WorldWideScience

Sample records for total latent heat

  1. Latent heat coldness storage; Stockage du froid par chaleur latente

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, J.P. [Pau Univ., Lab. de Thermodynamique et Energetique, LTE, 64 (France)

    2002-07-01

    This article presents the advantages of latent heat storage systems which use the solid-liquid phase transformation of a pure substance or of a solution. The three main methods of latent heat storage of coldness are presented: ice boxes, encapsulated nodules, and ice flows: 1 - definition of the thermal energy storage (sensible heat, latent heat, thermochemical storage); 2 - advantages and drawbacks of latent heat storage; 3 - choice criteria for a phase-change material; 4 - phenomenological aspect of liquid-solid transformations (phase equilibrium, crystallisation and surfusion); 5 - different latent heat storage processes (ice boxes, encapsulated nodules, two-phase refrigerating fluids); 6 - ice boxes (internal and external melting, loop, air injection, measurement of ice thickness); 7 - encapsulated nodules (nodules, tank, drainage, advantage and drawbacks, charge and discharge); 8 - two-phase refrigerating fluids (composition, ice fabrication, flow circulation, flow storage, exchangers). (J.S.)

  2. Latent Heat Storage Through Phase Change Materials

    Indian Academy of Sciences (India)

    IAS Admin

    reducing storage volume for different materials. The examples are numerous: ... Latent heat is an attractive way to store solar heat as it provides high energy storage density, .... Maintenance of the PCM treated fabric is easy. The melted PCM.

  3. Latent heat of traffic moving from rest

    Science.gov (United States)

    Farzad Ahmadi, S.; Berrier, Austin S.; Doty, William M.; Greer, Pat G.; Habibi, Mohammad; Morgan, Hunter A.; Waterman, Josam H. C.; Abaid, Nicole; Boreyko, Jonathan B.

    2017-11-01

    Contrary to traditional thinking and driver intuition, here we show that there is no benefit to ground vehicles increasing their packing density at stoppages. By systematically controlling the packing density of vehicles queued at a traffic light on a Smart Road, drone footage revealed that the benefit of an initial increase in displacement for close-packed vehicles is completely offset by the lag time inherent to changing back into a ‘liquid phase’ when flow resumes. This lag is analogous to the thermodynamic concept of the latent heat of fusion, as the ‘temperature’ (kinetic energy) of the vehicles cannot increase until the traffic ‘melts’ into the liquid phase. These findings suggest that in situations where gridlock is not an issue, drivers should not decrease their spacing during stoppages in order to lessen the likelihood of collisions with no loss in flow efficiency. In contrast, motion capture experiments of a line of people walking from rest showed higher flow efficiency with increased packing densities, indicating that the importance of latent heat becomes trivial for slower moving systems.

  4. Solar thermoelectricity via advanced latent heat storage

    Science.gov (United States)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  5. Latent heat transport and microlayer evaporation in nucleate boiling

    International Nuclear Information System (INIS)

    Jawurek, H.H.

    1977-08-01

    Part 1 of this work provides a broad overview and, where possible, a quantitative assessment of the complex physical processes which together constitute the mechanism of nucleate boiling heat transfer. It is shown that under a wide range of conditions the primary surface-to-liquid heat flows within an area of bubble influence are so redistributed as to manifest themselves predominantly as latent heat transport, that is, as vaporisation into attached bubbles. Part 2 deals in greater detail with one of the component processes of latent heat transport, namely microlayer evaporation. A literature review reveals the need for synchronised records of microlayer geometry versus time and of normal bubble growth and departure. An apparatus developed to provide such records is described. High-speed cine interference photography from beneath and through a transparent heating surface provided details of microlayer geometry and an image reflection system synchronised these records with the bubble profile views. Results are given for methanol and ethanol boiling at sub-atmospheric pressures and at various heat fluxes and bulk subcoolings. In all cases it is found that microlayers were of sub-micron thickness, that microlayer thinning was restricted to the inner layer edge (with the thickness elsewhere remaining constant or increasing with time) and that the contribution of this visible evaporation to the total vapour flow into bubbles was negligible. The observation of thickening towards the outer microlayer edge, however, demonstrates that a liquid replenishment flow occurred simultaneously with the evaporation process

  6. Shallow and Deep Latent Heating Modes Over Tropical Oceans Observed with TRMM PR Spectral Latent Heating Data

    Science.gov (United States)

    Takayabu, Yukari N.; Shige, Shoichi; Tao, Wei-Kuo; Hirota, Nagio

    2010-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. Three-dimensional distributions of latent heating estimated from Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR)utilizing the Spectral Latent Heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated latent heating averaged over the tropical oceans is estimated as approx.72.6 J/s (approx.2.51 mm/day), and that over tropical land is approx.73.7 J/s (approx.2.55 mm/day), for 30degN-30degS. It is shown that non-drizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems, deep systems and congestus. A rough estimate of shallow mode contribution against the total heating is about 46.7 % for the average tropical oceans, which is substantially larger than 23.7 % over tropical land. While cumulus congestus heating linearly correlates with the SST, deep mode is dynamically bounded by large-scale subsidence. It is notable that substantial amount of rain, as large as 2.38 mm day-1 in average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that even in the region with SST warmer than 28 oC, large-scale subsidence effectively suppresses the deep convection, remaining the heating by congestus clouds. Our results support that the entrainment of mid-to-lower-tropospheric dry air, which accompanies the large

  7. Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions

    Science.gov (United States)

    Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.

    2015-01-01

    Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.

  8. A solar air collector with integrated latent heat thermal storage

    Directory of Open Access Journals (Sweden)

    Klimes Lubomir

    2012-04-01

    Full Text Available Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data.

  9. Comprehensive thermodynamic analysis of a renewable energy sourced hybrid heating system combined with latent heat storage

    International Nuclear Information System (INIS)

    Utlu, Zafer; Aydın, Devrim; Kıncay, Olcay

    2014-01-01

    Highlights: • An experimental thermal investigation of hybrid renewable heating system is presented. • Analyses were done by using real data obtained from a prototype structure. • Exergy efficiency of system components investigated during discharging period are close to each other as 32%. • The average input energy and exergy rates to the LHS were 0.770 and 0.027 kW. • Overall total energy and exergy efficiencies of LHS calculated as 72% and 28.4%. - Abstract: In this study an experimental thermal investigation of hybrid renewable heating system is presented. Latent heat storage stores energy, gained by solar collectors and supplies medium temperature heat to heat pump both day time also night time while solar energy is unavailable. In addition to this an accumulation tank exists in the system as sensible heat storage. It provides supply–demand balance with storing excess high temperature heat. Analyses were done according to thermodynamic’s first and second laws by using real data obtained from a prototype structure, built as part of a project. Results show that high percent of heat loses took place in heat pump with 1.83 kW where accumulator-wall heating cycle followed it with 0.42 kW. Contrarily highest break-down of exergy loses occur accumulator-wall heating cycle with 0.28 kW. Averagely 2.42 kW exergy destruction took place in whole system during the experiment. Solar collectors and heat pump are the promising components in terms of exergy destruction with 1.15 kW and 1.09 kW respectively. Exergy efficiency of system components, investigated during discharging period are in a close approximately of 32%. However, efficiency of solar collectors and charging of latent heat storage are 2.3% and 7% which are relatively low. Average overall total energy and exergy efficiencies of latent heat storage calculated as 72% and 28.4% respectively. Discharging energy efficiency of latent heat storage is the highest through all system components. Also heat

  10. Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System

    Science.gov (United States)

    Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang

    2016-11-01

    In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.

  11. Estimation of bulk transfer coefficient for latent heat flux (Ce)

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The bulk transfer coefficient for latent heat flux (Ce) has been estimated over the Arabian Sea from the moisture budget during the pre-monsoon season of 1988. The computations have been made over two regions (A: 0-8 degrees N: 60-68 degrees E: B: 0...

  12. HYBRID INDIRECT SOLAR COOKER WITH LATENT HEAT STORAGE

    OpenAIRE

    Benazeer Hassan K. Ibrahim *, Victor Jose

    2016-01-01

    Solar cooking is the simplest, safest, most convenient way to cook food without consuming fuels or heating up the kitchen. All the conventional solar cooker designs have the disadvantage of inability to cook during off-shine and night hours.This disadvantage can be eliminated if the solar cooker is designed with thermal storage arrangement. In this paper, a hybrid solar cooker with evacuated tube collector and latent thermal storage unit and alternate electric heatingsource is simulated. The...

  13. A state-of-the-art review on hybrid heat pipe latent heat storage systems

    International Nuclear Information System (INIS)

    Naghavi, M.S.; Ong, K.S.; Mehrali, M.; Badruddin, I.A.; Metselaar, H.S.C.

    2015-01-01

    The main advantage of latent heat thermal energy storage systems is the capability to store a large quantity of thermal energy in an isothermal process by changing phase from solid to liquid, while the most important weakness of these systems is low thermal conductivity that leads to unsuitable charging/discharging rates. Heat pipes are used in many applications – as one of the most efficient heat exchanger devices – to amplify the charging/discharging processes rate and are used to transfer heat from a source to the storage or from the storage to a sink. This review presents and critically discusses previous investigations and analysis on the incorporation of heat pipe devices into latent heat thermal energy storage with heat pipe devices. This paper categorizes different applications and configurations such as low/high temperature solar, heat exchanger and cooling systems, analytical approaches and effective parameters on the performance of hybrid HP–LHTES systems.

  14. Extra Heat Loss Through Light Weight Roofs Due to Latent Heat

    DEFF Research Database (Denmark)

    Rode, Carsten

    1996-01-01

    that changes phase at the terminals of its passage.Note however, that convection of air most often will have an important effect on the overall heat flow - but that is a different topic.Macroscopic latent heat transferConsider the following scenario: Initially, moisture is present in its condensed or frozen......This report is one in a series of papers in Task 5 of IEA Annex 24 on how moisture and air movements affect the energy performance of building constructions. The effect of latent heat flow will be demonstrated by means of an example: a light weight flat roof.Latent heat flow is one of three...... processes by which moisture affects energy performance:Higher thermal conductivityMoist materials have higher thermal con-ductivity than when they are dry. This is because thermally conducting moisture replaces the better insulating air in the pores of the materials. Moisture also enhan-ces the thermal...

  15. Residual Entropy, the Third Law and Latent Heat

    Directory of Open Access Journals (Sweden)

    Frank L. Lambert

    2008-09-01

    Full Text Available A novel thermodynamic treatment of residual entropy in crystals, involving the configurational partition function, is suggested, which is consistent with both classical and statistical thermodynamics. It relates residual entropy to the inherent latent heat which would be released upon cooling if the reversible path were available. The nature of this heat is that if the crystal possessing residual entropy freezes above its Boltzmann’s characteristic temperature of molecular alignment, the difference in energy between different molecular arrangements is overcome by the kT heat bath to form a nearly-ideal solution. However, upon cooling below this characteristic temperature, they would separate with a concomitant release of the corresponding energy, provided the reversible path were available.

  16. Flat plate solar air heater with latent heat storage

    Science.gov (United States)

    Touati, B.; Kerroumi, N.; Virgone, J.

    2017-02-01

    Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.

  17. Surface latent heat flux as an earthquake precursor

    Directory of Open Access Journals (Sweden)

    S. Dey

    2003-01-01

    Full Text Available The analysis of surface latent heat flux (SLHF from the epicentral regions of five recent earthquakes that occurred in close proximity to the oceans has been found to show anomalous behavior. The maximum increase of SLHF is found 2–7 days prior to the main earthquake event. This increase is likely due to an ocean-land-atmosphere interaction. The increase of SLHF prior to the main earthquake event is attributed to the increase in infrared thermal (IR temperature in the epicentral and surrounding region. The anomalous increase in SLHF shows great potential in providing early warning of a disastrous earthquake, provided that there is a better understanding of the background noise due to the tides and monsoon in surface latent heat flux. Efforts have been made to understand the level of background noise in the epicentral regions of the five earthquakes considered in the present paper. A comparison of SLHF from the epicentral regions over the coastal earthquakes and the earthquakes that occurred far away from the coast has been made and it has been found that the anomalous behavior of SLHF prior to the main earthquake event is only associated with the coastal earthquakes.

  18. Development of Latent Heat Storage Phase Change Material Containing Plaster

    Directory of Open Access Journals (Sweden)

    Diana BAJARE

    2016-05-01

    Full Text Available This paper reviews the development of latent heat storage Phase Change Material (PCM containing plaster as in passive application. Due to the phase change, these materials can store higher amounts of thermal energy than traditional building materials and can be used to add thermal inertia to lightweight constructions. It was shown that the use of PCMs have advantages stabilizing the room temperature variations during summer days, provided sufficient night ventilation is allowed. Another advantage of PCM usage is stabilized indoor temperature on the heating season. The goal of this study is to develop cement and lime based plaster containing microencapsulated PCM. The plaster is expected to be used for passive indoor applications and enhance the thermal properties of building envelope. The plaster was investigated under Scanning Electron Microscope and the mechanical, physical and thermal properties of created plaster samples were determined.

  19. Wallboard with Latent Heat Storage for Passive Solar Applications; TOPICAL

    International Nuclear Information System (INIS)

    Kedl, R.J.

    2001-01-01

    Conventional wallboard impregnated with octadecane paraffin[melting point-23 C (73.5 F)] is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM (melting point, melting range, and heat of fusion), as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. The confirmed computer model may now be used in conjunction with a building heating and cooling code to evaluate design parameters and operational characteristics of latent heat storage wallboard for passive solar applications

  20. Convective and Stratiform Precipitation Processes and their Relationship to Latent Heating

    Science.gov (United States)

    Tao, Wei-Kuo; Lang, Steve; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari

    2009-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. An improved convective -stratiform heating (CSH) algorithm has been developed to obtain the 3D structure of cloud heating over the Tropics based on two sources of information: 1) rainfall information, namely its amount and the fraction due to light rain intensity, observed directly from the Precipitation Radar (PR) on board the TRMM satellite and 2) synthetic cloud physics information obtained from cloud-resolving model (CRM) simulations of cloud systems. The cloud simulations provide details on cloud processes, specifically latent heating, eddy heat flux convergence and radiative heating/cooling, that. are not directly observable by satellite. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. One of the major differences between new and old algorithms is that the level of maximum cloud heating occurs 1 to 1.5 km lower in the atmosphere in the new algorithm. This can effect the structure of the implied air currents associated with the general circulation of the atmosphere in the Tropics. The new CSH algorithm will be used provide retrieved heating data to other heating algorithms to supplement their performance.

  1. Retrieving latent heating vertical structure from cloud and precipitation Profiles—Part I: Warm rain processes

    International Nuclear Information System (INIS)

    Min, Qilong; Li, Rui; Wu, Xiaoqing; Fu, Yunfei

    2013-01-01

    An exploratory study on physical based latent heat (LH) retrieval algorithm is conducted by parameterizing the physical linkages of hydrometeor profiles of cloud and precipitation to the major processes related to the phase change of atmospheric water. Specifically, rain events are segregated into three rain types: warm, convective, and stratiform, based on their dynamical and thermodynamical characteristics. As the first of the series, only the warm rain LH algorithm is presented and evaluated here. The major microphysical processes of condensation and evaporation for warm rain are parameterized through traditional rain growth theory, with the aid of Cloud Resolving Model (CRM) simulations. The evaluation or the self-consistency tests indicate that the physical based retrievals capture the fundamental LH processes associated with the warm rain life cycle. There is no significant systematic bias in terms of convection strength, illustrated by the month-long CRM simulation as the mesoscale convective systems (MCSs) experience from initial, mature, to decay stages. The overall monthly-mean LH comparison showed that the total LH, as well as condensation heating and evaporation cooling components, agree with the CRM simulation. -- Highlights: ► An exploratory study on physics-based warm rain latent heat retrieval algorithm. ► Utilize the full information of the vertical structures of cloud and rainfall. ► Directly link water mass measurements to latent heat at instantaneous pixel level. ► Applicable at various stages of cloud system life cycle

  2. A quantitative analysis on latent heat of an aqueous binary mixture.

    Science.gov (United States)

    Han, Bumsoo; Choi, Jeung Hwan; Dantzig, Jonathan A; Bischof, John C

    2006-02-01

    The latent heat during phase change of water-NaCl binary mixture was measured using a differential scanning calorimeter, and the magnitude for two distinct phase change events, water/ice and eutectic phase change, were analyzed considering the phase change characteristics of a binary mixture. During the analysis, the latent heat associated with each event was calculated by normalizing the amount of each endothermic peak with only the amount of sample participating in each event estimated from the lever rule for the phase diagram. The resulting latent heat of each phase change measured is 303.7 +/- 2.5 J/g for water/ice phase change, and 233.0 +/- 1.6 J/g for eutectic phase change, respectively regardless of the initial concentration of mixture. Although the latent heats of water/ice phase change in water-NaCl mixtures are closely correlated, further study is warranted to investigate the reason for smaller latent heat of water/ice phase change than that in pure water (335 J/g). The analysis using the lever rule was extended to estimate the latent heat of dihydrate as 115 J/g with the measured eutectic and water/ice latent heat values. This new analysis based on the lever rule will be useful to estimate the latent heat of water-NaCl mixtures at various concentrations, and may become a framework for more general analysis of latent heat of various biological solutions.

  3. Environmental Forcing of Supertyphoon Paka's (1997) Latent Heat Structure.

    Science.gov (United States)

    Rodgers, Edward; Olson, William; Halverson, Jeff; Simpson, Joanne; Pierce, Harold

    2000-12-01

    The distribution and intensity of total (i.e., combined stratified and convective processes) rain rate/latent heat release (LHR) were derived for Tropical Cyclone Paka during the period 9-21 December 1997 from the F-10, F-11, F-13, and F-14 Defense Meteorological Satellite Special Sensor Microwave Imager and the Tropical Rainfall Measuring Mission Microwave Imager observations. These observations were frequent enough to capture three episodes of inner-core convective bursts and a convective rainband cycle that preceded periods of rapid intensification. During these periods of convective bursts, satellite sensors revealed that the rain rates/LHR 1) increased within the inner-core region, 2) were mainly convectively generated (nearly a 65% contribution), 3) propagated inward, 4) extended upward within the mid- and upper troposphere, and 5) became electrically charged. These factors may have increased the areal mean ascending motion in the mid- and upper-troposphere eyewall region, creating greater cyclonic angular momentum, and, thereby, warming the center and intensifying the system.Radiosonde measurements from Kwajalein Atoll and Guam, sea surface temperature observations, and the European Centre for Medium-Range Forecasts analyses were used to examine the necessary and sufficient conditions for initiating and maintaining these inner-core convective bursts. For example, the necessary conditions such as the atmospheric thermodynamics [i.e., cold tropopause temperatures, moist troposphere, and warm SSTs (>26°C)] fulfill the necessary conditions and suggested that the atmosphere was ideally suited for Paka's maximum potential intensity to approach supertyphoon strength. Further, Paka encountered moderate vertical wind shear (<15 m s1) before interacting with the westerlies on 21 December. The sufficient conditions that include horizontal moisture and the upper-tropospheric eddy relative angular momentum fluxes, on the other hand, appeared to have some influence on

  4. An experimental study on the heat transfer characteristics of a heat pipe heat exchanger with latent heat storage. Part II: Simultaneous charging/discharging modes

    International Nuclear Information System (INIS)

    Liu Zhongliang; Wang Zengyi; Ma Chongfang

    2006-01-01

    In this part of the paper, the performance of the simultaneous charging/discharging operation modes of the heat pipe heat exchanger with latent heat storage is experimentally studied. The experimental results show that the device may operate under either the fluid to fluid heat transfer with charging heat to the phase change material (PCM) or the fluid to fluid heat transfer with discharging heat from the PCM modes according to the initial temperature of the PCM. The melting/solidification curves, the performances of the heat pipes and the device, the influences of the inlet temperature and the mass flow rate of the cold water on the operation performance are investigated by extensive experiments. The experimental results also disclose that under the simultaneous charging/discharging operation mode, although the heat transfer from the hot water directly to the cold water may vary, it always takes up a major part of the total heat recovered by the cold water due to the very small thermal resistance compared with the thermal resistance of the PCM side. The melting/solidification processes taking place in the simultaneous charging/discharging operation are compared with those in the charging only and discharging only processes. By applying a simplified thermal resistance analysis, a criterion for predicting the exact operation modes was derived and used to explain the observed experimental phenomena

  5. Experimental investigation for the optimization of heat pipe performance in latent heat thermal storage

    Energy Technology Data Exchange (ETDEWEB)

    Ladekar, Chandrakishor; Choudhary, S. K. [RTM Nagpur University, Wardha (India); Khandare, S. S. [B. D. College of Engineering, Wardha (India)

    2017-06-15

    We investigated the optimum performance of heat pipe in Latent heat thermal energy storage (LHTES), and compared it with copper pipe. Classical plan of experimentation was used to optimize the parameters of heat pipe. Heat pipe fill ratio, evaporator section length to condenser section length ratio i.e., Heat pipe length ratio (HPLR) and heat pipe diameter, was the parameter used for optimization, as result of parametric analysis. Experiment with flow rate of 10 lit./min. was conducted for different fill ratio, HPLR and different diameter. Fill ratio of 80 %, HPLR of 0.9 and heat pipe with diameter of 18 mm showed better trend in charging and discharging. Comparison between the storage tank with optimized heat pipe and copper pipe showed almost 186 % improvement in charging and discharging time compared with the copper pipe embedded thermal storage. Heat transfer between Heat transferring fluid (HTF) and Phase change material (PCM) increased with increase in area of heat transferring media, but storage density of storage tank decreased. Storage tank with heat pipe embedded in place of copper pipe is a better option in terms of charging and discharging time as well heat storage capacity due to less heat lost. This justifies the better efficiency and effectiveness of storage tank with embedded optimized heat pipe.

  6. Modeling the Daly Gap: The Influence of Latent Heat Production in Controlling Magma Extraction and Eruption

    Science.gov (United States)

    Nelson, B. K.; Ghiorso, M. S.; Bachmann, O.; Dufek, J.

    2011-12-01

    A century-old issue in volcanology is the origin of the gap in chemical compositions observed in magmatic series on ocean islands and arcs - the "Daly Gap". If the gap forms during differentiation from a mafic parent, models that predict the dynamics of magma extraction as a function of chemical composition must simulate a process that results in volumetrically biased, bimodal compositions of erupted magmas. The probability of magma extraction is controlled by magma dynamical processes, which have a complex response to magmatic heat evolution. Heat loss from the magmatic system is far from a simple, monotonic function of time. It is modified by the crystallization sequence, chamber margin heat flux, and is buffered by latent heat production. We use chemical and thermal calculations of MELTS (Ghiorso & Sack, 1995) as input to the physical model of QUANTUM (Dufek & Bachmann, 2010) to predict crystallinity windows of most probable magma extraction. We modeled two case studies: volcanism on Tenerife, Canary Islands, and the Campanian Ignimbrite (CI) of Campi Flegrei, Italy. Both preserve a basanitic to phonolitic lineage and have comparable total alkali concentrations; however, CI has high and Tenerife has low K2O/Na2O. Modeled thermal histories of differentiation for the two sequences contrast strongly. In Tenerife, the rate of latent heat production is almost always greater than sensible heat production, with spikes in the ratio of latent to sensible heats of up to 40 associated with the appearance of Fe-Ti oxides at near 50% crystallization. This punctuated heat production must cause magma temperature change to stall or slow in time. The extended time spent at ≈50% crystallinity, associated with dynamical processes that enhance melt extraction near 50% crystallinity, suggests the magma composition at this interval should be common. In Tenerife, the modeled composition coincides with that of the first peak in the bimodal frequency-composition distribution. In our

  7. Computational modeling of latent-heat-storage in PCM modified interior plaster

    Energy Technology Data Exchange (ETDEWEB)

    Fořt, Jan; Maděra, Jiří; Trník, Anton; Pavlíková, Milena; Pavlík, Zbyšek [Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague (Czech Republic)

    2016-06-08

    The latent heat storage systems represent a promising way for decrease of buildings energy consumption with respect to the sustainable development principles of building industry. The presented paper is focused on the evaluation of the effect of PCM incorporation on thermal performance of cement-lime plasters. For basic characterization of the developed materials, matrix density, bulk density, and total open porosity are measured. Thermal conductivity is accessed by transient impulse method. DSC analysis is used for the identification of phase change temperature during the heating and cooling process. Using DSC data, the temperature dependent specific heat capacity is calculated. On the basis of the experiments performed, the supposed improvement of the energy efficiency of characteristic building envelope system where the designed plasters are likely to be used is evaluated by a computational analysis. Obtained experimental and computational results show a potential of PCM modified plasters for improvement of thermal stability of buildings and moderation of interior climate.

  8. Preparation of fine powdered composite for latent heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Fořt, Jan, E-mail: jan.fort.1@fsv.cvut.cz; Trník, Anton, E-mail: anton.trnik@fsv.cvut.cz; Pavlíková, Milena, E-mail: milena.pavlikova@fsv.cvut.cz; Pavlík, Zbyšek, E-mail: pavlikz@fsv.cvut.cz [Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague (Czech Republic); Pomaleski, Marina, E-mail: marina-pomaleski@fsv.cvut.cz [Faculty of Civil Engineering, Architecture and Urbanism, University of Campinas, R. Saturnino de Brito 224, 13083-889 Campinas – SP (Brazil)

    2016-07-07

    Application of latent heat storage building envelope systems using phase-change materials represents an attractive method of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. This study deals with a preparation of a new type of powdered phase change composite material for thermal energy storage. The idea of a composite is based upon the impregnation of a natural silicate material by a reasonably priced commercially produced pure phase change material and forming the homogenous composite powdered structure. For the preparation of the composite, vacuum impregnation method is used. The particle size distribution accessed by the laser diffraction apparatus proves that incorporation of the organic phase change material into the structure of inorganic siliceous pozzolana does not lead to the clustering of the particles. The compatibility of the prepared composite is characterized by the Fourier transformation infrared analysis (FTIR). Performed DSC analysis shows potential of the developed composite for thermal energy storage that can be easily incorporated into the cement-based matrix of building materials. Based on the obtained results, application of the developed phase change composite can be considered with a great promise.

  9. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Anoop [Terrafore Inc.

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  10. Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications

    International Nuclear Information System (INIS)

    Tuncbilek, Kadir; Sari, Ahmet; Tarhan, Sefa; Erguenes, Gazanfer; Kaygusuz, Kamil

    2005-01-01

    Palmitic acid (PA, 59.8 deg. C) and lauric acid (LA, 42.6 deg. C) are phase change materials (PCM) having quite high melting temperatures which can limit their use in low temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of the lauric and the palmitic acids. In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 69.0 wt% LA and 31 wt% PA forms a eutectic mixture having melting temperature of 35.2 deg. C and the latent heat of fusion of 166.3 J g -1 . This study also considers the experimental determination of the thermal characteristics of the eutectic mixture during the heat charging and discharging processes. Radial and axial temperature distribution, heat transfer coefficient between the heat transfer fluid (HTF) pipe and the PCM, heat recovery rate and heat charging and discharging fractions were experimentally established employing a vertical concentric pipe-in-pipe energy storage system. The changes of these characteristics were evaluated with respect to the effect of inlet HTF temperature and mass flow rate. The DSC thermal analysis and the experimental results indicate that the LA-PA eutectic mixture can be a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics

  11. A model for the latent heat of melting in free standing metal nanoparticles

    International Nuclear Information System (INIS)

    Shin, Jeong-Heon; Deinert, Mark R.

    2014-01-01

    Nanoparticles of many metals are known to exhibit scale dependent latent heats of melting. Analytical models for this phenomenon have so far failed to completely capture the observed phenomena. Here we present a thermodynamic analysis for the melting of metal nanoparticles in terms of their internal energy and a scale dependent surface tension proposed by Tolman. The resulting model predicts the scale dependence of the latent heat of melting and is confirmed using published data for tin and aluminum

  12. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Improved Method and Uncertainties

    Science.gov (United States)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.; hide

    2006-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5 -resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%-80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5deg resolution is relatively small (less than 6% at 5 mm day.1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%-35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in

  13. Evaporative cooling: Effective latent heat of evaporation in relation to evaporation distance from the skin

    NARCIS (Netherlands)

    Havenith, G.; Bröde, P.; Hartog, E.A. den; Kuklane, K.; Holmer, I.; Rossi, R.M.; Richards, M.; Farnworth, B.; Wang, X.

    2013-01-01

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has

  14. Active latent heat storage with a screw heat exchanger - experimental results for heat transfer and concept for high pressure steam

    Science.gov (United States)

    Zipf, Verena; Willert, Daniel; Neuhäuser, Anton

    2016-05-01

    An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.

  15. Durability of a fin-tube latent heat storage using high density polyethylene as PCM

    Science.gov (United States)

    Zauner, Christoph; Hengstberger, Florian; Etzel, Mark; Lager, Daniel; Hofmann, Rene; Walter, Heimo

    2017-10-01

    Polymers have rarely been used as storage materials in latent heat storages up to now. Thus, we systematically screened all polymers available on a large-scale, selected promising ones based on their theoretical properties and experimentally tested more than 50 candidates. We found that polyethylene, polyoxymethylene and polyamides are promising even as recycled material. Especially high density polyethylene (HDPE) turned out to be suitable as was shown by detailed thermophysical characterization including more than 1000 heating and cooling cycles for INEOS Rigidex HD6070EA. We built a storage with 170 kg HDPE and a total mass of 600 kg based on a fin-tube heat exchanger and characterized its energy capacity, power characteristics and temperature profiles using a thermal oil test rig. In total we performed 30 melting and crystallization cycles where the whole storage was above 100 °C for more than 140 hours. After usage we examined the interior of the storage by cutting it into various pieces. A thin layer of degradation was observed on the surfaces of the PCM which is most likely related to thermo-oxidative degeneration of HDPE. However, the bulk of the PCM is still intact as well as the heat exchanger itself.

  16. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.

    Science.gov (United States)

    Chavan, Shreyas; Park, Deokgeun; Singla, Nitish; Sokalski, Peter; Boyina, Kalyan; Miljkovic, Nenad

    2018-05-21

    Frost spreads on nonwetting surfaces during condensation frosting via an interdroplet frost wave. When a supercooled condensate water droplet freezes on a hydrophobic or superhydrophobic surface, neighboring droplets still in the liquid phase begin to evaporate. Two possible mechanisms govern the evaporation of neighboring water droplets: (1) The difference in saturation pressure of the water vapor surrounding the liquid and frozen droplets induces a vapor pressure gradient, and (2) the latent heat released by freezing droplets locally heats the substrate, leading to evaporation of nearby droplets. The relative significance of these two mechanisms is still not understood. Here, we study the significance of the latent heat released into the substrate by freezing droplets, and its effect on adjacent droplet evaporation, by studying the dynamics of individual water droplet freezing on aluminum-, copper-, and glass-based hydrophobic and superhydrophobic surfaces. The latent heat flux released into the substrate was calculated from the measured droplet sizes and the respective freezing times ( t f ), defined as the time from initial ice nucleation within the droplet to complete droplet freezing. To probe the effect of latent heat release, we performed three-dimensional transient finite element simulations showing that the transfer of latent heat to neighboring droplets is insignificant and accounts for a negligible fraction of evaporation during microscale frost wave propagation. Furthermore, we studied the effect of substrate thermal conductivity on the transfer of latent heat transfer to neighboring droplets by investigating the velocity of ice bridge formation. The velocity of the ice bridge was independent of the substrate thermal conductivity, indicating that adjacent droplet evaporation during condensation frosting is governed solely by vapor pressure gradients. This study not only provides key insights into the individual droplet freezing process but also

  17. Sensible and latent heat forced divergent circulations in the West African Monsoon System

    Science.gov (United States)

    Hagos, S.; Zhang, C.

    2008-12-01

    Field properties of divergent circulation are utilized to identify the roles of various diabatic processes in forcing moisture transport in the dynamics of the West African Monsoon and its seasonal cycle. In this analysis, the divergence field is treated as a set of point sources and is partitioned into two sub-sets corresponding to latent heat release and surface sensible heat flux at each respective point. The divergent circulation associated with each set is then calculated from the Poisson's equation using Gauss-Seidel iteration. Moisture transport by each set of divergent circulation is subsequently estimated. The results show different roles of the divergent circulations forced by surface sensible and latent heating in the monsoon dynamics. Surface sensible heating drives a shallow meridional circulation, which transports moisture deep into the continent at the polar side of the monsoon rain band and thereby promotes the seasonal northward migration of monsoon precipitation during the monsoon onset season. In contrast, the circulation directly associated with latent heating is deep and the corresponding moisture convergence is within the region of precipitation. Latent heating also induces dry air advection from the north. Neither effect promotes the seasonal northward migration of precipitation. The relative contributions of the processes associated with latent and sensible heating to the net moisture convergence, and hence the seasonal evolution of monsoon precipitation, depend on the background moisture.

  18. Climate forcing and response to idealized changes in surface latent and sensible heat

    International Nuclear Information System (INIS)

    Ban-Weiss, George A; Cao Long; Pongratz, Julia; Caldeira, Ken; Bala, Govindasamy

    2011-01-01

    Land use and land cover changes affect the partitioning of latent and sensible heat, which impacts the broader climate system. Increased latent heat flux to the atmosphere has a local cooling influence known as 'evaporative cooling', but this energy will be released back to the atmosphere wherever the water condenses. However, the extent to which local evaporative cooling provides a global cooling influence has not been well characterized. Here, we perform a highly idealized set of climate model simulations aimed at understanding the effects that changes in the balance between surface sensible and latent heating have on the global climate system. We find that globally adding a uniform 1 W m -2 source of latent heat flux along with a uniform 1 W m -2 sink of sensible heat leads to a decrease in global mean surface air temperature of 0.54 ± 0.04 K. This occurs largely as a consequence of planetary albedo increases associated with an increase in low elevation cloudiness caused by increased evaporation. Thus, our model results indicate that, on average, when latent heating replaces sensible heating, global, and not merely local, surface temperatures decrease.

  19. Modeling conductive heat transfer during high-pressure thawing processes: determination of latent heat as a function of pressure.

    Science.gov (United States)

    Denys, S; Van Loey, A M; Hendrickx, M E

    2000-01-01

    A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.

  20. Latent Heating Profiles Derived from ARM Radar Observations in MC3E and GoAmazon Field Campaigns

    Science.gov (United States)

    Min, Q.; Li, R.; Mu, Z.; Giangrande, S. E.; Wang, Y.

    2016-12-01

    Atmosphere latent heating (LH) is released through water phase change processes in the atmosphere. There is a physical connection between LH rate and updraft velocity (ω) inside clouds. In this study, we develop a new LH algorithm based on a quantified LH-ω relationship found in cloud resolving model (CRM) simulations. The self-consistency check with CRM simulations shows that the retrievals correctly replicate the main features of LH profiles, including their total and individual components (i.e. condensation-evaporation heating rate, deposition-sublimation heating rate, and freezing-melting heating rate). Further, the algorithm is applied to real cases from the DOE-ARM MC3E and GoAmazon2014/6 Field Campaigns using available UHF (915 and 1290 MHz) zenith radar retrievals of vertical velocity and rain rate as input. The retrieved LH profiles in the deep convective rains show positive heating throughout the column, the LH profiles in the stratiform rains with well-defined bright-band showing clear dipole patterns with positive heating above and negative cooling below the freezing level. The altitudes of maximum heating in the widespread stratiform regimes are clearly higher than those found within deep convective regions. Overall, these Latent heating rate profiles, as an important geophysical quantity of interest, can provide useful climate diagnostic data, and ultimately, constraints for model-based analyses of large-scale heating distributions.

  1. Indirectly heated biomass gasification using a latent-heat ballast-part 3: refinement of the heat transfer model

    International Nuclear Information System (INIS)

    Cummer, Keith; Brown, Robert C.

    2005-01-01

    An indirectly heated gasifier is under development at Iowa State University. This gasifier integrates a latent-heat ballast with a fluidized-bed reactor. The latent heat ballast is an array of stainless-steel tubes filled with lithium fluoride, which is a high-temperature phase-change material (PCM). Previous studies have presented experimental results from the gasifier and described a mathematical model of the pyrolysis phase of the cyclic gasification process. This model considers both heat transfer and chemical reactions that occur during pyrolysis, but discrepancies between model predictions and experimental data have demonstrated the need to refine the model. In particular, cooling curves for the ballasting system are not well predicted during phase change of the lithium fluoride. A reformulated model, known as the Receding Interface (RI) model, postulates the existence of a receding liquid phase within the ballast tubes as they cool, which progressively decreases the rate of heat transfer from the tubes. The RI model predicts behavior that is more consistent with experimental results during the phase-change process, while retaining accuracy before and after the process of phase change

  2. Latent Heat Flow in Light Weight Roofs and its Influence on the Thermal Performance

    DEFF Research Database (Denmark)

    Rode, Carsten; Rudbeck, Claus Christian

    1998-01-01

    Under certain conditions, migration of small amounts of moisture in the envelope of buildings can cause heat flow through permeable thermal insulation materials due to the conversion of latent heat when moisture evaporates from a warm surface, diffuses through the insulation, and condenses...

  3. Theoretical predictions for latent heats and phase-change temperatures of polycrystalline PCMs

    Science.gov (United States)

    Medved', Igor; Trník, Anton

    2017-07-01

    We had previously developed a microscopic approach from which it is possible to fit enthalpy jumps and heat capacity peaks of polycrystalline phase-change materials that consists of a large number of grains. It is also possible to determine the corresponding latent heat and phase-change temperature. These results are given in a form of sums over grain diameters that can be evaluated numerically. Therefore, their behavior and dependence on physical parameters are not susceptible to straightforward interpretations. Here we use the results to derive simple formulas for the maximum position (Tmax), height (H), and an asymmetry factor (α) of those heat capacity peaks that are very asymmetric. In addition, we express the phase-change temperature as a simple combination of Tmax, H, α, and the peak's area. We apply our formulas to Rhubitherm 27 as an example PCM for which the heat capacity peak is so asymmetric that it has about 80 % of its total area below its maximum position.

  4. High performance passive solar heating system with heat pipe energy transfer and latent heat storage

    NARCIS (Netherlands)

    Dijk, van H.A.L.; Galen, van E; Hensen, J.L.M.; Wit, de M.H.

    1983-01-01

    Preliminar results are reported from a current project on the development of a high performance passive solar heating system. Two special components are introduced: a. A heat pipe as a thermal diode tube for the efficient transfer of collected solar heat from the absorber plate to behind an

  5. Modeling and impacts of the latent heat of phase change and specific heat for phase change materials

    Science.gov (United States)

    Scoggin, J.; Khan, R. S.; Silva, H.; Gokirmak, A.

    2018-05-01

    We model the latent heats of crystallization and fusion in phase change materials with a unified latent heat of phase change, ensuring energy conservation by coupling the heat of phase change with amorphous and crystalline specific heats. We demonstrate the model with 2-D finite element simulations of Ge2Sb2Te5 and find that the heat of phase change increases local temperature up to 180 K in 300 nm × 300 nm structures during crystallization, significantly impacting grain distributions. We also show in electrothermal simulations of 45 nm confined and 10 nm mushroom cells that the higher amorphous specific heat predicted by this model increases nucleation probability at the end of reset operations. These nuclei can decrease set time, leading to variability, as demonstrated for the mushroom cell.

  6. A Bayesian approach to estimate sensible and latent heat over vegetated land surface

    Directory of Open Access Journals (Sweden)

    C. van der Tol

    2009-06-01

    Full Text Available Sensible and latent heat fluxes are often calculated from bulk transfer equations combined with the energy balance. For spatial estimates of these fluxes, a combination of remotely sensed and standard meteorological data from weather stations is used. The success of this approach depends on the accuracy of the input data and on the accuracy of two variables in particular: aerodynamic and surface conductance. This paper presents a Bayesian approach to improve estimates of sensible and latent heat fluxes by using a priori estimates of aerodynamic and surface conductance alongside remote measurements of surface temperature. The method is validated for time series of half-hourly measurements in a fully grown maize field, a vineyard and a forest. It is shown that the Bayesian approach yields more accurate estimates of sensible and latent heat flux than traditional methods.

  7. Exploitation of humid air latent heat by means of solar assisted heat pumps operating below the dew point

    International Nuclear Information System (INIS)

    Scarpa, Federico; Tagliafico, Luca A.

    2016-01-01

    Highlights: • The opportunity of humid air latent heat exploitation by DX-SAHP is investigated. • A set of experimental tests confirms this opportunity and quantifies it as relevant. • A parametric analysis is performed, via simulation, to deepen the subject. • The energy gain is relevant during both night and daytime. - Abstract: Nowadays, the exploitation of environmental exergy resources for heating purposes (solar energy, convection heat transfer from ambient air, moist air humidity condensation) by means of properly designed heat pump systems is a possible opportunity. In particular, the use of direct expansion solar assisted heat pumps (DX-SAHP) is investigated in this study, when a bare external plate (the solar collector) is kept at temperatures lower than the dew point temperature of ambient air, so that condensation takes place on it. The potential of this technology is settled and an instrumented prototype of a small DX-SAHP system is used to verify the actual performance of the system, in terms of specific thermal energy delivered to the user, efficiency and regulation capabilities. Results clearly show that the contribution of the condensation is significant (20%–30% of the total harvested energy) overnight or in cloudy days with very low or no solar irradiation, and must be taken into account in a system model devoted to describe the DX-SAHP behavior. During daytime, the percentage gain decreases but is still consistent. By investigating along these lines, the heat due to condensation harvested by the collector is found to be a function of the dew-point temperature alone.

  8. Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion

    OpenAIRE

    Datas Medina, Alejandro; Ramos Cabal, Alba; Martí Vega, Antonio; Cañizo Nadal, Carlos del; Luque López, Antonio

    2016-01-01

    A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and a...

  9. Resveratrol Reactivates Latent HIV through Increasing Histone Acetylation and Activating Heat Shock Factor 1.

    Science.gov (United States)

    Zeng, Xiaoyun; Pan, Xiaoyan; Xu, Xinfeng; Lin, Jian; Que, Fuchang; Tian, Yuanxin; Li, Lin; Liu, Shuwen

    2017-06-07

    The persistence of latent HIV reservoirs presents a significant challenge to viral eradication. Effective latency reversing agents (LRAs) based on "shock and kill" strategy are urgently needed. The natural phytoalexin resveratrol has been demonstrated to enhance HIV gene expression, although its mechanism remains unclear. In this study, we demonstrated that resveratrol was able to reactivate latent HIV without global T cell activation in vitro. Mode of action studies showed resveratrol-mediated reactivation from latency did not involve the activation of silent mating type information regulation 2 homologue 1 (SIRT1), which belonged to class-3 histone deacetylase (HDAC). However, latent HIV was reactivated by resveratrol mediated through increasing histone acetylation and activation of heat shock factor 1 (HSF1). Additionally, synergistic activation of the latent HIV reservoirs was observed under cotreatment with resveratrol and conventional LRAs. Collectively, this research reveals that resveratrol is a natural LRA and shows promise for HIV therapy.

  10. Experimental investigations on cylindrical latent heat storage units with sodium acetate trihydrate composites utilizing supercooling

    DEFF Research Database (Denmark)

    Dannemand, Mark; Johansen, Jakob Berg; Kong, Weiqiang

    2016-01-01

    Latent heat storage units utilizing stable supercooling of sodium acetate trihydrate (SAT) composites were tested in a laboratory. The stainless steel units were 1.5 m high cylinders with internal heat exchangers of tubes with fins. One unit was tested with 116 kg SAT with 6% extra water. Another...... in the thickened phase change material after melting. The heat content in the fully charged state and the heat released after solidification of the supercooled SAT mixtures at ambient temperature was higher for the unit with the thickened SAT mixture. The heat discharged after solidification of the supercooled SAT...

  11. High-temperature thermocline TES combining sensible and latent heat - CFD modeling and experimental validation

    Science.gov (United States)

    Zavattoni, Simone A.; Geissbühler, Lukas; Barbato, Maurizio C.; Zanganeh, Giw; Haselbacher, Andreas; Steinfeld, Aldo

    2017-06-01

    The concept of combined sensible/latent heat thermal energy storage (TES) has been exploited to mitigate an intrinsic thermocline TES systems drawback of heat transfer fluid outflow temperature reduction during discharging. In this study, the combined sensible/latent TES prototype under investigation is constituted by a packed bed of rocks and a small amount of encapsulated phase change material (AlSi12) as sensible heat and latent heat sections respectively. The thermo-fluid dynamics behavior of the combined TES prototype was analyzed by means of a computational fluid dynamics approach. Due to the small value of the characteristic vessel-to-particles diameter ratio, the effect of radial void-fraction variation, also known as channeling, was accounted for. Both the sensible and the latent heat sections of the storage were modeled as porous media under the assumption of local thermal non-equilibrium (LTNE). The commercial code ANSYS Fluent 15.0 was used to solve the model's constitutive conservation and transport equations obtaining a fairly good agreement with reference experimental measurements.

  12. Performance investigation of a lab–scale latent heat storage prototype – Numerical results

    International Nuclear Information System (INIS)

    Niyas, Hakeem; Prasad, Sunku; Muthukumar, P.

    2017-01-01

    Highlights: • Developed a numerical tool for analyzing a shell-and-tube LHS system. • Effective heat capacity method is used for incorporating the latent heat. • Number of heat transfer fluid tubes and fins are optimized. • Partial charging/discharging is efficient than complete charging/discharging. • Numerically predicted values match well with the experimental results. - Abstract: In the current study, numerical analysis of the charging and discharging characteristics of a lab-scale latent heat storage (LHS) prototype is presented. A mathematical model is developed to analyze the performance characteristics of the LHS prototype of shell and tube heat exchanger configuration. Effective heat capacity (EHC) method is implemented to consider the latent heat of the phase change material (PCM) and Boussinesq approximation is used to incorporate the buoyancy effect of the molten layer of the PCM in the model. For proper modeling of velocities in the PCM, Darcy law’s source term is added. The governing equations involved in the model are solved using a finite element based software product, COMSOL Multiphysics 4.3a. The number of embedded tubes and fins on the embedded tubes are optimized based on the discharging time of the model. Various performance parameters such as charging/discharging time, energy storage/discharge rate and melt fraction are evaluated. Numerically predicted temperature variations of the model during charging and discharging processes were compared with the experimental data extracted from the lab-scale LHS prototype and a good agreement was found between them.

  13. Phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as PCM in a latent heat storage system

    International Nuclear Information System (INIS)

    Baran, Guelseren; Sari, Ahmet

    2003-01-01

    The phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as phase change material (PCM) during the melting and solidification processes were determined experimentally in a vertical two concentric pipes energy storage system. This study deals with three important subjects. First is determination of the eutectic composition ratio of the palmitic acid (PA) and stearic acid (SA) binary system and measurement of its thermophysical properties by differential scanning calorimetry (DSC). Second is establishment of the phase transition characteristics of the mixture, such as the total melting and solidification temperatures and times, the heat transfer modes in the melted and solidified PCM and the effect of Reynolds and Stefan numbers as initial heat transfer fluid (HTF) conditions on the phase transition behaviors. Third is calculation of the heat transfer coefficients between the outside wall of the HTF pipe and the PCM, the heat recovery rates and heat fractions during the phase change processes of the mixture and also discussion of the effect of the inlet HTF parameters on these characteristics. The DSC results showed that the PA-SA binary system in the mixture ratio of 64.2:35.8 wt% forms a eutectic, which melts at 52.3 deg. C and has a latent heat of 181.7 J g -1 , and thus, these properties make it a suitable PCM for passive solar space heating and domestic water heating applications with respect to climate conditions. The experimental results also indicated that the eutectic mixture of PA-SA encapsulated in the annulus of concentric double pipes has good phase change and heat transfer characteristics during the melting and solidification processes, and it is an attractive candidate as a potential PCM for heat storage in latent heat thermal energy storage systems

  14. Latent heat storage by silica-coated polymer beads containing organic phase change materials

    Czech Academy of Sciences Publication Activity Database

    Feczkó, T.; Trif, L.; Horák, Daniel

    2016-01-01

    Roč. 132, July (2016), s. 405-414 ISSN 0038-092X R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : latent heat storage * phase change materials * porous beads by suspension polymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.018, year: 2016

  15. Mixtures of Gaussians for uncertainty description in bivariate latent heat flux proxies

    NARCIS (Netherlands)

    Wójcik, R.; Troch, P.A.A.; Stricker, J.N.M.; Torfs, P.J.J.F.

    2006-01-01

    This paper proposes a new probabilistic approach for describing uncertainty in the ensembles of latent heat flux proxies. The proxies are obtained from hourly Bowen ratio and satellite-derived measurements, respectively, at several locations in the southern Great Plains region in the United States.

  16. Upper atmosphere tidal oscillations due to latent heat release in the tropical troposphere

    Directory of Open Access Journals (Sweden)

    J. M. Forbes

    1997-09-01

    Full Text Available Latent heat release associated with tropical deep convective activity is investigated as a source for migrating (sun-synchronous diurnal and semidiurnal tidal oscillations in the 80–150-km height region. Satellite-based cloud brightness temperature measurements made between 1988 and 1994 and averaged into 3-h bins are used to determine the annual- and longitude-average local-time distribution of rainfall rate, and hence latent heating, between ±40° latitude. Regional average rainfall rates are shown to be in good agreement with climatological values derived from surface rain gauge data. A global linearized wave model is used to estimate the corresponding atmospheric perturbations in the mesosphere/lower thermosphere (80–150 km resulting from upward-propagating tidal components excited by the latent heating. The annual-average migrating diurnal and semidiurnal components achieve velocity and temperature amplitudes of order 10–20 m s–1 and 5–10 K, respectively, which represent substantial contributions to the dynamics of the region. The latent heat forcing also shifts the phase (local solar time of maximum of the semidiurnal surface pressure oscillation from 0912 to 0936 h, much closer to the observed value of 0944 h.

  17. Efficiency gains of photovoltaic system using latent heat thermal energy storage

    NARCIS (Netherlands)

    Tan, Lippong; Date, Abhijit; Fernandes, Gabriel; Singh, Baljit; Ganguly, Sayantan

    This paper presents experimental assessments of the thermal and electrical performance of photovoltaic (PV) system by comparing the latent heat-cooled PV panel with the naturally-cooled equivalent. It is commonly known that the energy conversion efficiency of the PV cells declines with the increment

  18. Latent heat increases storage capacity. Heat transport by truck; Latente warmte vergroot opslagcapaciteit. Warmtetransport per vrachtauto is soms heel slim

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, K.

    2012-11-15

    The project-group Biomass CHP (combined production of heat and power) organized a tour with a workshop in Dortmund, Germany, September 26, 2012, on storage and transport of heat and biogas. There are several projects in Germany involving road transport of heat by means of containers. A swimming pool in Dortmund already is using this option since 2008. Waste heat from a CHP-installation for landfill gas is collected from a waste dump [Dutch] De projectgroep Biomassa en WKK organiseerde 26 September een excursie met workshop in Dortmund over opslag en transport van warmte en biogas. Er zijn in Duitsland al meerdere projecten waarbij warmte per container over de weg wordt vervoerd. Een Dortmunds zwembad werkt hier al sinds 2008 mee. De restwarmte van een wkk op stortgas wordt opgehaald bij een afvalstortplaats.

  19. Total Site Heat Integration Considering Pressure Drops

    Directory of Open Access Journals (Sweden)

    Kew Hong Chew

    2015-02-01

    Full Text Available Pressure drop is an important consideration in Total Site Heat Integration (TSHI. This is due to the typically large distances between the different plants and the flow across plant elevations and equipment, including heat exchangers. Failure to consider pressure drop during utility targeting and heat exchanger network (HEN synthesis may, at best, lead to optimistic energy targets, and at worst, an inoperable system if the pumps or compressors cannot overcome the actual pressure drop. Most studies have addressed the pressure drop factor in terms of pumping cost, forbidden matches or allowable pressure drop constraints in the optimisation of HEN. This study looks at the implication of pressure drop in the context of a Total Site. The graphical Pinch-based TSHI methodology is extended to consider the pressure drop factor during the minimum energy requirement (MER targeting stage. The improved methodology provides a more realistic estimation of the MER targets and valuable insights for the implementation of the TSHI design. In the case study, when pressure drop in the steam distribution networks is considered, the heating and cooling duties increase by 14.5% and 4.5%.

  20. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    Science.gov (United States)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  1. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2002

    Science.gov (United States)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.

  2. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    Science.gov (United States)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  3. Cold Heat Storage Characteristics of O/W-type Latent Heat Emulsion Including Continuum Phase of Water Treated with a Freezing Point Depression

    Science.gov (United States)

    Inaba, Hideo; Morita, Shin-Ichi

    This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.

  4. Geothermal electricity generation and desalination: an integrated process design to conserve latent heat with operational improvements

    KAUST Repository

    Missimer, Thomas M.

    2016-02-05

    A new process combination is proposed to link geothermal electricity generation with desalination. The concept involves maximizing the utilization of harvested latent heat by passing the turbine exhaust steam into a multiple effect distillation system and then into an adsorption desalination system. Processes are fully integrated to produce electricity, desalted water for consumer consumption, and make-up water for the geothermal extraction system. Further improvements in operational efficiency are achieved by adding a seawater reverse osmosis system to the site to utilize some of the generated electricity and using on-site aquifer storage and recovery to maximize water production with tailoring of seasonal capacity requirements and to meet facility maintenance requirements. The concept proposed conserves geothermally harvested latent heat and maximizes the economics of geothermal energy development. Development of a fully renewable energy electric generation-desalination-aquifer storage campus is introduced within the framework of geothermal energy development. © 2016 The Author(s). Published by Taylor & Francis

  5. Geothermal electricity generation and desalination: an integrated process design to conserve latent heat with operational improvements

    KAUST Repository

    Missimer, Thomas M.; Ng, Kim Choon; Thuw, Kyaw; Wakil Shahzad, Muhammad

    2016-01-01

    A new process combination is proposed to link geothermal electricity generation with desalination. The concept involves maximizing the utilization of harvested latent heat by passing the turbine exhaust steam into a multiple effect distillation system and then into an adsorption desalination system. Processes are fully integrated to produce electricity, desalted water for consumer consumption, and make-up water for the geothermal extraction system. Further improvements in operational efficiency are achieved by adding a seawater reverse osmosis system to the site to utilize some of the generated electricity and using on-site aquifer storage and recovery to maximize water production with tailoring of seasonal capacity requirements and to meet facility maintenance requirements. The concept proposed conserves geothermally harvested latent heat and maximizes the economics of geothermal energy development. Development of a fully renewable energy electric generation-desalination-aquifer storage campus is introduced within the framework of geothermal energy development. © 2016 The Author(s). Published by Taylor & Francis

  6. Joseph Black, carbon dioxide, latent heat, and the beginnings of the discovery of the respiratory gases.

    Science.gov (United States)

    West, John B

    2014-06-15

    The discovery of carbon dioxide by Joseph Black (1728-1799) marked a new era of research on the respiratory gases. His initial interest was in alkalis such as limewater that were thought to be useful in the treatment of renal stone. When he studied magnesium carbonate, he found that when this was heated or exposed to acid, a gas was evolved that he called "fixed air" because it had been combined with a solid material. He showed that the new gas extinguished a flame, that it could not support life, and that it was present in gas exhaled from the lung. Within a few years of his discovery, hydrogen, nitrogen, and oxygen were also isolated. Thus arguably Black's work started the avalanche of research on the respiratory gases carried out by Priestley, Scheele, Lavoisier, and Cavendish. Black then turned his attention to heat and he was the first person to describe latent heat, that is the heat added or lost when a liquid changes its state, for example when water changes to ice or steam. Latent heat is a key concept in thermal physiology because of the heat lost when sweat evaporates. Black was a friend of the young James Watt (1736-1819) who was responsible for the development of early steam engines. Watt was puzzled why so much cooling was necessary to condense steam into water, and Black realized that the answer was the latent heat. The resulting improvements in steam engines ushered in the Industrial Revolution. Copyright © 2014 the American Physiological Society.

