are confirmed by many researches and epidemiological studies. Estimation of the level selected ill-health endpoints (mortality in total and due to cardiovascular and respiratory causes as a result of the short-term ozone exposure in Poland was the main aim of the project. Final results have been done based on estimation method elaborated by WHO, ozone measurements from National Air Quality Monitoring System and statistical information such as mortality rate and populations. All analysis have been done in

  8. What do satellite backscatter ultraviolet and visible spectrometers see over snow and ice? A study of clouds and ozone using the A-train

    Directory of Open Access Journals (Sweden)

    A. P. Vasilkov

    2010-05-01

    Full Text Available In this paper, we examine how clouds over snow and ice affect ozone absorption and how these effects may be accounted for in satellite retrieval algorithms. Over snow and ice, the Aura Ozone Monitoring Instrument (OMI Raman cloud pressure algorithm derives an effective scene pressure. When this scene pressure differs appreciably from the surface pressure, the difference is assumed to be caused by a cloud that is shielding atmospheric absorption and scattering below cloud-top from satellite view. A pressure difference of 100 hPa is used as a crude threshold for the detection of clouds that significantly shield tropospheric ozone absorption. Combining the OMI effective scene pressure and the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS cloud top pressure, we can distinguish between shielding and non-shielding clouds.

    To evaluate this approach, we performed radiative transfer simulations under various observing conditions. Using cloud vertical extinction profiles from the CloudSat Cloud Profiling Radar (CPR, we find that clouds over a bright surface can produce significant shielding (i.e., a reduction in the sensitivity of the top-of-the-atmosphere radiance to ozone absorption below the clouds. The amount of shielding provided by clouds depends upon the geometry (solar and satellite zenith angles and the surface albedo as well as cloud optical thickness. We also use CloudSat observations to qualitatively evaluate our approach. The CloudSat, Aqua, and Aura satellites fly in an afternoon polar orbit constellation with ground overpass times within 15 min of each other.

    The current Total Ozone Mapping Spectrometer (TOMS total column ozone algorithm (that has also been applied to the OMI assumes no clouds over snow and ice. This assumption leads to errors in the retrieved ozone column. We show that the use of OMI effective scene pressures over snow and ice reduces these errors and leads to a more homogeneous spatial

  9. Creating a Satellite-Based Record of Tropospheric Ozone

    Science.gov (United States)

    Oetjen, Hilke; Payne, Vivienne H.; Kulawik, Susan S.; Eldering, Annmarie; Worden, John; Edwards, David P.; Francis, Gene L.; Worden, Helen M.

    2013-01-01

    The TES retrieval algorithm has been applied to IASI radiances. We compare the retrieved ozone profiles with ozone sonde profiles for mid-latitudes for the year 2008. We find a positive bias in the IASI ozone profiles in the UTLS region of up to 22 %. The spatial coverage of the IASI instrument allows sampling of effectively the same air mass with several IASI scenes simultaneously. Comparisons of the root-mean-square of an ensemble of IASI profiles to theoretical errors indicate that the measurement noise and the interference of temperature and water vapour on the retrieval together mostly explain the empirically derived random errors. The total degrees of freedom for signal of the retrieval for ozone are 3.1 +/- 0.2 and the tropospheric degrees of freedom are 1.0 +/- 0.2 for the described cases. IASI ozone profiles agree within the error bars with coincident ozone profiles derived from a TES stare sequence for the ozone sonde station at Bratt's Lake (50.2 deg N, 104.7 deg W).

  10. Long-term response of total ozone content at different latitudes of the Northern and Southern Hemispheres caused by solar activity during 1958-2006 (results of regression analysis)

    Science.gov (United States)

    Krivolutsky, Alexei A.; Nazarova, Margarita; Knyazeva, Galina

    Solar activity influences on atmospheric photochemical system via its changebale electromag-netic flux with eleven-year period and also by energetic particles during solar proton event (SPE). Energetic particles penetrate mostly into polar regions and induce additional produc-tion of NOx and HOx chemical compounds, which can destroy ozone in photochemical catalytic cycles. Solar irradiance variations cause in-phase variability of ozone in accordance with photo-chemical theory. However, real ozone response caused by these two factors, which has different physical nature, is not so clear on long-term time scale. In order to understand the situation multiply linear regression statistical method was used. Three data series, which covered the period 1958-2006, have been used to realize such analysis: yearly averaged total ozone at dif-ferent latitudes (World Ozone Data Centre, Canada, WMO); yearly averaged proton fluxes with E¿ 10 MeV ( IMP, GOES, METEOR satellites); yearly averaged numbers of solar spots (Solar Data). Then, before the analysis, the data sets of ozone deviations from the mean values for whole period (1958-2006) at each latitudinal belt were prepared. The results of multiply regression analysis (two factors) revealed rather complicated time-dependent behavior of ozone response with clear negative peaks for the years of strong SPEs. The magnitudes of such peaks on annual mean basis are not greater than 10 DU. The unusual effect -positive response of ozone to solar proton activity near both poles-was discovered by statistical analysis. The pos-sible photochemical nature of found effect is discussed. This work was supported by Russian Science Foundation for Basic Research (grant 09-05-009949) and by the contract 1-6-08 under Russian Sub-Program "Research and Investigation of Antarctica".

  11. Ozonation for source treatment of pharmaceuticals in hospital wastewater - ozone lifetime and required ozone dose

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Chhetri, Ravi Kumar

    2016-01-01

    Ozonation aimed at removing pharmaceuticals was studied in an effluent from an experimental pilot system using staged moving bed biofilm reactor (MBBR) tanks for the optimal biological treatment of wastewater from a medical care unit of Aarhus University Hospital. Dissolved organic carbon (DOC......) and pH in samples varied considerably, and the effect of these two parameters on ozone lifetime and the efficiency of ozone in removing pharmaceuticals were determined. The pH in the effluent varied from 5.0 to 9.0 resulting in approximately a doubling of the required ozone dose at the highest p......H for each pharmaceutical. DOC varied from 6 to 20 mg-DOC/L. The ozone required for removing each pharmaceutical, varied linearly with DOC and thus, ozone doses normalized to DOC (specific ozone dose) agreed between water samples (typically within 15%). At neutral pH the specific ozone dose required...

  12. Tropospheric and total ozone columns over Paris (France measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Viatte

    2011-10-01

    Full Text Available Ground-based Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscopy", installed in Créteil (France. The capacity of the technique to separate stratospheric and tropospheric ozone is demonstrated. Daily mean tropospheric ozone columns derived from the Infrared Atmospheric Sounding Interferometer (IASI and from OASIS measurements are compared for summer 2009 and a good agreement of −5.6 (±16.1 % is observed. Also, a qualitative comparison between in-situ surface ozone measurements and OASIS data reveals OASIS's capacity to monitor seasonal tropospheric ozone variations, as well as ozone pollution episodes in summer 2009 around Paris. Two extreme pollution events are identified (on the 1 July and 6 August 2009 for which ozone partial columns from OASIS and predictions from a regional air-quality model (CHIMERE are compared following strict criteria of temporal and spatial coincidence. An average bias of 0.2%, a mean square error deviation of 7.6%, and a correlation coefficient of 0.91 is found between CHIMERE and OASIS, demonstrating the potential of a mid-resolution FTIR instrument in ground-based solar absorption geometry for tropospheric ozone monitoring.

  13. Adrenal-derived stress hormones modulate ozone-induced ...

    Science.gov (United States)

    Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED)or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effect of acute ozone exposure. To understand the influence of adrenal-derived stress hormones in mediating ozone-induced lung injury/inflammation, we assessed global gene expression (mRNA sequencing) and selected proteins in lung tissues from male Wistar-Kyoto rats that underwent DEMED, ADREX, or sham surgery (SHAM)prior to their exposure to air or ozone (1 ppm),4 h/day for 1 or 2days. Ozone exposure significantly changed the expression of over 2300 genes in lungs of SHAM rats, and these changes were markedly reduced in DEMED and ADREX rats. SHAM surgery but not DEMED or ADREX resulted in activation of multiple ozone-responsive pathways, including glucocorticoid, acute phase response, NRF2, and Pl3K-AKT.Predicted targets from sequencing data showed a similarity between transcriptional changes induced by ozone and adrenergic and steroidal modulation of effects in SHAM but not ADREX rats. Ozone-induced Increases in lung 116 in SHAM rats coincided with neutrophilic Inflammation, but were diminished in DEMED and ADREX rats. Although ozone exposure in SHAM rats did not significantly alter mRNA expression of lfny and 11-4, the IL-4 protein and ratio of IL-4 to IFNy (IL-4/IFNy) proteins increased suggesting a tendency for a Th2 response. This did not occur

  14. Ozone flux over a Norway spruce forest and correlation with net ecosystem production

    International Nuclear Information System (INIS)

    Zapletal, Milos; Cudlin, Pavel; Chroust, Petr; Urban, Otmar; Pokorny, Radek; Edwards-Jonasova, Magda; Czerny, Radek; Janous, Dalibor; Taufarova, Klara; Vecera, Zbynek; Mikuska, Pavel; Paoletti, Elena

    2011-01-01

    Daily ozone deposition flux to a Norway spruce forest in Czech Republic was measured using the gradient method in July and August 2008. Results were in good agreement with a deposition flux model. The mean daily stomatal uptake of ozone was around 47% of total deposition. Average deposition velocity was 0.39 cm s -1 and 0.36 cm s -1 by the gradient method and the deposition model, respectively. Measured and modelled non-stomatal uptake was around 0.2 cm s -1 . In addition, net ecosystem production (NEP) was measured by using Eddy Covariance and correlations with O 3 concentrations at 15 m a.g.l., total deposition and stomatal uptake were tested. Total deposition and stomatal uptake of ozone significantly decreased NEP, especially by high intensities of solar radiation. - Highlights: → We estimate ozone deposition flux to a Norway spruce forest using the gradient method and model. → The mean stomatal uptake of ozone is approximately 47% of the total deposition. → We measure net ecosystem production (NEP) using Eddy Covariance. → We test whether elevated total deposition and stomatal uptake of O 3 imply a reduction of NEP. → Deposition and stomatal uptake of O 3 decrease NEP, especially by high intensities of solar radiation. - Net ecosystem production of a Norway spruce forest decreases with increasing deposition and stomatal uptake of ozone.

  15. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

    Science.gov (United States)

    Takahashi, Go; Akashi, Haruaki

    AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

  16. Ozone Flux Measurement and Modelling on Leaf/Shoot and Canopy Scale

    Directory of Open Access Journals (Sweden)

    Ludger Grünhage

    Full Text Available The quantitative study of the ozone effects on agricultural and forest vegetation requires the knowledge of the pollutant dose absorbed by plants via leaf stomata, i.e. the stomatal flux. Nevertheless, the toxicologically effective dose can differ from the stomatal flux because a pool of scavenging and detoxification processes reduce the amount of pollutant responsible of the expression of the harmful effects. The measurement of the stomatal flux is not immediate and the quantification of the effective dose is still troublesome. The paper examines the conceptual aspects of ozone flux measurement and modelling in agricultural and ecological research. The ozone flux paradigm is conceptualized into a toxicological frame and faced at two different scales: leaf/shoot and canopy scales. Leaf and shoot scale flux measurements require gas-exchange enclosure techniques, while canopy scale flux measurements need a micrometeorological approach including techniques such as eddy covariance and the aerodynamical gradient. At both scales, not all the measured ozone flux is stomatal flux. In fact, a not negligible amount of ozone is destroyed on external plant surfaces, like leaf cuticles, or by gas phase reaction with biogenic volatile compounds. The stomatal portion of flux can be calculated from concurrent measurements of water vapour fluxes at both scales. Canopy level flux measurements require very fast sensors and the fulfilment of many conditions to ensure that the measurements made above the canopy really reflect the canopy fluxes (constant flux hypothesis. Again, adjustments are necessary in order to correct for air density fluctuations and sensor-surface alignment break. As far as regards flux modelling, at leaf level the stomatal flux is simply obtained by multiplying the ozone concentration on the leaf with the stomatal conductance predicted by means of physiological models fed by meteorological parameter. At canopy level the stomatal flux is

  17. Vertical ozone characteristics in urban boundary layer in Beijing.

    Science.gov (United States)

    Ma, Zhiqiang; Xu, Honghui; Meng, Wei; Zhang, Xiaoling; Xu, Jing; Liu, Quan; Wang, Yuesi

    2013-07-01

    Vertical ozone and meteorological parameters were measured by tethered balloon in the boundary layer in the summer of 2009 in Beijing, China. A total of 77 tethersonde soundings were taken during the 27-day campaign. The surface ozone concentrations measured by ozonesondes and TEI 49C showed good agreement, albeit with temporal difference between the two instruments. Two case studies of nocturnal secondary ozone maxima are discussed in detail. The development of the low-level jet played a critical role leading to the observed ozone peak concentrations in nocturnal boundary layer (NBL). The maximum of surface ozone was 161.7 ppbv during the campaign, which could be attributed to abundant precursors storage near surface layer at nighttime. Vertical distribution of ozone was also measured utilizing conventional continuous analyzers on 325-m meteorological observation tower. The results showed the NBL height was between 47 and 280 m, which were consistent with the balloon data. Southerly air flow could bring ozone-rich air to Beijing, and the ozone concentrations exceeded the China's hourly ozone standard (approximately 100 ppb) above 600 m for more than 12 h.

  18. Tropospheric ozone and biomass burning in intertropical Africa

    International Nuclear Information System (INIS)

    Cros, B.; Nganga, D.; Delmas, R.A.; Fontan, J.

    1991-01-01

    To obtain a better understanding of tropospheric ozone's behavior in the equatorial belt of Africa, surface ozone measurements were made in the northern Congo (forest region) and on the other side of the equator in a savanna area. The data show a seasonal cycle with maximum values during the dry season: January and February in the northern tropics and June to October in the southern ones. Satellite data are needed to explain the eventual disappearance or non-appearance of a maximum of total tropospheric ozone during the northern dry season

  19. Enhanced effect of suction-cavitation on the ozonation of phenol

    International Nuclear Information System (INIS)

    Wu Zhilin; Franke, Marcus; Ondruschka, Bernd; Zhang, Yongchun; Ren Yanze; Braeutigam, Patrick; Wang, Weimin

    2011-01-01

    800 mL of 1.0 mM phenol-containing aqueous solution was circulated at 20 ° C for 30 min in a suction-reactor, while 3.2 mg min -1 ozone was introduced into the solution under the suction orifice. The removal rates of phenol vary polynomially with the orifice diameter as well as the suction pressure. The rate constant for the zero-order kinetics achieves the highest value at -0.070 MPa by using 5 mm orifice. Although the suction-cavitation alone cannot remove phenol in 30 min, it can considerably enhance the ozonation of phenol. The rate constants for the zero-order kinetics by the simple ozonation and the combined method are 0.018 and 0.028 min -1 , respectively. Furthermore, no ozone was observed in the tail gas during the first 15 min for the ozonation in the suction reactor, and then the concentration of unreacted ozone slowly increased, indicating that the utilization rate of ozone is significantly improved by the suction-cavitation. The increasing input concentration of ozone obviously accelerates the ozonation of phenol, but the total required quantities of ozone are very close by various ozone input concentrations to reach the same degradation rate, indicating the ozonation assisted by the suction-cavitation can be considered as a quantitative reaction.

  20. Foreign and Domestic Contributions to Springtime Ozone Pollution over China

    Science.gov (United States)

    Ni, R.; Lin, J.; Yan, Y.; Lin, W.; Chen, H.

    2017-12-01

    Ozone is a critical air pollutant that damages human health and vegetation. Previous studies for the United States and Europe have shown large influences of foreign emissions on domestic ozone levels, whereas the relative contributions of foreign versus domestic emissions are much less clear for China. Here, we use a global-regional two-way coupled model system based on GEOS-Chem to quantify the contributions to springtime ozone over China from anthropogenic emissions in major source regions across the globe. Our results indicate considerable influences of foreign anthropogenic pollution on China's ozone pollution. Together, foreign anthropogenic emissions enhance springtime surface ozone over China by 3 12 ppb. Of all ozone over China produced by global anthropogenic emissions, foreign emissions contribute 40% near the surface, and the contribution increases with altitude until a value of 80% in the upper troposphere. Impact from Japan and Korea is 1 2 ppb over east coastal regions, and negligible in inland. Anthropogenic emissions of South and South-East Asia increase ozone over Tibet and the Yunnan-Guizhou Plateau by up to 5 ppb, and their contribution increases with height due to strong vertical transport. Pollution from North America and Europe mainly accompanies strong westerly winds and frequent cyclonic activities that are favorable to long-range transport. European anthropogenic pollution enhances surface ozone by 1 3 ppb over West and North China. Despite a much longer transport distance, the contribution from North America is greater than European contribution due to the nearly doubled amount of anthropogenic NMVOC emissions. The high percentage contribution of foreign anthropogenic emissions to China's ozone pollution can be partly explained by excessive domestic NOx emissions that suppress ozone production efficiency and even destroy ozone. Our study is relevant to Chinese ozone pollution control and global environmental protection collaboration.

  1. Explosion and detonation of ozone in mixtures with carrier gases employed in nuclear technology

    International Nuclear Information System (INIS)

    Weh, M.M.L.

    1988-09-01

    Explosive ozone is known to be formed during low temperature radiolysis of oxygen. Detailed knowledge on the explosion and the detonation of ozone is therefore required for safety considerations of nuclear installations such as proposed for the cryogenic separation of 85 krypton from the head end off gas of a reprocessing plant. The explosion properties of gaseous ozone in mixtures with oxygen, nitrogen, helium, argon, krypton, xenon and difluorodichloromethane were studied by varying the ozone concentration, the initial pressure and the shape of the vessel containing the gas. Detonation velocities were determined for gaseous mixtures of ozone with oxygen, argon, krypton or xenon as functions of the ozone concentration. In addition, the initial pressure was varied for ozone-xenon mixtures. The effect of a packing such as used in the 85 Kr-separation plant 'KRETA' in KfK on ozone-xenon detonation was investigated. In addition, the effect of low amounts of carbon monoxide, methane and nitrogen dioxide on the explosion (O 3 /Ar) and the detonation (O 3 /Xe) of an ozone-noble gas mixture was determined. (orig.) [de

  2. Activity of coals of different rank to ozone

    Directory of Open Access Journals (Sweden)

    Vladimir Kaminskii

    2017-12-01

    Full Text Available Coals of different rank were studied in order to characterize their activity to ozone decomposition and changes of their properties at interaction with ozone. Effects of coal rank on their reactivity to ozone were described by means of kinetic modeling. To this end, a model was proposed for evaluation of kinetic parameters describing coals activity to ozone. This model considers a case when coals surface properties change during interaction with ozone (deactivation processes. Two types of active sites (zones at the surface that are able to decompose ozone were introduced in the model differing by their deactivation rates. Activity of sites that are being deactivated at relatively higher rate increases with rank from 2400 1/min for lignite to 4000 1/min for anthracite. Such dependence is related to increase of micropores share in coals structure that grows from lignites to anthracites. Parameter characterizing initial total activity of coals to ozone decomposition also depends on rank by linear trend and vary between 2.40 for lignites up to 4.98 for anthracite. The proposed model could further be used in studies of coals oxidation processes and tendency to destruction under the weathering and oxidation conditions.

  3. Ozone Layer Protection

    Science.gov (United States)

    ... and Research Centers Contact Us Share Ozone Layer Protection The stratospheric ozone layer is Earth’s “sunscreen” – protecting ... GreenChill Partnership Responsible Appliance Disposal (RAD) Program Ozone Protection vs. Ozone Pollution This website addresses stratospheric ozone ...

  4. Ozonation of return activated sludge for disintegration and solubilisation with synthesized titanium oxide as catalyst

    Science.gov (United States)

    Sarif, S. F. Z. Mohd; Alias, S. S.; Ridwan, F. Muhammad; Salim, K. S. Ku; Abidin, C. Z. A.; Ali, U. F. Md.

    2018-03-01

    Ozonation of activated sludge in the present of titanium dioxide (TiO2) as catalyst to enhance the production of hydroxyl radical was evaluated in comparison to the sole ozonation process. In this process, the catalytic ozontion showed improvement in increasing ozone consumption and improving activated sludge disintegration and solubilisation. The reduction of total suspended solid (TSS), volatile suspended solid (VSS) and soluble chemical oxygen demand (SCOD) solubilisation was better in the catalytic ozonation system. Initial pH 7 of activated sludge was found best to disintegrate and solubilise the sludge flocs. However upon additional of sodium hydroxide (NaOH) in pH adjustment enhanced the solubilisation of organic matter from the flocs and cells, making the initial pH 9 is the best condition for activated sludge solubilisation. Yet the initial pH 7 of activated sludge supernatant was the best condition to achieve SCOD solubilisation due to sludge floc disintegration, when it had stronger correlation between TSS reduction and SCOD solubilisation (R2=0.961). Lower amount of catalyst of 100 mgTiO2/gTSS was found to disintegrate and solubilise the activated sludge better with 30.4% TSS reduction and 25.2% SCOD solubilisation efficiency, compared to 200 mgTiO2/gTSS with 21.9% and 17.1% TSS reduction and SCOD solubilisation, respectively.

  5. Aspect ratio control of Au nanorods via covariation of the total amount of HAuCl{sub 4} and ascorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiao [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Hongshan District, Wuhan 430070, Hubei (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Feng, Jinyang [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Hongshan District, Wuhan 430070, Hubei (China); Zhao, Xiujian, E-mail: opluse@whut.edu.cn [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Hongshan District, Wuhan 430070, Hubei (China)

    2015-07-15

    Highlights: • The AR value decreased as the total amount of [HAuCl{sub 4}] and [AA] increasing. • The UV–vis absorption spectra showed the peak wavelength of TSPR at around 530 nm. • The wavelength of LSPR had a red-shifted effect. - Abstract: Controlling the aspect ratio (AR) of gold nanorods (GNRs) via covariation of the total concentrations of HAuCl{sub 4} ([HAuCl{sub 4}]) and ascorbic acid ([AA]) has been studied. Characteristics of GNRs were examined by transmission electron microscopy (TEM) and ultraviolet–visible (UV–vis) absorption spectrophotometry. TEM results showed that single crystalline GNRs grew along an elongated growth direction of [100]. TEM results also revealed that the quantity of plate shaped and nearly spherical nanoparticles increased as the total amount of [HAuCl{sub 4}] and [AA] decreased. The AR value measured from TEM images decreased from 4.74 to 2.41 as the total amount of [HAuCl{sub 4}] and [AA] was increased from 0.305 to 2.44 mM. The UV–vis absorption spectra of all samples showed that the wavelength of transverse surface plasmon resonance (TSPR) peak appeared at around 530 nm for all samples. The wavelength of longitudinal surface plasmon resonance (LSPR) peak increased from 640 to 894 nm as the total amount of [HAuCl{sub 4}] and [AA] decreased from 2.44 to 0.305 mM. The wavelength of LSPR peak shows a red-shifted effect except when the total amount of [HAuCl{sub 4}] and [AA] was 0.122 mM.

  6. OZONE DEPLETING SUBSTANCES ELIMINATION MANAGEMENT: THE SUCCESS STORY OF MACEDONIA

    Directory of Open Access Journals (Sweden)

    Margarita Matlievska

    2013-04-01

    Full Text Available Man, with its activities, produces and uses substances that have negative impact on the environment and the human health, and can cause an economic damage. Consequently, they have a great impact on quality of life. Among the most harmful chemicals are Ozone Depleting Substances that are subject of regulation with international conventions. This Paper supports the fact that each country has to undertake national efforts for ozone depleting substances reduction and elimination. In that respect, the general objective of the Paper is to present the Macedonian unique experience regarding its efforts to reduce or eliminate these substances. The following two aspects were subject to the research: national legislation which regulates the Ozone Depleting Substances import and export as well as the implementation of the projects that resulted with the elimination of Ozone Depleting Substances quantities in the period 1995 – 2010. The research outcomes confirm the starting research hypothesis i.e. that with adequately created and implemented national action, the amount of Ozone Depleting Substances consumption can dramatically fall.

  7. Ozone damage to tobacco in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Macdowall, F D.H.; Vickery, L S; Runeckles, V C; Patrick, Z A

    1963-12-01

    Tobacco weather fleck has caused significant losses of flue-cured tobacco in southern Ontario since 1955. Fleck damage was greatest near the coast of Lake Erie and decreased progressively inland. Ozone has been shown to be one of the most important incitants of the fleck response in tobacco whereas parasitic fungi, bacteria and viruses were proven not to be implicated as causes of the disorder. The inherently susceptible variety White Gold, used in all tests, was rendered more susceptible by irrigation and nitrogen deficiency. It was also more susceptible during flowering and when producing lateral shoots. The degree and duration of stomatal opening were important factors in determining the amount of injury. Concentration of ozone in the air was shown experimentally to affect the speed of fleck response as well as the severity of symptoms. Statistically significant correlations between ozone concentrations and fleck damage were obtained from field data when the response of highly susceptible tissues only was considered. The merits of several visual rating methods are compared and discussed. 22 references, 5 figures, 11 tables.

  8. Photochemical processes and ozone production in Finnish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, T; Hakola, H [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1997-12-31

    Photochemical ozone production is observed in March-September. Highest ozone concentrations and production efficiencies are observed in spring in the northern parts and in summer in the southern parts of the country. VOC concentrations are relatively low compared to continental areas in general. During the growing season a substantial part of the total reactive mass of VOCs is of biogenic origin. Large forest areas absorb ozone substantially, decreasing the ambient ozone concentrations in central and northern parts of Finland where long-range transport of ozone is relatively important compared to local production. The aim of the work conducted at Finnish Meteorological Institute has been to characterise concentrations of photochemically active species in the boundary layer and their photochemical formation and deposition including the effects on vegetation. Also interactions between the boundary layer and free troposphere of ozone have been studied. In the future, fluxes of both biogenic species and air pollutants will be measured and the models will be further developed so that the photochemical and micrometeorological processes could be better understood

  9. Photochemical processes and ozone production in Finnish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, T.; Hakola, H. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Photochemical ozone production is observed in March-September. Highest ozone concentrations and production efficiencies are observed in spring in the northern parts and in summer in the southern parts of the country. VOC concentrations are relatively low compared to continental areas in general. During the growing season a substantial part of the total reactive mass of VOCs is of biogenic origin. Large forest areas absorb ozone substantially, decreasing the ambient ozone concentrations in central and northern parts of Finland where long-range transport of ozone is relatively important compared to local production. The aim of the work conducted at Finnish Meteorological Institute has been to characterise concentrations of photochemically active species in the boundary layer and their photochemical formation and deposition including the effects on vegetation. Also interactions between the boundary layer and free troposphere of ozone have been studied. In the future, fluxes of both biogenic species and air pollutants will be measured and the models will be further developed so that the photochemical and micrometeorological processes could be better understood

  10. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bakkal, B.H. [Department of Radiation Oncology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Gultekin, F.A. [Department of General Surgery, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Guven, B. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Turkcu, U.O. [Mugla School of Health Sciences, Mugla Sitki Kocman University, Mugla (Turkey); Bektas, S. [Department of Pathology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Can, M. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey)

    2013-09-27

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage.

  11. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    International Nuclear Information System (INIS)

    Bakkal, B.H.; Gultekin, F.A.; Guven, B.; Turkcu, U.O.; Bektas, S.; Can, M.

    2013-01-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage

  12. Ozone fumigation under dark/light conditions of Norway Spruce (Picea Abies) and Scots Pine (Pinus Sylvestris)

    Science.gov (United States)

    Canaval, Eva; Jud, Werner; Hansel, Armin

    2015-04-01

    a broad range of unidentified oxygenated ozonolysis products and their fragments, whose amount exceed by far the detected loss of BVOCs under ozone exposure. However, the observed products are not attributable to neither green leaf volatiles nor to other known volatile precursors. Furthermore Picea abies emits a smaller amount of ozone induced green leaf volatiles than Pinus sylvestris. Based on this results we can explain the higher ozone tolerance of Picea abies, which has been observed before. A likely reason for the differences in stomatal and surface ozone loss on the investigated plants are differences in the amount and kind of unsaturated semi-volatile compounds on the needle surface.

  13. Comparative study of ozonized olive oil and ozonized sunflower oil

    Directory of Open Access Journals (Sweden)

    Díaz Maritza F.

    2006-01-01

    Full Text Available In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observed in both oils but they were higher in ozonized sunflower oil. Iodine value was zero in ozonized olive oil whereas in ozonized sunflower was 8.8 g Iodine per 100 g. The antimicrobial activity was similar for both ozonized oils except for Minimum Bactericidal Concentrations of Pseudomona aeruginosa. Composition of fatty acids in both ozonized oils showed gradual decrease in unsaturated fatty acids (C18:1, C18:2 with gradual increase in ozone doses.

  14. A comparison of chemical mechanisms using tagged ozone production potential (TOPP analysis

    Directory of Open Access Journals (Sweden)

    J. Coates

    2015-08-01

    Full Text Available Ground-level ozone is a secondary pollutant produced photochemically from reactions of NOx with peroxy radicals produced during volatile organic compound (VOC degradation. Chemical transport models use simplified representations of this complex gas-phase chemistry to predict O3 levels and inform emission control strategies. Accurate representation of O3 production chemistry is vital for effective prediction. In this study, VOC degradation chemistry in simplified mechanisms is compared to that in the near-explicit Master Chemical Mechanism (MCM using a box model and by "tagging" all organic degradation products over multi-day runs, thus calculating the tagged ozone production potential (TOPP for a selection of VOCs representative of urban air masses. Simplified mechanisms that aggregate VOC degradation products instead of aggregating emitted VOCs produce comparable amounts of O3 from VOC degradation to the MCM. First-day TOPP values are similar across mechanisms for most VOCs, with larger discrepancies arising over the course of the model run. Aromatic and unsaturated aliphatic VOCs have the largest inter-mechanism differences on the first day, while alkanes show largest differences on the second day. Simplified mechanisms break VOCs down into smaller-sized degradation products on the first day faster than the MCM, impacting the total amount of O3 produced on subsequent days due to secondary chemistry.

  15. Natural zeolite reactivity towards ozone: The role of compensating cations

    International Nuclear Information System (INIS)

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A.

    2012-01-01

    Highlights: ► Chemical and thermal treatment enhances catalytic activity of natural zeolite. ► Modified natural zeolite exhibits high stability after thermal treatment. ► Reducing the compensating cation content leads to an increase on ozone abatement. ► Surface active atomic oxygen was detected using the DRIFT technique. ► The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L −1 ). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH 3 -TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  16. Ozone's impact on public health: Contributions from indoor exposures to ozone and products of ozone-initiated chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.

    2006-01-01

    OBJECTIVES: The associations between ozone concentrations measured outdoors and both morbidity and mortality may be partially due to indoor exposures to ozone and ozone-initiated oxidation products. In this article I examine the contributions of such indoor exposures to overall ozone-related heal...

  17. Combination of ozonation and photocatalysis for pharmaceutical wastewater treatment

    Science.gov (United States)

    Ratnawati, Enjarlis, Slamet

    2017-11-01

    The chemical oxygen demand (COD) and phenol removal from pharmaceutical wastewater were investigated using configuration of two circulation batch reactors in a series with ozonation and photocatalytic processes. The ozonation is conducted with O3/granulated activated carbon (O3/GAC), whereas photocatalysis with TiO2 that immobilized on pumice stone (PS-TiO2). The effect of circulation flow rate (10; 12; 15 L/min) and the amount PS-TiO2 (200 g, 250 g, 300 g) were examined. Wastewater of 20 L was circulated pass through the pipe that injected with O3 by the ozone generator, and subsequently flow through two GAC columns, and finally, go through photoreactor that contains photocatalyst PS-TiO2 which equipped with mercury lamp as a photon source. At a time interval, COD and phenol concentration were measured to assess the performance of the process. FESEM imaging confirmed that TiO2 was successfully impregnated on PS, as corroborated by EDX spectra. Meanwhile, degradation process indicated that the combined ozonation and photocatalytic processes (O3/GAC-TiO2) is more efficient compared to the ozonation and photocatalysis alone. For combination process with the circulation flow rate of 10 L/min and 300 g of PS-TiO2,the influent COD of around 1000 ppm are effectively degraded to a final effluent COD of 290 ppm (71% removal) and initial phenol concentration of 4.75 ppm down to 0 ppm for 4 h which this condition fulfill the discharge standards quality. Therefore, this portable prototype reactor is effective that can be used in the pharmaceutical wastewater treatment. For the future, this process condition will be developed for orientation on the industrial applications (portable equipment) since pharmaceutical industries produce wastewater relatively in the small amount.

  18. Reclaimed water quality during simulated ozone-managed aquifer recharge hybrid

    KAUST Repository

    Yoon, Min

    2014-06-17

    A synergistic hybrid of two treatment processes, managed aquifer recharge (MAR) combined with ozonation, was proposed for wastewater reclamation and water reuse applications. Batch reactor and soil-column experiments were performed to evaluate reclaimed water quality using various chemical and bacterial analyses. The ozone process was optimized at low ozone dose (0.5 mg O3/mg DOC) based on the control of N-nitrosodimethylamine (<5 ng L-1) and bromate (<10 μg L-1), and applied prior to (i.e., O3-MAR) and after MAR (i.e., MAR-O3). This work demonstrates that effluent organic matter (EfOM) and trace organic contaminants (TOrCs) are effectively removed during the hybrid process of MAR combined ozonation, compared to MAR only. Based on fluorescence excitation-emission matrices analyses, both MAR and ozonation reduce soluble microbial (protein-like) products while only ozonation contributes in reducing humic and fulvic substances. Even at low ozone dose of 0.5 mg O3/mg DOC, the O3-MAR hybrid significantly reduced UV absorbance by ≥2 m-1, BDOC by ≥64 %, and total (Σ) TOrC concentrations by ≥70 % in the effluent water quality. However, no significant improvement (<10 %) in the removal of Σ16 TOrC concentrations was observed for the increased ozone dose at 1.0 mg O3/mg DOC during MAR combined ozonation processes. Overall, O3-MAR was effective by 10-30 % in treating effluent water than MAR based on DOC, UV254 nm EfOM, TOrC and bacterial analyses. In addition, MAR-O3 was better than O3-MAR for the reduction of fluorescence (close MQ), TOrCs (≥74 %) and total bacteria cell concentrations (>3 log reduction). Therefore, implementing MAR prior to ozonation appears to remove the bio-amenable compounds that react rapidly with ozone, thereby reducing oxidant demand and treatment efficiency. © 2014 Springer-Verlag Berlin Heidelberg.

  19. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  20. Adrenal-derived stress hormones modulate ozone-induced lung injury and inflammation

    Science.gov (United States)

    Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED)or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effect of acute ozone exposure. To understand the influence of adre...

  1. NILU-UV multi-filter radiometer total ozone columns: Comparison with satellite observations over Thessaloniki, Greece.

    Science.gov (United States)

    Zempila, Melina Maria; Taylor, Michael; Koukouli, Maria Elissavet; Lerot, Christophe; Fragkos, Konstantinos; Fountoulakis, Ilias; Bais, Alkiviadis; Balis, Dimitrios; van Roozendael, Michel

    2017-07-15

    This study aims to construct and validate a neural network (NN) model for the production of high frequency (~1min) ground-based estimates of total ozone column (TOC) at a mid-latitude UV and ozone monitoring station in the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki (LAP/AUTh) for the years 2005-2014. In the first stage of model development, ~30,000 records of coincident solar UV spectral irradiance measurements from a Norsk Institutt for Luftforskning (NILU)-UV multi-filter radiometer and TOC measurements from a co-located Brewer spectroradiometer are used to train a NN to learn the nonlinear functional relation between the irradiances and TOC. The model is then subjected to sensitivity analysis and validation. Close agreement is obtained (R 2 =0.94, RMSE=8.21 DU and bias=-0.15 DU relative to the Brewer) for the training data in the correlation of NN estimates on Brewer derived TOC with 95% of the coincident data differing by less than 13 DU. In the second stage of development, a long time series (≥1 million records) of high frequency (~1min) NILU-UV ground-based measurements are presented as inputs to the NN model to generate high frequency TOC estimates. The advantage of the NN model is that it is not site dependent and is applicable to any NILU input data lying within the range of the training data. GOME/ERS-2, SCIAMACHY/Envisat, OMI/Aura and GOME2/MetOp-A TOC records are then used to perform a precise cross-validation analysis and comparison with the NILU TOC estimates over Thessaloniki. All 4 satellite TOC dataset are retrieved using the GOME Direct Fitting algorithm, version 3 (GODFIT_v3), for reasons of consistency. The NILU TOC estimates within ±30min of the overpass times agree well with the satellite TOC retrievals with coefficient of determination in the range 0.88≤R 2 ≤0.90 for all sky conditions and 0.95≤R 2 ≤0.96 for clear sky conditions. The mean fractional differences are found to be -0.67%±2.15%, -1

  2. Ozonation of nanofiltration permeate of whey before processing by reverse osmosis

    Directory of Open Access Journals (Sweden)

    Zmievskii Yurii G.

    2017-01-01

    Full Text Available During nanofiltration processing of whey a significant amount of permeate is generated. In some cases this permeate is treated by reverse osmosis to get purified water for technological needs. Dry substances are not used, because they contain practically the same amount of organic and inorganic components. Mineral substances can be used for the mineralization of drinking water purified by reverse osmosis. However, the presence of organic compounds complicates the process of separation, as well as reduces the specific productivity of reverse osmosis membranes at the concentration stage. Therefore, the search for methods of destruction and removal of organic components is grounded. In the presented work, experimental studies of ozonation and sorption of organic compounds by activated carbon were carried. It has been shown that ozonation improves the degree of sorption purification by six times. Sequential treatment with ozone and subsequent filtration through the layer of activated carbon improves the specific productivity of reverse osmosis membranes by 30% at the stage of treatment of the nanofiltration permeate, while their selectivity remains unchanged.

  3. Ozone dose-response relationships for spring oilseed rape and broccoli

    Science.gov (United States)

    De Bock, Maarten; Op de Beeck, Maarten; De Temmerman, Ludwig; Guisez, Yves; Ceulemans, Reinhart; Vandermeiren, Karine

    2011-03-01

    Tropospheric ozone is an important air pollutant with known detrimental effects for several crops. Ozone effects on seed yield, oil percentage, oil yield and 1000 seed weight were examined for spring oilseed rape ( Brassica napus cv. Ability). For broccoli ( Brassica oleracea L. cv. Italica cv. Monaco) the effects on fresh marketable weight and total dry weight were studied. Current ozone levels were compared with an increase of 20 and 40 ppb during 8 h per day, over the entire growing season. Oilseed rape seed yield was negatively correlated with ozone dose indices calculated from emergence until harvest. This resulted in an R2 of 0.24 and 0.26 ( p broccoli the applied ozone doses had no effect on yield.

  4. The determination and fate of disinfection by-products from ozonation of polluted raw water

    International Nuclear Information System (INIS)

    Huang, W.-J.; Fang, G.-C.; Wang, C.-C.