  7. Equal Area Laws and Latent Heat for d-Dimensional RN-AdS Black Hole

    International Nuclear Information System (INIS)

    Ma, Meng-Sen; Zhao, Ren; Zhang, Li-Chun; Zhao, Hui-Hua

    2014-01-01

    We study the equal area laws of d-dimensional RN-AdS black hole. We choose two kinds of phase diagrams, P-V and T-S. We employ the equal area laws to find an isobar which is the real two-phase coexistence line. Our calculation is much simpler to derive the critical value of the thermodynamic quantities. According to the thermodynamic quantities, we also study the latent heat of the black hole

  8. A simple model for local scale sensible and latent heat advection contributions to snowmelt

    OpenAIRE

    Harder, Phillip; Pomeroy, John W.; Helgason, Warren D.

    2018-01-01

    Local-scale advection of energy from warm snow-free surfaces to cold snow-covered surfaces is an important component of the energy balance during snowcover depletion. Unfortunately, this process is difficult to quantify in one-dimensional snowmelt models. This manuscript proposes a simple sensible and latent heat advection model for snowmelt situations that can be readily coupled to one-dimensional energy balance snowmelt models. An existing advection parameterization was coupled to a concept...

  9. An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material

    Directory of Open Access Journals (Sweden)

    Ashish Agarwal

    2016-03-01

    Full Text Available In the presented study the shell and tube type latent heat storage (LHS has been designed for solar dryer and paraffin wax is used as heat storage material. In the first part of the study, the thermal and heat transfer characteristics of the latent heat storage system have been evaluated during charging and discharging process using air as heat transfer fluid (HTF. In the last section of the study the effectiveness of the use of an LHS for drying of food product and also on the drying kinetics of a food product has been determined. A series of experiments were conducted to study the effects of flow rate and temperature of HTF on the charging and discharging process of LHS. The temperature distribution along the radial and longitudinal directions was obtained at different time during charging process to analyze the heat transfer phenomenon in the LHS. Thermal performance of the system is evaluated in terms of cumulative energy charged and discharged, during the charging and discharging process of LHS, respectively. Experimental results show that the LHS is suitable to supply the hot air for drying of food product during non-sunshine hours or when the intensity of solar energy is very low. Temperature gain of air in the range of 17 °C to 5 °C for approximately 10 hrs duration was achieved during discharging of LHS.

  10. Numerical Heat Transfer Studies of a Latent Heat Storage System Containing Nano-Enhanced Phase Change Material

    Directory of Open Access Journals (Sweden)

    S F Hosseinizadeh

    2011-01-01

    Full Text Available The heat transfer enhancement in the latent heat thermal energy storage system through dispersion of nanoparticle is reported. The resulting nanoparticle-enhanced phase change materials (NEPCM exhibit enhanced thermal conductivity in comparison to the base material. The effects of nanoparticle volume fraction and some other parameters such as natural convection are studied in terms of solid fraction and the shape of the solid-liquid phase front. It has been found that higher nanoparticle volume fraction result in a larger solid fraction. The present results illustrate that the suspended nanoparticles substantially increase the heat transfer rate and also the nanofluid heat transfer rate increases with an increase in the nanoparticles volume fraction. The increase of the heat release rate of the NEPCM shows its great potential for diverse thermal energy storage application.

  11. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part II: Evaluation of Estimates Using Independent Data

    Science.gov (United States)

    Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.

    2006-01-01

    Rainfall rate estimates from spaceborne microwave radiometers are generally accepted as reliable by a majority of the atmospheric science community. One of the Tropical Rainfall Measuring Mission (TRMM) facility rain-rate algorithms is based upon passive microwave observations from the TRMM Microwave Imager (TMI). In Part I of this series, improvements of the TMI algorithm that are required to introduce latent heating as an additional algorithm product are described. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, 0.5 deg. -resolution estimates of surface rain rate over ocean from the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over earlier algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly 2.5 -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data is limited, TMI-estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain-rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with (a) additional contextual information brought to the estimation problem and/or (b) physically consistent and representative databases supporting the algorithm. A model of the random error in instantaneous 0.5 deg. -resolution rain-rate estimates appears to be consistent with the levels of error determined from TMI comparisons with collocated

  12. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 2; Evaluation of Estimates Using Independent Data

    Science.gov (United States)

    Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.

    2004-01-01

    Rainfall rate estimates from space-borne k&ents are generally accepted as reliable by a majority of the atmospheric science commu&y. One-of the Tropical Rainfall Measuring Mission (TRh4M) facility rain rate algorithms is based upon passive microwave observations fiom the TRMM Microwave Imager (TMI). Part I of this study describes improvements in the TMI algorithm that are required to introduce cloud latent heating and drying as additional algorithm products. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, OP5resolution estimates of surface rain rate over ocean fiom the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over forerunning algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm, and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly, 2.5 deg. -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data are limited, TMI estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with: (a) additional contextual information brought to the estimation problem, and/or; (b) physically-consistent and representative databases supporting the algorithm. A model of the random error in instantaneous, 0.5 deg-resolution rain rate estimates appears to be consistent with the levels of error determined from TMI comparisons to collocated radar

  13. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat, and carbon fluxes in semiarid basin

    Science.gov (United States)

    Zeng, Yujin; Xie, Zhenghui; Liu, Shuang

    2017-02-01

    Irrigation, which constitutes ˜ 70 % of the total amount of freshwater consumed by the human population, is significantly impacting land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM4.5) with an active crop model, two high-resolution (˜ 1 km) simulations investigating the effects of irrigation on latent heat (LH), sensible heat (SH), and carbon fluxes (or net ecosystem exchange, NEE) from land to atmosphere in the Heihe River basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity of the developed models to reproduce ecological and hydrological processes. The results revealed that the effects of irrigation on LH and SH are strongest during summer, with a LH increase of ˜ 100 W m-2 and a SH decrease of ˜ 60 W m-2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate is below 5 mm day-1, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm day-1, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC m-2 day-1, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by ˜ 0.8 gC m-2 day-1. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH, and NEE.

  14. Retrieving latent heating vertical structure from cloud and precipitation profiles—Part II: Deep convective and stratiform rain processes

    International Nuclear Information System (INIS)

    Li, Rui; Min, Qilong; Wu, Xiaoqing; Fu, Yunfei

    2013-01-01

    An exploratory study on physical based latent heat (LH) retrieval algorithm is conducted by parameterizing the physical linkages between observed cloud and precipitation profiles to the major processes of phase change of atmospheric water. Specifically, rain is segregated into three rain types: warm, convective, and stratiform rain, based on their dynamical and thermodynamical characteristics. As the second of series, both convective and stratiform rain LH algorithms are presented and evaluated here. For convective and stratiform rain, the major LH-related microphysical processes including condensation, deposition, evaporation, sublimation, and freezing–melting are parameterized with the aid of Cloud Resolving Model (CRM) simulations. The condensation and deposition processes are parameterized in terms of rain formation processes through the precipitation formation theory. LH associated with the freezing–melting process is relatively small and is assumed to be a fraction of total condensation and deposition LH. The evaporation and sublimation processes are parameterized for three unsaturated scenarios: rain out of the cloud body, clouds at cloud boundary and clouds and rain in downdraft region. The evaluation or self-consistency test indicates the retrievals capture the major features of LH profiles and reproduce the double peaks at right altitudes. The LH products are applicable at various stages of cloud system life cycle for high-resolution models, as well as for large-scale climate models. -- Highlights: ► An exploratory study on physics-based cold rain latent heat retrieval algorithm. ► Utilize the full information of the vertical structures of cloud and rainfall. ► Include all major LH-related microphysical processes (in ice and liquid phase). ► Directly link water mass measurements to latent heat at instantaneous pixel level. ► Applicable at various stages of cloud system life cycle

  15. Preparation and flow characteristic of a novel phase change fluid for latent heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Deqiu [Marine College of Ningbo University, Ningbo 315211, Zhejiang (China); Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); Feng, Ziping; Xiao, Rui; Qin, Kun; Zhang, Jianjun; Song, Wenji; Tu, Qiu [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2010-12-15

    A novel phase change emulsion (PCE) was prepared and its latent heat was measured by DSC. To analyze its feasibility in heat transportation through a piping system, an experimental system was built. The pressure drop of the PCE for turbulent flow was measured and the effects of such facts as the paraffin concentration and flow velocity were discussed. According to the pressure characteristic and latent heat of the PCE, the pumping power consumption rates of PCE to water under the same pipe diameter and a given heat transportation quantity can be obtained. The results show that mass flow rate and pumping power consumption of the PCE decrease greatly compared with water. For example, the decrease can be up to about 73% at V=0.6 m/s (20 and 30 wt%). Furthermore, the results show that PCE of 20 wt% can obtain almost the same pumping power consumption savings as PCE of 30 wt% in a certain flow velocity range. Finally, the applications of the PCE in the area of waste heat usage, electrical boiler and solar energy usage were commented. (author)

  16. Effects of high-frequency activity on latent heat flux of MJO

    Science.gov (United States)

    Gao, Yingxia; Hsu, Pang-Chi; Li, Tim

    2018-04-01

    The effect of high-frequency (HF) variability on latent heat flux (LHF) associated with the Madden-Julian Oscillation (MJO) during the boreal winter is investigated through diagnosis using two reanalysis datasets and numerical experiments of an atmospheric general circulation model (AGCM). The diagnostic results show that the HF activities exert an impact on the variability of MJO LHF mainly through their interactions with the longer than 90-day low-frequency background state (LFBS). The contribution of intraseasonal LHF induced by the interactions between LFBS and HF activities accounts for more than 20% of the total intraseasonal LHF over active MJO regions. The intraseasonal LHF induced by the LFBS-HF interaction is in phase with the MJO convection, while the total intraseasonal LHF appears at and to the west of the MJO convection center. This suggests that the intraseasonal LHF via the feedback of HF activity interacting with LFBS is conducive to the maintenance and eastward propagation of MJO convection. To confirm the role of HF disturbances in MJO convection activity, we carry out a series of experiments using the AGCM of ECHAM4, which captures well the general features of MJO. We select a number of MJO cases with enhanced convective signals and significant eastward propagation from a 30-year climatological simulation. Once the HF components of surface wind and moisture fields in LHF are excluded in model integration for each MJO case, most of the simulated MJO convection shows weakened activity and a slower propagation speed compared to the simulations containing all time-scale components. The outputs of these sensitivity experiments support the diagnostic results that HF activities contribute to the maintenance and propagation of MJO convection through the intraseasonal LHF induced by the scale interaction of HF activities with lower frequency variability.

  17. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM rainfall products from December 1997 to November 2001

    Science.gov (United States)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2001. Rainfall, latent heating and radar reflectivity structures between El Nino (DE 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs. west Pacific, Africa vs. S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in strtaiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  18. The capric and lauric acid mixture with chemical additives as latent heat storage materials for cooling application

    Energy Technology Data Exchange (ETDEWEB)

    Roxas-Dimaano, M.N. [University of Santo Tomas, Manila (Philippines). Research Center for the Natural Sciences; Watanabe, T. [Tokyo Institute of Technology (Japan). Research Laboratory for Nuclear Reactors

    2002-09-01

    The mixture of capric acid and lauric acid (C-L acid), with the respective mole composition of 65% and 35%, is a potential phase change material (PCM). Its melting point of 18.0{sup o}C, however, is considered high for cooling application of thermal energy storage. The thermophysical and heat transfer characteristics of the C-L acid with some organic additives are investigated. Compatibility of C-L acid combinations with additives in different proportions and their melting characteristics are analyzed using the differential scanning calorimeter (DSC). Among the chemical additives, methyl salicylate, eugenol, and cineole presented the relevant melting characteristics. The individual heat transfer behavior and thermal storage performance of 0.1 mole fraction of these additives in the C-L acid mixture are evaluated. The radial and axial temperature distribution during charging and discharging at different concentrations of selected PCM combinations are experimentally determined employing a vertical cylindrical shell and tube heat exchanger. The methyl salicylate in the C-L acid provided the most effective additive in the C-L acid. It demonstrated the least melting band width aimed at lowering the melting point of the C-L acid with the highest heat of fusion value with relatively comparable rate of heat transfer. Furthermore, the thermal performance based on the total amount of transferred energy and their rates, established the PCM's latent heat storage capability. (author)

  19. Application of latent heat storage devices and thermal solar collectors; Einsatz von Latentwaermespeichern und Solarthermie

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, Corinna; Mueller, Dirk [RWTH Aachen, E.ON Energieforschungszentrum, Lehrstuhl fuer Gebaeude- und Raumklimatechnik (Germany)

    2010-12-15

    Modern heating systems for buildings need a supply temperature of approximately 35 C. In this temperature range it is possible to use low temperature storage systems. Therefore the heat losses over the envelope can be reduced because of the smaller temperature difference between the ambient air and the storage. In order to use the existing technique of the buffer storages more efficiently, latent heat storage devices are put into the storage volume. For the operating temperature range of 30 to 40 C paraffins or salt hydrates can be used. Because of the low operating temperature it is possible to integrate solar thermal systems in the heating system (especially in spring and autumn). The overall system performance will be analysed. (Copyright copyright 2010 Ernst and Sohn Verlag fuer Architektur und technische Wissenschaften GmbH and Co. KG, Berlin)

  20. Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Helm, M.; Keil, C.; Hiebler, S.; Mehling, H.; Schweigler, C. [Bavarian Center for Applied Energy Research (ZAE Bayern) (Germany)

    2009-06-15

    Absorption cooling systems based on water/lithium bromide (LiBr) solution typically require an open wet cooling tower to transfer the reject heat to the ambient. Yet, water consumption, the need for water make-up and cleaning, formation of fog, and the risk of Legionella bacteria growth are hindering factors for the implementation of small solar cooling systems. The application of a latent heat storage supporting the heat rejection of the absorption chiller in conjunction with a dry cooling system allows eliminating the wet cooling tower. By that means heat rejection of the chiller is shifted to periods with lower ambient temperatures, i.e. night time or off-peak hours. The system concept and the hydraulic scheme together with an analysis of the energetic performance of the system are presented, followed by a report on the operation of a first pilot installation. (author)

  1. Thermophysical Properties of Fluid Latent Heat Storage Material using Urea-Water Mixture

    Science.gov (United States)

    Hokamura, Taku; Ohkubo, Hidetoshi; Ashizawa, Kiyonori

    This study is concerned with the measurement of thermophysical properties of a urea-water mixture with the aim of adopting the mixture as a latent heat storage material for air-conditioning systems. The urea-water mixture is made of natural substances and has a good fluidity. The urea concentration in the mixture was controlled by measuring the refractive index of the mixture. Being a multi-component substance, a urea-water solution has a liquid-solid co-existent phase on a phase-diagram. Therefore, the liquidus temperature was measured to establish a relationship between the fraction of the solid-phase and temperature. Furthermore, apparent values of specific heat and coefficient of viscosity were measured in the two-phase region where the solid phase is ice. The apparent specific heat and coefficient of viscosity were measure by using an adiabatic calorimeter and a stirring torque meter respectively. The results revealed that the urea-water mixture can probably be used as a latent heat storage material of good fluidity.

  2. Changing storm track diffusivity and the upper limit to poleward latent heat transport

    Science.gov (United States)

    Caballero, R.

    2010-12-01

    Poleward atmospheric energy transport plays a key role in the climate system by helping set the mean equator-pole temperature gradient. The mechanisms controlling the response of poleward heat flux to climate change are still poorly understood. Recent work shows that midlatitude poleward latent heat flux in atmospheric GCMs generally increases as the climate warms but reaches an upper limit at sufficiently high temperature and decreases with further warming. The reasons for this non-monotonic behavior have remained unclear. Simple arguments suggests that the latent heat flux Fl should scale as Fl ˜ vref qs, where vref is a typical meridional velocity in the baroclinic zone and qs is saturation humidity. While vref decreases with temperature, qs increases much more rapidly, so this scaling implies monotonically increasing moisture flux. We study this problem using a series of simulations employing NCAR’s CAM3 GCM coupled to a slab-ocean aquaplanet and spanning a wide range of atmospheric CO2 concentrations. We find that a modified scaling, Fl ˜ vref2 qs, describes the changes in moisture flux much more accurately. Using Lagrangian trajectory analysis, we explain the success of this scaling in terms of changes in the mixing length, which contracts proportionally to vref.

  3. Study of the thermal properties of selected PCMs for latent heat storage in buildings

    Science.gov (United States)

    Valentova, Katerina; Pechackova, Katerina; Prikryl, Radek; Ostry, Milan; Zmeskal, Oldrich

    2017-07-01

    The paper is focused on measurements of thermal properties of selected phase change materials (PCMs) which can be used for latent heat storage in building structures. The thermal properties were measured by the transient step-wise method and analyzed by the thermal spectroscopy. The results of three different materials (RT18HC, RT28HC, and RT35HC) and their thermal properties in solid, liquid, and phase change region were determined. They were correlated with the differential scanning calorimetry (DSC) measurement. The results will be used to determine the optimum ratio of components for the construction of drywall and plasters containing listed ingredients, respectively.

  4. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat and carbon fluxes in semi-arid basin

    Science.gov (United States)

    Xie, Zhenghui; Zeng, Yujin

    2017-04-01

    Irrigation, which constitutes 70% of the total amount of fresh water consumed by the human population, is significantly impacting the land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM 4.5) with an active crop model, two high resolution ( 1 km) simulations investigating the effects of irrigation on Latent Heat (LH), Sensible Heat (SH) and Carbon Fluxes (or net ecosystem exchange, NEE) from land to atmosphere on the Heihe River Basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity and viability of the developed models to reproduce ecological and hydrological processes. The results revealed the effects of irrigation on LH and SH are strongest during summer with a LH increase of 100 W/m2 and a SH decrease of 60 W/m2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate below 5 mm/day, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm/day, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC/m2/day, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by 0.8 gC/m2/day. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH and NEE. The study indicates that how a land surface model with high spatial resolution can represent crop growing and its effects over basin scale.

  5. Roughness Length of Water Vapor over Land Surfaces and Its Influence on Latent Heat Flux

    Directory of Open Access Journals (Sweden)

    Sang-Jong Park

    2010-01-01

    Full Text Available Latent heat flux at the surface is largely dependent on the roughness length for water vapor (z0q. The determination of z0q is still uncertain because of its multifaceted characteristics of surface properties, atmospheric conditions and insufficient observations. In this study, observed values from the Fluxes Over Snow Surface II field experiment (FLOSS-II from November 2002 to March 2003 were utilized to estimate z0q over various land surfaces: bare soil, snow, and senescent grass. The present results indicate that the estimated z0q over bare soil is much smaller than the roughness length of momentum (z0m; thus, the ratio z0m/z0q is larger than those of previous studies by a factor of 20 - 150 for the available flow regime of the roughness Reynolds number, Re* > 0.1. On the snow surface, the ratio is comparable to a previous estimation for the rough flow (Re* > 1, but smaller by a factor of 10 - 50 as the flow became smooth (Re* < 1. Using the estimated ratio, an optimal regression equation of z0m/z0q is determined as a function of Re* for each surface type. The present parameterization of the ratio is found to greatly reduce biases of latent heat flux estimation compared with that estimated by the conventional method, suggesting the usefulness of current parameterization for numerical modeling.

  6. Development of salt hydrate eutectics as latent heat storage for air conditioning and cooling

    International Nuclear Information System (INIS)

    Efimova, Anastasia; Pinnau, Sebastian; Mischke, Matthias; Breitkopf, Cornelia; Ruck, Michael; Schmidt, Peer

    2014-01-01

    Graphical abstract: - Highlights: • Inorganic salt hydrates. • Latent heat thermal energy storage. • Thermal behavior of melting and crystallization. • Cycling stability. • Nucleation. - Abstract: Sustainable air conditioning systems require heat reservoirs that operate between 4 and 20 °C. A systematic search for binary and ternary eutectics of inorganic salts and salt hydrates with melting temperatures in this temperature regime and with high enthalpies of fusion has been performed by means of differential scanning calorimetry (DSC). Promising results were obtained for the pseudo-ternary system Zn(NO 3 ) 2 ·6H 2 O, Mn(NO 3 ) 2 ·4H 2 O, and KNO 3 with the melting temperature range 18–21 °C and the enthalpy of fusion of about 110 kJ kg −1 . Suitable nucleating and thickening agents have been found and tested to prevent the mixture from supercooling and phase separation

  7. Study of the thermal behavior of a latent heat cold storage unit operating under frosting conditions

    International Nuclear Information System (INIS)

    Simard, A.P.; Lacroix, M.

    2003-01-01

    A study is performed of the thermal behavior of a latent heat cold storage unit operating under frosting conditions. This unit is employed to maintain the temperature inside the refrigerated compartment of a truck below 265 K. The system consists of parallel plates filled with a phase change material (PCM) that absorbs heat from the flow of warm moist air. A mathematical model for the system is first presented and, next, validated with numerical and experimental data. It is then exploited to assess the effects of design parameters and operating conditions on the performance of the system. The recommended thickness and distance separating the PCM plates are found to be 50x10 -3 and 30x10 -3 m, respectively. The results indicate that the performance of the unit is enhanced by turbulent air flow in spite of the increased pressure loss and accentuated frost growth. The unit also performs well even when the surrounding relative humidity is 100%

  8. Feasibility of Storing Latent Heat with Liquid Crystals. Proof of Concept at Lab Scale

    Directory of Open Access Journals (Sweden)

    Rocío Bayón

    2016-04-01

    Full Text Available In this work, the first experimental results of thermotropic liquid crystals used as phase change materials for thermal storage are presented. For that purpose, the n = 10 derivative from the family of 4′-n-alkoxybiphenyl-4-carboxylic acids has been prepared. Different techniques like polarized-light microscopy, differential scanning calorimetry, thermogravimetric analysis and rheological measurements have been applied for its characterization. Having a mesophase/isotropic transition temperature around 251 °C, a clearing enthalpy of 55 kJ/kg, a thermal heat capacity of around 2.4 kJ/kg and a dynamic viscosity lower than 0.6 Pas, this compound fulfills the main requirements for being considered as latent heat storage material. Although further studies on thermal stability are necessary, the results already obtained are both promising and encouraging since they demonstrate de viability of this new application of liquid crystals as thermal storage media.

  9. Solar Thermoelectricity via Advanced Latent Heat Storage: A Cost-Effective Small-Scale CSP Application

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Rea, J.; Olsen, Michele L.; Oshman, C.; Hardin, C.; Alleman, Jeff; Sharp, J.; Weigand, R.; Campo, D.; Hoeschele, G.; Parilla, Philip A.; Siegel, N. P.; Toberer, Eric S.; Ginley, David S.

    2017-06-27

    We are developing a novel concentrating solar electricity-generating technology that is both modular and dispatchable. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) uses concentrated solar flux to generate high-temperature thermal energy, which directly converts to electricity via thermoelectric generators (TEGs), stored within a phase-change material (PCM) for electricity generation at a later time, or both allowing for simultaneous charging of the PCM and electricity generation. STEALS has inherent features that drive its cost-competitive scale to be much smaller than current commercial concentrating solar power (CSP) plants. Most obvious is modularity of the solid-state TEG, which favors smaller scales in the kilowatt range as compared to CSP steam turbines, which are minimally 50 MWe for commercial power plants. Here, we present techno-economic and market analyses that show STEALS can be a cost-effective electricity-generating technology with particular appeal to small-scale microgrid applications. We evaluated levelized cost of energy (LCOE) for STEALS and for a comparable photovoltaic (PV) system with battery storage. For STEALS, we estimated capital costs and the LCOE as functions of the type of PCM including the use of recycled aluminum alloys, and evaluated the cost tradeoffs between plasma spray coatings and solution-based boron coatings that are applied to the wetted surfaces of the PCM subsystem. We developed a probabilistic cost model that accounts for uncertainties in the cost and performance inputs to the LCOE estimation. Our probabilistic model estimated LCOE for a 100-kWe STEALS system that had 5 hours of thermal storage and 8-10 hours of total daily power generation. For these cases, the solar multiple for the heliostat field varied between 1.12 and 1.5. We identified microgrids as a likely market for the STEALS system. We characterized microgrid markets in terms of nominal power, dispatchability, geographic location, and

  10. Uncertainty characterization of HOAPS 3.3 latent heat-flux-related parameters

    Science.gov (United States)

    Liman, Julian; Schröder, Marc; Fennig, Karsten; Andersson, Axel; Hollmann, Rainer

    2018-03-01

    Latent heat flux (LHF) is one of the main contributors to the global energy budget. As the density of in situ LHF measurements over the global oceans is generally poor, the potential of remotely sensed LHF for meteorological applications is enormous. However, to date none of the available satellite products have included estimates of systematic, random, and sampling uncertainties, all of which are essential for assessing their quality. Here, the challenge is taken on by matching LHF-related pixel-level data of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS) climatology (version 3.3) to in situ measurements originating from a high-quality data archive of buoys and selected ships. Assuming the ground reference to be bias-free, this allows for deriving instantaneous systematic uncertainties as a function of four atmospheric predictor variables. The approach is regionally independent and therefore overcomes the issue of sparse in situ data densities over large oceanic areas. Likewise, random uncertainties are derived, which include not only a retrieval component but also contributions from in situ measurement noise and the collocation procedure. A recently published random uncertainty decomposition approach is applied to isolate the random retrieval uncertainty of all LHF-related HOAPS parameters. It makes use of two combinations of independent data triplets of both satellite and in situ data, which are analysed in terms of their pairwise variances of differences. Instantaneous uncertainties are finally aggregated, allowing for uncertainty characterizations on monthly to multi-annual timescales. Results show that systematic LHF uncertainties range between 15 and 50 W m-2 with a global mean of 25 W m-2. Local maxima are mainly found over the subtropical ocean basins as well as along the western boundary currents. Investigations indicate that contributions from qa (U) to the overall LHF uncertainty are on the order of 60 % (25 %). From an

  11. Solar thermoelectricity via advanced latent heat storage: A cost-effective small-scale CSP application

    Science.gov (United States)

    Glatzmaier, G. C.; Rea, J.; Olsen, M. L.; Oshman, C.; Hardin, C.; Alleman, J.; Sharp, J.; Weigand, R.; Campo, D.; Hoeschele, G.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2017-06-01

    We are developing a novel concentrating solar electricity-generating technology that is both modular and dispatchable. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) uses concentrated solar flux to generate high-temperature thermal energy, which directly converts to electricity via thermoelectric generators (TEGs), stored within a phase-change material (PCM) for electricity generation at a later time, or both allowing for simultaneous charging of the PCM and electricity generation. STEALS has inherent features that drive its cost-competitive scale to be much smaller than current commercial concentrating solar power (CSP) plants. Most obvious is modularity of the solid-state TEG, which favors smaller scales in the kilowatt range as compared to CSP steam turbines, which are minimally 50 MWe for commercial power plants. Here, we present techno-economic and market analyses that show STEALS can be a cost-effective electricity-generating technology with particular appeal to small-scale microgrid applications. We evaluated levelized cost of energy (LCOE) for STEALS and for a comparable photovoltaic (PV) system with battery storage. For STEALS, we estimated capital costs and the LCOE as functions of the type of PCM including the use of recycled aluminum alloys, and evaluated the cost tradeoffs between plasma spray coatings and solution-based boron coatings that are applied to the wetted surfaces of the PCM subsystem. We developed a probabilistic cost model that accounts for uncertainties in the cost and performance inputs to the LCOE estimation. Our probabilistic model estimated LCOE for a 100-kWe STEALS system that had 5 hours of thermal storage and 8-10 hours of total daily power generation. For these cases, the solar multiple for the heliostat field varied between 1.12 and 1.5. We identified microgrids as a likely market for the STEALS system. We characterized microgrid markets in terms of nominal power, dispatchability, geographic location, and

  12. Modelling and simulation of phase change material latent heat storages applied to a solar-powered Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Manfrida, Giampaolo; Secchi, Riccardo; Stańczyk, Kamil

    2016-01-01

    Highlights: • A mathematical model of a Latent Heat Storage system was developed. • Energy and exergy analysis of the storage system were carried out. • A solar powered ORC unit coupled with the Latent Heat Storage was studied. • The dynamic performance of the overall plant was simulated with TRNSYS. - Abstract: Solar energy is one of the most promising renewable energy sources, but is intermittent by its nature. The study of efficient thermal heat storage technologies is of fundamental importance for the development of solar power systems. This work focuses on a robust mathematical model of a Latent Heat Storage (LHS) system constituted by a storage tank containing Phase Change Material spheres. The model, developed in EES environment, provides the time-dependent temperature profiles for the PCM and the heat transfer fluid flowing in the storage tank, and the energy and exergy stored as well. A case study on the application of the LHS technology is also presented. The operation of a solar power plant associated with a latent heat thermal storage and an ORC unit is simulated under dynamic (time-varying) solar radiation conditions with the software TRNSYS. The performance of the proposed plant is simulated over a one week period, and the results show that the system is able to provide power in 78.5% of the time, with weekly averaged efficiencies of 13.4% for the ORC unit, and of 3.9% for the whole plant (from solar radiation to net power delivered by the ORC expander).

  13. Active heat exchange system development for latent heat thermal energy storage

    Science.gov (United States)

    Lefrois, R. T.; Mathur, A. K.

    1980-01-01

    Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.

  14. Thermal performance evaluation of a latent heat storage unit for late evening cooking in a solar cooker having three reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Buddhi, D.; Sharma, A. [Devi Ahilya University, Indore (India). School of Energy and Environmental Studies, Thermal Energy Storage Laboratory; Sharma, S.D. [Mie University, Tsu (Japan). Faculty of Engineering, Department of Architecture

    2003-04-01

    In this paper, a phase change material (PCM) storage unit for a solar cooker was designed and developed to store energy during sunshine hours. The stored energy was utilised to cook food in the late evening. Commercial grade acetanilide (melting point 118.9 {sup o}C, latent heat of fusion 222 kJ/kg) was used as a latent heat storage material. Evening cooking experiments were conducted with different loads and loading times during the winter season. The experimental results showed that late evening cooking is possible in a solar cooker having three reflectors to enhance the incident solar radiation with the PCM storage unit. (author)

  15. Novel functional materials from renewable lipids: Amphiphilic antimicrobial polymers and latent heat thermal energy storage

    Science.gov (United States)

    Floros, Michael Christopher

    Vegetable oils represent an ideal and renewable feedstock for the synthesis of a variety of functional materials. However, without financial incentive or unique applications motivating a switch, commercial products continue to be manufactured from petrochemical resources. Two different families of high value, functional materials synthesized from vegetable oils were studied. These materials demonstrate superior and unique performance to comparable petrochemical analogues currently on the market. In the first approach, 3 amphiphilic thermoplastic polytriazoles with differing lipophilic segment lengths were synthesized in a polymerization process without solvents or catalysts. Investigation of monomer structure influence on the resultant functional behaviour of these polymers found distinctive odd/even behaviour reliant on the number of carbon atoms in the monomers. Higher concentrations of triazole groups, due to shorter CH2 chains in the monomeric dialkynes, resulted in more brittle polymers, displaying higher tensile strengths but reduced elongation to break characteristics. These polymers had similar properties to commercial petroleum derived thermoplastics. One polymer demonstrated self-assembled surface microstructuring, and displayed hydrophobic properties. Antimicrobial efficacy of the polymers were tested by applying concentrated bacterial solutions to the surfaces, and near complete inhibition was demonstrated after 4 hours. Scanning electron microscope images of killed bacteria showed extensive membrane damage, consistent with the observed impact of other amphiphilic compounds in literature. These polytriazoles are suited for applications in medical devices and implants, where major concerns over antibiotic resistance are prevalent. In the second approach, a series of symmetric, saturated diester phase change materials (PCMs) were also synthesized with superior latent heat values compared to commercial petrochemical analogues. These diesters exhibit

  16. Eutectic mixtures of some fatty acids for latent heat storage: Thermal properties and thermal reliability with respect to thermal cycling

    International Nuclear Information System (INIS)

    Sari, Ahmet

    2006-01-01

    Accelerated thermal cycle tests have been conducted to study the change in melting temperatures and latent heats of fusion of the eutectic mixtures of lauric acid (LA)-myristic acid (MA), lauric acid (LA)-palmitic acid (PA) and myristic acid (MA)-stearic acid (SA) as latent heat storage materials. The thermal properties of these materials were determined by the differential scanning calorimetry (DSC) analysis method. The thermal reliability of the eutectic mixtures after melt/freeze cycles of 720, 1080 and 1460 was also evaluated using the DSC curves. The accelerated thermal cycle tests indicate that the melting temperatures usually tend to decrease, and the variations in the latent heats of fusion are irregular with increasing number of thermal cycles. Moreover, the probable reasons for the change in thermal properties of the eutectic mixtures after repeated thermal cycles were investigated. Fourier Transform Infrared (FT-IR) spectroscopic analysis indicates that the accelerated melt/freeze processes do not cause any degradation in the chemical structure of the mixtures. The change in thermal properties of the eutectic mixtures with increasing number of thermal cycles is only because of the presence of certain amounts of impurities in the fatty acids used in their preparation. It is concluded that the tested eutectic mixtures have reasonable thermal properties and thermal reliability as phase change materials (PCMs) for latent heat storage in any solar heating applications that include a four year utilization period

  17. Thermal properties and thermal reliability of eutectic mixtures of some fatty acids as latent heat storage materials

    International Nuclear Information System (INIS)

    Sari, Ahmet; Sari, Hayati; Oenal, Adem

    2004-01-01

    The present study deals with two subjects. The first one is to determine the thermal properties of lauric acid (LA)-stearic acid (SA), myristic acid (MA)-palmitic acid (PA) and palmitic acid (PA)-stearic acid (SA) eutectic mixtures as latent heat storage material. The properties were measured by the differential scanning calorimetry (DSC) analysis technique. The second one is to study the thermal reliability of these materials in view of the change in their melting temperatures and latent heats of fusion with respect to repeated thermal cycles. For this aim, the eutectic mixtures were subjected to 360 repeated melt/freeze cycles, and their thermal properties were measured after 0, 90,180 and 360 thermal cycles by the technique of DSC analysis. The DSC thermal analysis results show that the binary systems of LA-SA in the ratio of 75.5:24.5 wt.%, MA-PA in the ratio of 58:42 wt.% and PA-SA in the ratio of 64.2:35.8 wt.% form eutectic mixtures with melting temperatures of 37.0, 42.60 and 52.30 deg. C and with latent heats of fusion of 182.7, 169.7 and 181.7 J g -1 , respectively. These thermal properties make them possible for heat storage in passive solar heating applications with respect to climate conditions. The accelerated thermal cycle tests indicate that the changes in the melting temperatures and latent heats of fusion of the studied eutectic mixtures are not regular with increasing number of thermal cycles. However, these materials, latent heat energy storage materials, have good thermal reliability in terms of the change in their thermal properties with respect to thermal cycling for about a one year utility period

  18. Using Nanoparticles for Enhance Thermal Conductivity of Latent Heat Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Baydaa Jaber Nabhan

    2015-06-01

    Full Text Available Phase change materials (PCMs such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.% of (TiO2 nano-particles with about (10nm diameter. It is found that the phase change temperature varies with adding (TiO2 nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity has been found to increase by about (10% at nanoparticles loading (5wt.% and 15oC.

  19. Study of the Melting Latent Heat of Semicrystalline PVDF applied to High Gamma Dose Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Adriana S.M. [Departamento de Anatomia e Imagem - IMA, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, MG (Brazil); Gual, Maritza R.; Faria, Luiz O. [Centro de Desenvolvimento da Tecnologia Nuclear - CDTN, Av. Antonio Carlos 6627, C.P. 941, 31270-901, Belo Horizonte, MG (Brazil); Lima, Claubia P.B. [Departamento de Engenharia Nuclear - DEN, Universidade Federal de Minas Gerais - UFMG, Av. Antonio Carlos 6627, 31270-970 Belo Horizonte, MG (Brazil)

    2015-07-01

    Poly(vinylidene fluoride) homopolymers [PVDF] homopolymers were irradiated with gamma doses ranging from 0.5 to 2.75 MGy. Differential scanning calorimetry (DSC) and FTIR spectrometry were used in order to study the effects of gamma radiation in the amorphous and crystalline polymer structures. The FTIR data revealed absorption bands at 1730 and 1853 cm{sup -1} which were attributed to the stretch of C=O bonds, at 1715 and 1754 cm{sup -1} which were attributed to the C=C stretching and at 3518, 3585 and 3673 cm{sup -1} which were associated with NH stretch of NH{sub 2} and OH. The melting latent heat (LM) measured by DSC was used to construct an unambiguous relationship with the delivered dose. Regression analyses revealed that the best mathematical function that fits the experimental calibration curve is a 4-degree polynomial function, with an adjusted Rsquare of 0.99817. (authors)

  20. Influence of nanomaterials on properties of latent heat solar thermal energy storage materials – A review

    International Nuclear Information System (INIS)

    Raam Dheep, G.; Sreekumar, A.

    2014-01-01

    Highlights: • Classification of phase change materials. • Studies on phase change properties of various phase change materials. • Influence of nanomaterials on properties of phase change materials. - Abstract: Thermal energy storage system plays a critical role in developing an efficient solar energy device. As far as solar thermal devices are concerned, there is always a mismatch between supply and demand due to intermittent and unpredictable nature of solar radiation. A well designed thermal energy storage system is capable to alleviate this demerit by providing a constant energy delivery to the load. Many research works is being carried out to determine the suitability of thermal energy storage system to integrate with solar thermal gadgets. This review paper summarizes the numerous investigations on latent heat thermal energy storage using phase change materials (PCM) and its classification, properties, selection criteria, potential research areas and studies involved to analyze the thermal–physical properties of PCM

  1. Wavelet maxima curves of surface latent heat flux associated with two recent Greek earthquakes

    Directory of Open Access Journals (Sweden)

    G. Cervone

    2004-01-01

    Full Text Available Multi sensor data available through remote sensing satellites provide information about changes in the state of the oceans, land and atmosphere. Recent studies have shown anomalous changes in oceans, land, atmospheric and ionospheric parameters prior to earthquakes events. This paper introduces an innovative data mining technique to identify precursory signals associated with earthquakes. The proposed methodology is a multi strategy approach which employs one dimensional wavelet transformations to identify singularities in the data, and an analysis of the continuity of the wavelet maxima in time and space to identify the singularities associated with earthquakes. The proposed methodology has been employed using Surface Latent Heat Flux (SLHF data to study the earthquakes which occurred on 14 August 2003 and on 1 March 2004 in Greece. A single prominent SLHF anomaly has been found about two weeks prior to each of the earthquakes.

  2. Wavelet maxima curves of surface latent heat flux associated with two recent Greek earthquakes

    Science.gov (United States)

    Cervone, G.; Kafatos, M.; Napoletani, D.; Singh, R. P.

    2004-05-01

    Multi sensor data available through remote sensing satellites provide information about changes in the state of the oceans, land and atmosphere. Recent studies have shown anomalous changes in oceans, land, atmospheric and ionospheric parameters prior to earthquakes events. This paper introduces an innovative data mining technique to identify precursory signals associated with earthquakes. The proposed methodology is a multi strategy approach which employs one dimensional wavelet transformations to identify singularities in the data, and an analysis of the continuity of the wavelet maxima in time and space to identify the singularities associated with earthquakes. The proposed methodology has been employed using Surface Latent Heat Flux (SLHF) data to study the earthquakes which occurred on 14 August 2003 and on 1 March 2004 in Greece. A single prominent SLHF anomaly has been found about two weeks prior to each of the earthquakes.

  3. Utilization of the PCM latent heat for energy savings in buildings

    Science.gov (United States)

    Fořt, Jan; Trník, Anton; Pavlík, Zbyšek

    2017-07-01

    Increase of the energy consumption for buildings operation creates a great challenge for sustainable development issues. Thermal energy storage systems present promising way to achieve this goal. The latent heat storage systems with high density of thermal storage via utilization of phase change materials (PCMs) enable to improve thermal comfort of buildings and reduce daily temperature fluctuations of interior climate. The presented study is focused on the evaluation of the effect of PCM admixture on thermal performance of a cement-lime plaster. On the basis of the experimentally accessed properties of newly developed plasters, computational modeling is carried out in order to rate the acquired thermal improvement. The calculated results show that incorporation of 24 mass% of paraffinic wax based PCM decreased the energy demand of approx. 14.6%.

  4. Active heat exchange system development for latent heat thermal energy storage

    Science.gov (United States)

    Alario, J.; Kosson, R.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW sub t storage for 6 hours). Two concepts were selected for hardware development: (1) a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and (2) a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which was nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.

  5. Monitoring the latent and sensible heat fluxes in vineyard by applying the energy balance model METRIC

    Directory of Open Access Journals (Sweden)

    J. González-Piqueras

    2015-06-01

    Full Text Available The monitoring of the energy fluxes over vineyard applying the one source energy balance model METRIC (Allen et al., 2007b are shown in this work. This model is considered operaive because it uses an internalized calibration method derived from the selection of two extreme pixels in the scene, from the minimum ET values such as the bare soil to a maximum that corresponds to full cover active vegetation. The model provides the maps of net radiation (Rn, soil heat flux (G, sensible heat (H, latent heat (LE, evapotranspiration (ET and crop coefficient (Kc. The flux values have been validated with a flux tower installed in the plot, providing a RMSE for instantaneous fluxes of 43 W m2, 33 W m2, 55 W m2 y 40 W m2 on Rn, G, H and LE. In relative terms are 8%, 29%, 21% and 20% respectively. The RMSE at daily scale for the ET is 0.58 mm day-1, with a value in the crop coefficient for the mid stage of 0.42±0.08. These results allow considering the model adequate for crop monitoring and irrigation purposes in vineyard. The values obtained have been compared to other studies over vineyard and with alternative energy balance models showing similar results.

  6. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    Science.gov (United States)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  7. Second law analysis of a diesel engine waste heat recovery with a combined sensible and latent heat storage system

    International Nuclear Information System (INIS)

    Pandiyarajan, V.; Chinnappandian, M.; Raghavan, V.; Velraj, R.

    2011-01-01

    The exhaust gas from an internal combustion engine carries away about 30% of the heat of combustion. The energy available in the exit stream of many energy conversion devices goes as waste. The major technical constraint that prevents successful implementation of waste heat recovery is due to intermittent and time mismatched demand for and availability of energy. The present work deals with the use of exergy as an efficient tool to measure the quantity and quality of energy extracted from a diesel engine and stored in a combined sensible and latent heat storage system. This analysis is utilized to identify the sources of losses in useful energy within the components of the system considered, and provides a more realistic and meaningful assessment than the conventional energy analysis. The energy and exergy balance for the overall system is quantified and illustrated using energy and exergy flow diagrams. In order to study the discharge process in a thermal storage system, an illustrative example with two different cases is considered and analyzed, to quantify the destruction of exergy associated with the discharging process. The need for promoting exergy analysis through policy decision in the context of energy and environment crisis is also emphasized. - Highlights: → WHR with TES system eliminates the mismatch between the supply of energy and demand. → A saving of 15.2% of energy and 1.6% of exergy is achieved with PCM storage. → Use of multiple PCMs with cascaded system increases energy and exergy efficiency.

  8. Energy and exergy analyses of medium temperature latent heat thermal storage with high porosity metal matrix

    International Nuclear Information System (INIS)

    Kumar, Ashish; Saha, Sandip K.

    2016-01-01

    Graphical abstract: I. Metal matrix is used as the thermal conductivity enhancers (TCE) in PCM-based TES. II. Time evolution second law analysis is evaluated for different porosities and pore diameters. III. Reduction in fluctuation in HTF temperature is significantly affected by the change in porosity (ε) shown in figure. IV. Maximum energy and exergy efficiencies are obtained for porosity of 0.85. V. Effect of pore diameter on first law and second law efficiencies is found to be marginal. - Abstract: Thermal energy storage system in a concentrating solar plant (CSP) reduces the gap between energy demand and supply caused by the intermittent behaviour of solar radiation. In this paper, detailed exergy and energy analyses of shell and tube type latent heat thermal storage system (LHTES) for medium temperature solar thermal power plant (∼200 °C) are performed to estimate the net useful energy during the charging and discharging period in a cycle. A commercial-grade organic phase change material (PCM) is stored inside the annular space of the shell and the heat transfer fluid (HTF) flows through the tubes. Thermal conductivity enhancer (TCE) in the form of metal matrix is embedded in PCM to augment heat transfer. A numerical model is developed to investigate the fluid flow and heat transfer characteristics using the momentum equation and the two-temperature non-equilibrium energy equation coupled with the enthalpy method to account for phase change in PCM. The effects of storage material, porosity and pore-diameter on the net useful energy that can be stored and released during a cycle, are studied. It is found that the first law efficiency of sensible heat storage system is less compared to LHTES. With the decrease in porosity, the first law and second law efficiencies of LHTES increase for both the charging and discharging period. There is no significant variation in energy and exergy efficiencies with the change in pore-diameter of the metal matrix.

  9. Parametrical analysis of latent heat and cold storage for heating and cooling of rooms

    International Nuclear Information System (INIS)

    Osterman, E.; Hagel, K.; Rathgeber, C.; Butala, V.; Stritih, U.

    2015-01-01

    One of the problems we are facing today is the energy consumption minimization, while maintaining the indoor thermal comfort in buildings. A potential solution to this issue is use of phase change materials (PCMs) in thermal energy storage (TES), where cold gets accumulated during the summer nights in order to reduce cooling load during the day. In winter, on the other hand, heat from solar air collector is stored for evening and morning hours when solar radiation is not available. The main objective of the paper is to examine experimentally whether it is possible to use such a storage unit for heating as well as for cooling. For this purpose 30 plates filled with paraffin (melting point around 22°C) were positioned into TES and applied with the same initial and boundary conditions as they are expected in reality. Experimental work covered flow visualization, measurements of air velocity in the channels between the plates, parametric analysis in conjunction with TES thermal response and measurements of the pressure drops. The results indicate that this type of storage technology could be advantageously used in real conditions. For optimized thermal behavior, only plate thickness should be reduced. - Highlights: • Thermal properties of paraffin RT22HC were measured. • Flow visualization was carried out and velocity between plates was measured. • Thermal and pressure drop analysis were performed. • Melting times are too long however, use of storage tank for heating and cooling looks promising

  10. GPM SLH: Convective Latent Heating Estimated with GPM Dual-frequency Precipitation Radar Data

    Science.gov (United States)

    Takayabu, Y. N.; Hamada, A.; Yokoyama, C.; Ikuta, Y.; Shige, S.; Yamaji, M.; Kubota, T.

    2017-12-01

    Three dimensional diabatic heating distribution plays essential roles to determine large-scale circulation, as well as to generate mesoscale circulation associated with tropical convection (e.g. Hartmann et al., 1984; Houze et al. 1982). For mid-latitude systems also, diabatic heating contributes to generate PVs resulting in, for example, explosive intensifications of mid-lattitude storms (Boettcher and Wernli, 2011). Previously, with TRMM PR data, we developed a Spectral Latent Heating algorithm (SLH; Shige et al. 2004, etc.) for 36N-36S region. It was based on the spectral LH tables produced from a simulation utilizing the Goddard Cloud Ensemble Model forced with the TOGA-COARE data. With GPM DPR, the observation region is extended to 65N-65S. Here, we introduce a new version of SLH algorithm which is applicable also to the mid-latitude precipitation. A new global GPM SLH ver.5 product is released as one of NASA/JAXA GPM standard products on July 11, 2017. For GPM SLH mid-latitude algorithm, we employ the Japan Meteorological Agency (JMA)'s high resolution (horizontally 2km) Local Forecast Model (LFM) to construct the LUTs. With collaborations of JMA's forecast group, forecast data for 8 extratropical cyclone cases are collected and utilized. For mid-latitude precipitation, we have to deal with large temperature gradients and complex relationship between the freezing level and cloud base levels. LUTs are constructed for LH, Q1-QR, and Q2 (Yanai et al. 1973), for six different precipitation types: Convective and shallow stratiform LUTs are made against precipitation top heights. For deep stratiform and other precipitation, LUTs are made against maximum precipitation to handle the unknown cloud-bases. Finally, three-dimensional convective latent heating is retrieved, utilizing the LUTs and precipitation profile data from GPM 2AKu. We can confirm that retrieved LH looks very similar to simulated LH, for a consistency check. We also confirm a good continuities of

  11. Human local and total heat losses in different temperature.

    Science.gov (United States)

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Estimation of sensible and latent heat flux from natural sparse vegetation surfaces using surface renewal

    Science.gov (United States)

    Zapata, N.; Martínez-Cob, A.

    2001-12-01

    This paper reports a study undertaken to evaluate the feasibility of the surface renewal method to accurately estimate long-term evaporation from the playa and margins of an endorreic salty lagoon (Gallocanta lagoon, Spain) under semiarid conditions. High-frequency temperature readings were taken for two time lags ( r) and three measurement heights ( z) in order to get surface renewal sensible heat flux ( HSR) values. These values were compared against eddy covariance sensible heat flux ( HEC) values for a calibration period (25-30 July 2000). Error analysis statistics (index of agreement, IA; root mean square error, RMSE; and systematic mean square error, MSEs) showed that the agreement between HSR and HEC improved as measurement height decreased and time lag increased. Calibration factors α were obtained for all analyzed cases. The best results were obtained for the z=0.9 m ( r=0.75 s) case for which α=1.0 was observed. In this case, uncertainty was about 10% in terms of relative error ( RE). Latent heat flux values were obtained by solving the energy balance equation for both the surface renewal ( LESR) and the eddy covariance ( LEEC) methods, using HSR and HEC, respectively, and measurements of net radiation and soil heat flux. For the calibration period, error analysis statistics for LESR were quite similar to those for HSR, although errors were mostly at random. LESR uncertainty was less than 9%. Calibration factors were applied for a validation data subset (30 July-4 August 2000) for which meteorological conditions were somewhat different (higher temperatures and wind speed and lower solar and net radiation). Error analysis statistics for both HSR and LESR were quite good for all cases showing the goodness of the calibration factors. Nevertheless, the results obtained for the z=0.9 m ( r=0.75 s) case were still the best ones.

  13. Comparison of surface sensible and latent heat fluxes over the Tibetan Plateau from reanalysis and observations

    Science.gov (United States)

    Xie, Jin; Yu, Ye; Li, Jiang-lin; Ge, Jun; Liu, Chuan

    2018-02-01

    Surface sensible and latent heat fluxes (SH and LE) over the Tibetan Plateau (TP) have been under research since 1950s, especially for recent several years, by mainly using observation, reanalysis, and satellite data. However, the spatiotemporal changes are not consistent among different studies. This paper focuses on the spatiotemporal variation of SH and LE over the TP from 1981 to 2013 using reanalysis data sets (ERA-Interim, JRA-55, and MERRA) and observations. Results show that the spatiotemporal changes from the three reanalysis data sets are significantly different and the probable causes are discussed. Averaged for the whole TP, both SH and LE from MERRA are obviously higher than the other two reanalysis data sets. ERA-Interim shows a significant downward trend for SH and JRA-55 shows a significant increase of LE during the 33 years with other data sets having no obvious changes. By comparing the heat fluxes and some climate factors from the reanalysis with observations, it is found that the differences of heat fluxes among the three reanalysis data sets are closely related to their differences in meteorological conditions as well as the different parameterizations for surface transfer coefficients. In general, the heat fluxes from the three reanalysis have a better representation in the western TP than that in the eastern TP under inter-annual scale. While in terms of monthly variation, ERA-Interim may have better applicability in the eastern TP with dense vegetation conditions, while SH of JRA-55 and LE of MERRA are probably more representative for the middle and western TP with poor vegetation conditions.

  14. A Comparison of the Box Type Two Solar Cookers with Latent Heat Storage

    Directory of Open Access Journals (Sweden)

    Numan YÜKSEL

    2013-04-01

    Full Text Available In this study, the use potential of solar cookers storing by latent heat technical of solar energy was experimentally researched and these cookers were compared. For this purpose, the temperatures of the cookers’ phase change material (PCM were continuously measured during the day, both during sun and after sunset, by filling with the phase change material around the solar cooker manufactured. From the measurements, while the temperature of the PCM in the big cooker filled the large amount of PCM is 92,8 °C, the temperature of the PCM in the other cooker is 80,4 °C.However, the better performance is reached by the cooker-1 in which the maximum surface temperature during the day is 111 °C and the heat is preserved to 52 °C until the next morning. Also, the surface temperature in the cooker is reached to the temperature of 85 °C at the end of 1 hour. It is obtained that the utilization rate or efficiency of the solar cooker-1 is % 36,89 and that of the other cooker is %30,10. It is seen that the solar cookers should be designed for the purpose, depending on the amount of PCM and the cooker’s size. It is concluded that the solar cooker designed can be effectively used with the different purposes, such as heating-cooking, on 24 hours a day, an important part of the year without the need for the other heat source

  15. Generalized correlation of latent heats of vaporization of coal liquid model compounds between their freezing points and critical points

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, A.; Kobuyashi, R.; Mayee, J.W.

    1984-02-01

    Based on Pitzer's three-parameter corresponding states principle, the authors have developed a correlation of the latent heat of vaporization of aromatic coal liquid model compounds for a temperature range from the freezing point to the critical point. An expansion of the form L = L/sub 0/ + ..omega..L /sub 1/ is used for the dimensionless latent heat of vaporization. This model utilizes a nonanalytic functional form based on results derived from renormalization group theory of fluids in the vicinity of the critical point. A simple expression for the latent heat of vaporization L = D/sub 1/epsilon /SUP 0.3333/ + D/sub 2/epsilon /SUP 0.8333/ + D/sub 4/epsilon /SUP 1.2083/ + E/sub 1/epsilon + E/sub 2/epsilon/sup 2/ + E/sub 3/epsilon/sup 3/ is cast in a corresponding states principle correlation for coal liquid compounds. Benzene, the basic constituent of the functional groups of the multi-ring coal liquid compounds, is used as the reference compound in the present correlation. This model works very well at both low and high reduced temperatures approaching the critical point (0.02 < epsilon = (T /SUB c/ - T)/(T /SUB c/- 0.69)). About 16 compounds, including single, two, and three-ring compounds, have been tested and the percent root-mean-square deviations in latent heat of vaporization reported and estimated through the model are 0.42 to 5.27%. Tables of the coefficients of L/sub 0/ and L/sub 1/ are presented. The contributing terms of the latent heat of vaporization function are also presented in a table for small increments of epsilon.

  16. Development of salt hydrate eutectics as latent heat storage for air conditioning and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Efimova, Anastasia [Brandenburgische Technische Universität (BTU) Cottbus – Senftenberg, Chair of Inorganic Chemistry, Großenhainer Str. 57, 01968 Senftenberg (Germany); Pinnau, Sebastian; Mischke, Matthias; Breitkopf, Cornelia [Technische Universität Dresden, Chair of Technical Thermodynamics, Helmholtzstr. 14, 01069 Dresden (Germany); Ruck, Michael [Technische Universität Dresden, Chair of Inorganic Chemistry, Bergstr. 66, 01062 Dresden (Germany); Schmidt, Peer, E-mail: peer.schmidt@hs-lausitz.de [Brandenburgische Technische Universität (BTU) Cottbus – Senftenberg, Chair of Inorganic Chemistry, Großenhainer Str. 57, 01968 Senftenberg (Germany)

    2014-01-10

    Graphical abstract: - Highlights: • Inorganic salt hydrates. • Latent heat thermal energy storage. • Thermal behavior of melting and crystallization. • Cycling stability. • Nucleation. - Abstract: Sustainable air conditioning systems require heat reservoirs that operate between 4 and 20 °C. A systematic search for binary and ternary eutectics of inorganic salts and salt hydrates with melting temperatures in this temperature regime and with high enthalpies of fusion has been performed by means of differential scanning calorimetry (DSC). Promising results were obtained for the pseudo-ternary system Zn(NO{sub 3}){sub 2}·6H{sub 2}O, Mn(NO{sub 3}){sub 2}·4H{sub 2}O, and KNO{sub 3} with the melting temperature range 18–21 °C and the enthalpy of fusion of about 110 kJ kg{sup −1}. Suitable nucleating and thickening agents have been found and tested to prevent the mixture from supercooling and phase separation.

  17. Preliminary investigation of thermal behaviour of PCM based latent heat thermal energy storage

    Science.gov (United States)

    Pop, Octavian G.; Fechete Tutunaru, Lucian; Bode, Florin; Balan, Mugur C.

    2018-02-01

    Solid-liquid phase change is used to accumulate and release cold in latent heat thermal energy storage (LHTES) in order to reduce energy consumption of air cooling system in buildings. The storing capacity of the LHTES depends greatly on the exterior air temperatures during the summer nights. One approach in intensifying heat transfer is by increasing the air's velocity. A LHTES was designed to be integrated in the air cooling system of a building located in Bucharest, during the month of July. This study presents a numerical investigation concerning the impact of air inlet temperatures and air velocity on the formation of solid PCM, on the cold storing capacity and energy consumption of the LHTES. The peak amount of accumulated cold is reached at different air velocities depending on air inlet temperature. For inlet temperatures of 14°C and 15°C, an increase of air velocity above 50% will not lead to higher amounts of cold being stored. For Bucharest during the hottest night of the year, a 100 % increase in air velocity will result in 5.02% more cold being stored, at an increase in electrical energy consumption of 25.30%, when compared to the reference values.

  18. Radiation budget, soil heat flux and latent heat flux at the forest floor in warm, temperate mixed forest

    International Nuclear Information System (INIS)

    Tamai, K.; Abe, T.; Araki, M.; Ito, H.

    1998-01-01

    Seasonal changes in the radiation budget and soil heat flux of a forest floor were measured in a mixed forest located in Kyoto, Japan. The basal area at breast height in the survey forest was about 15·82 m 2 ha −1 , for evergreen trees, and 12·46 m 2 ha −1 , for deciduous trees. The sky view factor was 16 and 22% at the survey site in the foliate and defoliate seasons, respectively. The small difference between the sky view factor in the two seasons was reflected in the seasonal change in the radiation budget of the forest floor. Namely, the net long-wave radiation changed rapidly in leafing and falling days, and the rate of net short-wave radiation was highest in April. The distinctive characteristic of the radiation budget was that the rates of available radiation in the daytime and at night were almost equal in September and October. Latent heat flux at the forest floor was estimated to be around 94 MJ m −2 annually, from our measurement with the simulation model. (author)

  19. Use of salt hydrates as a heat storage medium for loading latent heat stores

    Energy Technology Data Exchange (ETDEWEB)

    Wasel-Nielen, J.; Merkenich, K.; Gehrig, O.; Sommer, K.

    1985-05-15

    The use of salt hydrate melting in the loading process is not favourable from the technical and energy point of view. According to the invention, a saturated solution is filled into the store at the required phase conversion point. This can be done by neutralization (e.g. a reaction between H/sub 3/PO4/NaOH/H/sub 2/O in the mol ratio of 1/2/10 gives Na/sub 2/HPO/sub 4/.12H/sub 2/O corresponding to Na/sub 2/SO/sub 4/.10H/sub 2/O), or by conversion of acid/basic salts with bases/acids respectively (e.g.Na/sub 3/PO/sub 4//H/sub 3/PO/sub 4//H/sub 2/O in the ratio 2/1/36 to Na/sub 2/HPO/sub 4/.12H/sub 2/O, analogous to K/sub 3/PO/sub 4/.7H/sub 2/O, KF.4H/sub 2/O or CaCl/sub 2/.6H/sub 2/O). During the process one must ensure accurate dosing and good mixing. A saturated solution is also available by dissolving salts free of water/or with little water in appropriate quantities of water below the melting point of the required hydrate. Such systems are used where the phase change heat exceeds the heat capacity of the water at this temperature and the hydrates should contain at least three crystal water molecules more than the nearest hydrate.

  20. Verification of High Resolution Soil Moisture and Latent Heat in Germany

    Science.gov (United States)

    Samaniego, L. E.; Warrach-Sagi, K.; Zink, M.; Wulfmeyer, V.

    2012-12-01

    Improving our understanding of soil-land-surface-atmosphere feedbacks is fundamental to make reliable predictions of water and energy fluxes on land systems influenced by anthropogenic activities. Estimating, for instance, which would be the likely consequences of changing climatic regimes on water availability and crop yield, requires of high resolution soil moisture. Modeling it at large-scales, however, is difficult and uncertain because of the interplay between state variables and fluxes and the significant parameter uncertainty of the predicting models. At larger scales, the sub-grid variability of the variables involved and the nonlinearity of the processes complicate the modeling exercise even further because parametrization schemes might be scale dependent. Two contrasting modeling paradigms (WRF/Noah-MP and mHM) were employed to quantify the effects of model and data complexity on soil moisture and latent heat over Germany. WRF/Noah-MP was forced ERA-interim on the boundaries of the rotated CORDEX-Grid (www.meteo.unican.es/wiki/cordexwrf) with a spatial resolution of 0.11o covering Europe during the period from 1989 to 2009. Land cover and soil texture were represented in WRF/Noah-MP with 1×1~km MODIS images and a single horizon, coarse resolution European-wide soil map with 16 soil texture classes, respectively. To ease comparison, the process-based hydrological model mHM was forced with daily precipitation and temperature fields generated by WRF during the same period. The spatial resolution of mHM was fixed at 4×4~km. The multiscale parameter regionalization technique (MPR, Samaniego et al. 2010) was embedded in mHM to be able to estimate effective model parameters using hyper-resolution input data (100×100~km) obtained from Corine land cover and detailed soil texture fields for various horizons comprising 72 soil texture classes for Germany, among other physiographical variables. mHM global parameters, in contrast with those of Noah-MP, were

  1. evaluation of total annual costs of heat exchanger networks using

    African Journals Online (AJOL)

    user

    after solving the first problem using RPA based heat integration gave a minimum total annual cost (TAC) of $237, ... mathematical programming and non-RPA based Hint software. ... The concept of pinch analysis evolved over the years.

  2. Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat

    International Nuclear Information System (INIS)

    Hou, Huilong; Stasak, Drew; Hasan, Naila Al; Takeuchi, Ichiro; Simsek, Emrah; Ott, Ryan; Cui, Jun; Qian, Suxin

    2017-01-01

    The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. Here we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g −1 . Adiabatic compression on as-fabricated TiNi displays cooling Δ T as high as  −7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress–strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti 2 Ni precipitates typically one micron in size with a large aspect ratio enclosing the TiNi matrix. A stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti 2 Ni precipitates is believed to be the origin of the unique superelasticity behavior. (paper)

  3. Thermal properties and reliability of eutectic mixture of stearic acid-acetamide as phase change material for latent heat storage

    International Nuclear Information System (INIS)

    Ma, Guixiang; Han, Lipeng; Sun, Jinhe; Jia, Yongzhong

    2017-01-01

    Highlights: • The system of stearic acid-acetamide binary mixtures were studied as phase change material. • The eutectic mixtures featured low melting temperatures and high latent heats of fusion for latent heat storage. • Solid-liquid phase diagrams for the system were constructed. • Negligible change in stability after 500 heating/cooling cycles. - Abstract: The thermal properties and reliability of the stearic acid (SA) with acetamide (AC) binary mixture were characterized using differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR). The phase diagrams for the SA-AC binary mixture with AC in the metastable and the stable form were constructed. The eutectic system with stable AC is 0.604 mol fraction SA, and displayed a melting temperature (T m ) of 64.55 °C and latent heat of melting (ΔH m ) of 193.87 J·g −1 . The eutectic systems with metastable AC are 0.397 and 0.604 mol fraction SA. The melting temperatures are 62.23 °C and 62.54 °C, and latent heats of fusion are 222.10 J·g −1 and 194.28 J·g −1 , respectively. Following accelerated thermal cycling tests, TG and FT-IR analysis indicate that the eutectic mixture (χ SA = 0.397) with the metastable AC has good cyclic and thermal stability. The results show that the SA-AC eutectic mixture use as phase change material (PCM) possess good prospect for low temperature thermal energy storage (TES) applications.

  4. An inter-comparison of six latent and sensible heat flux products over the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Lejiang Yu

    2011-11-01

    Full Text Available The latent heat fluxes (LHF and sensible heat fluxes (SHF over the Southern Ocean from six different data sets are inter-compared for the period 1988–2000. The six data sets include three satellite-based products, namely, the second version of the Goddard Satellite-Based Surface Turbulent Fluxes data set (GSSTF-2, the third version of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS-3 and the Japanese Ocean Fluxes Data Sets with Use of Remote Sensing Observations (J-OFURO; two global reanalysis products, namely, the National Centers for Environmental Prediction–Department of Energy Reanalysis 2 data set (NCEP-2 and the European Centre for Medium-Range Weather Forecasts 40 Year Re-analysis data set (ERA-40; and the Objectively Analyzed Air–Sea Fluxes for the Global Oceans data set (OAFlux. All these products reveal a similar pattern in the averaged flux fields. The zonal mean LHF fields all exhibit a continuous increase equatorward. With an exception of HOAPS-3, the zonal mean SHF fields display a minimum value near 50°S, increasing both pole- and equatorward. The differences in the standard deviation for LHF are larger among the six data products than the differences for SHF. Over the regions where the surface fluxes are significantly influenced by the Antarctic Oscillation and the Pacific–South American teleconnection, the values and distributions of both LHF and SHF are consistent among the six products. It was found that the spatial patterns of the standard deviations and trends of LHF and SHF can be explained primarily by sea–air specific humidity and temperature differences; wind speed plays a minor role.

  5. Melting and solidification characteristics of a mixture of two types of latent heat storage material in a vessel

    Science.gov (United States)

    Yu, JikSu; Horibe, Akihiko; Haruki, Naoto; Machida, Akito; Kato, Masashi

    2016-11-01

    In this study, we investigated the fundamental melting and solidification characteristics of mannitol, erythritol, and their mixture (70 % by mass mannitol: 30 % by mass erythritol) as potential phase-change materials (PCMs) for latent heat thermal energy storage systems, specifically those pertaining to industrial waste heat, having temperatures in the range of 100-250 °C. The melting point of erythritol and mannitol, the melting peak temperature of their mixture, and latent heat were measured using differential scanning calorimetry. The thermal performance of the mannitol mixture was determined during melting and solidification processes, using a heat storage vessel with a pipe heat exchanger. Our results indicated phase-change (fusion) temperatures of 160 °C for mannitol and 113 and 150 °C for the mannitol mixture. Nondimensional correlation equations of the average heat transfer during the solidification process, as well as the temperature and velocity efficiencies of flowing silicon oil in the pipe and the phase-change material (PCM), were derived using several nondimensional parameters.

  6. Coupling of latent heat flux and the greenhouse effect by large-scale tropical/subtropical dynamics diagnosed in a set of observations and model simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gershunov, A. [Climate Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0224 (United States); Roca, R. [Laboratoire de Meteorologie Dynamique, Ecole Polytechnique, 91128 Palaiseau (France)

    2004-03-01

    Coupled variability of the greenhouse effect (GH) and latent heat flux (LHF) over the tropical - subtropical oceans is described, summarized and compared in observations and a coupled ocean-atmosphere general circulation model (CGCM). Coupled seasonal and interannual modes account for much of the total variability in both GH and LHF. In both observations and model, seasonal coupled variability is locally 180 out-of-phase throughout the tropics. Moisture is brought into convergent/convective regions from remote source areas located partly in the opposite, non-convective hemisphere. On interannual time scales, the tropical Pacific GH in the ENSO region of largest interannual variance is 180 out of phase with local LHF in observations but in phase in the model. A local source of moisture is thus present in the model on interannual time scales while in observations, moisture is mostly advected from remote source regions. The latent cooling and radiative heating of the surface as manifested in the interplay of LHF and GH is an important determinant of the current climate. Moreover, the hydrodynamic processes involved in the GH-LHF interplay determine in large part the climate response to external perturbations mainly through influencing the water vapor feedback but also through their intimate connection to the hydrological cycle. The diagnostic process proposed here can be performed on other CGCMs. Similarly, it should be repeated using a number of observational latent heat flux datasets to account for the variability in the different satellite retrievals. A realistic CGCM could be used to further study these coupled dynamics in natural and anthropogenically altered climate conditions. (orig.)

  7. Process for using a saturated salt hydrate solution as a heat storing material in a latent heat storage device. Anvendelse av en mettet salthydratloesning som varme-lagringsmateriale i et latent varmemagasin

    Energy Technology Data Exchange (ETDEWEB)

    Wasel-Nielen, J.; Merkenich, K.; Gehrig, O.; Sommer, K.

    1984-06-12

    Disclosed is a process for preparing a salt composition having a phase transition heat greater than the heat capacity of water at a corresponding temperature, for charging a latent heat storage device. The process comprises the steps of providing an acid component of the salt hydrate; providing a base component of the salt hydrate, wherein at least one of the acid or base components comprises a liquid; and mixing the acid component and the base component together to cause a neutralization reaction. The acid and base components are mixed in a ratio and in respective concentrations to produce a salt hydrate solution saturated at the desired phase transition point. The claims concern the use of saturated salt hydrate solution with a certain phase transition heat produced in a particular way.

  8. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  9. Evaluation of Latent Heat Flux Fields from Satellites and Models during SEMAPHORE.

    Science.gov (United States)

    Bourras, Denis; Liu, W. Timothy; Eymard, Laurence; Tang, Wenqing

    2003-02-01

    Latent heat fluxes were derived from satellite observations in the region of Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE), which was conducted near the Azores islands in the North Atlantic Ocean in autumn of 1993. The satellite fluxes were compared with output fields of two atmospheric circulation models and in situ measurements. The rms error of the instantaneous satellite fluxes is between 35 and 40 W m-2 and the bias is 60-85 W m-2. The large bias is mainly attributed to a bias in satellite-derived atmospheric humidity and is related to the particular shape of the vertical humidity profiles during SEMAPHORE. The bias in humidity implies that the range of estimated fluxes is smaller than the range of ship fluxes, by 34%-38%. The rms errors for fluxes from models are 30-35 W m-2, and the biases are smaller than the biases in satellite fluxes (14-18 W m-2). Two case studies suggest that the satellites detect horizontal gradients of wind speed and specific humidity if the magnitude of the gradients exceeds a detection threshold, which is 1.27 g kg-1 (100 km)-1 for specific humidity and between 0.35 and 0.82 m s-1 (30 km)-1 for wind speed. In contrast, the accuracy of the spatial gradients of bulk variables from models always varies as a function of the location and number of assimilated observations. A comparison between monthly fluxes from satellites and models reveals that satellite-derived flux anomaly fields are consistent with reanalyzed fields, whereas operational model products lack part of the mesoscale structures present in the satellite fields.

  10. Topography induced spatial variations in diurnal cycles of assimilation and latent heat of Mediterranean forest

    Science.gov (United States)

    van der Tol, C.; Dolman, A. J.; Waterloo, M. J.; Raspor, K.

    2007-02-01

    The aim of this study is to explain topography induced spatial variations in the diurnal cycles of assimilation and latent heat of Mediterranean forest. Spatial variations of the fluxes are caused by variations in weather conditions and in vegetation characteristics. Weather conditions reflect short-term effects of climate, whereas vegetation characteristics, through adaptation and acclimation, long-term effects of climate. In this study measurements of plant physiology and weather conditions are used to explain observed differences in the fluxes. A model is used to study which part of the differences in the fluxes is caused by weather conditions and which part by vegetation characteristics. Data were collected at four experimental sub-Mediterranean deciduous forest plots in a heterogeneous terrain with contrasting aspect, soil water availability, humidity and temperature. We used a sun-shade model to scale fluxes from leaf to canopy, and calculated the canopy energy balance. Parameter values were derived from measurements of light interception, leaf chamber photosynthesis, leaf nitrogen content and 13C isotope discrimination in leaf material. Leaf nitrogen content is a measure of photosynthetic capacity, and 13C isotope discrimination of water use efficiency. For validation, sap-flux based measurements of transpiration were used. The model predicted diurnal cycles of transpiration and stomatal conductance, both their magnitudes and differences in afternoon stomatal closure between slopes of different aspect within the confidence interval of the validation data. Weather conditions mainly responsible for the shape of the diurnal cycles, and vegetation parameters for the magnitude of the fluxes. Although the data do not allow for a quantification of the two effects, the differences in vegetation parameters and weather among the plots and the sensitivity of the fluxes to them suggest that the diurnal cycles were more strongly affected by spatial variations in

  11. Topography induced spatial variations in diurnal cycles of assimilation and latent heat of Mediterranean forest

    Directory of Open Access Journals (Sweden)

    C. van der Tol

    2007-01-01

    Full Text Available The aim of this study is to explain topography induced spatial variations in the diurnal cycles of assimilation and latent heat of Mediterranean forest. Spatial variations of the fluxes are caused by variations in weather conditions and in vegetation characteristics. Weather conditions reflect short-term effects of climate, whereas vegetation characteristics, through adaptation and acclimation, long-term effects of climate. In this study measurements of plant physiology and weather conditions are used to explain observed differences in the fluxes. A model is used to study which part of the differences in the fluxes is caused by weather conditions and which part by vegetation characteristics. Data were collected at four experimental sub-Mediterranean deciduous forest plots in a heterogeneous terrain with contrasting aspect, soil water availability, humidity and temperature. We used a sun-shade model to scale fluxes from leaf to canopy, and calculated the canopy energy balance. Parameter values were derived from measurements of light interception, leaf chamber photosynthesis, leaf nitrogen content and 13C isotope discrimination in leaf material. Leaf nitrogen content is a measure of photosynthetic capacity, and 13C isotope discrimination of water use efficiency. For validation, sap-flux based measurements of transpiration were used. The model predicted diurnal cycles of transpiration and stomatal conductance, both their magnitudes and differences in afternoon stomatal closure between slopes of different aspect within the confidence interval of the validation data. Weather conditions mainly responsible for the shape of the diurnal cycles, and vegetation parameters for the magnitude of the fluxes. Although the data do not allow for a quantification of the two effects, the differences in vegetation parameters and weather among the plots and the sensitivity of the fluxes to them suggest that the diurnal cycles were more strongly affected by spatial

  12. Revisiting the latent heat nudging scheme for the rainfall assimilation of a simulated convective storm

    Science.gov (United States)

    Leuenberger, D.; Rossa, A.

    2007-12-01

    Next-generation, operational, high-resolution numerical weather prediction models require economical assimilation schemes for radar data. In the present study we evaluate and characterise the latent heat nudging (LHN) rainfall assimilation scheme within a meso-γ scale NWP model in the framework of identical twin simulations of an idealised supercell storm. Consideration is given to the model’s dynamical response to the forcing as well as to the sensitivity of the LHN scheme to uncertainty in the observations and the environment. The results indicate that the LHN scheme is well able to capture the dynamical structure and the right rainfall amount of the storm in a perfect environment. This holds true even in degraded environments but a number of important issues arise. In particular, changes in the low-level humidity field are found to affect mainly the precipitation amplitude during the assimilation with a fast adaptation of the storm to the system dynamics determined by the environment during the free forecast. A constant bias in the environmental wind field, on the other hand, has the potential to render a successful assimilation with the LHN scheme difficult, as the velocity of the forcing is not consistent with the system propagation speed determined by the wind. If the rainfall forcing moves too fast, the system propagation is supported and the assimilated storm and forecasts initialised therefrom develop properly. A too slow forcing, on the other hand, can decelerate the system and eventually disturb the system dynamics by decoupling the low-level moisture inflow from the main updrafts during the assimilation. This distortion is sustained in the free forecast. It has further been found that a sufficient temporal resolution of the rainfall input is crucial for the successful assimilation of a fast moving, coherent convective storm and that the LHN scheme, when applied to a convective storm, appears to necessitate a careful tuning.

  13. On the exchange of sensible and latent heat between the atmosphere and melting snow

    Science.gov (United States)

    Stoy, Paul C.; Peitzsch, Erich H.; Wood, David J. A.; Rottinghaus, Daniel; Wohlfahrtd, Georg; Goulden, Michael; Ward, Helen

    2018-01-01

    The snow energy balance is difficult to measure during the snowmelt period, yet critical for predictions of water yield in regions characterized by snow cover. Robust simplifications of the snowmelt energy balance can aid our understanding of water resources in a changing climate. Research to date has demonstrated that the net turbulent flux (FT) between a melting snowpack and the atmosphere is negligible if the sum of atmospheric vapor pressure (ea) and temperature (Ta) equals a constant, but it is unclear how frequently this situation holds across different sites. Here, we quantified the contribution of FT to the snowpack energy balance during 59 snowmelt periods across 11 sites in the FLUXNET2015 database with a detailed analysis of snowmelt in subarctic tundra near Abisko, Sweden. At the Abisko site we investigated the frequency of occurrences during which sensible heat flux (H) and latent heat flux (λE) are of (approximately) equal but opposite sign, and if the sum of these terms, FT, is therefore negligible during the snowmelt period. H approximately equaled -λE for less than 50% of the melt period and FT was infrequently a trivial term in the snowmelt energy balance at Abisko. The reason is that the relationship between observed ea and Ta is roughly orthogonal to the “line of equality” at which H equals -λE as warmer Ta during the melt period usually resulted in greater ea. This relationship holds both within melt periods at individual sites and across different sites in the FLUXNET2015 database, where FTcomprised less than 20% of the energy available to melt snow, Qm, in 44% of the snowmelt periods studied here. FT/Qm was significantly related to the mean ea during the melt period, but not mean Ta, and FT tended to be near 0 W m−2 when ea averaged ca. 0.5 kPa. FT may become an increasingly important term in the snowmelt energy balance across many global regions as warmer temperatures are projected to cause snow

  14. Solar passive ceiling system. Final report. [Passive solar heating system with venetian blind reflectors and latent heat storage in ceiling

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, A.R.

    1980-01-01

    The construction of a 1200 square foot building, with full basement, built to be used as a branch library in a rural area is described. The primary heating source is a passive solar system consisting of a south facing window system. The system consists of: a set of windows located in the south facing wall only, composed of double glazed units; a set of reflectors mounted in each window which reflects sunlight up to the ceiling (the reflectors are similar to venetian blinds); a storage area in the ceiling which absorbs the heat from the reflected sunlight and stores it in foil salt pouches laid in the ceiling; and an automated curtain which automatically covers and uncovers the south facing window system. The system is totally passive and uses no blowers, pumps or other active types of heat distribution equipment. The building contains a basement which is normally not heated, and the north facing wall is bermed four feet high around the north side.

  15. Experimental process investigation of a latent heat energy storage system with a staggered heat exchanger with different phase change materials for solar thermal energy storage applications

    Science.gov (United States)

    Tsolakoglou, Nikolas P.; Koukou, Maria K.; Vrachopoulos, Michalis Gr.; Tachos, Nikolaos; Lymberis, Kostas; Stathopoulos, Vassilis

    2017-11-01

    This work investigates melting and solidification processes of four different Phase Change Materials (PCM) used as latent heat thermal storage system. The experimental rig was consisted of an insulated tank, filled with the under investigation PCM, a staggered heat exchanger to supply or extract heat from the PCM cavity and a water pump to circulate Heat Transfer Fluid (HTF). Both charging (melting) and discharging (solidification) processes were conducted for two different HTF flow rates. The main scope of this work was to develop a first approach and to investigate the behaviour of PCM under various load conditions (different HTF flow rates). Results show that different HTF flow rates affect melting and solidification time periods; in both processes time was reduced while HTF flow rate was increased but in differentways due to the transition from conduction to convection heat transfer mechanisms.

  16. Experimental process investigation of a latent heat energy storage system with a staggered heat exchanger with different phase change materials for solar thermal energy storage applications

    Directory of Open Access Journals (Sweden)

    Tsolakoglou Nikolas P.

    2017-01-01

    Full Text Available This work investigates melting and solidification processes of four different Phase Change Materials (PCM used as latent heat thermal storage system. The experimental rig was consisted of an insulated tank, filled with the under investigation PCM, a staggered heat exchanger to supply or extract heat from the PCM cavity and a water pump to circulate Heat Transfer Fluid (HTF. Both charging (melting and discharging (solidification processes were conducted for two different HTF flow rates. The main scope of this work was to develop a first approach and to investigate the behaviour of PCM under various load conditions (different HTF flow rates. Results show that different HTF flow rates affect melting and solidification time periods; in both processes time was reduced while HTF flow rate was increased but in differentways due to the transition from conduction to convection heat transfer mechanisms.

  17. evaluation of total annual costs of heat exchanger networks using

    African Journals Online (AJOL)

    This study presents pinch analysis of some heat exchanger networks (HENs) problems using Hint integration (HINT) software. Three examples reported to have been solved using different approaches by various researchers to obtain the least possible total annual cost (TAC) were solved using the Hint software. In this work ...

  18. Development of graphite foam infiltrated with MgCl 2 for a latent heat based thermal energy storage (LHTES) system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Kim, Taeil; Zhao, Weihuan; Yu, Wenhua; France, David M.

    2016-08-01

    Thermal energy storage (TES) systems that are compatible with high temperature power cycles for concentrating solar power (CSP) require high temperature media for transporting and storing thermal energy. To that end, TES systems have been proposed based on the latent heat of fusion of the phase change materials (PCMs). However, PCMs have relatively low thermal conductivities. In this paper, use of high-thermal-conductivity graphite foam infiltrated with a PCM (MgCl2) has been investigated as a potential TES system. Graphite foams with two porosities were infiltrated with MgCl2. The infiltrated composites were evaluated for density, heat of fusion, melting/freezing temperatures, and thermal diffusivities. Estimated thermal conductivities of MgCl2/graphite foam composites were significantly higher than those of MgCl2 alone over the measured temperature range. Furthermore, heat of fusion, melting/freezing temperatures, and densities showed comparable values to those of pure MgCl2. Results of this study indicate that MgCl2/graphite foam composites show promise as storage media for a latent heat thermal energy storage system for CSP applications.

  19. Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery

    International Nuclear Information System (INIS)

    Li, Yuzhong; Yan, Min; Zhang, Liqiang; Chen, Guifang; Cui, Lin; Song, Zhanlong; Chang, Jingcai; Ma, Chunyuan

    2016-01-01

    Highlights: • A method is developed for deep cooling of flue gas in coal-fired boilers. • The method can recover both latent heat and water from flue gas. • The method utilizes FGD scrubber as a deep cooling exchanger. • The method adopts the direct heat exchange mode to avoid the corrosion problem. - Abstract: Flue gas waste heat recovery and utilization is an efficient means to improve the energy efficiency of coal-fired power plants. At present, the surface corrosion and fouling problems of heat exchanger hinder the development of flue gas deep cooling. In this study, a novel flue gas deep cooling method that can reduce flue gas temperature below the dew point of vapor to recover latent heat and obtain clean water simultaneously is proposed to achieve improved energy efficiency. The heat transfer mode of this method is the direct contact mode, which takes the scrubber, e.g. the flue gas desulfurization (FGD) scrubber, as the deep cooling exchanger. The flash evaporation and condensation (FEC) device and heat pump (HP) are utilized to provide low-temperature medium, such as FGD slurry or water, for washing and deep cooling flue gas, to collect recovered water, and to absorb recovered waste heat. This method is called as the FEC–HP method. This paper elaborated on two optional models of the proposed method. The mechanism for recovering heat and water was also analyzed using the customized flue gas humidity chart, and the method to quantitate recovered heat and water, as well as the results of the case of a 300 MW coal-fired generator set were provided. Net present value calculations showed that this method is profitable in the scenario of burning high-water-content coals. Several potential advantages of this method and suggestions for practical application were also discussed.

  20. Bichromatic Scintillometer Measurements of Sensible and Latent Heat Fluxes over a Boreal Forested Valley

    Science.gov (United States)

    Isabelle, P. E.; Nadeau, D.; Parent, A. C.; Rousseau, A. N.; Jutras, S.; Anctil, F.

    2017-12-01

    Boreal forest covers roughly 10% of the earth emerged surface, making it one of the world most common type of landscape. There is a large number of studies on the land-atmosphere exchanges of water and energy for this type of forested surfaces. However, few were located in complex terrain, and, to the best of our knowledge, none have looked at continuous regional scale fluxes. Scintillometry is a powerful tool that allows such measurements, but is usually used over flat homogeneous terrain due to its dependency on Monin-Obukhov Similarity Theory. However, some recent studies have applied this method over slopes, measuring fluxes comparable to those using the eddy covariance method. Still, more experiments are needed using scintillometry over sloped surfaces. This study presents bichromatic scintillometer measurements of sensible and latent heat fluxes over a boreal-forested valley. The field site is located in the Montmorency Forest, Québec, Canada (47°17'N; 71°10'W). The instrumented valley is surrounded by ridges at 900 m elevation, with the bottom stream at 785 m, and follows a 300-120° azimuth coinciding with the two main wind direction (up and down-valley, respectively). Vegetation mostly includes balsam firs 6-10 m tall, creating a rough but homogeneous surface. Scintillometer transmitters and receivers are installed on top of the ridges enclosing the valley, making the path 1.35 km long and its effective height 70-m tall. The setup includes a large aperture and a micro-wave scintillometer with crossing paths allowing the use of the bichromatic method. Measurement are taken continuously from August to October 2017. Scintillometer fluxes are compared with those measured by a 15-m eddy covariance tower located 100 m west of the measurement path, on the southern slope of the valley. Net radiation is also measured to assess energy budget closure over the valley. The setup allows us to test the limits of applicability of scintillometer measurements, especially

  1. Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system

    Directory of Open Access Journals (Sweden)

    Valan Arasu Amirtham

    2013-01-01

    Full Text Available Latent heat energy storage systems using paraffin wax could have lower heat transfer rates during melting/freezing processes due to its inherent low thermal conductivity. The thermal conductivity of paraffin wax can be enhanced by employing high conductivity materials such as alumina (Al2O3. A numerical analysis has been carried out to study the performance enhancement of paraffin wax with nanoalumina (Al2O3 particles in comparison with simple paraffin wax in a concentric double pipe heat exchanger. Numerical analysis indicates that the charge-discharge rates of thermal energy can be greatly enhanced using paraffin wax with alumina as compared with a simple paraffin wax as PCM.

  2. Response surface method optimization of V-shaped fin assisted latent heat thermal energy storage system during discharging process

    Directory of Open Access Journals (Sweden)

    Sina Lohrasbi

    2016-09-01

    Full Text Available Latent Heat Thermal Energy Storage Systems (LHTESS containing Phase Change Material (PCM are used to establish balance between energy supply and demand. PCMs have high latent heat but low thermal conductivity, which affects their heat transfer performance. In this paper, a novel fin array has been optimized by multi-objective Response Surface Method (RSM based on discharging process of PCM, and then this fin configuration is applied on LHTESS, and comparison between full discharging time by applying this fin array and LHTESS with other fin structures has been carried out. The employed numerical method in this paper is Standard Galerkin Finite Element Method. Adaptive grid refinement is used to solve the equations. Since the enhancement technique, which has been employed in the present study reduces the employed PCM mass, maximum energy storage capacity variations have been considered. Therefore phase change expedition and maximum energy storage capacity have been considered as the objectives of optimization and the importance of second objective is indicated which is proposed as the novelty here. Results indicate that considering maximum energy storage capacity as the objective of optimization procedure leads to efficient shape design of LHTESS. Also employing optimized V-shaped fin in LHTESS, expedites discharging process considerably in comparison with the LHTESS without fin.

  3. Thermal reliability test of Al-34%Mg-6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling

    International Nuclear Information System (INIS)

    Sun, J.Q.; Zhang, R.Y.; Liu, Z.P.; Lu, G.H.

    2007-01-01

    The purpose of this study is to determine the thermal reliability and corrosion of the Al-34%Mg-6%Zn alloy as a latent heat energy storage material with respect to various numbers of thermal cycles. The differential scanning calorimeter (DSC) analysis technique was applied to the alloy after 0, 50, 500 and 1000 melting/solidification cycles in order to measure the melting temperatures and the latent heats of fusion of the alloy. The containment materials were stainless steel (SS304L), carbon steel (steel C20) in the corrosion tests. The DSC results indicated that the change in melting temperature for the alloy was in the range of 3.06-5.3 K, and the latent heat of fusion decreased 10.98% after 1000 thermal cycles. The results show that the investigated Al-34%Mg-6%Zn alloy has a good thermal reliability as a latent heat energy storage material with respect to thermal cycling for thermal energy storage applications in the long term in view of the small changes in the latent heat of fusion and melting temperature. Gravimetric analysis as mass loss (mg/cm 2 ), corrosion rate (mg/day) and a microscopic or metallographic investigation were performed for corrosion tests and showed that SS304L may be considered a more suitable alloy than C20 in long term thermal storage applications

  4. Development and prototype testing of MgCl 2 /graphite foam latent heat thermal energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Yu, Wenhua; Zhao, Weihuan; Kim, Taeil; France, David M.; Smith, Roger K.

    2018-01-01

    Composites of graphite foam infiltrated with a magnesium chloride phase-change material have been developed as high-temperature thermal energy storage media for concentrated solar power applications. This storage medium provides a high thermal energy storage density, a narrow operating temperature range, and excellent heat transfer characteristics. In this study, experimental investigations were conducted on laboratory-scale prototypes with magnesium chloride/graphite foam composite as the latent heat thermal energy storage system. Prototypes were designed and built to monitor the melt front movement during the charging/discharging tests. A test loop was built to ensure the charging/discharging of the prototypes at temperatures > 700 degrees C. Repeated thermal cycling experiments were carried out on the fabricated prototypes, and the experimental temperature profiles were compared to the predicted results from numerical simulations using COMSOL Multiphysics software. Experimental results were found to be in good agreement with the simulations to validate the thermal models.

  5. Performance modeling and techno-economic analysis of a modular concentrated solar power tower with latent heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Rea, Jonathan E.; Oshman, Christopher J.; Olsen, Michele L.; Hardin, Corey L.; Glatzmaier, Greg C.; Siegel, Nathan P.; Parilla, Philip A.; Ginley, David S.; Toberer, Eric S.

    2018-05-01

    In this paper, we present performance simulations and techno-economic analysis of a modular dispatchable solar power tower. Using a heliostat field and power block three orders of magnitude smaller than conventional solar power towers, our unique configuration locates thermal storage and a power block directly on a tower receiver. To make the system dispatchable, a valved thermosyphon controls heat flow from a latent heat thermal storage tank to a Stirling engine. The modular design results in minimal balance of system costs and enables high deployment rates with a rapid realization of economies of scale. In this new analysis, we combine performance simulations with techno-economic analysis to evaluate levelized cost of electricity, and find that the system has potential for cost-competitiveness with natural gas peaking plants and alternative dispatchable renewables.

  6. Latent heat loss and sweat gland histology of male goats in an equatorial semi-arid environment

    Science.gov (United States)

    de Melo Costa, Cíntia Carol; Maia, Alex Sandro Campos; Neto, José Domingues Fontenele; Oliveira, Steffan Edward Octávio; de Queiroz, João Paulo Araújo Fernandes

    2014-03-01

    The objective of this work was to quantify the heat loss by cutaneous evaporation of goats in an equatorial semi-arid environment. The latent heat loss from the body surfaces of these ten undefined breed goats was measured using a ventilated capsule in sun and shade and in the three body regions (neck, flank and hindquarters). Skin samples from these three regions were histologically analyzed to relate the quantity of sweat glands, the area of sweat glands and the epithelium thickness of each of these regions to the heat loss by cutaneous evaporation of the examined goats. The epithelium thickness that was measured varied significantly for body regions with different quantities and areas of sweat glands ( P < 0.01). Among the body regions that were examined, the samples from the neck demonstrated the highest epithelium thickness (16.23 ± 0.13 μm). However, the samples of sweat glands from the flank had the biggest area (43330.51 ± 778.71 μm2) and quantity per square centimeter (390 ± 9 cm-2). After the animals were exposed to sun, the flanks lost the greatest amount of heat by cutaneous evaporation (73.03 ± 1.75 W m-2) and possessed the highest surface temperatures (39.47 ± 0.18 °C). The histological characteristics may have influenced the heat loss by cutaneous evaporation that was observed in the flank region after the animals were exposed to sun.

  7. Time and spatial heat transfer performance around an isothermally heated sphere placed in a uniform, downwardly directed flow (in relation to the enhancement of latent heat storage rate in a spherical capsule)

    International Nuclear Information System (INIS)

    Koizumi, H.

    2004-01-01

    The aim of this study is to reveal the temporal and spatial heat transfer performance of an isothermally heated sphere placed in a uniform, downwardly directed flow using a micro-foil heat flow sensor (HFS). A HFS, whose response time is about 0.02 s, was pasted on the surface of a heated copper sphere. Experiments were carried out using air with a Grashof number of 3.3 x 10 5 and with several Reynolds numbers (Re) up to 1800. Three flow patterns appeared: a chaotic flow at Re<240; a two-dimensional steady separated flow at 240 ≤ Re<500, and a three-dimensional unsteady separated flow at Re ≥ 500. In addition, the instantaneous and time-averaged heat transfer performance around the sphere in each of the three regions was clarified. Next, enhancement of the latent heat storage rate of a solid phase change material (PCM) in a spherical capsule was performed. The flow around the spherical capsule, in which the solid PCM was filled and placed in a heated, upwardly directed flow, is the approximate adverse flow phenomenon around the heated sphere which was placed in a downwardly directed flow. In other words, the buoyant flow and the forced flow are in the opposite directions in these two cases. Tests of latent heat storage were run for two Reynolds numbers which represented different flow characteristics in the heat transfer experiments, Re=150 and 1800. Furthermore, copper plates were inserted into the solid PCM, of which thermal conductivity was considerably low, to enhance the latent heat storage rate for the two Reynolds number flows

  8. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W. J.; Biraud, S.C.; Torn, M.S.; Fischer, M.L.; Billesbach, D.P.; Berry, J.A.

    2009-08-15

    Characterizing net ecosystem exchanges (NEE) of CO{sub 2} and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km 'macrocells' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO{sub 2} exchange with the local atmosphere was -240, -340, and -270 gC m{sup -2} yr{sup -1} (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution

  9. Complementary-relationship-based 30 year normals (1981-2010) of monthly latent heat fluxes across the contiguous United States

    Science.gov (United States)

    Szilagyi, Jozsef

    2015-11-01

    Thirty year normal (1981-2010) monthly latent heat fluxes (ET) over the conterminous United States were estimated by a modified Advection-Aridity model from North American Regional Reanalysis (NARR) radiation and wind as well as Parameter-Elevation Regressions on Independent Slopes Model (PRISM) air and dew-point temperature data. Mean annual ET values were calibrated with PRISM precipitation (P) and validated against United States Geological Survey runoff (Q) data. At the six-digit Hydrologic Unit Code level (sample size of 334) the estimated 30 year normal runoff (P - ET) had a bias of 18 mm yr-1, a root-mean-square error of 96 mm yr-1, and a linear correlation coefficient value of 0.95, making the estimates on par with the latest Land Surface Model results but without the need for soil and vegetation information or any soil moisture budgeting.

  10. The data assimilation method ''Latent Heat Nudging'' assessed with the Dynamic State Index

    Energy Technology Data Exchange (ETDEWEB)

    Claussnitzer, Antje [Freie Univ. Berlin (Germany). Inst. fuer Meteorologie; Deutscher Wetterdienst, Offenbach (Germany); Schartner, Thomas; Nevir, Peter; Cubasch, Ulrich [Freie Univ. Berlin (Germany). Inst. fuer Meteorologie; Stephan, Klaus [Deutscher Wetterdienst, Offenbach (Germany)

    2011-04-15

    In April 2007, the German Weather Service (DWD) added the non-hydrostatic limited area model COSMODE to its model chain. COSMO-DE covers mainly Germany and bordering countries and has a horizontal resolution of 2.8 km (0.025 ). An advantage of the COSMO-DE is that deep convection is expected to be resolved explicitly. In order to improve the initial state of COSMO-DE an assimilation of radar derived precipitation rates is applied by using ''Latent Heat Nudging'' (LHN). The aim of LHN is to adjust the model state so that the model will respond by producing a rain rate close to the observed value. In this study, the influence of LHN on diabatic processes is investigated by evaluation of the Dynamic State Index (DSI). The DSI is calculated on both isentropic (DSI{sub {theta}}) and model levels (DSI{sub {sigma}}). To analyse the influence of LHN, model analyses with and without LHN are examined for summer 2009 (June to August). The influence of LHN is also examined in more detail in a case study of a heavy rainfall event on July 18, 2009 where a strong rainfall area was developed on the front side of a trough. Results, based on a statistical investigation and the case study, show that the model with LHN can reproduce the observed rainfall better than the runs without LHN. This is also suggested by a higher correlation between DSI and observed precipitation. The release of latent heat enhances the diabatic processes associated with the formation of additional potential vorticity anomalies resulting in stronger DSI -signals. (orig.)

  11. Preparation, Characterization and Thermal Properties of Paraffin Wax – Expanded Perlite Form-Stable Composites for Latent Heat Storage

    Directory of Open Access Journals (Sweden)

    Tugba GURMEN OZCELIK

    2017-02-01

    Full Text Available In this study, form-stable composite phase change materials (PCM for latent heat storage were prepared by impregnating paraffin wax into the pores of the expanded perlite (EP. The characterization of the composite PCMs was performed by FTIR, TGA, SEM and DSC analysis. The melting point and heat of fusion were determined for 25 % paraffin included composite, as 54.3 °C and 94.71 J/g and for 45 % paraffin included composite as 53.6 °C and 106.69 J/g, respectively. The FTIR results showed that there were no chemical reaction between the perlite and paraffin. TGA analysis indicated that both composite PCMs had good thermal stability. SEM images showed that the paraffin was dispersed uniformly into the pores and on the EP surface. There was no leakage and degradation at the composite PCMs after heating and cooling cycles. According to the results, both prepared composites showed good thermal energy storage properties, reliability and stability. All results suggested that the presented form- stable composite PCMs has great potential for thermal energy storage applications.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.13661

  12. Assessment and simulation of global terrestrial latent heat flux by synthesis of CMIP5 climate models and surface eddy covariance observations

    Science.gov (United States)

    Yunjun Yao; Shunlin Liang; Xianglan Li; Shaomin Liu; Jiquan Chen; Xiaotong Zhang; Kun Jia; Bo Jiang; Xianhong Xie; Simon Munier; Meng Liu; Jian Yu; Anders Lindroth; Andrej Varlagin; Antonio Raschi; Asko Noormets; Casimiro Pio; Georg Wohlfahrt; Ge Sun; Jean-Christophe Domec; Leonardo Montagnani; Magnus Lund; Moors Eddy; Peter D. Blanken; Thomas Grunwald; Sebastian Wolf; Vincenzo Magliulo

    2016-01-01

    The latent heat flux (LE) between the terrestrial biosphere and atmosphere is a major driver of the globalhydrological cycle. In this study, we evaluated LE simulations by 45 general circulation models (GCMs)in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by a comparison...

  13. Industrial implementation issues of Total Site Heat Integration

    International Nuclear Information System (INIS)

    Chew, Kew Hong; Klemeš, Jiří Jaromír; Wan Alwi, Sharifah Rafidah; Abdul Manan, Zainuddin

    2013-01-01

    Heat Integration has been a well-established energy conservation strategy in the industry. Total Site Heat Integration (TSHI) has received growing interest since its inception in the 90s. The methodology has been used with certain simplifications to solve TSHI problems. This paper investigates the main issues that can influence the practical implementation of TSHI in the industry. The main aim is to provide an assessment and possible guidance for future development and extension of the TSHI methodology from the industrial perspective. Several key issues have been identified as being of vital importance for the industries: design, operation, reliability/availability/maintenance, regulatory/policy and economics. Design issues to consider include plant layout, pressure drop, etc. For operation, issues such as startup and shutdown need to be considered. Reliability, availability and maintenance (RAM) are important as they directly affect the production. Relevant government policy and incentives are also important when considering the options for TSHI. Finally, a TSHI system needs to be economically viable. This paper highlights the key issues to be considered for a successful implementation of TSHI. The impacts of these issues on TS integration are summarised in a matrix, which forms a basis for an improved and closer-to-real-life implementation of the TSHI methodology. Highlights: ► Current TSHI methodology has been used for solving models with certain simplifications. ► Several issues that can influence practical implementation of TSHI are identified. ► Impacts of these issues on safety, environment and economics are evaluated. ► The findings form a basis for an improved and practical implementation of TSHI

  14. Experimental investigations on cylindrical latent heat storage units with sodium acetate trihydrate composites utilizing supercooling

    DEFF Research Database (Denmark)

    Dannemand, Mark; Johansen, Jakob Berg; Kong, Weiqiang

    2016-01-01

    unit was tested with 116.3 kg SAT with 0.5% Xanthan rubber as a thickening agent and 4.4% graphite powder. The heat exchange capacity rate during charge was significantly lower for the unit with SAT and Xanthan rubber compared to the unit with SAT and extra water. This was due to less convection...

  15. Environmentally friendly and highly productive bi-component melt spinning of thermoregulated smart polymer fibres with high latent heat capacity

    Directory of Open Access Journals (Sweden)

    Ch. Cherif

    2018-03-01

    Full Text Available A stable and reproducible bi-component melt spinning process on an industrial scale incorporating Phase Change Material (PCM into textile fibres has been successfully developed and carried out using a melt spinning machine. The key factor for a successful bi-component melt spinning process is that a deep insight into the thermal and rheological behaviour of PCM using Difference Scanning Calorimetry (DSC, Thermogravimetric Analysis (TGA, and an oscillatory rheological investigation. PCM is very sensitive to the temperature and residence time of the melt spinning process. It is found that the optimal process temperature of PCM is 210 °C. The textile-physical properties and the morphology of the melt spun and further drawn bi-component core and sheath fibres (bico fibres were investigated and interpreted. The heat capacities of PCM incorporated in bico fibres were also determined by means of DSC. The melt spun bico fibres integrating PCM provide a high latent heat of up to 22 J/g, which is three times higher than that of state-of-the-art fibres, which were also obtained using the melt spinning process. Therefore, they have the potential to be used as smart polymer fibres for textile and other technical applications.

  16. Totally Asymmetric Limit for Models of Heat Conduction

    Science.gov (United States)

    De Carlo, Leonardo; Gabrielli, Davide

    2017-08-01

    We consider one dimensional weakly asymmetric boundary driven models of heat conduction. In the cases of a constant diffusion coefficient and of a quadratic mobility we compute the quasi-potential that is a non local functional obtained by the solution of a variational problem. This is done using the dynamic variational approach of the macroscopic fluctuation theory (Bertini et al. in Rev Mod Phys 87:593, 2015). The case of a concave mobility corresponds essentially to the exclusion model that has been discussed in Bertini et al. (J Stat Mech L11001, 2010; Pure Appl Math 64(5):649-696, 2011; Commun Math Phys 289(1):311-334, 2009) and Enaud and Derrida (J Stat Phys 114:537-562, 2004). We consider here the convex case that includes for example the Kipnis-Marchioro-Presutti (KMP) model and its dual (KMPd) (Kipnis et al. in J Stat Phys 27:6574, 1982). This extends to the weakly asymmetric regime the computations in Bertini et al. (J Stat Phys 121(5/6):843-885, 2005). We consider then, both microscopically and macroscopically, the limit of large externalfields. Microscopically we discuss some possible totally asymmetric limits of the KMP model. In one case the totally asymmetric dynamics has a product invariant measure. Another possible limit dynamics has instead a non trivial invariant measure for which we give a duality representation. Macroscopically we show that the quasi-potentials of KMP and KMPd, which are non local for any value of the external field, become local in the limit. Moreover the dependence on one of the external reservoirs disappears. For models having strictly positive quadratic mobilities we obtain instead in the limit a non local functional having a structure similar to the one of the boundary driven asymmetric exclusion process.

  17. Performance Maintenance of Dye-Sensitized Solar Cells Using a Latent Heat Storage Material

    Science.gov (United States)

    Haruki, Naoto; Horibe, Akihiko

    2017-07-01

    Recently, there has been considerable interest in various renewable energies. Among them, solar cell production has increased markedly because the photovoltaic is a clean and safe power generation method. The dye-sensitized solar cell (DSSC) has attracted much attention as an alternative to silicon solar cells due to lower manufacturing costs and plentiful resources for DSSC production. However, the performance of DSSCs has been limited by their durability and low photoelectric conversion efficiency. Temperature control of DSSCs via phase-change materials (PCMs) is expected to improve performance. In this study, DSSCs were heated or cooled with a heat exchanger copper block that was in contact with a PCM (heptadecane), while being irradiated by a solar simulator light source. The durability and photoelectric conversion efficiency of the DSSC improved under PCM temperature control.

  18. Experimental Investigation of Latent Heat Thermal Energy Storage for Bi-Modal Solar Thermal Propulsion

    Science.gov (United States)

    2014-06-01

    unlimited distribution. SolidWorks Simulation Professional 2013 to solve for the initial steady state temperature distribution based on system geometry...spacecraft have been flow to date. STP is traditionally viewed as an unproven technology with significant drawbacks including the requirement of solar...control heat flow , safeguards to prevent complete solidification or, more likely, a combination of all three. Despite being neglected in the majority of

  19. Dynamic thermal behavior of building using phase change materials for latent heat storage

    Directory of Open Access Journals (Sweden)

    Selka Ghouti

    2015-01-01

    Full Text Available This study presents a two-dimensional model with a real size home composed of two-storey (ground and first floor spaces separated by a slab, enveloped by a wall with rectangular section containing phase change material (PCM in order to minimize energy consumption in the buildings. The main objective of the PCM-wall system is to decrease the temperature change from outdoor space before it reaches the indoor space during the daytime. The numerical approach uses effective heat capacity Ceff model with realistic outdoor climatic conditions of Tlemcen city, Algeria. The numerical results showed that by using PCM in wall as energy storage components may reduce the room temperature by about 6 to 7°C of temperature depending on the floor level (first floor spaces or ground floor spaces.

  20. Thermal Peak Management Using Organic Phase Change Materials for Latent Heat Storage in Electronic Applications

    Science.gov (United States)

    Maxa, Jacob; Novikov, Andrej; Nowottnick, Mathias

    2017-01-01

    Modern high power electronics devices consists of a large amount of integrated circuits for switching and supply applications. Beside the benefits, the technology exhibits the problem of an ever increasing power density. Nowadays, heat sinks that are directly mounted on a device, are used to reduce the on-chip temperature and dissipate the thermal energy to the environment. This paper presents a concept of a composite coating for electronic components on printed circuit boards or electronic assemblies that is able to buffer a certain amount of thermal energy, dissipated from a device. The idea is to suppress temperature peaks in electronic components during load peaks or electronic shorts, which otherwise could damage or destroy the device, by using a phase change material to buffer the thermal energy. The phase change material coating could be directly applied on the chip package or the PCB using different mechanical retaining jigs.

  1. Thermal Peak Management Using Organic Phase Change Materials for Latent Heat Storage in Electronic Applications

    Directory of Open Access Journals (Sweden)

    Jacob Maxa

    2017-12-01

    Full Text Available Modern high power electronics devices consists of a large amount of integrated circuits for switching and supply applications. Beside the benefits, the technology exhibits the problem of an ever increasing power density. Nowadays, heat sinks that are directly mounted on a device, are used to reduce the on-chip temperature and dissipate the thermal energy to the environment. This paper presents a concept of a composite coating for electronic components on printed circuit boards or electronic assemblies that is able to buffer a certain amount of thermal energy, dissipated from a device. The idea is to suppress temperature peaks in electronic components during load peaks or electronic shorts, which otherwise could damage or destroy the device, by using a phase change material to buffer the thermal energy. The phase change material coating could be directly applied on the chip package or the PCB using different mechanical retaining jigs.

  2. Process for loading latent heat stores. Verfahren zur Beschickung von Latentwaermespeichern

    Energy Technology Data Exchange (ETDEWEB)

    Wasel-Nielen, J.; Merkenich, K.; Gehrig, O.; Sommer, K.

    1981-06-11

    The use of salt hydrate melting in the loading process is not favourable from the technical and energy point of view. According to the invention, a saturated solution is filled into the store at the required phase conversion point. This can be done by neutralization (e.g. a reaction between H/sub 3/PO/sub 4//NAOH/H/sub 2/O in the mol ratio of 1/2/10 gives Na/sub 2/HPO/sub 4/.12H/sub 2/O corresponding to Na/sub 2/SO/sub 4/.10H/sub 2/O), or by conversion of acid/basic salts with bases/acids respectively (e.g. Na/sub 3/PO/sub 4//H/sub 3/PO/sub 4//H/sub 2/O in the ratio 2/1/36 to Na/sub 2/HPO/sub 4/.12H/sub 2/O, analogous to K/sub 3/PO/sub 4/.7H/sub 2/O, KF.4H/sub 2/O or CaCl/sub 2/.6H/sub 2/O). During the process one must ensure accurate dosing and good mixing. A saturated solution is also available by dissolving salts free of water/or with little water in appropriate quantities of water below the melting point of the required hydrate. Such systems are used where the phase change heat exceeds the heat capacity of the water at this temperature and the hydrates should contain at least three crystal water molecules more than the nearest hydrate.

  3. MODIS-Based Estimation of Terrestrial Latent Heat Flux over North America Using Three Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Xuanyu Wang

    2017-12-01

    Full Text Available Terrestrial latent heat flux (LE is a key component of the global terrestrial water, energy, and carbon exchanges. Accurate estimation of LE from moderate resolution imaging spectroradiometer (MODIS data remains a major challenge. In this study, we estimated the daily LE for different plant functional types (PFTs across North America using three machine learning algorithms: artificial neural network (ANN; support vector machines (SVM; and, multivariate adaptive regression spline (MARS driven by MODIS and Modern Era Retrospective Analysis for Research and Applications (MERRA meteorology data. These three predictive algorithms, which were trained and validated using observed LE over the period 2000–2007, all proved to be accurate. However, ANN outperformed the other two algorithms for the majority of the tested configurations for most PFTs and was the only method that arrived at 80% precision for LE estimation. We also applied three machine learning algorithms for MODIS data and MERRA meteorology to map the average annual terrestrial LE of North America during 2002–2004 using a spatial resolution of 0.05°, which proved to be useful for estimating the long-term LE over North America.

  4. An Empirical Orthogonal Function-Based Algorithm for Estimating Terrestrial Latent Heat Flux from Eddy Covariance, Meteorological and Satellite Observations.

    Science.gov (United States)

    Feng, Fei; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Chen, Jiquan; Zhao, Xiang; Jia, Kun; Pintér, Krisztina; McCaughey, J Harry

    2016-01-01

    Accurate estimation of latent heat flux (LE) based on remote sensing data is critical in characterizing terrestrial ecosystems and modeling land surface processes. Many LE products were released during the past few decades, but their quality might not meet the requirements in terms of data consistency and estimation accuracy. Merging multiple algorithms could be an effective way to improve the quality of existing LE products. In this paper, we present a data integration method based on modified empirical orthogonal function (EOF) analysis to integrate the Moderate Resolution Imaging Spectroradiometer (MODIS) LE product (MOD16) and the Priestley-Taylor LE algorithm of Jet Propulsion Laboratory (PT-JPL) estimate. Twenty-two eddy covariance (EC) sites with LE observation were chosen to evaluate our algorithm, showing that the proposed EOF fusion method was capable of integrating the two satellite data sets with improved consistency and reduced uncertainties. Further efforts were needed to evaluate and improve the proposed algorithm at larger spatial scales and time periods, and over different land cover types.