    2005-01-01

    The major disinfection by-products (DBPs) resulting from ozone treatment of polluted surface water were investigated. By-products of either health concern or which may contribute to biological instability of treated drinking water were investigated. The major DBPs were analyzed in two fractions: carbonyl compounds and brominated organic compounds. The natural organic matter (NOM) was also isolated and fractionated from polluted water for subsequent ozonation and DBPs identification under conditions of typical drinking treatment. The main identified carbonyl compounds were low molecular weight carboxylic acids, benzoic compounds, aliphatic aldehydes and odorous aldehydes, respectively. Brominated organics were also found in ozonated water, including bromoform (CHBr 3 ), monobromoacetic acid (MBAA), dibromoacetic acid (DBAA), 2,4-dibromophenol (2,4-DBP) and dibromoacetonitrile (DBAN), respectively. It was also found that the characteristic of organic precursors have significant influences on brominated organic by-products formation. Humic acid demonstrated the highest CHBr 3 , DBAA and 2,4-DBP formations, whereas hydrophilic neutral produced less CHBr 3 and 2,4-DBP than the rest of the organic fractions but produced the highest amount of DBAN. In addition to the other target compounds, a total of 59 different organic compounds were detected by means of gas chromatograph/high-resolution electron-impact mass spectrometry (GC/EI-MS) detection and tentatively identified using mass spectral library searching, mainly aromatics, acids/esters, alcohols, aldehydes, phthalates and amines/amino acids were analyzed. The percentage of elimination or formation levels reached during ozonation is also discussed in this study

  5. SAFARI 2000 TOMS Tropospheric Ozone Data, Southern Africa Subset, Dry Season 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — Tropical Tropospheric Ozone (TTO) data from Earth Probe (EP) Total Ozone Mapping Spectrometer (TOMS) for the period of August 8-September 29, 2000 were processed and...

  6. Evaluation of the stomatal conductance formulation in the EMEP ozone deposition model for Picea abies

    Science.gov (United States)

    Wieser, G.; Emberson, L. D.

    It is widely acknowledged that the possible impacts of ozone on forest trees are more closely related to ozone flux through the stomata than to external ozone exposure. However, the application of the flux approach on a European scale requires the availability of appropriate models, such as the European Monitoring and Evaluation Programme (EMEP) ozone deposition model, for estimating ozone flux and cumulative ozone uptake. Within this model stomatal conductance is the key variable, since it determines the amount of ozone absorbed by the leaves. This paper describes the suitability of the existing EMEP ozone deposition model parameterisation and formulation to represent stomatal behaviour determined from field measurements on adult Norway spruce ( Picea abies (L.) Karst.) trees in the Central European Alps. Parameters affecting maximum stomatal conductance (e.g. seasonal phenology, needle position, needle age, nutrient deficiency and ozone itself) and stomatal response functions to temperature, irradiance, vapour pressure deficit, and soil water content are investigated. Finally, current limitations and possible alterations of the EMEP model will be discussed with respect to spatial scales of available input data for future flux modelling.

  7. Assimilation of stratospheric ozone in the chemical transport model STRATAQ

    Directory of Open Access Journals (Sweden)

    B. Grassi

    2004-09-01

    Full Text Available We describe a sequential assimilation approach useful for assimilating tracer measurements into a three-dimensional chemical transport model (CTM of the stratosphere. The numerical code, developed largely according to Kha00, uses parameterizations and simplifications allowing assimilation of sparse observations and the simultaneous evaluation of analysis errors, with reasonable computational requirements. Assimilation parameters are set by using χ2 and OmF (Observation minus Forecast statistics. The CTM used here is a high resolution three-dimensional model. It includes a detailed chemical package and is driven by UKMO (United Kingdom Meteorological Office analyses. We illustrate the method using assimilation of Upper Atmosphere Research Satellite/Microwave Limb Sounder (UARS/MLS ozone observations for three weeks during the 1996 antarctic spring. The comparison of results from the simulations with TOMS (Total Ozone Mapping Spectrometer measurements shows improved total ozone fields due to assimilation of MLS observations. Moreover, the assimilation gives indications on a possible model weakness in reproducing polar ozone values during springtime.

  8. Assimilation of stratospheric ozone in the chemical transport model STRATAQ

    Directory of Open Access Journals (Sweden)

    B. Grassi

    2004-09-01

    Full Text Available We describe a sequential assimilation approach useful for assimilating tracer measurements into a three-dimensional chemical transport model (CTM of the stratosphere. The numerical code, developed largely according to Kha00, uses parameterizations and simplifications allowing assimilation of sparse observations and the simultaneous evaluation of analysis errors, with reasonable computational requirements. Assimilation parameters are set by using χ2 and OmF (Observation minus Forecast statistics. The CTM used here is a high resolution three-dimensional model. It includes a detailed chemical package and is driven by UKMO (United Kingdom Meteorological Office analyses. We illustrate the method using assimilation of Upper Atmosphere Research Satellite/Microwave Limb Sounder (UARS/MLS ozone observations for three weeks during the 1996 antarctic spring. The comparison of results from the simulations with TOMS (Total Ozone Mapping Spectrometer measurements shows improved total ozone fields due to assimilation of MLS observations. Moreover, the assimilation gives indications on a possible model weakness in reproducing polar ozone values during springtime.

  9. Artificially ionized region as a source of ozone in the stratosphere

    International Nuclear Information System (INIS)

    Gurevich, Aleksandr V; Litvak, Aleksandr G; Vikharev, A L; Ivanov, O A; Borisov, Nikolai D; Sergeichev, Konstantin F

    2000-01-01

    A set of physical and chemical processes occurring in a microwave stratospheric discharge of nanosecond duration is discussed in connection with the effect they may have locally on the ozone layer in the artificially ionized region (AIR) in the stratosphere. The AIR, to be created at altitudes of 18 - 20 km by the microwave breakdown of air with ground-produced powerful electromagnetic wave beams, is planned for use in the natural physical experiment aimed at active monitoring of the ozone layer (its internal state and a set of plasma-chemical and photochemical processes) by controllably generating a considerable amount of ozone in the stratosphere. Results of relevant theoretical studies are presented, as are those of a large series of laboratory experiments performed under conditions similar to those prevailing in the stratosphere. Discharge regimes securing the efficient growth of ozone concentration are identified and studied in detail. It is demonstrated that such a stratospheric ozonizer is about as efficient as the best ground-based ozonizers used at present. For typical stratospheric conditions (low pressures and temperatures T ∼ 200 - 220 K), it is shown that the intense generation of ozone in a microwave breakdown effected by groups of short nanosecond pulses does not virtually increase the density of nitrogen oxides - gases that play a vital role in catalytic ozone-decomposing reactions. The possibility of effectively producing ozone in prebreakdown electric fields is established experimentally. It is demonstrated that due to its long lifetime, ozone produced locally at altitudes of 18 - 20 km may spread widely under the action of winds and turbulent diffusion, thus leading to an additional - artificial - ozonization of the stratosphere. (reviews of topical problems)

  10. IASI observations of seasonal and day-to-day variations of tropospheric ozone over three highly populated areas of China: Beijing, Shanghai, and Hong Kong

    Science.gov (United States)

    Dufour, G.; Eremenko, M.; Orphal, J.; Flaud, J.-M.

    2010-04-01

    IASI observations of tropospheric ozone over the Beijing, Shanghai and Hong Kong areas during one year (2008) have been analysed, demonstrating the capability of space-borne infrared nadir measurements to probe seasonal and even day-to-day variations of lower tropospheric ozone (0-6 km partial columns) on the regional scale of highly populated areas. The monthly variations of lower tropospheric ozone retrieved from IASI clearly show the influence of the Asian summer monsoon that brings clean air masses from the Pacific during summer. They exhibit indeed a sharp ozone maximum in late spring and early summer (May-June) followed by a summer minimum. The time periods and the intensities of the maxima and of the decreases are latitude-dependent: they are more pronounced in Hong Kong and Shanghai than in Beijing. Moreover, IASI provides the opportunity to follow the spatial variations of ozone over the surroundings of each megacity as well as its daily variability. We show here that the large lower tropospheric ozone amounts (0-6 km partial columns) observed with IASI are mainly downwind the highest populated areas in each region, thus possibly suggesting the anthropogenic origin of the large ozone amounts observed. Finally, an analysis of the mean ozone profiles over each region - for selected days with high ozone events - in association with the analysis of the meteorological situation shows that the high ozone amounts observed during winter are likely related to descents of ozone-rich air from the stratosphere, whereas in spring and summer the tropospheric ozone is likely enhanced by photochemical production in polluted areas and/or in air masses from fire plumes.

  11. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  12. Modelling stomatal ozone flux and deposition to grassland communities across Europe

    International Nuclear Information System (INIS)

    Ashmore, M.R.; Bueker, P.; Emberson, L.D.; Terry, A.C.; Toet, S.

    2007-01-01

    Regional scale modelling of both ozone deposition and the risk of ozone impacts is poorly developed for grassland communities. This paper presents new predictions of stomatal ozone flux to grasslands at five different locations in Europe, using a mechanistic model of canopy development for productive grasslands to generate time series of leaf area index and soil water potential as inputs to the stomatal component of the DO 3 SE ozone deposition model. The parameterisation of both models was based on Lolium perenne, a dominant species of productive pasture in Europe. The modelled seasonal time course of stomatal ozone flux to both the whole canopy and to upper leaves showed large differences between climatic zones, which depended on the timing of the start of the growing season, the effect of soil water potential, and the frequency of hay cuts. Values of modelled accumulated flux indices and the AOT40 index showed a five-fold difference between locations, but the locations with the highest flux differed depending on the index used; the period contributing to the accumulation of AOT40 did not always coincide with the modelled period of active ozone canopy uptake. Use of a fixed seasonal profile of leaf area index in the flux model produced very different estimates of annual accumulated total canopy and leaf ozone flux when compared with the flux model linked to a simulation of canopy growth. Regional scale model estimates of both the risks of ozone impacts and of total ozone deposition will be inaccurate unless the effects of climate and management in modifying grass canopy growth are incorporated. - Modelled stomatal flux of ozone to productive grasslands in Europe shows different spatial and temporal variation to AOT40, and is modified by management and soil water status

  13. Natural zeolite reactivity towards ozone: The role of compensating cations

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, Hector, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologias Limpias (F. Ingenieria), Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, Concepcion (Chile); Alejandro, Serguei; Zaror, Claudio A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Concepcion (Chile)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Chemical and thermal treatment enhances catalytic activity of natural zeolite. Black-Right-Pointing-Pointer Modified natural zeolite exhibits high stability after thermal treatment. Black-Right-Pointing-Pointer Reducing the compensating cation content leads to an increase on ozone abatement. Black-Right-Pointing-Pointer Surface active atomic oxygen was detected using the DRIFT technique. Black-Right-Pointing-Pointer The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L{sup -1}). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH{sub 3}-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  14. Ozone impact on vegetation: phenolic metabolism modification and oxidative alteration of Rubisco in Phaseolus vulgaris L; Impact de l'ozone sur le vegetal: modification du metabolisme phenolique et alteration de la Rubisco chez Phaseolus vulgaris L.

    Energy Technology Data Exchange (ETDEWEB)

    Kanoun, M.

    2002-04-15

    In order to characterize and quantify, in semi-natural situation, the incidence of atmospheric pollution on some physiological and metabolic functions in plants, the aim of our work was to identify sub-cellular impact markers, in bean (Phaseolus vulgaris L.), able to characterize a chronic and realistic ozone pollution climate. Two criteria were chosen: the foliar phenolic metabolism and the Rubisco, the key enzyme of photosynthesis. Using Open Top Chambers system, we demonstrated that, according to concentration, exposure kinetic and leaf type, ozone could induce amount variations of some constitutive soluble phenolic and the synthesis of new phenolic (iso-flavonoids). In some cases, these disturbances were observed jointly with foliar injuries and/or biomass reduction. Concurrently, this chronic and moderate ozone exposure could also induce carbonyl formation in amino acid residues constitutive of Rubisco small subunit (Rubisco-SSU) and a reduction in the amount of the native Rubisco. The amount of a constitutive kaempferol glucuronide and the ozone-induced oxidative alteration of Rubisco-SSU were selected and tested for the construction of dose-response relationships. Whatever the marker, the linear model was able to describe the relation. For the phenolic response, several exposure indexes were tested. According to their mode of calculation, these exposure forms emphasize more or less the contribution of high ozone concentrations. If, for Rubisco oxidation, the use of the exposure index AOT40 seems relevant, in the case of the phenolic marker, the choice of the right index is leaf type dependant. (author)

  15. National Plan for Stratospheric Ozone Monitoring and Early Detection of Change, 1981-1986

    International Nuclear Information System (INIS)

    1982-02-01

    A transition from reliance on a ground-based, geographically-biased ozone observing network operated by cooperating nations to a combined satellite and ground-based monitoring program that will provide global coverage of the vertical distribution of stratospheric ozone, as well as total ozone overburden is discussed. The strategy, instrumentation, and monitoring products to be prepared during this transition period are also discussed. Global atmospheric monitoring for protection of the ultraviolet shielding properties of atmospheric ozone is considered. The operational satellite ozone vertical profile monitoring system to be flown on the NOAA Tiros N operational satellite series to carry on ozone measurements initiated on the NASA R D satellites is also considered

  16. Nicotiana tabacum as model for ozone - plant surface reactions

    Science.gov (United States)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  17. Development of a climate record of tropospheric and stratospheric column ozone from satellite remote sensing: evidence of an early recovery of global stratospheric ozone

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2012-07-01

    Full Text Available Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI and Aura Microwave Limb Sounder (MLS are used to evaluate the accuracy of the Cloud Slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and for studying their long-term changes. Using this technique, we have produced a 32-yr (1979–2010 long record of tropospheric and stratospheric column ozone from the combined Total Ozone Mapping Spectrometer (TOMS and OMI. Analyses of these time series suggest that the quasi-biennial oscillation (QBO is the dominant source of inter-annual variability of stratospheric ozone and is clearest in the Southern Hemisphere during the Aura time record with related inter-annual changes of 30–40 Dobson Units. Tropospheric ozone for the long record also indicates a QBO signal in the tropics with peak-to-peak changes varying from 2 to 7 DU. The most important result from our study is that global stratospheric ozone indicates signature of a recovery occurring with ozone abundance now approaching the levels of year 1980 and earlier. The negative trends in stratospheric ozone in both hemispheres during the first 15 yr of the record are now positive over the last 15 yr and with nearly equal magnitudes. This turnaround in stratospheric ozone loss is occurring about 20 yr earlier than predicted by many chemistry climate models. This suggests that the Montreal Protocol which was first signed in 1987 as an international agreement to reduce ozone destroying substances is working well and perhaps better than anticipated.

  18. Micro Corona Ionizer as an Ozone Source for Bacterial Cell Lysis

    Science.gov (United States)

    Lee, Eun-Hee; Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong

    2015-04-01

    DNA extraction is a critical process of DNA assays including polymerase chain reaction (PCR), microarrays, molecular cloning, and DNA hybridization which has been well established and can be implemented by commercial kits. DNA extraction involves cell lysis, precipitation, and purification through the combination of physical and chemical processes. Cell lysis is essential to high DNA recovery yield which can be achieved via a variety of physical, chemical, and enzymatic methods. However, these methods were originally developed for bioassays that were labor intensive, time consuming, and vulnerable to contamination and inhibition. Here, we proposed to employ a micro corona ionizer as an ozone source to lyse bacterial cells. Ozone has been well known and used as a disinfectant which allows cell lysis and DNA extraction. Previously, we have shown that a micro corona ionizer is capable of generating a significant amount of ozone. In this study, we employed the micro corona ionizer for the bacterial cell lysis which consists of a 50 μm diameter cantilever wire as the discharge cathode and a 50 μm thick copper foil as anode. Applied voltages varied from 1900 to 2200 V with corresponding corona currents from 16 to 28 μA. The resultant ozone (concentration > 0.14 ppm) generated from the micro corona ionizer was bubbled into the sample via a miniature pump. We demonstrated the cell lysis of Pseudomonas putida as the target bacterium using the micro corona ionizer. At a flow rate of 38 ml/min and applied corona voltage of 2000 V, 98.5 ± 0.2% lysis (normalized to sonication result) was achieved after 10 min. In comparison, untreated and air-treated samples showed normalized % lysis of 11.9 ± 2.4 and 36.1 ± 1.7%, respectively. We also showed that the cell lysis efficiency could be significantly increased by increasing the flow rate and the applied corona voltage. By comparing the experimental results for continuous and pulsed treatment, we verified that the percentage of

  19. Ozone decay in chemical reactor for ozone-dynamical disintegration of used tyres

    International Nuclear Information System (INIS)

    Golota, V.I.; Manuilenko, O.V.; Taran, G.V.; Dotsenko, Yu.V.; Pismenetskii, A.S.; Zamuriev, A.A.; Benitskaja, V.A.

    2011-01-01

    The ozone decay kinetics in the chemical reactor intended for used tyres disintegration is investigated experimentally and theoretically. Ozone was synthesized in barrierless ozonizers based on the streamer discharge. The chemical reactor for tyres disintegration in the ozone-air environment represents the cylindrical chamber, which feeds from the ozonizer by ozone-air mixture with the specified rate of volume flow, and with known ozone concentration. The output of the used mixture, which rate of volume flow is also known, is carried out through the ozone destructor. As a result of ozone decay in the volume and on the reactor walls, and output of the used mixture from the reactor, the ozone concentration in the reactor depends from time. In the paper, the analytical expression for dependence of ozone concentration in the reactor from time and from the parameters of a problem such as the volumetric feed rate, ozone concentration on the input in the reactor, volume flow rate of the used mixture, the volume of the reactor and the area of its internal surface is obtained. It is shown that experimental results coincide with good accuracy with analytical ones.

  20. Ozone pollution and ozone biomonitoring in European cities Part II. Ozone-induced plant injury and its relationship with descriptors of ozone pollution

    DEFF Research Database (Denmark)

    Klumpp, A.; Ansel, W.; Klumpp, G.

    2006-01-01

    within local networks were relatively small, but seasonal and inter-annual differences were strong due to the variability of meteorological conditions and related ozone concentrations. The 2001 data revealed a significant relationship between foliar injury degree and various descriptors of ozone...... pollution such as mean value, AOT20 and AOT40. Examining individual sites of the local monitoring networks separately, however, yielded noticeable differences. Some sites showed no association between ozone pollution and ozone-induced effects, whereas others featured almost linear relationships...

  1. A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water

    KAUST Repository

    Zhang, Tao; Li, Weiwei; Croue, Jean-Philippe

    2012-01-01

    with ozone. The optimum CuO loading amount was 12%. The molar ratio of oxalate removed/ozone consumption reached 0.84. The catalytic ozonation was most effective in a neutral pH range (6.7-7.9) and became ineffective when the water solution was acidic

  2. On the Size of the Antarctic Ozone Hole

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph

    2002-01-01

    The Antarctic ozone hole is a region of extremely large ozone depletion that is roughly centered over the South Pole. Since 1979, the area coverage of the ozone hole has grown from near zero size to over 24 Million sq km. In the 8-year period from 1981 to 1989, the area expanded by 18 Million sq km. During the last 5 years, the hole has been observed to exceed 25 Million sq km over brief periods. In the spring of 2002, the size of the ozone hole barely reached 20 Million sq km for only a couple of days. We will review these size observations, the size trends, and the interannual variability of the size. The area is derived from the area enclosed by the 220 DU total ozone contour. We will discuss the rationale for the choice of 220 DU: 1) it is located near the steep gradient between southern mid-latitudes and the polar region, and 2) 220 DU is a value that is lower than the pre-1979 ozone observations over Antarctica during the spring period. The phenomenal growth of the ozone hole was directly caused by the increases of chlorine and bromine compounds in the stratosphere. In this talk, we will show the relationship of the ozone hole's size to the interannual variability of Antarctic spring temperatures. In addition, we will show the relationship of these same temperatures to planetary-scale wave forcings.

  3. Occurrence of ozone anomalies over cloudy areas in TOMS version-7 level-2 data

    Directory of Open Access Journals (Sweden)

    X. Liu

    2003-01-01

    Full Text Available This study investigates anomalous ozone distributions over cloudy areas in Nimbus-7 (N7 and Earth-Probe (EP TOMS version-7 data and analyzes the causes for ozone anomaly formation. A 5°-longitude by 5°-latitude region is defined to contain a Positive Ozone Anomaly (POA or Negative Ozone Anomaly (NOA if the correlation coefficient between total ozone and reflectivity is > 0.5 or -0.5. The average fractions of ozone anomalies among all cloud fields are 31.8 ± 7.7% and 35.8 ± 7.7% in the N7 and EP TOMS data, respectively. Some ozone anomalies are caused by ozone retrieval errors, and others are caused by actual geophysical phenomena. Large cloud-height errors are found in the TOMS version-7 algorithm in comparison to the Temperature Humidity Infrared Radiometer (THIR cloud data. On average, cloud-top pressures are overestimated by ~200 hPa (THIR cloud-top pressure 200 hPa for high-altitude clouds and underestimated by ~150 hPa for low-altitude clouds (THIR cloud-top pressure > 750 hPa. Most tropical NOAs result from negative errors induced by large cloud-height errors, and most tropical POAs are caused by positive errors due to intra-cloud ozone absorption enhancement. However, positive and negative errors offset each other, reducing the ozone anomaly occurrence in TOMS data. Large ozone/reflectivity slopes for mid-latitude POAs show seasonal variation consistent with total ozone fluctuation, indicating that they result mainly from synoptic and planetary wave disturbances. POAs with an occurrence fraction of 30--60% occur in regions of marine stratocumulus off the west coast of South Africa and off the west coast of South America. Both fractions and ozone/reflectivity slopes of these POAs show seasonal variations consistent with that in the tropospheric ozone. About half the ozone/reflectivity slope can be explained by ozone retrieval errors over clear and cloudy areas. The remaining slope may result from there being more ozone production

  4. Stratospheric ozone reduction and its relation to natural and man made sources

    Energy Technology Data Exchange (ETDEWEB)

    Isaksen, I S [Oslo Univ. (Norway). Dept. of Geophysics

    1996-12-31

    Approximately 90 % of the total ozone mass is in the stratosphere (between approximately 12 and 50 km), the rest is in the troposphere (below 12 km). The global distribution of ozone in the stratosphere and its variation over time have been studied extensively over several decades. These studies include observations by ground based instruments (e.g. Dobson instruments), instruments on airborne platforms (e.g. ozone sondes) and on satellites, and model studies which simulate the chemical and dynamical behaviour of the stratosphere. These studies have given good information about the processes which determine the ozone distribution, and how man made emissions affect the distribution. Observations have revealed that there are large year to year variations in stratospheric ozone above a particular location. These variations are difficult to predict as they are connected to irregular weather patterns. However, the observations have shown that there has been a long term decrease in stratospheric ozone on a global scale during the last two decades. The decrease has been most pronounced during the last five to six years and is seen both in the Northern and the Southern Hemispheres. The strong decrease in stratospheric ozone over the Antarctic continent, which has been observed since the mid 80s, and which has reduced the total ozone column with more than 50 % compared with earlier observations, is proven to be a result of increased man made emissions of CFCs. There are also mounting evidences that Northern Hemispheric ozone reductions observed since 1980 are connected to man made emissions of CFCs

  5. Stratospheric ozone reduction and its relation to natural and man made sources

    Energy Technology Data Exchange (ETDEWEB)

    Isaksen, I.S. [Oslo Univ. (Norway). Dept. of Geophysics

    1995-12-31

    Approximately 90 % of the total ozone mass is in the stratosphere (between approximately 12 and 50 km), the rest is in the troposphere (below 12 km). The global distribution of ozone in the stratosphere and its variation over time have been studied extensively over several decades. These studies include observations by ground based instruments (e.g. Dobson instruments), instruments on airborne platforms (e.g. ozone sondes) and on satellites, and model studies which simulate the chemical and dynamical behaviour of the stratosphere. These studies have given good information about the processes which determine the ozone distribution, and how man made emissions affect the distribution. Observations have revealed that there are large year to year variations in stratospheric ozone above a particular location. These variations are difficult to predict as they are connected to irregular weather patterns. However, the observations have shown that there has been a long term decrease in stratospheric ozone on a global scale during the last two decades. The decrease has been most pronounced during the last five to six years and is seen both in the Northern and the Southern Hemispheres. The strong decrease in stratospheric ozone over the Antarctic continent, which has been observed since the mid 80s, and which has reduced the total ozone column with more than 50 % compared with earlier observations, is proven to be a result of increased man made emissions of CFCs. There are also mounting evidences that Northern Hemispheric ozone reductions observed since 1980 are connected to man made emissions of CFCs

  6. The role of bromine and chlorine chemistry for arctic ozone depletion events in Ny-Ålesund and comparison with model calculations

    Directory of Open Access Journals (Sweden)

    M. Martinez

    1999-07-01

    Full Text Available During the Arctic Tropospheric Ozone Chemistry (ARCTOC campaigns at Ny-Ålesund, Spitsbergen, the role of halogens in the depletion of boundary layer ozone was investigated. In spring 1995 and 1996 up to 30 ppt bromine monoxide were found whenever ozone decreased from normal levels of about 40 ppb. Those main trace gases and others were specifically followed in the UV-VIS spectral region by differential optical absorption spectroscopy (DOAS along light paths running between 20 and 475 m a.s.l.. The daily variation of peroxy radicals closely followed the ozone photolysis rate J(O3(O1D in the absence of ozone depletion most of the time. However, during low ozone events this close correlation was no longer found because the measurement of radicals by chemical amplification (CA turned out to be sensitive to peroxy radicals and ClOx. Large CA signals at night can sometimes definitely be assigned to ClOx and reached up to 2 ppt. Total bromine and iodine were both stripped quantitatively from air by active charcoal traps and measured after neutron activation of the samples. Total bromine increased from background levels of about 15 ppt to a maximum of 90 ppt during an event of complete ozone depletion. For the spring season a strong source of bromine is identified in the pack ice region according to back trajectories. Though biogenic emission sources cannot be completely ruled out, a primary activation of halogenides by various oxidants seems to initiate an efficient autocatalytic process, mainly driven by ozone and light, on ice and perhaps on aerosols. Halogenides residing on pack ice surfaces are continuously oxidised by hypohalogenous acids releasing bromine and chlorine into the air. During transport and especially above open water this air mixes with upper layer pristine air. As large quantities of bromine, often in the form of BrO, have been observed at polar sunrise also around Antarctica, its release seems to be a natural phenomenon. The

  7. The possible impact of fluorocarbons and halocarbons on ozone

    International Nuclear Information System (INIS)

    1975-05-01

    Partial contents: Chemistry-(The production and atmospheric release of fluorocarbons and certain other chlorine compounds, Photochemistry of fluorocarbons); Measurement techniques-(Stratospheric sampling platforms, Methods for measuring fluorocarbons and other halocarbons); Measurements-(Halogenated organic compounds in the troposphere, Stratospheric measurement of oxides of nitrogen, Total ozone trends); Models-(Assessment of the accuracy of atmospheric transport, Model prediction of ozone depletion); Effects-

  8. Influence of Ar addition on ozone generation in a non-thermal plasma—a numerical investigation

    Science.gov (United States)

    Chen, Hsin Liang; Lee, How Ming; Chen, Shiaw Huei; Wei, Ta Chin; Been Chang, Moo

    2010-10-01

    A numerical model based on a dielectric barrier discharge is developed in this study to investigate the influence of Ar addition on ozone generation. The simulation results show good agreement with the experimental data, confirming the validity of the numerical model. The mechanisms regarding how the Ar addition affects ozone generation are investigated with the assistance of a numerical simulation by probing into the following two questions, (1) why the ozone concentration just slightly decreases in the low specific input energy (SIE, the ratio of discharge power to gas flow rate) region even if the inlet O2 concentration is substantially decreased and (2) why the variation of the increased rate of ozone concentration with SIE (i.e. the variation in the slope of ozone concentration versus SIE) is more significant for an O2/Ar mixture plasma. As SIE is relatively low, ozone decomposition through electron-impact and radical attack reactions is less significant because of low ozone concentration and gas temperature. Therefore, the ozone concentration depends mainly on the amount of oxygen atoms generated. The simulation results indicate that the amount of oxygen atoms generated per electronvolt for Ar concentrations of 0%, 10%, 30%, 50% and 80% are 0.178, 0.174, 0.169, 0.165 and 0.166, respectively, explaining why the ozone concentration does not decrease linearly with the inlet O2 concentration in the low SIE region. On the other hand, the simulation results show that increasing Ar concentration would lead to a lower reduced field and a higher gas temperature. The former would lead to an increase in the rate constant of e + O3 → e + O + O2 while the latter would result in a decrease in the rate constant of O + O2 + M → O3 + M and an increase in that of O3 + O → 2O2. The changes in the rate constants of these reactions would have a negative effect on ozone generation, which is the rationale for the second question.

  9. Influence of Ar addition on ozone generation in a non-thermal plasma-a numerical investigation

    International Nuclear Information System (INIS)

    Chen, Hsin Liang; Lee, How Ming; Chen, Shiaw Huei; Wei, Ta Chin; Chang, Moo Been

    2010-01-01

    A numerical model based on a dielectric barrier discharge is developed in this study to investigate the influence of Ar addition on ozone generation. The simulation results show good agreement with the experimental data, confirming the validity of the numerical model. The mechanisms regarding how the Ar addition affects ozone generation are investigated with the assistance of a numerical simulation by probing into the following two questions, (1) why the ozone concentration just slightly decreases in the low specific input energy (SIE, the ratio of discharge power to gas flow rate) region even if the inlet O 2 concentration is substantially decreased and (2) why the variation of the increased rate of ozone concentration with SIE (i.e. the variation in the slope of ozone concentration versus SIE) is more significant for an O 2 /Ar mixture plasma. As SIE is relatively low, ozone decomposition through electron-impact and radical attack reactions is less significant because of low ozone concentration and gas temperature. Therefore, the ozone concentration depends mainly on the amount of oxygen atoms generated. The simulation results indicate that the amount of oxygen atoms generated per electronvolt for Ar concentrations of 0%, 10%, 30%, 50% and 80% are 0.178, 0.174, 0.169, 0.165 and 0.166, respectively, explaining why the ozone concentration does not decrease linearly with the inlet O 2 concentration in the low SIE region. On the other hand, the simulation results show that increasing Ar concentration would lead to a lower reduced field and a higher gas temperature. The former would lead to an increase in the rate constant of e + O 3 → e + O + O 2 while the latter would result in a decrease in the rate constant of O + O 2 + M → O 3 + M and an increase in that of O 3 + O → 2O 2 . The changes in the rate constants of these reactions would have a negative effect on ozone generation, which is the rationale for the second question.

  10. CONTRIBUTION TO INDOOR OZONE LEVELS OF AN OZONE GENERATOR

    Science.gov (United States)

    This report gives results of a study of a commonly used commercially available ozone generator, undertaken to determine its impact on indoor ozone levels. xperiment were conducted in a typical mechanically ventilated office and in a test house. he generated ozone and the in-room ...

  11. Development of Compact Ozonizer with High Ozone Output by Pulsed Power

    Science.gov (United States)

    Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei

    Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.

  12. Ozone in Lombardy: Years 1998-1999

    Science.gov (United States)

    Sesana, L.; Begnini, S.; Toscani, D.; Facchini, U.; Balasso, A.; Borelli, P.

    2003-11-01

    Photochemical pollutants, especially ozone, have reached very high levels in Lombardy in recent years, with peaks of up to 150 ppb in late spring and summer. Lombardy, lying on the Po Plain, supports a large number of cities and industries and these, along with heavy traffic, produce copious amounts of primary pollutants such as nitrogen oxides and numerous volatile organic compounds. Furthermore, the peculiar orography of this region fosters the stagnation of air masses on a basin-scale and the presence of diurnal breezes towards northern areas, along with the evolution of the Mixing Layer, spread the polluted air masses over a large territory. Numerous stations in Lombardy give the concentrations of ozone and of nitrogen oxides. In this paper, ozone measurements carried out at the plain area around Milan and at pre-alpine sites in the spring and summer 1998 and 1999 will be shown and discussed, focusing on the months of May and July. The study of temporal and spatial behaviour of ozone goes hand in hand with the analysis of the Boundary Layer's evolution. A number of radon stations were operating in Milan and in other sites in Lombardy. Measurements of atmospheric concentrations of radon yield an index of atmospheric stability, of the formation of thermal inversion, of convective turbulence, and of the movement of air masses, and hence they are very relevant to the understanding of the conditions of atmospheric pollutants.

  13. A technique using a stellar spectrographic plate to measure terrestrial ozone column depth

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Alec Y. [Univ. of California, Berkeley, CA (United States)

    1995-08-01

    This thesis examines the feasibility of a technique to extract ozone column depths from photographic stellar spectra in the 5000--7000 Angstrom spectral region. A stellar spectrographic plate is measured to yield the relative intensity distribution of a star`s radiation after transmission through the earth`s atmosphere. The amount of stellar radiation absorbed by the ozone Chappuis band is proportional to the ozone column depth. The measured column depth is within 10% the mean monthly value for latitude 36{degree}N, however the uncertainty is too large to make the measurement useful. This thesis shows that a 10% improvement to the photographic sensitivity uncertainty can decrease the column depth uncertainty to a level acceptable for climatic study use. This technique offers the possibility of measuring past ozone column depths.

  14. Degradation of the chlorophenoxyacetic herbicide 2,4-D by plasma-ozonation system.

    Science.gov (United States)

    Bradu, C; Magureanu, M; Parvulescu, V I

    2017-08-15

    A novel advanced oxidation process based on the combination of ozonation with non-thermal plasma generated in a pulsed corona discharge was developed for the oxidative degradation of recalcitrant organic pollutants in water. The pulsed corona discharge in contact with liquid, operated in oxygen, produced 3.5mgL -1 ozone, which was subsequently introduced in the ozonation reactor. The solution to be treated was continuously circulated between the plasma reactor and the ozonation reactor. The system was tested for the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and considerably improved performance as compared to ozonation alone, both with respect to the removal of the target compound and to mineralization. The apparent reaction rate constant for 2,4-D removal was 0.195min -1 , more than two times higher than the value obtained in ozonation experiments. The mineralization reached more than 90% after 60min treatment and the chlorine balance confirms the absence of quantifiable amounts of chlorinated by-products. The energy efficiency was considerably enhanced by shortening the duration of the discharge pulses, which opens the way for further optimization of the electrical circuit design. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Species- and age-dependent sensitivity to ozone in young plants of pea, wheat and spinach. Effects on acyl lipid and pigment content and metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, A.S.; Wallin, G.; Sandelius, A.S.

    1996-11-01

    Acyl lipids and pigments were analyzed in young plants of garden pea, spring wheat and spinach exposed to < 5 or 65 nl l{sup -1} ozone 12 h per day for 5 days, in one set of experiments, the plants were exposed to {sup 14}CO{sub 2} for 2 h 3 days prior to ozone exposure. The plants responded differently to the moderately enhanced level of ozone used. Spinach was not at all sensitive while in both pea and wheat, leaves of different ages differed in ozone sensitivity. In pea, ozone sensitivity increased with leaf age. In the second and third oldest leaves, the amounts of galactolipids per leaf area and the proportions of 18:3 of the total lipid extract and of phosphatidylglycerol decreased. In the second oldest leaf, ozone also caused a decreased proportion of 18:3 of monogalactosyldiacylglycerol. In the fourth oldest leaf, lipid composition and galactolipid unsaturation was unaffected, but ozone caused decreased leaf expansion resulting in increased acyl lipid content per leaf area. In both the first and second leaves of wheat, ozone fumigation caused a marked decrease in the content of monogalactosyldiacylglycerol and in the first leaf, the contents of phosphatidylcholine and phosphatidylethanolamine increased. The proportion of 18:3 in phosphatidylcholine was larger in ozone-fumigated than in control plants, while the reverse applied for phosphatidylglycerol. In the oldest sampled leaves of pea and wheat, ozone caused an increase in the radioactivity associated with {beta}-carotene, indicting increased turnover. Thus, while spinach was unaffected, in both pea and whet ozone caused a decrease in the proportion of chloroplast membrane lipids to non-chloroplast membrane lipids in older leaves while younger leaves were less sensitive. (au) 21 refs.

  16. Satellite spectrophotometer for research of the atmospheric ozone

    International Nuclear Information System (INIS)

    Getzov, P.; Mardirossian, G.; Stoyanov, S.

    2014-01-01

    The measurement of atmospheric ozone and its influence upon climate and life on Earth is undoubtedly one of the most pressing issues of present time. A mathematical model of an optical tract of a spectrophotometer has been designed. The paper presents the functional scheme of a satellite optoelectronic spectrophotometer for measuring the total content of atmospheric ozone and other gas components of the atmosphere, which has increased precision, smaller weight and energy consumption, increased space and time resolution, quickness of reaction and increased volume of useful information. The object of the paper is the design of an appliance which ensures research of ozone content in atmosphere from the board of a satellite

  17. The stratospheric ozone and the ozone layer

    International Nuclear Information System (INIS)

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez Jesus Antonio

    2000-01-01

    An overview is presented of the principal characteristics of the stratospheric ozone in the Earth's atmosphere, with particular emphasis on the tropics and the ozone hole over the poles. Some effects produced in the atmosphere as a consequence of the different human activities will be described, and some data on stratospheric ozone will be shown. We point out the existence of a nucleus of least ozone in the tropics, stretching from South America to central Africa, with annual mean values less than 240 DU, a value lower than in the middle latitudes and close to the mean values at the South Pole. The existence of such a minimum is confirmed by mean values from measurements made on satellites or with earthbound instruments, for different sectors in Colombia, like Medellin, Bogota and Leticia

  18. Deriving a Linearised Ozone Chemistry Scheme for a 3-D Chemical ...

    African Journals Online (AJOL)

    A simple but computer efficient parameterized ozone chemistry is developed to account for up-dates in reaction rate recommendations, and also completely assess the contributions of the indi-vidual catalytic cycles to the ozone budget in the entire stratosphere. Two conceptual ap-proaches, namely total time approach and ...

  19. What Controls the Size of the Antarctic Ozone Hole?

    Science.gov (United States)

    Bhartia, P. K. (Technical Monitor); Newman, Paul A.; Kawa, S. Randolph; Nash, Eric R.

    2002-01-01

    The Antarctic ozone hole is a region of extremely large ozone depletion that is roughly centered over the South Pole. Since 1979, the area coverage of the ozone hole has grown from near zero size to over 24 Million square kilometers. In the 8-year period from 1981 to 1989, the area expanded by 18 Million square kilometers. During the last 5 years, the hole has been observed to exceed 25 Million square kilometers over brief periods. We will review these size observations, the size trends, and the interannual variability of the size. The area is derived from the area enclosed by the 220 DU total ozone contour. We will discuss the rationale for the choice of 220 DU: 1) it is located near the steep gradient between southern mid-latitudes and the polar region, and 2) 220 DU is a value that is lower than the pre- 1979 ozone observations over Antarctica during the spring period. The phenomenal growth of the ozone hole was directly caused by the increases of chlorine and bromine compounds in the stratosphere. In this talk, we will show the relationship of the ozone hole's size to the interannual variability of Antarctic spring temperatures. In addition, we will show the relationship of these same temperatures to planetary-scale wave forcings.