  5. Multifunctional wall coating combining photocatalysis, self-cleaning and latent heat storage

    Science.gov (United States)

    Lucas, S. S.; Barroso de Aguiar, J. L.

    2018-02-01

    Mortars, one of the most common construction materials, have not received any substantial modification for many decades. This has changed in recent years; new compositions are now being developed, with new properties, using nano-additives, fibres and capsules. In this work, surfaces with new and innovative functionalities that promote energy savings and improve air quality have been developed and studied. Incorporation of phase change materials (PCM) and titanium dioxide (TiO2) nanoparticles in construction products is currently under study by different research groups. However, these studies only address their incorporation separately. Adding new additives into the mortar’s matrix can be complex—due to microstructural modifications that will influence both fresh and hardened state properties. Moving from a single additive to multiple additions, as in this study, increases the system’s complexity. Only with a good understanding of the microstructural properties, it is possible to add multiple additives (including nano and microparticles) to mortars, without damaging its final quality. This work demonstrates that a higher additive content is not always a guarantee of better results; lower additions can often provide a better compromise between performance and final mechanical properties. The results presented in this paper confirmed this and show that combining PCM microcapsules and TiO2 nanoparticles open a new path in the development of mortars with multiple functionalities. In this study, a new material with depolluting, self-cleaning and heat storage was created. For the development of new and innovative mortars, a proper balance of multiple additives, supported by the study of microstructural changes, can lead to an optimization of the compositions, ensuring that the mortar’s final properties are not affected.

  6. Agricultural greenhouse with storage of sensible and latent heat in the soil. Modeling and simulation of thermal and hydric transfer. Experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Al Cheikh Kassem, N.; Miriel, J.; Roux, A. [Institut National des Sciences Appliquees (INSA), 35 - Rennes (France)

    1993-12-31

    This work presents a simulation model of sensible and latent heat storage in the soil of an agricultural greenhouse. Results recorded by the laboratory device of grounded storage and thermo-physic parameter values of soil experimentally obtained by a three rod thermal shock probe are used for checking the simulation model and thus assessing the performance of such a system and the coupling between the greenhouse and the storage. (Authors). 3 refs., 6 figs.

  7. Influence of accuracy of thermal property data of a phase change material on the result of a numerical model of a packed bed latent heat storage with spheres

    Energy Technology Data Exchange (ETDEWEB)

    Arkar, C.; Medved, S. [University of Ljubljana, Faculty of Mechanical Engineering, Askerceva 6, 1000 Ljubljana (Slovenia)

    2005-11-01

    With the integration of latent-heat thermal energy storage (LHTES) in building services, solar energy and the coldness of ambient air can be efficiently used to reduce the energy used for heating and cooling and to improve the level of living comfort. For this purpose, a cylindrical LHTES containing spheres filled with paraffin was developed. For the proper modelling of the LHTES thermal response the thermal properties of the phase change material (PCM) must be accurately known. This article presents the influence of the accuracy of thermal property data of the PCM on the result of the prediction of the LHTES's thermal response. A packed bed numerical model was adapted to take into account the non-uniformity of the PCM's porosity and the fluid's velocity. Both are the consequence of a small tube-to-sphere diameter ratio, which is characteristic of the developed LHTES. The numerical model can also take into account the PCM's temperature-dependent thermal properties. The temperature distribution of the latent heat of the paraffin (RT20) used in the experiment in the form of apparent heat capacity was determined using a differential scanning calorimeter (DSC) at different heating and cooling rates. A comparison of the numerical and experimental results confirmed our hypothesis relating to the important role that the PCM's thermal properties play, especially during slow running processes, which are characteristic for our application.

  8. Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness

    International Nuclear Information System (INIS)

    Chai, Luxiao; Wang, Xiaodong; Wu, Dezhen

    2015-01-01

    Highlights: • We designed and synthesized a sort of bifunctional PCMs-based microcapsules. • These microcapsules have an n-eicosane core and a crystalline TiO 2 shell. • Such a crystalline TiO 2 shell exhibited a good photocatalytic activity. • The microcapsules showed good performance in energy storage and sterilization. - Abstract: A sort of novel bifunctional microencapsulated phase change material (PCM) was designed by encapsulating n-eicosane into a crystalline titanium dioxide (TiO 2 ) shell and, then, was successfully synthesized through in-situ polycondensation in the sol–gel process using tetrabutyl titanate as a titania precursor. The resultant microcapsule samples were characterized by Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy to determine their chemical compositions and structures. Furthermore, the crystallinity of the TiO 2 shell was verified by powder X-ray diffraction patterns. It was confirmed that the fluorinions could induce the phase transition from the amorphous TiO 2 to the brookite-form crystals during the sol–gel process, thus resulting in a crystalline TiO 2 shell for the microencapsulated n-eicosane. The scanning and transmission electron microscopy investigations indicated that all of the resultant microcapsules presented a perfect spherical shape with a uniform particle size of 1.5–2 μm, and they also exhibited a well-defined core–shell structure as well as a smooth and compact shell. The crystalline TiO 2 shell made the resultant microcapsules a photocatalytic activity, and therefore, these microcapsules demonstrated a good photocatalytic effect for the chemical degradation and an antimicrobial function for some of the Gram-negative bacteria. Most of all, all of the microencapsulated n-eicosane samples indicated good phase-change performance and high thermal reliability for latent-heat storage and release, and moreover, they achieved a high

  9. Modeling ground thermal regime of an ancient buried ice body in Beacon Valley, Antarctica using a 1-D heat equation with latent heat effect

    Science.gov (United States)

    Liu, L.; Sletten, R. S.; Hallet, B.; Waddington, E. D.; Wood, S. E.

    2013-12-01

    An ancient massive ice body buried under several decimeters of debris in Beacon Valley, Antarctica is believed to be over one million years old, making it older than any known glacier or ice cap. It is fundamentally important as a reservoir of water, proxy for climatic information, and an expression of the periglacial landscape. It is also one of Earth's closest analog for widespread, near-surface ice found in Martian soils and ice-cored landforms. We are interested in understanding controls on how long this ice may persist since our physical model of sublimation suggests it should not be stable. In these models, the soil temperatures and the gradient are important because it determines the direction and magnitude of the vapor flux, and thus sublimation rates. To better understand the heat transfer processes and constrain the rates of processes governing ground ice stability, a model of the thermal behavior of the permafrost is applied to Beacon Valley, Antarctica. It calculates soil temperatures based on a 1-D thermal diffusion equation using a fully implicit finite volume method (FVM). This model is constrained by soil physical properties and boundary conditions of in-situ ground surface temperature measurements (with an average of -23.6oC, a maximum of 20.5oC and a minimum of -54.3oC) and ice-core temperature record at ~30 m. Model results are compared to in-situ temperature measurements at depths of 0.10 m, 0.20 m, 0.30 m, and 0.45 m to assess the model's ability to reproduce the temperature profile for given thermal properties of the debris cover and ice. The model's sensitivity to the thermal diffusivity of the permafrost and the overlaying debris is also examined. Furthermore, we incorporate the role of ice condensation/sublimation which is calculated using our vapor diffusion model in the 1-D thermal diffusion model to assess potential latent heat effects that in turn affect ground ice sublimation rates. In general, the model simulates the ground thermal

  10. Experimental Evaluation of a Total Heat Recovery Unit with Polymer Membrane Foils

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Nie, Jinzhe

    2014-01-01

    A laboratory experimental study was conducted to investigate the energy performance of a total heat recovery unit using a polymer membranes heat exchanger. The study was conducted in twin climate chambers. One of the chambers simulated outdoor climate conditions and the other simulated the climate...... condition indoors. The airflows taken from the two chambers were connected into the total heat recovery unit and exchange heat in a polymer membrane foil heat exchanger installed inside the unit. The temperature and humidity of the air upstream and downstream of the heat exchanger were measured. Based...... on the measured temperature and humidity values, the temperature, humidity, and enthalpy efficiencies of the total heat recovery unit were calculated. The experiment was conducted in different combinations of outdoor climate conditions simulating warm and humid outdoor climates and air-conditioned indoor climate...

  11. Local total and radiative heat-transfer coefficients during the heat treatment of a workpiece in a fluidised bed

    International Nuclear Information System (INIS)

    Gao, W.M.; Kong, L.X.; Hodgson, P.D.

    2006-01-01

    The heat-transfer coefficients around a workpiece immersed in an electrically heated heat treatment fluidised bed were studied. A suspension probe designed to simulate a workpiece of complex geometry was developed to measure local total and radiative heat-transfer coefficients at a high bed temperature. The probe consisted of an energy-storage region separated by insulation from the fluidised bed, except for the measuring surface, and a multi-thermocouple measurement system. Experiments in the fluidised bed were performed for a fluidising medium of 120-mesh alumina, a wide temperature range of 110-1050 deg. C and a fluidising number range of 1.18-4.24. It was found that the workpiece surface temperature has a more significant effect on heat transfer than the bed temperature. The total heat-transfer coefficient at the upper surface of the workpiece sharply decreased at the start of heating, and then steadily increased as heating progressed, while a sharp decrease became a rapid increase and then a slow increase for the radiative heat-transfer coefficient. A great difference in the heat-transfer coefficients around the workpiece was observed

  12. Preparation and thermal properties of form-stable palmitic acid/active aluminum oxide composites as phase change materials for latent heat storage

    International Nuclear Information System (INIS)

    Fang, Guiyin; Li, Hui; Cao, Lei; Shan, Feng

    2012-01-01

    Form-stable palmitic acid (PA)/active aluminum oxide composites as phase change materials were prepared by adsorbing liquid palmitic acid into active aluminum oxide. In the composites, the palmitic acid was used as latent heat storage materials, and the active aluminum oxide was used as supporting material. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine the chemical structure, crystalloid phase and microstructure of the composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetry analyzer (TGA). The FT-IR analyses results indicated that there is no chemical interaction between the palmitic acid and active aluminum oxide. The SEM results showed that the palmitic acid was well adsorbed into porous network of the active aluminum oxide. The DSC results indicated that the composites melt at 60.25 °C with a latent heat of 84.48 kJ kg −1 and solidify at 56.86 °C with a latent heat of 78.79 kJ kg −1 when the mass ratio of the PA to active aluminum oxide is 0.9:1. Compared with that of the PA, the melting and solidifying time of the composites CPCM5 was reduced by 20.6% and 21.4% because of the increased heat transfer rate through EG addition. The TGA results showed that the active aluminum oxide can improve the thermal stability of the composites. -- Highlights: ► Form-stable PA/active aluminum oxide composites as PCMs were prepared. ► Chemical structure, crystalloid phase and microstructure of composites were determined. ► Thermal properties and thermal stability of the composites were investigated. ► Expanded graphite can improve thermal conductivity of the composites.

  13. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

    Science.gov (United States)

    Martin, J.; Reichstein, M.

    2012-12-01

    We upscaled FLUXNET observations of carbon dioxide, water and energy fluxes to the global scale using the machine learning technique, Model Tree Ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5° x 0.5o spatial resolution and a monthly temporal resolution from 1982-2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were weak. Our products are increasingly used to evaluate global land surface models. However, depending on the flux of interest (e.g. gross primary production, terrestrial ecosystem respiration, net ecosystem exchange, evapotranspiration) and the pattern of interest (mean annual map, seasonal cycles, interannual variability, trends) the robustness and uncertainty of these products varies considerably. To avoid pitfalls, this talk also aims at providing an overview of uncertainties associated with these products, and to provide recommendations on the usage for land surface model evaluations. Finally, we present FLUXCOM - an ongoing activity that aims at generating an ensemble of data-driven FLUXNET based products based on diverse approaches.

  14. Total Energy. Sustainable cooling and heating in supermarkets; Total Energy. Duurzame koeling en verwarming supermarkten

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-03-15

    In 8 articles attention is paid to different aspects of cooling and heating in supermarkets: new coolants in the food retail sector, the climate plan of the Dutch Food Retail Association (CBL), he Round Table discussion with between CBL and supermarket chains about research results, approach and targets, the use of CO2 refrigeration in supermarkets, leakage of coolants from refrigerators and freezers in Dutch supermarkets, the energy efficient and environment-friendly refrigerator and freezer equipment of the distribution centre of supermarket chain C1000 in Raalte, Netherlands, changes for cooling techniques in the EIA energy list (Energy investment deduction scheme) and finally education options for the refrigeration industry in the Netherlands. [Dutch] In 8 artikelen wordt aandacht geschonken aan verschillende aspecten m.b.t. koeling en verwarming in supermarkten: nieuwe koelmiddelen in de 'food retail sector, het klimaatplan van de brancheorganisatie Centraal Bureau Levensmiddelenhandel (CBL), het Rondetafel overleg met de CBL en supermarktketens over onderzoeksresultaten, aanpak en doelen, de toepassing van CO2 koeling in supermarkten, lekkage van koelmiddelen uit koel- en vriesinstallaties in Nederlandse supermarkten, de energiezuinige en milieuvriendelijke koel-vriesinstallatie van het distributiecentrum van de supermarktketen C1000 in Raalte, wijzigingen voor koeltechniek in de EIA energielijst (Energie Investeringsaftrek subsidieregeling), en tenslotte opleidingsmogelijkheden voor de koeltechnische sector in Nederland.

  15. Simulation of a heat pump system for total heat recovery from flue gas

    International Nuclear Information System (INIS)

    Wei, Maolin; Yuan, Weixing; Song, Zhijia; Fu, Lin; Zhang, Shigang

    2015-01-01

    This paper introduces an approach of using an open-cycle absorption heat pump (OAHP) for recovering waste heat from the flue gas of a gas boiler with a system model. And equivalent energy efficiency is used to evaluate two other heat recovery systems that integrate an electric compression heat pump (EHP) or an absorption heat pump (AHP) with a boiler. The key factors influencing the systems are evaluated. The OAHP system efficiency is improved by 11% compared to the base case. And the OAHP system is more efficient than the AHP or the EHP systems, especially when the solution mass flow rate is only a little less than the cold water mass flow rate. The energy efficiency comparison is supplemented with a simplified economic analysis. The results indicate that the OAHP system is the best choice for the current prices of electricity and natural gas in Beijing. - Highlights: • An OAHP system is analyzed to improve heat recovery from natural gas flue gas. • OAHP system models are presented and analyzed. • The key factors influencing the OAHP systems are analyzed. • The OAHP system is most efficient for most cases compared with other systems. • The OAHP system is more economic than other systems

  16. Comparative Assessment of Two Vegetation Fractional Cover Estimating Methods and Their Impacts on Modeling Urban Latent Heat Flux Using Landsat Imagery

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2017-05-01

    Full Text Available Quantifying vegetation fractional cover (VFC and assessing its role in heat fluxes modeling using medium resolution remotely sensed data has received less attention than it deserves in heterogeneous urban regions. This study examined two approaches (Normalized Difference Vegetation Index (NDVI-derived and Multiple Endmember Spectral Mixture Analysis (MESMA-derived methods that are commonly used to map VFC based on Landsat imagery, in modeling surface heat fluxes in urban landscape. For this purpose, two different heat flux models, Two-source energy balance (TSEB model and Pixel Component Arranging and Comparing Algorithm (PCACA model, were adopted for model evaluation and analysis. A comparative analysis of the NDVI-derived and MESMA-derived VFCs showed that the latter achieved more accurate estimates in complex urban regions. When the two sources of VFCs were used as inputs to both TSEB and PCACA models, MESMA-derived urban VFC produced more accurate urban heat fluxes (Bowen ratio and latent heat flux relative to NDVI-derived urban VFC. Moreover, our study demonstrated that Landsat imagery-retrieved VFC exhibited greater uncertainty in obtaining urban heat fluxes for the TSEB model than for the PCACA model.

  17. Enhanced Thermal Properties of Novel Latent Heat Thermal Storage Material Through Confinement of Stearic Acid in Meso-Structured Onion-Like Silica

    Science.gov (United States)

    Gao, Junkai; Lv, Mengjiao; Lu, Jinshu; Chen, Yan; Zhang, Zijun; Zhang, Xiongjie; Zhu, Yingying

    2017-12-01

    Meso-structured onion-like silica (MOS), which had a highly ordered, onion-like multilayer; large surface area and pore volume; and highly curved mesopores, were synthesized as a support for stearic acid (SA) to develop a novel shape-stabilized phase change material (SA/MOS). The characterizations of SA/MOS were studied by the analysis technique of scanning electron microscope, infrared spectroscopy, x-ray diffraction, differential scanning calorimeter (DSC), and thermal gravimetry analysis (TGA). The results showed that the interaction between the SA and the MOS was physical adsorption and that the MOS had no effect on the crystal structure of the SA. The DSC results suggested that the melting and solidifying temperature of the SA/MOS were 72.7°C and 63.9°C with a melting latent heat of 108.0 J/g and a solidifying latent heat of 126.0 J/g, respectively, and the TGA results indicated that the SA/MOS had a good thermal stability. All of the results demonstrated that the SA/MOS was a promising thermal energy storage material candidate for practical applications.

  18. Scan-rate and vacuum pressure dependence of the nucleation and growth dynamics in a spin-crossover single crystal: the role of latent heat.

    Science.gov (United States)

    Ridier, Karl; Rat, Sylvain; Salmon, Lionel; Nicolazzi, William; Molnár, Gábor; Bousseksou, Azzedine

    2018-04-04

    Using optical microscopy we studied the vacuum pressure dependence (0.1-1000 mbar) of the nucleation and growth dynamics of the thermally induced first-order spin transition in a single crystal of the spin-crossover compound [Fe(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl). A crossover between a quasi-static hysteresis regime and a temperature-scan-rate-dependent kinetic regime is evidenced around 5 mbar due to the change of the heat exchange coupling between the crystal and its external environment. Remarkably, the absorption/dissipation rate of latent heat was identified as the key factor limiting the switching speed of the crystal.

  19. Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material

    International Nuclear Information System (INIS)

    Trigui, Abdelwaheb; Karkri, Mustapha; Krupa, Igor

    2014-01-01

    Highlights: • This study deals with the comparison of experimental results for different PCM composite to be used in passive solar walls. • This paper reports on the successful use of a specific experimental method in order to characterize the phase change effects. • The results have shown that most important thermal properties of these composites at the solid and liquid states. • Results indicate the thermal effectiveness of phase change material and significant amount of energy saving can be achieved. • Heat flux measurements are a very interesting experimental source of data which comes to complete the calorimetric device (DSC). - Abstract: Phase change material (PCM) composites based on low-density polyethylene (LDPE) with paraffin waxes were investigated in this study. The composites were prepared using a meltmixing method with a Brabender-Plastograph. The LDPE as the supporting matrix kept the molten waxes in compact shape during its phase transition from solid to liquid. Immiscibility of the PCMs (waxes) and the supporting matrix (LDPE) is a necessary property for effective energy storage. Therefore, this type paraffin can be used in a latent heat storage system without encapsulation. The objective of this research is to use PCM composite as integrated components in a passive solar wall. The proposed composite TROMBE wall allows daily storage of the solar energy in a building envelope and restitution in the evening, with a possible control of the air flux in a ventilated air layer. An experimental set-up was built to determine the thermal response of these composites to thermal solicitations. In addition, a DSC analysis was carried out. The results have shown that most important thermal properties of these composites at the solid and liquid states, like the “apparent” thermal conductivity, the heat storage capacity and the latent heat of fusion. Results indicate the performance of the proposed system is affected by the thermal effectiveness of

  20. Numerical investigation of the energy performance of an Opaque Ventilated Façade system employing a smart modular heat recovery unit and a latent heat thermal energy system

    International Nuclear Information System (INIS)

    Diallo, Thierno M.O.; Zhao, Xudong; Dugue, Antoine; Bonnamy, Paul; Javier Miguel, Francisco; Martinez, Asier; Theodosiou, Theodoros; Liu, Jing-Sheng; Brown, Nathan

    2017-01-01

    Highlights: •An innovative E2VENT ventilated façade system is presented and modelled with TRNSYS. •The energy efficiency of the system is assessed for five climates in Europe. •The E2VENT retrofitting system is compared with a traditional retrofit method. •The E2VENT system achieves 16.5–23.5% primary energy saving. •The E2VENT system saves twice as much primary energy as the traditional retrofit. -- Abstract: The building sector is responsible for more than 40% of the EU’s total energy consumption. To reduce the energy consumption in buildings and to achieve the EU’s fossil fuel saving targets for 2020 and beyond 2050, the energy efficient retrofitting strategies are critically important and need to be implemented effectively. This paper presents a dynamic numerical investigation of the energy performance of an innovative façade integrate-able energy efficient ventilation system (E2VENT) that incorporates a smart modular heat recovery unit (SMHRU) and a latent heat thermal energy system (LHTES). A number of component simulation models, including SMHRU, LHTES, Cladding and Building Energy Management System (BEMS), were developed and then integrated using the TRNSYS software which is an advanced building energy performance simulation tool. On this basis, sizing, optimisation and characterisation of the system elements including the HVAC system and insulation layer thickness were carried out. The overall energy efficiency of the E2VENT system and its impact on the energy performance of a post-retrofit building were then investigated. In particular, the heating and cooling energy performance of the E2VENT façade module was numerically studied at five different climatic conditions in Europe. Furthermore, the innovative E2VENT retrofitting was compared with traditional retrofittings in terms of the energy efficiency and primary energy savings. It was found that the innovative E2VENT solution can achieve 16.5–23.5% building primary energy saving and

  1. Impact of air-sea drag coefficient for latent heat flux on large scale climate in coupled and atmosphere stand-alone simulations

    Science.gov (United States)

    Torres, Olivier; Braconnot, Pascale; Marti, Olivier; Gential, Luc

    2018-05-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation. Despite decades of effort and improvements, representation of these fluxes still presents a challenge due to the small-scale acting turbulent processes compared to the resolved scales of the models. Beyond this subgrid parameterization issue, a comprehensive understanding of the impact of air-sea interactions on the climate system is still lacking. In this paper we investigates the large-scale impacts of the transfer coefficient used to compute turbulent heat fluxes with the IPSL-CM4 climate model in which the surface bulk formula is modified. Analyzing both atmosphere and coupled ocean-atmosphere general circulation model (AGCM, OAGCM) simulations allows us to study the direct effect and the mechanisms of adjustment to this modification. We focus on the representation of latent heat flux in the tropics. We show that the heat transfer coefficients are highly similar for a given parameterization between AGCM and OAGCM simulations. Although the same areas are impacted in both kind of simulations, the differences in surface heat fluxes are substantial. A regional modification of heat transfer coefficient has more impact than uniform modification in AGCM simulations while in OAGCM simulations, the opposite is observed. By studying the global energetics and the atmospheric circulation response to the modification, we highlight the role of the ocean in dampening a large part of the disturbance. Modification of the heat exchange coefficient modifies the way the coupled system works due to the link between atmospheric circulation and SST, and the different feedbacks between ocean and atmosphere. The adjustment that takes place implies a balance of net incoming solar radiation that is the same in all simulations. As there is no change in model physics other than drag coefficient, we obtain similar latent heat flux

  2. Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face

    Science.gov (United States)

    Bollati, Julieta; Tarzia, Domingo A.

    2018-04-01

    Recently, in Tarzia (Thermal Sci 21A:1-11, 2017) for the classical two-phase Lamé-Clapeyron-Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).

  3. Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties

    International Nuclear Information System (INIS)

    Sarı, Ahmet; Alkan, Cemil; Bilgin, Cahit

    2014-01-01

    Graphical abstract: Four kinds of micro/nano capsules, PMMA/(C17-C24), PMMA/(C19-C18), PMMA/(C19-C24) and PMMA/(C20-C24), were synthesized successfully as novel encapsulated phase change materials (PCMs) for the different monomer/PEM ratios via emulsion polymerization. The FTIR spectroscopy analysis confirmed the polymerization reaction occurred around the PEMs to be used as core materials. The POM, SEM and PSD analysis results showed that the synthesized PMMA/PEM micro/nano capsules had spherical shape appearance and micro/nano sizes. DSC analysis measurements revealed that the prepared micro/nano capsules containing the highest PEM content had a melting temperature range of about 20–36 °C and latent heat capacities in the range of about 86–169 J/g. TGA findings demonstrated that the encapsulated PEMs had good thermal reliability and chemical stability even after subjecting them to 5000 melting/freezing cycles. Furthermore, the prepared micro/nano capsules had reasonable thermal conductivity values and fine melting–freezing reversibility. - Highlights: • PSD analysis results showed that the encapsulated PEMs had micro/nano sized-spheres. • The encapsulated PEMs melt in the temperature range of about 20–36 °C. • The encapsulated PEMs had latent heat capacities of in the range of about 86–169 J/g. • TGA results demonstrated that they had good thermal stability. • The encapsulated PEMs had good thermal conductivity and phase change reversibility. - Abstract: This work is aimed to prepare, characterize and determine the latent heat thermal energy storage properties of micro/nano encapsulated paraffin eutectic mixtures (PEMs) with polymethylmethacrylate (PMMA) shell. The eutectic combination ratios and optimum melting temperatures of C17-C24, C19-C18, C19-C24 and C20-C24 mixtures were find out prior to the encapsulation processes. Four kinds of micro/nano capsules, PMMA/(C17-C24), PMMA/(C19-C18), PMMA/(C19-C24) and PMMA/(C20-C24), were synthesized

  4. Total decay heat estimates in a proto-type fast reactor

    International Nuclear Information System (INIS)

    Sridharan, M.S.

    2003-01-01

    Full text: In this paper, total decay heat values generated in a proto-type fast reactor are estimated. These values are compared with those of certain fast reactors. Simple analytical fits are also obtained for these values which can serve as a handy and convenient tool in engineering design studies. These decay heat values taken as their ratio to the nominal operating power are, in general, applicable to any typical plutonium based fast reactor and are useful inputs to the design of decay-heat removal systems

  5. The Relationship Between Latent Heating, Vertical Velocity, and Precipitation Processes: the Impact of Aerosols on Precipitation in Organized Deep Convective Systems

    Science.gov (United States)

    Tao, Wei-Kuo; Li, Xiaowen

    2016-01-01

    A high-resolution, two-dimensional cloud-resolving model with spectral-bin microphysics is used to study the impact of aerosols on precipitation processes in both a tropical oceanic and a midlatitude continental squall line with regard to three processes: latent heating (LH), cold pool dynamics, and ice microphysics. Evaporative cooling in the lower troposphere is found to enhance rainfall in low cloud condensation nuclei (CCN) concentration scenarios in the developing stages of a midlatitude convective precipitation system. In contrast, the tropical case produced more rainfall under high CCN concentrations. Both cold pools and low-level convergence are stronger for those configurations having enhanced rainfall. Nevertheless, latent heat release is stronger (especially after initial precipitation) in the scenarios having more rainfall in both the tropical and midlatitude environment. Sensitivity tests are performed to examine the impact of ice and evaporative cooling on the relationship between aerosols, LH, and precipitation processes. The results show that evaporative cooling is important for cold pool strength and rain enhancement in both cases. However, ice microphysics play a larger role in the midlatitude case compared to the tropics. Detailed analysis of the vertical velocity-governing equation shows that temperature buoyancy can enhance updraftsdowndrafts in the middlelower troposphere in the convective core region; however, the vertical pressure gradient force (PGF) is of the same order and acts in the opposite direction. Water loading is small but of the same order as the net PGF-temperature buoyancy forcing. The balance among these terms determines the intensity of convection.

  6. Coupled cooling method and application of latent heat thermal energy storage combined with pre-cooling of envelope: Method and model development

    International Nuclear Information System (INIS)

    Yuan, Yanping; Gao, Xiangkui; Wu, Hongwei; Zhang, Zujin; Cao, Xiaoling; Sun, Liangliang; Yu, Nanyang

    2017-01-01

    The traditional cooling methods cannot meet the requirements of safety, stability, reliability and no-power at the same time under some special circumstances. In this study, a new coupled cooling method of Latent Heat Thermal Energy Storage (LHTES) combined with Pre-cooling of Envelope (PE) is proposed and the numerical model of the coupled cooling method is developed. In the current study, a refuge chamber is selected as a case study. A semi-analytical method is used to analyze the cold storage performance of the Surrounding Rock (SR). Afterwards, a numerical model of the coupled cooling system, which takes the heat source, SR, Phase Change Material (PCM) and air heat transfer into consideration, is further established. The study identified that the simplified semi-analytical calculation formula with the diagram of the cold storage quantity of SR are very helpful for engineering calculation. The influence of the Fourier and Biot number on the cold storage capacity of SR can be easily analyzed. In addition, the whole-field model of the coupled cooling system is completely developed based on the PCM unit. - Highlights: • A new coupled cooling method that combines LHTES with PE is proposed. • This method can be applicable to a high-temperature and no-power circumstance. • The simplified calculation formula of the cold storage quantity of SR is given. • An efficient simulation model of the coupled cooling system is established.

  7. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    Energy Technology Data Exchange (ETDEWEB)

    Huang Kejin [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: huangkj@mail.buct.edu.cn; Shan Lan; Zhu Qunxiong [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Qian Jixin [School of Information Science and Technology, Zhejiang University, Zhejiang 300027 (China)

    2008-06-15

    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC.

  8. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    International Nuclear Information System (INIS)

    Huang Kejin; Shan Lan; Zhu Qunxiong; Qian Jixin

    2008-01-01

    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC

  9. Development of latent heat storage systems. New storage materials and concepts for solar energy, efficient use, and spaceflight applications. Entwicklung von Latentwaermespeichern. Neue Speichermaterialien und Konzepte fuer Solarenergie, rationelle Energienutzung und Raumfahrtanwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Glueck, A.; Krause, S.; Lindner, F.; Staehle, H.J.; Tamme, R. (DLR, Stuttgart (Germany). Inst. fuer Technische Thermodynamik)

    1991-11-01

    To extend the operational range of thermal energy storage systems and to provide access to new fields of applications, it is necessary to develop storage systems with higher energy densities than can be achieved with conventional materials. Advanced storage concepts such as latent heat storage and chemical storage are suitable for this. (orig.).

  10. Resistive vs. total power depositions by Alfven modes in pre-heated low aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Cuperman, S.; Bruma, C.; Komoshvili, K.

    2004-01-01

    The power deposition of fast waves launched by a LFS located antenna in a pre-heated, strongly non-uniform low aspect ratio tokamak (START) is investigated. The rigorous computational results indicate a total power deposition by far larger than that predicted for Alfven continuum eigenmodes in cylindrical plasmas. For toroidal wave numbers |N| > 1, the resistive and total power depositions are almost equal. (author)

  11. An eddy covariance system to characterize the atmospheric surface layer and turbulent latent heat fluxes over a debris-covered Himalayan glacier.

    Science.gov (United States)

    Litt, Maxime; Steiner, Jakob F.; Stigter, Emmy E.; Immerzeel, Walter; Shea, Joseph Michael

    2017-04-01

    Over debris-covered glaciers, water content variations in the debris layer can drive significant changes in its thermal conductivity and significantly impact melt rates. Since sublimation and evaporation are favoured in high-altitude conditions, e.g., low atmospheric pressure and high wind speeds, they are expected to strongly influence the water balance of the debris-layer. Dedicated latent heat fluxes measurements at the debris surface are essential to characterize the debris heat conductivity in order to assess underlying ice melt. Furthermore, the contribution of the turbulent fluxes in the surface energy balance over debris covered glacier remains uncertain since they are generally evaluated through similarity methods which might not be valid in complex terrain. We present the first results of a 15-day eddy-covariance experiment installed at the end of the monsoon (September-October) on a 3-m tower above the debris-covered Lirung glacier in Nepal. The tower also included measurements of the 4 radiation components. The eddy covariance measurements allowed for the characterization of the turbulence in the atmospheric surface layer, as well as the direct measurements of evaporation, sublimation and turbulent sensible heat fluxes. The experiment helps us to evaluate the contribution of turbulent fluxes to the surface energy balance over this debris-covered glacier, through a precise characterization of the overlying turbulent atmospheric surface layer. It also helps to study the role of the debris-layer water content changes through evaporation and sublimation and its feedback on heat conduction in this layer. The large observed turbulent fluxes play a significant role in the energy balance at the debris surface and significantly influence debris moisture, conductivity and subsequently underlying ice melt.

  12. On the Equality Assumption of Latent and Sensible Heat Energy Transfer Coefficients of the Bowen Ratio Theory for Evapotranspiration Estimations: Another Look at the Potential Causes of Inequalities

    Directory of Open Access Journals (Sweden)

    Suat Irmak

    2014-08-01

    Full Text Available Evapotranspiration (ET and sensible heat (H flux play a critical role in climate change; micrometeorology; atmospheric investigations; and related studies. They are two of the driving variables in climate impact(s and hydrologic balance dynamics. Therefore, their accurate estimate is important for more robust modeling of the aforementioned relationships. The Bowen ratio energy balance method of estimating ET and H diffusions depends on the assumption that the diffusivities of latent heat (KV and sensible heat (KH are always equal. This assumption is re-visited and analyzed for a subsurface drip-irrigated field in south central Nebraska. The inequality dynamics for subsurface drip-irrigated conditions have not been studied. Potential causes that lead KV to differ from KH and a rectification procedure for the errors introduced by the inequalities were investigated. Actual ET; H; and other surface energy flux parameters using an eddy covariance system and a Bowen Ratio Energy Balance System (located side by side on an hourly basis were measured continuously for two consecutive years for a non-stressed and subsurface drip-irrigated maize canopy. Most of the differences between KV and KH appeared towards the higher values of KV and KH. Although it was observed that KV was predominantly higher than KH; there were considerable data points showing the opposite. In general; daily KV ranges from about 0.1 m2∙s−1 to 1.6 m2∙s−1; and KH ranges from about 0.05 m2∙s−1 to 1.1 m2∙s−1. The higher values for KV and KH appear around March and April; and around September and October. The lower values appear around mid to late December and around late June to early July. Hourly estimates of KV range between approximately 0 m2∙s−1 to 1.8 m2∙s−1 and that of KH ranges approximately between 0 m2∙s−1 to 1.7 m2∙s−1. The inequalities between KV and KH varied diurnally as well as seasonally. The inequalities were greater during the non

  13. Prediction of postoperative pain by preoperative pain response to heat stimulation in total knee arthroplasty.

    Science.gov (United States)

    Lunn, Troels H; Gaarn-Larsen, Lissi; Kehlet, Henrik

    2013-09-01

    It has been estimated that up to 54% of the variance in postoperative pain experience may be predicted with preoperative pain responses to experimental stimuli, with suprathreshold heat pain as the most consistent test modality. This study aimed to explore whether 2 heat test paradigms could predict postoperative pain after total knee arthroplasty (TKA). Patients scheduled for elective, unilateral, primary TKA under spinal anesthesia were consecutively included in this prospective, observational study. Perioperative analgesia was standardized for all patients. Outcomes were postoperative pain during walk: from 6 to 24 hours (primary), from postoperative day (POD) 1 to 7 (secondary), and from POD 14 to 30 (tertiary). Two preoperative tonic heat stimuli with 47°C were used; short (5 seconds) and long (7 minutes) stimulation upon which patients rated their pain response on an electronic visual analog scale. Multivariate stepwise linear and logistic regressions analyses were carried out, including 8 potential preoperative explanatory variables (among these anxiety, depression, preoperative pain, and pain catastrophizing) to assess pain response to preoperative heat pain stimulation as an independent predictor for postoperative pain. A total of 100 patients were included, and 3 were later excluded. A weak correlation [rho (95% confidence interval); P value] was observed between pain from POD 1 to 7 and pain response to short [rho=0.25(0.04 to 0.44); P=.02] and to long [rho=0.27 (0.07 to 0.46); P=.01] heat pain stimulation. However, these positive correlations were not supported by the linear and logistic regression analyses, in which only anxiety, preoperative pain, and pain catastrophizing were significant explanatory variables (but with low R-squares; 0.05 to 0.08). Pain responses to 2 types of preoperative heat stimuli were not independent clinically relevant predictors for postoperative pain after TKA. Copyright © 2013 International Association for the Study of

  14. A simplified model to study the location impact of latent thermal energy storage in building cooling heating and power system

    International Nuclear Information System (INIS)

    Zhang, Yin; Wang, Xin; Zhang, Yinping; Zhuo, Siwen

    2016-01-01

    Introducing the thermal energy storage (TES) equipment into the building cooling heating and power (BCHP) system proves to be an effective way to improve the part load performance of the whole system and save the primary energy consumption. The location of TES in BCHP has a great impact on the thermal performance of the whole system. In this paper, a simplified model of TES-BCHP system composed of a gas turbine, an absorption chiller/an absorption heat pump, and TES equipment with phase change materials (PCM) is presented. In order to minimize the primary energy consumption, the performances of BCHP systems with different PCM-TES locations (upstream and downstream) are analyzed and compared, for a typical hotel and an office building respectively. Moreover, the influence of the thermal performance of PCM-TES equipment on the energy saving effect of the whole system is investigated. The results confirm that PCM-TES can improve the energy efficiency and reduce the installed capacities of energy supply equipment, and that the optimal TES location in BCHP highly depends on the thermal performance of the TES equipment and the user load characteristics. It also indicates that: 1) the primary energy saving ratio of PCM-TES-BCHP increases with increasing NTU of TES; 2) for the studied cases, downstream TES location becomes more preferable when user loads fluctuate greatly; 3) only downstream TES can reduce the installed capacities of absorption chiller/absorption heat pump. This work can provide guidance for PCM-TES-BCHP system design. - Highlights: • A simplified model of the PCM-TES-BCHP system is established. • TES can increase energy efficiency and decrease installed capacity of equipment. • Primary energy saving ratio increases with increasing NTU of TES. • Downstream TES location is more preferable when user loads fluctuate greatly. • Optimal TES location depends on equipment performances and load characteristics.

  15. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Directory of Open Access Journals (Sweden)

    Porta A.

    2016-01-01

    Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  16. Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage

    International Nuclear Information System (INIS)

    Li, Qiyuan; Tehrani, S. Saeed Mostafavi; Taylor, Robert A.

    2017-01-01

    In this paper, the feasibility of a medium temperature, low profile concentrated solar thermal collector integrated with latent heat thermal energy storage (LHTES) is investigated. The proposed modular integrated collector storage (ICS) system consists of six solar receiver units and seven cylindrical shell and tube LHTES tanks. By implementing an innovative optical concentration assembly and an internal linear tracking mechanism, the collector can concentrate beam radiation to the tube receivers during the highest flux hours of a day without any external or rotational motion. The collector's efficiency correlations were obtained experimentally and its integrated performance – with the LHTES units – was evaluated numerically. To demonstrate the potential of this proposed ICS system, an annual analysis was carried out for a characteristic industrial application – a dairy dehydration process that requires a constant 50 kW th of heat in the 120–150 °C temperature range. It was found that adding the storage units will increase the capital costs by ∼10%, but it can increase the annual thermal output of the system by up to ∼20%. A solar fraction of 65% was achievable with some design alternatives, but the optimum techno-economic design had a solar fraction of ∼35% and an annual charging efficiency of nearly 100%. It was also found that if the capital cost of the ICS (collector and LHTES tank) system could be reduced by 50% from an estimated ∼1000 US$/m 2 to ∼500 US$/m 2 through mass production and/or further design optimizations, this system could provide industrial process heat with a levelized cost of heating (LCOH) of ∼0.065 US$/kWh th . - Highlights: • An innovative ICS system was proposed and analyzed for industrial heat applications. • The optimum design can achieve a ∼35% solar fraction with ∼100% charging efficiency. • A 0.12 US$/kWh LCOH was found, but further reductions could result in 0.065 US$/kWh. • Costs reductions of

  17. Heat transfer enhancement in triplex-tube latent thermal energy storage system with selected arrangements of fins

    Science.gov (United States)

    Zhao, Liang; Xing, Yuming; Liu, Xin; Rui, Zhoufeng

    2018-01-01

    The use of thermal energy storage systems can effectively reduce energy consumption and improve the system performance. One of the promising ways for thermal energy storage system is application of phase change materials (PCMs). In this study, a two-dimensional numerical model is presented to investigate the heat transfer enhancement during the melting/solidification process in a triplex tube heat exchanger (TTHX) by using fluent software. The thermal conduction and natural convection are all taken into account in the simulation of the melting/solidification process. As the volume fraction of fin is kept to be a constant, the influence of proposed fin arrangement on temporal profile of liquid fraction over the melting process is studied and reported. By rotating the unit with different angle, the simulation shows that the melting time varies a little, which means that the installation error can be reduced by the selected fin arrangement. The proposed fin arrangement also can effectively reduce time of the solidification of the PCM by investigating the solidification process. To summarize, this work presents a shape optimization for the improvement of the thermal energy storage system by considering both thermal energy charging and discharging process.

  18. Technical note: An experimental set-up to measure latent and sensible heat fluxes from (artificial plant leaves

    Directory of Open Access Journals (Sweden)

    S. J. Schymanski

    2017-07-01

    Full Text Available Leaf transpiration and energy exchange are coupled processes that operate at small scales yet exert a significant influence on the terrestrial hydrological cycle and climate. Surprisingly, experimental capabilities required to quantify the energy–transpiration coupling at the leaf scale are lacking, challenging our ability to test basic questions of importance for resolving large-scale processes. The present study describes an experimental set-up for the simultaneous observation of transpiration rates and all leaf energy balance components under controlled conditions, using an insulated closed loop miniature wind tunnel and artificial leaves with pre-defined and constant diffusive conductance for water vapour. A range of tests documents the above capabilities of the experimental set-up and points to potential improvements. The tests reveal a conceptual flaw in the assumption that leaf temperature can be characterized by a single value, suggesting that even for thin, planar leaves, a temperature gradient between the irradiated and shaded or transpiring and non-transpiring leaf side can lead to bias when using observed leaf temperatures and fluxes to deduce effective conductances to sensible heat or water vapour transfer. However, comparison of experimental results with an explicit leaf energy balance model revealed only minor effects on simulated leaf energy exchange rates by the neglect of cross-sectional leaf temperature gradients, lending experimental support to our current understanding of leaf gas and energy exchange processes.

  19. Performance evaluation of a biomass boiler on the basis of heat loss method and total heat values of steam

    International Nuclear Information System (INIS)

    Munir, A.; Alvi, J.Z.; Ashfaq, S.; Ghafoor, A.

    2014-01-01

    Pakistan being an agricultural country has large resources of biomass in the form of crop residues like wood, wheat straw, rice husk, cotton sticks and bagasse. Power generation using biomass offers an excellent opportunity to overcome current scenario of energy crises. Of the all biomass resources, bagasse is one of the potential energy sources which can be successfully utilized for power generation. During the last decade, bagasse fired boilers attained major importance due to increasing prices of primary energy (e.g. fossil fuels). Performance of a bagasse fired boiler was evaluated at Shakarganj Sugar Mill, Bhone-Jhang having steam generation capacity of 80 tons h/sup -1/at 25 bar working pressure. The unit was forced circulation and bi-drum type water tube boiler which was equipped with all accessories like air heater, economizer and super-heater. Flue gas analyzer and thermocouples were used to record percent composition and temperature of flue gases respectively. Physical analysis of bagasse showed gross calorific value of bagasse as 2326 kCal kg/sup -1/. Ultimate analysis of bagasse was performed and the actual air supplied to the boiler was calculated to be 4.05 kg per kg of bagasse under the available resources of the plant. Performance evaluation of the boiler was carried out and a complete heat balance sheet was prepared to investigate the different sources of heat losses. The efficiency of the boiler was evaluated on the basis of heat losses through boiler and was found to be 56.08%. It was also determined that 2 kg of steam produced from 1 kg of bagasse under existing condition of the boiler. The performance evaluation of the boiler was also done on the basis of total heat values of steam and found to be 55.98%. The results obtained from both the methods were found almost similar. Effects of excess air, stack and ambient temperature on the efficiency of boiler have also been evaluated and presented in the manuscript. (author)

  20. Investigations of the corrosion behaviour of special heat exchanging materials in sodium acetate trihydrate melt for the application latent heat storage; Untersuchungen des Korrosionsverhaltens ausgewaehlter Waermeaustauscherwerkstoffe in Natriumacetat-Trihydrat-Schmelze fuer den Anwendungsfall Latentwaermespeichersysteme

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, B.; Stimming, U. [ZAE Bayern, Walter-Meissner-Str. 6, 87748 Garching (Germany)

    2004-06-01

    The development activities in the area of latent heat storage have more and more increased in the last years. The reason is the search for new energy storage systems of higher energy efficiency and the reinforced utilisation of renewable and alternative energies which are often only irregularly available. The special advantage of latent heat storage is the high energy storage density which could be reached at the melting point of selected storage materials and the resulting reduction of required space respectively the nearly constant temperature. An important topic relating to the development of these storage systems was the investigation of the long time stability, especially the corrosion stability. At the same time the heat exchange material has the function to transfer the heat and coldness from a heat transfer medium, e. g. water which has drawn the energy from an external source to the storage material. Among the storage materials the sodium acetate trihydrate (melting point: 58 C) has interesting advantages. In that reason the investigation of the corrosion behaviour and the choose of suitable materials for heat exchangers was an important goal. In the present report important results of the investigation of selected metals at 80 C in sodium acetate trihydrate are described. The corrosion influencing impurities chloride, sulphate and carbonate which could be contained in the much more inexpensive salt hydrate of technical quality were added to the analytically pure sodium acetate trihydrate. Furthermore the addition of graphite (for increasing the heat conductivity) and the contact with air were investigated. Some promising metals of high corrosion resistance are the result of the investigations. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] In den letzten Jahren haben sich die Entwicklungsaktivitaeten auf dem Gebiet der Latentwaermespeicherung erheblich verstaerkt. Grund dafuer ist die Suche nach Energiespeichern mit hoeherer Effizienz und

  1. A Comparison of the Diel Cycle of Modeled and Measured Latent Heat Flux During the Warm Season in a Colorado Subalpine Forest

    Science.gov (United States)

    Burns, Sean P.; Swenson, Sean C.; Wieder, William R.; Lawrence, David M.; Bonan, Gordon B.; Knowles, John F.; Blanken, Peter D.

    2018-03-01

    Precipitation changes the physiological characteristics of an ecosystem. Because land-surface models are often used to project changes in the hydrological cycle, modeling the effect of precipitation on the latent heat flux λE is an important aspect of land-surface models. Here we contrast conditionally sampled diel composites of the eddy-covariance fluxes from the Niwot Ridge Subalpine Forest AmeriFlux tower with the Community Land Model (CLM, version 4.5). With respect to measured λE during the warm season: for the day following above-average precipitation, λE was enhanced at midday by ≈40 W m-2 (relative to dry conditions), and nocturnal λE increased from ≈10 W m-2 in dry conditions to over 20 W m-2 in wet conditions. With default settings, CLM4.5 did not successfully model these changes. By increasing the amount of time that rainwater was retained by the canopy/needles, CLM was able to match the observed midday increase in λE on a dry day following a wet day. Stable nighttime conditions were problematic for CLM4.5. Nocturnal CLM λE had only a small (≈3 W m-2) increase during wet conditions, CLM nocturnal friction velocity u∗ was smaller than observed u∗, and CLM canopy air temperature was 2°C less than those measured at the site. Using observed u∗ as input to CLM increased λE; however, this caused CLM λE to be increased during both wet and dry periods. We suggest that sloped topography and the ever-present drainage flow enhanced nocturnal u∗ and λE. Such phenomena would not be properly captured by topographically blind land-surface models, such as CLM.

  2. STEAM GENERATOR TUBE INTEGRITY ANALYSIS OF A TOTAL LOSS OF ALL HEAT SINKS ACCIDENT FOR WOLSONG NPP UNIT 1

    Directory of Open Access Journals (Sweden)

    HEOK-SOON LIM

    2014-02-01

    Full Text Available A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS and the steam generator (SG secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  3. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo [Korea Htydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Kim, Seoungrae [Nuclear Engineering Service and Solution, Daejeon (Korea, Republic of)

    2014-02-15

    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  4. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    International Nuclear Information System (INIS)

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo; Kim, Seoungrae

    2014-01-01

    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident

  5. Impact of the total absorption gamma-ray spectroscopy on FP decay heat calculations

    International Nuclear Information System (INIS)

    Yoshida, Tadashi; Tachibana, Takahiro; Katakura, Jun-ichi

    2004-01-01

    We calculated the average β- and γ-ray energies, E β and E γ , for 44 short-lived isotopes of Rb, Sr, Y, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm and Eu from the data by Greenwood et al, who measured the β-feed in the decay of these nuclides using the total absorption γ-ray spectrometer. These E β and E γ were incorporated into the decay files from JENDL, JEF2.2 and ENDF-B/VI, and the decay heats were calculated. The results were compared with the integral measurements by the University of Tokyo, ORNL and Lowell. In the case of JENDL, where the correction for the so-called Pandemonium effect is applied on the basis of the gross theory, the very good agreement is no longer maintained. The γ-ray component is overestimated in the cooling time range from 3 to 300 seconds, suggesting a kind of an over-correction as for the Pandemonium effect. We have to evaluate both the applicability of the TAGS results and the correction method itself in order to generate a more consistent data basis for decay heat summation calculations. (author)

  6. Permanent magnet design for magnetic heat pumps using total cost minimization

    Science.gov (United States)

    Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Niknia, I.; Rowe, A.

    2017-11-01

    The active magnetic regenerator (AMR) is an attractive technology for efficient heat pumps and cooling systems. The costs associated with a permanent magnet for near room temperature applications are a central issue which must be solved for broad market implementation. To address this problem, we present a permanent magnet topology optimization to minimize the total cost of cooling using a thermoeconomic cost-rate balance coupled with an AMR model. A genetic algorithm identifies cost-minimizing magnet topologies. For a fixed temperature span of 15 K and 4.2 kg of gadolinium, the optimal magnet configuration provides 3.3 kW of cooling power with a second law efficiency (ηII) of 0.33 using 16.3 kg of permanent magnet material.

  7. Randomized controlled trial on postoperative pulmonary humidification after total laryngectomy: External humidifier versus heat and moisture exchanger

    NARCIS (Netherlands)

    Mérol, Jean-Claude; Charpiot, Anne; Langagne, Thibault; Hémar, Patrick; Ackerstaff, Annemieke H.; Hilgers, Frans J. M.

    2012-01-01

    Objectives/Hypothesis: Assessment of immediate postoperative airway humidification after total laryngectomy (TLE), comparing the use of an external humidifier (EH) with humidification through a heat and moisture exchanger (HME). Study Design: Randomized controlled trial (RCT). Methods: Fifty-three

  8. Randomized controlled trial on postoperative pulmonary humidification after total laryngectomy: external humidifier versus heat and moisture exchanger

    NARCIS (Netherlands)

    Mérol, J.-C.; Charpiot, A.; Langagne, T.; Hémar, P.; Ackerstaff, A.H.; Hilgers, F.J.M.

    2012-01-01

    Objectives/Hypothesis: Assessment of immediate postoperative airway humidification after total laryngectomy (TLE), comparing the use of an external humidifier (EH) with humidification through a heat and moisture exchanger (HME). Study Design: Randomized controlled trial (RCT). Methods: Fifty-three

  9. Investigation of exergy and yield of a passive solar water desalination system with a parabolic concentrator incorporated with latent heat storage medium

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Elkelawy, Medhat; Alm El Din, Hagar; Alghrubah, Adel

    2017-01-01

    Highlights: • The impact of PCM and solar concentrator on the production of solar still studied experimentally under Egyptian conditions. • Exergetic analysis studied for passive solar still in winter and summer at different water depth. • Experimental study of water depth effect on solar still with PCM and solar concentrator. • A comparison between improved still with and usual still is carried out for winter and summer. - Abstract: In the present study, two solar stills were assembled and experienced to evaluate the yield and energy performance of an improved passive solar desalination system compared to a conventional one. The improved still is incorporated with a latent heat thermal energy storage medium and a parabolic solar concentrator. A parabolic solar concentrator was added to concentrate and increase the amount of solar irradiance absorbed by the still basin. Paraffin wax was applied as phase change material (PCM) in the solar still bottom plate. In the current study also, the effect of impure water profundity inside the still on still’s accumulated yield have been assessed. The following study involved a mathematical analysis for calculation of the exergetic proficiency as an efficient tool for the optimization, and yield evaluation of any energy systems and solar stills as well. Experimental research conducted in steady days of summer and winter at six different values of impure water profundity inside the solar still basin. The salinity of the impure water tested was about 3000–5000 ppm, while the salinity for the resulted drinkable water was about 550–500 ppm. The performed outcomes revealed that during summer, exergetic efficiency is higher than its qualified value in winter with approximately (10–15%) for the same water profundity. Results also disclosed that, the exergetic efficiency is higher when the water profundity in the basin is lower with approximately (6–9%). The experimental findings reveals that, the solar still with

  10. From heat integration targets toward implementation – A TSA (total site analysis)-based design approach for heat recovery systems in industrial clusters

    International Nuclear Information System (INIS)

    Hackl, Roman; Harvey, Simon

    2015-01-01

    The European process industry is facing major challenges to decrease production costs. One strategy to achieve this is by increasing energy efficiency. Single chemical processes are often well-integrated and the tools to target and design such measures are well developed. Site-wide heat integration based on total site analysis tools can be used to identify opportunities to further increase energy efficiency. However, the methodology has to be developed further in order to enable identification of practical heat integration measures in a systematic way. Designing site-wide heat recovery systems across an industrial cluster is complex and involves aspects apart from thermal process and utility flows. This work presents a method for designing a roadmap of heat integration investments based on total site analysis. The method is applied to a chemical cluster in Sweden. The results of the case study show that application of the proposed method can achieve up to 42% of the previously targeted hot utility savings of 129 MW. A roadmap of heat integration systems is suggested, ranging from less complex systems that achieve a minor share of the heat recovery potential to sophisticated, strongly interdependent systems demanding large investments and a high level of collaboration. - Highlights: • Methodology focused on the practical implementation of site-wide heat recovery. • Algorithm to determine a roadmap of heat integration investments. • Case study: 42% hot utility savings potential at a pay-back period of 3.9y.

  11. Fitness-related differences in the rate of whole-body total heat loss in exercising young healthy women are heat-load dependent.