  20. A two-dimensional model study of past trends in global ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Kinnison, D.E.

    1988-08-01

    Emissions and atmospheric concentrations of several trace gases important to atmospheric chemistry are known to have increased substantially over recent decades. Solar flux variations and the atmospheric nuclear test series are also likely to have affected stratospheric ozone. In this study, the LLNL two-dimensional chemical-radiative-transport model of the troposphere and stratosphere has been applied to an analysis of the effects that these natural and anthropogenic influences may have had on global ozone concentrations over the last three decades. In general, model determined species distributions and the derived ozone trends agree well with published analyses of land-based and satellite-based observations. Also, the total ozone and ozone distribution trends derived from CFC and other trace gas effects have a different response with latitude than the derived trends from solar flux variations, thus providing a ''signature'' for anthropogenic effects on ozone. 24 refs., 5 figs

  1. Development and Application of Hyperspectral Infrared Ozone Retrieval Products for Operational Meteorology

    Science.gov (United States)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2015-01-01

    Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive

  2. Effect of low concentrations of ozone on Escherichia coli chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Hamelin, C; Chung, Y S

    1975-01-01

    The investigations reported here are an extension of previous work reported from the same laboratory, the aim of which is to demonstrate the potential of ozone to have mutagenic effects in man. Data indicate that ozone has the ability to induce mutation in a wide range of genes responsible for the nutritional properties of E. coli. They also indicate that there are a great number of mutant strains either more resistant or more sensitive to UV radiation than the parental strain; and there are numerous mucoid strains forming excessive amounts of capsular polysaccharide after treatment. It appears that ozone could be expected to produce mutation in all types of genes. Considering that these findings in the microbial system studied are associated with positive findings in in vivo cytogenetics-acute tests, and that extrapolation of mutation rates directly from experimental organisms to man can be done with confidence, it seems that even the very low concentrations of ozone which occur in certain weather conditions must be avoided. 17 references, 1 table.

  3. NOAA JPSS Ozone Mapping and Profiler Suite (OMPS) Nadir Profile Science Sensor Data Record (SDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ozone Mapping and Profiler Suite (OMPS) onboard the Suomi-NPP satellite monitors ozone from space. OMPS will collect total column and vertical profile ozone data...

  4. Analysis of Ozone (O3 and Erythemal UV (EUV measured by TOMS in the equatorial African belt

    Directory of Open Access Journals (Sweden)

    Øyvind Frette

    2010-03-01

    Full Text Available We presented time series of total ozone column amounts (TOCAs and erythemal UV (EUV doses derived from measurements by TOMS (Total Ozone Mapping Spectrometer instruments on board the Nimbus-7 (N7 and the Earth Probe (EP satellites for three locations within the equatorial African belt for the period 1979 to 2000. The locations were Dar-es-Salaam (6.8° S, 39.26° E in Tanzania, Kampala (0.19° N, 32.34° E in Uganda, and Serrekunda (13.28° N, 16.34° W in Gambia. Equatorial Africa has high levels of UV radiation, and because ozone shields UV radiation from reaching the Earth’s surface, there is a need to monitor TOCAs and EUV doses. In this paper we investigated the trend of TOCAs and EUV doses, the effects of annual and solar cycles on TOCAs, as well as the link between lightning and ozone production in the equatorial African belt. We also compared clear-sky simulated EUV doses with the corresponding EUV doses derived from TOMS measurements. The TOCAs were found to vary in the ranges 243 DU − 289 DU, 231 DU − 286 DU, and 236 DU − 296 DU, with mean values of 266.9 DU, 260.9 DU, and 267.8 DU for Dar-es-Salaam, Kampala and Serrekunda, respectively. Daily TOCA time series indicated that Kampala had the lowest TOCA values, which we attributed to the altitude effect. There were two annual ozone peaks in Dar-es-Salaam and Kampala, and one annual ozone peak in Serrekunda. The yearly TOCA averages showed an oscillation within a five-year period. We also found that the EUV doses were stable at all three locations for the period 1979−2000, and that Kampala and Dar-es-Salaam were mostly cloudy throughout the year, whereas Serrekunda was mostly free from clouds. It was also found that clouds were among the major factors determining the level of EUV reaching the Earth´s surface. Finally, we noted that during rainy seasons, horizontal advection effects augmented by lightning activity may be responsible for enhanced ozone production in the tropics.

  5. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    International Nuclear Information System (INIS)

    Preisler, Haiganoush K.; Zhong Shiyuan; Esperanza, Annie; Brown, Timothy J.; Bytnerowicz, Andrzej; Tarnay, Leland

    2010-01-01

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  6. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    Energy Technology Data Exchange (ETDEWEB)

    Preisler, Haiganoush K., E-mail: hpreisler@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 800 Buchanan St, Albany, CA 94710 (United States); Zhong Shiyuan, E-mail: zhongs@msu.ed [Department of Geography, Michigan State University, 116 Geography Building, East Lansing, MI 48824-1117 (United States); Esperanza, Annie, E-mail: annie_esperanza@nps.go [Sequoia and Kings Canyon National Parks, 47050 Generals Highway Three Rivers, CA 93271 (United States); Brown, Timothy J., E-mail: tim.brown@dri.ed [Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89521-10095 (United States); Bytnerowicz, Andrzej, E-mail: abytnerowicz@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States); Tarnay, Leland, E-mail: Leland_Tarnay@nps.go [Yosemite National Park, El Portal, CA 95318 (United States)

    2010-03-15

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  7. Condition of The Stratospheric and Mesospheric Ozone Layer Over Bulgaria for the Period 1996-2012

    Science.gov (United States)

    Kaleyna, Petya; Mukhtarov, Plamen; Miloshev, Nikolay

    2014-05-01

    A detailed analysis of the variations of the stratospheric and mesospheric ozone over Bulgaria, in the period 1996-2012, is presented in the article on the basis of ground and satellite measurements of the Total Ozone Content (TOC). The move of the most important components: yearly running mean values, amplitudes and phases of the first four harmonics of the seasonal cycle. Their mean values for the period and the existing long term trends have been found. An evaluation of the general characteristics of the short term variability of the Total Ozone Content (TOC) over Bulgaria also has been made in the article. The impact of the planetary wave activity of the stratosphere on the total ozone has been studied and the climatology of the oscillation amplitudes with periods of 4, 7, 11 and 25 days has been defined.

  8. Earth's ozone layer

    International Nuclear Information System (INIS)

    Lasa, J.

    1991-01-01

    The paper contain the actual results of investigations of the influence of the human activity on the Earth's ozone layer. History of the ozone measurements and of the changes in its concentrations within the last few years are given. The influence of the trace gases on both local and global ozone concentrations are discussed. The probable changes of the ozone concentrations are presented on the basis of the modelling investigations. The effect of a decrease in global ozone concentration on human health and on biosphere are also presented. (author). 33 refs, 36 figs, 5 tabs

  9. A real-time monitoring and assessment method for calculation of total amounts of indoor air pollutants emitted in subway stations.

    Science.gov (United States)

    Oh, TaeSeok; Kim, MinJeong; Lim, JungJin; Kang, OnYu; Shetty, K Vidya; SankaraRao, B; Yoo, ChangKyoo; Park, Jae Hyung; Kim, Jeong Tai

    2012-05-01

    Subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, in this study, a new cumulative calculation method for the estimation of total amounts of indoor air pollutants emitted inside the subway station is proposed by taking cumulative amounts of indoor air pollutants based on integration concept. Minimum concentration of individual air pollutants which naturally exist in indoor space is referred as base concentration of air pollutants and can be found from the data collected. After subtracting the value of base concentration from data point of each data set of indoor air pollutant, the primary quantity of emitted air pollutant is calculated. After integration is carried out with these values, adding the base concentration to the integration quantity gives the total amount of indoor air pollutant emitted. Moreover the values of new index for cumulative indoor air quality obtained for 1 day are calculated using the values of cumulative air quality index (CAI). Cumulative comprehensive indoor air quality index (CCIAI) is also proposed to compare the values of cumulative concentrations of indoor air pollutants. From the results, it is clear that the cumulative assessment approach of indoor air quality (IAQ) is useful for monitoring the values of total amounts of indoor air pollutants emitted, in case of exposure to indoor air pollutants for a long time. Also, the values of CCIAI are influenced more by the values of concentration of NO2, which is released due to the use of air conditioners and combustion of the fuel. The results obtained in

  10. Urban Summertime Ozone of China: Peak Ozone Hour and Nighttime Mixing

    Science.gov (United States)

    Qu, H.; Wang, Y.; Zhang, R.

    2017-12-01

    We investigate the observed diurnal cycle of summertime ozone in the cities of China using a regional chemical transport model. The simulated daytime ozone is in general agreement with the observations. Model simulations suggest that the ozone peak time and peak concentration are a function of NOx (NO + NO2) and volatile organic compound (VOC) emissions. The differences between simulated and observed ozone peak time and peak concentration in some regions can be applied to understand biases in the emission inventories. For example, the VOCs emissions are underestimated over the Pearl River Delta (PRD) region, and either NOx emissions are underestimated or VOC emissions are overestimated over the Yangtze River Delta (YRD) regions. In contrast to the general good daytime ozone simulations, the simulated nighttime ozone has a large low bias of up to 40 ppbv. Nighttime ozone in urban areas is sensitive to the nocturnal boundary-layer mixing, and enhanced nighttime mixing (from the surface to 200-500 m) is necessary for the model to reproduce the observed level of ozone.

  11. Ozonation control and effects of ozone on water quality in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Rojas-Tirado, Paula Andrea; Chetri, Ravi K.

    2018-01-01

    To address the undesired effect of chemotherapeutants in aquaculture, ozone has been suggested as an alternative to improve water quality. To ensure safe and robust treatment, it is vital to define the ozone demand and ozone kinetics of the specific water matrix to avoid ozone overdose. Different...... ozone dosages were applied to water in freshwater recirculating aquaculture systems (RAS). Experiments were performed to investigate ozone kinetics and demand, and to evaluate the effects on the water quality, particularly in relation to fluorescent organic matter. This study aimed at predicting...... a suitable ozone dosage for water treatment based on daily ozone demand via laboratory studies. These ozone dosages will be eventually applied and maintained at these levels in pilot-scale RAS to verify predictions. Selected water quality parameters were measured, including natural fluorescence and organic...

  12. Ozone modeling

    International Nuclear Information System (INIS)

    McIllvaine, C.M.

    1994-01-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO 2 ), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO x concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO x coordinates of the point, known as the NMOC/NO x ratio. Results obtained by the described model are presented

  13. Ozone Bioindicator Gardens: an Educational Tool to Raise Awareness about Environmental Pollution and its Effects on Living Systems

    Science.gov (United States)

    Lapina, K.; Lombardozzi, D.

    2014-12-01

    High concentrations of ground-level ozone cause health problems in humans and a number of negative effects on plants, from reduced yield for major agricultural crops to reduced amounts of carbon stored in trees. The Denver Metro/Colorado Front Range is exceeding the National Ambient Air Quality Standard for ozone on a regular basis in summer and the efforts to reduce the ozone levels are hampered by the presence of diverse pollution sources and complex meteorology in the region. To raise public awareness of air quality in the Colorado Front Range and to educate all age groups about ground-level ozone, two ozone bioindicator gardens were planted in Boulder in Spring 2014. The gardens contain ozone-sensitive plants that develop a characteristic ozone injury when exposed to high levels of ozone. The ozone gardens are providing the general public with a real-life demonstration of the negative effects of ozone pollution through observable plant damage. Additionally, the gardens are useful in teaching students how to collect and analyze real-world scientific data.

  14. Photochemical production of ozone and control strategy for Southern Taiwan

    Science.gov (United States)

    Shiu, Chein-Jung; Liu, Shaw Chen; Chang, Chih-Chung; Chen, Jen-Ping; Chou, Charles C. K.; Lin, Chuan-Yao; Young, Chea-Yuan

    An observation-based method (OBM) is developed to evaluate the ozone (O 3) production efficiency (O 3 molecules produced per NO x molecule consumed) and O 3 production rate ( P(O 3)) during a field campaign in southern Taiwan. The method can also provide an estimate of the concentration of OH. A key step in the method is to use observed concentrations of two aromatic hydrocarbons, namely ethylbenzene and m, p-xylene, to estimate the degree of photochemical processing and amounts of photochemically consumed NO x and NMHCs by OH. In addition, total oxidant (O 3+NO 2) instead of O 3 itself turns out to be very useful for representing ozone production in the OBM approach. The average O 3 production efficiency during the field campaign in Fall (2003) is found to be about 10.2±3.9. The relationship of P(O 3) with NO x is examined and compared with a one-dimensional (1D) photochemical model. Values of P(O 3) derived from the OBM are slightly lower than those calculated in the 1D model. However, OH concentrations estimated by the OBM are about a factor of 2 lower than the 1D model. Fresh emissions, which affect the degree of photochemical processing appear to be a major cause of the underestimate. We have developed a three-dimensional (3D) OBM O 3 production diagram that resembles the EKMA ozone isopleth diagram to study the relationship of the total oxidant versus O 3 precursors. The 3D OBM O 3 production diagram suggests that reducing emissions of NMHCs are more effective in controlling O 3 than reducing NO x. However, significant uncertainties remain in the OBM, and considerable more work is required to minimize these uncertainties before a definitive control strategy can be reached. The observation-based approach provides a good alternative to measuring peroxy radicals for evaluating the production of O 3 and formulating O 3 control strategy in urban and suburban environments.

  15. Atmospheric Ozone and Methane in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Ivar S. A. Isaksen

    2014-07-01

    Full Text Available Ozone and methane are chemically active climate-forcing agents affected by climate–chemistry interactions in the atmosphere. Key chemical reactions and processes affecting ozone and methane are presented. It is shown that climate-chemistry interactions have a significant impact on the two compounds. Ozone, which is a secondary compound in the atmosphere, produced and broken down mainly in the troposphere and stratosphre through chemical reactions involving atomic oxygen (O, NOx compounds (NO, NO2, CO, hydrogen radicals (OH, HO2, volatile organic compounds (VOC and chlorine (Cl, ClO and bromine (Br, BrO. Ozone is broken down through changes in the atmospheric distribution of the afore mentioned compounds. Methane is a primary compound emitted from different sources (wetlands, rice production, livestock, mining, oil and gas production and landfills.Methane is broken down by the hydroxyl radical (OH. OH is significantly affected by methane emissions, defined by the feedback factor, currently estimated to be in the range 1.3 to 1.5, and increasing with increasing methane emission. Ozone and methane changes are affected by NOx emissions. While ozone in general increase with increases in NOx emission, methane is reduced, due to increases in OH. Several processes where current and future changes have implications for climate-chemistry interactions are identified. It is also shown that climatic changes through dynamic processes could have significant impact on the atmospheric chemical distribution of ozone and methane, as we can see through the impact of Quasi Biennial Oscillation (QBO. Modeling studies indicate that increases in ozone could be more pronounced toward the end of this century. Thawing permafrost could lead to important positive feedbacks in the climate system. Large amounts of organic material are stored in the upper layers of the permafrost in the yedoma deposits in Siberia, where 2 to 5% of the deposits could be organic material

  16. Effect of ozone and histamine on airway permeability to horseradish peroxidase in guinea pigs

    International Nuclear Information System (INIS)

    Miller, P.D.; Gordon, T.; Warnick, M.; Amdur, M.O.

    1986-01-01

    Airway permeability was studied in groups of male guinea pigs at 2, 8, and 24 h after a 1-h exposure to 1 ppm ozone or at 2 h after a 1-h exposure to filtered air (control). Intratracheal administration of 2 mg horseradish peroxidase (HRP) was followed by blood sampling at 5-min intervals up to 30 min. The rate of appearance of HRP in plasma was significantly higher at 2 and 8 h after ozone exposure than that found in animals examined 2 h after air exposure or 24 h after ozone exposure. A dose of 0.12 mg/kg of subcutaneous histamine given after the 15 min blood sample significantly increased the already elevated permeability seen at 2 h post ozone, but had no effect on animals exposed to filtered air 2 h earlier or to ozone 24 h earlier. No difference was seen in the amount of subcutaneous radiolabeled histamine in the lungs of animals exposed 2 h earlier either to air or to ozone. These data indicate that a short-term exposure to ozone produced a reversible increase in respiratory epithelial permeability to HRP in guinea pigs. The potentiation of this increased permeability by histamine may be another manifestation of ozone-induced hyperreactivity

  17. The chemical and biological characteristics of coke-oven wastewater by ozonation

    International Nuclear Information System (INIS)

    Chang, E.-E.; Hsing, H.-J.; Chiang, P.-C.; Chen, M.-Y.; Shyng, J.-Y.

    2008-01-01

    A bench-scale bubble column reactor was used to investigate the biological and chemical characteristics of coke-oven wastewater after ozonation treatment through the examination of selected parameters. Color and thiocyanate could be removed almost entirely; however, organic matter and cyanide could not, due to the inadequate oxidation ability of ozone to remove ozonated byproducts under given experimental conditions. The removal of cyanide and total organic carbon were pH-dependent and were found to be efficient under neutral to alkaline conditions. The removal rate for thiocyanate was about five times that of cyanide. The ozone consumption ratio approached to about 1 at the early stage of ozonation (time TOC ) increased to 30%, indicating that easily degraded pollutants were degraded almost entirely. The effect of ozonation on the subsequent biological treatment unit (i.e., activated sludge process) was determined by observing the ratio of 5-day biological oxygen demand to chemical oxygen demand (BOD 5 /COD) and the specific oxygen utilization rate (SOUR). The results indicated that the contribution of ozonation to inhibition reduction was very significant but limited to the enhancement of biodegradation. The operation for ozonation of coke-oven wastewater was feasible under neutral condition and short ozone contact time in order to achieve better performance and cost savings

  18. Ultraviolet-ozone treatment reduces levels of disease-associated prion protein and prion infectivity

    Science.gov (United States)

    Johnson, C.J.; Gilbert, P.; McKenzie, D.; Pedersen, J.A.; Aiken, Judd M.

    2009-01-01

    Background. Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases caused by novel infectious agents referred to as prions. Prions appear to be composed primarily, if not exclusively, of a misfolded isoform of the cellular prion protein. TSE infectivity is remarkably stable and can resist many aggressive decontamination procedures, increasing human, livestock and wildlife exposure to TSEs. Findings. We tested the hypothesis that UV-ozone treatment reduces levels of the pathogenic prion protein and inactivates the infectious agent. We found that UV-ozone treatment decreased the carbon and prion protein content in infected brain homogenate to levels undetectable by dry-ashing carbon analysis or immunoblotting, respectively. After 8 weeks of ashing, UV-ozone treatment reduced the infectious titer of treated material by a factor of at least 105. A small amount of infectivity, however, persisted despite UV-ozone treatment. When bound to either montmorillonite clay or quartz surfaces, PrPTSE was still susceptible to degradation by UV-ozone. Conclusion. Our findings strongly suggest that UV-ozone treatment can degrade pathogenic prion protein and inactivate prions, even when the agent is associated with surfaces. Using larger UV-ozone doses or combining UV-ozone treatment with other decontaminant methods may allow the sterilization of TSE-contaminated materials. ?? 2009 Aiken et al; licensee BioMed Central Ltd.

  19. Screening agrochemicals as potential protectants of plants against ozone phytotoxicity.

    Science.gov (United States)

    Saitanis, Costas J; Lekkas, Dimitrios V; Agathokleous, Evgenios; Flouri, Fotini

    2015-02-01

    We tested seven contemporary agrochemicals as potential plant protectants against ozone phytotoxicity. In nine experiments, Bel-W3 tobacco plants were experienced weekly exposures to a) 80 nmol mol(-1) of ozone-enriched or ozone-free air in controlled environment chambers, b) an urban air polluted area, and c) an agricultural-remote area. Ozone caused severe leaf injury, reduced chlorophylls' and total carotenoids' content, and negatively affected photosynthesis and stomatal conductance. Penconazole, (35% ± 8) hexaconazole (28% ± 5) and kresoxim-methyl (28% ± 15) showed higher plants' protection (expressed as percentage; mean ± s.e.) against ozone, although the latter exhibited a high variability. Azoxystrobin (21% ± 15) showed lower protection efficacy and Benomyl (15% ± 9) even lower. Trifloxystrobin (7% ± 11) did not protect the plants at all. Acibenzolar-S-methyl + metalaxyl-M (Bion MX) (-6% ± 17) exhibited the higher variability and contrasting results: in some experiments it showed some protection while in others it intensified the ozone injury by causing phytotoxic symptoms on leaves, even in control plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Impact of strong geomagnetic storms on total ozone at southern higher middle latitudes

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Križan, Peter

    2009-01-01

    Roč. 53, č. 1 (2009), s. 151-156 ISSN 0039-3169 R&D Projects: GA MŠk 1P05OC030 Grant - others:European Commission(XE) COST 724 Institutional research plan: CEZ:AV0Z30420517 Keywords : ozone * Southern Hemisphere * geomagnetic storms * Forbush decreases of cosmic rays Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.000, year: 2009

  1. VOC reactivity and its effect on ozone production during the HaChi summer campaign

    Directory of Open Access Journals (Sweden)

    L. Ran

    2011-05-01

    Full Text Available Measurements of ozone and its precursors conducted within the HaChi (Haze in China project in summer 2009 were analyzed to characterize volatile organic compounds (VOCs and their effects on ozone photochemical production at a suburban site in the North China Plain (NCP. Ozone episodes, during which running 8-h average ozone concentrations exceeding 80 ppbv lasted for more than 4 h, occurred on about two thirds of the observational days during the 5-week field campaign. This suggests continuous ozone exposure risks in this region in the summer. Average concentrations of nitrogen oxides (NOx and VOCs are about 20 ppbv and 650 ppbC, respectively. On average, total VOC reactivity is dominated by anthropogenic VOCs. The contribution of biogenic VOCs to total ozone-forming potential, however, is also considerable in the daytime. Key species associated with ozone photochemical production are 2-butenes (18 %, isoprene (15 %, trimethylbenzenes (11 %, xylenes (8.5 %, 3-methylhexane (6 %, n-hexane (5 % and toluene (4.5 %. Formation of ozone is found to be NOx-limited as indicated by measured VOCs/NOx ratios and further confirmed by a sensitivity study using a photochemical box model NCAR_MM. The Model simulation suggests that ozone production is also sensitive to changes in VOC reactivity under the NOx-limited regime, although this sensitivity depends strongly on how much NOx is present.

  2. Chemical ozone losses in Arctic and Antarctic polar winter/spring season derived from SCIAMACHY limb measurements 2002–2009

    Directory of Open Access Journals (Sweden)

    T. Sonkaew

    2013-02-01

    Full Text Available Stratospheric ozone profiles are retrieved for the period 2002–2009 from SCIAMACHY measurements of limb-scattered solar radiation in the Hartley and Chappuis absorption bands of ozone. This data set is used to determine the chemical ozone losses in both the Arctic and Antarctic polar vortices by averaging the ozone in the vortex at a given potential temperature. The chemical ozone losses at isentropic levels between 450 K and 600 K are derived from the difference between observed ozone abundances and the ozone modelled taking diabatic cooling into account, but no chemical ozone loss. Chemical ozone losses of up to 30–40% between mid-January and the end of March inside the Arctic polar vortex are reported. Strong inter-annual variability of the Arctic ozone loss is observed, with the cold winters 2004/2005 and 2006/2007 showing chemical ozone losses inside the polar vortex at 475 K, where 1.7 ppmv and 1.4 ppmv of ozone were removed, respectively, over the period from 22 January to beginning of April and 0.9 ppmv and 1.2 ppmv, respectively, during February. For the winters of 2007/2008 and 2002/2003, ozone losses of about 0.8 ppmv and 0.4 ppmv, respectively are estimated at the 475 K isentropic level for the period from 22 January to beginning of April. Essentially no ozone losses were diagnosed for the relatively warm winters of 2003/2004 and 2005/2006. The maximum ozone loss in the SCIAMACHY data set was found in 2007 at the 600 K level and amounted to about 2.1 ppmv for the period between 22 January and the end of April. Enhanced losses close to this altitude were found in all investigated Arctic springs, in contrast to Antarctic spring. The inter-annual variability of ozone losses and PSC occurrence rates observed during Arctic spring is consistent with the known QBO effects on the Arctic polar vortex, with exception of the unusual Arctic winter 2008/2009.

    The maximum total ozone mass loss of about 25 million tons was found in the

  3. Stratospheric ozone measurements at Arosa (Switzerland): history and scientific relevance

    Science.gov (United States)

    Staehelin, Johannes; Viatte, Pierre; Stübi, Rene; Tummon, Fiona; Peter, Thomas

    2018-05-01

    Climatic Observatory (LKO) in Arosa (Switzerland), marking the beginning of the world's longest series of total (or column) ozone measurements. They were driven by the recognition that atmospheric ozone is important for human health, as well as by scientific curiosity about what was, at the time, an ill characterised atmospheric trace gas. From around the mid-1950s to the beginning of the 1970s studies of high atmosphere circulation patterns that could improve weather forecasting was justification for studying stratospheric ozone. In the mid-1970s, a paradigm shift occurred when it became clear that the damaging effects of anthropogenic ozone-depleting substances (ODSs), such as long-lived chlorofluorocarbons, needed to be documented. This justified continuing the ground-based measurements of stratospheric ozone. Levels of ODSs peaked around the mid-1990s as a result of a global environmental policy to protect the ozone layer, implemented through the 1987 Montreal Protocol and its subsequent amendments and adjustments. Consequently, chemical destruction of stratospheric ozone started to slow around the mid-1990s. To some extent, this raises the question as to whether continued ozone observation is indeed necessary. In the last decade there has been a tendency to reduce the costs associated with making ozone measurements globally including at Arosa. However, the large natural variability in ozone on diurnal, seasonal, and interannual scales complicates the capacity for demonstrating the success of the Montreal Protocol. Chemistry-climate models also predict a super-recovery of the ozone layer at mid-latitudes in the second half of this century, i.e. an increase of ozone concentrations beyond pre-1970 levels, as a consequence of ongoing climate change. These factors, and identifying potentially unexpected stratospheric responses to climate change, support the continued need to document stratospheric ozone changes. This is particularly valuable at the Arosa site, due

  4. Deposition velocities and impact of physical properties on ozone removal for building materials

    Science.gov (United States)

    Lin, Chi-Chi; Hsu, Shu-Chen

    2015-01-01

    This study aims to estimate the ozone deposition velocities of eight commonly used building materials (BMs) which include calcium silicate board (CSB), green calcium silicate board (GCSB), mineral fiber ceiling (MFC), green mineral fiber ceiling (GMFC), gypsum board (GB), green gypsum board (GGB), wooden flooring (WF) and green wooden flooring (GWF). In addition, the impact of physical properties (specific surface area and total pore volume of BM) on ozone removal ability was also explored and discussed. Studies were conducted in a small-scale environmental stainless steel chamber. CSB and GCSB showed the highest ozone deposition velocities, while WF and GWF showed the lowest ozone deposition velocities among test BMs materials. All reaction probabilities were estimated to fall within the order of magnitude of 10-6. Green BMs showed lower reaction probabilities with ozone comparing with non-green BMs except for GGB. Consistent with the trends for deposition velocity, fleecy and porous materials exhibit higher reaction probabilities than smooth, non-porous surfaces. Specific surface area of BM is more closely related to ozone removal than total pore volume of BM with R2 of 0.93 vs. R2 of 0.84. Discussion of Thiele modulus for all test BMs indicates surface reactions are occurring quickly relative to internal diffusion and ozone removal is internal diffusion-limited.

  5. Characterising the three-dimensional ozone distribution of a tidally locked Earth-like planet

    Science.gov (United States)

    Proedrou, Elisavet; Hocke, Klemens

    2016-06-01

    We simulate the 3D ozone distribution of a tidally locked Earth-like exoplanet using the high-resolution, 3D chemistry-climate model CESM1(WACCM) and study how the ozone layer of a tidally locked Earth (TLE) (Ω _{TLE}= 1/365 days) differs from that of our present-day Earth (PDE) (Ω _{PDE}= 1/1 day). The middle atmosphere reaches a steady state asymptotically within the first 80 days of the simulation. An upwelling, centred on the subsolar point, is present on the day side while a downwelling, centred on the antisolar point, is present on the night side. In the mesosphere, we find similar global ozone distributions for the TLE and the PDE, with decreased ozone on the day side and enhanced ozone on the night side. In the lower mesosphere, a jet stream transitions into a large-scale vortex around a low-pressure system, located at low latitudes of the TLE night side. In the middle stratosphere, the concentration of odd oxygen is approximately equal to that of the ozone [({O}x) ≈ ({O}3)]. At these altitudes, the lifetime of odd oxygen is ˜16 h and the transport processes significantly contribute to the global distribution of stratospheric ozone. Compared to the PDE, where the strong Coriolis force acts as a mixing barrier between low and high latitudes, the transport processes of the TLE are governed by jet streams variable in the zonal and meridional directions. In the middle stratosphere of the TLE, we find high ozone values on the day side, due to the increased production of atomic oxygen on the day side, where it immediately recombines with molecular oxygen to form ozone. In contrast, the ozone is depleted on the night side, due to changes in the solar radiation distribution and the presence of a downwelling. As a result of the reduced Coriolis force, the tropical and extratropical air masses are well mixed and the global temperature distribution of the TLE stratosphere has smaller horizontal gradients than the PDE. Compared to the PDE, the total ozone column

  6. Ozone modeling

    Energy Technology Data Exchange (ETDEWEB)

    McIllvaine, C M

    1994-07-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO{sub 2}), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO{sub x} concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO{sub x} coordinates of the point, known as the NMOC/NO{sub x} ratio. Results obtained by the described model are presented.

  7. Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.

    Science.gov (United States)

    Demir, Ozlem; Filibeli, Ayse

    2012-09-01

    The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.

  8. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    Science.gov (United States)

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the

  9. Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis

    Science.gov (United States)

    Wargan, Krzysztof; Labow, Gordon; Frith, Stacey; Pawson, Steven; Livesey, Nathaniel; Partyka, Gary

    2017-01-01

    We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASAs Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASAs EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 and 24.5, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies.

  10. Ozone-UV-catalysis based advanced oxidation process for wastewater treatment.

    Science.gov (United States)

    Tichonovas, Martynas; Krugly, Edvinas; Jankunaite, Dalia; Racys, Viktoras; Martuzevicius, Dainius

    2017-07-01

    A bench-scale advanced oxidation (AO) reactor was investigated for the degradation of six pollutants (2-naphthol, phenol, oxalic acid, phthalate, methylene blue, and D-glucose) in a model wastewater at with the aim to test opportunities for the further upscale to industrial applications. Six experimental conditions were designed to completely examine the experimental reactor, including photolysis, photocatalysis, ozonation, photolytic ozonation, catalytic ozonation, and photocatalytic ozonation. The stationary catalyst construction was made from commercially available TiO 2 nanopowder by mounting it on a glass support and subsequently characterized for morphology (X-ray diffraction analysis and scanning electron microscopy) as well as durability. The ozone was generated in a dielectrical barrier discharge reactor using air as a source of oxygen. The degradation efficiency was estimated by the decrease in total organic carbon (TOC) concentration as well as toxicity using Daphnia magna, and degradation by-products by ultra-performance liquid chromatography-mass spectrometry. The photocatalytic ozonation was the most effective for the treatment of all model wastewater. The photocatalytic ozonation was most effective against ozonation and photolytic ozonation at tested pH values. A complete toxicity loss was obtained after the treatment using photocatalytic ozonation. The possible degradation pathway of the phthalate by oxidation was suggested based on aromatic ring opening reactions. The catalyst used at this experiment confirmed as a durable for continuous use with almost no loss of activity over time. The design of the reactor was found to be very effective for water treatment using photocatalytic ozonation. Such design has a high potential and can be further upscaled to industrial applications due to the simplicity and versatility of manufacturing and maintenance.

  11. The Impact of Warm Pool El Nino Events on Antarctic Ozone

    Science.gov (United States)

    Hurwitz, Margaret M.; Newman, P. A.; Song, In-Sun; Frith, Stacey M.

    2011-01-01

    Warm pool El Nino (WPEN) events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific in austral spring and summer. Previous work found an enhancement in planetary wave activity in the South Pacific in austral spring, and a warming of 3-5 K in the Antarctic lower stratosphere during austral summer, in WPEN events as compared with ENSO neutral. In this presentation, we show that weakening of the Antarctic vortex during WPEN affects the structure and magnitude of high-latitude total ozone. We use total ozone data from TOMS and OMI, as well as station data from Argentina and Antarctica, to identify shifts in the longitudinal location of the springtime ozone minimum from its climatological position. In addition, we examine the sensitivity of the WPEN-related ozone response to the phase of the quasi-biennial oscillation (QBO). We then compare the observed response to WPEN events with Goddard Earth Observing System chemistry-climate model, version 2 (GEOS V2 CCM) simulations. Two, 50-year time-slice simulations are forced by annually repeating SST and sea ice climatologies, one set representing observed WPEN events and the second set representing neutral ENSO events, in a present-day climate. By comparing the two simulations, we isolate the impact of WPEN events on lower stratospheric ozone, and furthermore, examine the sensitivity of the WPEN ozone response to the phase of the QBO.

  12. Is the ozone climate penalty robust in Europe?

    International Nuclear Information System (INIS)

    Colette, Augustin; Bessagnet, Bertrand; Meleux, Frédérik; Rouïl, Laurence; Andersson, Camilla; Engardt, Magnuz; Langner, Joakim; Baklanov, Alexander; Brandt, Jørgen; Christensen, Jesper H; Geels, Camilla; Hedegaard, Gitte B; Doherty, Ruth; Giannakopoulos, Christos; Katragkou, Eleni; Lei, Hang; Manders, Astrid; Melas, Dimitris; Sofiev, Mikhail; Soares, Joana

    2015-01-01

    Ozone air pollution is identified as one of the main threats bearing upon human health and ecosystems, with 25 000 deaths in 2005 attributed to surface ozone in Europe (IIASA 2013 TSAP Report #10). In addition, there is a concern that climate change could negate ozone pollution mitigation strategies, making them insufficient over the long run and jeopardising chances to meet the long term objective set by the European Union Directive of 2008 (Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008) (60 ppbv, daily maximum). This effect has been termed the ozone climate penalty. One way of assessing this climate penalty is by driving chemistry-transport models with future climate projections while holding the ozone precursor emissions constant (although the climate penalty may also be influenced by changes in emission of precursors). Here we present an analysis of the robustness of the climate penalty in Europe across time periods and scenarios by analysing the databases underlying 11 articles published on the topic since 2007, i.e. a total of 25 model projections. This substantial body of literature has never been explored to assess the uncertainty and robustness of the climate ozone penalty because of the use of different scenarios, time periods and ozone metrics. Despite the variability of model design and setup in this database of 25 model projection, the present meta-analysis demonstrates the significance and robustness of the impact of climate change on European surface ozone with a latitudinal gradient from a penalty bearing upon large parts of continental Europe and a benefit over the North Atlantic region of the domain. Future climate scenarios present a penalty for summertime (JJA) surface ozone by the end of the century (2071–2100) of at most 5 ppbv. Over European land surfaces, the 95% confidence interval of JJA ozone change is [0.44; 0.64] and [0.99; 1.50] ppbv for the 2041–2070 and 2071–2100 time windows, respectively

  13. Is the ozone climate penalty robust in Europe?

    Science.gov (United States)

    Colette, Augustin; Andersson, Camilla; Baklanov, Alexander; Bessagnet, Bertrand; Brandt, Jørgen; Christensen, Jesper H.; Doherty, Ruth; Engardt, Magnuz; Geels, Camilla; Giannakopoulos, Christos; Hedegaard, Gitte B.; Katragkou, Eleni; Langner, Joakim; Lei, Hang; Manders, Astrid; Melas, Dimitris; Meleux, Frédérik; Rouïl, Laurence; Sofiev, Mikhail; Soares, Joana; Stevenson, David S.; Tombrou-Tzella, Maria; Varotsos, Konstantinos V.; Young, Paul

    2015-08-01

    Ozone air pollution is identified as one of the main threats bearing upon human health and ecosystems, with 25 000 deaths in 2005 attributed to surface ozone in Europe (IIASA 2013 TSAP Report #10). In addition, there is a concern that climate change could negate ozone pollution mitigation strategies, making them insufficient over the long run and jeopardising chances to meet the long term objective set by the European Union Directive of 2008 (Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008) (60 ppbv, daily maximum). This effect has been termed the ozone climate penalty. One way of assessing this climate penalty is by driving chemistry-transport models with future climate projections while holding the ozone precursor emissions constant (although the climate penalty may also be influenced by changes in emission of precursors). Here we present an analysis of the robustness of the climate penalty in Europe across time periods and scenarios by analysing the databases underlying 11 articles published on the topic since 2007, i.e. a total of 25 model projections. This substantial body of literature has never been explored to assess the uncertainty and robustness of the climate ozone penalty because of the use of different scenarios, time periods and ozone metrics. Despite the variability of model design and setup in this database of 25 model projection, the present meta-analysis demonstrates the significance and robustness of the impact of climate change on European surface ozone with a latitudinal gradient from a penalty bearing upon large parts of continental Europe and a benefit over the North Atlantic region of the domain. Future climate scenarios present a penalty for summertime (JJA) surface ozone by the end of the century (2071-2100) of at most 5 ppbv. Over European land surfaces, the 95% confidence interval of JJA ozone change is [0.44; 0.64] and [0.99; 1.50] ppbv for the 2041-2070 and 2071-2100 time windows, respectively.

  14. The Antarctic ozone hole

    International Nuclear Information System (INIS)

    Jones, Anna E

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For the historical perspective, the events leading up to the discovery of the 'hole' are presented, as well as the response from the international community and the measures taken to protect the ozone layer now and into the future

  15. Aromatic VOCs global influence in the ozone production

    Science.gov (United States)

    Cabrera-Perez, David; Pozzer, Andrea

    2016-04-01

    Aromatic hydrocarbons are a subgroup of Volatile Organic Compounds (VOCs) of special interest in the atmosphere of urban and semi-urban areas. Aromatics form a high fraction of VOCs, are highly reactive and upon oxidation they are an important source of ozone. These group of VOCs are released to the atmosphere by processes related to biomass burning and fossil fuel consumption, while they are removed from the atmosphere primarily by OH reaction and by dry deposition. In addition, a branch of aromatics (ortho-nitrophenols) produce HONO upon photolysis, which is responsible of certain amount of the OH recycling. Despite their importance in the atmosphere in anthropogenic polluted areas, the influence of aromatics in the ozone production remains largely unknown. This is of particular relevance, being ozone a pollutant with severe side effects on air quality, health and climate. In this work the atmospheric impacts at global scale of the most emitted aromatic VOCs in the gas phase (benzene, toluene, xylenes, ethylbenzene, styrene, phenol, benzaldehyde and trimethylbenzenes) are analysed and assessed. Specifically, the impact on ozone due to aromatic oxidation is estimated, as this is of great interest in large urban areas and can be helpful for developing air pollution control strategies. Further targets are the quantification of the NOx loss and the OH recycling due to aromatic oxidation. In order to investigate these processes, two simulations were performed with the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The simulations compare two cases, one with ozone concentrations when aromatics are present or the second one when they are missing. Finally, model simulated ozone is compared against a global set of observations in order to better constrain the model accuracy.

  16. Ozonated Olive Oils and Troubles

    Directory of Open Access Journals (Sweden)

    Bulent Uysal

    2014-04-01

    Full Text Available One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. [J Intercult Ethnopharmacol 2014; 3(2.000: 49-50

  17. Ozone Disinfection of Vibrio vulnificus in Shrimp Pond Water

    Science.gov (United States)

    Dyah Pita Rengga, Wara; Cahya Julyta Putri, Echa; Wulansarie, Ria; Suryanto, Agus

    2018-03-01

    One variety of shrimp, L.Vanamei, often uses brackish water during the operation in the shrimp pond. Chlorination and ultraviolet are usually used for disinfection of brackish water. However, it is ineffective and forms sediment in the water distribution. It can be a negative impact on the water quality cause a contamination on the shrimp, so the farmers might have loss of profit because Vibrio vulnificus causes infection and dead on the shrimp. It affects the safety of consumers and should be minimized. The purpose of this study is to reduce the number of V. vulnificus bacteria in the pond water. The water was put in the storage tanks then pumped to filter out the impurities of the water. Furthermore, the water set the flow rate in 1 LPM, 2 LPM, and 3 LPM. After that, the ozone was injected to the water flow to sterilize the V. vulnificus bacteria. Finally, the water was returned to the original tank. The water from the tank was taken through a valve and analyzed in 0, 3, 7, 12, 18, 24, 30 minutes. The sample was analyzed immediately using a Total Plate Count method to determine the number of V. vulnificus bacteria in the shrimp pond water. The flow rate shows that the longer time of ozone made a lower amount of Vibrio v. bacteria. In 2 LPM water, it shows the optimum results of V. vulnificus. bacteria reduction for 88.1% compared to the flow rate of 1 LPM and 3 LPM with the bacteria reduction of 68,8% and 70.6%. This study shows that the ozone with a flow rate of 2 LPM circulation is the most effective method to help reducing the number of V. vulnificus in brackish water distribution system in the shrimp environment and potentially as a disinfectant.

  18. The role of bromine and chlorine chemistry for arctic ozone depletion events in Ny-Ålesund and comparison with model calculations

    Directory of Open Access Journals (Sweden)

    M. Martinez

    Full Text Available During the Arctic Tropospheric Ozone Chemistry (ARCTOC campaigns at Ny-Ålesund, Spitsbergen, the role of halogens in the depletion of boundary layer ozone was investigated. In spring 1995 and 1996 up to 30 ppt bromine monoxide were found whenever ozone decreased from normal levels of about 40 ppb. Those main trace gases and others were specifically followed in the UV-VIS spectral region by differential optical absorption spectroscopy (DOAS along light paths running between 20 and 475 m a.s.l.. The daily variation of peroxy radicals closely followed the ozone photolysis rate J(O3(O1D in the absence of ozone depletion most of the time. However, during low ozone events this close correlation was no longer found because the measurement of radicals by chemical amplification (CA turned out to be sensitive to peroxy radicals and ClOx. Large CA signals at night can sometimes definitely be assigned to ClOx and reached up to 2 ppt. Total bromine and iodine were both stripped quantitatively from air by active charcoal traps and measured after neutron activation of the samples. Total bromine increased from background levels of about 15 ppt to a maximum of 90 ppt during an event of complete ozone depletion. For the spring season a strong source of bromine is identified in the pack ice region according to back trajectories. Though biogenic emission sources cannot be completely ruled out, a primary activation of halogenides by various oxidants seems to initiate an efficient autocatalytic process, mainly driven by ozone and light, on ice and perhaps on aerosols. Halogenides residing on pack ice surfaces are continuously oxidised by hypohalogenous acids releasing bromine and chlorine into the air. During transport and especially above open water this air mixes with upper layer pristine air. As large quantities of bromine, often in the form of BrO, have been observed at polar sunrise also around Antarctica, its release

  19. Emissions lifetimes and ozone formation in power plant plumes

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, T.B.; Buhr, M.P.; Frost, G.J.; Goldan, P.D.; Holloway, J.S.; Huebler, G.; Jobson, B.T.; Kuster, W.C.; McKeen, S.A.; Parrish, D.D.; Roberts, J.M.; Sueper, D.T.; Trainer, M.; Williams, J.; Fehsenfeld, F.C. [NOAA Aeronomy Laboratory, Boulder, CO (United States)

    1998-09-20

    The concept of ozone production efficiency (OPE) per unit NO{sub x} is based on photochemical models and provides a tool with which to assess potential regional tropospheric ozone control strategies involving NO{sub x} emissions reductions. An aircraft study provided data from which power plant emissions removal rates and measurement-based estimates of OPE are estimated. This study was performed as part of the Southern Oxidants Study - 1995 Nashville intensive and focuses on the evolution of NO{sub x}, SO{sub 2}, and ozone concentrations in coal-fired power plant plumes during transport. Two approaches are examined. A mass balance approach accounts for mixing effects within the boundary layer and is used to calculate effective boundary layer removal rates for NO{sub x} and SO{sub 2} and to estimate net OPE, Net OPE is more directly comparable to photochemical model results than previous measurement-based estimates. Derived net production efficiencies from mass balance range from 1 to 3 molecules of ozone produced per molecule of NO{sub x} emitted. A concentration ratio approach provides an estimate of removal rates of primary emissions relative to a tracer species. This approach can be combined with emissions ratio information to provide upper limit estimates of OPE that range from 2 to 7. Both approaches illustrate the dependence of ozone production on NO{sub x} source strength in these large point source plumes. The dependence of total ozone production, ozone production efficiency, and the rate of ozone production on NO{sub x} source strength is examined. These results are interpreted in light of potential ozone control strategies for the region. 42 refs., 8 figs., 5 tabs.

  20. Emissions lifetimes and ozone formation in power plant plumes

    International Nuclear Information System (INIS)

    Ryerson, T.B.; Buhr, M.P.; Frost, G.J.; Goldan, P.D.; Holloway, J.S.; Huebler, G.; Jobson, B.T.; Kuster, W.C.; McKeen, S.A.; Parrish, D.D.; Roberts, J.M.; Sueper, D.T.; Trainer, M.; Williams, J.; Fehsenfeld, F.C.

    1998-01-01

    The concept of ozone production efficiency (OPE) per unit NO x is based on photochemical models and provides a tool with which to assess potential regional tropospheric ozone control strategies involving NO x emissions reductions. An aircraft study provided data from which power plant emissions removal rates and measurement-based estimates of OPE are estimated. This study was performed as part of the Southern Oxidants Study - 1995 Nashville intensive and focuses on the evolution of NO x , SO 2 , and ozone concentrations in coal-fired power plant plumes during transport. Two approaches are examined. A mass balance approach accounts for mixing effects within the boundary layer and is used to calculate effective boundary layer removal rates for NO x and SO 2 and to estimate net OPE, Net OPE is more directly comparable to photochemical model results than previous measurement-based estimates. Derived net production efficiencies from mass balance range from 1 to 3 molecules of ozone produced per molecule of NO x emitted. A concentration ratio approach provides an estimate of removal rates of primary emissions relative to a tracer species. This approach can be combined with emissions ratio information to provide upper limit estimates of OPE that range from 2 to 7. Both approaches illustrate the dependence of ozone production on NO x source strength in these large point source plumes. The dependence of total ozone production, ozone production efficiency, and the rate of ozone production on NO x source strength is examined. These results are interpreted in light of potential ozone control strategies for the region. 42 refs., 8 figs., 5 tabs

  1. Spatio-Temporal Variability of the Phase of Total Ozone Quasi-Decennial Oscillations

    Science.gov (United States)

    Visheratin, K. N.

    2017-12-01

    The SBUV/SBUV2 (65° S-65° N) and Bodeker Scientific (90° S-90° N) satellite databases have been used for composite and cross-wavelet analyses of the spatio-temporal variability of phase relations between a 11-year cycle of solar activity (SA) and quasi-decennial oscillations (QDOs) of total ozone content (TOC). For globally average TOC values, the QDO maxima coincide in phase with the solar-activity maxima, and amplitude variations of TOC correlate with those of the 11-year solar cycle. According to the analysis of amplitude and phase of QDOs for the zonal average TOC fields, a QDO amplitude is about 6-7 Dobson Units (DU) in the high northern and southern latitudes, and it does not exceed 2-3 DU in the tropic regions. The latitudinal TOC variations are distinguished by a delay of the quasi-decennial oscillation phase in the southern latitudes in comparison with the northern latitudes. The TOC maxima phase coincides with the SA maxima phase in the tropic regions; the TOC variations go ahead of the SA variations, on average, in moderate and high latitudes of the Northern Hemisphere; the TOC variations are behind the SA variations in the Southern Hemisphere. The phase delay between TOC QDO maxima in the northern and southern latitudes appears to increase in the course of time, and the TOC quasi-decennial variations in the Arctic and Antarctic subpolar regions occur approximately in an antiphase over the last two decades.

  2. SMM mesospheric ozone measurements

    Science.gov (United States)

    Aikin, A. C.

    1990-01-01

    The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.

  3. Ozone therapy in postgraduate theses in Egypt: systematic review.

    Science.gov (United States)

    AlBedah, Abdullah M N; Khalil, Mohamed K M; Elolemy, Ahmed T; Alrasheid, Mohamed H S; Al Mudaiheem, Abdullah; Elolemy, Tawfik M B

    2013-08-01

    Systematic reviews of the studies published in the major medical data bases have not shown solid support for the use of ozone therapy. Unpublished or grey literature, including postgraduate theses, may solve this controversy. To review the postgraduate theses published in Egypt in order to assess the clinical safety and effectiveness of ozone therapy in specific medical conditions. The databases of the Egyptian Universities' Library Consortium and the databases of each university were searched for postgraduate theses that evaluated ozone therapy as an intervention for any disease or condition in any age group, compared with any or no other intervention and published before September 2010. A total of 28 quasi trials were included. The theses did not report any safety issues in terms of ozone therapy. With respect to its effectiveness, the studies suggested some benefits of ozone in the treatment of dental infection and recovery, musculoskeletal disorders, diabetes mellitus, chronic diseases, and obstetrics and gynaecology. However, the number of studies included was small and they were of limited quality. There is insufficient evidence to recommend the use of ozone in the treatment of dental infections, in facilitating faster dental recovery after extraction or implantation, in diabetes mellitus, musculoskeletal disorders, or obstetrics and gynaecology.

  4. The TOMS V9 Algorithm for OMPS Nadir Mapper Total Ozone: An Enhanced Design That Ensures Data Continuity

    Science.gov (United States)

    Haffner, D. P.; McPeters, R. D.; Bhartia, P. K.; Labow, G. J.

    2015-12-01

    The TOMS V9 total ozone algorithm will be applied to the OMPS Nadir Mapper instrument to supersede the exisiting V8.6 data product in operational processing and re-processing for public release. Becuase the quality of the V8.6 data is already quite high, enchancements in V9 are mainly with information provided by the retrieval and simplifcations to the algorithm. The design of the V9 algorithm has been influenced by improvements both in our knowledge of atmospheric effects, such as those of clouds made possible by studies with OMI, and also limitations in the V8 algorithms applied to both OMI and OMPS. But the namesake instruments of the TOMS algorithm are substantially more limited in their spectral and noise characterisitics, and a requirement of our algorithm is to also apply the algorithm to these discrete band spectrometers which date back to 1978. To achieve continuity for all these instruments, the TOMS V9 algorithm continues to use radiances in discrete bands, but now uses Rodgers optimal estimation to retrieve a coarse profile and provide uncertainties for each retrieval. The algorithm remains capable of achieving high accuracy results with a small number of discrete wavelengths, and in extreme cases, such as unusual profile shapes and high solar zenith angles, the quality of the retrievals is improved. Despite the intended design to use limited wavlenegths, the algorithm can also utilitze additional wavelengths from hyperspectral sensors like OMPS to augment the retreival's error detection and information content; for example SO2 detection and correction of Ring effect on atmospheric radiances. We discuss these and other aspects of the V9 algorithm as it will be applied to OMPS, and will mention potential improvements which aim to take advantage of a synergy with OMPS Limb Profiler and Nadir Mapper to further improve the quality of total ozone from the OMPS instrument.

  5. An investigation into the causes of stratospheric ozone loss in the southern Australasian region

    Science.gov (United States)

    Lehmann, P.; Karoly, D. J.; Newmann, P. A.; Clarkson, T. S.; Matthews, W. A.

    1992-07-01

    Measurements of total ozone at Macquarie Island (55 deg S, 159 deg E) reveal statistically significant reductions of approximately twelve percent during July to September when comparing the mean levels for 1987-90 with those in the seventies. In order to investigate the possibility that these ozone changes may not be a result of dynamic variability of the stratosphere, a simple linear model of ozone was created from statistical analysis of tropopause height and isentropic transient eddy heat flux, which were assumed representative of the dominant dynamic influences. Comparison of measured and modeled ozone indicates that the recent downward trend in ozone at Macquarie Island is not related to stratospheric dynamic variability and therefore suggests another mechanism, possibly changes in photochemical destruction of ozone.

  6. OZONE BLEACHING AT NEUTRAL PH – A NEW CONCEPT

    Directory of Open Access Journals (Sweden)

    Fernando de Carvalho

    2010-08-01

    Full Text Available The effect of medium consistency ozone stage pH was evaluated for brown and oxygen delignified eucalyptus kraft pulp samples obtained from VCP - Luiz Antônio pulp mill. These samples were used as such or previously treated with the hot acid stage (A. The main objective of this study was to determine the viability of increasing the ozone stage pH aiming at decreasing bleaching variable costs. The ozone stage was studied in the pH range of 2.5-9.0, taking into account some important variables which affect ozone bleaching: (1 pulp kappa number entering the ozone stage, (2 reactivity of ozone towards lignin versus hexenuronic acids (HexA´s, (3 pulp treatments prior to ozone stage (acid hydrolysis, and (4 pulp treatments after the ozone stage (extraction or a chlorine dioxide stage.  Therefore, the impact of ozone stage pH was investigated in bleaching process such as Z/DEop vs AZ/DEop, Z/DEopD vs AZ/DEopD, Z/E vs AZ/E. The results were interpreted based on ozone stage efficiency and selectivity, and overall bleaching performance measured by the total bleaching chemical consumption required to achieve full brightness, pulp quality and environmental impact. It was concluded that the increase of ozone stage pH from 2.5 to 7.0 has a slightly negative impact on the efficiency and selectivity, measured after Z/DEop sequence, but this effect is not expressive in the end of Z/DEopD bleaching sequence. The increase of ozone stage pH from 2.5 to 7.0 in the sequence Z/DEopD is cost-effective at industrial level because it represents expressive reduction of sulphuric acid and caustic soda demand for pH control in the bleaching plant. These gain areas achieved without any significant changes in pulp quality and effluent load discharge. Nevertheless, the increase of ozone stage pH from 2.5 to 7.0 has a very high negative impact on the efficiency and selectivity for the Z/E and AZ/E processes and it is not recommended in such cases.

  7. Intermittent Ozonation to Reduce Excess Biological Sludge in SBR

    Directory of Open Access Journals (Sweden)

    Afshin Takdastan

    2009-09-01

    Full Text Available A combination of ozonation and an aerobic biological process such as the activated sludge has been recently developed as an alternative solution for sludge reduction with the objective of minimizing the excess biological sludge production. In this study, two SBR reactors each with a capacity of 20 liters and controlled by an on-line system are used. Once the steady state conditions were set in the reactors, sampling and testing of such parameters as COD, MLSS, MLVSS, DO, SOUR, SVI, residual ozone, and Y coefficient were performed over the 8 months of research. Results showed that during the solid retention time of 10 days, the kinetic coefficients of Y and Kd were 0.58 mg biomass/mg COD and 0.058 1/day, respectively. In the next stage of the study, different concentrations of ozone in the reactor were intermittently used to reduce the excess biological sludge production. The results showed that 22 mg of ozone per 1 gram of MLSS in the reactor was able to reduce the yield coefficient Y from 0.58 to 0.23 mg Biomass/mg COD. In other words, the excess biological sludge reduced by 60% but the soluble COD increased slightly in the effluent and the removal percentage decreased from 92 in the blank reactor to 76 in the test reactor. While the amount of SVI and SOUR for this level of ozone concentration reached 6 mgO2/h.gVSS and 27 ml/g, respectively. No excess sludge was observed in the reactor for an ozone concentration of 27 mg per 1 gram of MLSS.

  8. Temporal and Spatial Variation in, and Population Exposure to, Summertime Ground-Level Ozone in Beijing.

    Science.gov (United States)

    Zhao, Hui; Zheng, Youfei; Li, Ting; Wei, Li; Guan, Qing

    2018-03-29

    Ground-level ozone pollution in Beijing has been causing concern among the public due to the risks posed to human health. This study analyzed the temporal and spatial distribution of, and investigated population exposure to, ground-level ozone. We analyzed hourly ground-level ozone data from 35 ambient air quality monitoring sites, including urban, suburban, background, and traffic monitoring sites, during the summer in Beijing from 2014 to 2017. The results showed that the four-year mean ozone concentrations for urban, suburban, background, and traffic monitoring sites were 95.1, 99.8, 95.9, and 74.2 μg/m³, respectively. A total of 44, 43, 45, and 43 days exceeded the Chinese National Ambient Air Quality Standards (NAAQS) threshold for ground-level ozone in 2014, 2015, 2016, and 2017, respectively. The mean ozone concentration was higher in suburban sites than in urban sites, and the traffic monitoring sites had the lowest concentration. The diurnal variation in ground-level ozone concentration at the four types of monitoring sites displayed a single-peak curve. The peak and valley values occurred at 3:00-4:00 p.m. and 7:00 a.m., respectively. Spatially, ground-level ozone concentrations decreased in gradient from the north to the south. Population exposure levels were calculated based on ground-level ozone concentrations and population data. Approximately 50.38%, 44.85%, and 48.49% of the total population of Beijing were exposed to ground-level ozone concentrations exceeding the Chinese NAAQS threshold in 2014, 2015, and 2016, respectively.

  9. Temporal and Spatial Variation in, and Population Exposure to, Summertime Ground-Level Ozone in Beijing

    Science.gov (United States)

    Zheng, Youfei; Li, Ting; Wei, Li; Guan, Qing

    2018-01-01

    Ground-level ozone pollution in Beijing has been causing concern among the public due to the risks posed to human health. This study analyzed the temporal and spatial distribution of, and investigated population exposure to, ground-level ozone. We analyzed hourly ground-level ozone data from 35 ambient air quality monitoring sites, including urban, suburban, background, and traffic monitoring sites, during the summer in Beijing from 2014 to 2017. The results showed that the four-year mean ozone concentrations for urban, suburban, background, and traffic monitoring sites were 95.1, 99.8, 95.9, and 74.2 μg/m3, respectively. A total of 44, 43, 45, and 43 days exceeded the Chinese National Ambient Air Quality Standards (NAAQS) threshold for ground-level ozone in 2014, 2015, 2016, and 2017, respectively. The mean ozone concentration was higher in suburban sites than in urban sites, and the traffic monitoring sites had the lowest concentration. The diurnal variation in ground-level ozone concentration at the four types of monitoring sites displayed a single-peak curve. The peak and valley values occurred at 3:00–4:00 p.m. and 7:00 a.m., respectively. Spatially, ground-level ozone concentrations decreased in gradient from the north to the south. Population exposure levels were calculated based on ground-level ozone concentrations and population data. Approximately 50.38%, 44.85%, and 48.49% of the total population of Beijing were exposed to ground-level ozone concentrations exceeding the Chinese NAAQS threshold in 2014, 2015, and 2016, respectively. PMID:29596366

  10. Temporal and Spatial Variation in, and Population Exposure to, Summertime Ground-Level Ozone in Beijing

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2018-03-01

    Full Text Available Ground-level ozone pollution in Beijing has been causing concern among the public due to the risks posed to human health. This study analyzed the temporal and spatial distribution of, and investigated population exposure to, ground-level ozone. We analyzed hourly ground-level ozone data from 35 ambient air quality monitoring sites, including urban, suburban, background, and traffic monitoring sites, during the summer in Beijing from 2014 to 2017. The results showed that the four-year mean ozone concentrations for urban, suburban, background, and traffic monitoring sites were 95.1, 99.8, 95.9, and 74.2 μg/m3, respectively. A total of 44, 43, 45, and 43 days exceeded the Chinese National Ambient Air Quality Standards (NAAQS threshold for ground-level ozone in 2014, 2015, 2016, and 2017, respectively. The mean ozone concentration was higher in suburban sites than in urban sites, and the traffic monitoring sites had the lowest concentration. The diurnal variation in ground-level ozone concentration at the four types of monitoring sites displayed a single-peak curve. The peak and valley values occurred at 3:00–4:00 p.m. and 7:00 a.m., respectively. Spatially, ground-level ozone concentrations decreased in gradient from the north to the south. Population exposure levels were calculated based on ground-level ozone concentrations and population data. Approximately 50.38%, 44.85%, and 48.49% of the total population of Beijing were exposed to ground-level ozone concentrations exceeding the Chinese NAAQS threshold in 2014, 2015, and 2016, respectively.

  11. Is it true that ozone is always toxic? The end of a dogma

    International Nuclear Information System (INIS)

    Bocci, Velio

    2006-01-01

    There are a number of good experimental studies showing that exposure by inhalation to prolonged tropospheric ozone damages the respiratory system and extrapulmonary organs. The skin, if extensively exposed, may also contribute to the damage. The undoubtful strong reactivity of ozone has contributed to establish the dogma that ozone is always toxic and its medical application must be proscribed. Although it is less known, judiciously practiced ozonetherapy is becoming very useful either on its own or applied in combination with orthodox medicine in a broad range of pathologies. The opponents of ozonetherapy base their judgment on the ozone chemistry, and physicians, without any knowledge of the problem, are often skeptical. During the last 15 years, a clear understanding of the action of ozone in biology and medicine has been gained, allowing today to argue if it is true that ozone is always toxic. The fundamental points that are discussed in this paper are: the topography, anatomical and biochemical characteristics of the organs daily exposed to ozone versus the potent antioxidant capacity of blood exposed to a small and precisely calculated dose of ozone only for a few minutes. It is becoming clear how the respiratory system undergoing a chronic oxidative stress can release slowly, but steadily, a huge amount of toxic compounds able to enter the circulation and cause serious damage. The aim of this paper is to objectively evaluate this controversial issue

  12. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y A [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I V [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V U [Central Aerological Observatory, Moscow (Russian Federation)

    1996-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  13. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y.A. [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I.V. [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Moscow (Russian Federation)

    1995-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  14. Some observations on the role of planetary waves in determining the spring time ozone distribution in the Antarctic

    Science.gov (United States)

    Chandra, S.; Mcpeters, R. D.

    1986-01-01

    Ozone measurements from 1970 to 1984 from the Nimbus 4 backscattered ultraviolet and the Nimbus 7 solar backscattered ultraviolet spectrometers show significant decrease in total ozone only after 1979. The downward trend is most apparent in October south of 70 deg S in the longitude zone 0 to 30 deg W where planetary wave activity is weak. Outside this longitude region, the trend in total ozone is much smaller due to strong interannual variability of wave activity. This paper gives a phenomenological description of ozone depletion in the Antarctic region based on vertical advection and transient planetary waves.

  15. Ozone production in summer in the megacities of Tianjin and Shanghai, China: a comparative study

    Directory of Open Access Journals (Sweden)

    L. Ran

    2012-08-01

    Full Text Available Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP and Yangtze River Delta (YRD. Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP and Shanghai (YRD. Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx and various non-methane hydrocarbons (NMHCs. Ozone pollution in summer was found to be more severe in the Tianjin region than in the Shanghai region, based on either the frequency or the duration of high ozone events. Such differences might be attributed to the large amount of highly reactive NMHCs in Tianjin. Industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominated. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is probably a regional problem. Combined efforts to reduce ozone precursor emissions on a regional scale must be undertaken to bring the ozone problem under control.

  16. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    Directory of Open Access Journals (Sweden)

    J. Gao

    2018-05-01

    Full Text Available As an important solar radiation absorbing aerosol, the effect of black carbon (BC on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC–boundary layer (BL interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC–BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection. For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the

  17. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    Science.gov (United States)

    Gao, Jinhui; Zhu, Bin; Xiao, Hui; Kang, Hanqing; Pan, Chen; Wang, Dongdong; Wang, Honglei

    2018-05-01

    As an important solar radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection). For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the great impacts BC

  18. Ozone Antimicrobial Efficacy

    Science.gov (United States)

    Ozone is a potent germicide that has been used extensively for water purification. In Europe, 90 percent of the municipal water systems are treated with ozone, and in France, ozone has been used to treat drinking water since 1903. However, there is limited information on the bioc...

  19. Ozonated water in the post-harvest treatment of coffee fruits

    Directory of Open Access Journals (Sweden)

    Fernando J. B. Brandão

    Full Text Available ABSTRACT Ozone is used in many countries for the treatment of effluents, becoming a viable alternative in sanitation of coffee wastewater. However, the strong ozone oxidation, responsible for its germicidal effect, can also compromise grain and beverage quality. The objective of this study was to evaluate the quality of Arabica coffee in different periods of treatment with ozonated water and its effect after drying. Coffee fruits were subjected to ozonation at regular intervals of 0, 5, 10, 20, and 30 min, with continuous stirring promoted by a recirculating water system at constant rate of 1 ppm of solubilized ozone. The design was completely randomized with five treatments and four replicates. After obtaining the data, the analysis of variance was performed and means were compared by Tukey test (p ≤ 0.05. The results showed a partial reduction of fungi after washing with ozonated water, but the same effect was not observed after drying. For coffee quality analysis, the longest times of exposure to the solubilized gas in the water produced some negative results in electrical conductivity and total and reducing sugars. However, the sensory quality of the beverage was maintained.

  20. Spatial distribution of ozone over Indonesia (Study case: Forest fire event 2015)

    Science.gov (United States)

    Muslimah, Sri; Buce Saleh, Muhamad; Hidayat, Rahmat

    2018-05-01

    Tropospheric ozone is known as surface ozone and caused several health impact. The objective of this study was to analysis spatial distribution of tropospheric ozone over Indonesia case study forest fire event in 2015. Monthly observation measured by Ozone Monitoring Instrument (OMI) have been analysed from January – December 2015 to study spatial distribution of tropospheric ozone related to forest fire event 2015. The study discovered high level of tropospheric column ozone (TCO) from October to November 2015. The result shows increasing average of TCO from September to October almost 6 DU. Meanwhile, monthly number of hotspot is higher in September 2015 with total number 257 hotspot which is acquired by Moderate Resolution Imaging Spectrometer (MODIS) Terra version 6.1 with confidence level same or more than 90%. The hotspot distribution compared with spatial TCO distribution and shows interesting time lag with respect to hotspot distribution, one month. Further study for daily comparison of TCO and forest fire event needed. This result suggested that the tropospheric ozone over the Indonesian region increases in 2015 were remarkable and corresponded to forest fire event.

  1. Screening agrochemicals as potential protectants of plants against ozone phytotoxicity

    International Nuclear Information System (INIS)

    Saitanis, Costas J.; Lekkas, Dimitrios V.; Agathokleous, Evgenios; Flouri, Fotini

    2015-01-01

    We tested seven contemporary agrochemicals as potential plant protectants against ozone phytotoxicity. In nine experiments, Bel-W3 tobacco plants were experienced weekly exposures to a) 80 nmol mol −1 of ozone-enriched or ozone-free air in controlled environment chambers, b) an urban air polluted area, and c) an agricultural-remote area. Ozone caused severe leaf injury, reduced chlorophylls' and total carotenoids' content, and negatively affected photosynthesis and stomatal conductance. Penconazole, (35% ± 8) hexaconazole (28% ± 5) and kresoxim-methyl (28% ± 15) showed higher plants’ protection (expressed as percentage; mean ± s.e.) against ozone, although the latter exhibited a high variability. Azoxystrobin (21% ± 15) showed lower protection efficacy and Benomyl (15% ± 9) even lower. Trifloxystrobin (7% ± 11) did not protect the plants at all. Acibenzolar-S-methyl + metalaxyl-M (Bion MX) (−6% ± 17) exhibited the higher variability and contrasting results: in some experiments it showed some protection while in others it intensified the ozone injury by causing phytotoxic symptoms on leaves, even in control plants. - Highlights: • Penconazole and hexaconazole offered some protection to plants against ozone. • Bion MX fungicide caused phytotoxic symptoms to Bel-W3 tobacco plants. • Stomatal conductance was reduced in ozone-fumigated plants. - Seven agrochemicals were assessed as potential protectants against ozone phytotoxicity – triazoles fungicides were the most effective

  2. Evaluation of ozone emissions and exposures from consumer products and home appliances.

    Science.gov (United States)

    Zhang, Q; Jenkins, P L

    2017-03-01

    Ground-level ozone can cause serious adverse health effects and environmental impacts. This study measured ozone emissions and impacts on indoor ozone levels and associated exposures from 17 consumer products and home appliances that could emit ozone either intentionally or as a by-product of their functions. Nine products were found to emit measurable ozone, one up to 6230 ppb at a distance of 5 cm (2 inches). One use of these products increased room ozone concentrations by levels up to 106 ppb (mean, from an ozone laundry system) and personal exposure concentrations of the user by 12-424 ppb (mean). Multiple cycles of use of one fruit and vegetable washer increased personal exposure concentrations by an average of 2550 ppb, over 28 times higher than the level of the 1-h California Ambient Air Quality Standard for ozone (0.09 ppm). Ozone emission rates ranged from 1.6 mg/h for a refrigerator air purifier to 15.4 mg/h for a fruit and vegetable washer. The use of some products was estimated to contribute up to 87% of total daily exposures to ozone. The results show that the use of some products may result in potential health impacts. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  3. Loblolly pine seedling growth after inoculation with plant growth-promoting rhizobacteria and ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Estes, B.L.; Enebak, S.A.; Chappelka, A.H. [Auburn Univ., Auburn, AL (United States). School of Forestry and Wildlife Sciences

    2004-07-01

    The conifer tree species with the greatest economic importance in south eastern United States plantations is Loblolly pine. Plantations require intensive fertilization, pesticide application, and irrigation. In these cases growth-promoting rhizobacteria are useful in pest control. While it was once thought that ozone in the troposphere was limited to urban areas, it is now known that it is transported far from its place of origin. Ozone is known to impact plant growth negatively. There have been no previous studies on whether growth-promoting rhizobacteria can decrease the negative effects of ozone. In this study seedlings of Loblolly pine were inoculated with either Bacillus subtilis (Ehrenberg) Cohn or Paenibacillus macerans (Schardinger) Ash. These were exposed to controlled amounts of ozone for 8-12 weeks. All plants showed decreased biomass and increased foliar damage compared to plants that were not exposed to ozone. B. subtilis inoculated plants showed less foliar damage than un-inoculated ones and root dimensions were increased. The use of growth-promoting rhizobacteria is not ready for large-scale commercial application in forestry, but this demonstration of the possible beneficial effects on ozone exposure warrants further investigation. 44 refs., 3 tabs., 2 figs.

  4. Ozone, area social conditions, and mortality in Mexico City

    International Nuclear Information System (INIS)

    O'Neill, M.S.; Loomis, Dana; Borja-Aburto, V.H.

    2004-01-01

    We investigated whether the association of daily mortality and ambient ozone differs by age and area social conditions of the region of residence using a time-series analysis. The study setting was metropolitan Mexico City, a high altitude city situated in a valley, with an estimated 20 million inhabitants, large socioeconomic gradients, and ozone levels frequently exceeding international standards. We stratified daily deaths by six census-derived socioeconomic indicators, based on characteristics of the county where decedents lived. We used Poisson regression to model the association between daily mortality and ozone levels (on the day of death and the previous day) in separate models, stratified by area socioeconomic level and age, and controlling for time trends and temperature. Ozone was positively associated with total mortality [0.65% increase per 10 ppb increment, 95% confidence interval (CI): 0.02%, 1.28%] and for mortality among those over age 65 [1.39% increase per 10 ppb increment, 95% CI: 0.51%, 2.28%]. Associations between ozone and all-age mortality did not show any consistent patterns according to socioeconomic gradients. We conclude that elderly people are at higher risk for ozone-associated mortality. Though county-level social indicators in Mexico City were not strong markers of vulnerability to ozone-associated acute mortality in this analysis, complex associations between individual and area-level factors may exist that would require additional data and further analyses to elucidate

  5. The interaction of ozone and nitrogen dioxide in the stratosphere of East Antarctica

    Science.gov (United States)

    Bruchkouski, Ilya; Krasouski, Aliaksandr; Dziomin, Victar; Svetashev, Alexander

    2016-04-01

    At the Russian Antarctic station "Progress" (S69°23´, E76°23´) simultaneous measurements of trace gases using the MARS-B (Multi-Axis Recorder of Spectra) instrument and PION-UV spectro-radiometer for the time period from 05.01.2014 to 28.02.2014 have been performed. Both instruments were located outdoors. The aim of the measurements was to retrieve the vertical distribution of ozone and nitrogen dioxide in the atmosphere and to study their variability during the period of measurements. The MARS-B instrument, developed at the National Ozone Monitoring Research and Education Centre of the Belarusian State University (NOMREC BSU), successfully passed the procedure of international inter-comparison campaign MAD-CAT 2013 in Mainz, Germany. The instrument is able to record the spectra of scattered sunlight at different elevation angles within a maximum aperture of 1.3°. 12 elevation angles have been used in this study, including the zenith direction. Approximately 7000 spectra per day were registered in the range of 403-486 nm, which were then processed by DOAS technique aiming to retrieve differential slant columns of ozone, nitrogen dioxide and oxygen dimer. Furthermore, total nitrogen dioxide column values have been retrieved employing the Libradtran radiative transfer model. The PION-UV spectro-radiometer, also developed at NOMREC BSU, is able to record the spectra of scattered sunlight from the hemisphere in the range of 280-430 nm. The registered spectra have been used to retrieve the total ozone column values employing the Stamnes method. In this study observational data from both instruments is presented and analyzed. Furthermore, by combining analysis of this data with model simulations it is shown that decreases in nitrogen dioxide content in the upper atmosphere can be associated with increases in total ozone column values and rising of the ozone layer upper boundary. Finally, the time delay between changes in nitrogen dioxide and ozone values is

  6. Ozone mixing ratios inside tropical deep convective clouds from OMI satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2009-01-01

    Full Text Available We have developed a new technique for estimating ozone mixing ratio inside deep convective clouds. The technique uses the concept of an optical centroid cloud pressure that is indicative of the photon path inside clouds. Radiative transfer calculations based on realistic cloud vertical structure as provided by CloudSat radar data show that because deep convective clouds are optically thin near the top, photons can penetrate significantly inside the cloud. This photon penetration coupled with in-cloud scattering produces optical centroid pressures that are hundreds of hPa inside the cloud. We combine measured column ozone and the optical centroid cloud pressure derived using the effects of rotational-Raman scattering to estimate O3 mixing ratio in the upper regions of deep convective clouds. The data are obtained from the Ozone Monitoring Instrument (OMI onboard NASA's Aura satellite. Our results show that low O3 concentrations in these clouds are a common occurrence throughout much of the tropical Pacific. Ozonesonde measurements in the tropics following convective activity also show very low concentrations of O3 in the upper troposphere. These low amounts are attributed to vertical injection of ozone poor oceanic boundary layer air during convection into the upper troposphere followed by convective outflow. Over South America and Africa, O3 mixing ratios inside deep convective clouds often exceed 50 ppbv which are comparable to mean background (cloud-free amounts and are consistent with higher concentrations of injected boundary layer/lower tropospheric O3 relative to the remote Pacific. The Atlantic region in general also consists of higher amounts of O3 precursors due to both biomass burning and lightning. Assuming that O3 is well mixed (i.e., constant mixing ratio with height up to the tropopause, we can estimate the stratospheric column O3 over

  7. The influence of African air pollution on regional and global tropospheric ozone

    Directory of Open Access Journals (Sweden)

    A. M. Aghedo

    2007-01-01

    Full Text Available We investigate the influence of African biomass burning, biogenic, lightning and anthropogenic emissions on the tropospheric ozone over Africa and globally using a coupled global chemistry climate model. Our model studies indicate that surface ozone concentration may rise by up to 50 ppbv in the burning region during the biomass burning seasons. Biogenic emissions yield between 5–30 ppbv increase in the near surface ozone concentration over tropical Africa. The impact of lightning on surface ozone is negligible, while anthropogenic emissions yield a maximum of 7 ppbv increase in the annual-mean surface ozone concentration over Nigeria, South Africa and Egypt. Our results show that biogenic emissions are the most important African emission source affecting total tropospheric ozone. The influence of each of the African emissions on the global tropospheric ozone burden (TOB of 384 Tg yields about 9.5 Tg, 19.6 Tg, 9.0 Tg and 4.7 Tg for biomass burning, biogenic, lightning and anthropogenic emissions emitted in Africa respectively. The impact of each of these emission categories on African TOB of 33 Tg is 2.5 Tg, 4.1 Tg, 1.75 Tg and 0.89 Tg respectively, which together represents about 28% of the total TOB calculated over Africa. Our model calculations also suggest that more than 70% of the tropospheric ozone produced by each of the African emissions is found outside the continent, thus exerting a noticeable influence on a large part of the tropical troposphere. Apart from the Atlantic and Indian Ocean, Latin America experiences the largest impact of African emissions, followed by Oceania, the Middle East, Southeast and south-central Asia, northern North America (i.e. the United States and Canada, Europe and north-central Asia, for all the emission categories.

  8. Effects of 0.12 and 0.80 PPM ozone on rat nasal and nasopharyngeal epithelial mucosubstances: Quantitative histochemistry

    International Nuclear Information System (INIS)

    Harkema, J.R.; Hotchkiss, J.A.; Henderson, R.F.