    Science.gov (United States)

    Lamarche, Dallon T; Notley, Sean R; Poirier, Martin P; Kenny, Glen P

    2018-03-01

    What is the central question of this study? Aerobic fitness modulates heat loss, albeit the heat load at which fitness-related differences occur in young healthy women remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that fitness modulates heat loss in a heat-load dependent manner, with differences occurring between young women of low and high fitness and matched physical characteristics when the metabolic heat load is at least 400 W in hot, dry conditions. Although fitness has been known for some time to modulate heat loss, our findings define the metabolic heat load at which fitness-related differences occur. Aerobic fitness has recently been shown to alter heat loss capacity in a heat-load dependent manner in young men. However, given that sex-related differences in heat loss capacity exist, it is unclear whether this response is consistent in women. We therefore assessed whole-body total heat loss in young (21 ± 3 years old) healthy women matched for physical characteristics, but with low (low-fit; 35.8 ± 4.5 ml O 2  kg -1  min -1 ) or high aerobic fitness (high-fit; 53.1 ± 5.1 ml O 2  kg -1  min -1 ; both n = 8; indexed by peak oxygen consumption), during three 30 min bouts of cycling performed at increasing rates of metabolic heat production of 250 (Ex1), 325 (Ex2) and 400 W (Ex3), each separated by a 15 min recovery, in hot, dry conditions (40°C, 11% relative humidity). Whole-body total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat content was measured as the temporal summation of heat production and loss. Total heat loss did not differ during Ex1 (low-fit, 215 ± 16 W; high-fit, 231 ± 20 W; P > 0.05) and Ex2 (low-fit, 278 ± 15 W; high-fit, 301 ± 20 W; P > 0.05), but was lower in the low-fit (316 ± 21 W) compared with the high-fit women (359 ± 32

  12. Active space cooling with night-coldness - development of a decentralized ventilation system with latent heat storage; Aktive Raumkuehlung mit Nachkaelte - Entwicklung eines dezentralen Lueftungsgeraetes mit Latentwaermespeicher. Imtech-Haus, Hamburg Referenzanlage

    Energy Technology Data Exchange (ETDEWEB)

    Luedemann, B.; Detzer, R. [Imtech Deutschland, Hamburg (Germany)

    2007-04-15

    Imtech Germany a decentralized ventilation system with a latent heat-storage unit made of Phase Change Material. The equipment was used successfully in a first reference asset in the Imtech house in Hamburg. During the day active space cooling is realized by storage of night-cold. In combination with a night ventilation the attached areas could be held continuous within the comfort range under 26 C under normal summer conditions. The decentralized ventilation system including control is developed to series production readiness and will be introduced now on the market. (orig.)

  13. Estimate of the latent flux by the energy balance in protected cultivation of sweet pepper

    International Nuclear Information System (INIS)

    Cunha, A.R. da; Escobedo, J.F.; Klosowski, E.S.

    2002-01-01

    The aim of this work was to characterize and bring into relationship the net radiation with the latent heat flux equivalent to water mm, in sweet pepper crops in the field and in protected cultivation. The estimate of latent heat flux was made by the energy balance method through the Bowen ratio. Instantaneous measures were made of net radiation (Rn), sensitive (H) and latent (LE) heat fluxes, heat flux into the soil (G), and of psychrometers gradients in the crop canopy. In protected cultivation, the conversion of the available net radiation in total dry matter and fruit productivity was more efficient than in the field, in spite of lower amounts of global solar radiation received by the crop. Ratios of G/Rn and LE/Rn were lower, and that of H/Rn was higher in protected cultivation, with an equivalent latent heat flux in millimeters, 45.43% lower than that determined in the field. Available net radiation and energy losses were also lower in protected cultivation, showing a higher water use efficiency. (author) [pt

  14. Prediction of postoperative pain by preoperative pain response to heat stimulation in total knee arthroplasty

    DEFF Research Database (Denmark)

    Lunn, Troels H; Gaarn-Larsen, Lissi; Kehlet, Henrik

    2013-01-01

    It has been estimated that up to 54% of the variance in postoperative pain experience may be predicted with preoperative pain responses to experimental stimuli, with suprathreshold heat pain as the most consistent test modality. We aimed to explore if 2 heat test paradigms could predict postopera......It has been estimated that up to 54% of the variance in postoperative pain experience may be predicted with preoperative pain responses to experimental stimuli, with suprathreshold heat pain as the most consistent test modality. We aimed to explore if 2 heat test paradigms could predict...... and logistic regressions analyses were carried out including 8 potential preoperative explanatory variables (among these anxiety, depression, preoperative pain and pain catastrophizing) to assess pain response to preoperative heat pain stimulation as independent predictor for postoperative pain. 100 patients...... by the linear and logistic regression analyses, where only anxiety, preoperative pain and pain catastrophizing were significant explanatory variables (but with low R-Squares;0.05-0.08). Pain responses to 2 types of preoperative heat stimuli were not independent clinical relevant predictors for postoperative...

  15. The effectiveness of organic PCM based on lauric acid from coconut oil and inorganic PCM based on salt hydrate CaCl2.6H2o as latent heat energy storage system in Indonesia

    Science.gov (United States)

    U, Sri Rahayu A.; Putri, Widya A.; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2016-08-01

    A latent heat energy storage system utilizing phase change materials (PCM) is an alternative strategy to reduce the use of Air Conditioning (AC) system in big cities in Indonesia in order for energy conservation in the future. In this research we used two kinds of materials, namely organic PCM based on lauric acid from coconut oil (CO) and inorganic PCM based on salt hydrate CaCl2.6H2O, because they have thermophysical parameters suitable for human's thermal comfort application in the building. The CO which contained more than 50% lauric acid has the melting temperature (Tm ) of about 26 °C and heat entalphy (ΔH) around 103 kJ/kg, while CaCl2.6H2O has the melting point of 29 °C and heat entalphy of 190 kJ/kg. In this paper we report the effectiveness of those two kinds of PCM in reducing the air temperature as one of some criteria for human's thermal comfort. The experiments were performed in a close and adiabatic room and the time-temperature measurements were done automatically using Arduino microcontroller and LM35 temperature sensor connected to the PC.

  16. Higher Fe{sup 2+}/total Fe ratio in iron doped phosphate glass melted by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Ashis K., E-mail: ashis@cgcri.res.in [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Sinha, Prasanta K. [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Das, Dipankar [UGC-DAE Consortium for Scientific Research, Kolkata 700098 (India); Guha, Chandan [Department of Chemical Engineering, Jadavpur University, Kolkata 700032 (India); Sen, Ranjan [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India)

    2015-03-15

    Highlights: • Iron doped phosphate glasses prepared using microwave heating and conventional heating under air and reducing atmosphere. • Presence of iron predominantly in the ferrous oxidation state in all the glasses. • Significant concentrations of iron in the ferrous oxidation state on both octahedral and tetrahedral sites in all the glasses. • Ratio of Fe{sup 2+} with total iron is found higher in microwave prepared glasses in comparison to conventional prepared glasses. - Abstract: Iron doped phosphate glasses containing P{sub 2}O{sub 5}–MgO–ZnO–B{sub 2}O{sub 3}–Al{sub 2}O{sub 3} were melted using conventional resistance heating and microwave heating in air and under reducing atmosphere. All the glasses were characterised by UV–Vis–NIR spectroscopy, Mössbauer spectroscopy, thermogravimetric analysis and wet colorimetry analysis. Mössbauer spectroscopy revealed presence of iron predominantly in the ferrous oxidation state on two different sites in all the glasses. The intensity of the ferrous absorption peaks in UV–Vis–NIR spectrum was found to be more in glasses prepared using microwave radiation compared to the glasses prepared in a resistance heating furnace. Thermogravimetric analysis showed increasing weight gain on heating under oxygen atmosphere for glass corroborating higher ratio of FeO/(FeO + Fe{sub 2}O{sub 3}) in glass melted by direct microwave heating. Wet chemical analysis also substantiated the finding of higher ratio Fe{sup +2}/ΣFe in microwave melted glasses. It was found that iron redox ratio was highest in the glasses prepared in a microwave furnace under reducing atmosphere.

  17. Estimating the Total Heat Flux from the ASHES Hydrothermal Vent Field Using the Sentry Autonomous Underwater Vehicle

    Science.gov (United States)

    Crone, T. J.; Kinsey, J. C.; Mittelstaedt, E. L.

    2017-12-01

    Hydrothermal venting at mid-ocean ridges influences ocean chemistry, the thermal and chemical structure of the oceanic crust, and the evolution of unique and diverse autolithotrophically-supported ecosystems. Axially-hosted hydrothermal systems are responsible for 20-25% of the total heat flux out of Earth's interior, and likely play a large role in local as well as global biogeochemical cycles. Despite the importance of these systems, only a few studies have attempted to constrain the volume and heat flux of an entire hydrothermal vent field. In July of 2014 we used the Sentry autonomous underwater vehicle (AUV) to survey the water column over the ASHES hydrothermal vent field which is located within the caldera of Axial Seamount, an active submarine volcano located on the Juan de Fuca Ridge. To estimate the total heat and mass flux from this vent field, we equipped Sentry with a Nortek acoustic Doppler velocimeter (ADV), an inertial measurement unit (IMU), two acoustic Doppler current profilers (ADCPs), and two SBE3 temperature probes, allowing us to obtain precise measurements of fluid temperature and water velocity. The survey was designed using a control volume approach in which Sentry was pre-programmed to survey a 150-m-square centered over the vent field flying a grid pattern with 5-m track line spacing followed by a survey of the perimeter. This pattern was repeated multiple times during several 10-h dives at different altitudes, including 10, 20, 40, and 60 m above the seafloor, and during one 40-h survey at an altitude of 10 m. During the 40-h survey, the pattern was repeated nine times allowing us to obtain observations over several tidal cycles. Water velocity data obtained with Sentry were corrected for platform motion and then combined with the temperature measurements to estimate heat flux. The analysis of these data will likely provide the most accurate and highest resolution heat and mass flux estimates at a seafloor hydrothermal field to date.

  18. Combined effect of heat treatment and humidity on total polyphenol content of tartary buckwheat wholeflour

    Directory of Open Access Journals (Sweden)

    Andrea BRUNORI

    2016-12-01

    Full Text Available Minor crops are gaining new interest due to the high content of bioactive compounds available in their grain and the consequent opportunity to be employed as ingredients for the production of healthy foodstuff. Tartary buckwheat (Fagopyrum tataricum Gaertn. grain is rich in flavonoids, the most important being represented by rutin, a compound possessing a high health value. When processing bakery products added with Tartary buckwheat whole flour, the key point is to prevent rutin from being hydrolysed to quercetin. In this view, a combination of heat treatment and controlled humidity level was applied for different lengths of time, in the attempt to deactivate the enzymes catalysing the reaction. Tartary buckwheat grain contains other polyphenols also capable to confer health properties. This class of compounds has been associated with the prevention of cardiovascular diseases, cancers, neurodegenerative diseases, diabetes, and osteoporosis. In this study it was observed how the physical treatments meant to preserve rutin would influence the overall content of polyphenols in Tartary buckwheat whole flour and dough.

  19. Latent palmprint matching.

    Science.gov (United States)

    Jain, Anil K; Feng, Jianjiang

    2009-06-01

    The evidential value of palmprints in forensic applications is clear as about 30 percent of the latents recovered from crime scenes are from palms. While biometric systems for palmprint-based personal authentication in access control type of applications have been developed, they mostly deal with low-resolution (about 100 ppi) palmprints and only perform full-to-full palmprint matching. We propose a latent-to-full palmprint matching system that is needed in forensic applications. Our system deals with palmprints captured at 500 ppi (the current standard in forensic applications) or higher resolution and uses minutiae as features to be compatible with the methodology used by latent experts. Latent palmprint matching is a challenging problem because latent prints lifted at crime scenes are of poor image quality, cover only a small area of the palm, and have a complex background. Other difficulties include a large number of minutiae in full prints (about 10 times as many as fingerprints), and the presence of many creases in latents and full prints. A robust algorithm to reliably estimate the local ridge direction and frequency in palmprints is developed. This facilitates the extraction of ridge and minutiae features even in poor quality palmprints. A fixed-length minutia descriptor, MinutiaCode, is utilized to capture distinctive information around each minutia and an alignment-based minutiae matching algorithm is used to match two palmprints. Two sets of partial palmprints (150 live-scan partial palmprints and 100 latent palmprints) are matched to a background database of 10,200 full palmprints to test the proposed system. Despite the inherent difficulty of latent-to-full palmprint matching, rank-1 recognition rates of 78.7 and 69 percent, respectively, were achieved in searching live-scan partial palmprints and latent palmprints against the background database.

  20. Thermophysical Characterization of MgCl2·6H2O, Xylitol and Erythritol as Phase Change Materials (PCM for Latent Heat Thermal Energy Storage (LHTES

    Directory of Open Access Journals (Sweden)

    Stephan Höhlein

    2017-04-01

    Full Text Available The application range of existing real scale mobile thermal storage units with phase change materials (PCM is restricted by the low phase change temperature of 58 ∘ C for sodium acetate trihydrate, which is a commonly used storage material. Therefore, only low temperature heat sinks like swimming pools or greenhouses can be supplied. With increasing phase change temperatures, more applications like domestic heating or industrial process heat could be operated. The aim of this study is to find alternative PCM with phase change temperatures between 90 and 150 ∘ C . Temperature dependent thermophysical properties like phase change temperatures and enthalpies, densities and thermal diffusivities are measured for the technical grade purity materials xylitol (C 5 H 12 O 5 , erythritol (C 4 H 10 O 4 and magnesiumchloride hexahydrate (MCHH, MgCl 2 · 6H 2 O. The sugar alcohols xylitol and erythritol indicate a large supercooling and different melting regimes. The salt hydrate MgCl 2 · 6H 2 O seems to be a suitable candidate for practical applications. It has a melting temperature of 115.1 ± 0.1 ∘ C and a phase change enthalpy of 166.9 ± 1.2 J / g with only 2.8 K supercooling at sample sizes of 100 g . The PCM is stable over 500 repeated melting and solidification cycles at differential scanning calorimeter (DSC scale with only small changes of the melting enthalpy and temperature.

  1. Thermophysical Characterization of MgCl₂·6H₂O, Xylitol and Erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES).

    Science.gov (United States)

    Höhlein, Stephan; König-Haagen, Andreas; Brüggemann, Dieter

    2017-04-24

    The application range of existing real scale mobile thermal storage units with phase change materials (PCM) is restricted by the low phase change temperature of 58 ∘ C for sodium acetate trihydrate, which is a commonly used storage material. Therefore, only low temperature heat sinks like swimming pools or greenhouses can be supplied. With increasing phase change temperatures, more applications like domestic heating or industrial process heat could be operated. The aim of this study is to find alternative PCM with phase change temperatures between 90 and 150 ∘ C . Temperature dependent thermophysical properties like phase change temperatures and enthalpies, densities and thermal diffusivities are measured for the technical grade purity materials xylitol (C 5 H 12 O 5 ), erythritol (C 4 H 10 O 4 ) and magnesiumchloride hexahydrate (MCHH, MgCl 2 · 6H 2 O). The sugar alcohols xylitol and erythritol indicate a large supercooling and different melting regimes. The salt hydrate MgCl 2 · 6H 2 O seems to be a suitable candidate for practical applications. It has a melting temperature of 115.1 ± 0.1 ∘ C and a phase change enthalpy of 166.9 ± 1.2 J / g with only 2.8 K supercooling at sample sizes of 100 g . The PCM is stable over 500 repeated melting and solidification cycles at differential scanning calorimeter (DSC) scale with only small changes of the melting enthalpy and temperature.

  2. Thermophysical Characterization of MgCl2·6H2O, Xylitol and Erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES)

    Science.gov (United States)

    Höhlein, Stephan; König-Haagen, Andreas; Brüggemann, Dieter

    2017-01-01

    The application range of existing real scale mobile thermal storage units with phase change materials (PCM) is restricted by the low phase change temperature of 58 ∘C for sodium acetate trihydrate, which is a commonly used storage material. Therefore, only low temperature heat sinks like swimming pools or greenhouses can be supplied. With increasing phase change temperatures, more applications like domestic heating or industrial process heat could be operated. The aim of this study is to find alternative PCM with phase change temperatures between 90 and 150 ∘C. Temperature dependent thermophysical properties like phase change temperatures and enthalpies, densities and thermal diffusivities are measured for the technical grade purity materials xylitol (C5H12O5), erythritol (C4H10O4) and magnesiumchloride hexahydrate (MCHH, MgCl2·6H2O). The sugar alcohols xylitol and erythritol indicate a large supercooling and different melting regimes. The salt hydrate MgCl2·6H2O seems to be a suitable candidate for practical applications. It has a melting temperature of 115.1 ± 0.1 ∘C and a phase change enthalpy of 166.9 ± 1.2 J/g with only 2.8 K supercooling at sample sizes of 100 g. The PCM is stable over 500 repeated melting and solidification cycles at differential scanning calorimeter (DSC) scale with only small changes of the melting enthalpy and temperature. PMID:28772806

  3. Development of producing equipment of mixed butane-air with low dew point. Energy saving dewatering apparatus and 6A-Gas producing apparatus utilizing vaporization latent heat of butane and potential heat of air

    Energy Technology Data Exchange (ETDEWEB)

    Komine, Jin; Okada, Hiroto; Taniue, Nobuo; Tanoue, Keiju; Yamada, Tatsuhiko; Maekawa, Hisami; Murakami, Keiji

    1988-02-10

    A producing equipment of mixed butane-air with low dew point was developed. The dewatering was made during the period from the middle of May to the middle of October with high atmospheric humidity. The production capacity of the mixed gas is 3000 Nm/sup 3/ of 22% of butane and 78% of air per hour. The designed dew point is 18/sup 0/C or less under the pressure of 0.7 kg/cm/sup 2/G. The saturation temperature is 7.5/sup 0/C after the liquid butane is evacuated by a regulating valve. The air introduced into the dehumidifier through finned tubes is cooled to dewater based on those data. The partially vaporized butane is completely gasified by hot water in a vaporizer and mixed with the dewatered air by a venture mixer to produce the mixed butane-air. When the dewatering is incomplete, the spray nozzle must be just exchanged. The dew point of the produced gas was sufficiently below the designed value. The investment cost is low. The total operating cost is reduced by the remarkably decreased fuel cost though the power cost is increased. The noise level is low and the heat control is easy. (11 figs, 4 tabs, 1 photo)

  4. Latent classification models

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre

    2005-01-01

    parametric family ofdistributions.  In this paper we propose a new set of models forclassification in continuous domains, termed latent classificationmodels. The latent classification model can roughly be seen ascombining the \\NB model with a mixture of factor analyzers,thereby relaxing the assumptions...... classification model, and wedemonstrate empirically that the accuracy of the proposed model issignificantly higher than the accuracy of other probabilisticclassifiers....

  5. A comparative study on the modeling of a latent heat energy storage system and evaluating its thermal performance in a greenhouse

    Science.gov (United States)

    Mirahmad, A.; Sadrameli, S. M.

    2018-03-01

    Thermal Energy Storage (TES) systems can be compared with batteries. As batteries can be charged when electricity is available for using during the power failure, TES systems can do the same for the thermal energy, i.e., they can absorb the available heat in one cycle, called charge cycle, and release it in a consecutive cycle, called discharge cycle. Among different kinds of TES systems, Phase Change Materials (PCM) have drawn considerable attention, since by changing from one phase to another, they can exchange a significant amount of energy in a small temperature difference. In this quest, a one dimensional mathematical model is solved using two different techniques and the results are compared together; one method is based on the enthalpy and the other is based on the effective heat capacity as well. Secondly, through eight experiments designed by using factorial approach, effects of inlet air velocity and temperature on the outlet stream has been investigated. The results proved that having a determined temperature difference between the inlet air and the PCM in both hot and cold cycles can enhance the efficiency. Finally, the feasible applications of a LHTES system for reducing the temperature swing in a greenhouse is studied numerically and the results are compared with experimental values. As a result, by using this passive coolant system diurnal internal temperature can be reduced for 10 °C.

  6. New Techniques Used in Modeling the 2017 Total Solar Eclipse: Energizing and Heating the Large-Scale Corona

    Science.gov (United States)

    Downs, Cooper; Mikic, Zoran; Linker, Jon A.; Caplan, Ronald M.; Lionello, Roberto; Torok, Tibor; Titov, Viacheslav; Riley, Pete; Mackay, Duncan; Upton, Lisa

    2017-08-01

    Over the past two decades, our group has used a magnetohydrodynamic (MHD) model of the corona to predict the appearance of total solar eclipses. In this presentation we detail recent innovations and new techniques applied to our prediction model for the August 21, 2017 total solar eclipse. First, we have developed a method for capturing the large-scale energized fields typical of the corona, namely the sheared/twisted fields built up through long-term processes of differential rotation and flux-emergence/cancellation. Using inferences of the location and chirality of filament channels (deduced from a magnetofrictional model driven by the evolving photospheric field produced by the Advective Flux Transport model), we tailor a customized boundary electric field profile that will emerge shear along the desired portions of polarity inversion lines (PILs) and cancel flux to create long twisted flux systems low in the corona. This method has the potential to improve the morphological shape of streamers in the low solar corona. Second, we apply, for the first time in our eclipse prediction simulations, a new wave-turbulence-dissipation (WTD) based model for coronal heating. This model has substantially fewer free parameters than previous empirical heating models, but is inherently sensitive to the 3D geometry and connectivity of the coronal field---a key property for modeling/predicting the thermal-magnetic structure of the solar corona. Overall, we will examine the effect of these considerations on white-light and EUV observables from the simulations, and present them in the context of our final 2017 eclipse prediction model.Research supported by NASA's Heliophysics Supporting Research and Living With a Star Programs.

  7. Introducing a novel method to estimate the total heat transfer coefficient inside irregular-shape cavities utilizing thermoelectric modules; Special application in solar engineering

    DEFF Research Database (Denmark)

    Asadi, Amin; Rahbar, Nader; Rezaniakolaei, Alireza

    The main objective of the present study is to introduce a novel method to measure the total heat transfer coefficient inside irregular-shape cavities, used in solar applications, utilizing thermoelectric modules. Applying mathematical and thermodynamics modeling, the governing equations related...... to the total heat transfer coefficient between thermoelectric and glass cover as a function of ambient temperature, glass temperature, and output voltage has been derived. Investigating the accuracy of the proposed equation, an experimental case study has been performed. The experimental setup consists...... of three parts; a heat sink, a thermoelectric module, and a glass cover. All the experiments have been performed on the typical winter day and under the real climatic conditions of Semnan (35° 33′ N, 53° 23′ E), Iran. The results showed that the proposed method has the ability to measure the total heat...

  8. Dynamic Latent Classification Model

    DEFF Research Database (Denmark)

    Zhong, Shengtong; Martínez, Ana M.; Nielsen, Thomas Dyhre

    as possible. Motivated by this problem setting, we propose a generative model for dynamic classification in continuous domains. At each time point the model can be seen as combining a naive Bayes model with a mixture of factor analyzers (FA). The latent variables of the FA are used to capture the dynamics...

  9. Latent effectiveness of desiccant wheel: A silica gels- water system

    International Nuclear Information System (INIS)

    Rabah, A. A.; Mohamed, S. A.

    2009-01-01

    A latent heat effectiveness model in term of dimensionless groups? =f (NTU, m * ,Crm * ) for energy wheel has been analytically derived. The energy wheel is divided into humidification and dehumidification sections. For each section macroscopic mass differential equations for gas and the matrix were applied. In this process local latent effectiveness (? c ,? h ) for the humidification and dehumidification section of the wheel were obtained. The Latent effectiveness of the wheel is then derived form local effectiveness [? =f (? c ,? h)]. The model is compared with the existing experimental investigation and manufacturer data for energy wheel. More than 90% of the experimental data within a confidence limit of 95%. (Author)

  10. Performance analysis of a direct expansion air dehumidification system combined with membrane-based total heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Cai-Hang; Zhang, Li-Zhi; Pei, Li-Xia [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2010-09-15

    A direct expansion (DX) air dehumidification system is an efficient way to supply fresh and dry air to a built environment. It plays a key role in preventing the spread of respiratory disease like Swine flu (H1N1). To improve the efficiency of a conventional DX system in hot and humid regions, a new system of DX in combination with a membrane-based total heat exchanger is proposed. Air is supplied with dew points. A detailed mathematical modeling is performed. A cell-by-cell simulation technique is used to simulate its performances. A real prototype is built in our laboratory in South China University of Technology to validate the model. The effects of inlet air humidity and temperature, evaporator and condenser sizes on the system performance are investigated. The results indicate that the model can predict the system accurately. Compared to a conventional DX system, the air dehumidification rate (ADR) of the novel system is 0.5 times higher, and the coefficient of performance (COP) is 1 times higher. Furthermore, the system performs well even under harsh hot and humid weather conditions. (author)

  11. Randomized controlled trial on postoperative pulmonary humidification after total laryngectomy: external humidifier versus heat and moisture exchanger.

    Science.gov (United States)

    Mérol, Jean-Claude; Charpiot, Anne; Langagne, Thibault; Hémar, Patrick; Ackerstaff, Annemieke H; Hilgers, Frans J M

    2012-02-01

    Assessment of immediate postoperative airway humidification after total laryngectomy (TLE), comparing the use of an external humidifier (EH) with humidification through a heat and moisture exchanger (HME). Randomized controlled trial (RCT). Fifty-three patients were randomized into the standard (control) EH (N = 26) or the experimental HME arm (N = 27). Compliance, pulmonary and sleeping problems, patients' and nursing staff satisfaction, nursing time, and cost-effectiveness were assessed with trial-specific structured questionnaires and tally sheets. In the EH arm data were available for all patients, whereas in the HME arm data were incomplete for four patients. The 24/7 compliance rate in the EH arm was 12% and in the HME arm 87% (77% if the four nonevaluable patients are considered noncompliant). Compliance and patients' satisfaction were significantly better, and the number of coughing episodes, mucus expectoration for clearing the trachea, and sleeping disturbances were significantly less in the HME arm (P humidification by means of an HME over the use of an EH after TLE. This study therefore underlines that HMEs presently can be considered the better option for early postoperative airway humidification after TLE. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  12. Latent Heat Storage Through Phase Change Materials

    Indian Academy of Sciences (India)

    Author Affiliations. Akanksha Mishra1 A Shukla2 Atul Sharma1. Rajiv Gandhi Institute of Petroleum Technology (RGIPT), Rae Bareli. Rajiv Gandhi Institute of Petroleum Technology (RGIPT), Rae Bareli, 229316, India.

  13. Simultaneous Effects of Total Solids Content, Milk Base, Heat Treatment Temperature and Sample Temperature on the Rheological Properties of Plain Stirred Yogurt

    Directory of Open Access Journals (Sweden)

    Attilio Converti

    2006-01-01

    Full Text Available Response surface methodology was used to establish a relationship between total solids content, milk base, heat treatment temperature, and sample temperature, and consistency index, flow behaviour index, and apparent viscosity of plain stirred yogurts. Statistical treatments resulted in developments of mathematical models. All samples presented shear thinning fluid behaviour. The increase of the content of total solids (9.3–22.7 % and milk base heat treatment temperature (81.6–98.4 °C resulted in a significant increase in consistency index and a decrease in flow behaviour index. Increase in the sample temperature (1.6–18.4 °C caused a decrease in consistency index and increase in flow behaviour index. Apparent viscosity was directly related to the content of total solids. Rheological properties of yogurt were highly dependent on the content of total solids in milk.

  14. Modeling heat loss from the udder of a dairy cow.

    Science.gov (United States)

    Gebremedhin, Kifle G; Wu, Binxin

    2016-07-01

    A mechanistic model that predicts sensible and latent heat fluxes from the udder of a dairy cow was developed. The prediction of the model was spot validated against measured data from the literature, and the result agreed within 7% of the measured value for the same ambient temperature. A dairy cow can lose a significant amount of heat (388W/m(2)) from the udder. This suggests that the udder could be considered as a heat sink. The temperature profile through the udder tissue (core to skin) approached the core temperature for an air temperature ≥37°C whereas the profile decreased linearly from the core to skin surface for an air temperature less than 37°C. Sensible heat loss was dominant when ambient air temperature was less than 37.5°C but latent heat loss was greater than sensible heat loss when air temperature was ≥37.5°C. The udder could lose a total (sensible + latent) heat flux of 338W/m(2) at an ambient temperature of 35°C and blood-flow rate of 3.2×10(-3)m(3)/(sm(3) tissue). The results of this study suggests that, in time of heat stress, a dairy cow could be cooled by cooling the udder only (e.g., using an evaporative cooling jacket). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Latent semantic analysis.

    Science.gov (United States)

    Evangelopoulos, Nicholas E

    2013-11-01

    This article reviews latent semantic analysis (LSA), a theory of meaning as well as a method for extracting that meaning from passages of text, based on statistical computations over a collection of documents. LSA as a theory of meaning defines a latent semantic space where documents and individual words are represented as vectors. LSA as a computational technique uses linear algebra to extract dimensions that represent that space. This representation enables the computation of similarity among terms and documents, categorization of terms and documents, and summarization of large collections of documents using automated procedures that mimic the way humans perform similar cognitive tasks. We present some technical details, various illustrative examples, and discuss a number of applications from linguistics, psychology, cognitive science, education, information science, and analysis of textual data in general. WIREs Cogn Sci 2013, 4:683-692. doi: 10.1002/wcs.1254 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. © 2013 John Wiley & Sons, Ltd.

  16. Olive Oil Total Phenolic Contents and Sensory Sensations Trends during Oven and Microwave Heating Processes and Their Discrimination Using an Electronic Tongue

    Directory of Open Access Journals (Sweden)

    Rafaela Prata

    2018-01-01

    Full Text Available Olive oil has unique organoleptic attributes and its consumption is associated with nutritional and health benefits, which are mainly related to its rich composition in phenolic and volatile compounds. The use of olive oil in heat-induced cooking leads to deep reduction of phenolic and volatile concentrations and to changes of the sensory profiles. This work confirmed that oven and microwave heating significantly reduced total phenolic contents (P value < 0.0001, one-way ANOVA, more pronounced in the latter, together with a significant reduction of the intensity of fruity, sweet, bitter, pungent, and green attributes (P value < 0.0001, Kruskal-Wallis test, particularly for fruity and green sensations. Besides, bitter, fruity, green, and pungent intensities showed a linear dependency with the total phenolic contents (0.8075≤R-Pearson ≤ 0.9694. Finally, the potentiometric electronic tongue together with linear discriminant analysis-simulated annealing algorithm allowed satisfactory discrimination (sensitivities of 94±4%, for repeated K-fold cross-validation of olive oils subjected to intense microwave heating (5–10 min, 160–205°C from those processed under usual cooking conditions (oven heating during 15–60 min or microwave heating during 1.5–3 min, 72–165°C. This could be due to the different responses of the electronic tongue towards olive oils with diverse phenolic and sensory profiles.

  17. European ErP Directive. Total condensing technology: the solution for heating and DHW units in the hotel sector

    International Nuclear Information System (INIS)

    Martín, G.

    2016-01-01

    Since 26 September 2015, the Ecodesign ErP Directive has been of compulsory application for EU Member States as regards the design of Energy-related Products (ErP) and as from its entry into force only those products manufactured according to the ErP requirements can be sold with the EC label. Although this directive affects over 1,000 product categories, for those relating to HVAC and DHW production, it covers boilers, heat pumps, accumulators, cogeneration systems, combined products systems, establishing their minimum efficiency levels, the maximum levels of NOX emissions, the minimum insulation for accumulators and the maximum level of acoustic emissions for heat pumps. (Author)

  18. Feasibility of using phase change materials to control the heat of hydration in massive concrete structures.

    Science.gov (United States)

    Choi, Won-Chang; Khil, Bae-Soo; Chae, Young-Seok; Liang, Qi-Bo; Yun, Hyun-Do

    2014-01-01

    This paper presents experimental results that can be applied to select a possible phase change material (PCM), such as a latent heat material (LHM), to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests) were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH)2 · 8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete.

  19. Feasibility of Using Phase Change Materials to Control the Heat of Hydration in Massive Concrete Structures

    Directory of Open Access Journals (Sweden)

    Won-Chang Choi

    2014-01-01

    Full Text Available This paper presents experimental results that can be applied to select a possible phase change material (PCM, such as a latent heat material (LHM, to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH2·8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete.

  20. Cost-effectiveness of heat and moisture exchangers compared to usual care for pulmonary rehabilitation after total laryngectomy in Poland

    NARCIS (Netherlands)

    Retèl, Valesca P.; van den Boer, Cindy; Steuten, Lotte M. G.; Okła, Sławomir; Hilgers, Frans J.; van den Brekel, Michiel W.

    2015-01-01

    The beneficial physical and psychosocial effects of heat and moisture exchangers (HMEs) for pulmonary rehabilitation of laryngectomy patients are well evidenced. However, cost-effectiveness in terms of costs per additional quality-adjusted life years (QALYs) has not yet been investigated. Therefore,

  1. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter.

    Science.gov (United States)

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto; Rosenqvist, Eva

    2015-02-01

    The chlorophyll fluorescence parameter Fv /Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three-tiered approach of phenotyping by Fv /Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv /Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North-Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv /Fm . The high Fv /Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN ) than the low group, accompanied by higher stomatal conductance (gs ), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv /Fm and intracellular CO2 (Ci ) was non-significant under the given heat stress. This study validated that our three-tiered approach of phenotyping by Fv /Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis. © 2014 Scandinavian Plant Physiology Society.

  2. The effect of heat stress and other factors on total body water and some blood constituents in lactating goats

    International Nuclear Information System (INIS)

    Haggag, A.M.A.

    1988-01-01

    Goats mostly live in the desert or semidesert areas in egypt. Such areas are under adverse environmental conditions. They represent indispensable source of meat and milk for the natives of these areas . Few studies are carried out on goats in connection with their biochemical and physiological response to the high environmental temperature. The present investigation carried out was constructed to study the state of heat stress(35 C and 25% ) in nine Baladi lactating goats as compared with the reactions under mild conditions (15 C and 50% RH). Animals were Kept under each of these controlled conditions for 7 days - eight hours / day. The study included blood haemoglobin level, erythrocyte count, haematocrit value, serum activity of alkaline and acid phosphatases, creatinine, urea and prolactin. The effect of heat stress on body water content and water turnover rate using tritiated water diulation technique was studied

  3. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    Science.gov (United States)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  4. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  5. FY 1986 report on research and development of super heat pump energy accumulation system. R and D of total systems (Surveys on heat sources and heat-utilization systems); 1986 nendo super heat pump energy shuseki system kenkyu kaihatsu seika hokokusho. Total system no kenkyu (netsugen netsu riyokei no chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-03-01

    The heat source systems and heat utilization systems are surveyed and studied for the super heat pump energy accumulation systems, in order to clarify effective application and application types of these systems in the domestic and industrial energy areas. These works include surveys on literature, both domestic and foreign, surveys on actual situations of the related facilities and plants and on-the-spot hearing, and numerical simulation to establish the basic data for some items. The FY 1986 program includes the literature surveys on heat source and heat utilization systems and on-the-spot hearing for the domestic energy areas, reviews of heat demand variation patterns, and studies on methodology for applying the data to the areas not investigated so far. For the industrial areas to which super heat pumps are potentially applicable, the chemical, refining, food manufacturing and plastic manufacturing/processing industries are selected, to study problems related to system structures and conditions of the heat pump systems in these areas. (NEDO)

  6. Air conditioning total system for a coffee house. Groundwater as a supplier for heat and coldness; Klimatechnisches Gesamtsystem fuer ein Cafe. Grundwasser als Waerme- und Kaelte-Lieferant

    Energy Technology Data Exchange (ETDEWEB)

    Platzer, Gerald [Daikin Airconditioning Germany GmbH, Stutensee (Germany)

    2010-07-01

    The new building of a coffee-house of the land baker's shop Ihle on the outskirts of Augsburg (Federal Republic of Germany) was not only a new way of the baker's shop in the catering trade, but also in the conception of the building and its technical equipment. The linkage of heating, climate, ventilation and commercial refrigeration systems to a highly efficient total system succeeded in outstanding way.

  7. Effect of culture levels, ultrafiltered retentate addition, total solid levels and heat treatments on quality improvement of buffalo milk plain set yoghurt.

    Science.gov (United States)

    Yadav, Vijesh; Gupta, Vijay Kumar; Meena, Ganga Sahay

    2018-05-01

    Studied the effect of culture (2, 2.5 and 3%), ultrafiltered (UF) retentate addition (0, 11, 18%), total milk solids (13, 13.50, 14%) and heat treatments (80 and 85 °C/30 min) on the change in pH and titratable acidity (TA), sensory scores and rheological parameters of yoghurt. With 3% culture levels, the required TA (0.90% LA) was achieved in minimum 6 h incubation. With an increase in UF retentate addition, there was observed a highly significant decrease in overall acceptability, body and texture and colour and appearance scores, but there was highly significant increase in rheological parameters of yoghurt samples. Yoghurt made from even 13.75% total solids containing nil UF retentate was observed to be sufficiently firm by the sensory panel. Most of the sensory attributes of yoghurt made with 13.50% total solids were significantly better than yoghurt prepared with either 13 or 14% total solids. Standardised milk heated to 85 °C/30 min resulted in significantly better overall acceptability in yoghurt. Overall acceptability of optimised yoghurt was significantly better than a branded market sample. UF retentate addition adversely affected yoghurt quality, whereas optimization of culture levels, totals milk solids and others process parameters noticeably improved the quality of plain set yoghurt with a shelf life of 15 days at 4 °C.

  8. Longitudinal Research with Latent Variables

    CERN Document Server

    van Montfort, Kees; Satorra, Albert

    2010-01-01

    This book combines longitudinal research and latent variable research, i.e. it explains how longitudinal studies with objectives formulated in terms of latent variables should be carried out, with an emphasis on detailing how the methods are applied. Because longitudinal research with latent variables currently utilizes different approaches with different histories, different types of research questions, and different computer programs to perform the analysis, the book is divided into nine chapters. Starting from some background information about the specific approach, short history and the ma

  9. Total phenolics, carotenoids, ascorbic acid, and antioxidant properties of fresh-cut mango (Mangifera indica L., cv. Tommy Atkin) as affected by infrared heat treatment.

    Science.gov (United States)

    Sogi, D S; Siddiq, M; Roidoung, S; Dolan, K D

    2012-11-01

    Mango (Mangifera indica L.) is a major tropical fruit that has not been exploited for fresh-cut or minimally processed products on a scale similar to apples, pineapples, or melons. The objective of this study was to investigate the effect of infrared (IR) treatment on total phenolics, carotenoids, ascorbic acid, and antioxidant properties of fresh-cut cubes from 'Tommy Atkin' mangoes. Mango cubes were IR treated (5, 10, 15 min) and evaluated at 4-d intervals during 16-d storage at 4 ± 1 °C. Total phenolics, carotenoids, and ascorbic acid content in fresh-cut control mango cubes were 43.33, 1.37, and 15.97 mg/100 g FW, respectively. IR treatments increased total phenolics (59.23 to 71.16 mg/100 g FW) and decreased ascorbic acid (12.14 to 15.38 mg/100 g, FW). Total carotenoids showed a mixed trend (1.13 to 1.66 mg/100 g, FW). The IR treatment showed a significant positive impact on antioxidant properties (μM TE/100 g, FW) of mango cubes, as assayed by ABTS (261.5 compared with 338.0 to 416.4), DPPH (270.5 compared with 289.4 to 360.5), and ORAC (6686 compared with 8450 to 12230). Total phenolics, carotenoids, ascorbic acid, and antioxidant capacity decreased over 16-d storage. However, IR treated samples had consistently higher ABTS, DPPH, and total phenolics during storage. It was demonstrated that IR treatment can be effectively used in improving antioxidant properties of fresh-cut mangoes with minimal effect on the visual appearance. Various methods/treatments are in use for extending the quality of fresh-cut fruits, including mild heat treatment. This study explored the application of infrared (IR) heat for processing fresh-cut mango cubes and evaluated its effect on vitamin C and antioxidant capacity during 16-d storage. This is the first study reporting on the use of IR heat in fresh-cut fruits. IR treatment was shown to be effective in retaining antioxidant properties of fresh-cut mango cubes with minimal effect on the visual appearance. © 2012 Institute

  10. Latent geometry of bipartite networks

    Science.gov (United States)

    Kitsak, Maksim; Papadopoulos, Fragkiskos; Krioukov, Dmitri

    2017-03-01

    Despite the abundance of bipartite networked systems, their organizing principles are less studied compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.

  11. Tests of a robust eddy correlation system for sensible heat flux

    Science.gov (United States)

    Blanford, J. H.; Gay, L. W.

    1992-03-01

    Sensible heat flux estimates from a simple, one-propeller eddy correlation system (OPEC) were compared with those from a sonic anemometer eddy correlation system (SEC). In accordance with similarity theory, the performance of the OPEC system improved with increasing height of the sensor above the surface. Flux totals from the two systems at sites with adequate fetch were in excellent agreement after frequency response corrections were applied. The propeller system appears suitable for long periods of unattended measurement. The sensible heat flux measurements can be combined with net radiation and soil heat flux measurements to estimate latent heat as a residual in the surface energy balance.

  12. Total absorption gamma-ray spectroscopy (TAGS): Current status of measurement programmes for decay heat calculations and other applications. Summary report of consultants' meeting

    International Nuclear Information System (INIS)

    Nichols, A.L.; Nordborg, C.

    2009-02-01

    A Consultants' Meeting on 'Total Absorption Gamma-ray Spectroscopy (TAGS)' was held on 27-28 January 2009 at the IAEA Headquarters, Vienna, Austria. All presentations, discussions and recommendations of this meeting are contained within this report. The purpose of the meeting was to report and discuss progress and plans to measure total gamma-ray spectra in order to derive mean beta and gamma decay data for decay heat calculations and other applications. This form of review had been recommended by contributors to Subgroup 25 of the OECD-NEA Working Party on International Evaluation Cooperation of the Nuclear Science Committee, for implementation in 2008/09. Hence, relevant specialists were invited to discuss their recently performed and planned TAGS studies, along with experimentalists proposing to assemble and operate such dedicated facilities. Knowledge and quantification of antineutrino spectra is believed to be a significant asset in the non-invasive monitoring of reactor operations and possible application in safeguards, as well as fundamental in the study of neutrino oscillations - these data needs were also debated in terms of appropriate TAGS measurements. A re-assessment of the current request list for TAGS studies is merited and was undertaken in the context of decay heat calculations, and agreement was reached to extend these requirements to the derivation of antineutrino spectra. (author)

  13. Biomarkers of latent TB infection

    DEFF Research Database (Denmark)

    Ruhwald, Morten; Ravn, Pernille

    2009-01-01

    For the last 100 years, the tuberculin skin test (TST) has been the only diagnostic tool available for latent TB infection (LTBI) and no biomarker per se is available to diagnose the presence of LTBI. With the introduction of M. tuberculosis-specific IFN-gamma release assays (IGRAs), a new area...... of in vitro immunodiagnostic tests for LTBI based on biomarker readout has become a reality. In this review, we discuss existing evidence on the clinical usefulness of IGRAs and the indefinite number of potential new biomarkers that can be used to improve diagnosis of latent TB infection. We also present...... early data suggesting that the monocyte-derived chemokine inducible protein-10 may be useful as a novel biomarker for the immunodiagnosis of latent TB infection....

  14. Enhancement of melting heat transfer of ice slurries by an injection flow in a rectangular cross sectional horizontal duct

    International Nuclear Information System (INIS)

    Fujii, Kota; Yamada, Masahiko

    2013-01-01

    Ice slurries are now commonly used as cold thermal storage materials, and have the potential to be applied to other engineering fields such as quenching metals to control properties, emergency cooling systems, and preservation of food and biomaterials at low temperatures. Although ice slurries have been widely utilized because of their high thermal storage densities, previous studies have revealed that the latent heat of ice particles is not completely released on melting because of insufficient contact between the ice particles and a heated surface. In this study, an injection flow that was bifurcated from the main flow of an ice slurry was employed to promote melting heat transfer of ice particles on a horizontal heated surface. The effects of injection angle and injection flow rate on local heat transfer coefficients and heat transfer coefficient ratios were determined experimentally. The results show that from two to three times higher heat transfer coefficients can be obtained by using large injection flow rates and injection angles. However, low injection angles improved the utilization rate of the latent heat of ice near the injection point by approximately a factor of two compared to that without injection. -- Highlights: • Melting of ice slurries were enhanced by the injection under constant total flow rate. • Contribution of ice particles and their latent heat to heat transfer was investigated. • Effect of velocity ratio of injection to that of main flow was examined. • Effect of the angle of injection flow to the main flow was also examined. • Appropriate conditions for the use of latent heat of ice and heat transfer did not coincide

  15. Latent class models for classification

    NARCIS (Netherlands)

    Vermunt, J.K.; Magidson, J.

    2003-01-01

    An overview is provided of recent developments in the use of latent class (LC) and other types of finite mixture models for classification purposes. Several extensions of existing models are presented. Two basic types of LC models for classification are defined: supervised and unsupervised

  16. Study on heat transfer from hot water to air with evaporation. 2nd report

    International Nuclear Information System (INIS)

    Yamaji, Tatsuya; Hirota, Tatsuya; Koizumi, Yasuo; Murase, Michio

    2013-01-01

    Heat transfer from hot water flow to cold air flow was examined. In the present study, the air flow was in turbulent flow condition. When the heat flux from the water flow to the air flow is divides into two terms of an evaporation term and a convection term, the evaporation term is much higher than the convection term; approximately 80 ∼ 60% of the total heat flux since latent heat is taken into the air flow by evaporating vapor. The convection term was approximately two times of the single-phase heat transfer rate with no evaporation. By making use of the analogy between the mass transfer and the heat transfer, and the single-phase heat transfer correlation, the predicting method of the heat transfer rate with the evaporation was developed. (author)

  17. Heat transfer characteristics of liquid-gas Taylor flows incorporating microencapsulated phase change materials

    International Nuclear Information System (INIS)

    Howard, J A; Walsh, P A

    2014-01-01

    This paper presents an investigation on the heat transfer characteristics associated with liquid-gas Taylor flows in mini channels incorporating microencapsulated phase change materials (MPCM). Taylor flows have been shown to result in heat transfer enhancements due to the fluid recirculation experienced within liquid slugs which is attributable to the alternating liquid slug and gas bubble flow structure. Microencapsulated phase change materials (MPCM) also offer significant potential with increased thermal capacity due to the latent heat required to cause phase change. The primary aim of this work was to examine the overall heat transfer potential associated with combining these two novel liquid cooling technologies. By investigating the local heat transfer characteristics, the augmentation/degradation over single phase liquid cooling was quantified while examining the effects of dimensionless variables, including Reynolds number, liquid slug length and gas void fraction. An experimental test facility was developed which had a heated test section and allowed MPCM-air Taylor flows to be subjected to a constant heat flux boundary condition. Infrared thermography was used to record high resolution experimental wall temperature measurements and determine local heat transfer coefficients from the thermal entrance point. 30.2% mass particle concentration of the MPCM suspension fluid was examined as it provided the maximum latent heat for absorption. Results demonstrate a significant reduction in experimental wall temperatures associated with MPCM-air Taylor flows when compared with the Graetz solution for conventional single phase coolants. Total enhancement in the thermally developed region is observed to be a combination of the individual contributions due to recirculation within the liquid slugs and also absorption of latent heat. Overall, the study highlights the potential heat transfer enhancements that are attainable within heat exchange devices employing MPCM

  18. Treatment of Latent Tuberculosis Infection

    OpenAIRE

    Tang, Patrick; Johnston, James

    2017-01-01

    Opinion statement The treatment of latent tuberculosis infection (LTBI) is an essential component of tuberculosis (TB) elimination in regions that have a low incidence of TB. However, the decision to treat individuals with LTBI must consider the limitations of current diagnostic tests for LTBI, the risk of developing active TB disease, the potential adverse effects from chemoprophylactic therapy, and the importance of treatment adherence. When an individual has been diagnosed with LTBI and ac...

  19. Pcm inclusion in gypsum boards for thermal energy storage through latent heat: thermal characterization with DSC; Incorporacion de materiales de cambio de fase en placas de yeso para almacenamiento de energia termica mediante calor latente: caracterizacion termica del material mediante la tecnica DSC

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, A.; Neila, F. J.; Garcia, A.

    2011-07-01

    Differential Scanning Calorimetry (DSC) is a thermal analysis technique which has been used for more than three decades to measure the temperatures and heat flows associated with transitions in materials as a function of time. Other techniques, are Differential Thermal Analysis DTA and Conventional Calorimetry. There is great uncertainty in the values supplied by the manufacturers (because they are referred to pure substances) and the DSC should be used to get more accurate values. It will be analyzed the thermal storage capacity depending on temperature for several compound materials formed by some aggregates, mainly gypsum and phase change materials, in various proportions. The results have been compared with other building materials such as gypsum boards and brick layer. The suitability of the new construction material for thermal energy storage will be assessed in comparison with other materials traditionally used for this purpose. (Author) 21 refs.

  20. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  1. Solar Air Heaters with Thermal Heat Storages

    OpenAIRE

    Saxena, Abhishek; Goel, Varun

    2013-01-01

    Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has be...

  2. Anomaly transform methods based on total energy and ocean heat content norms for generating ocean dynamic disturbances for ensemble climate forecasts

    Science.gov (United States)

    Romanova, Vanya; Hense, Andreas

    2017-08-01

    In our study we use the anomaly transform, a special case of ensemble transform method, in which a selected set of initial oceanic anomalies in space, time and variables are defined and orthogonalized. The resulting orthogonal perturbation patterns are designed such that they pick up typical balanced anomaly structures in space and time and between variables. The metric used to set up the eigen problem is taken either as the weighted total energy with its zonal, meridional kinetic and available potential energy terms having equal contributions, or the weighted ocean heat content in which a disturbance is applied only to the initial temperature fields. The choices of a reference state for defining the initial anomalies are such that either perturbations on seasonal timescales and or on interannual timescales are constructed. These project a-priori only the slow modes of the ocean physical processes, such that the disturbances grow mainly in the Western Boundary Currents, in the Antarctic Circumpolar Current and the El Nino Southern Oscillation regions. An additional set of initial conditions is designed to fit in a least square sense data from global ocean reanalysis. Applying the AT produced sets of disturbances to oceanic initial conditions initialized by observations of the MPIOM-ESM coupled model on T63L47/GR15 resolution, four ensemble and one hind-cast experiments were performed. The weighted total energy norm is used to monitor the amplitudes and rates of the fastest growing error modes. The results showed minor dependence of the instabilities or error growth on the selected metric but considerable change due to the magnitude of the scaling amplitudes of the perturbation patterns. In contrast to similar atmospheric applications, we find an energy conversion from kinetic to available potential energy, which suggests a different source of uncertainty generation in the ocean than in the atmosphere mainly associated with changes in the density field.

  3. Crystal–liquid interfacial free energy and thermophysical properties of pure liquid Ti using electrostatic levitation: Hypercooling limit, specific heat, total hemispherical emissivity, density, and interfacial free energy

    International Nuclear Information System (INIS)

    Lee, Geun Woo; Jeon, Sangho; Park, Cheolmin; Kang, Dong-Hee

    2013-01-01

    Highlights: • Thermophysical properties of liquid Ti are obtained by electrostatic levitation. • How to measure the thermophysical properties is shown with non-contact method. • Hypercooling limit of liquid Ti guarantying homogeneous nucleation is 341 K. • Accurate ratio C p /ε T of the liquid Ti is obtained with weak temperature dependence. • Interfacial free energy of Ti is estimated with the thermophysical parameters. -- Abstract: Thermophysical properties of liquid Ti are measured by a newly developed electrostatic levitation. In this study, we measure a hypercooling limit (ΔT hyp ), specific heat (C p ), total hemispherical emissivity (ε T ), and density (ρ) of liquid Ti. The ΔT hyp of the liquid Ti is 341 K. The C p of the liquid Ti shows very weak temperature dependence during supercooling. The ε T and ρ of the liquid Ti are given by 0.329 and ρ(T) (g/cm 3 ) = (4.16 − 2.36) · 10 −4 (T − T m ). Finally, the interfacial free energy is estimated with the measured thermophysical parameters. The interfacial free energy is 0.164 J/m 2 , and Turnbull’s coefficient is 0.48

  4. Latent semantics as cognitive components

    DEFF Research Database (Denmark)

    Petersen, Michael Kai; Mørup, Morten; Hansen, Lars Kai

    2010-01-01

    Cognitive component analysis, defined as an unsupervised learning of features resembling human comprehension, suggests that the sensory structures we perceive might often be modeled by reducing dimensionality and treating objects in space and time as linear mixtures incorporating sparsity...... emotional responses can be encoded in words, we propose a simplified cognitive approach to model how we perceive media. Representing song lyrics in a vector space of reduced dimensionality using LSA, we combine bottom-up defined term distances with affective adjectives, that top-down constrain the latent......, which we suggest might function as cognitive components for perceiving the underlying structure in lyrics....

  5. Thermal behavior of latent thermal energy storage unit using two phase change materials: Effects of HTF inlet temperature

    Directory of Open Access Journals (Sweden)

    Fouzi Benmoussa

    2017-09-01

    Full Text Available This work presents a numerical study of the thermal behavior of shell-and-tube latent thermal energy storage (LTES unit using two phase change materials (PCMs. The heat transfer fluid (HTF flow through the inner tube and transfer the heat to PCMs. First, a mathematical model is developed based on the enthalpy formulation and solved through the governing equations. Second, the effects of HTF inlet temperature on the unsteady temperature evolution of PCMs, the total energy stored evolution as well as the total melting time is studied. Numerical results show that for all HTF inlet temperature, melting rate of PCM1 is the fastest and that of PCM2 is the slowest; increasing the HTF inlet temperature considerably increases the temperature evolution of PCMs. The maximum energy stored is observed in PCM2 with high melting temperature and high specific heat; heat storage capacity is large for high HTF inlet temperature. When the HTF inlet temperature increases from 338 K to 353 K, decreasing degree of melting time of PCM2 is the biggest from 1870 s to 490 s, which reduces about 73.8%; decreasing degree of melting time of PCM1 is the smallest from 530 s to 270 s, which reduces about 49.1%.

  6. Shredded beet pulp substituted for corn silage in diets fed to dairy cows under ambient heat stress: Feed intake, total-tract digestibility, plasma metabolites, and milk production.

    Science.gov (United States)

    Naderi, N; Ghorbani, G R; Sadeghi-Sefidmazgi, A; Nasrollahi, S M; Beauchemin, K A

    2016-11-01

    ammonia-nitrogen and milk concentration of urea, corresponding to an increase in percentage of protein in milk. Compared with multiparous cows, primiparous cows had greater rumen pH, metabolite concentrations in plasma (glucose, cholesterol, urea nitrogen, total protein, and globulins), milk production, and concentrations of milk components. Substituting beet pulp for corn silage at up to 12% of dietary dry matter can be beneficial during heat stress conditions. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Changes in latent fingerprint examiners' markup between analysis and comparison.

    Science.gov (United States)

    Ulery, Bradford T; Hicklin, R Austin; Roberts, Maria Antonia; Buscaglia, JoAnn

    2015-02-01

    After the initial analysis of a latent print, an examiner will sometimes revise the assessment during comparison with an exemplar. Changes between analysis and comparison may indicate that the initial analysis of the latent was inadequate, or that confirmation bias may have affected the comparison. 170 volunteer latent print examiners, each randomly assigned 22 pairs of prints from a pool of 320 total pairs, provided detailed markup documenting their interpretations of the prints and the bases for their comparison conclusions. We describe changes in value assessments and markup of features and clarity. When examiners individualized, they almost always added or deleted minutiae (90.3% of individualizations); every examiner revised at least some markups. For inconclusive and exclusion determinations, changes were less common, and features were added more frequently when the image pair was mated (same source). Even when individualizations were based on eight or fewer corresponding minutiae, in most cases some of those minutiae had been added during comparison. One erroneous individualization was observed: the markup changes were notably extreme, and almost all of the corresponding minutiae had been added during comparison. Latents assessed to be of value for exclusion only (VEO) during analysis were often individualized when compared to a mated exemplar (26%); in our previous work, where examiners were not required to provide markup of features, VEO individualizations were much less common (1.8%). Published by Elsevier Ireland Ltd.

  8. Effect of Process Parameters on the Total Heat Damaged Zone (HDZ) during Micro-EDM of Plastic Mold Steel 1.2738

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2016-01-01

    In micro electrical discharge machining, three subsurface layersare formed on the workpiece, they are;recast zone, heat affected zone and converted zone, primarily due to heating-quenching cycles. The HDZ inmicro-EDM is characterized by cracks and weakness in the grain boundary and thermal residu...