    1988-01-01

    The present study was designed to characterize changes in the quantity of mucosubstances in surface epithelia of rat nasal airways after short- term ozone exposure. Rats were exposed for 7 days (6 h/day) to 0.0, 0.12, or 0.8 ppm ozone, and killed immediately or 7 days after the last exposure. Nasal cavities were processed for morphometric analysis of intraepithelial mucosubstances. Compared to controls, rats exposed to 0.12 ppm ozone had increased amounts of stored mucosubstances within epithelium lining the medial aspect of the nasal turbinate immediately after exposure, but no change within epithelia of the nasopharynx. Rats exposed to 0.8 ppm ozone had increased quantities of stored mucosubstances within transitional and respiratory epithelium lining turbinates and lateral walls of the anterior nasal airway and significant decreases in stored mucosubstances within epithelia of the nasal septum at the end of exposure. Seven days after the end of exposure, the amounts of intraepithelial mucosubstances returned to control levels along the septum, but remained greater than those of controls along the turbinates. We demonstrated that exposures to ambient levels of ozone induce significant changes in the stored secretory product of nasal epithelium in the rat, and that these changes persist for at least 7 days post-exposure. (author)

  9. Merged SAGE II, Ozone_cci and OMPS ozone profile dataset and evaluation of ozone trends in the stratosphere

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2017-10-01

    Full Text Available In this paper, we present a merged dataset of ozone profiles from several satellite instruments: SAGE II on ERBS, GOMOS, SCIAMACHY and MIPAS on Envisat, OSIRIS on Odin, ACE-FTS on SCISAT, and OMPS on Suomi-NPP. The merged dataset is created in the framework of the European Space Agency Climate Change Initiative (Ozone_cci with the aim of analyzing stratospheric ozone trends. For the merged dataset, we used the latest versions of the original ozone datasets. The datasets from the individual instruments have been extensively validated and intercompared; only those datasets which are in good agreement, and do not exhibit significant drifts with respect to collocated ground-based observations and with respect to each other, are used for merging. The long-term SAGE–CCI–OMPS dataset is created by computation and merging of deseasonalized anomalies from individual instruments. The merged SAGE–CCI–OMPS dataset consists of deseasonalized anomalies of ozone in 10° latitude bands from 90° S to 90° N and from 10 to 50 km in steps of 1 km covering the period from October 1984 to July 2016. This newly created dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997. The upper stratospheric trends are statistically significant at midlatitudes and indicate ozone recovery, as expected from the decrease of stratospheric halogens that started in the middle of the 1990s and stratospheric cooling.

  10. Relationship between regions of anomalously low ozone content and the pressure situation

    Energy Technology Data Exchange (ETDEWEB)

    Bekoriukov, V I; Zakharov, G R; Kukoleva, A A; Fioletov, V E [Tsentral' naia Aerologicheskaia Observatoriia, Dolgoprudny (USSR)

    1990-12-01

    Data on total ozone content measured at various stations in the Northern Hemisphere in 1977, 1985, 1986, and 1987 are examined. It is shown that short-lived regions (i.e, with a life span of a few days) with anomalously low ozone content in the Northern Hemisphere are conditioned by circulation features in these regions.

  11. A Review of Atmospheric Ozone and Current Thinking on the Antarctic Ozone Hole.

    Science.gov (United States)

    1987-01-01

    UNIVERSITY OF CALIFORNIA 0 A Review of Atmospheric ozone and Current Thinking on the Antartic Ozone Hole A thesis submitted in partial satisfaction of the...4. TI TLE (Pit 5,1tlfie) S. TYPE OF REPORT & PFRIOO COVERED A Review of Atmospheric Ozone and Current THESIS/DA/;J.At1AAU00 Thinking on the Antartic ...THESIS A Review of Atmospheric Ozone and Current Thinking on the Antartic Ozone Hole by Randolph Antoine Fix Master of Science in Atmospheric Science

  12. Treatment of aqueous wastes contaminated with Congo Red dye by electrochemical oxidation and ozonation processes

    International Nuclear Information System (INIS)

    Faouzi Elahmadi, Mohammed; Bensalah, Nasr; Gadri, Abdellatif

    2009-01-01

    Synthetic aqueous wastes polluted with Congo Red (CR) have been treated by two advanced oxidation processes: electrochemical oxidation on boron doped diamond anodes (BDD-EO) and ozonation under alkaline conditions. For same concentrations, galvanostatic electrolyses have led to total COD and TOC removals but ozonation process can reach only 85% and 81% of COD and TOC removals, respectively. UV-vis qualitative analyses have shown different behaviors of CR molecules towards ozonation and electrochemical oxidation. Rapid discoloration has been observed during ozonation, whereas color persistence till the end of galvanostatic electrolyses has been seen during BDD-EO process. It seems that the oxidation mechanisms involved in the two processes are different: simultaneous destruction of azoic groups is suggested during ozonation process but consecutive destruction of these groups is proposed during BDD-EO. However, energetic study has evidenced that BDD-EO appears more efficient and more economic than ozonation in terms of TOC removals. These results have been explained by the fact that during BDD-EO, other strong oxidants electrogenerated from the electrolyte oxidation such as persulfates and direct-oxidation of CR and its byproducts on BDD anodes complement the hydroxyl radicals mediated oxidation to accomplish the total mineralization of organics.

  13. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    Directory of Open Access Journals (Sweden)

    Ozkan Onal

    2015-01-01

    Full Text Available Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine. Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF intraperitoneally (ip for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD, catalase (CAT, glutathioneperoxidase (GSH-Px, malondyaldehide (MDA, and protein carbonyl (PCO were analyzed in tissue samples. Total oxidant status (TOS, and total antioxidant capacity (TAC were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test. Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group. Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy

  14. Ozone Technology for Pathogenic Bacteria of Shrimp (Vibrio sp.) Disinfection

    Science.gov (United States)

    Wulansarie, Ria; Dyah Pita Rengga, Wara; Rustamadji

    2018-03-01

    One of important marine commodities in Indonesia, shrimps are susceptible with Vibrio sp bacteria infection. That infection must be cleared. One of the technologies for disinfecting Vibrio sp. is ozone technology. In this research, Vibrio sp. is a pathogenic bacterium which infects Penaeus vannamei. Ozone technology is applied for threatening Vibrio sp. In this research, ozonation was performed in different pH. Those are neutral, acid (pH=4), and base (pH=9). The sample was water from shrimp embankment from Balai Besar Perikanan Budidaya Air Payau (BBPBAP) located in Jepara. That water was the habitat of Penaeus vannamei shrimp. The brand of ozonator used in this research was “AQUATIC”. The used ozonator in this research had 0,0325 g/hour concentration. The flow rate of sample used in this research was 2 L/minute. The ozonation process was performed in continuous system. A tank, pipe, pump, which was connected with microfilter, flowmeter and ozone generator were the main tools in this research. It used flowmeter and valve to set the flow rate scalable as desired. The first step was the insert of 5 L sample into the receptacle. Then, by using a pump, a sample supplied to the microfilter to be filtered and passed into the flow meter. The flow rate was set to 2 LPM. Furthermore, gas from ozonator passed to the flow for the disinfection of bacteria and then was recycled to the tank and the process run continuously. Samples of the results of ozonation were taken periodically from time 0, 3, 7, 12, 18, 24 to 30 minutes. The samples of the research were analyzed using Total Plate Count (TPC) test in BBPBAP Jepara to determine the number of Vibrio sp. bacteria. The result of this research was the optimal condition for pathogenic bacteria of shrimp (Vibrio sp.) ozonation was in neutral condition.

  15. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong

    2015-02-02

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×105 counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry.

  16. [Ozone concentration distribution of urban].

    Science.gov (United States)

    Yin, Yong-quan; Li, Chang-mei; Ma, Gui-xia; Cui, Zhao-jie

    2004-11-01

    The increase of ozone concentration in urban is one of the most important research topics on environmental science. With the increase of nitrogen oxides and hydrogen-carbon compounds which are exhausted from cars, the ozone concentration in urban is obviously increased on sunlight, and threat of photochemistry smog will be possible. Therefore, it is very important to monitor and study the ozone concentration distribution in urban. The frequency-distribution, diurnal variation and monthly variation of ozone concentration were studied on the campus of Shandong University during six months monitoring. The influence of solar radiation and weather conditions on ozone concentration were discussed. The frequency of ozone concentration less than 200 microg/m3 is 96.88%. The ozone concentration has an obvious diurnal variation. The ozone concentration in the afternoon is higher than in the morning and in the evening. The maximum appears in June, when it is the strong solar radiation and high air-temperature. The weather conditions also influence the ozone concentration. The ozone concentration in clear day is higher than in rainy and cloudy day.

  17. Ground-Level Ozone Following Astrophysical Ionizing Radiation Events: An Additional Biological Hazard?

    Science.gov (United States)

    Thomas, Brian C; Goracke, Byron D

    2016-01-01

    Astrophysical ionizing radiation events such as supernovae, gamma-ray bursts, and solar proton events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in solar UV radiation at Earth's surface and in the upper levels of the ocean. Other work has also considered the potential impact of nitric acid rainout, concluding that no significant threat is likely. Not yet studied to date is the potential impact of ozone produced in the lower atmosphere following an ionizing radiation event. Ozone is a known irritant to organisms on land and in water and therefore may be a significant additional hazard. Using previously completed atmospheric chemistry modeling, we examined the amount of ozone produced in the lower atmosphere for the case of a gamma-ray burst and found that the values are too small to pose a significant additional threat to the biosphere. These results may be extended to other ionizing radiation events, including supernovae and extreme solar proton events.

  18. Reaction of gadolinium chelates with ozone and hydroxyl radicals.

    Science.gov (United States)

    Cyris, Maike; Knolle, Wolfgang; Richard, Jessica; Dopp, Elke; von Sonntag, Clemens; Schmidt, Torsten C

    2013-09-03

    Gadolinium chelates are used in increasing amounts as contrast agents in magnetic resonance imaging, and their fate in wastewater treatment has recently become the focus of research. Oxidative processes, in particular the application of ozone, are currently discussed or even implemented for advanced wastewater treatment. However, reactions of the gadolinium chelates with ozone are not yet characterized. In this study, therefore, rate constants with ozone were determined for the three commonly used chelates Gd-DTPA, Gd-DTPA-BMA, and Gd-BT-DO3A, which were found to be 4.8 ± 0.88, 46 ± 2.5, and 24 ± 1.5 M(-1) s(-1), respectively. These low rate constants indicate that a direct reaction with ozone in wastewater is negligible. However, application of ozone in wastewater leads to substantial yields of (•)OH. Different methods have been applied and compared for determination of k((•)OH+Gd chelate). From rate constants determined by pulse radiolysis experiments (k((•)OH+Gd-DTPA) = 2.6 ± 0.2 × 10(9) M(-1) s(-1), k((•)OH+Gd-DTPA-BMA) = 1.9 ± 0.7 × 10(9) M(-1) s(-1), k((•)OH+Gd-BT-DO3A) = 4.3 ± 0.2 × 10(9) M(-1) s(-1)), it is concluded that a reaction in wastewater via (•)OH radicals is feasible. Toxicity has been tested for educt and product mixtures of both reactions. Cytotoxicity (MTT test) and genotoxicity (micronuclei assay) were not detectable.

  19. Limitations of wind extraction from 4D-Var assimilation of ozone

    Directory of Open Access Journals (Sweden)

    D. R. Allen

    2013-03-01

    Full Text Available Time-dependent variational data assimilation allows the possibility of extracting wind information from observations of ozone or other trace gases. Since trace gas observations are not available at sufficient resolution for deriving feature-track winds, they must be combined with model background information to produce an analysis. If done with time-dependent variational assimilation, wind information may be extracted via the adjoint of the linearized tracer continuity equation. This paper presents idealized experiments that illustrate the mechanics of tracer–wind extraction and demonstrate some of the limitations of this procedure. We first examine tracer–wind extraction using a simple one-dimensional advection equation. The analytic solution for a single trace gas observation is discussed along with numerical solutions for multiple observations. The limitations of tracer–wind extraction are then explored using highly idealized ozone experiments performed with a development version of the Navy Global Environmental Model (NAVGEM in which globally distributed hourly stratospheric ozone profiles are assimilated in a single 6 h update cycle in January 2009. Starting with perfect background ozone conditions, but imperfect dynamical conditions, ozone errors develop over the 6 h background window. Wind increments are introduced in the analysis in order to reduce the differences between background ozone and ozone observations. For "perfect" observations (unbiased and no random error, this results in root-mean-square (RMS vector wind error reductions of up to ~4 m s−1 in the winter hemisphere and tropics. Wind extraction is more difficult in the summer hemisphere due to weak ozone gradients and smaller background wind errors. The limitations of wind extraction are also explored for observations with imposed random errors and for limited sampling patterns. As expected, the amount of wind information extracted degrades as observation errors or

  20. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15.

    Science.gov (United States)

    Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua

    2015-04-09

    Comparative experiments were conducted to investigate the catalytic ability of MnO(x)/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O3/MnO(x)/SBA-15). Adsorption of CA and its intermediates by MnO(x)/SBA-15 was proved unimportant in O3/MnO(x)/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO3) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO(x)/SBA-15 facilitated the generation of hydroxyl radicals (OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO(x) on SBA-15 were believed to be the main active component in MnO(x)/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more OH. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Improvement of ozone yield by a multi-discharge type ozonizer using superposition of silent discharge plasma

    International Nuclear Information System (INIS)

    Song, Hyun-Jig; Chun, Byung-Joon; Lee, Kwang-Sik

    2004-01-01

    In order to improve ozone generation, we experimentally investigated the silent discharge plasma and ozone generation characteristics of a multi-discharge type ozonizer. Ozone in a multi-discharge type ozonizer is generated by superposition of a silent discharge plasma, which is simultaneously generated in separated discharge spaces. A multi-discharge type ozonizer is composed of three different kinds of superposed silent discharge type ozonizers, depending on the method of applying power to each electrode. We observed that the discharge period of the current pulse for a multi discharge type ozonizer can be longer than that of silent discharge type ozonizer with two electrodes and one gap. Hence, ozone generation is improved up to 17185 ppm and 783 g/kwh in the case of the superposed silent discharge type ozonizer for which an AC high voltages with a 180 .deg. phase difference were applied to the internal electrode and the external electrode, respectively, with the central electrode being grounded.

  2. Suitability of Nicotiana tabacum 'Bel W3' for biomonitoring ozone in Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Sant'Anna, Silvia M.R.; Esposito, Marisia P.; Domingos, Marisa; Souza, Silvia R.

    2008-01-01

    Nicotiana tabacum 'Bel W3' is a widely used sensitive bioindicator for ambient ozone, but it is rarely used in tropical countries. Our goal was to determine the suitability of this plant for biomonitoring ozone in the city of Sao Paulo by evaluating the relationships between leaf necroses and ozone under field conditions and measurements of chlorophyll a fluorescence and antioxidants in plants exposed to different concentrations of ozone in closed chambers. While a weak linear relationship between leaf injury and ozone concentrations (R 2 = 0.10) was determined in the field, a strong linear relationship was observed in the chamber experiments. Maximum leaf injury was observed in plants submitted to 40 ppb, which coincided with a significant decrease in fluorescence and total ascorbic acid. The relationship between leaf damage observed in the field and ozone was improved when the concentrations were limited to 40 ppb (R 2 = 0.28). - Nicotiana tabacum 'Bel W3' is suitable for indicating low ozone levels in Brazil

  3. The Effect of New Ozone Cross Sections Applied to SBUV and TOMS Retrievals

    Science.gov (United States)

    McPeters, Richard D.; Labow, Gordon J.

    2010-01-01

    The ozone cross sections as measured by Bass and Paur have been used for processing of SBUV and TOMS data since 1986. While these cross sections were a big improvement over those previously available, there were known minor problems with accuracy for wavelengths longward of 330 nm and with the temperature dependance. Today's requirements to separate stratospheric ozone from tropospheric ozone and for the derivation of minor species such as BrO and N02 place stringent new requirements on the accuracy needed. The ozone cross section measurements of Brion, Daumont, and Malicet (BDM) are being considered for use in UV-based ozone retrievals. They have much better resolution, an extended wavelength range, and a more consistent temperature dependance. Tests show that BDM retrievals exhibit lower retrieval residuals in the satellite data; i.e., they explain our measured atmospheric radiances more accurately. Total column ozone retrieved by the TOMS instruments is about 1.5% higher than before. Ozone profiles retrieved from SBUV using the new cross sections are lower in the upper stratosphere and higher in the lower stratosphere and troposphere.

  4. Towards the retrieval of tropospheric ozone with the ozone monitoring instrument (OMI)

    NARCIS (Netherlands)

    Mielonen, T.; De Haan, J.F.; Van Peet, J.C.A.; Eremenko, M.; Veefkind, J.P.

    2015-01-01

    We have assessed the sensitivity of the operational Ozone Monitoring Instrument (OMI) ozone profile retrieval algorithm to a number of a priori and radiative transfer assumptions. We studied the effect of stray light correction, surface albedo assumptions and a priori ozone profiles on the retrieved

  5. Evaluation of The Surface Ozone Concentrations In Greater Cairo Area With Emphasis On Helwan, Egypt

    International Nuclear Information System (INIS)

    Ramadan, A.; Kandil, A.T.; Abd Elmaged, S.M.; Mubarak, I.

    2011-01-01

    Various biogenic and anthropogenic sources emit huge quantities of surface ozone. The main purpose of this study is to evaluate the surface ozone levels present at Helwan area in order to improve the knowledge and understanding troposphere processes. Surface Ozone has been measured at 2 sites at Helwan; these sites cover the most populated area in Helwan. Ozone concentration is continuously monitored by UV absorption photometry using the equipment O 3 41 M UV Photometric Ozone Analyzer. The daily maximum values of the ozone concentration in the greater Cairo area have approached but did not exceeded the critical levels during the year 2008. Higher ozone concentrations at Helwan are mainly due to the transport of ozone from regions further to the north of greater Cairo and to a lesser extent of ozone locally generated by photochemical smog process. The summer season has the largest diurnal variation, with the tendency of the daily ozone maxima occur in the late afternoon. The night time concentration of ozone was significantly higher at Helwan because there are no fast acting sinks, destroying ozone since the average night time concentration of ozone is maintained at 40 ppb at the site. No correlation between the diurnal total suspended particulate (TSP) matter and the diurnal cumulative ozone concentration was observed during the Khamasin period

  6. Comparative study of ozonized olive oil and ozonized sunflower oil

    OpenAIRE

    Díaz,Maritza F.; Hernández,Rebeca; Martínez,Goitybell; Vidal,Genny; Gómez,Magali; Fernández,Harold; Garcés,Rafael

    2006-01-01

    In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observ...

  7. Characteristics of episodes with extremely low ozone values in the northern middle latitudes 1957−2000

    Directory of Open Access Journals (Sweden)

    D. S. Balis

    Full Text Available A number of episodes are observed when the total ozone for 2 to 3 days has fallen below 220 matm-cm in the northern mid- and polar latitudes in autumn. The occurrences of such episodes represent ozone deviations of about one-third from the pre-1976 Oct-Nov-Dec monthly mean! By using primarily quality checked Dobson data, a clear identification was made of more than three dozen short spells with extremely low ozone in the 1957–1978 period. In the following twenty-two years (1979–2000, using mainly TOMS data, one can identify ~ 46 cases with ozone values falling below 220 matm-cm for longer than 1 day, with each time over an area greater than 500,000 km2 . The Ozone Mass Deficiency (O3MD from the pre-1976 average ozone values over the affected area was ~2.8 Mt per day, i.e. four to seven times greater than it would be, assuming only a long-term trend in the Oct-Nov-Dec period. The Extremely Low Ozone (ELO3 events on the day of their appearance over the N. Atlantic/European region contribute to the O3MD by representing 16% of the deficiency due to the Oct-Nov trend in the entire 40–65° N latitudinal belt. The O3MD of the greater pool with low ozone (here taken as <260 matm-cm surrounding the area of the lowest events could contribute on the day of their appearance in Oct-Nov up to 60% and in December, ~30% to the deficiency due to the trend over the entire 40–65° N belt. Analysis of synoptic charts, supported by a backward trajectory on the isentropic surfaces 350 and 380 K, shows that in most of the events, subtropical air masses with low ozone content were transported from the Atlantic toward the UK, Scandinavia, and in many cases, further to the western sub-polar regions of Russia. This transport was sometimes combined with upward motions above a tropospheric anticyclone which lifted low ozone mixing ratios to higher altitudes. The ELO3 events cause a significant deficiency above the tropopause where, in general, the subtropical air is

  8. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    Science.gov (United States)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  9. Seasonal development of ozone-induced foliar injury on tall milkweed (Asclepias exaltata) in Great Smoky Mountains National Park

    International Nuclear Information System (INIS)

    Souza, Lara; Neufeld, Howard S.; Chappelka, Arthur H.; Burkey, Kent O.; Davison, Alan W.

    2006-01-01

    The goals of this study were to document the development of ozone-induced foliar injury, on a leaf-by-leaf basis, and to develop ozone exposure relationships for leaf cohorts and individual tall milkweeds (Asclepias exaltata L.) in Great Smoky Mountains National Park. Plants were classified as either ozone-sensitive or insensitive based on the amount of foliar injury. Sensitive plants developed injury earlier in the season and to a greater extent than insensitive plants. Older leaf cohorts were more likely to belong to high injury classes by the end of each of the two growing seasons. In addition, leaf loss was more likely for older cohorts (2000) and lower leaf positions (2001) than younger cohorts and upper leaves, respectively. Most leaves abscised without prior ozone-like stippling or chlorosis. Failure to take this into account can result in underestimation of the effects of ozone on these plants. - Leaf loss was not necessarily accompanied by symptoms of foliar ozone injury

  10. Seasonal development of ozone-induced foliar injury on tall milkweed (Asclepias exaltata) in Great Smoky Mountains National Park

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Lara [Department of Biology, 572 Rivers Street, Appalachian State University, Boone, NC 28608 (United States)]. E-mail: lsouza@utk.edu; Neufeld, Howard S. [Department of Biology, 572 Rivers Street, Appalachian State University, Boone, NC 28608 (United States); Chappelka, Arthur H. [School of Forestry and Wildlife Sciences, 108 M White-Smith Hall, Auburn University, Auburn, AL 36849 (United States); Burkey, Kent O. [US Department of Agriculture, Agricultural Research Service, Plant Science Research Unit and Department of Crop Science, North Carolina State University, 3908 Inwood Road, Raleigh, NC 26703 (United States); Davison, Alan W. [School of Biology, Ridley Building, University of Newcastle, Newcastle Upon Tyne, NE1 7RU (United Kingdom)

    2006-05-15

    The goals of this study were to document the development of ozone-induced foliar injury, on a leaf-by-leaf basis, and to develop ozone exposure relationships for leaf cohorts and individual tall milkweeds (Asclepias exaltata L.) in Great Smoky Mountains National Park. Plants were classified as either ozone-sensitive or insensitive based on the amount of foliar injury. Sensitive plants developed injury earlier in the season and to a greater extent than insensitive plants. Older leaf cohorts were more likely to belong to high injury classes by the end of each of the two growing seasons. In addition, leaf loss was more likely for older cohorts (2000) and lower leaf positions (2001) than younger cohorts and upper leaves, respectively. Most leaves abscised without prior ozone-like stippling or chlorosis. Failure to take this into account can result in underestimation of the effects of ozone on these plants. - Leaf loss was not necessarily accompanied by symptoms of foliar ozone injury.

  11. [Health impact of ozone in 13 Italian cities].

    Science.gov (United States)

    Mitis, Francesco; Iavarone, Ivano; Martuzzi, Marco

    2007-01-01

    to estimate the health impact of ozone in 13 Italian cities over 200,000 inhabitants and to produce basic elements to permit the reproducibility of the study in other urban locations. the following data have been used: population data (2001), health data (2001 or from scientific literature), environmental data (2002-2004), from urban background monitoring station and concentration/response risk coefficients derived from recent metanalyses. The indicators SOMO35 and SOMO0 have been used as a proxi of the average exposure to calcolate attributable deaths (and years of life lost) and several causes of morbility for ozone concentrations over 70 microg/m3. acute mortality for all causes and for cardiovascular mortality, respiratory-related hospital admissions in elderly, asthma exacerbation in children and adults, minor restricted activity days, lower respiratory symptoms in children. over 500 (1900) deaths, the 0.6% (2.1%) of total mortality, equivalent to about 6000 (22,000) years of life lost are attributable to ozone levels over 70 microg/m3 in the 13 Italian cities under study. Larger figures, in the order of thousands, are attributable to less severe morbidity outcomes. The health impact of ozone in Italian towns is relevant in terms of acute mortality and morbidity, although less severe than PM10 impact. Background ozone levels are increasing. Abatement strategies for ozone concentrations should consider the whole summer and not only "peak" days and look at policies limiting the concentration of precursors produced by traffic sources. Relevant health benefits can be obtained also under levels proposed as guidelines in the present environmental regulations.

  12. Percutaneous treatment of lumbar disc herniation by oxygen-ozone injection -clinical study with indication

    International Nuclear Information System (INIS)

    Wang Zhuying; Jiang Caimei; Wang Zhimin

    2006-01-01

    Objective: To study the clinical effect and the range of indications of oxygen-ozone treatment for lumber disc herniation. Methods: 6-15 ml of oxygen-ozone (35-45 μg/ml) were injected percutaneously into lumbar disc. In case of multiple disc herniations, the procedure could be taken with two discs for once. Results: 323 patients with 433 discs were treated by oxygen-ozone injection procedure. Total effective rate was 77.7%. Conclusions: The treatment of lumber disc herniation by oxygen-ozone injection is simple, safe and effective with mild trauma. Oxygen-ozone not only can oxidize the proteoglycan in the nucleus leading to the contraction of nucleus, but also provide anti-inflammation effect with pain relief and without complication yet. (authors)

  13. Effects of sulfur nutrition on phytotoxicity and growth responses of bean plants to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Adedipe, N O; Hofstra, G; Ormrod, D P

    1972-01-01

    Phaseolus vulgaris L. cv. Blue Lake plants were grown in sand culture at three temperatures, and fed with nutrient solution containing 1.3 or 32 mg/liter sulfur (S). Plants were fumigated twice with ozone at 50 parts per hundred million (pphm) for 2 h. Intensity of phytotoxicity was markedly lower in plants grown at the high S rate. Ozone reduced chlorophyll content of plants grown in low S at 25/20 and 30/25/sup 0/. With the high S treatment, however, ozone had no significant effect on chlorophyll content particularly at the lower temperatures. Irrespective of S nutrition, ozone had no effect on total soluble carbohydrate content. Ozone effects on plant growth depended on plant part, growth temperature, and S nutrition.

  14. Evaluation of the Ozone Fields in NASA’s MERRA-2 Reanalysis

    Science.gov (United States)

    Wargan, Krzysztof; Labow, Gordon; Frith, Stacey; Pawson, Steven; Livesey, Nathaniel; Partyka, Gary

    2018-01-01

    We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASA’s Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASA’s EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 % (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 % and 24.5 %, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies. PMID:29527096

  15. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Llusia, J.; Penuelas, J. [Universitat Autonoma de Barcelona (Spain). Unitat Ecofisiologia CSIC-CEAB-CREAF; Gimeno, R.S. [CIEMAT, Madrid (Spain). Ecotoxicologia de la Contaminacion Atmosferica

    2002-08-01

    Although certain factors controlling plant emission rates of volatile organic compounds (VOCs) are reasonably well understood, the influence of elevated ozone concentrations as abiotic stress is mostly unknown. Therefore, we studied the effects of ozone concentrations on seasonal biogenic volatile organic compound (BVOC) emissions by different Mediterranean plant species in open top chambers (OTC). Three ozone treatments were established: filtered air (F), non-filtered air (NF), and fumigated air (NF+) adding 40 nl l{sup -1} of ozone over NF. We studied the response of VOC emission in saplings of four Mediterranean woody plant species and subspecies: Ceratonia siliqua L., Olea europaea L., Quercus ilex spp. ilex L., and Quercus ilex spp. rotundifolia L. as representative of natural Mediterranean vegetation. No visible symptoms were detected on the leaves. No significant effect was found on net photosynthetic rates or stomatal conductance except for an increase in net photosynthetic rates in Quercus ilex ilex in spring and summer and an overall slight increase in Quercus ilex rotundifolia. Emissions of the total VOCs from Ceratonia siliqua in summer, and from Olea europaea and Quercus ilex rotundifolia in spring increased in ozone fumigated OTC in comparison with F or NF OTC. Decreased emissions were found in Quercus ilex rotundifolia in summer. There were no significant differences between ozone fumigation treatments for the other plant species and seasons. When considering particular VOCs, the results were also variable among species and time of the year. While {alpha}-pinene emissions decreased with ozone fumigation in Olea europaea, {alpha}-pinene and limonene emissions increased in Quercus ilex ilex. The responses of these particular VOCs did not always match the responses of total VOCs. In spite of this strong variability, when considering overall annual data for all species and seasons, there were increased net photosynthetic rates (37%) and limonene (95

  16. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    Science.gov (United States)

    Llusià, J.; Peñuelas, J.; Gimeno, B. S.

    Although certain factors controlling plant emission rates of volatile organic compounds (VOCs) are reasonably well understood, the influence of elevated ozone concentrations as abiotic stress is mostly unknown. Therefore, we studied the effects of ozone concentrations on seasonal biogenic volatile organic compound (BVOC) emissions by different Mediterranean plant species in open top chambers (OTC). Three ozone treatments were established: filtered air (F), non-filtered air (NF), and fumigated air (NF+) adding 40 nl l -1 of ozone over NF. We studied the response of VOC emission in saplings of four Mediterranean woody plant species and subspecies: Ceratonia siliqua L., Olea europaea L., Quercus ilex spp. ilex L., and Quercus ilex spp. rotundifolia L. as representative of natural Mediterranean vegetation. No visible symptoms were detected on the leaves. No significant effect was found on net photosynthetic rates or stomatal conductance except for an increase in net photosynthetic rates in Quercus ilex ilex in spring and summer and an overall slight increase in Quercus ilex rotundifolia. Emissions of the total VOCs from Ceratonia siliqua in summer, and from Olea europaea and Quercus ilex rotundifolia in spring increased in ozone fumigated OTC in comparison with F or NF OTC. Decreased emissions were found in Quercus ilex rotundifolia in summer. There were no significant differences between ozone fumigation treatments for the other plant species and seasons. When considering particular VOCs, the results were also variable among species and time of the year. While α-pinene emissions decreased with ozone fumigation in Olea europaea, α-pinene and limonene emissions increased in Quercus ilex ilex. The responses of these particular VOCs did not always match the responses of total VOCs. In spite of this strong variability, when considering overall annual data for all species and seasons, there were increased net photosynthetic rates (37%) and limonene (95%) and total VOC (45

  17. Ozonation and sol-gel method to obtain Cu/Cu O nanoparticles from cyanidation wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Soria A, M. J.; Puente S, D. M.; Carrillo P, F. R. [Universidad Autonoma de Coahuila, Facultad de Metalurgia, Carretera 57 Km 4.5, 25710 Monclova, Coahuila (Mexico); Garcia C, L. A. [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna No. 140, Col. Los Pinos, 25253 Saltillo, Coahuila (Mexico); Velazquez S, J., E-mail: frrcarrillo@yahoo.com.mx [University of Texas at San Antonio, Department of Physics and Astronomy, San Antonio TX 78249 (United States)

    2015-07-01

    The extraction process of gold and silver by cyanidation generates large amounts of effluent which also contain contaminants such as cyanide and significant metal values such as copper. This paper presents the results of the removal and recovery of copper from ozonation treatment of a residual aqueous cyanide. The residual solution was treated by ozonation-precipitation to obtain a precipitate of copper. From this, copper nano composites obtained by Pechini modified sol-gel method were obtained. The compounds obtained were characterized by X-ray diffraction, showing a dependence of the type of compounds formed over time of ozonation and heat treatment of the gel. The particle size was measured by scanning electron microscopy and calculated by the Scherrer equation, being between 50 and 120 nm. (Author)

  18. Treatment rate improvement of the ozone oxidation method for laundry waste water

    International Nuclear Information System (INIS)

    Matsuo, Toshiaki; Nishi, Takashi

    2001-01-01

    Radioactive laundry waste water generated in nuclear power plants includes organic compounds to be removed, for which ozone oxidation treatment is a possibility. To verify the applicability, its total organic carbon concentration (TOC) lowering rate improvement was examined in 0.5x10 -3 m 3 batch and 3x10 -2 m 3 pilot equipment experiments. In the batch experiments, ozone at a concentration of 200 g/Nm 3 was dispersed into 0.5x10 -3 m 3 of Simulated Laundry Waste Water (SLWW) with TOC of 11 mM. Total organic carbon concentration was measured every hour to see the effects of the temperature, and the initial concentrations of both H 2 O 2 and NaOH which were added to urge OH radical generation from ozone. In the pilot equipment experiments, 1x10 -2 to 3x10 -2 m 3 of the SLWW were circulated using an ejector to disperse the ozone. The influences of the flow rate and the SLWW volume on lowering TOC were examined, because they were related to the ejector dispersion performance and the appropriate ozone addition per SLWW volume. Appropriate initial H 2 O 2 and NaOH concentrations in the batch experiments were 14.7 mM and 1 mM, respectively. Lowering of TOC became faster at higher temperatures, because ozone self-decomposition and OH radial diffusion to the organic compound molecules were promoted. Lowering of TOC also became faster at higher flow rates, while the influence of the volume became saturated. (author)

  19. A stochastic cloud model for cloud and ozone retrievals from UV measurements

    International Nuclear Information System (INIS)

    Efremenko, Dmitry S.; Schüssler, Olena; Doicu, Adrian; Loyola, Diego

    2016-01-01

    The new generation of satellite instruments provides measurements in and around the Oxygen A-band on a global basis and with a relatively high spatial resolution. These data are commonly used for the determination of cloud properties. A stochastic model and radiative transfer model, previously developed by the authors, is used as the forward model component in retrievals of cloud parameters and ozone total and partial columns. The cloud retrieval algorithm combines local and global optimization routines, and yields a retrieval accuracy of about 1% and a fast computational time. Retrieved parameters are the cloud optical thickness and the cloud-top height. It was found that the use of the independent pixel approximation instead of the stochastic cloud model leads to large errors in the retrieved cloud parameters, as well as, in the retrieved ozone height resolved partial columns. The latter can be reduced by using the stochastic cloud model to compute the optimal value of the regularization parameter in the framework of Tikhonov regularization. - Highlights: • A stochastic radiative transfer model for retrieving clouds/ozone is designed. • Errors of independent pixel approximation (IPA) for O3 total column are small. • The error of IPA for ozone profile retrieval may become large. • The use of stochastic model reduces the error of ozone profile retrieval.

  20. Effects of 0.12 and 0.80 ppm ozone on rat nasal and nasopharyngeal epithelial mucosubstances: Quantitative histochemistry

    International Nuclear Information System (INIS)

    Harkema, J.R.; Hotchkiss, J.A.; Henderson, R.F.

    1989-01-01

    The present study was designed to characterize the quantity of mucosubstances in surface epithelia of the rat nasal cavity and nasopharynx after short-term ozone exposure. Rats were exposure. Nasal cavities were processed for morphometric analysis of intraepithelial mucosubstances. Compared to controls, rats exposed to 0.12 ppm ozone had increased amounts of stored mucosubstances within epithelium lining the medial aspect of the nasal turbinate, but no change within the epithelium of the nasopharynx. Rats exposed to 0.8 ppm ozone had increased quantities of stored mucosubstances within the transitional and respiratory epithelia lining turbinates and lateral walls of the anterior nasal airway, and significant decreases in stored mucosubstances within the epithelium of the nasal septum at the end of exposure. Seven days after the end of exposure, the amounts of intraepithelial mucosubstances returned to control levels along the septum, but remained greater than those of controls along the turbinates and nasopharynx. We conclude that exposures to ambient levels of ozone induce significant changes in the stored secretory product of nasal epithelium in the rat, and that these changes persist for at least 7 days after cessation of exposure

  1. Seasonal Changes in Tropospheric Ozone Concentrations over South Korea and Its Link to Ozone Precursors

    Science.gov (United States)

    Jung, H. C.; Moon, B. K.; Wie, J.

    2017-12-01

    Concentration of tropospheric ozone over South Korea has steadily been on the rise in the last decades, mainly due to rapid industrializing and urbanizing in the Eastern Asia. To identify the characteristics of tropospheric ozone in South Korea, we fitted a sine function to the surface ozone concentration data from 2005 to 2014. Based on fitted sine curves, we analyzed the shifts in the dates on which ozone concentration reached its peak in the calendar year. Ozone monitoring sites can be classified into type types: where the highest annual ozone concentration kept occurring sooner (Esites) and those that kept occurring later (Lsites). The seasonal analysis shows that the surface ozone had increased more rapidly in Esites than in Lsites in the past decade during springtime and vice-versa during summertime. We tried to find the reason for the different seasonal trends with the relationship between ozone and ozone precursors. As a result, it was found that the changes in the ground-level ozone concentration in the spring and summer times are considerably influenced by changes in nitrogen dioxide concentration, and this is closely linked to the destruction (production) process of ozone by nitrogen dioxide in spring (summer). The link between tropospheric ozone and nitrogen dioxide discussed in this study will have to be thoroughly examined through climate-chemistry modeling in the future. Acknowledgements This research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."

  2. Space nuclear power requirements for ozone layer modification

    International Nuclear Information System (INIS)

    Dolan, T.J.

    1991-01-01

    This work estimates the power requirements for using photochemical processes driven by space nuclear power to counteract the Earth's ozone layer depletion. The total quantity of ozone (O 3 ) in the Earth's atmosphere is estimated to be about 4.7 x 10 37 molecules. The ozone production and destruction rates in the stratosphere are both on the order of 4.9 x 10 31 molecules/s, differing by a small fraction so that the net depletion rate is about 0.16 to 0.26% per year. The delivered optical power requirement for offsetting this depletion is estimated to be on the order of 3 GW. If the power were produced by satellite reactors at 800 km altitude (orbit decay time ∼ 300 years), some means of efficient power beaming would be needed to deliver the power to stratospheric levels (10--50 km). Ultraviolet radiation at 140--150 nm could have higher absorption rates in O 2 (leading to production of atomic oxygen, which can combine with O 2 to form O 3 ) than in ozone (leading to photodissociation of O 3 ). Potential radiation sources include H 2 lasers and direct nuclear pumping of ultraviolet fluorescers. 5 refs

  3. Nitrogen mediates above-ground effects of ozone but not below-ground effects in a rhizomatous sedge

    International Nuclear Information System (INIS)

    Jones, M.L.M.; Hodges, G.; Mills, G.

    2010-01-01

    Ozone and atmospheric nitrogen are co-occurring pollutants with adverse effects on natural grassland vegetation. Plants of the rhizomatous sedge Carex arenaria were exposed to four ozone regimes representing increasing background concentrations (background-peak): 10-30, 35-55, 60-80 and 85-105 ppb ozone at two nitrogen levels: 12 and 100 kg N ha -1 yr -1 . Ozone increased the number and proportion of senesced leaves, but not overall leaf number. There was a clear nitrogen x ozone interaction with high nitrogen reducing proportional senescence in each treatment and increasing the ozone dose (AOT40) at which enhanced senescence occurred. Ozone reduced total biomass due to significant effects on root biomass. There were no interactive effects on shoot:root ratio. Rhizome tissue N content was increased by both nitrogen and ozone. Results suggest that nitrogen mediates above-ground impacts of ozone but not impacts on below-ground resource translocation. This may lead to complex interactive effects between the two pollutants on natural vegetation. - Nitrogen alters threshold of ozone-induced senescence, but not below-ground resource allocation.