  9. The Latent Structure of Autistic Traits: A Taxometric, Latent Class and Latent Profile Analysis of the Adult Autism Spectrum Quotient

    Science.gov (United States)

    James, Richard J.; Dubey, Indu; Smith, Danielle; Ropar, Danielle; Tunney, Richard J.

    2016-01-01

    Autistic traits are widely thought to operate along a continuum. A taxometric analysis of Adult Autism Spectrum Quotient data was conducted to test this assumption, finding little support but identifying a high severity taxon. To understand this further, latent class and latent profile models were estimated that indicated the presence of six…

  10. Development of molecular tests for the detection of ILAR and latent viruses in fruit trees.

    Science.gov (United States)

    Roussel, S; Kummert, J; Dutrecq, O; Lepoivre, P; Jijakli, M H

    2004-01-01

    The detection throughout the year of latent and ILAR viruses in fruit tress by classical serological tests appear to be unreliable. We have developed RT-PCR tests for a reliable detection of latent and ILAR viruses in fruit trees. These assays were then simplified to allow the direct use of crude plant extracts instead of total RNA preparations, and the analyses of pooled samples. In this way, such RT-PCR protocols are suitable for a routine diagnosis of latent and ILAR viruses in fruit tree certification.

  11. Latent fingermark development using low-vacuum vaporization of ninhydrin.

    Science.gov (United States)

    Chen, Chun-Chieh; Yang, Chao-Kai; Liao, Jeh-Shane; Wang, Sheng-Meng

    2015-12-01

    The vacuum technique is a method of vaporizing a solid material to its gas phase, helping deposit reagents gently on target surfaces to develop latent fingermarks. However, this application is rarely reported in the literature. In this study, a homemade fume hood with a built-in vacuum control system and programmable heating system designed by the Taiwan Criminal Investigation Bureau is introduced. Factors that affect the instrument's performance in developing fingermarks are discussed, including the quantity of chemicals for vaporization, heating program arrangement, and paper of different materials. The results show that fingermarks are effectively developed by vaporizing solid ninhydrin. This would be an alternative application in selecting a solvent-free method for protecting the environment and reducing health hazards in the lab. In terms of the heating program, the result indicates that under a low-vacuum condition (50 mTorr), 80-90 °C is a suitable temperature range for ninhydrin vaporization, allowing ninhydrin to be vaporized without bumping and waste. In terms of the performance on different material papers, this instrument demonstrates its capacity by developing latent fingermarks on thermal paper without discoloration or damaging the original writing, and the same results are also observed on Taiwan and United States banknotes. However, a coherent result could be hardly obtained using the same vaporization setting because different banknotes have their own surface features and water absorption ability or other unique factors may influence the effect of ninhydrin deposition. This study provides a reliable application for developing latent fingermarks without using solvents, and it is also expected to contribute to environmental protection along with the trend of green chemistry technology. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Membrane heat exchanger in HVAC energy recovery systems, systems energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, M. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Opus International Consultants (New Zealand); AL-Waked, R. [Mechanical Engineering Department, Prince Mohammad Bin Fahd University (PMU), P.O. Box 1614, AlKhobar 31952 (Saudi Arabia); Morrison, G. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Behnia, M. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia)

    2010-10-15

    The thermal performance of an enthalpy/membrane heat exchanger is experimentally investigated. The heat exchanger utilizes a 60gsm Kraft paper as the heat and moisture transfer surface for HVAC energy recovery. The heat exchanger sensible, latent and total effectiveness have been determined through temperature and moisture content measurements. The annual energy consumption of an air conditioner coupled with an enthalpy/membrane heat exchanger is also studied and compared with a conventional air conditioning cycle using in-house modified HPRate software. The heat exchanger effectiveness are used as thermal performance indicators and incorporated in the modified software. Energy analysis showed that an air conditioning system coupled with a membrane heat exchanger consumes less energy than a conventional air conditioning system in hot and humid climates where the latent load is high. It has been shown that in humid climate a saving of up to 8% in annual energy consumption can be achieved when membrane heat exchanger is used instead of a conventional HVAC system. (author)

  13. Latent variable models are network models.

    Science.gov (United States)

    Molenaar, Peter C M

    2010-06-01

    Cramer et al. present an original and interesting network perspective on comorbidity and contrast this perspective with a more traditional interpretation of comorbidity in terms of latent variable theory. My commentary focuses on the relationship between the two perspectives; that is, it aims to qualify the presumed contrast between interpretations in terms of networks and latent variables.

  14. Learning Latent Vector Spaces for Product Search

    NARCIS (Netherlands)

    Van Gysel, C.; de Rijke, M.; Kanoulas, E.

    2016-01-01

    We introduce a novel latent vector space model that jointly learns the latent representations of words, e-commerce products and a mapping between the two without the need for explicit annotations. The power of the model lies in its ability to directly model the discriminative relation between

  15. Heat storage in forest biomass improves energy balance closure

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2010-01-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation very well. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy covariance

  16. Plutonium and latent nuclear proliferation

    International Nuclear Information System (INIS)

    Quester, G.H.

    1992-01-01

    A country producing nuclear electric power acquires an ability to produce atomic bombs quite easily and without taking many steps beyond that which would be perfectly normal for civilian purposes. The role of plutonium in the three fold list of the gains that must be sought in arms control formulated by Schelling and Halpevin are discussed. On the first, that we should seek to reduce the likelihood of war, it can be argued that plutonium reduces the likelihood in some cases. The second, that we should seek to reduce the destruction in war, is made worse by plutonium. On the third criterion, that we should seek to reduce the burdens in peacetime of everyone's being prepared for war, the situation is confusing and depends on the prospects for nuclear electrical power. It is concluded that latent capability to produce nuclear weapons may be sufficient without the need for actual detonations and deployment of bombs. (UK)

  17. Stability of latent class segments over time

    DEFF Research Database (Denmark)

    Mueller, Simone

    2011-01-01

    Dynamic stability, as the degree to which identified segments at a given time remain unchanged over time in terms of number, size and profile, is a desirable segment property which has received limited attention so far. This study addresses the question to what degree latent classes identified from...... logit model suggests significant changes in the price sensitivity and the utility from environmental claims between both experimental waves. A pooled scale adjusted latent class model is estimated jointly over both waves and the relative size of latent classes is compared across waves, resulting...... in significant differences in the size of two out of seven classes. These differences can largely be accounted for by the changes on the aggregated level. The relative size of latent classes is correlated at 0.52, suggesting a fair robustness. An ex-post characterisation of latent classes by behavioural...

  18. Fiscal 1993 investigational report on heat pump heat storage technology; 1993 nendo heat pump chikunetsu gijutsu ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    This project is for an investigation into the heat pump (HP) use heat storage technology, with the aim of clarifying the present status of HP heat storage technology, the utilization status, and the developmental trend of technology and of contributing to the spread of heat energy effective use using HP heat storage technology and to the promotion of the technical development. Accordingly, the evaluation of the following was made: sensible heat (SH), latent heat (LH), chemical heat storage technology (CH), and heat storage technology (HS). Investigations were made on the sensible heat use heat storage technology of water, brine, stone, soil, etc. in terms of SH; the phase change sensible heat use heat storage technology of ice, hydrate salt, paraffins, etc. in terms of LH; hydration, hydroxide, 2-propanol pyrolysis, adsorption of silica gel, zeolite and water, and heat storage technology using metal hydride, etc. in terms of CH. In terms of HS, the following were studied and evaluated from the study results of the heat storage system in which HP is applied to the sensible heat and latent heat type heat storage technology: contribution to the power load levelling and the reduction of heat source capacity, heat recovery and the use of unused energy, improvement of the system efficiency by combining HP and heat storage technology. 24 refs., 242 figs., 56 tabs.

  19. Latent lifestyle preferences and household location decisions

    Science.gov (United States)

    Walker, Joan L.; Li, Jieping

    2007-04-01

    Lifestyle, indicating preferences towards a particular way of living, is a key driver of the decision of where to live. We employ latent class choice models to represent this behavior, where the latent classes are the lifestyles and the choice model is the choice of residential location. Thus, we simultaneously estimate lifestyle groups and how lifestyle impacts location decisions. Empirical results indicate three latent lifestyle segments: suburban dwellers, urban dwellers, and transit-riders. The suggested lifestyle segments have intriguing policy implications. Lifecycle characteristics are used to predict lifestyle preferences, although there remain significant aspects that cannot be explained by observable variables.

  20. Extraction of latent images from printed media

    Science.gov (United States)

    Sergeyev, Vladislav; Fedoseev, Victor

    2015-12-01

    In this paper we propose an automatic technology for extraction of latent images from printed media such as documents, banknotes, financial securities, etc. This technology includes image processing by adaptively constructed Gabor filter bank for obtaining feature images, as well as subsequent stages of feature selection, grouping and multicomponent segmentation. The main advantage of the proposed technique is versatility: it allows to extract latent images made by different texture variations. Experimental results showing performance of the method over another known system for latent image extraction are given.

  1. Bayesian Latent Class Analysis Tutorial.

    Science.gov (United States)

    Li, Yuelin; Lord-Bessen, Jennifer; Shiyko, Mariya; Loeb, Rebecca

    2018-01-01

    This article is a how-to guide on Bayesian computation using Gibbs sampling, demonstrated in the context of Latent Class Analysis (LCA). It is written for students in quantitative psychology or related fields who have a working knowledge of Bayes Theorem and conditional probability and have experience in writing computer programs in the statistical language R . The overall goals are to provide an accessible and self-contained tutorial, along with a practical computation tool. We begin with how Bayesian computation is typically described in academic articles. Technical difficulties are addressed by a hypothetical, worked-out example. We show how Bayesian computation can be broken down into a series of simpler calculations, which can then be assembled together to complete a computationally more complex model. The details are described much more explicitly than what is typically available in elementary introductions to Bayesian modeling so that readers are not overwhelmed by the mathematics. Moreover, the provided computer program shows how Bayesian LCA can be implemented with relative ease. The computer program is then applied in a large, real-world data set and explained line-by-line. We outline the general steps in how to extend these considerations to other methodological applications. We conclude with suggestions for further readings.

  2. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  3. Heat balance characteristics and water use efficiency of soybean community

    International Nuclear Information System (INIS)

    Lee, Y.S.; Im, J.N.

    1990-01-01

    A field experiment was conducted to study seasonal evapotranspiration above soybean canopy and its relationship with dry matter production by the Bowen ratio-energy balance method. The soybean ''Paldalkong'' was sown with the space of 40 * 10 cm at Suwon on May 27, 1988. The daily net radiation ranged from 59 to 76 percents of the total shortwave radiation under cloudless conditions, which was lower than cloud overcast condition with record 63 to 83 percents. The latent heat flux under overcast condition was sometimes larger than the sum of net radiation, implying transportation of energy by advection of ambient air

  4. Heteroscedastic Latent Trait Models for Dichotomous Data.

    Science.gov (United States)

    Molenaar, Dylan

    2015-09-01

    Effort has been devoted to account for heteroscedasticity with respect to observed or latent moderator variables in item or test scores. For instance, in the multi-group generalized linear latent trait model, it could be tested whether the observed (polychoric) covariance matrix differs across the levels of an observed moderator variable. In the case that heteroscedasticity arises across the latent trait itself, existing models commonly distinguish between heteroscedastic residuals and a skewed trait distribution. These models have valuable applications in intelligence, personality and psychopathology research. However, existing approaches are only limited to continuous and polytomous data, while dichotomous data are common in intelligence and psychopathology research. Therefore, in present paper, a heteroscedastic latent trait model is presented for dichotomous data. The model is studied in a simulation study, and applied to data pertaining alcohol use and cognitive ability.

  5. New Treatment Regimen for Latent Tuberculosis Infection

    Centers for Disease Control (CDC) Podcasts

    In this podcast, Dr. Kenneth Castro, Director of the Division of Tuberculosis Elimination, discusses the December 9, 2011 CDC guidelines for the use of a new regimen for the treatment of persons with latent tuberculosis infection.

  6. 潜伏性热释放2PZ-PS-co-MAA微胶囊固化剂的制备与性能%Preparation and Performance of Heat Released 2PZ-PS-co-MAA Mierocapsule-Type Latent Curing Agent

    Institute of Scientific and Technical Information of China (English)

    史有强; 张秋禹; 陈少杰; 马明亮; 马爱洁; 顾军渭

    2012-01-01

    以2-苯基咪唑(2PZ)为芯材,苯乙烯-甲基丙烯酸共聚物(PS-co-MAA)为壁材,采用溶剂挥发技术,成功地制备了一种新型潜伏性热释放2PZ-PS-co-MAA微胶囊固化剂。通过红外光谱仪(FT-IR)、热重分析仪(TGA)、扫描电子显微镜(SEM)、粒度分析仪和差示扫描量热仪(DSC)对微胶囊固化剂的化学结构、芯材含量、表面形貌、粒径分布及固化性能等进行了表征。所制备的微胶囊固化剂表面光滑,粒径分布较窄,平均粒径约为15.60μm,壁材厚度约为0.5μm,芯材2PZ含量约为39.19%。由微胶囊固化剂与环氧树脂E-51制备的单组分胶粘剂,具有优良的固化特性和潜伏性能,可在100℃,30 min内实现固化,室温储存期可达32 d以上。%A heat released microcapsule-type latent curing agent was successfully prepared by solvent evaporation technique with 2-phenylimidazole(2PZ) as the core material and styrene/methacrylic acid copolymer(PS-co-MAA) as the wall material.The chemical structure,core material content,surface morphology,size distribution and curing characteristics of this microcapsule-type curing agent were characterized by Fourier transform infrared spectrum(FT-IR),thermogravimetric analysis(TGA),scanning electron microscope(SEM),granulometer and differential scanning calorimetry(DSC).The obtained microcapsules have a smooth surface and display a narrow size distribution with the mean size about 15.60 μm,and its wall thickness is about 0.5 μm with core material content about 39.19%.In addition,the one-component adhesive made from the microcapsules and epoxy resin E-51 shows advanced curing characteristics and latent properties.It is found that the E-51/PS-co-MAA microcapsule system can be cured at 100 ℃ in 30 min and its shelf life at room temperature is more than 32 days.

  7. Latent variables and route choice behavior

    DEFF Research Database (Denmark)

    Prato, Carlo Giacomo; Bekhor, Shlomo; Pronello, Cristina

    2012-01-01

    In the last decade, a broad array of disciplines has shown a general interest in enhancing discrete choice models by considering the incorporation of psychological factors affecting decision making. This paper provides insight into the comprehension of the determinants of route choice behavior...... and bound algorithm. A hybrid model consists of measurement equations, which relate latent variables to measurement indicators and utilities to choice indicators, and structural equations, which link travelers’ observable characteristics to latent variables and explanatory variables to utilities. Estimation...

  8. UNSOLVED AND LATENT CRIME: DIFFERENCES AND SIMILARITIES

    Directory of Open Access Journals (Sweden)

    Mikhail Kleymenov

    2017-01-01

    Full Text Available УДК 343Purpose of the article is to study the specific legal and informational nature of the unsolved crime in comparison with the phenomenon of delinquency, special study and analysis to improve the efficiency of law enforcement.Methods of research are abstract-logical, systematic, statistical, study of documents. The main results of research. Unsolved crime has specific legal, statistical and informational na-ture as the crime phenomenon, which is expressed in cumulative statistical population of unsolved crimes. An array of unsolved crimes is the sum of the number of acts, things of which is suspended and not terminated. The fault of the perpetrator in these cases is not proven, they are not considered by the court, it is not a conviction. Unsolved crime must be registered. Latent crime has a different informational nature. The main symptom of latent crimes is the uncertainty for the subjects of law enforcement, which delegated functions of identification, registration and accounting. Latent crime is not recorded. At the same time, there is a "border" area between the latent and unsolved crimes, which includes covered from the account of the crime. In modern Russia the majority of crimes covered from accounting by passing the decision about refusal in excitation of criminal case. Unsolved crime on their criminogenic consequences represents a significant danger to the public is higher compared to latent crime.It is conducted in the article a special analysis of the differences and similarities in the unsolved latent crime for the first time in criminological literature.The analysis proves the need for radical changes in the current Russian assessment of the state of crime and law enforcement to solve crimes. The article argues that an unsolved crime is a separate and, in contrast to latent crime, poorly understood phenomenon. However unsolved latent crime and have common features and areas of interaction.

  9. Exposing Latent Information in Folksonomies for Reasoning

    Science.gov (United States)

    2010-01-14

    1.73 $.") http://www.w3.org/2006/07/SWD/ SKOS /reference/20081001/ Spiteri, L.F. (2007) "The structure and form of folksonomy tags: The road to the...Exposing Latent Information in Folksonomies for Reasoning January 14, 2010 Sponsored by Defense Advanced Research Projects Agency (DOD...DATES COVERED (From - To! 4/14/2009-12/23/2009 4. TITLE AND SUBTITLE Exposing Latent Information in Folksonomies for Reasoning Sa. CONTRACT

  10. Handbook of latent variable and related models

    CERN Document Server

    Lee, Sik-Yum

    2011-01-01

    This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables.- Covers a wide class of important models- Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data- Includes illustrative examples with real data sets from business, education, medicine, public health and sociology.- Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.

  11. The Latent Structure of Dictionaries.

    Science.gov (United States)

    Vincent-Lamarre, Philippe; Massé, Alexandre Blondin; Lopes, Marcos; Lord, Mélanie; Marcotte, Odile; Harnad, Stevan

    2016-07-01

    How many words-and which ones-are sufficient to define all other words? When dictionaries are analyzed as directed graphs with links from defining words to defined words, they reveal a latent structure. Recursively removing all words that are reachable by definition but that do not define any further words reduces the dictionary to a Kernel of about 10% of its size. This is still not the smallest number of words that can define all the rest. About 75% of the Kernel turns out to be its Core, a "Strongly Connected Subset" of words with a definitional path to and from any pair of its words and no word's definition depending on a word outside the set. But the Core cannot define all the rest of the dictionary. The 25% of the Kernel surrounding the Core consists of small strongly connected subsets of words: the Satellites. The size of the smallest set of words that can define all the rest-the graph's "minimum feedback vertex set" or MinSet-is about 1% of the dictionary, about 15% of the Kernel, and part-Core/part-Satellite. But every dictionary has a huge number of MinSets. The Core words are learned earlier, more frequent, and less concrete than the Satellites, which are in turn learned earlier, more frequent, but more concrete than the rest of the Dictionary. In principle, only one MinSet's words would need to be grounded through the sensorimotor capacity to recognize and categorize their referents. In a dual-code sensorimotor/symbolic model of the mental lexicon, the symbolic code could do all the rest through recombinatory definition. Copyright © 2016 Cognitive Science Society, Inc.

  12. Repeatability and reproducibility of decisions by latent fingerprint examiners.

    Directory of Open Access Journals (Sweden)

    Bradford T Ulery

    Full Text Available The interpretation of forensic fingerprint evidence relies on the expertise of latent print examiners. We tested latent print examiners on the extent to which they reached consistent decisions. This study assessed intra-examiner repeatability by retesting 72 examiners on comparisons of latent and exemplar fingerprints, after an interval of approximately seven months; each examiner was reassigned 25 image pairs for comparison, out of total pool of 744 image pairs. We compare these repeatability results with reproducibility (inter-examiner results derived from our previous study. Examiners repeated 89.1% of their individualization decisions, and 90.1% of their exclusion decisions; most of the changed decisions resulted in inconclusive decisions. Repeatability of comparison decisions (individualization, exclusion, inconclusive was 90.0% for mated pairs, and 85.9% for nonmated pairs. Repeatability and reproducibility were notably lower for comparisons assessed by the examiners as "difficult" than for "easy" or "moderate" comparisons, indicating that examiners' assessments of difficulty may be useful for quality assurance. No false positive errors were repeated (n = 4; 30% of false negative errors were repeated. One percent of latent value decisions were completely reversed (no value even for exclusion vs. of value for individualization. Most of the inter- and intra-examiner variability concerned whether the examiners considered the information available to be sufficient to reach a conclusion; this variability was concentrated on specific image pairs such that repeatability and reproducibility were very high on some comparisons and very low on others. Much of the variability appears to be due to making categorical decisions in borderline cases.

  13. Thermal contact resistance in carbon nanotube enhanced heat storage materials

    NARCIS (Netherlands)

    Zhang, H.; Nedea, S.V.; Rindt, C.C.M.; Smeulders, D.M.J.

    2015-01-01

    Solid-liquid phase change is one of the most favorable means of compact and economical heat storage in the built environment. In such storage systems, the vast available solar heat is stored as latent heat in the storage materials. Recent studies suggest using sugar alcohols as seasonal heat storage

  14. PET CT Identifies Reactivation Risk in Cynomolgus Macaques with Latent M. tuberculosis.

    Directory of Open Access Journals (Sweden)

    Philana Ling Lin

    2016-07-01

    Full Text Available Mycobacterium tuberculosis infection presents across a spectrum in humans, from latent infection to active tuberculosis. Among those with latent tuberculosis, it is now recognized that there is also a spectrum of infection and this likely contributes to the variable risk of reactivation tuberculosis. Here, functional imaging with 18F-fluorodeoxygluose positron emission tomography and computed tomography (PET CT of cynomolgus macaques with latent M. tuberculosis infection was used to characterize the features of reactivation after tumor necrosis factor (TNF neutralization and determine which imaging characteristics before TNF neutralization distinguish reactivation risk. PET CT was performed on latently infected macaques (n = 26 before and during the course of TNF neutralization and a separate set of latently infected controls (n = 25. Reactivation occurred in 50% of the latently infected animals receiving TNF neutralizing antibody defined as development of at least one new granuloma in adjacent or distant locations including extrapulmonary sites. Increased lung inflammation measured by PET and the presence of extrapulmonary involvement before TNF neutralization predicted reactivation with 92% sensitivity and specificity. To define the biologic features associated with risk of reactivation, we used these PET CT parameters to identify latently infected animals at high risk for reactivation. High risk animals had higher cumulative lung bacterial burden and higher maximum lesional bacterial burdens, and more T cells producing IL-2, IL-10 and IL-17 in lung granulomas as compared to low risk macaques. In total, these data support that risk of reactivation is associated with lung inflammation and higher bacterial burden in macaques with latent Mtb infection.

  15. Tuberculosis and latent tuberculosis infection among healthcare workers in Kisumu, Kenya.

    Science.gov (United States)

    Agaya, Janet; Nnadi, Chimeremma D; Odhiambo, Joseph; Obonyo, Charles; Obiero, Vincent; Lipke, Virginia; Okeyo, Elisha; Cain, Kevin; Oeltmann, John E

    2015-12-01

    To assess prevalence and occupational risk factors of latent TB infection and history of TB disease ascribed to work in a healthcare setting in western Kenya. We conducted a cross-sectional survey among healthcare workers in western Kenya in 2013. They were recruited from dispensaries, health centres and hospitals that offer both TB and HIV services. School workers from the health facilities' catchment communities were randomly selected to serve as the community comparison group. Latent TB infection was diagnosed by tuberculin skin testing. HIV status of participants was assessed. Using a logistic regression model, we determined the adjusted odds of latent TB infection among healthcare workers compared to school workers; and among healthcare workers only, we assessed work-related risk factors for latent TB infection. We enrolled 1005 healthcare workers and 411 school workers. Approximately 60% of both groups were female. A total of 22% of 958 healthcare workers and 12% of 392 school workers tested HIV positive. Prevalence of self-reported history of TB disease was 7.4% among healthcare workers and 3.6% among school workers. Prevalence of latent TB infection was 60% among healthcare workers and 48% among school workers. Adjusted odds of latent TB infection were 1.5 times higher among healthcare workers than school workers (95% confidence interval 1.2-2.0). Healthcare workers at all three facility types had similar prevalence of latent TB infection (P = 0.72), but increasing years of employment was associated with increased odds of LTBI (P Kenya which offer TB and HIV services are at increased risk of latent TB infection, and the risk is similar across facility types. Implementation of WHO-recommended TB infection control measures are urgently needed in health facilities to protect healthcare workers. © 2015 John Wiley & Sons Ltd.

  16. Latent-Trait Latent-Class Analysis of Self-disclosure in the Work Environment

    NARCIS (Netherlands)

    Maij - de Meij, A.M.; Kelderman, H.; van der Flier, H.

    2005-01-01

    Based on the literature about self-disclosure, it was hypothesized that different groups of subjects differ in their pattern of self-disclosure with respect to different areas of social interaction. An extended latent-trait latent-class model was proposed to describe these general patterns of

  17. Latent-trait latent-class analysis of selfdisclosure in the work environment

    NARCIS (Netherlands)

    Maij - de Meij, A.M.; Kelderman, H.; van der Flier, H.

    2006-01-01

    Based on the literature about self-disclosure, it was hypothesized that different groups of subjects differ in their pattern of self-disclosure with respect to different areas of social interaction. An extended latent-trait latent-class model was proposed to describe these general patterns of

  18. Latent-Trait Latent-Class Analysis of Self-Disclosure in the Work Environment

    Science.gov (United States)

    Maij-de Meij, Annette M.; Kelderman, Henk; van der Flier, Henk

    2005-01-01

    Based on the literature about self-disclosure, it was hypothesized that different groups of subjects differ in their pattern of self-disclosure with respect to different areas of social interaction. An extended latent-trait latent-class model was proposed to describe these general patterns of self-disclosure. The model was used to analyze the data…

  19. Latent-trait latent-class analysis of selfdisclosure in the work environment

    NARCIS (Netherlands)

    Maij - de Meij, A.M.; Kelderman, H.; van der Flier, H.

    2005-01-01

    Based on the literature about self-disclosure, it was hypothesized that different groups of subjects differ in their pattern of self-disclosure with respect to different areas of social interaction. An extended latent-trait latent-class model was proposed to describe these general patterns of

  20. Solar heating system

    Science.gov (United States)

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  1. Improved solar heating systems

    Science.gov (United States)

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  2. Latent Growth and Dynamic Structural Equation Models.

    Science.gov (United States)

    Grimm, Kevin J; Ram, Nilam

    2018-05-07

    Latent growth models make up a class of methods to study within-person change-how it progresses, how it differs across individuals, what are its determinants, and what are its consequences. Latent growth methods have been applied in many domains to examine average and differential responses to interventions and treatments. In this review, we introduce the growth modeling approach to studying change by presenting different models of change and interpretations of their model parameters. We then apply these methods to examining sex differences in the development of binge drinking behavior through adolescence and into adulthood. Advances in growth modeling methods are then discussed and include inherently nonlinear growth models, derivative specification of growth models, and latent change score models to study stochastic change processes. We conclude with relevant design issues of longitudinal studies and considerations for the analysis of longitudinal data.

  3. Learning Latent Structure in Complex Networks

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai

    such as the Modularity, it has recently been shown that latent structure in complex networks is learnable by Bayesian generative link distribution models (Airoldi et al., 2008, Hofman and Wiggins, 2008). In this paper we propose a new generative model that allows representation of latent community structure......Latent structure in complex networks, e.g., in the form of community structure, can help understand network dynamics, identify heterogeneities in network properties, and predict ‘missing’ links. While most community detection algorithms are based on optimizing heuristic clustering objectives...... as in the previous Bayesian approaches and in addition allows learning of node specific link properties similar to that in the modularity objective. We employ a new relaxation method for efficient inference in these generative models that allows us to learn the behavior of very large networks. We compare the link...

  4. A Multinomial Probit Model with Latent Factors

    DEFF Research Database (Denmark)

    Piatek, Rémi; Gensowski, Miriam

    2017-01-01

    be meaningfully linked to an economic model. We provide sufficient conditions that make this structure identified and interpretable. For inference, we design a Markov chain Monte Carlo sampler based on marginal data augmentation. A simulation exercise shows the good numerical performance of our sampler......We develop a parametrization of the multinomial probit model that yields greater insight into the underlying decision-making process, by decomposing the error terms of the utilities into latent factors and noise. The latent factors are identified without a measurement system, and they can...

  5. PCM-air heat exchangers for free-cooling applications in buildings: Experimental results of two real-scale prototypes

    International Nuclear Information System (INIS)

    Lazaro, Ana; Dolado, Pablo; Marin, Jose M.; Zalba, Belen

    2009-01-01

    Latent heat storage using phase change materials (PCM) can be used for free-cooling. In this application low air temperature is used to solidify the PCM during the night and then during the next day, the inside air of a building can be cooled down by exchanging heat with PCM. Short times for charging and discharging the PCM are required. PCM have in general low thermal conductivity, therefore the heat exchanger design is very important to fulfil free-cooling requirements. This paper presents an experimental setup for testing PCM-air real-scale heat exchangers and the results for two real-scale prototypes. Results show that a heat exchanger using a PCM with lower thermal conductivity and lower total stored energy, but adequately designed, has higher cooling power and can be applied for free-cooling

  6. Total protein

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  7. Development of a tube-type solar still equipped with heat accumulation for irrigation

    International Nuclear Information System (INIS)

    Murase, Kazuo; Yamagishi, Yusuke; Iwashita, Yusuke; Sugino, Keita

    2008-01-01

    A tube-type solar still is found to be suitable for use in desert irrigation. The effectiveness of a heat accumulator with regard to distillate productivity is experimentally and numerically verified. The heat accumulator consists of tube bundles immersed in wax in order to utilize the latent heat of wax. The dynamic response to stepwise variation of irradiative intensity verified the contribution of wax to an increase of productivity only when the phase change of wax occurred. The effective distillate productivity was found to be 294.3 g/m 2 during the cyclic stepwise change of irradiative intensity, from 200 to 600 W/m 2 and back. Velocity vectors driven by natural convection and temperature contours estimated by numerical simulation verified the effectiveness of the heat accumulator especially after peak solar intensity. The latent heat of wax effectively contributed to a 15% increase in total distillate productivity per day. The still can feasibly meet irrigation water supply demands above an irrigative threshold of 17 MJ/m 2 d

  8. Variable importance in latent variable regression models

    NARCIS (Netherlands)

    Kvalheim, O.M.; Arneberg, R.; Bleie, O.; Rajalahti, T.; Smilde, A.K.; Westerhuis, J.A.

    2014-01-01

    The quality and practical usefulness of a regression model are a function of both interpretability and prediction performance. This work presents some new graphical tools for improved interpretation of latent variable regression models that can also assist in improved algorithms for variable

  9. Detection of latent prints by Raman imaging

    Science.gov (United States)

    Lewis, Linda Anne [Andersonville, TN; Connatser, Raynella Magdalene [Knoxville, TN; Lewis, Sr., Samuel Arthur

    2011-01-11

    The present invention relates to a method for detecting a print on a surface, the method comprising: (a) contacting the print with a Raman surface-enhancing agent to produce a Raman-enhanced print; and (b) detecting the Raman-enhanced print using a Raman spectroscopic method. The invention is particularly directed to the imaging of latent fingerprints.

  10. Statistical inference based on latent ability estimates

    NARCIS (Netherlands)

    Hoijtink, H.J.A.; Boomsma, A.

    The quality of approximations to first and second order moments (e.g., statistics like means, variances, regression coefficients) based on latent ability estimates is being discussed. The ability estimates are obtained using either the Rasch, oi the two-parameter logistic model. Straightforward use

  11. Residual Structures in Latent Growth Curve Modeling

    Science.gov (United States)

    Grimm, Kevin J.; Widaman, Keith F.

    2010-01-01

    Several alternatives are available for specifying the residual structure in latent growth curve modeling. Two specifications involve uncorrelated residuals and represent the most commonly used residual structures. The first, building on repeated measures analysis of variance and common specifications in multilevel models, forces residual variances…

  12. Forensic Chemistry: The Revelation of Latent Fingerprints

    Science.gov (United States)

    Friesen, J. Brent

    2015-01-01

    The visualization of latent fingerprints often involves the use of a chemical substance that creates a contrast between the fingerprint residues and the surface on which the print was deposited. The chemical-aided visualization techniques can be divided into two main categories: those that chemically react with the fingerprint residue and those…

  13. Endogenous Opioid-Masked Latent Pain Sensitization

    DEFF Research Database (Denmark)

    Pereira, Manuel P; Donahue, Renee R; Dahl, Jørgen B

    2015-01-01

    UNLABELLED: Following the resolution of a severe inflammatory injury in rodents, administration of mu-opioid receptor inverse agonists leads to reinstatement of pain hypersensitivity. The mechanisms underlying this form of latent pain sensitization (LS) likely contribute to the development of chr...

  14. Heat storage in forest biomass significantly improves energy balance closure particularly during stable conditions

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2009-08-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation nearly perfectly. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy

  15. An Evaluation of the Materialization of the Latent Functions of Education According to Student Perceptions

    Science.gov (United States)

    Aydogan, Ismail

    2009-01-01

    The problem of the study centers on determining the level to which such latent functions of education are materialized for university graduates. The study was conducted on a total of 231 graduate students undertaking a thesis or non-thesis Master's degree at Erciyes University School of Social Sciences. Data was collected by using a questionnaire…

  16. Incorporating direct marketing activity into latent attrition models

    NARCIS (Netherlands)

    Schweidel, David A.; Knox, George

    2013-01-01

    When defection is unobserved, latent attrition models provide useful insights about customer behavior and accurate forecasts of customer value. Yet extant models ignore direct marketing efforts. Response models incorporate the effects of direct marketing, but because they ignore latent attrition,

  17. Generalized latent variable modeling multilevel, longitudinal, and structural equation models

    CERN Document Server

    Skrondal, Anders; Rabe-Hesketh, Sophia

    2004-01-01

    This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models.

  18. Phase Transitions in Definite Total Spin States of Two-Component Fermi Gases.

    Science.gov (United States)

    Yurovsky, Vladimir A

    2017-05-19

    Second-order phase transitions have no latent heat and are characterized by a change in symmetry. In addition to the conventional symmetric and antisymmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, two phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respectively. The second-order transitions between the phases are characterized by discontinuities in specific heat. Unlike other phase transitions, the present ones are not caused by interactions and can appear even in ideal gases. Similar effects in Bose gases and strong interactions are discussed.

  19. Mycobacteria-specific cytokine responses as correlates of treatment response in active and latent tuberculosis.

    Science.gov (United States)

    Clifford, Vanessa; Tebruegge, Marc; Zufferey, Christel; Germano, Susie; Forbes, Ben; Cosentino, Lucy; McBryde, Emma; Eisen, Damon; Robins-Browne, Roy; Street, Alan; Denholm, Justin; Curtis, Nigel

    2017-08-01

    A biomarker indicating successful tuberculosis (TB) therapy would assist in determining appropriate length of treatment. This study aimed to determine changes in mycobacteria-specific antigen-induced cytokine biomarkers in patients receiving therapy for latent or active TB, to identify biomarkers potentially correlating with treatment success. A total of 33 adults with active TB and 36 with latent TB were followed longitudinally over therapy. Whole blood stimulation assays using mycobacteria-specific antigens (CFP-10, ESAT-6, PPD) were done on samples obtained at 0, 1, 3, 6 and 9 months. Cytokine responses (IFN-γ, IL-1ra, IL-2, IL-10, IL-13, IP-10, MIP-1β, and TNF-α) in supernatants were measured by Luminex xMAP immunoassay. In active TB cases, median IL-1ra (with CFP-10 and with PPD stimulation), IP-10 (CFP-10, ESAT-6), MIP-1β (ESAT-6, PPD), and TNF-α (ESAT-6) responses declined significantly over the course of therapy. In latent TB cases, median IL-1ra (CFP-10, ESAT-6, PPD), IL-2 (CFP-10, ESAT-6), and IP-10 (CFP-10, ESAT-6) responses declined significantly. Mycobacteria-specific cytokine responses change significantly over the course of therapy, and their kinetics in active TB differ from those observed in latent TB. In particular, mycobacteria-specific IL-1ra responses are potential correlates of successful therapy in both active and latent TB. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  20. Longitudinal Physical Activity Patterns Among Older Adults: A Latent Transition Analysis.

    Science.gov (United States)

    Mooney, Stephen J; Joshi, Spruha; Cerdá, Magdalena; Kennedy, Gary J; Beard, John R; Rundle, Andrew G

    2018-05-14

    Most epidemiologic studies of physical activity measure either total energy expenditure or engagement in a single activity type, such as walking. These approaches may gloss over important nuances in activity patterns. We performed a latent transition analysis to identify patterns of activity types as well as neighborhood and individual determinants of changes in those activity patterns over two years in a cohort of 2,023 older adult residents of New York City, NY, surveyed between 2011 and 2013. We identified seven latent classes: 1) Mostly Inactive, 2) Walking, 3) Exercise, 4) Household Activities and Walking, 5) Household Activities and Exercise, 6) Gardening and Household Activities, and 7) Gardening, Household Activities, and Exercise. The majority of subjects retained the same activity patterns between waves (54% unchanged between waves 1 and 2, 66% unchanged between waves 2 and 3).Most latent class transitions were between classes distinguished only by one form of activity, and only neighborhood unemployment was consistently associated with changing between activity latent classes. Future latent transition analyses of physical activity would benefit from larger cohorts and longer follow-up periods to assess predictors of and long-term impacts of changes in activity patterns.

  1. Review of PCMS and heat transfer enhancement methods applied ...

    African Journals Online (AJOL)

    Most available PCMs have low thermal conductivity making heat transfer enhancement necessary for power applications. The various methods of heat transfer enhancement in latent heat storage systems were also reviewed systematically. The review showed that three commercially - available PCMs are suitable in the ...

  2. Energy-Storage Modules for Active Solar Heating and Cooling

    Science.gov (United States)

    Parker, J. C.

    1982-01-01

    34 page report describes a melting salt hydrate that stores 12 times as much heat as rocks and other heavy materials. Energy is stored mostly as latent heat; that is, heat that can be stored and recovered without any significant change in temperature. Report also describes development, evaluation and testing of permanently sealed modules containing salt hydrate mixture.

  3. A quantitative determination of air-water heat fluxes in Hermit Lake, New Hampshire under varying meteorological conditions, time of day, and time of year

    Science.gov (United States)

    Kyper, Nicholas D.

    An extensive heat flux study is performed at Hermit Lake, New Hampshire from May 26, 2010 till November 7, 2010 to determine the effects of the five individual heat fluxes on Hermit Lake and the surrounding amphibian community. Hermit Lake was chosen due to the relatively long meteorological observations record within the White Mountains of New Hampshire, a new lakeside meteorological station, and ongoing phenology studies of the surrounding eco-system. Utilizing meteorological data from the lakeside weather station and moored water temperature sensors, the incident (Qi), blackbody ( Qbnet ), latent (Qe), sensible (Q s), and net (Qn) heat fluxes are calculated. The incident heat flux is the dominate term in the net flux, accounting for 93% of the variance found in Qn and producing a heat gain of ˜ 19x108 J m-2 throughout the period of study. This large gain produces a net gain of heat in the lake until October 1, 2010, where gains by Qi are offset by the large combined losses of Qbnet , Qs, and Qe thereby producing a gradual decline of heat within the lake. The latent and blackbody heat fluxes produce the largest losses of heat in the net heat flux with a total losses of ˜ -8x108 J m-2 and ˜ -7x108 J m-2, respectively. The sensible heat flux is negligible, producing a total minimal loss of ˜ -1x108 J m-2. Overall the net heat produces a net gain of heat of 2x108 J m-2 throughout the study period. Frog calls indicative of breeding are recorded from May 26, 2010 until August 16, 2010. The spring peeper, American toad, and green frog each produced enough actively calling days to be compared to air temperature, surface water temperature, and wind speed data, as well as data from the five heat fluxes. Linear regression analysis reveals that certain water temperature thresholds affect the calling activities of the spring peeper and green frog, while higher wind speeds have a dramatic effect on the calling activities of both the green frog and American toad. All three

  4. Modeling Nonlinear Change via Latent Change and Latent Acceleration Frameworks: Examining Velocity and Acceleration of Growth Trajectories

    Science.gov (United States)

    Grimm, Kevin; Zhang, Zhiyong; Hamagami, Fumiaki; Mazzocco, Michele

    2013-01-01

    We propose the use of the latent change and latent acceleration frameworks for modeling nonlinear growth in structural equation models. Moving to these frameworks allows for the direct identification of "rates of change" and "acceleration" in latent growth curves--information available indirectly through traditional growth…

  5. Total algorithms

    NARCIS (Netherlands)

    Tel, G.

    We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of

  6. Latent factors and route choice behaviour

    DEFF Research Database (Denmark)

    Prato, Carlo Giacomo

    . A reliable dataset was prepared through measures of internal consistency and sampling adequacy, and data were analyzed with a proper application of factor analysis to the route choice context. For the dataset obtained from the survey, six latent constructs affecting driver behaviour were extracted and scores...... on each factor for each survey participant were calculated. Path generation algorithms were examined with respect to observed behaviour, through a measure of reproduction with deterministic techniques of the routes indicated in the answers to the survey. Results presented evidence that the majority...... and Link Nested Logit. Estimates were produced from model specifications that considered level-of-service, label and facility dummy variables. Moreover, a modelling framework was designed to represent drivers’ choices as affected by the latent constructs extracted with factor analysis. Previous experience...

  7. Latent class models in financial data analysis

    Directory of Open Access Journals (Sweden)

    Attilio Gardini

    2007-10-01

    Full Text Available This paper deals with optimal international portfolio choice by developing a latent class approach based on the distinction between international and non-international investors. On the basis of micro data, we analyze the effects of many social, demographic, economic and financial characteristics on the probability to be an international investor. Traditional measures of equity home bias do not allow for the existence of international investment rationing operators. On the contrary, by resorting to latent class analysis it is possible to detect the unobservable distinction between international investors and investors who are precluded from operating into international financial markets and, therefore, to evaluate the role of these unobservable constraints on equity home bias.

  8. Exploring galaxy evolution with latent space walks

    Science.gov (United States)

    Schawinski, Kevin; Turp, Dennis; Zhang, Ce

    2018-01-01

    We present a new approach using artificial intelligence to perform data-driven forward models of astrophysical phenomena. We describe how a variational autoencoder can be used to encode galaxies to latent space, independently manipulate properties such as the specific star formation rate, and return it to real space. Such transformations can be used for forward modeling phenomena using data as the only constraints. We demonstrate the utility of this approach using the question of the quenching of star formation in galaxies.

  9. New Treatment Regimen for Latent Tuberculosis Infection

    Centers for Disease Control (CDC) Podcasts

    2012-03-15

    In this podcast, Dr. Kenneth Castro, Director of the Division of Tuberculosis Elimination, discusses the December 9, 2011 CDC guidelines for the use of a new regimen for the treatment of persons with latent tuberculosis infection.  Created: 3/15/2012 by National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP).   Date Released: 3/15/2012.

  10. Barcelona - Talent Latent 09 / Ahto Sooaru

    Index Scriptorium Estoniae

    Sooaru, Ahto

    2010-01-01

    Fotonäitusest "Talent Latent 09" Barcelonas Arts Santa Monica kunstikeskuses. Loetletud näitusel eksponeeritud fotode autorid. Pikemalt Rafael Milach'i (sünd. 1978), Lucia Ganieva, Javier Marquerie Thomas'i (sünd. 1986), Amaury da Cunha (sünd. 1976) töödest. Lühidalt ka teistest näitustest Arts Santa Monica kunstikeskuses

  11. Effect of heat generation from bone cement on bone tissue in total knee arthroplasty; Jinko kansetsu okikaeji no one cement no hatsunetsu ga seitai soshiki ni oyobosu eikyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M.; Uchida, T. [Kobe University, Kobe (Japan); Iwatsubo, T. [Kobe University, Kobe (Japan). Faculty of Engineering; Kurosawa, M.; Hashimoto, Y. [Kobe University, Kobe (Japan). Faculty of Medicine; Fukushima, H.

    1998-01-25

    Bone cement is often applied to fix the components in a surgical operation, such as TKA (total knee arthroplasty). In this paper, we consider the effect of heat generation from bone cement on bone tissue in TKA by using numerical simulation. First, we applied an axisymmetric model of tibia to finite element method and analyzed heat generation of bone cement. To confirm the results of analysis by experiment, we measured the temperature determined by 6 points i.e., 2 points each in component-cement interface, cement and bone-cement interface. As a result, the temperature determined by analysis agrees with that determined by experiment. Next, we proposed the evaluation formula of the bone necrosis. We constructed a bone necrosis map from the simulation. From the map, we found that the bone necrosis region was about 2 mm from the bone-cement interface. In addition, the bone necrosis is severe at the base of the tibial component. 7 refs., 15 figs., 3 tabs.

  12. Totally James

    Science.gov (United States)

    Owens, Tom

    2006-01-01

    This article presents an interview with James Howe, author of "The Misfits" and "Totally Joe". In this interview, Howe discusses tolerance, diversity and the parallels between his own life and his literature. Howe's four books in addition to "The Misfits" and "Totally Joe" and his list of recommended books with lesbian, gay, bisexual, transgender,…

  13. Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use

    International Nuclear Information System (INIS)

    Bouadila, Salwa; Kooli, Sami; Lazaar, Mariem; Skouri, Safa; Farhat, Abdelhamid

    2013-01-01

    Highlights: • A new solar air heater collector using a phase change material. • Experimental study of the new solar air heater collector with latent storage. • Energy and exergy analysis of the solar heater with latent storage collector. • Nocturnal use of solar air heater collector. - Abstract: An experimental study was conducted to evaluate the thermal performance of a new solar air heater collector using a packed bed of spherical capsules with a latent heat storage system. Using both first and second law of thermodynamics, the energetic and exegetic daily efficiencies were calculated in Closed/Opened and Opened cycle mode. The solar energy was stored in the packed bed through the diurnal period and extracted at night. The experimentally obtained results are used to analyze the performance of the system, based on temperature distribution in different localization of the collectors. The daily energy efficiency varied between 32% and 45%. While the daily exergy efficiency varied between 13% and 25%

  14. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Energy Technology Data Exchange (ETDEWEB)

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    This report is reviewing different heat driven technologies for the production of cooling. It is shown that the supply of cooling gives the highest fuel utilization if heat from CHP production is used for the production of cooling instead of maximizing the electricity output in a condensing plant. High fuel utilization is reached since the direct production of cooling from heat is a thermodynamic shortcut as compared to the production of electricity as an intermediate product before cooling is produced. At direct production of cooling from heat it is possible to obtain 70 percent of the obtainable cooling of an ideal process. If electricity is produced from heat, 70 percent electricity could be obtained as compared to an ideal process. If this electricity would be used for the production of cooling 70 percent of the obtainable cooling in an ideal process would the result. The total production of cooling from heat with electricity as an intermediate product would therefore give 50 percent cooling as compared to an ideal process. Hence, heat driven cooling will give more cooling for a given fuel input. In the review of the different heat driven cooling options it was found that there are many alternatives suitable for different applications. Absorption cooling is suitable for water distributed cooling if the latent cooling load is low. Desiccant cooling is believed to have a large market in climates (applications) with high latent cooling loads. In the energy efficiency evaluation it is found that the highest fuel utilization is given for a central production of electricity using either district heating or district cooling as the energy carrier to supply cooling. In fact the potential of district heating as the energy carrier is thought to be the largest in large cities with humid climates. Further it is found that the chiller heat sink can contribute significantly to the cost in many applications, especially if water and/or electricity consumption are issues with

  15. Mental toughness latent profiles in endurance athletes.

    Directory of Open Access Journals (Sweden)

    Joanna S Zeiger

    Full Text Available Mental toughness in endurance athletes, while an important factor for success, has been scarcely studied. An online survey was used to examine eight mental toughness factors in endurance athletes. The study aim was to determine mental toughness profiles via latent profile analysis in endurance athletes and whether associations exist between the latent profiles and demographics and sports characteristics. Endurance athletes >18 years of age were recruited via social media outlets (n = 1245, 53% female. Mental toughness was measured using the Sports Mental Toughness Questionnaire (SMTQ, Psychological Performance Inventory-Alternative (PPI-A, and self-esteem was measured using the Rosenberg Self-Esteem Scale (RSE. A three-class solution emerged, designated as high mental toughness (High MT, moderate mental toughness (Moderate MT and low mental toughness (Low MT. ANOVA tests showed significant differences between all three classes on all 8 factors derived from the SMTQ, PPI-A and the RSE. There was an increased odds of being in the High MT class compared to the Low MT class for males (OR = 1.99; 95% CI, 1.39, 2.83; P<0.001, athletes who were over 55 compared to those who were 18-34 (OR = 2.52; 95% CI, 1.37, 4.62; P<0.01, high sports satisfaction (OR = 8.17; 95% CI, 5.63, 11.87; P<0.001, and high division placement (OR = 2.18; 95% CI, 1.46,3.26; P<0.001. The data showed that mental toughness latent profiles exist in endurance athletes. High MT is associated with demographics and sports characteristics. Mental toughness screening in athletes may help direct practitioners with mental skills training.

  16. Using existing questionnaires in latent class analysis

    DEFF Research Database (Denmark)

    Nielsen, Anne Molgaard; Vach, Werner; Kent, Peter

    2016-01-01

    BACKGROUND: Latent class analysis (LCA) is increasingly being used in health research, but optimal approaches to handling complex clinical data are unclear. One issue is that commonly used questionnaires are multidimensional, but expressed as summary scores. Using the example of low back pain (LBP......), the aim of this study was to explore and descriptively compare the application of LCA when using questionnaire summary scores and when using single items to subgrouping of patients based on multidimensional data. MATERIALS AND METHODS: Baseline data from 928 LBP patients in an observational study were...

  17. Interferon-gamma release assay for the diagnosis of latent tuberculosis infection: A latent-class analysis.

    Directory of Open Access Journals (Sweden)

    Tan N Doan

    Full Text Available Accurate diagnosis and subsequent treatment of latent tuberculosis infection (LTBI is essential for TB elimination. However, the absence of a gold standard test for diagnosing LTBI makes assessment of the true prevalence of LTBI and the accuracy of diagnostic tests challenging. Bayesian latent class models can be used to make inferences about disease prevalence and the sensitivity and specificity of diagnostic tests using data on the concordance between tests. We performed the largest meta-analysis to date aiming to evaluate the performance of tuberculin skin test (TST and interferon-gamma release assays (IGRAs for LTBI diagnosis in various patient populations using Bayesian latent class modelling.Systematic search of PubMeb, Embase and African Index Medicus was conducted without date and language restrictions on September 11, 2017 to identify studies that compared the performance of TST and IGRAs for LTBI diagnosis. Two IGRA methods were considered: QuantiFERON-TB Gold In Tube (QFT-GIT and T-SPOT.TB. Studies were included if they reported 2x2 agreement data between TST and QFT-GIT or T-SPOT.TB. A Bayesian latent class model was developed to estimate the sensitivity and specificity of TST and IGRAs in various populations, including immune-competent adults, immune-compromised adults and children. A TST cut-off value of 10 mm was used for immune-competent subjects and 5 mm for immune-compromised individuals.A total of 157 studies were included in the analysis. In immune-competent adults, the sensitivity of TST and QFT-GIT were estimated to be 84% (95% credible interval [CrI] 82-85% and 52% (50-53%, respectively. The specificity of QFT-GIT was 97% (96-97% in non-BCG-vaccinated and 93% (92-94% in BCG-vaccinated immune-competent adults. The estimated figures for TST were 100% (99-100% and 79% (76-82%, respectively. T-SPOT.TB has comparable specificity (97% for both tests and better sensitivity (68% versus 52% than QFT-GIT in immune-competent adults

  18. Aspects of physicochemical methods for the detection of latent fingerprints

    International Nuclear Information System (INIS)

    Knowles, A.M.

    1978-01-01

    This paper reviews physicochemical methods of detecting latent finger-prints on a wide range of materials commonly found at the scene of a crime, with particular emphasis placed on the newer autoradiographic techniques. This is set against a description of studies on the fundamental nature of the latent fingerprint and its host substrate, with a brief review of the history of reagents used in latent fingerprint examination. (author)

  19. Use of a Latent Topic Model for Characteristic Extraction from Health Checkup Questionnaire Data.

    Science.gov (United States)

    Hatakeyama, Y; Miyano, I; Kataoka, H; Nakajima, N; Watabe, T; Yasuda, N; Okuhara, Y

    2015-01-01

    When patients complete questionnaires during health checkups, many of their responses are subjective, making topic extraction difficult. Therefore, the purpose of this study was to develop a model capable of extracting appropriate topics from subjective data in questionnaires conducted during health checkups. We employed a latent topic model to group the lifestyle habits of the study participants and represented their responses to items on health checkup questionnaires as a probability model. For the probability model, we used latent Dirichlet allocation to extract 30 topics from the questionnaires. According to the model parameters, a total of 4381 study participants were then divided into groups based on these topics. Results from laboratory tests, including blood glucose level, triglycerides, and estimated glomerular filtration rate, were compared between each group, and these results were then compared with those obtained by hierarchical clustering. If a significant (p topic model and hierarchical clustering grouping revealed that, in the latent topic model method, a small group of participants who reported having subjective signs of urinary disorder were allocated to a single group. The latent topic model is useful for extracting characteristics from a small number of groups from questionnaires with a large number of items. These results show that, in addition to chief complaints and history of past illness, questionnaire data obtained during medical checkups can serve as useful judgment criteria for assessing the conditions of patients.

  20. A Framework for Reproducible Latent Fingerprint Enhancements.

    Science.gov (United States)

    Carasso, Alfred S

    2014-01-01

    Photoshop processing of latent fingerprints is the preferred methodology among law enforcement forensic experts, but that appproach is not fully reproducible and may lead to questionable enhancements. Alternative, independent, fully reproducible enhancements, using IDL Histogram Equalization and IDL Adaptive Histogram Equalization, can produce better-defined ridge structures, along with considerable background information. Applying a systematic slow motion smoothing procedure to such IDL enhancements, based on the rapid FFT solution of a Lévy stable fractional diffusion equation, can attenuate background detail while preserving ridge information. The resulting smoothed latent print enhancements are comparable to, but distinct from, forensic Photoshop images suitable for input into automated fingerprint identification systems, (AFIS). In addition, this progressive smoothing procedure can be reexamined by displaying the suite of progressively smoother IDL images. That suite can be stored, providing an audit trail that allows monitoring for possible loss of useful information, in transit to the user-selected optimal image. Such independent and fully reproducible enhancements provide a valuable frame of reference that may be helpful in informing, complementing, and possibly validating the forensic Photoshop methodology.

  1. Mental toughness latent profiles in endurance athletes.

    Science.gov (United States)

    Zeiger, Joanna S; Zeiger, Robert S

    2018-01-01

    Mental toughness in endurance athletes, while an important factor for success, has been scarcely studied. An online survey was used to examine eight mental toughness factors in endurance athletes. The study aim was to determine mental toughness profiles via latent profile analysis in endurance athletes and whether associations exist between the latent profiles and demographics and sports characteristics. Endurance athletes >18 years of age were recruited via social media outlets (n = 1245, 53% female). Mental toughness was measured using the Sports Mental Toughness Questionnaire (SMTQ), Psychological Performance Inventory-Alternative (PPI-A), and self-esteem was measured using the Rosenberg Self-Esteem Scale (RSE). A three-class solution emerged, designated as high mental toughness (High MT), moderate mental toughness (Moderate MT) and low mental toughness (Low MT). ANOVA tests showed significant differences between all three classes on all 8 factors derived from the SMTQ, PPI-A and the RSE. There was an increased odds of being in the High MT class compared to the Low MT class for males (OR = 1.99; 95% CI, 1.39, 2.83; Pathletes who were over 55 compared to those who were 18-34 (OR = 2.52; 95% CI, 1.37, 4.62; Pathletes. High MT is associated with demographics and sports characteristics. Mental toughness screening in athletes may help direct practitioners with mental skills training.

  2. Heat Pipes

    Science.gov (United States)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.

  3. Increased heat fluxes near a forest edge

    NARCIS (Netherlands)

    Klaassen, W; van Breugel, PB; Moors, EJ; Nieveen, JP

    2002-01-01

    Observations of sensible and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest. The enhancement averages to 56 W m(-2), or 16% of the net radiation, at fetches less than 400 m, equivalent to fetch to height ratios less

  4. Increased heat fluxes near a forest edge

    NARCIS (Netherlands)

    Klaassen, W.; Breugel, van P.B.; Moors, E.J.; Nieveen, J.P.

    2002-01-01

    Observations of sensible and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest. The enhancement averages to 56 W mm2, or 16 f the net radiation, at fetches less than 400 m, equivalent to fetch to height ratios less than

  5. The Latent Class Structure of Chinese Patients with Eating Disorders in Shanghai

    OpenAIRE

    ,; ,; ,; ,; ,; ,; ,; ,; ,; ,

    2017-01-01

    Background Eating disorder is culture related, and the clinical symptoms are different between eastern and western patients. So the validity of feeding and eating disorders in the upcoming ICD-11 guide for Chinese patients is unclear. Aims To explore the latent class structure of Chinese patients with eating disorder and the cross-cultural validity of the eating disorder section of the new ICD-11 guide in China. Methods A total of 379 patients with eating disorders at Shanghai Mental Health C...

  6. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  7. POTENTIAL USE OF PHASE CHANGE MATERIALS IN GREENHOUSES HEATING: COMPARISON WITH A TRADITIONAL SYSTEM

    Directory of Open Access Journals (Sweden)

    Claudio Caprara

    2009-09-01

    Full Text Available In order to use solar radiation as thermal energy source, heat storage equipments result necessary in each application where continuous supply is required, because of the natural unsteady intensity of radiation during the day. Thermal solar collectors are especially suitable for low temperature applications, since their efficiency decreases when an high inlet temperature of fluid flowing through them is established. On the other hand, low temperatures and low temperature gaps, above all, make very difficult to use traditional sensible heat storing units (water tanks, because of the very large amounts of material required. In this work, a traditional sensible heat storage system is compared with a latent heat storing unit based on phase change materials (PCMs. As a case study, a 840 m3 greenhouse heating application was considered with an inside constant temperature of 18°C. It is thought to be heated by using single layer plate thermal solar collectors as energy source. Inlet temperature of the collectors fluid (HTF was fixed at 35°C (little higher than melting temperature of PCMs and a constant flux of 12 l/m2 hour was established as technical usual value. At these conditions, 215m2 solar panels exposed surface resulted necessary. The sensible heat storage system considered here is a traditional water tank storing unit equipped with two pipe coils, respectively for heat exchanges with HTF from collectors and water flux for greenhouse heating. Available DT for heat exchange is estimated as the difference of minimum HTF temperature (in outlet from the collectors and the required water temperature for greenhouse heating. The latent heat storing unit is instead a series of copper rectangular plate shells which a phase change material is filled in (Na2SO4⋅10H2O. Heat transfer fluids flow through thin channels between adjacent plates, so that a large heat exchange available surface is achieved. The developed computational model (Labview software

  8. The Latent Class Structure of Chinese Patients with Eating Disorders in Shanghai.

    Science.gov (United States)

    Zheng, Yuchen; Kang, Qing; Huang, Jiabin; Jiang, Wenhui; Liu, Qiang; Chen, Han; Fan, Qing; Wang, Zhen; Chen, Jue; Xiao, Zeping

    2017-08-25

    Eating disorder is culture related, and the clinical symptoms are different between eastern and western patients. So the validity of feeding and eating disorders in the upcoming ICD-11 guide for Chinese patients is unclear. To explore the latent class structure of Chinese patients with eating disorder and the cross-cultural validity of the eating disorder section of the new ICD-11 guide in China. A total of 379 patients with eating disorders at Shanghai Mental Health Center were evaluated using the EDI questionnaire and a questionnaire developed by researchers from 2010 to 2016. SPSS 20.0 was used to enter data and analyze demographic data, and Latent GOLD was employed to conduct latent profile analysis. According to the results of latent profile analysis, patients with eating disorder were divided into five classes: low-weight fasting class (23.1%), non-fat-phobic binge/purge class (21.54%), low-fat-phobic binge class (19.27%), fat-phobic binge class (19.27%), and non-fat-phobic low-weight class (16.76%). Among the clinical symptoms extracted, there were significant differences in Body Mass Index (BMI), binge eating behavior, self-induced vomiting, laxative use and fat-phobic opinion; while there was no significant difference in restrictive food intake. Based on the clinical symptoms, there are five latent classes in Chinese patients with eating disorder, which is in accordance with the diagnostic categories of feeding and eating disorder in ICD-11. However, further work is needed in improving the fat-phobic opinion of patients with eating disorder and clarifying the BMI standard of thinness in the Chinese population.

  9. Heat pumps: heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  10. A Latent Class Approach to Estimating Test-Score Reliability

    Science.gov (United States)

    van der Ark, L. Andries; van der Palm, Daniel W.; Sijtsma, Klaas

    2011-01-01

    This study presents a general framework for single-administration reliability methods, such as Cronbach's alpha, Guttman's lambda-2, and method MS. This general framework was used to derive a new approach to estimating test-score reliability by means of the unrestricted latent class model. This new approach is the latent class reliability…

  11. Intercept Centering and Time Coding in Latent Difference Score Models

    Science.gov (United States)

    Grimm, Kevin J.

    2012-01-01

    Latent difference score (LDS) models combine benefits derived from autoregressive and latent growth curve models allowing for time-dependent influences and systematic change. The specification and descriptions of LDS models include an initial level of ability or trait plus an accumulation of changes. A limitation of this specification is that the…

  12. A Review of the Latent and Manifest Benefits (LAMB) Scale

    Science.gov (United States)

    Muller, Juanita; Waters, Lea

    2012-01-01

    The latent and manifest benefits (LAMB) scale (Muller, Creed, Waters & Machin, 2005) was designed to measure the latent and manifest benefits of employment and provide a single scale to test Jahoda's (1981) and Fryer's (1986) theories of unemployment. Since its publication in 2005 there have been 13 studies that have used the scale with 5692…

  13. Prevalence and risk factors of latent Tuberculosis among ...

    African Journals Online (AJOL)

    Background: Latent Tuberculosis treatment is a key tuberculosis control intervention. Adolescents are a high risk group that is not routinely treated in low income countries. Knowledge of latent Tuberculosis (TB) burden among adolescents may influence policy. Objectives: We determined the prevalence and risk factors of ...

  14. Gene Variants Associated with Antisocial Behaviour: A Latent Variable Approach

    Science.gov (United States)

    Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V.; Lee, Maria; Yrigollen, Carolyn M.; Pakstis, Andrew J.; Katsovich, Liliya; Olds, David L.; Grigorenko, Elena L.; Leckman, James F.

    2013-01-01

    Objective: The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Methods: Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a…

  15. Thermo-Economic Performance Analysis of a Regenerative Superheating Organic Rankine Cycle for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Zhonghe Han

    2017-10-01

    Full Text Available The Organic Rankine Cycle (ORC is a promising form of technology for recovering low-grade waste heat. In this study, a regenerative ORC system is established to recover the waste flue gas of 160 °C. Focusing on thermodynamic and economic performance while simultaneously considering the limitations of volume flow ratio (VFR and the effect of superheat, working fluid selection and parameter optimization have been investigated. The optimization of the evaporation temperature is carried out by analyzing the variation of net power output and specific investment cost (SIC. Then, the net power output, specific net power output, total exergy destruction rate, VFR, total capital cost, and levelized electricity cost (LEC are selected as criteria, and a fuzzy multi-criteria evaluation method is adopted to select a more suitable working fluid and determine the optimal degree of superheat. In addition, the preheating coefficient, latent heat coefficient, superheating coefficient, and internal heat coefficient were proposed to explore the effect of working fluid critical temperature on thermal efficiency. Research studies demonstrate that there is an optimal evaporation temperature, maximizing net power output and minimizing the SIC. Isohexane and butane have greater specific net power output due to greater latent heat. A suitable degree of superheat is not only conducive to improving the working capacity of working fluids, but also reduces the VFR, total capital cost, SIC, and LEC for different working fluids. Thus, the system’s thermodynamic and economic performance—as well as the operational stability—are improved. Among the six working fluids, butane exhibits the best comprehensive performance, and its optimal evaporation temperature and degree of superheat are 100 °C and 5 °C, respectively.

  16. Phase change heat transfer device for process heat applications

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Patterson, Mike; Utgikar, Vivek; Gunnerson, Fred

    2010-01-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ∼1300 K) and industrial scale power transport (≥50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via 'pumping a fluid', a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  17. Tweets clustering using latent semantic analysis

    Science.gov (United States)

    Rasidi, Norsuhaili Mahamed; Bakar, Sakhinah Abu; Razak, Fatimah Abdul

    2017-04-01

    Social media are becoming overloaded with information due to the increasing number of information feeds. Unlike other social media, Twitter users are allowed to broadcast a short message called as `tweet". In this study, we extract tweets related to MH370 for certain of time. In this paper, we present overview of our approach for tweets clustering to analyze the users' responses toward tragedy of MH370. The tweets were clustered based on the frequency of terms obtained from the classification process. The method we used for the text classification is Latent Semantic Analysis. As a result, there are two types of tweets that response to MH370 tragedy which is emotional and non-emotional. We show some of our initial results to demonstrate the effectiveness of our approach.

  18. Iron appetite and latent learning in rats.

    Science.gov (United States)

    Woods, S C; Vasselli, J R; Milam, K M

    1977-11-01

    Two experiments are reported which show that rats are capable of forming an association between the presence of iron in a solution when it is not specifically needed and a subsequent state of iron deficiency. Specifically, rats were trained to lever press for water while thirsty. One group received ferrous ions in addition to the water. When these rats were subsequently rendered iron deficient, they lever pressed more under extinction conditions as a graded function of lower hemoglobin levels. Controls that either did not receive ferrous ions during training or received solutions other than ferrous solutions during training did not respond this way under extinction conditions. This is therefore a type of latent learning previously demonstrated only for sodium appetite.

  19. Data demonstrating the influence of the latent storage efficiency on the dynamic thermal characteristics of a PCM layer

    Directory of Open Access Journals (Sweden)

    D. Mazzeo

    2017-06-01

    Full Text Available Dynamic thermal characteristics, for each month of the year, of PCM layers with different melting temperatures and thermophysical properties, in a steady periodic regime, were determined (Mazzeo et al., 2017 [1]. The layer is subjected to climatic conditions characterizing two locations, one with a continental climate and the second one with a Mediterranean climate. This data article provides detailed numerical data, as a function of the latent storage efficiency, including monthly average daily values: of the latent energy fraction, of the decrement factors of the temperature, of the heat flux and of the energy, and of the time lags of the maximum and minimum peaks of the temperature and of the heat flux.

  20. Latent Virus Reactivation in Space Shuttle Astronauts

    Science.gov (United States)

    Mehta, S. K.; Crucian, B. E.; Stowe, R. P.; Sams, C.; Castro, V. A.; Pierson, D. L.

    2011-01-01

    Latent virus reactivation was measured in 17 astronauts (16 male and 1 female) before, during, and after short-duration Space Shuttle missions. Blood, urine, and saliva samples were collected 2-4 months before launch, 10 days before launch (L-10), 2-3 hours after landing (R+0), 3 days after landing (R+14), and 120 days after landing (R+120). Epstein-Barr virus (EBV) DNA was measured in these samples by quantitative polymerase chain reaction. Varicella-zoster virus (VZV) DNA was measured in the 381 saliva samples and cytomegalovirus (CMV) DNA in the 66 urine samples collected from these subjects. Fourteen astronauts shed EBV DNA in 21% of their saliva samples before, during, and after flight, and 7 astronauts shed VZV in 7.4% of their samples during and after flight. It was interesting that shedding of both EBV and VZV increased during the flight phase relative to before or after flight. In the case of CMV, 32% of urine samples from 8 subjects contained DNA of this virus. In normal healthy control subjects, EBV shedding was found in 3% and VZV and CMV were found in less than 1% of the samples. The circadian rhythm of salivary cortisol measured before, during, and after space flight did not show any significant difference between flight phases. These data show that increased reactivation of latent herpes viruses may be associated with decreased immune system function, which has been reported in earlier studies as well as in these same subjects (data not reported here).

  1. ENDOGENOUS ANALGESIA, DEPENDENCE, AND LATENT PAIN SENSITIZATION

    Science.gov (United States)

    Taylor, Bradley K; Corder, Gregory

    2015-01-01

    Endogenous activation of μ-opioid receptors (MORs) provides relief from acute pain. Recent studies have established that tissue inflammation produces latent pain sensitization (LS) that is masked by spinal MOR signaling for months, even after complete recovery from injury and re-establishment of normal pain thresholds. Disruption with MOR inverse agonists reinstates pain and precipitates cellular, somatic and aversive signs of physical withdrawal; this phenomenon requires N-methyl-D-aspartate receptor-mediated activation of calcium-sensitive adenylyl cyclase type 1 (AC1). In this review, we present a new conceptual model of the transition from acute to chronic pain, based on the delicate balance between LS and endogenous analgesia that develops after painful tissue injury. First, injury activates pain pathways. Second, the spinal cord establishes MOR constitutive activity (MORCA) as it attempts to control pain. Third, over time, the body becomes dependent on MORCA, which paradoxically sensitizes pain pathways. Stress or injury escalates opposing inhibitory and excitatory influences on nociceptive processing as a pathological consequence of increased endogenous opioid tone. Pain begets MORCA begets pain vulnerability in a vicious cycle. The final result is a silent insidious state characterized by the escalation of two opposing excitatory and inhibitory influences on pain transmission: LS mediated by AC1 (which maintains accelerator), and pain inhibition mediated by MORCA (which maintains the brake). This raises the prospect that opposing homeostatic interactions between MORCA analgesia and latent NMDAR–AC1-mediated pain sensitization create a lasting vulnerability to develop chronic pain. Thus, chronic pain syndromes may result from a failure in constitutive signaling of spinal MORs and a loss of endogenous analgesic control. An overarching long-term therapeutic goal of future research is to alleviate chronic pain by either: a) facilitating endogenous opioid

  2. Laser interrogation of latent vehicle registration number

    Energy Technology Data Exchange (ETDEWEB)

    Russo, R.E. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.]|[Lawrence Livermore National Lab., CA (United States). Forensic Science Center; Pelkey, G.E. [City of Livermore Police Dept., CA (United States); Grant, P.; Whipple, R.E.; Andresen, B.D. [Lawrence Livermore National Lab., CA (United States). Forensic Science Center

    1994-09-01

    A recent investigation involved automobile registration numbers as important evidentiary specimens. In California, as in most states, small, thin metallic decals are issued to owners of vehicles each year as the registration is renewed. The decals are applied directly to the license plate of the vehicle and typically on top of the previous year`s expired decal. To afford some degree of security, the individual registration decals have been designed to tear easily; they cannot be separated from each other, but can be carefully removed intact from the metal license plate by using a razor blade. In September 1993, the City of Livermore Police Department obtained a blue 1993 California decal that had been placed over an orange 1992 decal. The two decals were being investigated as possible evidence in a case involving vehicle registration fraud. To confirm the suspicion and implicate a suspect, the department needed to known the registration number on the bottom (completely covered) 1992 decal. The authors attempted to use intense and directed light to interrogate the colored stickers. Optical illumination using a filtered white-light source partially identified the latent number. However, the most successful technique used a tunable dye laser pumped by a pulsed Nd:YAG laser. By selectively tuning the wavelength and intensity of the dye laser, backlit illumination of the decals permitted visualization of the underlying registration number through the surface of the top sticker. With optimally-tuned wavelength and intensity, 100% accuracy was obtained in identifying the sequence of latent characters. The advantage of optical techniques is their completely nondestructive nature, thus preserving the evidence for further interrogation or courtroom presentation.

  3. A Probability Distribution over Latent Causes, in the Orbitofrontal Cortex.

    Science.gov (United States)

    Chan, Stephanie C Y; Niv, Yael; Norman, Kenneth A

    2016-07-27

    The orbitofrontal cortex (OFC) has been implicated in both the representation of "state," in studies of reinforcement learning and decision making, and also in the representation of "schemas," in studies of episodic memory. Both of these cognitive constructs require a similar inference about the underlying situation or "latent cause" that generates our observations at any given time. The statistically optimal solution to this inference problem is to use Bayes' rule to compute a posterior probability distribution over latent causes. To test whether such a posterior probability distribution is represented in the OFC, we tasked human participants with inferring a probability distribution over four possible latent causes, based on their observations. Using fMRI pattern similarity analyses, we found that BOLD activity in the OFC is best explained as representing the (log-transformed) posterior distribution over latent causes. Furthermore, this pattern explained OFC activity better than other task-relevant alternatives, such as the most probable latent cause, the most recent observation, or the uncertainty over latent causes. Our world is governed by hidden (latent) causes that we cannot observe, but which generate the observations we see. A range of high-level cognitive processes require inference of a probability distribution (or "belief distribution") over the possible latent causes that might be generating our current observations. This is true for reinforcement learning and decision making (where the latent cause comprises the true "state" of the task), and for episodic memory (where memories are believed to be organized by the inferred situation or "schema"). Using fMRI, we show that this belief distribution over latent causes is encoded in patterns of brain activity in the orbitofrontal cortex, an area that has been separately implicated in the representations of both states and schemas. Copyright © 2016 the authors 0270-6474/16/367817-12$15.00/0.

  4. Assessing Trust and Effectiveness in Virtual Teams: Latent Growth Curve and Latent Change Score Models

    Directory of Open Access Journals (Sweden)

    Michael D. Coovert

    2017-08-01

    Full Text Available Trust plays a central role in the effectiveness of work groups and teams. This is the case for both face-to-face and virtual teams. Yet little is known about the development of trust in virtual teams. We examined cognitive and affective trust and their relationship to team effectiveness as reflected through satisfaction with one’s team and task performance. Latent growth curve analysis reveals both trust types start at a significant level with individual differences in that initial level. Cognitive trust follows a linear growth pattern while affective trust is overall non-linear, but becomes linear once established. Latent change score models are utilized to examine change in trust and also its relationship with satisfaction with the team and team performance. In examining only change in trust and its relationship to satisfaction there appears to be a straightforward influence of trust on satisfaction and satisfaction on trust. However, when incorporated into a bivariate coupling latent change model the dynamics of the relationship are revealed. A similar pattern holds for trust and task performance; however, in the bivariate coupling change model a more parsimonious representation is preferred.

  5. Solar heat storages in district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This report gives information on the work carried out and the results obtained in Denmark on storages for large solar heating plants in district heating networks. Especially in Denmark the share of district heating has increased to a large percentage. In 1981 around 33% of all dwellings in DK were connected to a district heating network, while the percentage in 2006 was about 60% (in total 1.5 mio. dwellings). In the report storage types for short term storage and long term storages are described. Short term storages are done as steel tanks and is well established technology widely used in district heating networks. Long term storages are experimental and used in connection with solar heating. A number of solar heating plants have been established with either short term or long term storages showing economy competitive with normal energy sources. Since, in the majority of the Danish district heating networks the heat is produced in co-generation plants, i.e. plants producing both electricity and heat for the network, special attention has been put on the use of solar energy in combination with co-generation. Part of this report describes that in the liberalized electricity market central solar heating plants can also be advantageous in combination with co-generation plants. (au)

  6. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  7. Total Thyroidectomy

    Directory of Open Access Journals (Sweden)

    Lopez Moris E

    2016-06-01

    Full Text Available Total thyroidectomy is a surgery that removes all the thyroid tissue from the patient. The suspect of cancer in a thyroid nodule is the most frequent indication and it is presume when previous fine needle puncture is positive or a goiter has significant volume increase or symptomes. Less frequent indications are hyperthyroidism when it is refractory to treatment with Iodine 131 or it is contraindicated, and in cases of symptomatic thyroiditis. The thyroid gland has an important anatomic relation whith the inferior laryngeal nerve and the parathyroid glands, for this reason it is imperative to perform extremely meticulous dissection to recognize each one of these elements and ensure their preservation. It is also essential to maintain strict hemostasis, in order to avoid any postoperative bleeding that could lead to a suffocating neck hematoma, feared complication that represents a surgical emergency and endangers the patient’s life.It is essential to run a formal technique, without skipping steps, and maintain prudence and patience that should rule any surgical act.

  8. Data on the interexaminer variation of minutia markup on latent fingerprints.

    Science.gov (United States)

    Ulery, Bradford T; Hicklin, R Austin; Roberts, Maria Antonia; Buscaglia, JoAnn

    2016-09-01

    The data in this article supports the research paper entitled "Interexaminer variation of minutia markup on latent fingerprints" [1]. The data in this article describes the variability in minutia markup during both analysis of the latents and comparison between latents and exemplars. The data was collected in the "White Box Latent Print Examiner Study," in which each of 170 volunteer latent print examiners provided detailed markup documenting their examinations of latent-exemplar pairs of prints randomly assigned from a pool of 320 pairs. Each examiner examined 22 latent-exemplar pairs; an average of 12 examiners marked each latent.

  9. Morphometry of latent palmprints as a function of time.

    Science.gov (United States)

    Barros, Rodrigo M; Faria, Bruna E F; Kuckelhaus, Selma A S

    2013-12-01

    In many crimes, the elapsed time between production and collecting fingermark traces is crucial. and a method able to detect the aging of latent prints would represent an improvement in forensic procedures. Considering that as the latent print gets older, substantial changes in the relative proportion of individual components secreted by skin glands could affect the morphology of ridges, morphometry could be a potential tool to assess the aging of latent fingermarks. Then, considering the very limited research in the field, the present work aims to evaluate the morphometry of latent palmprint ridges, as a function of time, in order to identify an aging pattern. The latent marks were deposited by 20 donors on glass microscope slides considering pressure and contact angle, and then were maintained under controlled environmental conditions. The morphometric study was conducted on marks developed with magnetic powder in 7 different time intervals after deposition (0, 5, 10, 15, 20, 25 or 30 days); 60 ridges were evaluated for each developed mark. The results showed that: 1) the method for the replacement and mixing of skin secretions on the palm was appropriate to ensure reproducibility of latent prints, and 2) considering the studied group, there was a time-dependent reduction in the width of ridges and on the percentage of visible ridges over 30 days. Results suggest the possibility of using the morphometric method to determine an aging profile of latent palmprints on glass surface, aiming for forensic purposes. © 2013.

  10. Heat transfer

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  11. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  12. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  13. The latent rationality of risky decisions

    Energy Technology Data Exchange (ETDEWEB)

    Japp, K.P. [Bielefeld Univ. (Germany). Faculty for Sociology

    1999-12-01

    . So rationality will stay latent as the operation of re-entry. It may become manifest as legitimating of something else, for instance as rational choice. In everyday life re-entries emerge as compromise. But compromises conceal the relevant difference. In scientific life re-entries emerge as mixed scanning. But mixed scanning displays a mix, not a difference. And it is always a difference which makes a difference. This remains latent.

  14. The latent rationality of risky decisions

    International Nuclear Information System (INIS)

    Japp, K.P.

    1999-01-01

    The general question of rationality has changed from the old-fashioned difference of means and ends to the modern difference of system and environment. Organizations as social systems producing and reproducing decisions translate this difference into the difference of stability and variety. The question then is: In which way can the difference between stability and variety express rationality? - In the temporal dimension of risk-taking, re-entries may be expressed as 'present futures' or 'future presences'. These expressions indicate both: The irresolvable uncertainty of any risk-taking, indicated by open futures, and its boundedness by self-application of distinctions, e.g. projected futures from the background of a known past. - In the material dimension of risk-taking, re-entries may be expressed as 'stable flexibility' or 'flexible stability'. Again, these expressions indicate both: The irresolvable uncertainty of any risk-taking, indicted by open flexibilities, and its boundedness by self-application of distinctions, e.g. flexibility and stability after learning the respective costs of the single options. In the social dimension of risk-taking, re-entries may be expressed as 'pragmatic dissent' or 'controversial pragmatism'. Again, these expressions indicate both: The irresolvable uncertainty of any risk-taking, indicated by open dissent or controversies, and its boundedness by self-application of distinctions, e.g. pragmatic agreements and irresolvable dissent. Again, all three asymmetries represent re-entries. The built-in preferences simply do not work without the subtleties of re-entries, at least when these processes are described by sociologically informed observers. Who else should know that he or she is operating on the basis of something called re-entries? In everyday life communication, no one sees a thing like that since every observation has an in-built bias for one side of a distinction. So rationality will stay latent as the operation of re

  15. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta......SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed...

  16. Fiscal 1976 Sunshine Project result report. R and D on solar heat power generation system (R and D on tower solar collection system); 1976 nendo taiyonetsu hatsuden system no kenkyu kaihatsu seika hokokusho. Tower shuko hoshiki system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-05-27

    This report describes the fiscal 1976 research result on tower solar collection system for solar heat power generation systems, and summarizes main specifications of the subsystem, equipment and control of the 1,000kW pilot plant. Based on daily and monthly long-time simulation, various programs were prepared for power generation, heat storage and operation rate of equipment, and real arrangements for total simulation were made. The output fluctuation rate less than 1%/min was obtained by studying a control system flexible for drastic fluctuation of solar radiation using the newly prepared dynamic characteristic equation for a steam loop. 10kW solar collection test was carried out using a pancake type heat absorber. Practical basic analysis was made on a heliostat driving system. A cavity type heat absorber was adopted in consideration of cost, operability and heat discharge. Based on thermal characteristics of a heat storage type heat exchanger using molten salt as heat medium, basic experiment was made on a compact latent heat type heat exchanger. Basic studies were also made on reflector, selective absorption surface and heat storage material. (NEDO)

  17. Towards an HIV-1 cure: measuring the latent reservoir

    Science.gov (United States)

    Bruner, Katherine M.; Hosmane, Nina N.; Siliciano, Robert F.

    2015-01-01

    The latent reservoir of HIV-1 in resting memory CD4+ T cells serves as a major barrier to curing HIV-1 infection. While many PCR- and culture-based assays have been used to measure the size of the latent reservoir, correlation between results of different assays is poor and recent studies indicate that no available assay provides an accurate measurement of reservoir size. The discrepancies between assays are a hurdle to clinical trials that aim to measure the efficacy of HIV-1 eradication strategies. Here we describe the advantages and disadvantages of various approaches to measure the latent reservoir. PMID:25747663

  18. Heat cascading regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  19. Separate sensible and latent cooling system: A preliminary analysis of a novel approach

    Energy Technology Data Exchange (ETDEWEB)

    Nawaz, Kashif [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-01

    Separate sensible and latent cooling systems offer significant increases in the overall performance of cooling/dehumidification systems compared with conventional vapor-compression air-conditioning systems. Key to the energy efficiency of such systems is the performance of the heat and mass exchangers that provide sensible cooling and dehumidification. A novel design is proposed for dehumidification applications, deploying metal foam as a substrate coated with solid desiccants. The current report provides some preliminary information regarding the development of the technology and discusses factors such as manufacturing of desiccants, characterization of desiccants, and development of the metal foam heat exchanger. All three aspects provide the necessary infrastructure for further development and validation of the proposed concept.

  20. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1982-01-01

    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  1. The Stability of Social Desirability: A Latent Change Analysis.

    Science.gov (United States)

    Haberecht, Katja; Schnuerer, Inga; Gaertner, Beate; John, Ulrich; Freyer-Adam, Jennis

    2015-08-01

    Social desirability has been shown to be stable in samples with higher school education. However, little is known about the stability of social desirability in more heterogeneous samples differing in school education. This study aimed to investigate the stability of social desirability and which factors predict interindividual differences in intraindividual change. As part of a randomized controlled trial, 1,243 job seekers with unhealthy alcohol use were systematically recruited at three job agencies. A total of 1,094 individuals (87.8%) participated in at least one of two follow-ups (6 and 15 months after baseline) and constitute this study's sample. The Social Desirability Scale-17 was applied. Two latent change models were conducted: Model 1 tested for interindividual differences in intraindividual change of social desirability between both follow-ups; Model 2 included possible predictors (age, sex, education, current employment status) of interindividual differences in intraindividual change. Model 1 revealed a significant decrease of social desirability over time. Model 2 revealed school education to be the only significant predictor of change. These findings indicate that stability of social desirability may depend on school education. It may not be as stable in individuals with higher school education as in individuals with lower education. © 2014 Wiley Periodicals, Inc.

  2. Is there any role of latent toxoplasmosis in schizophrenia disease?

    Science.gov (United States)

    Karabulut, Nuran; Bilgiç, Serkan; Gürok, Mehmet Gürkan; Karaboğa, Fatih

    2015-09-01

    A large number of studies have hypothesized that Toxoplasma gondii is a potentially relevant etiological factor in some cases of schizophrenia. By contrast, some studies have disproved this association. The aim of this study was to investigate whether latent toxoplasmosis has any role in schizophrenia disease. Additionally, the association between T. gondii and subtypes of schizophrenia, and the impacts of toxoplasmosis on psychopathology were examined in the study. A total of 85 patients with schizophrenia and 60 healthy volunteers were included in this prospective study. Immunoglobulin G (IgG) antibody to T. gondii was examined by enzyme-linked immune-sorbent assay method. Seropositivity rates were 43.5% for the patients with schizophrenia and 43.3% for the healthy controls (odds ratio: 1.008, 95% confidence interval: 0.517-1.964, p = 0.981).There was no significant difference in T. gondii IgG positivity between the schizophrenia and control groups with respect to sex and age. The difference in seroprevalence of T. gondii IgG antibodies among the schizophrenia subtypes was not statistically significant (p = 0.934). No significant difference was found in Positive and Negative Syndrome Subscales between Toxoplasma-infected and Toxoplasma-free patients. In the study area with a high prevalence of T. gondii, no association between toxoplasmosis and schizophrenia was detected. These findings showed that toxoplasmosis has no role in the risk of schizophrenia disease. Copyright © 2015. Published by Elsevier Taiwan.

  3. Natural convection heat transfer of fluid with temperature-dependent specific heat

    International Nuclear Information System (INIS)

    Tanaka, Amane; Kubo, Shinji; Akino, Norio

    1998-01-01

    The present study investigates natural convection from a heated vertical plate of fluid with temperature-dependent specific heat, which is introduced as a model of microencapsulated phase change material slurries (MCPCM slurries). The temperature dependence of specific heat is represented by Gauss function with three physical parameters (peak temperature, width of phase change temperature and latent heat). Boundary layer equations are solved numerically, and the velocity and temperature fields of the flow are obtained. The relation between the heat transfer coefficients and the physical parameters of specific heat is discussed. The results show that the velocities and temperatures are smaller, and the heat transfer coefficients are larger comparing with those of the fluid with constant specific heat. (author)

  4. NCEI ocean heat content, temperature anomalies, salinity anomalies, thermosteric sea level anomalies, halosteric sea level anomalies, and total steric sea level anomalies from 1955 to present calculated from in situ oceanographic subsurface profile data (NCEI Accession 0164586)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains ocean heat content change, oceanic temperature and salinity changes, and steric sea level change (change in volume without change in mass),...

  5. A Non-Gaussian Spatial Generalized Linear Latent Variable Model

    KAUST Repository

    Irincheeva, Irina

    2012-08-03

    We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.

  6. A developmental study of latent absolute pitch memory.

    Science.gov (United States)

    Jakubowski, Kelly; Müllensiefen, Daniel; Stewart, Lauren

    2017-03-01

    The ability to recall the absolute pitch level of familiar music (latent absolute pitch memory) is widespread in adults, in contrast to the rare ability to label single pitches without a reference tone (overt absolute pitch memory). The present research investigated the developmental profile of latent absolute pitch (AP) memory and explored individual differences related to this ability. In two experiments, 288 children from 4 to12 years of age performed significantly above chance at recognizing the absolute pitch level of familiar melodies. No age-related improvement or decline, nor effects of musical training, gender, or familiarity with the stimuli were found in regard to latent AP task performance. These findings suggest that latent AP memory is a stable ability that is developed from as early as age 4 and persists into adulthood.

  7. A Non-Gaussian Spatial Generalized Linear Latent Variable Model

    KAUST Repository

    Irincheeva, Irina; Cantoni, Eva; Genton, Marc G.

    2012-01-01

    We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.

  8. Studies of Latent Acidity and Neutral Buffered Chloroaluminate Ionic Liquids

    National Research Council Canada - National Science Library

    Osteryoung, Robert

    2000-01-01

    Studies on ionic liquids composed of aluminum chloride and 1-ethyl-3-methylimidazolium chloride were carried out, with emphasis on understanding and explaining acidity and latent acidity in "neutral buffered" melts...

  9. Latent tuberculosis in nursing professionals of a Brazilian hospital

    Directory of Open Access Journals (Sweden)

    Valim Andréia

    2011-05-01

    Full Text Available Abstract Tuberculosis (TB is considered an occupational disease among health-care workers (HCWs. Direct contact with TB patients leads to an increased risk to become latently infected by Mycobacterium tuberculosis. The objective of this study is to estimate the prevalence of latent M. tuberculosis minfection among nursing professionals of a hospital in Rio Grande do Sul, Brazil, assessed by tuberculin skin test (TST. From November 2009 to May 2010, latent M. tuberculosis infection was assessed by TST in 55 nursing professionals. Epidemiological information was collected using a standardized questionnaire. A positive TST result (> or = 10 mm was observed in 47.3% of the HCWs tested. There was no significant difference in TST positivity when duration of employment or professional category (technician or nurse was evaluated. The results of this work reinforce the need for control measures to prevent latent M. tuberculosis infection among nursing professionals at the hospital where the study was conducted.

  10. Classification criteria of syndromes by latent variable models

    DEFF Research Database (Denmark)

    Petersen, Janne

    2010-01-01

    patient's characteristics. These methods may erroneously reduce multiplicity either by combining markers of different phenotypes or by mixing HALS with other processes such as aging. Latent class models identify homogenous groups of patients based on sets of variables, for example symptoms. As no gold......The thesis has two parts; one clinical part: studying the dimensions of human immunodeficiency virus associated lipodystrophy syndrome (HALS) by latent class models, and a more statistical part: investigating how to predict scores of latent variables so these can be used in subsequent regression...... standard exists for diagnosing HALS the normally applied diagnostic models cannot be used. Latent class models, which have never before been used to diagnose HALS, make it possible, under certain assumptions, to: statistically evaluate the number of phenotypes, test for mixing of HALS with other processes...

  11. Cost-effectiveness of post-landing latent tuberculosis infection control strategies in new migrants to Canada.

    Science.gov (United States)

    Campbell, Jonathon R; Johnston, James C; Sadatsafavi, Mohsen; Cook, Victoria J; Elwood, R Kevin; Marra, Fawziah

    2017-01-01

    The majority of tuberculosis in migrants to Canada occurs due to reactivation of latent TB infection. Risk of tuberculosis in those with latent tuberculosis infection can be significantly reduced with treatment. Presently, only 2.4% of new migrants are flagged for post-landing surveillance, which may include latent tuberculosis infection screening; no other migrants receive routine latent tuberculosis infection screening. To aid in reducing the tuberculosis burden in new migrants to Canada, we determined the cost-effectiveness of using different latent tuberculosis infection interventions in migrants under post-arrival surveillance and in all new migrants. A discrete event simulation model was developed that focused on a Canadian permanent resident cohort after arrival in Canada, utilizing a ten-year time horizon, healthcare system perspective, and 1.5% discount rate. Latent tuberculosis infection interventions were evaluated in the population under surveillance (N = 6100) and the total cohort (N = 260,600). In all evaluations, six different screening and treatment combinations were compared to the base case of tuberculin skin test screening followed by isoniazid treatment only in the population under surveillance. Quality adjusted life years, incident tuberculosis cases, and costs were recorded for each intervention and incremental cost-effectiveness ratios were calculated in relation to the base case. In the population under surveillance (N = 6100), using an interferon-gamma release assay followed by rifampin was dominant compared to the base case, preventing 4.90 cases of tuberculosis, a 4.9% reduction, adding 4.0 quality adjusted life years, and saving $353,013 over the ensuing ten-years. Latent tuberculosis infection screening in the total population (N = 260,600) was not cost-effective when compared to the base case, however could potentially prevent 21.8% of incident tuberculosis cases. Screening new migrants under surveillance with an interferon

  12. Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E L; Eisenmann, G; Hahne, E [Stuttgart Univ. (TH) (F.R. Germany). Inst. fuer Thermodynamik und Waermetechnik

    1976-04-01

    A survey is presented on publications on design, heat transfer, form factors, free convection, evaporation processes, cooling towers, condensation, annular gap, cross-flowed cylinders, axial flow through a bundle of tubes, roughnesses, convective heat transfer, loss of pressure, radiative heat transfer, finned surfaces, spiral heat exchangers, curved pipes, regeneraters, heat pipes, heat carriers, scaling, heat recovery systems, materials selection, strength calculation, control, instabilities, automation of circuits, operational problems and optimization.

  13. Latent-failure risk estimates for computer control

    Science.gov (United States)

    Dunn, William R.; Folsom, Rolfe A.; Green, Owen R.

    1991-01-01

    It is shown that critical computer controls employing unmonitored safety circuits are unsafe. Analysis supporting this result leads to two additional, important conclusions: (1) annual maintenance checks of safety circuit function do not, as widely believed, eliminate latent failure risk; (2) safety risk remains even if multiple, series-connected protection circuits are employed. Finally, it is shown analytically that latent failure risk is eliminated when continuous monitoring is employed.

  14. Fitting Latent Cluster Models for Networks with latentnet

    Directory of Open Access Journals (Sweden)

    Pavel N. Krivitsky

    2007-12-01

    Full Text Available latentnet is a package to fit and evaluate statistical latent position and cluster models for networks. Hoff, Raftery, and Handcock (2002 suggested an approach to modeling networks based on positing the existence of an latent space of characteristics of the actors. Relationships form as a function of distances between these characteristics as well as functions of observed dyadic level covariates. In latentnet social distances are represented in a Euclidean space. It also includes a variant of the extension of the latent position model to allow for clustering of the positions developed in Handcock, Raftery, and Tantrum (2007.The package implements Bayesian inference for the models based on an Markov chain Monte Carlo algorithm. It can also compute maximum likelihood estimates for the latent position model and a two-stage maximum likelihood method for the latent position cluster model. For latent position cluster models, the package provides a Bayesian way of assessing how many groups there are, and thus whether or not there is any clustering (since if the preferred number of groups is 1, there is little evidence for clustering. It also estimates which cluster each actor belongs to. These estimates are probabilistic, and provide the probability of each actor belonging to each cluster. It computes four types of point estimates for the coefficients and positions: maximum likelihood estimate, posterior mean, posterior mode and the estimator which minimizes Kullback-Leibler divergence from the posterior. You can assess the goodness-of-fit of the model via posterior predictive checks. It has a function to simulate networks from a latent position or latent position cluster model.

  15. Translating latent trends in food consumer behavior into new products

    OpenAIRE

    Gellynck, Xavier; Kühne, Bianka; Van Wezemael, Lynn; Verbeke, Wim

    2010-01-01

    For successful product development it is important to explore the latent changes in consumer behavior prior to the product development process. The identification of a latent trend before the manifestation moment can be achieved by trend analysis. Trend analysis delivers insights that explore the future in order to identify prospective consumers and new product ideas, but also includes a feeling for the currents in market and technology. Hence, the aim is to identify emerging weak signals in ...

  16. Latent Tuberculosis Infection in an Urban Cohort: Screening and Treatment for Latent TB in an Urban Setting

    Science.gov (United States)

    Morano, Jamie P.; Walton, Mary R.; Zelenev, Alexei; Bruce, R. Douglas; Altice, Frederick L.

    2013-01-01

    Background Despite its benefit for treating active tuberculosis, directly observed therapy (DOT) for latent tuberculosis infection (LTBI) has been largely understudied among challenging inner city populations. Methods Utilizing questionnaire data from a comprehensive mobile healthcare clinic in New Haven, CT from 2003 to July 2011, a total of 2523 completed tuberculin skin tests (TST’s) resulted in 357 new LTBIs. Multivariate logistic regression correlated covariates of the two outcomes 1) initiation of isoniazid preventative therapy (IPT) and 2) completion of 9-months IPT. Results Of 357 new LTBIs, 86.3% (n=308) completed screening CXRs: 90.3% (n=278) were normal and 0.3% (n=1) with active tuberculosis. Of those completing CXR screening, 44.0% (n=135) agreed to IPT: 69.6% (n=94) selected DOT, and 30.4% (n=41) selected SAT. Initiating IPT was correlated with undocumented status (AOR=3.43; pmodels for LTBI treatment resulted in similar outcomes, yet outcomes were hampered by differential measurement bias between DOT and SAT participants. PMID:23728822

  17. Heat and cold accumulators in vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kauranen, P.; Wikstroem, L. (VTT Technical Research Centre of Finland, Advanced Materials, Tampere (Finland)); Heikkinen, J. (VTT Technical Research Centre of Finland, Building Services and Indoor Environment, Espoo (Finland)); Laurikko, J.; Elonen, T. (VTT Technical Research Centre of Finland, Emission Control, Espoo (Finland)); Seppaelae, A. (Helsinki Univ. of Technology, Applied Thermodynamics, Espoo (Finland)). Email: ari.seppala@tkk.fi

    2009-07-01

    Phase Change Material (PCM) based heat and cold accumulators have been tailored for transport applications including a mail delivery van as well as the cold chains of foodstuff and blood products. The PCMs can store relative large amount of thermal energy in a narrow temperature interval as latent heat of fusion of their melting and crystallization processes. Compact heat and cold accumulators can be designed using PCMs. The aim of the project has been to reduce the exhaust gas and noise emissions and improve the fuel economy of the transport systems and to improve the reliability of the cold chains studied by storing thermal energy in PCM accumulators. (orig.)

  18. Cytokine profile in patients with early latent syphilis

    Directory of Open Access Journals (Sweden)

    Zakharov S.V.

    2018-03-01

    Full Text Available The purpose of this study was to study the change in the content of the most active cytokines (interleukins 6 and 10 during the formation of the immune response in patients with latent early syphilis, as well as to study the possible relationship between the concentrations of these cytokines and the duration of the disease. In 50 patients with early latent syphilis, the concentration of interleukins 6 and 10 in serum was studied. The serum level of interleukins was studied by the enzyme immunoassay. A statistically significant increase in the concentration of interleukin 6 in the blood of patients with latent syphilis and decrease in the interleukin 10 concentration in comparison with healthy people was established. At the same time, in patients with latent syphilis with term of infection for more than 1 year, interleukin 10 has been expressed, as compared with healthy people and, especially, with patients with syphilis with a duration of infection of up to 1 year. Along with this, a lower degree of increase in the concentration of interleukin 6 in patients with latent syphilis with a duration of infection over 1 year has been established, as compared with patients with latent syphilis with a term of infection up to 1 year, against the background of its increased concentration as compared with a group of healthy individuals.

  19. Latent fingerprints on different type of screen protective films

    Directory of Open Access Journals (Sweden)

    Yuttana Sudjaroen

    2016-07-01

    Full Text Available The purpose of this research was to study the quality of latent fingerprint on different types of screen protective films including screen protector, matte screen protector, anti-fingerprint clear screen protector and anti-fingerprint matte screen protector by using black powder method in developing latent fingerprints. The fingerprints were performed by 10 volunteers whose fingers (right index, right thumb, left index and left thumb were stubbing at different types of screen protective films and subsequently latent fingerprints were developed by brushing with black powder. Automated Fingerprint Identification System (AFIS counted the numbers of minutiae points from 320 latent fingerprints. Anti-fingerprint matte screen protective film produced the best quality of latent fingerprint with an average minutiae point 72.65, followed by matte screen protective film, clear screen protective film and anti-fingerprint clear screen protective film with an average minutiae point of 155.2, 135.0 and 72.65 respectively. The quality of latent fingerprints developed between a clear and a matte surface of screen protective films showed a significant difference (sig>0.05, whereas the coat and the non-coat with anti-fingerprint chemical revealed a non-significant difference (sig<0.05 in their number of minutiae points.

  20. The log mean heat transfer rate method of heat exchanger considering the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, K.-L.; Ke, M.-T.; Ku, S.-S.

    2009-01-01

    The log mean temperature difference (LMTD) method is conventionally used to calculate the total heat transfer rate of heat exchangers. Because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations, thus LMTD method neglects the influence of heat radiation. From the recent investigation of a circular duct in some practical situations, it is found that even in the situation of the temperature difference between outer duct surface and surrounding is low to 1 deg. C, the heat radiation effect can not be ignored in the situations of lower ambient convective heat coefficient and greater surface emissivities. In this investigation, the log mean heat transfer rate (LMHTR) method which considering the influence of heat radiation, is developed to calculate the total heat transfer rate of heat exchangers.

  1. Avoiding and Correcting Bias in Score-Based Latent Variable Regression with Discrete Manifest Items

    Science.gov (United States)

    Lu, Irene R. R.; Thomas, D. Roland

    2008-01-01

    This article considers models involving a single structural equation with latent explanatory and/or latent dependent variables where discrete items are used to measure the latent variables. Our primary focus is the use of scores as proxies for the latent variables and carrying out ordinary least squares (OLS) regression on such scores to estimate…

  2. A flexible latent class approach to estimating test-score reliability

    NARCIS (Netherlands)

    van der Palm, D.W.; van der Ark, L.A.; Sijtsma, K.

    2014-01-01

    The latent class reliability coefficient (LCRC) is improved by using the divisive latent class model instead of the unrestricted latent class model. This results in the divisive latent class reliability coefficient (DLCRC), which unlike LCRC avoids making subjective decisions about the best solution

  3. Latent Transition Analysis with a Mixture Item Response Theory Measurement Model

    Science.gov (United States)

    Cho, Sun-Joo; Cohen, Allan S.; Kim, Seock-Ho; Bottge, Brian

    2010-01-01

    A latent transition analysis (LTA) model was described with a mixture Rasch model (MRM) as the measurement model. Unlike the LTA, which was developed with a latent class measurement model, the LTA-MRM permits within-class variability on the latent variable, making it more useful for measuring treatment effects within latent classes. A simulation…

  4. Causes of Potential Urban Heat Island Space Using Heat flux Budget Under Urban Canopy

    Science.gov (United States)

    Kwon, Y. J.; Lee, D. K.

    2017-12-01

    , or latent heat, though they are exposed to heat due to a lot sensible heat in the air. Third, in the severe areas at night time, the latent heat was not effective but storage heat flux from the day time was emitted in the air which made the space still warm after sunset. Lastly, the comfort areas at night time have a low SVF rate, and had the large shadow effect during day time.

  5. Large differences in the diabatic heat budget of the tropical UTLS in reanalyses

    Science.gov (United States)

    Wright, J. S.; Fueglistaler, S.

    2013-04-01

    We present the time mean heat budgets of the tropical upper troposphere (UT) and lower stratosphere (LS) as simulated by five reanalysis models: MERRA, ERA-Interim, CFSR, JRA-25/JCDAS, and NCEP/NCAR. The simulated diabatic heat budget in the tropical UTLS differs significantly from model to model, with substantial implications for representations of transport and mixing. Large differences are apparent both in the net heat budget and in all comparable individual components, including latent heating, heating due to radiative transfer, and heating due to parameterised vertical mixing. We describe and discuss the most pronounced differences. Although they may be expected given difficulties in representing moist convection in models, the discrepancies in latent heating are still disturbing. We pay particular attention to discrepancies in radiative heating (which may be surprising given the strength of observational constraints on temperature and tropospheric water vapour) and discrepancies in heating due to turbulent mixing (which have received comparatively little attention).

  6. New, previously unreported correlations between latent Toxoplasma gondii infection and excessive ethanol consumption.

    Science.gov (United States)

    Samojłowicz, Dorota; Borowska-Solonynko, Aleksandra; Kruczyk, Marcin

    2017-11-01

    A number of world literature reports indicate that a latent Toxoplasma gondii infection leads to development of central nervous system disorders, which in turn may lead to altered behavior in the affected individuals. T. gondii infection has been observed to play the greatest role in drivers, suicides, and psychiatric patients. Studies conducted for this manuscript involve a different, never before really reported correlation between latent T. gondii infection and ethanol abuse. A total of 538 decedents with a known cause of death were included in the study. These individuals were divided into three groups: the risky behavior group, inconclusively risky behavior group, and control group. The criterion for this division was the likely effect of the individual's behavior on the mechanism and cause of his/her death. The material used for analyses were blood samples collected during routine medico-legal examinations in these cases. The blood samples were used to measure anti-T. gondii IgG antibodies with an enzyme-linked immunosorbent assay (ELISA). Moreover, the following data were recorded for each decedent: sex, age, circumstances of death, cause of death, time from death to autopsy, and (if provided) substance abuse status (alcohol, illicit drugs). In those cases where blood alcohol level or toxicology tests were requested by the Prosecutor's Office, their results were also included in our analysis. Test results demonstrated a strong correlation between latent T. gondii infection and engaging in risky behaviors leading to death. Moreover, analyses demonstrated a positive correlation between the presence of anti-T. gondii IgG antibodies and psychoactive substance (especially ethanol) abuse, however, the causal relationship remains unclear. Due to the fact that alcohol abuse constitutes a significant social problem, searching for eliminable risk factors for addiction is extremely important. Our analyses provided new important information on the possible effects of

  7. Effect of Progesterone on Latent Phase Prolongation in Patients With Preterm Premature Rupture of Membranes

    Directory of Open Access Journals (Sweden)

    Fatemeh Abdali

    2018-01-01

    Full Text Available Preterm premature rupture of membranes (PPROM is a condition leading to an increased risk of maternal and neonatal morbidity and mortality in pregnant women. To prevent this complication, some studies have proposed using prophylactic progesterone. However, due to lack of sufficient relevant data, there is still need for further studies in this regard. This study was performed to determine the effect of rectal progesterone on the latent phase and maternal and neonatal outcome variables in females with PPROM. During the present randomized clinical trial study (IRCT201512077676N4, a total of 120 patients with PPROM at pregnancy ages between 26 and 32 weeks were randomly assigned to 2 equal intervention and control groups. In the intervention group, progesterone suppositories (400 mg per night were administered until delivery or completion of the 34th gestational week and was compared with placebo effect in control group. The latent phase and maternal and neonatal outcome variables were compared between the two groups. The mean age of patients was 29.56±5.66 (19-42 and 29.88±5.57 (17-40 years in the intervention and control group, respectively. The two groups were almost identical in the confounding factors. The median latent phase was 8.5 days in the intervention group vs. 5 days in the control group in the 28th-30th weeks of gestation, which was significantly higher in the intervention group (P=0.001. Among maternal and neonatal outcome variables, only the mean birth-weight was significantly higher in the intervention group than that in the controls (1609.92±417.28 gr vs. 1452.03±342.35 gr, P=0.03. Administration of progesterone suppository in patients with PPROM at gestational ages of 28 to 30 weeks is effective in elongating the latent phase and increasing birth-weight with no significant complications.

  8. An experimental study of the latent functionally thermal fluid with micro-encapsulated phase change material particles flowing in microchannels

    International Nuclear Information System (INIS)

    Wang, Yan; Chen, Zhenqian; Ling, Xiang

    2016-01-01

    Graphical abstract: Fig. 1. Relationship between Nu and Re for MEPCM slurry with various particle volume fractions. The interrupt of the well dispersed particles would destroy the thermal boundary layer and reduces its thickness, resulting in large Nusselt number for the suspension with 2% volume fraction of MEPCM. Large amount of heat could be absorbed and transferred rapidly during MEPCM melting process, which would result in remarkable increase of Nusselt number. The heat transfer performance of latent thermal fluid would be enhanced as 1.34 times of that of pure water. With smaller particle volume fraction (1% in this context), phase change occurs at lower temperature and more intensive heat flux is required for higher concentration suspension to induce the phase change occurrence, which is useful for application of the thermal management design. - Highlights: • The experiments of latent fluid flowing in parallel microchannels were conducted. • The performance of water with well dispersed micro-encapsulated phase change material particles was examined. • The Nusselt number of MEPCM slurry could achieve 1.36 times as that of pure water. - Abstract: Phase change material holds a good promise as a media of thermal energy storage and intensive heat flux removal. In this context, experiments were conducted to investigate the hydrodynamic and thermodynamic properties of a latent thermal fluid, which consisted of water and well dispersed micro-encapsulated phase change material (MEPCM) particles, flowing in parallel microchannels. It is suggested that MEPCM particles loading induces much higher pressure drop, which is very sensitive to temperature. Compared against water, the heat transfer performance of MEPCM slurry performs much better owing to particles aggregation, collision and micro-convective around the particles. Besides these, latent heat absorbed during phase change process makes the key contribution. It is found that with melting occurrence, Nusselt

  9. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  10. Association of Stressful Life Events with Psychological Problems: A Large-Scale Community-Based Study Using Grouped Outcomes Latent Factor Regression with Latent Predictors

    Directory of Open Access Journals (Sweden)

    Akbar Hassanzadeh

    2017-01-01

    Full Text Available Objective. The current study is aimed at investigating the association between stressful life events and psychological problems in a large sample of Iranian adults. Method. In a cross-sectional large-scale community-based study, 4763 Iranian adults, living in Isfahan, Iran, were investigated. Grouped outcomes latent factor regression on latent predictors was used for modeling the association of psychological problems (depression, anxiety, and psychological distress, measured by Hospital Anxiety and Depression Scale (HADS and General Health Questionnaire (GHQ-12, as the grouped outcomes, and stressful life events, measured by a self-administered stressful life events (SLEs questionnaire, as the latent predictors. Results. The results showed that the personal stressors domain has significant positive association with psychological distress (β=0.19, anxiety (β=0.25, depression (β=0.15, and their collective profile score (β=0.20, with greater associations in females (β=0.28 than in males (β=0.13 (all P<0.001. In addition, in the adjusted models, the regression coefficients for the association of social stressors domain and psychological problems profile score were 0.37, 0.35, and 0.46 in total sample, males, and females, respectively (P<0.001. Conclusion. Results of our study indicated that different stressors, particularly those socioeconomic related, have an effective impact on psychological problems. It is important to consider the social and cultural background of a population for managing the stressors as an effective approach for preventing and reducing the destructive burden of psychological problems.

  11. Association of Stressful Life Events with Psychological Problems: A Large-Scale Community-Based Study Using Grouped Outcomes Latent Factor Regression with Latent Predictors

    Science.gov (United States)

    Hassanzadeh, Akbar; Heidari, Zahra; Hassanzadeh Keshteli, Ammar; Afshar, Hamid

    2017-01-01

    Objective The current study is aimed at investigating the association between stressful life events and psychological problems in a large sample of Iranian adults. Method In a cross-sectional large-scale community-based study, 4763 Iranian adults, living in Isfahan, Iran, were investigated. Grouped outcomes latent factor regression on latent predictors was used for modeling the association of psychological problems (depression, anxiety, and psychological distress), measured by Hospital Anxiety and Depression Scale (HADS) and General Health Questionnaire (GHQ-12), as the grouped outcomes, and stressful life events, measured by a self-administered stressful life events (SLEs) questionnaire, as the latent predictors. Results The results showed that the personal stressors domain has significant positive association with psychological distress (β = 0.19), anxiety (β = 0.25), depression (β = 0.15), and their collective profile score (β = 0.20), with greater associations in females (β = 0.28) than in males (β = 0.13) (all P < 0.001). In addition, in the adjusted models, the regression coefficients for the association of social stressors domain and psychological problems profile score were 0.37, 0.35, and 0.46 in total sample, males, and females, respectively (P < 0.001). Conclusion Results of our study indicated that different stressors, particularly those socioeconomic related, have an effective impact on psychological problems. It is important to consider the social and cultural background of a population for managing the stressors as an effective approach for preventing and reducing the destructive burden of psychological problems. PMID:29312459

  12. Latent Virus Reactivation: From Space to Earth

    Science.gov (United States)

    Mehta, Satish K.; Cohrs, Randall J.; Gilden, Donald H.; Tyring, Stephen K.; Castro, Victoria A.; Ott, C. Mark; Pierson, Duane L.