  4. Ozone Transport Aloft Drives Surface Ozone Maxima Across the Mojave Desert

    Science.gov (United States)

    VanCuren, R. A.

    2014-12-01

    A persistent layer of polluted air in the lower free troposphere over the Mojave Desert (California and Nevada) drives spring and summer surface ozone maxima as deep afternoon mixing delivers ozone and ozone precursors to surface measurement sites 200 km or more downwind of the mountains that separate the deserts from the heavily populated coastal areas of California. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), and from long-range transport from Asia. Recognition of this poorly studied persistent layer explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, resolves an apparent paradox in the timing of ozone peaks due to transport from the upwind basins, and provides a new perspective on the long-range downwind impacts of megacity pollution plumes.

  5. Impact of near-surface atmospheric composition on ozone formation in Russia

    Science.gov (United States)

    Berezina, Elena; Moiseenko, Konstantin; Skorokhod, Andrey; Belikov, Igor; Pankratova, Natalia; Elansky, Nikolai

    2017-04-01

    One of the consequences of the human impact on the atmosphere is increasing in tropospheric ozone concentration, with the highest ozone level being observed in industrially developed and highly populated regions of the world. In these regions, main anthropogenic sources of carbon monoxide (CO), methane (CH4) and volatile organic compounds (VOCs) are concentrated. The oxidation of these compounds, when interacting with hydroxyl and nitrogen oxides at rather high temperature and sunlight, leads to ozone formation. CO and CH4 are slowly oxidized in the atmosphere and cause an increase in global and regional background ozone. However, the oxidation of some VOCs occurs during daylight hours and is accompanied by an increase in ozone concentration near VOCs sources, particularly in urban and industrial areas. The contribution of biogenic VOCs to ozone generation is estimated to be from 40 to 70% of the total contribution of all chemical ozone precursors in the troposphere [1], with isoprene playing the main role in ozone formation [2]. The impact of aromatic hydrocarbons to ozone formation is reported to be about 40% of the total ozone generation from the oxidation of anthropogenic VOCs [3]. In this study, the results of VOCs measurements (isoprene, benzene, toluene, phenol, styrene, xylene and propilbenzene) by proton mass spectrometry in different regions of Russia along the Trans-Siberian railway from Moscow to Vladivostok from TROICA-12 campaign on a mobile laboratory in summer 2008 are analyzed. It is shown that the TROICA-12 measurements were carried out mostly in moderately polluted (2≤NOx20 ppb) conditions ( 20 and 2% of measurements, correspondingly). The lower troposphere chemical regime in the campaign is found to be mainly NOx sensitive, both in rural and urban environments, with typical morning NMHC/NOx ratios being well above 20. Hence, ozone production rates are expected to be controlled by regional NOx emissions and their complex interplay with both

  6. ANALYSIS AND CHARACTERIZATION OF OZONE-RICH EPISODES IN NORTHEAST PORTUGAL

    Science.gov (United States)

    Carvalho, A.; Monteiro, A.; Ribeiro, I.; Tchepel, O.; Miranda, A.; Borrego, C.; Saavedra, S.; Souto, J. A.; Casares, J. J.

    2009-12-01

    Each summer period extremely high ozone levels are registered at the rural background station of Lamas d’Olo, located in the Northeast of Portugal. In average, 30% of the total alert threshold registered in Portugal is detected at this site. The main purpose of this study is to characterize the atmospheric conditions that lead to the ozone-rich episodes. Synoptic patterns anomalies and back trajectories cluster analysis were performed for a period of 76 days where ozone maximum concentrations were above 200 µg.m-3. This analysis was performed for the period between 2004 and 2007. The obtained anomaly fields suggested that a positive temperature anomaly is visible above the Iberian Peninsula. In addition, a strong wind flow pattern from NE is visible in the North of Portugal and Galicia, in Spain. These two features may lead to an enhancement of the photochemical production and to the transport of pollutants from Spain to Portugal. In addition, the 3D mean back trajectories associated to the ozone episode days were analysed. A clustering method has been applied to the obtained back trajectories. Four main clusters of ozone-rich episodes were identified, with different frequencies of occurrence: north-westerly flows (11%); north-easterly flows (45%), southern flow (4%) and westerly flows (40%). Both analyses highlight the NE flow as a dominant pattern over the North of Portugal. The analysis of the ozone concentrations for each selected cluster indicates that this northeast circulation pattern, together with the southern flow, is responsible for the highest ozone peak episodes. This also suggests that long-range transport of atmospheric pollutants may be the main contributor to the ozone levels registered at Lamas d’Olo. This is also highlighted by the correlation of the ozone time series with the meteorological parameters analysed in the frequency domain.

  7. Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM

    Directory of Open Access Journals (Sweden)

    P. Telford

    2009-07-01

    Full Text Available The eruption of Mount Pinatubo produced the largest loading of stratospheric sulphate aerosol in the twentieth century. This heated the tropical lower stratosphere, affecting stratospheric circulation, and provided enhanced surface area for heterogeneous chemistry. These factors combined to produce record low values of "global" total ozone column. Though well studied, there remains some uncertainty about the attribution of this low ozone, with contributions from both chemical and dynamical effects. We take a complementary approach to previous studies, nudging the potential temperature and horizontal winds in the new UKCA chemistry climate model to reproduce the atmospheric response and assess the impact on global total ozone. We then combine model runs and observations to distinguish between chemical and dynamical effects. To estimate the effects of increased heterogeneous chemistry on ozone we compare runs with volcanically enhanced and background surface aerosol density. The modelled depletion of global ozone peaks at about 7 DU in early 1993, in good agreement with values obtained from observations. We subtract the modelled aerosol induced ozone loss from the observed ozone record and attribute the remaining variability to `dynamical' effects. The remaining variability is dominated by the QBO. We also examine tropical and mid-latitude ozone, diagnosing contributions from El Niño in the tropics and identifying dynamically driven low ozone in northern mid-latitudes, which we interpret as possible evidence of changes in the QBO. We conclude that, on a global scale, the record lows of extra-polar ozone are produced by the increased heterogeneous chemistry, although there is evidence for dynamics produced low ozone in certain regions, including northern mid-latitudes.

  8. Ozone autohaemotherapy protects against ketamine hydrochloride ...

    African Journals Online (AJOL)

    Ozone is currently under scrutiny because of various claims of beneficial effect in disease. In order to shed some light on this we assessed the acute and chronic effect of O3 autohaemotherapy (AHT) on liver and muscle damage in baboons. Five percent of the total blood volume of a baboon was treated with O2 and O3.

  9. Photochemically consumed hydrocarbons and their relationship with ozone formation in two megacities of China

    Science.gov (United States)

    Chang, C.; Wang, J.; Liu, S.; Shao, M.; Zhang, Y.; Zhu, T.; Shiu, C.; Lai, C.

    2010-12-01

    Two on-site continuous measurements of ozone and its precursors in two megacities of China were carried out in an urban site of Beijing and a suburban site near Guangzhou in the Pearl River Delta (PRD) to estimate precursor consumption and to assess its relationship with oxidant (O3+NO2) formation level. An observation-based method (OBM) with the precursor consumption concept was adopted to assess the relationship between oxidant production and amounts of photochemically consumed non-methane hydrocarbons (NMHCs). In this approach, the ratio of ethylbenzene to m,p-xylenes was used to estimate the degree of photochemical processing, as well as the amounts of photochemically consumed NMHCs by reacting with OH. By trying to correlate the observed oxidant with the observed NMHC concentration, the two areas both revealed nearly no to low correlation between them. However, it existed fair to good correlations (R2=0.68 for Beijing, 0.53 for PRD) between the observed oxidant level and the degree of photochemical processing (ethylbenzene/m,p-xylenes). Furthermore, after taking the approach of consumption to estimate the consumed amounts of NMHCs, an interesting finding reveals that the definite correlation existed between the observed oxidant level and the total consumed NMHCs. The good correlations (R2=0.83 for Beijing, 0.81 for PRD) implies that the ambient oxidant level correlated to the amount of consumed NMHCs. The results of the two megacities in China by using the OBM with the precursor consumption concept can provide another pathway to explore the relationship between photochemically produced oxidant and consumed precursors, and will be helpful to validate model results and to reduce uncertainty of model predictions. However, the method has some room for uncertainty, as injection of fresh precursor emissions and additional boundary ozone involved, etc. could affect the estimation of consumed NMHCs and observed oxidant levels. Assistance of approaches in assessing the

  10. Measurement of Ozone Production Sensor

    Directory of Open Access Journals (Sweden)

    M. Cazorla

    2010-05-01

    Full Text Available A new ambient air monitor, the Measurement of Ozone Production Sensor (MOPS, measures directly the rate of ozone production in the atmosphere. The sensor consists of two 11.3 L environmental chambers made of UV-transmitting Teflon film, a unit to convert NO2 to O3, and a modified ozone monitor. In the sample chamber, flowing ambient air is exposed to the sunlight so that ozone is produced just as it is in the atmosphere. In the second chamber, called the reference chamber, a UV-blocking film over the Teflon film prevents ozone formation but allows other processes to occur as they do in the sample chamber. The air flows that exit the two chambers are sampled by an ozone monitor operating in differential mode so that the difference between the two ozone signals, divided by the exposure time in the chambers, gives the ozone production rate. High-efficiency conversion of NO2 to O3 prior to detection in the ozone monitor accounts for differences in the NOx photostationary state that can occur in the two chambers. The MOPS measures the ozone production rate, but with the addition of NO to the sampled air flow, the MOPS can be used to study the sensitivity of ozone production to NO. Preliminary studies with the MOPS on the campus of the Pennsylvania State University show the potential of this new technique.

  11. Source attribution of tropospheric ozone

    Science.gov (United States)

    Butler, T. M.

    2015-12-01

    Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this study we describe the implementation into a global chemistry-climate model of a scheme for tagging emissions of NOx and VOC with an arbitrary number of labels, which are followed through the chemical reactions of tropospheric ozone production in order to perform attribution of tropospehric ozone to its emitted precursors. Attribution is performed to both

  12. The ozone backlash

    International Nuclear Information System (INIS)

    Taubes, G.

    1993-01-01

    While evidence for the role of chlorofluorocarbons in ozone depletion grows stronger, researchers have recently been subjected to vocal public criticism of their theories-and their motives. Their understanding of the mechanisms of ozone destruction-especially the annual ozone hole that appears in the Antarctic-has grown stronger, yet everywhere they go these days, they seem to be confronted by critics attacking their theories as baseless. For instance, Rush Limbaugh, the conservative political talk-show host and now-best-selling author of The Way Things Ought to Be, regularly insists that the theory of ozone depletion by CFCs is a hoax: bladerdash and poppycock. Zoologist Dixy Lee Ray, former governor of the state of Washington and former head of the Atomic Energy Commission, makes the same argument in her book, Trashing the Planet. The Wall Street Journal and National Review have run commentaries by S. Fred Singer, a former chief scientists for the Department of Transportation, purporting to shoot holes in the theory of ozone depletion. Even the June issue of Omni, a magazine with a circulation of more than 1 million that publishes a mixture of science and science fiction, printed a feature article claiming to expose ozone research as a politically motivated scam

  13. Seasonal differences and within-canopy variations of antioxidants in mature spruce (Picea abies) trees under elevated ozone in a free-air exposure system

    International Nuclear Information System (INIS)

    Hofer, Nora; Alexou, Maria; Heerdt, Christian; Loew, Markus; Werner, Herbert; Matyssek, Rainer; Rennenberg, Heinz; Haberer, Kristine

    2008-01-01

    The effect of free-air ozone fumigation and crown position on antioxidants were determined in old-growth spruce (Picea abies) trees in the seasonal course of two consecutive years (2003 and 2004). Levels of total ascorbate and its redox state in the apoplastic washing fluid (AWF) were increased under double ambient ozone concentrations (2 x O 3 ), whilst ascorbate concentrations in needle extracts were unchanged. Concentrations of apoplastic and symplastic ascorbate were significantly higher in 2003 compared to 2004 indicating a combined effect of the drought conditions in 2003 with enhanced ozone exposure. Elevated ozone had only weak effects on total glutathione levels in needle extracts, phloem exudates and xylem saps. Total and oxidised glutathione concentrations were higher in 2004 compared to 2003 and seemed to be more affected by enhanced ozone influx in the more humid year 2004 compared to the combined effect of elevated ozone and drought in 2003 as observed for ascorbate. - Antioxidant defence in sun and shade needles of Picea abies under free-air ozone fumigation in the seasonal course of two consecutive years

  14. A Global Ozone Climatology from Ozone Soundings via Trajectory Mapping: A Stratospheric Perspective

    Science.gov (United States)

    Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; McLinden, C.; Zhao, T.; Gong, S.; Sioris, G.; Jin, J. J.; Liu, G.; Moeini, O.

    2013-01-01

    This study explores a domain-filling trajectory approach to generate a global ozone climatology from sparse ozonesonde data. Global ozone soundings of 51,898 profiles at 116 stations over 44 years (1965-2008) are used, from which forward and backward trajectories are performed for 4 days, driven by a set of meteorological reanalysis data. Ozone mixing ratios of each sounding from the surface to 26 km altitude are assigned to the entire path along the trajectory. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s with grids of 5 degree 5 degree 1 km (latitude, longitude, and altitude). It is also archived yearly from 1965 to 2008. This climatology is validated at 20 ozonesonde stations by comparing the actual ozone sounding profile with that found through the trajectories, using the ozone soundings at all the stations except one being tested. The two sets of profiles are in good agreement, both individually with correlation coefficients between 0.975 and 0.998 and root mean square (RMS) differences of 87 to 482 ppbv, and overall with a correlation coefficient of 0.991 and an RMS of 224 ppbv. The ozone climatology is also compared with two sets of satellite data, from the Satellite Aerosol and Gas Experiment (SAGE) and the Optical Spectrography and InfraRed Imager System (OSIRIS). Overall, the ozone climatology compares well with SAGE and OSIRIS data by both seasonal and zonal means. The mean difference is generally under 20 above 15 km. The comparison is better in the northern hemisphere, where there are more ozonesonde stations, than in the southern hemisphere; it is also better in the middle and high latitudes than in the tropics, where assimilated winds are imperfect in some regions. This ozone climatology can capture known features in the stratosphere, as well as seasonal and decadal variations of these features. Furthermore, it provides a wealth of detail about longitudinal variations in the stratosphere such

  15. A Compact Mobile Ozone Lidar for Atmospheric Ozone and Aerosol Profiling

    Science.gov (United States)

    De Young, Russell; Carrion, William; Pliutau, Denis

    2014-01-01

    A compact mobile differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone air quality campaigns. This lidar is integrated into the Tropospheric Ozone Lidar Network (TOLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver with associated Licel photon counting and analog channels. The laser transmitter consist of a Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. The system has been configured to enable mobile operation from a trailer and was deployed to Denver, CO July 15-August 15, 2014 supporting the DISCOVER-AQ campaign. Ozone curtain plots and the resulting science are presented.

  16. Formation and emissions of carbonyls during and following gas-phase ozonation of indoor materials

    DEFF Research Database (Denmark)

    Poppendieck, D.G.; Hubbard, H.F.; Weschler, Charles J.

    2007-01-01

    at concentrations of 1000 ppm in the inlet stream of experimental chambers. Fifteen target carbonyls were selected and measured as building ozonation by-products (BOBPs). During the 36 h that include the 16 h ozonation and 20 h persistence phase, the total BOBP mass released from flooring and wall coverings ranged...

  17. Evaluation of Global Ozone Monitoring Experiment (GOME) ozone profiles from nine different algorithms

    NARCIS (Netherlands)

    Meijer, Y.J.; Swart, D.P.J.; Baier, F.; Bhartia, P.K.; Bodeker, G.E.; Casadio, S.; Chance, K.; Frate, Del F.; Erbertseder, T.; Felder, M.D.; Flynn, L.E.; Godin-Beekmann, S.; Hansen, G.; Hasekamp, O.P.; Kaifel, A.; Kelder, H.M.; Kerridge, B.J.; Lambert, J.-C.; Landgraf, J.; Latter, B.G.; Liu, X.; McDermid, I.S.; Pachepsky, Y.; Rozanov, V.; Siddans, R.; Tellmann, S.; A, van der R.J.; Oss, van R.F.; Weber, M.; Zehner, C.

    2006-01-01

    An evaluation is made of ozone profiles retrieved from measurements of the nadir-viewing Global Ozone Monitoring Experiment (GOME) instrument. Currently, four different approaches are used to retrieve ozone profile information from GOME measurements, which differ in the use of external information

  18. River water remediation using pulsed corona, pulsed spark or ozonation

    Energy Technology Data Exchange (ETDEWEB)

    Izdebski, T.; Dors, M. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Mizeraczyk, J. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Gdynia Maritime Univ., Morska (Poland). Dept. of Marine Electronics

    2010-07-01

    The most common reason for epidemic formation is the pollution of surface and drinking water by wastewater bacteria. Pathogenic microorganisms that form the largest part of this are fecal bacteria, such as escherichia coli (E. coli). Wastewater treatment plants reduce the amount of the fecal bacteria by 1-3 orders of magnitude, depending on the initial number of bacteria. There is a lack of data on waste and drinking water purification by the electrohydraulic discharges method, which causes the destruction and inactivation of viruses, yeast, and bacteria. This paper investigated river water cleaning from microorganisms using pulsed corona, spark discharge and ozonization. The paper discussed the experimental setup and results. It was concluded that ozonization is the most efficient method of water disinfection as compared with pulsed spark and pulsed corona discharges. The pulsed spark discharge in water was capable of killing all microorganism similarly to ozonization, but with much lower energy efficiency. The pulsed corona discharge was found to be the less effective method of water disinfection. 21 refs., 4 figs.

  19. Ozone: The secret greenhouse gas

    International Nuclear Information System (INIS)

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  20. Seasonal development of ozone-induced foliar injury on tall milkweed (Asclepias exaltata) in Great Smoky Mountains National Park.

    Science.gov (United States)

    Souza, Lara; Neufeld, Howard S; Chappelka, Arthur H; Burkey, Kent O; Davison, Alan W

    2006-05-01

    The goals of this study were to document the development of ozone-induced foliar injury, on a leaf-by-leaf basis, and to develop ozone exposure relationships for leaf cohorts and individual tall milkweeds (Asclepias exaltata L.) in Great Smoky Mountains National Park. Plants were classified as either ozone-sensitive or insensitive based on the amount of foliar injury. Sensitive plants developed injury earlier in the season and to a greater extent than insensitive plants. Older leaf cohorts were more likely to belong to high injury classes by the end of each of the two growing seasons. In addition, leaf loss was more likely for older cohorts (2000) and lower leaf positions (2001) than younger cohorts and upper leaves, respectively. Most leaves abscised without prior ozone-like stippling or chlorosis. Failure to take this into account can result in underestimation of the effects of ozone on these plants.

  1. Ozone therapy in periodontics.

    Science.gov (United States)

    Gupta, G; Mansi, B

    2012-02-22

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics.

  2. Total peroxy nitrates and ozone production : analysis of forest fire plumes during BORTAS campaign

    Science.gov (United States)

    Busilacchio, Marcella; Di Carlo, Piero; Aruffo, Eleonora; Biancofiore, Fabio; Giammaria, Franco; Bauguitte, Stephane; Lee, James; Moller, Sarah; Lewis, Ally; Parrington, Mark; Palmer, Paul; Dari Salisburgo, Cesare

    2014-05-01

    The goal of this work is to investigate the connection between PNS and ozone within plumes emitted from boreal forest fires and the possible perturbation to oxidant chemistry in the troposphere. During the Aircraft campaign in Canada called BORTAS (summer 2011 ) were carried out several profiles from ground up to 10 km with the BAe-146 aircraft to observe the atmospheric composition inside and outside fire plumes. The BORTAS flights have been selected based on the preliminary studies of 'Plume identification', selecting those effected by Boreal forest fire emissions (CO > 200 ppbv). The FLAMBE fire counts were used concertedly with back trajectory calculations generated by the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to locate the sources of Boreal biomass burning.Profiles measured on board the BAe-146 aircraft are used to calculate the productions of PNs and O3 within the biomass burning plume. By selecting the flights that intercept the biomass burning plume, we evaluate the ratio between the ozone production and the PNs production within the plume. Analyzing this ratio it is possible to determine whether O3 production or PNs production is the dominant process in the biomass burning boreal plume detected during BORTAS campaign.

  3. Percutaneous intradiscal ozone (O3)-injection: an experimental study in canines

    International Nuclear Information System (INIS)

    Yu Zhijian; He Xiaofeng; Chen Yong; Zeng Qingle; Liu Chihong; Zhao Zhongqing; Lu Yong; Li Yanhao

    2002-01-01

    Objective: To evaluate the influence of ozone on normal nucleus pulpous and the safety of intradiscal ozone-injection for the treatment of herniated lumbar disc. Methods: Ozone was injected into selected lumbar discs (3 ml) and the para-spinal space (7 ml) with 20 G Chiba needle under fluoroscopy in five canines. The ozone concentration was 30 μg/ml and 50 μg/ml respectively. Two discs were selected for each concentration. Total 20 discs were injected. Three of the canines were given one-time ozone-injection and were sacrificed for pathology one week, one month and two months respectively after the procedure, and the other two canines were given two-time ozone-injection and were sacrificed one month and two months respectively after the procedure. The specimens including nucleus pulpous, end-plate, spinal cord, nerve root, and greater psoas muscle were observed macroscopically and microscopically. Results: No serious behavior abnormalities were observed in all animals. The atrophy of nucleus pulpous could be observed one month after ozone-injection due to significant reduction of water and extensive proliferation of collagenous fiber. The influence on the atrophy of nucleus pulpous demonstrated no apparent difference between the selected two concentrations of ozone, but was more apparent with two-time injection than that with one-time injection. The end-plates increased slightly or moderately in thickness in 16 simples and a few of fibers in greater psoas muscle suffered slight atrophy in 5 samples. Conclusion: It is suggested that percutaneous intradiscal ozone-injection is a safe method, and can cause gradual atrophy of nucleus pulpous. This study provides the evidence of the feasibility and value of this procedure's application in clinics

  4. OZONE ABSORPTION IN RAW WATERS

    Directory of Open Access Journals (Sweden)

    LJILJANA TAKIĆ

    2008-03-01

    Full Text Available The ozone absorption in raw water entering the main ozonization step at the Belgrade drinking water supply plant was investigated in a continuous stirred tank reactor (CSTR. A slow chemical reaction rate of dissolved ozone and pollutants present in raw water have been experimentally determined. The modified Hatta number was defined and calculated as a criterion which determines whether and to which extent the reactions of ozone and pollutants influence the rate of the pure physical ozone absorption.

  5. Comparison of total column ozone obtained by the IASI-MetOp satellite with ground-based and OMI satellite observations in the southern tropics and subtropics

    Directory of Open Access Journals (Sweden)

    A. M. Toihir

    2015-09-01

    Full Text Available This paper presents comparison results of the total column ozone (TCO data product over 13 southern tropical and subtropical sites recorded from the Infrared Atmospheric Sounder Interferometer (IASI onboard the EUMETSAT (European organization for the exploitation of METeorological SATellite MetOp (Meteorological Operational satellite program satellite. TCO monthly averages obtained from IASI between June 2008 and December 2012 are compared with collocated TCO measurements from the Ozone Monitoring Instrument (OMI on the OMI/Aura satellite and the Dobson and SAOZ (Système d'Analyse par Observation Zénithale ground-based instruments. The results show that IASI displays a positive bias with an average less than 2 % with respect to OMI and Dobson observations, but exhibits a negative bias compared to SAOZ over Bauru with a bias around 2.63 %. There is a good agreement between IASI and the other instruments, especially from 15° S southward where a correlation coefficient higher than 0.87 is found. IASI exhibits a seasonal dependence, with an upward trend in autumn and a downward trend during spring, especially before September 2010. After September 2010, the autumn seasonal bias is considerably reduced due to changes made to the retrieval algorithm of the IASI level 2 (L2 product. The L2 product released after August (L2 O3 version 5 (v5 matches TCO from the other instruments better compared to version 4 (v4, which was released between June 2008 and August 2010. IASI bias error recorded from September 2010 is estimated to be at 1.5 % with respect to OMI and less than ±1 % with respect to the other ground-based instruments. Thus, the improvement made by O3 L2 version 5 (v5 product compared with version 4 (v4, allows IASI TCO products to be used with confidence to study the distribution and interannual variability of total ozone in the southern tropics and subtropics.

  6. Tropospheric Ozone Climatology over Irene, South Africa, From 1990-1994 and 1998-2002

    Science.gov (United States)

    Diab, R. D.; Thompson, A. M.; Marl, K.; Ramsay, L.; Coetzee, G. J. R.

    2004-01-01

    This paper describes ozone profiles from sonde data during the period of NASA s TRACE-A and the more recent SHADOZ (Southern Hemisphere Additional Ozonesondes) period. The data were taken by the South African Weather Service at the Irene (25 deg.54 min S; 28 deg. 13 min. E) station near Pretoria, South Africa, an area that is a unique mixture of local industry, heavy biofuels use and importation of biomass burning ozone from neighboring countries to the north. The main findings are: (1) With its geographical position at the edge of the subtropical transition zone, mid- latitude dynamical influences are evident at Irene, predominantly in winter when upper tropospheric ozone is enhanced as a result of stratospheric-tropospheric exchange. (2) There has been an increase in the near-surface ozone amount between the early 1990s and a decade later, presumably due to an influx of rural population toward the Johannesburg-Pretoria area, as well as with industrial growth and development. (3) Most significant for developing approaches for satellite ozone profile climatologies, cluster analysis has enabled the delineation of a background and "most polluted" profile. Enhancements of at least 30% occur throughout the troposphere in spring and in certain layers increases of 100 % are observed.

  7. The missing piece: Valuing averting behavior for children's ozone exposures

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, Carol; Reed Johnson, F.; Van Houtven, George [Research Triangle Institute, P.O. Box 12194, Research Triangle Park, NC 27709-2194 (United States)

    2006-08-15

    Individuals can reduce their exposure to air pollution by reducing the amount of time they spend outdoors. Reducing outdoor time is an example of an averting behavior that should be measured as part of willingness to pay (WTP) for improvements in air quality. In this paper, we estimate parents' WTP to prevent restrictions on a child's outdoor time from a stated-preference (SP) conjoint survey. We combine this WTP measure with an estimate of reductions in time spent outdoors on high-ozone days from an activity-diary study to estimate this averting behavior component of WTP for reductions in ozone pollution. (author)

  8. Wastewater disinfection alternatives: chlorine, ozone, peracetic acid, and UV light.

    Science.gov (United States)

    Mezzanotte, V; Antonelli, M; Citterio, S; Nurizzo, C

    2007-11-01

    Disinfection tests were carried out at pilot scale to compare the disinfection efficiency of ozone, sodium hypochlorite (NaOCl), peracetic acid (PAA), and UV irradiation. Total coliforms, fecal coliforms, and Escherichia coli were monitored as reference microorganisms. Total heterotrophic bacteria (THB) were also enumerated by cytometry. At similar doses, NaOCl was more effective than PAA, and its action was less affected by contact time. The results obtained by ozonation were comparable for total coliforms, fecal coliforms, and E. coli. On the contrary, some differences among the three indicators were observed for NaOCl, PAA, and UV. Differences increased with increasing values of the disinfectant concentration times contact time (C x t) and were probably the result of different initial counts, as total coliforms include fecal coliforms, which include E. coli. The UV irradiation lead to complete E. coli removals, even at low doses (10 to 20 mJ/cm2). Total heterotrophic bacteria appeared to be too wide a group to be a good disinfection indicator; no correlation was found among THB inactivation, dose, and contact time.

  9. Phenol degradation in aqueous solution by photolytic oxidation with ozone and/or hydrogen peroxide

    International Nuclear Information System (INIS)

    Koepp, T.; Koether, M.; Brueckner, B.; Radeke, K.H.

    1993-01-01

    The removal of phenol in an aqueous solution as a typical pollutant by oxidation using ozone and hydrogen peroxide under ultraviolet irradiation has been studied. Both the O 3 /UV and the H 2 O 2 /UV method can be powerful to decompose the total organic carbon (TOC) to carbon dioxide and water, but the first method is more effective. In the case of H 2 O 2 /UV method a strong overdose on H 2 O 2 is necessary to remove TOC effectively, however, a favourable H 2 O 2 concentration exists. This is probably caused by undesired parallel reactions of hydrogen peroxide. The simultaneous use of ozone and hydrogen peroxide accelerates the removal of TOC in the first third of experiment in comparison to the O 3 /UV method, but the time of total decomposition of TOC is delayed. A change in measured kinetics of ozone consumption by organic molecules corresponds well with the time of total transformation of aromatic into aliphatic substances. (orig.)

  10. Study nonlinear dynamics of stratospheric ozone concentration at Pakistan Terrestrial region

    Science.gov (United States)

    Jan, Bulbul; Zai, Muhammad Ayub Khan Yousuf; Afradi, Faisal Khan; Aziz, Zohaib

    2018-03-01

    This study investigates the nonlinear dynamics of the stratospheric ozone layer at Pakistan atmospheric region. Ozone considered now the most important issue in the world because of its diverse effects on earth biosphere, including human health, ecosystem, marine life, agriculture yield and climate change. Therefore, this paper deals with total monthly time series data of stratospheric ozone over the Pakistan atmospheric region from 1970 to 2013. Two approaches, basic statistical analysis and Fractal dimension (D) have adapted to study the nature of nonlinear dynamics of stratospheric ozone level. Results obtained from this research have shown that the Hurst exponent values of both methods of fractal dimension revealed an anti-persistent behavior (negatively correlated), i.e. decreasing trend for all lags and Rescaled range analysis is more appropriate as compared to Detrended fluctuation analysis. For seasonal time series all month follows an anti-persistent behavior except in the month of November which shown persistence behavior i.e. time series is an independent and increasing trend. The normality test statistics also confirmed the nonlinear behavior of ozone and the rejection of hypothesis indicates the strong evidence of the complexity of data. This study will be useful to the researchers working in the same field in the future to verify the complex nature of stratospheric ozone.

  11. Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone

    Directory of Open Access Journals (Sweden)

    A. Anav

    2018-04-01

    Full Text Available Soil moisture and water stress play a pivotal role in regulating stomatal behaviour of plants; however, in the last decade, the role of water availability has often been neglected in atmospheric chemistry modelling studies as well as in integrated risk assessments, despite the fact that plants remove a large amount of atmospheric compounds from the lower troposphere through stomata. The main aim of this study is to evaluate, within the chemistry transport model CHIMERE, the effect of soil water limitation on stomatal conductance and assess the resulting changes in atmospheric chemistry testing various hypotheses of water uptake by plants in the rooting zone. Results highlight how dry deposition significantly declines when soil moisture is used to regulate the stomatal opening, mainly in the semi-arid environments: in particular, over Europe the amount of ozone removed by dry deposition in one year without considering any soil water limitation to stomatal conductance is about 8.5 TgO3, while using a dynamic layer that ensures that plants maximize the water uptake from soil, we found a reduction of about 10 % in the amount of ozone removed by dry deposition ( ∼  7.7 TgO3. Although dry deposition occurs from the top of canopy to ground level, it affects the concentration of gases remaining in the lower atmosphere, with a significant impact on ozone concentration (up to 4 ppb extending from the surface to the upper troposphere (up to 650 hPa. Our results shed light on the importance of improving the parameterizations of processes occurring at plant level (i.e. from the soil to the canopy as they have significant implications for concentration of gases in the lower troposphere and resulting risk assessments for vegetation or human health.

  12. Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone

    Science.gov (United States)

    Anav, Alessandro; Proietti, Chiara; Menut, Laurent; Carnicelli, Stefano; De Marco, Alessandra; Paoletti, Elena

    2018-04-01

    Soil moisture and water stress play a pivotal role in regulating stomatal behaviour of plants; however, in the last decade, the role of water availability has often been neglected in atmospheric chemistry modelling studies as well as in integrated risk assessments, despite the fact that plants remove a large amount of atmospheric compounds from the lower troposphere through stomata. The main aim of this study is to evaluate, within the chemistry transport model CHIMERE, the effect of soil water limitation on stomatal conductance and assess the resulting changes in atmospheric chemistry testing various hypotheses of water uptake by plants in the rooting zone. Results highlight how dry deposition significantly declines when soil moisture is used to regulate the stomatal opening, mainly in the semi-arid environments: in particular, over Europe the amount of ozone removed by dry deposition in one year without considering any soil water limitation to stomatal conductance is about 8.5 TgO3, while using a dynamic layer that ensures that plants maximize the water uptake from soil, we found a reduction of about 10 % in the amount of ozone removed by dry deposition ( ˜ 7.7 TgO3). Although dry deposition occurs from the top of canopy to ground level, it affects the concentration of gases remaining in the lower atmosphere, with a significant impact on ozone concentration (up to 4 ppb) extending from the surface to the upper troposphere (up to 650 hPa). Our results shed light on the importance of improving the parameterizations of processes occurring at plant level (i.e. from the soil to the canopy) as they have significant implications for concentration of gases in the lower troposphere and resulting risk assessments for vegetation or human health.

  13. Copernicus stratospheric ozone service, 2009–2012: validation, system intercomparison and roles of input data sets

    Directory of Open Access Journals (Sweden)

    K. Lefever

    2015-03-01

    Full Text Available This paper evaluates and discusses the quality of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate project during the 3-year period between September 2009 and September 2012. Ozone analyses produced by four different chemical data assimilation (CDA systems are examined and compared: the Integrated Forecast System coupled to the Model for OZone And Related chemical Tracers (IFS-MOZART; the Belgian Assimilation System for Chemical ObsErvations (BASCOE; the Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA; and the Data Assimilation Model based on Transport Model version 3 (TM3DAM. The assimilated satellite ozone retrievals differed for each system; SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. All analyses deliver total column values that agree well with ground-based observations (biases The northern spring 2011 period is studied in more detail to evaluate the ability of the analyses to represent the exceptional ozone depletion event, which happened above the Arctic in March 2011. Offline sensitivity tests are performed during this month and indicate that the differences between the forward models or the assimilation algorithms are much less important than the characteristics of the assimilated data sets. They also show that IFS-MOZART is able to deliver realistic analyses of ozone both in the troposphere and in the stratosphere, but this requires the assimilation of observations from nadir-looking instruments as well as the assimilation of profiles, which are well resolved vertically and extend into the lowermost stratosphere.

  14. Influence of low ozone episodes on erythemal UV-B radiation in Austria

    Science.gov (United States)

    Schwarz, Matthias; Baumgartner, Dietmar J.; Pietsch, Helga; Blumthaler, Mario; Weihs, Philipp; Rieder, Harald E.

    2017-06-01

    This study investigates the influence of low ozone episodes on UV-B radiation in Austria during the period 1999 to 2015. To this aim observations of total column ozone (TCO) in the Greater Alpine Region (Arosa, Switzerland; Hohenpeissenberg, Germany; Hradec Kralove, Czech Republic; Sonnblick, Austria), and erythemal UV-B radiation, available from 12 sites of the Austrian UV-B monitoring network, are analyzed. As previous definitions for low ozone episodes are not particularly suited to investigate effects on UV radiation, a novel threshold approach—considering anomalies—is developed to provide a joint framework for the analysis of extremes. TCO and UV extremes are negatively correlated, although modulating effects of sunshine duration impact the robustness of the statistical relationship. Therefore, information on relative sunshine duration (SDrel), available at (or nearby) UV-B monitoring sites, is included as explanatory variable in the analysis. The joint analysis of anomalies of both UV index (UVI) and total ozone (∆UVI, ∆TCO) and SDrel across sites shows that more than 65% of observations with strongly negative ozone anomalies (∆TCO 1), we find (across all sites) that about 90% correspond to negative ∆TCO. The remaining 10% of days occurred during fair weather conditions (SDrel ≥ 80%) explaining the appearance of ∆UVI > 1 despite positive TCO anomalies. Further, we introduce an anomaly amplification factor (AAF), which quantifies the expected change of the ∆UVI for a given change in ∆TCO.

  15. Study of the anticorrelations between ozone and UV-B radiation using linear and exponential fits in Southern Brazil

    Science.gov (United States)

    Guarnieri, R.; Padilha, L.; Guarnieri, F.; Echer, E.; Makita, K.; Pinheiro, D.; Schuch, A.; Boeira, L.; Schuch, N.

    Ultraviolet radiation type B (UV-B 280-315nm) is well known by its damage to life on Earth, including the possibility of causing skin cancer in humans. However, the atmo- spheric ozone has absorption bands in this spectral radiation, reducing its incidence on Earth's surface. Therefore, the ozone amount is one of the parameters, besides clouds, aerosols, solar zenith angles, altitude, albedo, that determine the UV-B radia- tion intensity reaching the Earth's surface. The total ozone column, in Dobson Units, determined by TOMS spectrometer on board of a NASA satellite, and UV-B radiation measurements obtained by a UV-B radiometer model MS-210W (Eko Instruments) were correlated. The measurements were obtained at the Observatório Espacial do Sul - Instituto Nacional de Pesquisas Espaciais (OES/CRSPE/INPE-MCT) coordinates: Lat. 29.44oS, Long. 53.82oW. The correlations were made using UV-B measurements in fixed solar zenith angles and only days with clear sky were selected in a period from July 1999 to December 2001. Moreover, the mathematic behavior of correlation in dif- ferent angles was observed, and correlation coefficients were determined by linear and first order exponential fits. In both fits, high correlation coefficients values were ob- tained, and the difference between linear and exponential fit can be considered small.

  16. Distribution and urban-suburban differences in ground-level ozone and its precursors over Shenyang, China

    Science.gov (United States)

    Liu, Ningwei; Ren, Wanhui; Li, Xiaolan; Ma, Xiaogang; Zhang, Yunhai; Li, Bingkun

    2018-03-01

    Hourly mixing ratio data of ground-level ozone and its main precursors at ambient air quality monitoring sites in Shenyang during 2013-2015 were used to survey spatiotemporal variations in ozone. Then, the transport of ozone and its precursors among urban, suburban, and rural sites was examined. The correlations between ozone and some key meteorological factors were also investigated. Ozone and O x mixing ratios in Shenyang were higher during warm seasons and lower during cold ones, while ozone precursors followed the opposite cycle. Ozone mixing ratios reached maximum and minimum values in the afternoon and morning, respectively, reflecting the significant influence of photochemical production during daytime and depletion via titration during nighttime. Compared to those in downtown Shenyang, ozone mixing ratios were higher and the occurrence of peak values were later in suburban and rural areas downwind of the prevailing wind. The differences were most significant in summer, when the ozone mixing ratios at one suburban downwind site reached a maximum value of 35.6 ppb higher than those at the downtown site. This suggests that photochemical production processes were significant during the transport of ozone precursors, particularly in warm seasons with sufficient sunlight. Temperature, total radiation, and wind speed all displayed positive correlations with ozone concentration, reflecting their important role in accelerating ozone formation. Generally, the correlations between ozone and meteorological factors were slightly stronger at suburban sites than in urban areas, indicating that ozone levels in suburban areas were more sensitive to these meteorological factors.

  17. Physiological responses of Pinus sylvestris to changing carbon dioxide and ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, T [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Palomaeki, V [Joensuu Univ. (Finland). Faculty of Forestry; Helmisaari, H S [Finnish Forest Research Inst., Helsinki (Finland); and others

    1997-12-31

    The objective of this research is to study the effects of elevated ozone, carbon dioxide and their combination on ultrastructural, physiological and biochemical responses of Scots pine needles and how these effects are reflected to photosynthesis, carbohydrate and nutrient allocation and finally to shoot and root growth of trees. In addition the interactions of the studied trees and mycorrhizal fungi as well as insect herbivores are studied. The exposures have been running only for two growing periods and it seems necessary to continue the experiment over the third growing season in 1996. Since the analyses are partially incomplete, only preliminary conclusions are possible at the moment. The slightly increased shoot growth and needle width and increased amount of starch in chloroplasts point to the slight stimulating effect of elevated CO{sub 2} among the chamber treatments. Altogether the growth of the seedlings was best in the chamberless treatment indicating a negative chamber effect. The elevated ozone significantly increased the chlorotic mottling and overall yellowing of second year needles as well as caused increased density of chloroplast stroma and declined photosynthesis, all these responses being often related to ozone exposures. The ozone related responses appeared at both CO{sub 2} levels indicating no clear protection due to elevated CO{sub 2}. The ozone or carbon dioxide treatments were not able to significantly change nutrient concentrations, insect herbivory or carbon allocation among the secondary compounds of needles. A tendency of increased carbon allocation to fine roots due to ozone but not so clearly to CO{sub 2} was observed

  18. Physiological responses of Pinus sylvestris to changing carbon dioxide and ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, T. [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Palomaeki, V. [Joensuu Univ. (Finland). Faculty of Forestry; Helmisaari, H.S. [Finnish Forest Research Inst., Helsinki (Finland)] [and others

    1996-12-31

    The objective of this research is to study the effects of elevated ozone, carbon dioxide and their combination on ultrastructural, physiological and biochemical responses of Scots pine needles and how these effects are reflected to photosynthesis, carbohydrate and nutrient allocation and finally to shoot and root growth of trees. In addition the interactions of the studied trees and mycorrhizal fungi as well as insect herbivores are studied. The exposures have been running only for two growing periods and it seems necessary to continue the experiment over the third growing season in 1996. Since the analyses are partially incomplete, only preliminary conclusions are possible at the moment. The slightly increased shoot growth and needle width and increased amount of starch in chloroplasts point to the slight stimulating effect of elevated CO{sub 2} among the chamber treatments. Altogether the growth of the seedlings was best in the chamberless treatment indicating a negative chamber effect. The elevated ozone significantly increased the chlorotic mottling and overall yellowing of second year needles as well as caused increased density of chloroplast stroma and declined photosynthesis, all these responses being often related to ozone exposures. The ozone related responses appeared at both CO{sub 2} levels indicating no clear protection due to elevated CO{sub 2}. The ozone or carbon dioxide treatments were not able to significantly change nutrient concentrations, insect herbivory or carbon allocation among the secondary compounds of needles. A tendency of increased carbon allocation to fine roots due to ozone but not so clearly to CO{sub 2} was observed

  19. Potential For Stratospheric Ozone Depletion During Carboniferous

    Science.gov (United States)

    Bill, M.; Goldstein, A. H.

    Methyl bromide (CH3Br) constitutes the largest source of bromine atoms to the strato- sphere whereas methyl chloride (CH3Cl) is the most abundant halocarbon in the tro- posphere. Both gases play an important role in stratospheric ozone depletion. For in- stance, Br coupled reactions are responsible for 30 to 50 % of total ozone loss in the polar vortex. Currently, the largest natural sources of CH3Br and CH3Cl appear to be biological production in the oceans, inorganic production during biomass burning and plant production in salt marsh ecosystems. Variations of paleofluxes of CH3Br and CH3Cl can be estimated by analyses of oceanic paleoproductivity, stratigraphic analyses of frequency and distribution of fossil charcoal indicating the occurrence of wildfires, and/or by paleoreconstruction indicating the extent of salt marshes. Dur- ing the lower Carboniferous time (Tournaisian-Visean), the southern margin of the Laurasian continent was characterized by charcoal deposits. Estimation on frequency of charcoal layers indicates that wildfires occur in a range of 3-35 years (Falcon-Lang 2000). This suggests that biomass burning could be an important source of CH3Br and CH3Cl during Tournaisian-Viesan time. During Tounaisian and until Merame- cian carbon and oxygen isotope records have short term oscillations (Bruckschen et al. 1999, Mii et al. 1999). Chesterian time (mid- Carboniferous) is marked by an in- crease in delta18O values ( ~ 2 permil) and an increase of glacial deposit frequency suggesting lower temperatures. The occurrence of glacial deposits over the paleopole suggests polar conditions and the associated special features of polar mete- orology such as strong circumpolar wind in the stratosphere (polar vortex) and polar stratospheric clouds. Thus, conditions leading to polar statospheric ozone depletion can be found. Simultaneously an increase in delta13C values is documented. We interpret the positive shift in delta13C as a result of higher bioproductivity

  20. Constructing Ozone Profile Climatologies with Self-Organizing Maps: Illustrations with CONUS Ozonesonde Data

    Science.gov (United States)

    Thompson, A. M.; Stauffer, R. M.; Young, G. S.

    2015-12-01

    Ozone (O3) trends analysis is typically performed with monthly or seasonal averages. Although this approach works well for stratospheric or total O3, uncertainties in tropospheric O3 amounts may be large due to rapid meteorological changes near the tropopause and in the lower free troposphere (LFT) where pollution has a days-weeks lifetime. We use self-organizing maps (SOM), a clustering technique, as an alternative for creating tropospheric climatologies from O3 soundings. In a previous study of 900 tropical ozonesondes, clusters representing >40% of profiles deviated > 1-sigma from mean O­3. Here SOM are based on 15 years of data from four sites in the contiguous US (CONUS; Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA). Ozone profiles from 2 - 12 km are used to evaluate the impact of tropopause variability on climatology; 2 - 6 km O3 profile segments are used for the LFT. Near-tropopause O­3 is twice the mean O­3 mixing ratio in three clusters of 2 - 12 km O3, representing > 15% of profiles at each site. Large mid and lower-tropospheric O3 deviations from monthly means are found in clusters of both 2 - 12 and 2 - 6 km O3. Positive offsets result from pollution and stratosphere-to-troposphere exchange. In the LFT the lowest tropospheric O3 is associated with subtropical air. Some clusters include profiles with common seasonality but other factors, e.g., tropopause height or LFT column amount, characterize other SOM nodes. Thus, as for tropical profiles, CONUS O­3 averages can be a poor choice for a climatology.

  1. Ozone as an air pollutant

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1996-01-01

    A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995.......A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995....

  2. Determination of the Optimum Ozone Product on the Plasma Ozonizer

    International Nuclear Information System (INIS)

    Agus Purwadi; Widdi Usada; Suryadi; Isyuniarto; Sri Sukmajaya

    2002-01-01

    An experiment of the optimum ozone product determination on the cylindrical plasma ozonizer has been done. The experiment is carried out by using alternating high voltage power supply, oscilloscope CS-1577 A, flow meter and spectronik-20 instrument for the absorbance solution samples which produced by varying the physics parameter values of the discharge alternating high voltage and velocity of oxygen gas input. The plasma ozonizer is made of cylinder stainless steel as the electrode and cylinder glass as the dielectric with 1.00 mm of the discharge gap and 7.225 mm 3 of the discharge tube volume. The experiment results shows that the optimum ozone product is 0.360 mg/s obtained at the the discharge of alternating high voltage of 25.50 kV, the frequency of 1.00 kHz and the rate of oxygen gas input of 1.00 lpm. (author)

  3. Measurements of Nitrogen Dioxide Total Column Amounts using a Brewer Double Spectrophotometer in Direct Sun Mode

    Science.gov (United States)

    Cede, Alexander; Herman, Jay; Richter, Andreas; Krotkov, Nickolay; Burrows, John

    2006-01-01

    NO2 column amounts were measured for the past 2 years at Goddard Space Flight Center, Greenbelt, Maryland, using a Brewer spectrometer in direct Sun mode. A new bootstrap method to calibrate the instrument is introduced and described. This technique selects the cleanest days from the database to obtain the solar reference spectrum. The main advantage for direct Sun measurements is that the conversion uncertainty from slant column to vertical column is negligible compared to the standard scattered light observations where it is typically on the order of 100% (2sigma) at polluted sites. The total 2sigma errors of the direct Sun retrieved column amounts decrease with solar zenith angle and are estimated at 0.2 to 0.6 Dobson units (DU, 1 DU approx. equal to 2.7 10(exp 16) molecules cm(exp -2)), which is more accurate than scattered light measurements for high NO2 amounts. Measured NO2 column amounts, ranging from 0 to 3 DU with a mean of 0.7 DU, show a pronounced daily course and a strong variability from day to day. The NO2 concentration typically increases from sunrise to noon. In the afternoon it decreases in summer and stays constant in winter. As expected from the anthropogenic nature of its source, NO2 amounts on weekends are significantly reduced. The measurements were compared to satellite retrievals from Scanning Image Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). Satellite data give the same average NO2 column and show a seasonal cycle that is similar to the ground data in the afternoon. We show that NO2 must be considered when retrieving aerosol absorption properties, especially for situations with low aerosol optical depth.

  4. Total electron count variability and stratospheric ozone effects on solar backscatter and LWIR emissions

    Science.gov (United States)

    2017-03-10

    heating occur. This method is achieved though measuring the intensity ratio of sky- scattered sunlight at a pair of UV wavelengths at solar zenith angles...cause impacts to direct-sun, UV, and zenith measurements . OOB light can affect the low intensity spectrum of solar light, which is not fully removed by...several key spectral properties that are pertinent to its measurement . Ozone is greenhouse gas that plays a primary role in the absorption of solar UV

  5. Government agencies' need for data on ozone injury to western pines

    Science.gov (United States)

    Brent Takemoto; Trent Procter

    1996-01-01

    Since the 1970?s, researchers from the USDA Forest Service and USDI National Park Service have conducted field surveys to measure the presence or absence, amount, and changes of ozone-caused injury to ponderosa and Jeffrey pines (Pronos and others 1978, Pronos and Vogler 1981, Stolte and others 1992). However, differences in measurement protocols among studies and the...

  6. Ozone-Temperature Diurnal and Longer Term Correlations, in the Lower Thermosphere, Mesosphere and Stratosphere, Based on Measurements from SABER on TIMED

    Science.gov (United States)

    Huang, Frank T.; Mayr, Hans G.; Russell, James M., III; Mlynczak, Martin G.

    2012-01-01

    The analysis of mutual ozone-temperature variations can provide useful information on their interdependencies relative to the photochemistry and dynamics governing their behavior. Previous studies have mostly been based on satellite measurements taken at a fixed local time in the stratosphere and lower mesosphere. For these data, it is shown that the zonal mean ozone amounts and temperatures in the lower stratosphere are mostly positively correlated, while they are mostly negatively correlated in the upper stratosphere and in the lower mesosphere. The negative correlation, due to the dependence of photochemical reaction rates on temperature, indicates that ozone photochemistry is more important than dynamics in determining the ozone amounts. In this study, we provide new results by extending the analysis to include diurnal variations over 24 hrs of local time, and to larger spatial regimes, to include the upper mesosphere and lower thermosphere (MLT). The results are based on measurements by the SABER instrument on the TIMED satellite. For mean variations (i.e., averages over local time and longitude) in the MLT, our results show that there is a sharp reversal in the correlation near 80 km altitude, above which the ozone mixing ratio and temperature are mostly positively correlated, while they are mostly negatively correlated below 80 km. This is consistent with the view that above -80 km, effects due to dynamics are more important compared to photochemistry. For diurnal variations, both the ozone and temperature show phase progressions in local time, as a function of altitude and latitude. For temperature, the phase progression is as expected, as they represent migrating tides. For day time ozone, we also find regular phase progression in local time over the whole altitude range of our analysis, 25 to 105 km, at least for low latitudes. This was not previously known, although phase progressions had been noted by us and by others at lower altitudes. For diurnal

  7. Near-ground ozone source attributions and outflow in central eastern China during MTX2006

    Science.gov (United States)

    Li, J.; Wang, Z.; Akimoto, H.; Yamaji, K.; Takigawa, M.; Pochanart, P.; Liu, Y.; Tanimoto, H.; Kanaya, Y.

    2008-12-01

    A 3-D regional chemical transport model, the Nested Air Quality Prediction Model System (NAQPMS), with an on-line tracer tagging module was used to study the source of the near-ground (pollutants, and it captured highly polluted and clean cases well. The simulated near-ground ozone level over CEC was 60-85 ppbv (parts per billion by volume), which was higher than values in Japan and over the North Pacific (20-50 ppbv). The simulated tagged tracer data indicated that the regional-scale transport of chemically produced ozone over other areas in CEC contributed to the greatest fraction (49%) of the near-ground mean ozone at Mt. Tai in June; in situ photochemistry contributed only 12%. Due to high anthropogenic and biomass burning emissions that occurred in the southern part of the CEC, the contribution to ground ozone levels from this area played the most important role (32.4 ppbv, 37.9% of total ozone) in the monthly mean ozone concentration at Mt. Tai; values reached 59 ppbv (62%) on 6-7 June 2006. The monthly mean horizontal distribution of chemically produced ozone from various ozone production regions indicated that photochemical reactions controlled the spatial distribution of O3 over CEC. The regional-scale transport of pollutants also played an important role in the spatial and temporal distribution of ozone over CEC. Chemically produced ozone from the southern part of the study region can be transported northeastwardly to the northern rim of CEC; the mean contribution was 5-10 ppbv, and it reached 25 ppbv during high ozone events. Studies of the outflow of CEC ozone and its precursors, as well as their influences and contributions to the ozone level over adjacent regions/countries, revealed that the contribution of CEC ozone to mean ozone mixing ratios over the Korean Peninsula and Japan was 5-15 ppbv, of which about half was due to the direct transport of ozone from CEC and half was produced locally by ozone precursors transported from CEC.

  8. High ozone levels in the northeast of Portugal: Analysis and characterization

    Science.gov (United States)

    Carvalho, A.; Monteiro, A.; Ribeiro, I.; Tchepel, O.; Miranda, A. I.; Borrego, C.; Saavedra, S.; Souto, J. A.; Casares, J. J.

    2010-03-01

    Each summer period extremely high ozone levels are registered at the rural background station of Lamas d'Olo, located in the Northeast of Portugal. In average, 30% of the total alert threshold registered in Portugal is detected at this site. The main purpose of this study is to characterize the atmospheric conditions that lead to the ozone-rich episodes at this site. Synoptic patterns anomalies and back trajectories cluster analysis were performed, for the period between 2004 and 2007, considering 76 days when ozone maximum hourly concentrations were above 200 μg m -3. The obtained atmospheric anomaly fields suggested that a positive temperature anomaly is visible above the Iberian Peninsula. A strong wind flow pattern from NE is observable in the North of Portugal and Galicia, in Spain. These two features may lead to an enhancement of the photochemical production and to the transport of pollutants from Spain to Portugal. In addition, the 3D mean back trajectories associated to the ozone episode days were analysed. A clustering method has been applied to the obtained back trajectories. Four main clusters of ozone-rich episodes were identified, with different frequencies of occurrence: north-westerly flows (11%); north-easterly flows (45%), southern flow (4%) and westerly flows (40%). Both analyses highlight the NE flow as a dominant pattern over the North of Portugal during summer. The analysis of the ozone concentrations for each selected cluster indicates that this northeast circulation pattern, together with the southern flow, are responsible for the highest ozone peak episodes. This also suggests that long-range transport of atmospheric pollutants is the main contributor to the ozone levels registered at Lamas d'Olo. This is also highlighted by the correlation of the ozone time-series with the meteorological parameters analysed in the frequency domain.

  9. Variability and trend in ozone over the southern tropics and subtropics

    Science.gov (United States)

    Toihir, Abdoulwahab Mohamed; Portafaix, Thierry; Sivakumar, Venkataraman; Bencherif, Hassan; Pazmiño, Andréa; Bègue, Nelson

    2018-03-01

    Long-term variability in ozone trends was assessed over eight Southern Hemisphere tropical and subtropical sites (Natal, Nairobi, Ascension Island, Java, Samoa, Fiji, Reunion and Irene), using total column ozone data (TCO) and vertical ozone profiles (altitude range 15-30 km) recorded during the period January 1998-December 2012. The TCO datasets were constructed by combination of satellite data (OMI and TOMS) and ground-based observations recorded using Dobson and SAOZ spectrometers. Vertical ozone profiles were obtained from balloon-sonde experiments which were operated within the framework of the SHADOZ network. The analysis in this study was performed using the Trend-Run model. This is a multivariate regression model based on the principle of separating the variations of ozone time series into a sum of several forcings (annual and semi-annual oscillations, QBO (Quasi-Biennial Oscillation), ENSO, 11-year solar cycle) that account for most of its variability. The trend value is calculated based on the slope of a normalized linear function which is one of the forcing parameters included in the model. Three regions were defined as follows: equatorial (0-10° S), tropical (10-20° S) and subtropical (20-30° S). Results obtained indicate that ozone variability is dominated by seasonal and quasi-biennial oscillations. The ENSO contribution is observed to be significant in the tropical lower stratosphere and especially over the Pacific sites (Samoa and Java). The annual cycle of ozone is observed to be the most dominant mode of variability for all the sites and presents a meridional signature with a maximum over the subtropics, while semi-annual and quasi-biannual ozone modes are more apparent over the equatorial region, and their magnitude decreases southward. The ozone variation mode linked to the QBO signal is observed between altitudes of 20 and 28 km. Over the equatorial zone there is a strong signal at ˜ 26 km, where 58 % ±2 % of total ozone variability is

  10. Comparative studies on the degradation of aqueous 2-chloroaniline by O3 as well as by UV-light and γ-rays in the presence of ozone

    International Nuclear Information System (INIS)

    Winarno, Ermin Katrin; Getoff, Nikola

    2002-01-01

    Chlorinated anilines are frequently used in the industry as starting materials for chemical synthesis. Hence, such compounds can occur as pollutants in waste waters. In the present study 2-chloroaniline (2-ClA) was selected as the representative model for this class of compounds. The objectives of the work concerned 2-ClA degradation in water by ozonation as well as by photolysis (UV-light of 254 nm) and radiolysis (γ-rays) in the presence of ozone. In all three series of experiments, the same amount ozone was passed through the 2-ClA solution at pH=6.9 during the treatment. The degradation process was followed as a function of the action time and by chemical analysis of the major products. Based on the actinometry of the monochromatic UV-light (λ=254 nm, E=4.88 eV/hν) and dosimetry data, the obtained degradation yields and products by the three series of experiments are compared. It was established that the synergic effect of γ-rays and ozone leads to the most efficient degradation of 2-ClA, followed by UV/O 3 -combination and pure ozonation. The same sequence is also observed by cleavage of the Cl-atom. The formation of the other major products: ammonia, formaldehyde, oxalic acid and the total yield of carboxylic acids depend on the media. Probable reaction mechanisms are suggested for explanation of the experimental results

  11. Observations of reduced ozone concentrations in the tropical stratosphere after the eruption of Mt. Pinatubo

    Science.gov (United States)

    Grant, W. B.; Fishman, J.; Browell, E. V.; Brackett, V. G.; Nganga, D.; Minga, A.; Cros, B.; Veiga, R. E.; Butler, C. F.; Fenn, M. A.

    1992-01-01

    Two independent sets of data, one of aerosols from an airborne lidar system, and one of ozone from ozonesonde measurements indicate that significant ozone decreases may have happened as a result of the injection of debris by the Mt. Pinatubo volcano in June 1991. The amount of this reduction maximizes at 24-25 km, near the peak of the aerosol distribution, though a deficit is seen throughout the lower stratosphere between 19 and 28 km. The greatest differences observed prior and subsequent to the eruptions at these altitudes is 18-20 percent.

  12. Treatment of Wastewater by Ozone Produced in Dielectric Barrier Discharge

    Directory of Open Access Journals (Sweden)

    Rita Bhatta

    2015-01-01

    Full Text Available There is rapid diminishing of water resources in many countries due to, for example, population growth and constant reduction in fresh water supply. The sewage wastewater, industrial effluents, and municipal wastewater are directly and indiscriminately discharged into rivers and lakes and thus primarily cause water pollution in Nepal. This has increased the water crisis and also causes environmental deterioration. Therefore, the need for the development of an effective, cheap, and environmentally friendly process for the treatment of wastewater before discharging into aquatic environment has emerged. Treatment by ozone produced from dielectric barrier discharge is one of the emerging technologies for such application. The ozonation process is more effective for disinfection and degradation of organic pollutants from water. The current study describes the treatment of wastewater of selected site within Kathmandu. Results on various physicochemical and microbial parameters of the inlet and outlet samples are discussed. Our results showed slight increase in pH, decrease in chemical oxygen demand, and significant increase in dissolved oxygen after ozonation. Importantly, ozonation caused total reduction of fecal coliform.

  13. Use of ozone-biofiltration for bulk organic removal and disinfection byproduct mitigation in potable reuse applications.

    Science.gov (United States)

    Arnold, Mayara; Batista, Jacimaria; Dickenson, Eric; Gerrity, Daniel

    2018-07-01

    The purpose of this research was to investigate the impacts of ozone dose and empty bed contact time (EBCT) in ozone-biofiltration systems on disinfection byproduct (DBP) formation potential. The data were used to evaluate the possibility of using DBP formation potential as an alternative guideline for total organic carbon (TOC) removal in potable reuse applications. A pilot-scale ozone-biofiltration system was operated with O 3 /TOC ratios ranging from 0.1 to 2.25 and EBCTs ranging from 2 to 20 min. The biofiltration columns contained anthracite or biological activated carbon (BAC). Bench-scale chlorination was performed using the uniform formation conditions (UFC) approach, and quenched samples were analyzed for total trihalomethanes (TTHMs) and regulated haloacetic acids (HAA5s). The data demonstrated that ozone-biofiltration achieved TOC removals ranging from ∼10 to 30%, depending on operational conditions, but biofiltration without ozone generally achieved <10% TOC removal. UFC testing demonstrated that ozone alone was efficient in transforming bulk organic matter and reducing DBP formation potential by 10-30%. The synergistic combination of ozone and biofiltration achieved average overall reductions in TTHM and HAA5 formation potential of 26% and 51%, respectively. Finally, a maximum TOC concentration of 2.0 mg/L was identified as a recommended treatment target for reliable compliance with TTHM and HAA5 regulations for potable reuse systems in the United States. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Future heat waves and surface ozone

    Science.gov (United States)

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  15. Physicochemical and Microbiological Analysis of Drinking Water Treated by Using Ozone

    International Nuclear Information System (INIS)

    Subedi, D.P.; Khadgi, A.; Tyata, R.B.; Wong, C.S.

    2012-01-01

    This study focused on the application of a Dielectric Barrier Discharge (DBD ) unit to produce highly oxidizing ozone molecules for the treatment of drinking water. The samples of water were collected from three different sources, namely tap, stone spout and tube-well in the Kathmandu valley. Various physical, chemical and micro-biological analyses were carried out to both the ozone treated and untreated samples of water for comparison. Our results indicated that ozone does not alter the physical characteristics, namely pH, conductivity and turbidity of water but it has significant effect on the chemical properties such as nitrate concentration, total hardness, calcium hardness, Fe(II) and Fe(III) concentration. It was observed that ozone efficiently precipitates ferrous ion into ferric ion and is effective in the removal of fecal coliform, a key element for various water related health problems in most of the developing countries. It is shown that the treatment with ozone leads to a significant reduction in the number of fecal coliform in the samples of drinking water from tap, stone spout and tube well with p values 0.00182, 0.026 and 5.8 x 10 -15 , respectively at 0.05 level of significance. (author)

  16. Ground-level ozone pollution and its health impacts in China

    Science.gov (United States)

    Liu, Huan; Liu, Shuai; Xue, Boru; Lv, Zhaofeng; Meng, Zhihang; Yang, Xiaofan; Xue, Tao; Yu, Qiao; He, Kebin

    2018-01-01

    In recent years, ground-level ozone pollution in China has become an increasingly prominent problem. This study simulated and analyzed spatiotemporal distribution of ozone and exposure level by the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) models and monitoring data from 1516 national air quality monitoring stations in China during 2015. The simulation results show that the Sichuan Basin, Shandong, Shanxi, Henan, Anhui, Qinghai-Tibetan Plateau, Yangtze River Delta (YRD), Pearl River Delta (PRD) and Beijing-Tianjin-Hebei (BTH) region had relatively high average annual concentrations of ozone. The regions with more than 10% nonattainment days of 160 μg/m3 (daily maximum 8-h) are mainly concentrated in BTH, Shandong Peninsula and YRD, where large seasonal variations were also found. Exposure levels were calculated based on population data and simulated ozone concentrations. The cumulative population exposed to daily maximum 8-h concentration greater than or equal to 100 μg/m3 was 816.04 million, 61.17% of the total. Three methods were used to estimate the mortality of chronic obstructive pulmonary disease (COPD) attributable to ozone. A comparative study using different exposure concentrations and threshold concentrations found large variations among these methods, although they were all peer-reviewed methods. The estimated mortality of COPD caused by ozone in China in 2015 ranged from 55341 to 80280, which mainly distributed in Beijing, Shandong, Henan, Hubei and Sichuan Province, the YRD and PRD region.

  17. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15

    International Nuclear Information System (INIS)

    Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua

    2015-01-01

    Highlights: • Clofibric acid (CA) is efficiently mineralized by O 3 /MnO x /SBA-15. • Adsorption of CA and its intermediates on MnO x /SBA-15 is proved unimportant. • Initiation of hydroxyl radicals (·OH) is enhanced in O 3 /MnO x /SBA-15. • Uniformly distributed MnO x accounts for the high activity of MnO x /SBA-15. • Degradation routes of CA in ozonation alone and catalytic ozonation are proposed. - Abstract: Comparative experiments were conducted to investigate the catalytic ability of MnO x /SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O 3 /MnO x /SBA-15). Adsorption of CA and its intermediates by MnO x /SBA-15 was proved unimportant in O 3 /MnO x /SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO 3 ) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO x /SBA-15 facilitated the generation of hydroxyl radicals (·OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO x on SBA-15 were believed to be the main active component in MnO x /SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more ·OH

  18. Ozone health effects

    International Nuclear Information System (INIS)

    Easterly, C.

    1994-01-01

    Ozone is a principal component of photochemical air pollution endogenous to numerous metropolitan areas. It is primarily formed by the oxidation of NOx in the presence of sunlight and reactive organic compounds. Ozone is a highly active oxidizing agent capable of causing injury to the lung. Lung injury may take the form of irritant effects on the respiratory tract that impair pulmonary function and result in subjective symptoms of respiratory discomfort. These symptoms include, but are not limited to, cough and shortness of breath, and they can limit exercise performance. The effects of ozone observed in humans have been primarily limited to alterations in respiratory function, and a range of respiratory physiological parameters have been measured as a function of ozone exposure in adults and children. These affects have been observed under widely varying (clinical experimental and environmental settings) conditions

  19. Advanced treatment of biotreated textile industry wastewater with ozone, virgin/ozonated granular activated carbon and their combination.

    Science.gov (United States)

    Arslan-Alaton, Idil; Seremet, Ozden

    2004-01-01

    Biotreated textile wastewater (CODo = 248 mg L(-1); TOCo = 58 mg L(-1); A620 = 0.007 cm(-1); A525 = 0.181 cm(-1); A436 = 0.198 cm(-1)) was subjected to advanced treatment with ozonation, granular activated carbon (GAC) adsorption in serial and simultaneous applications. Experiments were conducted to investigate the effects of applied ozone dose, ozone absorption rate, specific ozone absorption efficiency, GAC dose, and reaction pH on the treatment performance of the selected tertiary treatment scheme. In separate experiments, the impact of virgin GAC ozonation on its adsorptive capacity for biotreated and biotreated + ozonated textile effluent was also investigated. Ozonation appeared to be more effective for decolorization (kd = 0.15 min(-1) at pH = 3), whereas GAC adsorption yielded higher COD removal rates (54% at pH = 3). It was also found that GAC addition (4 g/L) at pH = 7 and 9 enhanced the COD abatement rate of the ozonation process significantly and that the sequential application of ozonation (at pH = 3-11, 675 mg L(-1) O3) followed by GAC adsorption (at pH = 3-7, 10 g L(-1) GAC) resulted in the highest treatment performances both in terms of color and COD reduction. Simultaneous application of GAC and ozone at acidic and alkaline pH seriously inhibited COD abatement rates as a consequence of competitive adsorption and partial oxidation of textile components and GAC. It could also be established that ozone absorption efficiency decreased after color removal was complete. Ozonation of biotreated textile wastewater with 113 mg L(-1) ozone resulted in an appreciable enhancement of GAC adsorptive capacity in terms of residual color removal. Ozonation of GAC at relatively low doses (= 10.8 mg/g GAC) did not improve its overall adsorption capacity.

  20. The Effect of Representing Bromine from VSLS on the Simulation and Evolution of Antarctic Ozone

    Science.gov (United States)

    Oman, Luke D.; Douglass, Anne R.; Salawitch, Ross J.; Canty, Timothy P.; Ziemke, Jerald R.; Manyin, Michael

    2016-01-01

    We use the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM), a contributor to both the 2010 and 2014 WMO Ozone Assessment Reports, to show that inclusion of 5 parts per trillion (ppt) of stratospheric bromine(Br(sub y)) from very short lived substances (VSLS) is responsible for about a decade delay in ozone hole recovery. These results partially explain the significantly later recovery of Antarctic ozone noted in the 2014 report, as bromine from VSLS was not included in the 2010 Assessment. We show multiple lines of evidence that simulations that account for VSLS Br(sub y) are in better agreement with both total column BrO and the seasonal evolution of Antarctic ozone reported by the Ozone Monitoring Instrument (OMI) on NASAs Aura satellite. In addition, the near zero ozone levels observed in the deep Antarctic lower stratospheric polar vortex are only reproduced in a simulation that includes this Br(sub y) source from VSLS.

  1. Optical remote measurement of ozone in cirrus clouds; Optische Fernmessung von Ozon in Zirruswolken

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Physikalische und Chemische Analytik

    1998-12-31

    The subject of this thesis is theoretical and experimental investigations into the simultaneous optical remote measurement of atmospheric ozone concentration and particle properties. A lidar system was developed that combines the Raman-lidar and the polarization-lidar with the Raman-DIAL technique. An error analysis is given for ozone measurements in clouds. It turns out that the wavelength dependencies of photon multiple scattering and of the particle extinction coefficient necessitate a correction of the measured ozone concentration. To quantify the cloud influence, model calculations based on particle size distributions of spheres are carried out. The most important experimental result of this thesis is the measured evidence of pronounced minima in the ozone distribution in a humid upper troposphere shortly before and during cirrus observation. Good correlation between ozone-depleted altitude ranges and ice clouds is found. This finding is in contrast to ozone profiles measured in a dry and cloud-free troposphere. (orig.) 151 refs.

  2. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone

    International Nuclear Information System (INIS)

    Riikonen, J.; Holopainen, T.; Oksanen, E.; Lindsberg, M-M.; Lappi, J.; Peltonen, P.; Vapaavuori, E.

    2004-01-01

    The effects of elevated concentrations of carbon dioxide and ozone were studied on growth, biomass allocation and leaf area of field-grown ozone-tolerant (Clone 4) and ozone-sensitive (Clone 80) European silver birch trees. Seven-year old trees of both types were exposed for three years to outside and chamber control, (1) twice ambient ozone, (2) twice ambient carbon dioxide, and (3) twice ambient carbon dioxide and twice ambient ozone. No effect on biomass allocation was observed when results of the two clones were analyzed together. Total leaf area showed an increase, and leaf abscission appeared delayed in response to elevated carbon dioxide. Elevated ozone caused the dry mass of roots, branches and mean leaf size to decrease, and autumnal leaf abscission occurred earlier than usual in both clones. In general. the effects of elevated ozone were small, however, the interaction between elevated carbon dioxide and elevated oxygen were significant. When results from the two clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 increased when exposed to elevated concentrations of carbon dioxide; elevated concentrations of ozone appeared to have no effect. In Clone 4 elevated ozone caused significant decrease in root and branch biomass, but the effects of elevated carbon dioxide were minimal. Responses to elevated ozone exposure were observed only under ambient carbon dioxide conditions. This response is believed to reflect the greater quantity of carbohydrates available for detoxification and repair under elevated carbon dioxide conditions. Alternatively, the response may be due to decreased stomatal conductance, thus decreased ozone uptake under elevated carbon dioxide conditions. 45 refs., 6 tabs., 4 figs

  3. Experimental study of ozone synthesis

    International Nuclear Information System (INIS)

    Garamoon, A A; Elakshar, F F; Nossair, A M; Kotp, E F

    2002-01-01

    A silent discharge ozonizer has been constructed with a design that enables the study of ozone concentration behaviour as a function of different parameters when oxygen used as a working gas. The behaviour of ozone concentration as a function of discharge current density has four characteristic regions. The concentration is enhanced by more than threefold whenever gas pressure is reduced by a factor of two. The flow rate of the working gas is a more effective parameter on ozone concentration than the gas pressure. When the flow rate is kept constant, and the pressure is decreased by 100%, the ozone concentration increases by only 10%. On the other hand, when the flow rate is decreased by 13%, the ozone concentration increases by 200%, whenever the gas pressure is kept constant. The concentration is nearly doubled when the gap space is increased by four times under the same conditions. The length of the discharge region, the thickness and the dielectric constant of the insulating materials are found to have a considerable effect on the generated ozone concentration. Also, the ozone concentration is ten times less when air is used instead of oxygen as a working gas. A maximum efficiency of 185 g/kWh, is obtained for the present system

  4. Inactivation of E-coli O157 : H7 in apple cider by ozone at various temperatures and concentrations

    DEFF Research Database (Denmark)

    Steenstrup, Lotte Dock

    2004-01-01

    of dissolved ozone of about 5-6 mg/L at 20C, before the on-set of E. coli O157:H7 inactivation in the cider. Total processing times, based on lag time plus 5D, ranged from about 4 to 14 min depending on temperature and ozone concentration. Overall, inactivation of E. coli O157:H7by ozone was fast enough...

  5. Ozone kinetics in low-pressure discharges

    Science.gov (United States)

    Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine

    2012-10-01

    Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).

  6. [Smog chamber simulation of ozone formation from atmospheric photooxidation of propane].

    Science.gov (United States)

    Huang, Li-hua; Mo, Chuang-rong; Xu, Yong-fu; Jia, Long

    2012-08-01

    Atmospheric photochemical reactions of propane and NO, were simulated with a self-made smog chamber. The effects of relative humidity (RH) and [C3H8]0/[NOx]0 ratio on ozone formation were studied. The results showed that both the maximum ozone concentration and the maximum value of incremental reactivity (IRmax) of propane decreased linearly with increasing RH. Under lower RH conditions, the occurrence time of peak ozone concentration was about 22 h after the beginning of reaction, and IRmax varied from 0.0231 to 0.0391, while under higher RH conditions the occurrence time of peak ozone concentration was 16 h, and IRmax ranged from 0.0172 to 0.0320. During the 20 h of reaction, within the first 12 h RH did not significantly affect the yield of acetone, whereas after 12 h the lower RH condition could lead to relatively greater amount of acetone. During the first 4-20 h of experiments, acetone concentrations ranged from 153 x 10(-9) to 364 x 10(-9) at 17% RH and from 167 x 10(-9) to 302 x 10(-9) at 62% RH, respectively. Maximum ozone concentrations decreased with increasing [C3H8]0/[NOx]0 ratio and a better negative linear relationship between them was obtained under the lower RH conditions. The smog chamber data and the results from simulation of the C3H8-NOx reactions using the sub-mechanism of MCM were compared, and a significant deviation was found between these two results.

  7. Physicochemical patterns of ozone absorption by wood

    Science.gov (United States)

    Mamleeva, N. A.; Lunin, V. V.

    2016-11-01

    Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.

  8. The historic surface ozone record, 1896-1975, and its relation to modern measurements

    Science.gov (United States)

    Galbally, I. E.; Tarasick, D. W.; Stähelin, J.; Wallington, T. J.; Steinbacher, M.; Schultz, M.; Cooper, O. R.

    2017-12-01

    Tropospheric ozone is a greenhouse gas, a key component of atmospheric chemistry, and is detrimental to human health and plant productivity. The historic surface ozone record 1896-1975 has been constructed from measurements selected for (a) instrumentation whose ozone response can be traced to modern tropospheric ozone measurement standards, (b) samples taken when there is low probability of chemical interference and (c) sampling locations, heights and times when atmospheric mixing will minimise vertical gradients of ozone in the planetary boundary layer above and around the measurement location. Early measurements with the Schönbein filter paper technique cannot be related to modern methods with any degree of confidence. The potassium iodide-arsenite technique used at Montsouris for 1876-1910 is valid for measuring ozone; however, due to the presence of the interfering gases sulfur dioxide, ammonia and nitrogen oxides, the measured ozone concentrations are not representative of the regional atmosphere. The use of these data sets for trend analyses is not recommended. In total, 58 acceptable sets of measurements are currently identified, commencing in Europe in 1896, Greenland in 1932 and globally by the late 1950's. Between 1896 and 1944 there were 21 studies (median duration 5 days) with a median mole fraction of 23 nmol mol-1 (range of study averages 15-62 nmol mol-1). Between 1950 and 1975 there were 37 studies (median duration approx. 21 months) with a median mole fraction of 22 nmol mol-1 (range of study averages 13-49 nmol mol-1), all measured under conditions likely to give ozone mole fractions similar to those in the planetary boundary layer. These time series are matched with modern measurements from the Tropospheric Ozone Assessment Report (TOAR) Ozone Database and used to examine changes between the historic and modern observations. These historic ozone levels are higher than previously accepted for surface ozone in the late 19th early 20th Century

  9. A comparison of total amount of blood needed in patients taking autologous or homologous blood transfusion in coronary artery bypass grafting a clinical randomized case control trial

    International Nuclear Information System (INIS)

    Akhlagh, S.H.; Chohedri, A.H.; Bazojoo, A.; Nemati, M.H.

    2007-01-01

    The aim of this clinical case-control trial was to compare the total amount of blood needed in patients taking autologous or homologous blood transfusion in coronary artery bypass grafting (CABG) surgery. Sixty patients scheduled for CABG were randomly allocated to ANH (Acute Normovulemic Hemodynamic) group (A group) or control group (B group). Hematocrit before operation and 24 hours after the operation were checked. The amount of the total blood needed in each group was measured at the end of the operation. There was no significant difference between the two groups as regards post operational hematocrit. The mean total blood infused to the control and ANH group was 2010 ml and 1815 ml respectively. However there was significant difference between the two groups as regards the total amount of the blood needed during operation. Our randomized, double blinded case control study demonstrated that autologous blood, beside carrying lower risks for hemolytic and nonhemolytic transfusion reactions decrease the total amount of blood needed for CABG. However larger studies with more patients are needed to confirm the results. (author)

  10. Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations

    Directory of Open Access Journals (Sweden)

    Martin G. Schultz

    2017-10-01

    Full Text Available In support of the first Tropospheric Ozone Assessment Report (TOAR a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to build the world's largest collection of 'in-situ' hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of 'a posteriori' data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface

  11. Significant increase of surface ozone at a rural site, north of eastern China

    Directory of Open Access Journals (Sweden)

    Z. Ma

    2016-03-01

    Full Text Available Ozone pollution in eastern China has become one of the top environmental issues. Quantifying the temporal trend of surface ozone helps to assess the impacts of the anthropogenic precursor reductions and the likely effects of emission control strategies implemented. In this paper, ozone data collected at the Shangdianzi (SDZ regional atmospheric background station from 2003 to 2015 are presented and analyzed to obtain the variation in the trend of surface ozone in the most polluted region of China, north of eastern China or the North China Plain. A modified Kolmogorov–Zurbenko (KZ filter method was performed on the maximum daily average 8 h (MDA8 concentrations of ozone to separate the contributions of different factors from the variation of surface ozone and remove the influence of meteorological fluctuations on surface ozone. Results reveal that the short-term, seasonal and long-term components of ozone account for 36.4, 57.6 and 2.2 % of the total variance, respectively. The long-term trend indicates that the MDA8 has undergone a significant increase in the period of 2003–2015, with an average rate of 1.13 ± 0.01 ppb year−1 (R2 = 0.92. It is found that meteorological factors did not significantly influence the long-term variation of ozone and the increase may be completely attributed to changes in emissions. Furthermore, there is no significant correlation between the long-term O3 and NO2 trends. This study suggests that emission changes in VOCs might have played a more important role in the observed increase of surface ozone at SDZ.

  12. Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery?

    Directory of Open Access Journals (Sweden)

    J.-U. Grooß

    2011-12-01

    Full Text Available Balloon-borne observations of ozone from the South Pole Station have been reported to reach ozone mixing ratios below the detection limit of about 10 ppbv at the 70 hPa level by late September. After reaching a minimum, ozone mixing ratios increase to above 1 ppmv on the 70 hPa level by late December. While the basic mechanisms causing the ozone hole have been known for more than 20 yr, the detailed chemical processes determining how low the local concentration can fall, and how it recovers from the minimum have not been explored so far. Both of these aspects are investigated here by analysing results from the Chemical Lagrangian Model of the Stratosphere (CLaMS. As ozone falls below about 0.5 ppmv, a balance is maintained by gas phase production of both HCl and HOCl followed by heterogeneous reaction between these two compounds in these simulations. Thereafter, a very rapid, irreversible chlorine deactivation into HCl can occur, either when ozone drops to values low enough for gas phase HCl production to exceed chlorine activation processes or when temperatures increase above the polar stratospheric cloud (PSC threshold. As a consequence, the timing and mixing ratio of the minimum ozone depends sensitively on model parameters, including the ozone initialisation. The subsequent ozone increase between October and December is linked mainly to photochemical ozone production, caused by oxygen photolysis and by the oxidation of carbon monoxide and methane.

  13. Ozone Effects on Fruit Productivity and Photosynthetic Response of Two Tomato Cultivars in Relation to Stomatal Fluxes

    Directory of Open Access Journals (Sweden)

    Giacomo Gerosa

    Full Text Available An Open-Top Chamber experiment on two tomato cultivars (cv. Oxheart and cv. San Marzano was carried out in Curno (Northern Italy between June and September 2007. Two ozone treatments were applied for a 3.5 months period: Non-Filtered OTC (NF-OTC, 95% of ambient ozone and Charcoal-Filtered OTC (CF-OTC, 50% of ambient ozone. Diurnal cycles of porometry measurements were performed during the season and allowed to draw a stomatal conductance model for each cultivar in order to calculate the ozone stomatal fluxes taken up by plants. Assessments on fruits yield were performed during the season, taking into account the number of fruits, their fresh weight and their marketability. In addition, measurements on the chlorophyll fluorescence of photosystems were carried out to assess possible negative effects on photosynthetic efficiency. Despite the two cultivars absorbed a similar ozone stomatal dose during the season (with an 8% difference, their responses to ozone treatments were totally divergent in relation to both fruits yield and photosynthetic efficiency. Plants of cv. Oxheart grown in NF-OTCs showed significant yield loss in the total weight of fruits (-35.9% which is exclusively related to a decrease in the number of fruits produced (-35.7% of total fruits; -30.6% of marketable fruits, since mean fresh weight of fruits remained unaffected. Moreover the same plants displayed low values (in comparison to CF-OTCs plants of the photosynthetic efficiency index (PIabs during the most intense period of ozone stress (July occurred in the flowering stage of plants and at the beginning of fructification. Plants of the cv. San Marzano had an opposite response behaviour with an increase of the mean fresh weight of fruits in plants grown in NF-OTC (even if not statistically significant and no difference in the number of fruits produced and in the values of photosynthetic efficiency.

  14. Reconstruction of daily erythemal UV radiation values for the last century - The benefit of modelled ozone

    Science.gov (United States)

    Junk, J.; Feister, U.; Rozanov, E.; Krzyścin, J. W.

    2013-05-01

    Solar erythemal UV radiation (UVER) is highly relevant for numerous biological processes that affect plants, animals, and human health. Nevertheless, long-term UVER records are scarce. As significant declines in the column ozone concentration were observed in the past and a recovery of the stratospheric ozone layer is anticipated by the middle of the 21st century, there is a strong interest in the temporal variation of UVER time series. Therefore, we combined groundbased measurements of different meteorological variables with modeled ozone data sets to reconstruct time series of daily totals of UVER at the Meteorological Observatory Potsdam, Germany. Artificial neural networks were trained with measured UVER, sunshine duration, the day of year, measured and modeled total column ozone, as well as the minimum solar zenith angle. This allows for the reconstruction of daily totals of UVER for the period from 1901 to 1999. Additionally, analyses of the long-term variations from 1901 until 1999 of the reconstructed, new UVER data set are presented. The time series of monthly and annual totals of UVER provide a long-term meteorological basis for epidemiological investigations in human health and occupational medicine for the region of Potsdam and Berlin. A strong benefit of our ANN-approach is the fact that it can be easily adapted to different geographical locations, as successfully tested in the framework of the COSTAction 726.

  15. Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China

    Directory of Open Access Journals (Sweden)

    Y. C. Lee

    2014-08-01

    Full Text Available Concerns have been raised about the possible connections between the local and regional photochemical problem and global warming. The current study assesses the trend of ozone in Hong Kong and the Pearl River Delta (PRD in South China and investigates the interannual changes of sensitivity of ozone to air temperature, as well as the trends in regional precursors. Results reveal, at the three monitoring sites from the mid-1990s to 2010, an increase in the mean ozone concentrations from 1.0 to 1.6 µg m−3 per year. The increase occurred in all seasons, with the highest rate in autumn. This is consistent with trends and temperature anomalies in the region. The increase in the sensitivity of ozone to temperature is clearly evident from the correlation between ozone (OMI [Ozone Monitoring Instrument] column amount and surface air temperature (from the Atmospheric Infrared Sounder displayed in the correlation maps for the PRD during the prominently high ozone period of July–September. It is observed to have increased from 2005 to 2010, the latter being the hottest year on record globally. To verify this temporal change in sensitivity, the ground-level trends of correlation coefficients/regression slopes are analysed. As expected, results reveal a statistically significant upward trend over a 14-year period (1997–2010. While the correlation revealed in the correlation maps is in agreement with the corresponding OMI ozone maps when juxtaposed, temperature sensitivity of surface ozone also shows an association with ozone concentration, with R=0.5. These characteristics of ozone sensitivity are believed to have adverse implications for the region. As shown by ground measurements and/or satellite analyses, the decrease in nitrogen oxides (NO2 and NOx in Hong Kong is not statistically significant while NO2 of the PRD has only very slightly changed. However, carbon dioxide has remarkably declined in the whole region. While these observations concerning

  16. Combined biodegradation and ozonation for removal of tannins and dyes for the reduction of pollution loads.

    Science.gov (United States)

    Kanagaraj, James; Mandal, Asit Baran

    2012-01-01

    Tannins and dyes pose major threat to the environment by generating huge pollution problem. Biodegradation of wattle extract, chrome tannin and dye compounds using suitable fungal culture namely Aspergillus niger, Penicillium sp. were carried out. In addition to these, ozone treatment was carried out to get higher degradation rate. The results were monitored by carrying out chemical oxygen demand (COD), total organic carbon (TOC), and UV-Vis analysis. The results showed that wattle extract (vegetable tannin) gave better biodegradation rate than dye and chromium compounds. Biodegradation plus ozone showed degradation rates of 92-95%, 94-95%, and 85-87% for the wattle extract, dyes, chromium compounds, respectively. UV-Vis showed that there were no peaks observed for biodegraded samples indicating better degradation rates as compared to the control samples. FT-IR spectra analysis suggested that the formation of flavanoid derivatives, chromic oxide and NH(2) compounds during degradation of wattle extract, chromium and dye compounds, respectively, at the peaks of 1,601-1,629 cm(-1), 1,647 cm(-1), and 1,610-1,680 cm(-1). The present investigation shows that combination of biodegradation with ozone is the effective method for the removal of dyes and tannins. The biodegradation of the said compounds in combination with ozonation showed better rate of degradation than by chemical methods. The combination of biodegradation with ozone helps to reduce pollution problems in terms of COD, TOC, total dissolved solids and total suspended solids.

  17. Ozone et propriétés oxydantes de la troposphère Ozone and Oxidizing Properties of the Troposhere

    Directory of Open Access Journals (Sweden)

    Académie des Sciences Groupe de Travail

    2006-11-01

    èles pertinents aux différentes échelles spatiales concernées. Up to now, the problem of the increase in ozone and photo-oxidants concentrations in the troposphere has remained less understood by decision-makers than that of the additional greenhouse effect or the decrease in the stratospheric ozone layer. Yet, the direct consequences of this increase concern the balance of plant ecosystems and the health of populations that are altered by the powerful oxidizing nature of this ozone as well as climatic balances, since ozone is a greenhouse-effect gas that is 1000 times more active than an equal concentration of carbon dioxide. On the global scale, experimental observations show that, since the start of the 20th century, the ozone level in the free atmosphere has been multiplied by 4 in the Northern hemisphere and by 2 in the Southern Hemisphere. This increase is the result of the direct production of ozone in the lower atmosphere by photochemical reactions, involving nitrogen oxides, volatile organic components, carbon monoxide and methane, the amount of which is increasing very fast as the result of anthropogenic activities. In addition to this increase on the global scale, there is also an increase in the frequency of the occurrence of local pollution episodes, linked mainly to the accumulation of ozone precursors, i. e. mainly nitrogen oxides and volatile organic compounds. Photochemical pollution phenomena are no longer solely the result of several large cities but are becoming prevalent in all the industrialized or developing countries. To cope with this fast increase, the present rate of which would lead to the doubling of the ozone concentrations in the troposphere in less than 40 years, regulatory measures are being set up in several countries, and particularly in the European Union. Respecting them will require the development of coherent strategies to reduce the precursors, based on models pertaining to the different spatial scales involved.

  18. Variability and trend in ozone over the southern tropics and subtropics

    Directory of Open Access Journals (Sweden)

    A. M. Toihir

    2018-03-01

    Full Text Available Long-term variability in ozone trends was assessed over eight Southern Hemisphere tropical and subtropical sites (Natal, Nairobi, Ascension Island, Java, Samoa, Fiji, Reunion and Irene, using total column ozone data (TCO and vertical ozone profiles (altitude range 15–30 km recorded during the period January 1998–December 2012. The TCO datasets were constructed by combination of satellite data (OMI and TOMS and ground-based observations recorded using Dobson and SAOZ spectrometers. Vertical ozone profiles were obtained from balloon-sonde experiments which were operated within the framework of the SHADOZ network. The analysis in this study was performed using the Trend-Run model. This is a multivariate regression model based on the principle of separating the variations of ozone time series into a sum of several forcings (annual and semi-annual oscillations, QBO (Quasi-Biennial Oscillation, ENSO, 11-year solar cycle that account for most of its variability. The trend value is calculated based on the slope of a normalized linear function which is one of the forcing parameters included in the model. Three regions were defined as follows: equatorial (0–10° S, tropical (10–20° S and subtropical (20–30° S. Results obtained indicate that ozone variability is dominated by seasonal and quasi-biennial oscillations. The ENSO contribution is observed to be significant in the tropical lower stratosphere and especially over the Pacific sites (Samoa and Java. The annual cycle of ozone is observed to be the most dominant mode of variability for all the sites and presents a meridional signature with a maximum over the subtropics, while semi-annual and quasi-biannual ozone modes are more apparent over the equatorial region, and their magnitude decreases southward. The ozone variation mode linked to the QBO signal is observed between altitudes of 20 and 28 km. Over the equatorial zone there is a strong signal at  ∼ 26

  19. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Science.gov (United States)

    Li, Jingyi; Mao, Jingqiu; Fiore, Arlene M.; Cohen, Ronald C.; Crounse, John D.; Teng, Alex P.; Wennberg, Paul O.; Lee, Ben H.; Lopez-Hilfiker, Felipe D.; Thornton, Joel A.; Peischl, Jeff; Pollack, Ilana B.; Ryerson, Thomas B.; Veres, Patrick; Roberts, James M.; Neuman, J. Andrew; Nowak, John B.; Wolfe, Glenn M.; Hanisco, Thomas F.; Fried, Alan; Singh, Hanwant B.; Dibb, Jack; Paulot, Fabien; Horowitz, Larry W.

    2018-02-01

    Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July-August 2004), SENEX (June-July 2013), and SEAC4RS (August-September 2013) and long-term ground measurement networks alongside a global chemistry-climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (˜ 42-45 %), followed by NOx (31 %), total peroxy nitrates (ΣPNs; 14 %), and total alkyl nitrates (ΣANs; 9-12 %) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.

  20. Influence of wildfires on the variability and trend of ozone concentrations in the U.S. Intermountain West

    Science.gov (United States)

    Lu, Xiao; Zhang, Lin; Zhao, Yuanhong; Yue, Xu

    2016-04-01

    Wildfires are important sources of ozone by emitting large amounts of NOx and NMVOC, main ozone precursors at both global and regional scales. Their influences on ozone in the U.S. Intermountain West have recently received much interest because surface ozone concentrations over that region showed an increasing trend in the past two decades likely due to increasing wildfire emissions in a warming climate. Here we use the Lagrangian particle dispersion model (FLEXPART) as well as the GEOS-Chem chemical transport model to estimate wildfires' contribution on summer (June, July and August; JJA) ozone concentration variations, trends, and extremely high ozone events over the US Intermountain West for the past 22 years (1989-2010). We combine the resident time estimated from the FLEXPART 5-day backward trajectories and a high-resolution fire inventory to define a fire index representing the impact of wildfires on ozone concentration at a particular site for each day of summers 1989-2010. Over 26,000 FLEXPART back-trajectories are conducted for the whole time period and for 13 CASTNet surface monitoring sites. We build a stepwise multiple linear regression (SMLR) model of daily ozone concentrations using fire index and other meteorological variables for each site. The SMLR models explain 53% of the ozone variations (ranging from 12% to 68% for each site). We show that ozone produced from wildfires (calculated from SMLR model) are of high variability at daily scale (ranging from 0.1 ppbv to 20.7 ppbv), but are averaged to lower values of about 0.25-3.5 ppbv for summer mean. We estimate that wildfires magnify inter-annual variations of the regional mean summer ozone for about 32%, compared to the result with wildfires impact excluded from the SMLR model. Wildfire ozone enhancements increase at a rate of 0.04 ppbv per year, accouting for about 20% of the regional summer ozone trend during 1989-2010. Removing wildfires' impact would reduce 35% (46%) of the high-ozone days with

  1. Ozone Therapy in Dentistry

    Science.gov (United States)

    Domb, William C

    2014-01-01

    Summary The 21st century dental practice is quite dynamic. New treatment protocols and new materials are being developed at a rapid pace. Ozone dental therapy falls into the category of new treatment protocols in dentistry, yet ozone is not new at all. Ozone therapy is already a major treatment modality in Europe, South America and a number of other countries. What is provided here will not be an exhaustive scientific treatise so much as a brief general introduction into what dentists are now doing with ozone therapies and the numerous oral/systemic links that make this subject so important for physicians so that, ultimately, they may serve their patients more effectively and productively. PMID:25363268

  2. A comparison of two different approaches for mapping potential ozone damage to vegetation. A model study

    International Nuclear Information System (INIS)

    Simpson, D.; Ashmore, M.R.; Emberson, L.; Tuovinen, J.-P.

    2007-01-01

    Two very different types of approaches are currently in use today for indicating risk of ozone damage to vegetation in Europe. One approach is the so-called AOTX (accumulated exposure over threshold of X ppb) index, which is based upon ozone concentrations only. The second type of approach entails an estimate of the amount of ozone entering via the stomates of vegetation, the AFstY approach (accumulated stomatal flux over threshold of Y nmol m -2 s -1 ). The EMEP chemical transport model is used to map these different indicators of ozone damage across Europe, for two illustrative vegetation types, wheat and beech forests. The results show that exceedences of critical levels for either type of indicator are widespread, but that the indicators give very different spatial patterns across Europe. Model simulations for year 2020 scenarios suggest reductions in risks of vegetation damage whichever indicator is used, but suggest that AOT40 is much more sensitive to emission control than AFstY values. - Model calculations of AOT40 and AFstY show very different spatial variations in the risks of ozone damage to vegetation

  3. Ozonation of clofibric acid catalyzed by titanium dioxide.

    Science.gov (United States)

    Rosal, Roberto; Gonzalo, María S; Rodríguez, Antonio; García-Calvo, Eloy

    2009-09-30

    The removal of clofibric acid from aqueous solution has been investigated in catalytic and non-catalytic semicontinuous ozonation runs. Kinetic data were analyzed using second order expressions for the reaction between organics and ozone or hydroxyl radicals. Catalytic runs used a commercial titanium dioxide catalyst consisting of fumed colloidal particles. The kinetic constant of the non-catalytic ozonation of clofibric acid at pH 3 was 8.16 x 10(-3)+/-3.4 x 10(-4)L mmol(-1)s(-1). The extent of mineralization during non-catalytic runs ranged from 50% at pH 7 to 20% at pH 3 in a reaction that essentially took place during the first 10-20 min. The catalyst increased the total extent of mineralization, its effect being more important during the first part of the reaction. The pseudo-homogeneous catalytic rate constant was 2.17 x 10(-2) L mmol(-1)s(-1) at pH 3 and 6.80 x 10(-1)L mmol(-1)s(-1) at pH 5, with up to a threefold increase with respect to non-catalytic constants using catalyst load of 1g/L. A set of stopped-flow experiments were designed to elucidate the role of catalyst, whose effect was probably due to the adsorption of organics on catalytic sites rather than to the promotion of ozone decomposition.

  4. Aerosol-associated changes in tropical stratospheric ozone following the eruption of Mount Pinatubo

    Science.gov (United States)

    Grant, William B.; Browell, Edward V.; Fishman, Jack; Brackett, Vincent G.; Veiga, Robert E.; Nganga, Dominique; Minga, A.; Cros, Bernard; Butler, Carolyn F.; Fenn, Marta A.

    1994-01-01

    The large amount of sulfuric acid aerosol formed in the stratosphere by conversion of sulfur dioxide emitted by the eruption of Mount Pinatubo (15.14 deg N, 120.35 deg E) in the Philippines around June 15, 1991, has had a pronounced effect on lower stratospheric ozone in the tropics. Measurements of stratospheric ozone in the tropics using electrochemical concentration cell (ECC) sondes before and after the eruption and the airborne UV differential absorption lidar (DIAL) system after the eruption are compared with Stratospheric Aerosol and Gas Experiment II (SAGE II) measurements from several years before the eruption and ECC sonde measurements from the year prior to the eruption to determine the resulting changes. Ozone decreases of up to 33 % compared with SAGE II climatological values were found to be directly correlated with altitude regions of enhanced aerosol loading in the 16- to 28-km range. A maximum partial-column decrease of 29 +/- Dobson units (DU) was found over the 16- to 28-km range in September 1991 along with small increases (to 5.9 +/- 2 DU) from 28 to 31.5 km. A large decrease of ozone was also found at 4 deg to 8 deg S from May to August 1992, with a maximum decrease of 33 +/- 7 DU found above Brazzaville in July. Aerosol data form the visible channel of the advanced very high resolution radiometer (AVHRR) and the visible wavelength of the UV DIAL system were used to examine the relationship between aerosol (surface area) densities and ozone changes. The tropical stratospheric ozone changes we observed in 1991 and 1992 are likely be explained by a combination of dynamical (vertical transport) perturbations, radiative perturbations on ozone photochemistry, and heterogeneous chemistry.

  5. The 2002 Antarctic Ozone Hole

    Science.gov (United States)

    Newman, P. A.; Nash, E. R.; Douglass, A. R.; Kawa, S. R.

    2003-01-01

    Since 1979, the ozone hole has grown from near zero size to over 24 Million km2. This area is most strongly controlled by levels of inorganic chlorine and bromine oncentrations. In addition, dynamical variations modulate the size of the ozone hole by either cooling or warming the polar vortex collar region. We will review the size observations, the size trends, and the interannual variability of the size. Using a simple trajectory model, we will demonstrate the sensitivity of the ozone hole to dynamical forcing, and we will use these observations to discuss the size of the ozone hole during the 2002 Austral spring. We will further show how the Cly decreases in the stratosphere will cause the ozone hole to decrease by 1-1.5% per year. We will also show results from a 3-D chemical transport model (CTM) that has been continuously run since 1999. These CTM results directly show how strong dynamics acts to reduce the size of the ozone hole.

  6. Suitability of Nicotiana tabacum 'Bel W3' for biomonitoring ozone in Sao Paulo, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Sant' Anna, Silvia M.R.; Esposito, Marisia P.; Domingos, Marisa [Instituto de Botanica, Secao de Ecologia, Caixa Postal 3005, 01061-970 Sao Paulo, SP (Brazil); Souza, Silvia R. [Instituto de Botanica, Secao de Ecologia, Caixa Postal 3005, 01061-970 Sao Paulo, SP (Brazil)], E-mail: souzasrd@terra.com.br

    2008-01-15

    Nicotiana tabacum 'Bel W3' is a widely used sensitive bioindicator for ambient ozone, but it is rarely used in tropical countries. Our goal was to determine the suitability of this plant for biomonitoring ozone in the city of Sao Paulo by evaluating the relationships between leaf necroses and ozone under field conditions and measurements of chlorophyll a fluorescence and antioxidants in plants exposed to different concentrations of ozone in closed chambers. While a weak linear relationship between leaf injury and ozone concentrations (R{sup 2} = 0.10) was determined in the field, a strong linear relationship was observed in the chamber experiments. Maximum leaf injury was observed in plants submitted to 40 ppb, which coincided with a significant decrease in fluorescence and total ascorbic acid. The relationship between leaf damage observed in the field and ozone was improved when the concentrations were limited to 40 ppb (R{sup 2} = 0.28). - Nicotiana tabacum 'Bel W3' is suitable for indicating low ozone levels in Brazil.

  7. The Tropospheric Ozone Assessment Report (TOAR): A community-wide effort to quantify tropospheric ozone in a rapidly changing world

    Science.gov (United States)

    Cooper, O. R.; Schultz, M.; Paoletti, E.; Galbally, I. E.; Naja, M. K.; Tarasick, D. W.; Evans, M. J.; Thompson, A. M.

    2017-12-01

    Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce ozone has shifted from North America and Europe to Asia. This rapid shift, coupled with limited ozone monitoring in developing nations, left scientists unable to answer the most basic questions: Which regions of the world have the greatest human and plant exposure to ozone pollution? Is ozone continuing to decline in nations with strong emissions controls? To what extent is ozone increasing in the developing world? How can the atmospheric sciences community facilitate access to the ozone metrics necessary for quantifying ozone's impact on human health and crop/ecosystem productivity? To answer these questions the International Global Atmospheric Chemistry Project (IGAC) initiated the Tropospheric Ozone Assessment Report (TOAR). With over 220 member scientists and air quality specialists from 36 nations, TOAR's mission is to provide the research community with an up-to-date scientific assessment of tropospheric ozone's global distribution and trends from the surface to the tropopause. TOAR has also built the world's largest database of surface ozone observations and generated ozone exposure and dose metrics at thousands of measurement sites around the world, freely accessible for research on the global-scale impact of ozone on climate, human health and crop/ecosystem productivity. Plots of these metrics show the regions of the world with the greatest ozone exposure for humans and crops/ecosystems, at least in areas where observations are available. The results also highlight regions where air quality is improving and where it has degraded. TOAR has also conducted the first intercomparison of tropospheric column ozone from ozonesondes and multiple satellite instruments, which provide similar estimates of the present-day tropospheric ozone burden.

  8. 75 FR 47258 - Determination of Total Amounts of Fiscal Year 2011 Tariff-Rate Quotas for Raw Cane Sugar and...

    Science.gov (United States)

    2010-08-05

    ... Determination of Total Amounts of Fiscal Year 2011 Tariff-Rate Quotas for Raw Cane Sugar and Certain Sugars...) 2011 in-quota aggregate quantity of the raw, as well as, refined and specialty sugar Tariff-Rate Quotas (TRQ) as required under the U.S. World Trade Organization (WTO) commitments. The FY 2011 raw cane sugar...

  9. DEVELOPMENT OF THE MODEL OF AN AUTOMATIC GENERATION OF TOTAL AMOUNTS OF COMMISSIONS IN INTERNATIONAL INTERBANK PAYMENTS

    Directory of Open Access Journals (Sweden)

    Dmitry N. Bolotov

    2013-01-01

    Full Text Available The article deals with the main form of international payment - bank transfer and features when it is charging by banks correspondent fees for transit funds in their correspondent accounts. In order to optimize the cost of expenses for international money transfers there is a need to develop models and toolkit of automatic generation of the total amount of commissions in international interbank settlements. Accordingly, based on graph theory, approach to the construction of the model was developed.

  10. Climate effect of ozone changes caused by present and future air traffic

    Energy Technology Data Exchange (ETDEWEB)

    Ponater, M.; Sausen, R.; Feneberg, B. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Roeckner, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1998-08-01

    The potential of aircraft-induced ozone changes to significantly enhance the climate impact of air traffic due to CO{sub 2}-emissions is investigated by means of simulations with an atmospheric general circulation model, coupled to a mixed layer ocean model. Results from several numerical experiments are presented, based on ozone increase patterns for 1992 aviation and on a future scenario for the year 2015. The climate signal is statistically significant for both time slices. Its strength is of comparable magnitude to that arising from aircraft CO{sub 2} emissions, thus meaning a nonnegligible contribution to the total effect. There are indications of a characteristic signature of the aircraft ozone related temperature response pattern, distinctly different from that typically associated with the increase of a well-mixed greenhouse gas. Likewise, the climate sensitivity to nonuniform ozone changes including a strong concentration perturbation at the tropopause appears to he higher than the climate sensitivity to uniform changes of a greenhouse gas. In a hierarchy of experiments based on an aircraft-related ozone perturbation with fixed structure (but increasing amplitude), the climate signal depends in a nonlinear way from the radiative forcing. (orig.) 44 refs.

  11. Ozone-depleting Substances (ODS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This site includes all of the ozone-depleting substances (ODS) recognized by the Montreal Protocol. The data include ozone depletion potentials (ODP), global warming...

  12. Vortex-averaged Arctic ozone depletion in the winter 2002/2003

    Directory of Open Access Journals (Sweden)

    T. Christensen

    2005-01-01

    Full Text Available A total ozone depletion of 68±7 Dobson units between 380 and 525K from 10 December 2002 to 10 March 2003 is derived from ozone sonde data by the vortex-average method, taking into account both diabatic descent of the air masses and transport of air into the vortex. When the vortex is divided into three equal-area regions, the results are 85±9DU for the collar region (closest to the edge, 52±5DU for the vortex centre and 68±7DU for the middle region in between centre and collar. Our results compare well with other studies: We find good agreement with ozone loss deduced from SAOZ data, with results inferred from POAM III observations and with results from tracer-tracer correlations using HF as the long-lived tracer. We find a higher ozone loss than that deduced by tracer-tracer correlations using CH4. We have made a careful comparison with Match results: The results were recalculated using a common time period, vortex edge definition and height interval. The two methods generally compare very well, except at the 475K level which exhibits an unexplained discrepancy.

  13. Effect of Soil Filtration and Ozonation in the Change of Baseline Toxicity in Wastewater Spiked with Organic Micro-pollutants

    KAUST Repository

    Gan, Alexander

    2012-07-01

    Bioassays for baseline toxicity, which measure toxicants’ non-specific effects, have been shown in previous studies to effectively correlate with the increased presence of pharmaceuticals, personal care products, endocrine-disrupting compounds, and other synthetic organics in treated sewage effluent. This study investigated how the baseline toxicity of anthropogenic compounds-spiked wastewater changed during the treatment of biofiltration and ozone oxidation, as measured by the bioluminescence inhibition of the Vibrio fischeri bacterium. The water quality parameters of dissolved organic carbon, seven common anions, and fluorescence spectroscopy were used to corroborate and collate with the toxicity results. Water quality was evaluated on two bench-scale soil filtration columns, which were configured for pre-ozonation and post-ozonation. Both systems’ soil aerobically removed similar amounts of dissolved organic carbon, and the reduction ranged between 57.7% and 62.1% for the post-ozonation and pre-ozonation systems, respectively. Biological removal of DOC, protein-like, humic-like, and soluble microbial product-like material was highest in the first 28.5 cm of each 114 cm-long system. While bioluminescence inhibition showed that ozonation was effective at lowering baseline toxicity, this study’s bioassay procedure was a very poor indicator of soil filtration treatment; both system’s effluents were significantly more toxic than their non-ozonated influents.

  14. Contribution of long-range transport to the ozone levels recorded in the Northeast of Portugal

    Science.gov (United States)

    Gama, C.; Nunes, T.; Marques, M. C.; Ferreira, F.

    2009-04-01

    In the past four years (2004-2007), measurements carried out at Lamas de Olo, the only air quality monitoring background station in the Northeast of Portugal, showed high ozone concentrations (97,7±29,7 g.m-3). This remote site, located in the middle of Alvão Natural Park, in Portugal, 1086 m asl, plays a significant role on the total amount of exceedances registered in the national air quality network. The analysis of the data recorded at this monitoring station revealed an annual cycle of ozone concentrations similar to the ones observed in other background sites of the Northern Hemisphere (Monks, 2000; Vingarzan and Taylor, 2003). This common feature comprises a distinct maximum during spring (peaking during the month of April). Nevertheless it is during the summer that the hourly concentrations are higher, due to the typical atmospheric and meteorological conditions that promote photochemical pollution episodes. Photochemical pollution episodes can be related with production of ozone in a local scale or in a global scale due to the transportation of polluted air masses. For this reason analysing these events is crucial to fully understand the behaviour of ozone in the Northeast of Portugal, in order to adopt the correct long-term policies. With the purpose of studying the influence of long-range transport on the ozone levels recorded at Lamas de Olo, a cluster analysis was performed on 96-hour back trajectories air masses. Different trajectory clusters represent air masses with different source regions of atmospheric pollutants and the influence of these regions on the atmospheric composition at the arrival point (receptor) of the trajectories can therefore be assessed (EMPA, 2008). The back trajectories were simulated 4 times per day, using HYSPLIT model. A "bottom-up" cluster methodology was used to group trajectories into clusters according to their characteristics, for several time periods with similar ozone levels and/or distributions. Ozone average

  15. Highly efficient quenching of tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence by ozone using formaldehyde, methylglyoxal, and glyoxalate as co-reactants and its application to ozone sensing.

    Science.gov (United States)

    Gao, Ying; Liu, Xiaoyun; Qi, Wenjing; Gao, Wenyue; Li, Yunhui; Xu, Guobao

    2015-06-21

    Most electrochemiluminescence (ECL) systems require high concentrations of quencher to totally quench ECL. In this study, we found that ozone can quench tris(2,2'-bipyridyl)ruthenium(II) ECL using formaldehyde, methylglyoxal, or glyoxalate as co-reactants at a glassy carbon electrode with remarkable efficiencies even when the concentration of ozone is merely 0.25% of that of the co-reactant. The strongest quenching is observed with the tris(2,2'-bipyridyl)ruthenium(II)/formaldehyde ECL system. The tris(2,2'-bipyridyl)ruthenium(II)/formaldehyde ECL intensities decrease linearly with the ozone concentration over the range of 0.025-25 μM (r = 0.9947) with a limit of detection of 8 nM. The method is more sensitive and faster than most methods. It shows high selectivity in the presence of other ROS or oxidants and some metal ions, such as H2O2, ClO(-), Mg(2+), Ni(2+), etc. The method exhibits high recoveries for the detection of ozone in a ventilated photocopy room.

  16. Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century

    Science.gov (United States)

    Banerjee, Antara; Maycock, Amanda C.; Pyle, John A.

    2018-02-01

    The ozone radiative forcings (RFs) resulting from projected changes in climate, ozone-depleting substances (ODSs), non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry-climate model (UK Met Office's Unified Model containing the United Kingdom Chemistry and Aerosols sub-model). Projected measures to improve air-quality through reductions in non-methane tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of -0.09 W m-2. This is opposed by a positive ozone RF of 0.05 W m-2 due to future decreases in ODSs, which is driven by an increase in tropospheric ozone through stratosphere-to-troposphere transport of air containing higher ozone amounts. An increase in methane abundance by more than a factor of 2 (as projected by the RCP8.5 scenario) is found to drive an ozone RF of 0.18 W m-2, which would greatly outweigh the climate benefits of non-methane tropospheric ozone precursor reductions. A small fraction (˜ 15 %) of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gases, sea surface temperatures and sea ice changes) is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.05 W m-2) for RCP4.5 and a negative RF (-0.07 W m-2) for the RCP8.5 scenario. This dependence arises mainly from differences in the contribution to RF from stratospheric ozone changes. Considering the increases in tropopause height under climate change causes only small differences (≤ |0.02| W m-2) for the stratospheric, tropospheric and whole-atmosphere RFs.

  17. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice.

    Science.gov (United States)

    Hansen, Jitka S; Nørgaard, Asger W; Koponen, Ismo K; Sørli, Jorid B; Paidi, Maya D; Hansen, Søren W K; Clausen, Per Axel; Nielsen, Gunnar D; Wolkoff, Peder; Larsen, Søren Thor

    2016-11-01

    Inhalation of indoor air pollutants may cause airway irritation and inflammation and is suspected to worsen allergic reactions. Inflammation may be due to mucosal damage, upper (sensory) and lower (pulmonary) airway irritation due to activation of the trigeminal and vagal nerves, respectively, and to neurogenic inflammation. The terpene, d-limonene, is used as a fragrance in numerous consumer products. When limonene reacts with the pulmonary irritant ozone, a complex mixture of gas and particle phase products is formed, which causes sensory irritation. This study investigated whether limonene, ozone or the reaction mixture can exacerbate allergic lung inflammation and whether airway irritation is enhanced in allergic BALB/cJ mice. Naïve and allergic (ovalbumin sensitized) mice were exposed via inhalation for three consecutive days to clean air, ozone, limonene or an ozone-limonene reaction mixture. Sensory and pulmonary irritation was investigated in addition to ovalbumin-specific antibodies, inflammatory cells, total protein and surfactant protein D in bronchoalveolar lavage fluid and hemeoxygenase-1 and cytokines in lung tissue. Overall, airway allergy was not exacerbated by any of the exposures. In contrast, it was found that limonene and the ozone-limonene reaction mixture reduced allergic inflammation possibly due to antioxidant properties. Ozone induced sensory irritation in both naïve and allergic mice. However, allergic but not naïve mice were protected from pulmonary irritation induced by ozone. This study showed that irritation responses might be modulated by airway allergy. However, aggravation of allergic symptoms was observed by neither exposure to ozone nor exposure to ozone-initiated limonene reaction products. In contrast, anti-inflammatory properties of the tested limonene-containing pollutants might attenuate airway allergy.

  18. Ozone phytotoxicity evaluation and prediction of crops production in tropical regions

    Science.gov (United States)

    Mohammed, Nurul Izma; Ramli, Nor Azam; Yahya, Ahmad Shukri

    2013-04-01

    Increasing ozone concentration in the atmosphere can threaten food security due to its effects on crop production. Since the 1980s, ozone has been believed to be the most damaging air pollutant to crops. In Malaysia, there is no index to indicate the reduction of crops due to the exposure of ozone. Therefore, this study aimed to identify the accumulated exposure over a threshold of X ppb (AOTX) indexes in assessing crop reduction in Malaysia. In European countries, crop response to ozone exposure is mostly expressed as AOT40. This study was designed to evaluate and predict crop reduction in tropical regions and in particular, the Malaysian climate, by adopting the AOT40 index method and modifying it based on Malaysian air quality and crop data. Nine AOTX indexes (AOT0, AOT5, AOT10, AOT15, AOT20, AOT25, AOT30, AOT40, and AOT50) were analyzed, crop responses tested and reduction in crops predicted. The results showed that the AOT50 resulted in the highest reduction in crops and the highest R2 value between the AOT50 and the crops reduction from the linear regression analysis. Hence, this study suggests that the AOT50 index is the most suitable index to estimate the potential ozone impact on crops in tropical regions. The result showed that the critical level for AOT50 index if the estimated crop reduction is 5% was 1336 ppb h. Additionally, the results indicated that the AOT40 index in Malaysia gave a minimum percentage of 6% crop reduction; as contrasted with the European guideline of 5% (due to differences in the climate e.g., average amount of sunshine).

  19. Ozone adsorption on carbon nanoparticles

    Science.gov (United States)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3

  20. Tropospheric ozone. Formation, properties, effects. Expert opinion; Ozon in der Troposphaere. Bildung, Eigenschaften, Wirkungen. Gutachten

    Energy Technology Data Exchange (ETDEWEB)

    Elstner, E.F. [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Phytopathologie

    1996-06-01

    The formation and dispersion of tropospheric ozone are discussed only marginally in this expert opinion; the key interest is in the effects of ground level ozone on plants, animals, and humans. The expert opinion is based on an analysis of the available scientific publications. (orig./MG) [Deutsch] Das Gutachten nimmt nur am Rande die Problematik der Bildung und Ausbreitung von troposphaerischen Ozon auf; Im Mittelpunkt steht die Auseinandersetzung mit den Wirkungen des bodennahen Ozons auf Pflanze, Tier und Mensch. Das Gutachten basiert auf einer Analyse der zugaenglichen wissenschaftlichen Arbeiten. (orig./MG)