    2010-01-01

    Reactivation of latent viruses is a recognized consequence of decreased immunity. More recently viral reactivation has been identified as an important in vivo indicator of clinically relevant immune changes. Viral reactivation can be determined quickly and easily by the presence of virus in saliva and other body fluids. Real-time polymerase chain reaction (PCR) is a highly sensitive and specific molecular method to detect the presence of specific viral DNA. Studies in astronauts demonstrated that herpes simplex virus type 1(HSV-1), Epstein-Barr Virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate at rates above normal during and after spaceflight in response to moderately decreased T-cell immunity. This technology was expanded to patients on Earth beginning with human immune deficiency virus (HIV) immuno-compromised patients. The HIV patients shed EBV in saliva at rates 9-fold higher than observed in astronauts demonstrating that the level of EBV shedding reflects the severity of impaired immunity. Whereas EBV reactivation is not expected to produce serious effects in astronauts on missions of 6 months or less, VZV reactivation in astronauts could produce shingles. Reactivation of live, infectious VZV in astronauts with no symptoms was demonstrated in astronauts during and after spaceflight. We applied our technology to study VZV-induced shingles in patients. In a study of 54 shingles patients, we showed salivary VZV was present in every patient on the day antiviral (acyclovir) treatment was initiated. Pain and skin lesions decreased with antiviral treatment. Corresponding decreases in levels of VZV were also observed and accompanied recovery. Although the level of VZV in shingles patients before the treatment was generally higher than those found in astronauts, lower range of VZV numbers in shingles patients overlapped with astronaut s levels. This suggests a potential risk of shingles to astronauts resulting from reactivation of VZV. In

  13. Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM

    International Nuclear Information System (INIS)

    Meng, Z.N.; Zhang, P.

    2017-01-01

    Highlights: • A tube-in-tank latent thermal energy storage (LTES) unit using composite PCM is built. • Thermal performances of the LTES unit are experimentally and numerically studied. • Thermal performances of the LTES unit under different operation conditions are comparatively studied. • A 3D numerical model is established to study the heat transfer mechanisms of the LTES unit. - Abstract: Paraffin is a commonly used phase change material (PCM) which has been frequently applied for thermal energy storage. A tube-in-tank latent thermal energy storage (LTES) unit using paraffin as PCM is built in the present study, which can be used in many applications. In order to enhance the thermal performance of the LTES unit, the composite PCM is fabricated by embedding copper foam into pure paraffin. The performances of the LTES unit with the composite PCM during the heat charging and discharging processes are investigated experimentally, and a series of experiments are carried out under different inlet temperatures and inlet flow velocities of the heat transfer fluid (HTF). The temperature evolutions of the LTES unit are obtained during the experiments, and the time-durations, mean powers and energy efficiencies are estimated to evaluate the performance of the LTES unit. Meanwhile, a three-dimensional (3D) mathematical model based on enthalpy-porosity and melting/solidification models is established to investigate the heat transfer mechanisms of the LTES unit and the detailed heat transfer characteristics of the LTES unit are obtained. It can be concluded that the LTES unit with the composite PCM shows good heat transfer performance, and larger inlet flow velocity of the HTF and larger temperature difference between the HTF and PCM can enhance the heat transfer and benefit the thermal energy utilization. Furthermore, a LTES system with larger thermal energy storage capacity can be easily assembled by several such LTES units, which can meet versatile demands in

  14. A personalized BEST: characterization of latent clinical classes of nonischemic heart failure that predict outcomes and response to bucindolol.

    Directory of Open Access Journals (Sweden)

    David P Kao

    Full Text Available Heart failure patients with reduced ejection fraction (HFREF are heterogenous, and our ability to identify patients likely to respond to therapy is limited. We present a method of identifying disease subtypes using high-dimensional clinical phenotyping and latent class analysis that may be useful in personalizing prognosis and treatment in HFREF.A total of 1121 patients with nonischemic HFREF from the β-blocker Evaluation of Survival Trial were categorized according to 27 clinical features. Latent class analysis was used to generate two latent class models, LCM A and B, to identify HFREF subtypes. LCM A consisted of features associated with HF pathogenesis, whereas LCM B consisted of markers of HF progression and severity. The Seattle Heart Failure Model (SHFM Score was also calculated for all patients. Mortality, improvement in left ventricular ejection fraction (LVEF defined as an increase in LVEF ≥5% and a final LVEF of 35% after 12 months, and effect of bucindolol on both outcomes were compared across HFREF subtypes. Performance of models that included a combination of LCM subtypes and SHFM scores towards predicting mortality and LVEF response was estimated and subsequently validated using leave-one-out cross-validation and data from the Multicenter Oral Carvedilol Heart Failure Assessment Trial.A total of 6 subtypes were identified using LCM A and 5 subtypes using LCM B. Several subtypes resembled familiar clinical phenotypes. Prognosis, improvement in LVEF, and the effect of bucindolol treatment differed significantly between subtypes. Prediction improved with addition of both latent class models to SHFM for both 1-year mortality and LVEF response outcomes.The combination of high-dimensional phenotyping and latent class analysis identifies subtypes of HFREF with implications for prognosis and response to specific therapies that may provide insight into mechanisms of disease. These subtypes may facilitate development of personalized

  15. EPB standard EN ISO 52016: calculation of the building’s energy needs for heating and cooling, internal temperatures and heating and cooling load

    NARCIS (Netherlands)

    Dijk, H.A.L. van; Spiekman, M.E.; Hoes-van Oeffelen, E.C.M.

    2016-01-01

    EN ISO 52016-1 presents a coherent set of calculation methods at different levels of detail, for the (sensible) energy needs for the space heating and cooling and (latent) energy needs (de)humidification of a building and/or internal temperatures and heating and/or cooling loads, including the

  16. Ridge Width Correlations between Inked Prints and Powdered Latent Fingerprints.

    Science.gov (United States)

    De Alcaraz-Fossoul, Josep; Barrot-Feixat, Carme; Zapico, Sara C; Mancenido, Michelle; Broatch, Jennifer; Roberts, Katherine A; Carreras-Marin, Clara; Tasker, Jack

    2017-10-03

    A methodology to estimate the time of latent fingerprint deposition would be of great value to law enforcement and courts. It has been observed that ridge topography changes as latent prints age, including the widths of ridges that could be measured as a function of time. Crime suspects are commonly identified using fingerprint databases that contain reference inked tenprints (flat and rolled impressions). These can be of interest in aging studies as they provide baseline information relating to the original (nonaged) ridges' widths. In practice, the age of latent fingerprints could be estimated following a comparison process between the evidentiary aged print and the corresponding reference inked print. The present article explores possible correlations between inked and fresh latent fingerprints deposited on different substrates and visualized with TiO 2 . The results indicate that the ridge width of flat inked prints is most similar to fresh latent fingerprints , and these should be used as the comparison standard for future aging studies. © 2017 American Academy of Forensic Sciences.

  17. Study of noninvasive detection of latent fingerprints using UV laser

    Science.gov (United States)

    Li, Hong-xia; Cao, Jing; Niu, Jie-qing; Huang, Yun-gang; Mao, Lin-jie; Chen, Jing-rong

    2011-06-01

    Latent fingerprints present a considerable challenge in forensics, and noninvasive procedure that captures a digital image of the latent fingerprints is significant in the field of criminal investigation. The capability of photography technologies using 266nm UV Nd:YAG solid state laser as excitation light source to provide detailed images of unprocessed latent fingerprints is demonstrated. Unprocessed latent fingerprints were developed on various non-absorbent and absorbing substrates. According to the special absorption, reflection, scattering and fluorescence characterization of the various residues in fingerprints (fatty acid ester, protein, and carbosylic acid salts etc) to the UV light to weaken or eliminate the background disturbance and increase the brightness contrast of fingerprints with the background, and using 266nm UV laser as excitation light source, fresh and old latent fingerprints on the surface of four types of non-absorbent objects as magazine cover, glass, back of cellphone, wood desktop paintwork and two types of absorbing objects as manila envelope, notebook paper were noninvasive detected and appeared through reflection photography and fluorescence photography technologies, and the results meet the fingerprint identification requirements in forensic science.

  18. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system

    Science.gov (United States)

    Kaizawa, Akihide; Maruoka, Nobuhiro; Kawai, Atsushi; Kamano, Hiroomi; Jozuka, Tetsuji; Senda, Takeshi; Akiyama, Tomohiro

    2008-05-01

    A waste heat transportation system trans-heat (TH) system is quite attractive that uses the latent heat of a phase change material (PCM). The purpose of this paper is to study the thermophysical properties of various sugars and sodium acetate trihydrate (SAT) as PCMs for a practical TH system and the heat transfer property between PCM selected and heat transfer oil, by using differential scanning calorimetry (DSC), thermogravimetry-differential thermal analysis (TG-DTA) and a heat storage tube. As a result, erythritol, with a large latent heat of 344 kJ/kg at melting point of 117°C, high decomposition point of 160°C and excellent chemical stability under repeated phase change cycles was found to be the best PCM among them for the practical TH system. In the heat release experiments between liquid erythritol and flowing cold oil, we observed foaming phenomena of encapsulated oil, in which oil droplet was coated by solidification of PCM.

  19. European ErP Directive. Total condensing technology: the solution for heating and DHW units in the hotel sector; Directiva Europea ErP. Tecnología de condensación total, solución para equipos productores de calefacción y ACS en el sector hotelero

    Energy Technology Data Exchange (ETDEWEB)

    Martín, G.

    2016-07-01

    Since 26 September 2015, the Ecodesign ErP Directive has been of compulsory application for EU Member States as regards the design of Energy-related Products (ErP) and as from its entry into force only those products manufactured according to the ErP requirements can be sold with the EC label. Although this directive affects over 1,000 product categories, for those relating to HVAC and DHW production, it covers boilers, heat pumps, accumulators, cogeneration systems, combined products systems, establishing their minimum efficiency levels, the maximum levels of NOX emissions, the minimum insulation for accumulators and the maximum level of acoustic emissions for heat pumps. (Author)

  20. Adolescent substance use behavior and suicidal behavior for boys and girls: a cross-sectional study by latent analysis approach.

    Science.gov (United States)

    Wang, Peng-Wei; Yen, Cheng-Fang

    2017-12-08

    Adolescent suicidal behavior may consist of different symptoms, including suicidal ideation, suicidal planning and suicidal attempts. Adolescent substance use behavior may contribute to adolescent suicidal behavior. However, research on the relationships between specific substance use and individual suicidal behavior is insufficient, as adolescents may not use only one substance or develop only one facet of suicidal behavior. Latent variables permit us to describe the relationships between clusters of related behaviors more accurately than studying the relationships between specific behaviors. Thus, the aim of this study was to explore how adolescent substance use behavior contributes to suicidal behavior using latent variables representing adolescent suicidal and substance use behaviors. A total of 13,985 adolescents were recruited using a stratified random sampling strategy. The participants indicated whether they had experienced suicidal ideation, planning and attempts and reported their cigarette, alcohol, ketamine and MDMA use during the past year. Latent analysis was used to examine the relationship between substance use and suicidal behavior. Adolescents who used any one of the above substances exhibited more suicidal behavior. The results of latent variables analysis revealed that adolescent substance use contributed to suicidal behavior and that boys exhibited more severe substance use behavior than girls. However, there was no gender difference in the association between substance use and suicidal behavior. Substance use behavior in adolescents is related to more suicidal behavior. In addition, the contribution of substance use to suicidal behavior does not differ between genders.

  1. Latent Tuberculosis in Pregnancy: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Isabelle Malhamé

    Full Text Available In countries with low tuberculosis (TB incidence, immigrants from higher incidence countries represent the major pool of individuals with latent TB infection (LTBI. The antenatal period represents an opportunity for immigrant women to access the medical system, and hence for potential screening and treatment of LTBI. However, such screening and treatment during pregnancy remains controversial.In order to further understand the prevalence, natural history, screening and management of LTBI in pregnancy, we conducted a systematic literature review addressing the screening and treatment of LTBI, in pregnant women without known HIV infection.A systematic review of 4 databases (Embase, Embase Classic, Medline, Cochrane Library covering articles published from January 1st 1980 to April 30th 2014. Articles in English, French or Spanish with relevant information on prevalence, natural history, screening tools, screening strategies and treatment of LTBI during pregnancy were eligible for inclusion. Articles were excluded if (1 Full text was not available (2 they were case series or case studies (3 they focused exclusively on prevalence, diagnosis and treatment of active TB (4 the study population was exclusively HIV-infected.Of 4,193 titles initially identified, 208 abstracts were eligible for review. Of these, 30 articles qualified for full text review and 22 were retained: 3 cohort studies, 2 case-control studies, and 17 cross-sectional studies. In the USA, the estimated prevalence of LTBI ranged from 14 to 48% in women tested, and tuberculin skin test (TST positivity was associated with ethnicity. One study suggested that incidence of active TB was significantly increased during the 180 days postpartum (Incidence rate ratio, 1.95 (95% CI 1.24-3.07. There was a high level of adherence with both skin testing (between 90-100% and chest radiography (93-100%.. In three studies from low incidence settings, concordance between TST and an interferon

  2. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  3. Testing of PCM Heat Storage Modules with Solar Collectors as Heat Source

    DEFF Research Database (Denmark)

    Englmair, Gerald; Dannemand, Mark; Johansen, Jakob Berg

    2016-01-01

    A latent heat storage based on the phase change material Sodium Acetate Trihydrate (SAT) has been tested as part of a demonstration system. The full heat storage consisted of 4 individual modules each containing about 200 kg of sodium acetate trihydrate with different additives. The aim...... was to actively utilize the ability of the material to supercool to obtain long storage periods. The modules were charged with solar heat supplied by 22.4 m2 evacuated tubular collectors. The investigation showed that it was possible to fully charge one module within a period of 270 minutes with clear skies...

  4. Heat transfer and fire spread

    Science.gov (United States)

    Hal E. Anderson

    1969-01-01

    Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...

  5. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  6. Latent Fundamentals Arbitrage with a Mixed Effects Factor Model

    Directory of Open Access Journals (Sweden)

    Andrei Salem Gonçalves

    2012-09-01

    Full Text Available We propose a single-factor mixed effects panel data model to create an arbitrage portfolio that identifies differences in firm-level latent fundamentals. Furthermore, we show that even though the characteristics that affect returns are unknown variables, it is possible to identify the strength of the combination of these latent fundamentals for each stock by following a simple approach using historical data. As a result, a trading strategy that bought the stocks with the best fundamentals (strong fundamentals portfolio and sold the stocks with the worst ones (weak fundamentals portfolio realized significant risk-adjusted returns in the U.S. market for the period between July 1986 and June 2008. To ensure robustness, we performed sub period and seasonal analyses and adjusted for trading costs and we found further empirical evidence that using a simple investment rule, that identified these latent fundamentals from the structure of past returns, can lead to profit.

  7. The latent effect of inertia in the modal choice

    DEFF Research Database (Denmark)

    Cherchi, Elisabetta; Meloni, Italo; Ortúzar, Juan de Dios

    2014-01-01

    The existence of habit (leading to inertia) in the choice process has been approached in the literature in a number of ways. In transport, inertia has been studied mainly using “long panel” data, or mixed revealed and stated preference data. In these studies inertia links the choice made in two...... approaches. We assume that inertia is revealed by past behaviour and affects also the initial condition, but we recognise that past behaviour is only an indicator of habitual behaviour, the true process behind the formation of habitual behaviour being latent. We estimate a hybrid choice model using a set...... of revealed and stated mode choice preferences collected in Cagliari (Italy). We found a significant latent inertia in the revealed preference data, indicating that inertia affects the initial conditions. The latent inertia is revealed by the frequency of past behaviour but the effect of trip frequency...

  8. Current management options for latent tuberculosis: a review

    Directory of Open Access Journals (Sweden)

    Norton BL

    2012-11-01

    Full Text Available Brianna L Norton, David P HollandDepartment of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USAAbstract: Tuberculosis remains the world’s second leading infectious cause of death, with nearly one-third of the global population latently infected. Treatment of latent tuberculosis infection is a mainstay of tuberculosis-control efforts in low-to medium-incidence countries. Isoniazid monotherapy has been the standard of care for decades, but its utility is impaired by poor completion rates. However, new, shorter-course regimens using rifamycins improve completion rates and are cost-saving compared with standard isoniazid monotherapy. We review the currently available therapies for latent tuberculosis infection and their toxicities and include a brief economic comparison of the different regimens.Keywords: isoniazid, rifampin, rifapentine, tuberculin skin test, interferon-gamma release assay

  9. Interexaminer variation of minutia markup on latent fingerprints.

    Science.gov (United States)

    Ulery, Bradford T; Hicklin, R Austin; Roberts, Maria Antonia; Buscaglia, JoAnn

    2016-07-01

    Latent print examiners often differ in the number of minutiae they mark during analysis of a latent, and also during comparison of a latent with an exemplar. Differences in minutia counts understate interexaminer variability: examiners' markups may have similar minutia counts but differ greatly in which specific minutiae were marked. We assessed variability in minutia markup among 170 volunteer latent print examiners. Each provided detailed markup documenting their examinations of 22 latent-exemplar pairs of prints randomly assigned from a pool of 320 pairs. An average of 12 examiners marked each latent. The primary factors associated with minutia reproducibility were clarity, which regions of the prints examiners chose to mark, and agreement on value or comparison determinations. In clear areas (where the examiner was "certain of the location, presence, and absence of all minutiae"), median reproducibility was 82%; in unclear areas, median reproducibility was 46%. Differing interpretations regarding which regions should be marked (e.g., when there is ambiguity in the continuity of a print) contributed to variability in minutia markup: especially in unclear areas, marked minutiae were often far from the nearest minutia marked by a majority of examiners. Low reproducibility was also associated with differences in value or comparison determinations. Lack of standardization in minutia markup and unfamiliarity with test procedures presumably contribute to the variability we observed. We have identified factors accounting for interexaminer variability; implementing standards for detailed markup as part of documentation and focusing future training efforts on these factors may help to facilitate transparency and reduce subjectivity in the examination process. Published by Elsevier Ireland Ltd.

  10. Effects of latent toxoplasmosis on autoimmune thyroid diseases in pregnancy.

    Science.gov (United States)

    Kaňková, Šárka; Procházková, Lucie; Flegr, Jaroslav; Calda, Pavel; Springer, Drahomíra; Potluková, Eliška

    2014-01-01

    Toxoplasmosis, one of the most common zoonotic diseases worldwide, can induce various hormonal and behavioural alterations in infected hosts, and its most common form, latent toxoplasmosis, influences the course of pregnancy. Autoimmune thyroid diseases (AITD) belong to the well-defined risk factors for adverse pregnancy outcomes. The aim of this study was to investigate whether there is a link between latent toxoplasmosis and maternal AITD in pregnancy. Cross-sectional study in 1248 consecutive pregnant women in the 9-12th gestational weeks. Serum thyroid-stimulating hormone (TSH), thyroperoxidase antibodies (TPOAb), and free thyroxine (FT4) were assessed by chemiluminescence; the Toxoplasma status was detected by the complement fixation test (CFT) and anti-Toxoplasma IgG enzyme-linked immunosorbent assay (ELISA). Overall, 22.5% of the women were positive for latent toxoplasmosis and 14.7% were screened positive for AITD. Women with latent toxoplasmosis had more often highly elevated TPOAb than the Toxoplasma-negative ones (p = 0.004), and latent toxoplasmosis was associated with decrease in serum TSH levels (p = 0.049). Moreover, we found a positive correlation between FT4 and the index of positivity for anti-Toxoplasma IgG antibodies (p = 0.033), which was even stronger in the TPOAb-positive Toxoplasma-positive women, (p = 0.014), as well as a positive correlation between FT4 and log2 CFT (p = 0.009). Latent toxoplasmosis was associated with a mild increase in thyroid hormone production in pregnancy. The observed Toxoplasma-associated changes in the parameters of AITD are mild and do not seem to be clinically relevant; however, they could provide new clues to the complex pathogenesis of autoimmune thyroid diseases.

  11. Gene variants associated with antisocial behaviour: a latent variable approach.

    Science.gov (United States)

    Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V; Lee, Maria; Yrigollen, Carolyn M; Pakstis, Andrew J; Katsovich, Liliya; Olds, David L; Grigorenko, Elena L; Leckman, James F

    2013-10-01

    The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a 15-year follow-up of a randomized trial of a prenatal and infancy nurse-home visitation programme in Elmira, New York. We then investigated, via a novel latent variable approach, 450 informative genetic polymorphisms in 71 genes previously associated with antisocial behaviour, drug use, affiliative behaviours and stress response in 241 consenting individuals for whom DNA was available. Haplotype and Pathway analyses were also performed. Eight single-nucleotide polymorphisms (SNPs) from eight genes contributed to the latent genetic variable that in turn accounted for 16.0% of the variance within the latent antisocial phenotype. The number of risk alleles was linearly related to the latent antisocial variable scores. Haplotypes that included the putative risk alleles for all eight genes were also associated with higher latent antisocial variable scores. In addition, 33 SNPs from 63 of the remaining genes were also significant when added to the final model. Many of these genes interact on a molecular level, forming molecular networks. The results support a role for genes related to dopamine, norepinephrine, serotonin, glutamate, opioid and cholinergic signalling as well as stress response pathways in mediating susceptibility to antisocial behaviour. This preliminary study supports use of relevant behavioural indicators and latent variable approaches to study the potential 'co-action' of gene variants associated with antisocial behaviour. It also underscores the cumulative relevance of common genetic variants for understanding the aetiology of complex behaviour. If replicated in future studies, this approach may allow the identification of a

  12. A coarse to fine minutiae-based latent palmprint matching.

    Science.gov (United States)

    Liu, Eryun; Jain, Anil K; Tian, Jie

    2013-10-01

    With the availability of live-scan palmprint technology, high resolution palmprint recognition has started to receive significant attention in forensics and law enforcement. In forensic applications, latent palmprints provide critical evidence as it is estimated that about 30 percent of the latents recovered at crime scenes are those of palms. Most of the available high-resolution palmprint matching algorithms essentially follow the minutiae-based fingerprint matching strategy. Considering the large number of minutiae (about 1,000 minutiae in a full palmprint compared to about 100 minutiae in a rolled fingerprint) and large area of foreground region in full palmprints, novel strategies need to be developed for efficient and robust latent palmprint matching. In this paper, a coarse to fine matching strategy based on minutiae clustering and minutiae match propagation is designed specifically for palmprint matching. To deal with the large number of minutiae, a local feature-based minutiae clustering algorithm is designed to cluster minutiae into several groups such that minutiae belonging to the same group have similar local characteristics. The coarse matching is then performed within each cluster to establish initial minutiae correspondences between two palmprints. Starting with each initial correspondence, a minutiae match propagation algorithm searches for mated minutiae in the full palmprint. The proposed palmprint matching algorithm has been evaluated on a latent-to-full palmprint database consisting of 446 latents and 12,489 background full prints. The matching results show a rank-1 identification accuracy of 79.4 percent, which is significantly higher than the 60.8 percent identification accuracy of a state-of-the-art latent palmprint matching algorithm on the same latent database. The average computation time of our algorithm for a single latent-to-full match is about 141 ms for genuine match and 50 ms for impostor match, on a Windows XP desktop system with 2

  13. Rapid detection of drug metabolites in latent fingermarks.

    Science.gov (United States)

    Hazarika, Pompi; Jickells, Sue M; Russell, David A

    2009-01-01

    Magnetic particles functionalised with anti-cotinine antibody have been used to image latent fingermarks through the detection of the cotinine antigen in the sweat deposited within the fingerprints of smokers. The antibody-magnetic particle conjugates are readily applied to latent fingerprints while excess reagents are removed through the use of a magnetic wand. The results have shown that drug metabolites, such as cotinine, can be detected and used to image the fingermark to establish the identity of an individual within 15 minutes.

  14. Chromatin Structure of Epstein-Barr Virus Latent Episomes.

    Science.gov (United States)

    Lieberman, Paul M

    2015-01-01

    EBV latent infection is characterized by a highly restricted pattern of viral gene expression. EBV can establish latent infections in multiple different tissue types with remarkable variation and plasticity in viral transcription and replication. During latency, the viral genome persists as a multi-copy episome, a non-integrated-closed circular DNA with nucleosome structure similar to cellular chromosomes. Chromatin assembly and histone modifications contribute to the regulation of viral gene expression, DNA replication, and episome persistence during latency. This review focuses on how EBV latency is regulated by chromatin and its associated processes.

  15. Prevalence of latent Mycobacterium tuberculosis infection in prisoners.

    Science.gov (United States)

    Navarro, Pedro Daibert de; Almeida, Isabela Neves de; Kritski, Afrânio Lineu; Ceccato, Maria das Graças; Maciel, Mônica Maria Delgado; Carvalho, Wânia da Silva; Miranda, Silvana Spindola de

    2016-01-01

    To determine the prevalence of and the factors associated with latent Mycobacterium tuberculosis infection (LTBI) in prisoners in the state of Minas Gerais, Brazil. This was a cross-sectional cohort study conducted in two prisons in Minas Gerais. Tuberculin skin tests were performed in the individuals who agreed to participate in the study. A total of 1,120 individuals were selected for inclusion in this study. The prevalence of LTBI was 25.2%. In the multivariate analysis, LTBI was associated with self-reported contact with active tuberculosis patients within prisons (adjusted OR = 1.51; 95% CI: 1.05-2.18) and use of inhaled drugs (adjusted OR = 1.48; 95% CI: 1.03-2.13). Respiratory symptoms were identified in 131 (11.7%) of the participants. Serological testing for HIV was performed in 940 (83.9%) of the participants, and the result was positive in 5 (0.5%). Two cases of active tuberculosis were identified during the study period. Within the prisons under study, the prevalence of LTBI was high. In addition, LTBI was associated with self-reported contact with active tuberculosis patients and with the use of inhaled drugs. Our findings demonstrate that it is necessary to improve the conditions in prisons, as well as to introduce strategies, such as chest X-ray screening, in order to detect tuberculosis cases and, consequently, reduce M. tuberculosis infection within the prison system. Determinar a prevalência e os fatores associados à infecção latente por Mycobacterium tuberculosis (ILTB) em pessoas privadas de liberdade no Estado de Minas Gerais. Estudo de coorte transversal realizado em duas penitenciárias em Minas Gerais. Foi realizada a prova tuberculínica nos indivíduos que aceitaram participar do estudo. Foram selecionados 1.120 indivíduos para a pesquisa. A prevalência da ILTB foi de 25,2%. Na análise multivariada, a ILTB esteve associada com relato de contato com caso de tuberculose ativa dentro da penitenciária (OR ajustada = 1,51; IC95%: 1

  16. On the explaining-away phenomenon in multivariate latent variable models.

    Science.gov (United States)

    van Rijn, Peter; Rijmen, Frank

    2015-02-01

    Many probabilistic models for psychological and educational measurements contain latent variables. Well-known examples are factor analysis, item response theory, and latent class model families. We discuss what is referred to as the 'explaining-away' phenomenon in the context of such latent variable models. This phenomenon can occur when multiple latent variables are related to the same observed variable, and can elicit seemingly counterintuitive conditional dependencies between latent variables given observed variables. We illustrate the implications of explaining away for a number of well-known latent variable models by using both theoretical and real data examples. © 2014 The British Psychological Society.

  17. Heat flux variations over sea-ice observed at the coastal area of the Sejong Station, Antarctica

    Science.gov (United States)

    Park, S.; Choi, T.; Kim, S.

    2012-12-01

    This study presents variations of sensible heat flux and latent heat flux over sea-ice observed in 2011 from the 10-m flux tower located at the coast of the Sejong Station on King George Island, Antarctica. A period from June to November was divided into three parts: "Freezing", "Frozen", and "Melting" periods based on daily monitoring of sea state and hourly photos looking at the Marian Cove in front of the Sejong Station. The division of periods enabled us to look into the heat flux variations depending on the sea-ice conditions. Over freezing sea surface during the freezing period of late June, daily mean sensible heat flux was -11.9 Wm-2 and daily mean latent heat flux was +16.3 Wm-2. Over the frozen sea-ice, daily mean sensible heat flux was -10.4 Wm-2 while daily mean latent heat flux was +2.4 Wm-2. During the melting period of mid-October to early November, magnitudes of sensible heat flux increased to -14.2 Wm-2 and latent heat flux also increased to +13.5 Wm-2. In short, latent heat flux was usually upward over sea-ice most of the time while sensible heat flux was downward from atmosphere to sea-ice. Magnitudes of the fluxes were small but increased when freezing or melting of sea-ice was occurring. Especially, latent heat flux increased five to six times compared to that of "frozen" period implying that early melting of sea-ice may cause five to six times larger supply of moisture to the atmosphere.

  18. A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation

    International Nuclear Information System (INIS)

    Chan, C.W.; Ling-Chin, J.; Roskilly, A.P.

    2013-01-01

    A major cause of energy inefficiency is a result of the generation of waste heat and the lack of suitable technologies for cost-effective utilisation of low grade heat in particular. The market potential for surplus/waste heat from industrial processes in the UK is between 10 TWh and 40 TWh, representing a significant potential resource which has remained unexploited to date. This paper reviews selected technologies suitable for utilisation of waste heat energy, with specific focus on low grade heat, including: (i) chemical heat pumps, such as adsorption and absorption cycles for cooling and heating; (ii) thermodynamic cycles, such as the organic Rankine cycle (ORC), the supercritical Rankine cycle (SRC) and the trilateral cycle (TLC), to produce electricity, with further focus on expander and zeotropic mixtures, and (iii) thermal energy storage, including sensible and latent thermal energy storages and their corresponding media to improve the performance of low grade heat energy systems. - Highlights: ► The review of various thermal technologies for the utilisation of under exploited low grade heat. ► The analyses of the absorption and adsorption heat pumps possibly with performance enhancement additives. ► The analyses of thermal energy storage technologies (latent and sensible) for heat storage. ► The analyses of low temperature thermodynamic cycles to maximise power production.

  19. Heat pulse probe measurements of soil water evaporation in a corn field

    Science.gov (United States)

    Latent heat fluxes from cropped fields consist of soil water evaporation and plant transpiration. It is difficult to accurately separate evapotranspiration into evaporation and transpiration. Heat pulse probes have been used to measure bare field subsurface soil water evaporation, however, the appl...

  20. Process for the transport of heat energy released by a nuclear reactor

    International Nuclear Information System (INIS)

    Nuernberg, H.W.; Wolff, G.

    1978-01-01

    The heat produced in a nuclear reactor is converted into latent chemical binding energy. The heat can be released again below 400 0 C by recombination after transport by decomposition of ethane or propane into ethylene or propylene and hydrogen. (TK) [de

  1. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  2. Heat pipe solar receiver with thermal energy storage

    Science.gov (United States)

    Zimmerman, W. F.

    1981-01-01

    An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.

  3. Specific heat and magnetization of a ZrB12 single crystal: characterization of a type II/1 superconductor

    OpenAIRE

    Wang, Yuxing; Lortz, Rolf; Paderno, Yuriy; Filippov, Vladimir; Abe, Satoko; Tutsch, Ulrich; Junod, Alain

    2005-01-01

    We measured the specific heat, the magnetization, and the magnetoresistance of a single crystal of ZrB12, which is superconducting below Tc ~ 6 K. The specific heat in zero field shows a BCS-type superconducting transition. The normal- to superconducting-state transition changes from first order (with a latent heat) to second order (without latent heat) with increasing magnetic field, indicating that the pure compound is a low-kappa, type-II/1 superconductor in the classification of Auer and ...

  4. Design concepts for solar heating in a Mediterranean climate

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M; Berger, X; Bourdeau, L; Jaffrin, A; Sylvain, J D

    1977-01-01

    Solar heating is often designed in a similar way to classical central heating. The consequence is a very high cost which can only be reduced by using a calorific fluid at a lower temperature than is customary, improved architectural design and a further research into new passive heating methods. The collection area and storage volume necessary to obtain good solar efficiency were computed in a Mediterranean climate. Emphasis is put on large thermal inertia which is best achieved by using the latent heat of materials. The result of an experiment performed with salt hydrates is most promising but many problems of time instability have still to be solved.

  5. Longitudinal mixed-effects models for latent cognitive function

    NARCIS (Netherlands)

    van den Hout, Ardo; Fox, Gerardus J.A.; Muniz-Terrera, Graciela

    2015-01-01

    A mixed-effects regression model with a bent-cable change-point predictor is formulated to describe potential decline of cognitive function over time in the older population. For the individual trajectories, cognitive function is considered to be a latent variable measured through an item response

  6. Latent Inhibition in an Insect: The Role of Aminergic Signaling

    Science.gov (United States)

    Fernandez, Vanesa M.; Giurfa, Martin; Devaud, Jean-Marc; Farina, Walter M.

    2012-01-01

    Latent inhibition (LI) is a decrement in learning performance that results from the nonreinforced pre-exposure of the to-be-conditioned stimulus, in both vertebrates and invertebrates. In vertebrates, LI development involves dopamine and serotonin; in invertebrates there is yet no information. We studied differential olfactory conditioning of the…

  7. Mediation Analysis in a Latent Growth Curve Modeling Framework

    Science.gov (United States)

    von Soest, Tilmann; Hagtvet, Knut A.

    2011-01-01

    This article presents several longitudinal mediation models in the framework of latent growth curve modeling and provides a detailed account of how such models can be constructed. Logical and statistical challenges that might arise when such analyses are conducted are also discussed. Specifically, we discuss how the initial status (intercept) and…

  8. On Latent Growth Models for Composites and Their Constituents.

    Science.gov (United States)

    Hancock, Gregory R; Mao, Xiulin; Kher, Hemant

    2013-09-01

    Over the last decade and a half, latent growth modeling has become an extremely popular and versatile technique for evaluating longitudinal change and its determinants. Most common among the models applied are those for a single measured variable over time. This model has been extended in a variety of ways, most relevant for the current work being the multidomain and the second-order latent growth models. Whereas the former allows for growth function characteristics to be modeled for multiple outcomes simultaneously, with the degree of growth characteristics' relations assessed within the model (e.g., cross-domain slope factor correlations), the latter models growth in latent outcomes, each of which has effect indicators repeated over time. But what if one has an outcome that is believed to be formative relative to its indicator variables rather than latent? In this case, where the outcome is a composite of multiple constituents, modeling change over time is less straightforward. This article provides analytical and applied details for simultaneously modeling growth in composites and their constituent elements, including a real data example using a general computer self-efficacy questionnaire.

  9. The Latent Structure of Secure Base Script Knowledge

    Science.gov (United States)

    Waters, Theodore E. A.; Fraley, R. Chris; Groh, Ashley M.; Steele, Ryan D.; Vaughn, Brian E.; Bost, Kelly K.; Veríssimo, Manuela; Coppola, Gabrielle; Roisman, Glenn I.

    2015-01-01

    There is increasing evidence that attachment representations abstracted from childhood experiences with primary caregivers are organized as a cognitive script describing secure base use and support (i.e., the "secure base script"). To date, however, the latent structure of secure base script knowledge has gone unexamined--this despite…

  10. The Latent Structure of Psychopathy in Youth: A Taxometric Investigation

    Science.gov (United States)

    Vasey, Michael W.; Kotov, Roman; Frick, Paul J.; Loney, Bryan R.

    2005-01-01

    Using taxometric procedures, the latent structure of psychopathy was investigated in two studies of children and adolescents. Prior studies have identified a taxon (i.e., a natural category) associated with antisocial behavior in adults as well as children and adolescents. However, features of this taxon suggest that it is not psychopathy but…

  11. Latent cluster analysis of ALS phenotypes identifies prognostically differing groups.

    Directory of Open Access Journals (Sweden)

    Jeban Ganesalingam

    2009-09-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a degenerative disease predominantly affecting motor neurons and manifesting as several different phenotypes. Whether these phenotypes correspond to different underlying disease processes is unknown. We used latent cluster analysis to identify groupings of clinical variables in an objective and unbiased way to improve phenotyping for clinical and research purposes.Latent class cluster analysis was applied to a large database consisting of 1467 records of people with ALS, using discrete variables which can be readily determined at the first clinic appointment. The model was tested for clinical relevance by survival analysis of the phenotypic groupings using the Kaplan-Meier method.The best model generated five distinct phenotypic classes that strongly predicted survival (p<0.0001. Eight variables were used for the latent class analysis, but a good estimate of the classification could be obtained using just two variables: site of first symptoms (bulbar or limb and time from symptom onset to diagnosis (p<0.00001.The five phenotypic classes identified using latent cluster analysis can predict prognosis. They could be used to stratify patients recruited into clinical trials and generating more homogeneous disease groups for genetic, proteomic and risk factor research.

  12. Evaluation of AFIS-Ranked latent fingerprint matched templates

    NARCIS (Netherlands)

    Krish, Ram P.; Fierrez, Julian; Ramos, Daniel; Veldhuis, Raymond N.J.; Wang, Ruifang; Klette, Reinhard; Rivera, Mariano; Satoh, Shin'ichi

    2013-01-01

    The methodology currently practiced in latent print examination (known as ACE-V) yields only a decision as result, namely individualization, exclusion or inconclusive. From such a decision, it is not possible to express the strength of opinion of a forensic examiner quantitatively with a scientific

  13. Latent organizations in the film industry: contracts, rewards and resources

    NARCIS (Netherlands)

    Ebbers, J.J.; Wijnberg, N.M.

    2009-01-01

    The main aim of this article is to study the extent to which the project-based organization (PBO) and the latent organization determine the actual behavior of actors in a project-based industry and how this is mediated by the types of contracts and rewarding practices these organizational forms

  14. Latent Toxoplasma gondii infection leads to improved action control.

    Science.gov (United States)

    Stock, Ann-Kathrin; Heintschel von Heinegg, Evelyn; Köhling, Hedda-Luise; Beste, Christian

    2014-03-01

    The parasite Toxoplasma gondii has been found to manipulate the behavior of its secondary hosts to increase its own dissemination which is commonly believed to be to the detriment of the host (manipulation hypothesis). The manipulation correlates with an up-regulation of dopaminergic neurotransmission. In humans, different pathologies have been associated with T. gondii infections but most latently infected humans do not seem to display overt impairments. Since a dopamine plus does not necessarily bear exclusively negative consequences in humans, we investigated potential positive consequences of latent toxoplasmosis (and the presumed boosting of dopaminergic neurotransmission) on human cognition and behavior. For this purpose, we focused on action cascading which has been shown to be modulated by dopamine. Based on behavioral and neurophysiological (EEG) data obtained by means of a stop-change paradigm, we were able to demonstrate that healthy young humans can actually benefit from latent T. gondii infection as regards their performance in this task (as indicated by faster response times and a smaller P3 component). The data shows that a latent infection which is assumed to affect the dopaminergic system can lead to paradoxical improvements of cognitive control processes in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Prevalence and risk factors of latent Tuberculosis among ...

    African Journals Online (AJOL)

    termine the risk factors of prevalent LTBI. We used a mixed effects binomial model with a logarithmic link function to estimate prevalence ratios (PR) for risk fac- tors of latent tuberculosis infection (LTBI). Ethical consideration. The study was approved by the Makerere University. School of Public Health–Higher Degrees and ...

  16. Temporal analysis of text data using latent variable models

    DEFF Research Database (Denmark)

    Mølgaard, Lasse Lohilahti; Larsen, Jan; Goutte, Cyril

    2009-01-01

    Detecting and tracking of temporal data is an important task in multiple applications. In this paper we study temporal text mining methods for Music Information Retrieval. We compare two ways of detecting the temporal latent semantics of a corpus extracted from Wikipedia, using a stepwise...

  17. Latent Partially Ordered Classification Models and Normal Mixtures

    Science.gov (United States)

    Tatsuoka, Curtis; Varadi, Ferenc; Jaeger, Judith

    2013-01-01

    Latent partially ordered sets (posets) can be employed in modeling cognitive functioning, such as in the analysis of neuropsychological (NP) and educational test data. Posets are cognitively diagnostic in the sense that classification states in these models are associated with detailed profiles of cognitive functioning. These profiles allow for…

  18. Multilevel Latent Class Analysis: Parametric and Nonparametric Models

    Science.gov (United States)

    Finch, W. Holmes; French, Brian F.

    2014-01-01

    Latent class analysis is an analytic technique often used in educational and psychological research to identify meaningful groups of individuals within a larger heterogeneous population based on a set of variables. This technique is flexible, encompassing not only a static set of variables but also longitudinal data in the form of growth mixture…

  19. Investigating design: A comparison of manifest and latent approaches

    DEFF Research Database (Denmark)

    Cash, Philip; Snider, Chris

    2014-01-01

    This paper contributes to the on-going focus on improving design research methods, by exploring and synthesising two key interrelated research approaches e manifest and latent. These approaches are widely used individually in design research, however, this paper represents the first work bringing...

  20. Preferences, benefits, and park visits: a latent class segmentation analysis

    NARCIS (Netherlands)

    Kemperman, A.D.A.M.; Timmermans, H.J.P.

    2006-01-01

    This study describes and predicts segments of urban park visitors to support park planning and policy making. A latent class analysis is used to identify segments of park users who differ regarding their preferences for park characteristics, benefits sought in park visits, and sociodemographics.

  1. Effect Of Prolonged Monocular Occlusion On Latent Nystagms

    NARCIS (Netherlands)

    H.J. Simonsz (Huib); G. Kommerell (Guntram)

    1992-01-01

    textabstractThe authors recorded nystagmus during seeing with one eye in eight patients with latent nystagmus (LN) before and after two or three days of prolonged occlusion of the better eye (POBE). Before POBE, the slow-phase speed of the nystagmus (SPS) was usually higher when the better eye was

  2. Heat transfer through the thermal skin of a cooling pond with waves

    International Nuclear Information System (INIS)

    Wesely, M.L.

    1979-01-01

    The temperature drop measured across the cool skin of a cooling pond is examined for 64 10-min data collection periods taken with wind speeds of 3--8.5 m s -1 (effectively at a height of 10 m) and surface temperatures of 18 0 --37.5 0 C. The total heat transfer through the skin is found with the use of bulk aerodynamic estimates of the latent and sensible heat flux densities and empirical expressions for the long-wave radiation exchange at the surface. Although it is questionable to describe the characteristics of a surface with waves by use of formulae derived partially on the assumption that a rigid boundary exists at the air-water interface, the parameterizations that result seem on the average to perform quite well. For example, values of the numerical proportionally coefficient lambda [Saunders, 1967], which relates the total heat transfer to the temperature drop, increase slightly from 6 to 7 as water temperature increases; these values are near those reported previously. No variation of lambda with wind speed is detected. If lambda is replaced by a numerical coefficient that also takes into account the difference of the thicknesses of the thermal and viscous sublayers, the new coefficient Λapprox. =lambdaPr/sup 1/3/, where Pr is the Prandtl number, does not vary significantly with temperature of the surface skin

  3. Betydningen av Grønlands orografi og frigjøring av latent varme på den ekstratropiske syklonen Gudrun

    OpenAIRE

    Eriksen, Bjart

    2006-01-01

    An intense extratropical storm, named Erwin/Gudrun, over the North Atlantic during winter 2005 is investigated to determine atmospheric factors contributing to its development. WRF is the numerical model which has been used to simulate the storm. The simulations of the extratropical storm are devided into two sets. The first set contains 66-hour simulations that describe the effect of latent heat release. The second set contains 90-hour simulations, and this set together with the first set de...

  4. Heat transfer

    International Nuclear Information System (INIS)

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  5. Calculating latent frequencies of systems with local damping

    International Nuclear Information System (INIS)

    Kolonits, Ferenc

    2005-01-01

    Modal analysis of damped systems often cannot proceed with common real-eigenvalue techniques. The system of equilibrium equations leads to a matrix with elements being quadratic functions of a parameter λ. The values of that which make the matrix singular are the latent roots, while the solutions of the associated homogenous equation are the latent vectors. They are the (generally complex) characteristic frequencies and the mode shapes of the system, respectively. Although the theory is well developed, the numerical application is open to refinements yet. A reduction to better-known real-domain subtasks deserves attention. With a theorem of Popper and Gaspar, a n x n λ-matrix problem can be cut in two: into n-size asymmetric real matrices having as eigenvalues the n lower and n upper latent roots, ranked by absolute value. This approach may be of use for systems with high number of degrees of freedom while damped by a relatively few concentrated devices. It might fit also an earthquake analysis, where the lower portion of eigenvalues is customarily what counts. The dampers appear in the splitting algorithm as restricted-size modifications, ready for use by the Sherman-Morrison-Woodbury identity. The task is re-traced this way to a more usual real-asymmetric eigenproblem. A requirement of convergence is that the lower and upper n-set of latent values must be distinct. With odd-number degrees of freedom and neither over-damped, i.e. all latent roots being complex, this condition is surely violated. For such cases, a supplemental algorithm is proposed

  6. Skin Resistivity Value of Upper Trapezius Latent Trigger Points

    Directory of Open Access Journals (Sweden)

    Elżbieta Skorupska

    2015-01-01

    Full Text Available Introduction. The skin resistivity (SkR measurement is commonly recommended for acupoints measurement, but for trigger points (TrPs only one study is available. The purpose of the study was to evaluate SkR for latent TrPs compared to non-TrPs and the surrounding tissue. Material and Methods. Forty-two healthy volunteers with unilateral latent upper trapezius TrPs (12 men, 30 women aged 21–23 (mean age: 22.1 ± 0.6 y participated in the study. Keithley electrometer 610B was used for measuring SkR (Ag/AgCl self-adhesive, disposable ground electrode: 30 mm diameter. SkR was measured for latent TrPs and compared to opposite non-TrPs sites and the surrounding tissue. Results. The SkR decrease of TrPs-positive sites as compared to TrPs-negative sites and the surrounding tissue was confirmed. However, no statistically significant difference in the SkR value occurred when all data were analyzed. The same was confirmed after gender division and for TrPs-positive subjects examined for referred pain and twitch response presence. Conclusion. SkR reactive changes at latent TrPs are possible but the results were not consistent with the previous study. Thus, caution in applying SkR to latent TrPs isolation is recommended and its clinical use should not be encouraged yet. Further studies, especially on active TrPs, are yet required.

  7. Estimators for longitudinal latent exposure models: examining measurement model assumptions.

    Science.gov (United States)

    Sánchez, Brisa N; Kim, Sehee; Sammel, Mary D

    2017-06-15

    Latent variable (LV) models are increasingly being used in environmental epidemiology as a way to summarize multiple environmental exposures and thus minimize statistical concerns that arise in multiple regression. LV models may be especially useful when multivariate exposures are collected repeatedly over time. LV models can accommodate a variety of assumptions but, at the same time, present the user with many choices for model specification particularly in the case of exposure data collected repeatedly over time. For instance, the user could assume conditional independence of observed exposure biomarkers given the latent exposure and, in the case of longitudinal latent exposure variables, time invariance of the measurement model. Choosing which assumptions to relax is not always straightforward. We were motivated by a study of prenatal lead exposure and mental development, where assumptions of the measurement model for the time-changing longitudinal exposure have appreciable impact on (maximum-likelihood) inferences about the health effects of lead exposure. Although we were not particularly interested in characterizing the change of the LV itself, imposing a longitudinal LV structure on the repeated multivariate exposure measures could result in high efficiency gains for the exposure-disease association. We examine the biases of maximum likelihood estimators when assumptions about the measurement model for the longitudinal latent exposure variable are violated. We adapt existing instrumental variable estimators to the case of longitudinal exposures and propose them as an alternative to estimate the health effects of a time-changing latent predictor. We show that instrumental variable estimators remain unbiased for a wide range of data generating models and have advantages in terms of mean squared error. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Perceptions of care in women sent home in latent labor.

    Science.gov (United States)

    Hosek, Claire; Faucher, Mary Ann; Lankford, Janice; Alexander, James

    2014-01-01

    To assess perceptions of care from woman discharged from an obstetrical (OB) triage unit or a labor and delivery unit with a diagnosis of false or latent labor in order to determine factors that may increase or decrease the woman's satisfaction with care. Descriptive, convenience sample. One hundred low-income pregnant women at term presenting for care in latent labor consented to participate in a telephone survey. The survey was based on the relevant research about care of women in early labor and the Donabedian quality improvement framework assessing structure, process, and outcomes of care. Forty-one percent of women did not want to be discharged home in latent labor. Common reasons included women stating they were in too much pain or they were living too far from the birth setting. Eating, drinking, and comfort measures were the most common measures women cited that would have made them feel better when in the hospital. A reoccurring response from women was their desire for very clear and specific written instructions about how to stay comfortable at home and when to return to the hospital. Comfort measures in the birth setting, including in triage, should include a variety of options including ambulation and oral nutrition. Detailed and specific written instructions about early labor and staying comfortable while at home have value for women in this survey regarding their perceptions of care. Results from this survey of low-income women suggest that a subset of women in latent labor just do not want to go home and this may be related to having too much pain and/or travel distance to the hospital. Hospital birth settings also have an opportunity to create a care environment that provides services and embodies attributes that women report as important for their satisfaction with care in latent labor.

  9. Using standard serology blood tests to diagnose latent syphilis

    Directory of Open Access Journals (Sweden)

    G. L. Katunin

    2016-01-01

    Full Text Available Goal. To conduct a comparative assessment of the results of regulated serological tests obtained as a result of blood tests in patients suffering from latent syphilis. Materials and methods. The authors examined 187 patient medical records with newly diagnosed latent syphilis in FGBU GNTsDK (State Research Center for Dermatology, Venereology and Cosmetology, Health Ministry of the Russian Federation, in 2006-2015. The results of patient blood tests were analyzed with the use of non-treponemal (microprecipitation test/RPR and treponemal (passive hemagglutination test, immune-enzyme assay (IgA, IgM, IgG, IFabs, immunofluorescence test and Treponema pallidum immobilization test serology tests. Results. According to the results of blood tests of latent syphilis patients, the largest number of positive results was obtained as a result of treponemal serology tests such as immune-enzyme assay (100%, passive hemagglutination test (100% and IFabs (100%. The greatest number of negative results was observed in non-treponemal (microprecipitation test/RPR serology tests: in 136 (72.7% patients; evidently positive results (4+ test results were obtained in 8 (4.3% patients only. According to the results of a comparative analysis of blood tests in patients suffering from latent syphilis obtained with the use of treponemal serology tests, the greatest number of evidently positive results (4+ was noted for the passive hemagglutination test (67.9%. Negative treponemal test results were obtained with the use of the immunofluorescence test and Treponema pallidum immobilization test (21.9% and 11.8% of cases, respectively. Moreover, weakly positive results prevailed for the immunofluorescence test: in 65 (34.7% patients. Conclusion. These data confirm that the following treponemal tests belong to the most reliable ones for revealing patients suffering from latent syphilis: immune-enzyme assay, passive hemagglutination test and IFabs.

  10. Studies on heat storage, 9

    International Nuclear Information System (INIS)

    Taoda, Hiroshi; Hayakawa, Kiyoshi; Kawase, Kaoru; Kosaka, Mineo

    1985-01-01

    To estimate the extent of thermal oxidative aging of the crosslinked and surface coated polyethylene pellets used as a latent heat thermal storage material, their deterioration was investigated by applying the heating-cooling cycle which simulated the daily insolation over 6 months (8-hour holding at 150 deg C as the highest temperature in a day followed by 5-hour holding at 30 deg C as the lowest one). The degradation, e.g., the lowering of heat of crystallization and in crystallization temperature, is thought to be caused by both the decrease in molecular weight of polyethylene due to thermal oxidative decomposition and the crosslinking between produced radicals. With the increase in the degree of crosslinking and branching in a molecular chain which has low bond dissociation energy, thermal deterioration of polyethylene proceeds more rapidly. Polyethylene pellets can endure long periods of practical heat cycling as a thermal storage material when they are treated with radical scavengers under proper control of their crosslinking degrees. The repeating heat storage experiments by using the developed polyethylene thermal storage material were performed and very promising results were obtained. (author)

  11. Heat Roadmap Europe: Identifying strategic heat synergy regions

    International Nuclear Information System (INIS)

    Persson, U.; Möller, B.; Werner, S.

    2014-01-01

    This study presents a methodology to assess annual excess heat volumes from fuel combustion activities in energy and industry sector facilities based on carbon dioxide emission data. The aim is to determine regional balances of excess heat relative heat demands for all third level administrative regions in the European Union (EU) and to identify strategic regions suitable for large-scale implementation of district heating. The approach is motivated since the efficiency of current supply structures to meet building heat demands, mainly characterised by direct use of primary energy sources, is low and improvable. District heating is conceived as an urban supply side energy efficiency measure employable to enhance energy system efficiency by increased excess heat recoveries; hereby reducing primary energy demands by fuel substitution. However, the importance of heat has long been underestimated in EU decarbonisation strategies and local heat synergies have often been overlooked in energy models used for such scenarios. Study results indicate that 46% of all excess heat in EU27, corresponding to 31% of total building heat demands, is located within identified strategic regions. Still, a realisation of these rich opportunities will require higher recognition of the heat sector in future EU energy policy. - Highlights: • EU27 energy and industry sector heat recycling resources are mapped and quantified. • Target regions for large-scale implementation of district heating are identified. • 46% of total EU27 excess heat volume is seized in 63 strategic heat synergy regions. • Large urban zones have lead roles to play in transition to sustainability in Europe. • Higher recognition of heat sector is needed in future EU energy policy for realisation

  12. Oral health status in older adults with social security in Mexico City: Latent class analysis.

    Science.gov (United States)

    Sánchez-García, Sergio; Heredia-Ponce, Erika; Cruz-Hervert, Pablo; Juárez-Cedillo, Teresa; Cárdenas-Bahena, Angel; García-Peña, Carmen

    2014-02-01

    To explore the oral health status through a latent class analysis in elderly social security beneficiaries from Southwest Mexico City. Cross-sectional study of beneficiaries of the State Employee Social Security and Social Services Institute (ISSSTE, in Spanish) and the Mexican Institute of Social Security (IMSS, in Spanish) aged 60 years or older. Oral health conditions such as edentulism, coronal and root caries (DMFT and DFT ≥ 75 percentile), clinical attachment loss (≥ 4 mm), and healthy teeth (≤ 25 percentile) were determined. A latent class analysis (LCA) was performed to classify the oral health status of dentate patients. In total, 336 patients were included (47.9% from the ISSSTE and 52.1% from the IMSS), with an average age of 74.4 (SD = 7.1) years. The 75th percentile of the DMFT = 23 and of the DFT = 2. Of the patients, 77.9% had periodontal disease. The 25th percentile of healthy teeth = 4. A three class model is adequate, with a high classification quality (Entropy = 0.915). The patients were classified as "Edentulous" (15.2%), "Class 1 = Unfavorable" (13.7%), "Class 2 = Somewhat favorable" (10.4%), and "Class 3 = Favorable" (60.7%). Using "Class 3 = Favorable" as a reference, there was an association (OR = 3.4; 95% CI = 1.8-6.4) between being edentulous and being 75 years of age and over, compared with the 60- to 74-year age group. The oral health in elderly social security beneficiaries is not optimal. The probability of becoming edentulous increases with age. A three-class model appropriately classifies the oral health dimensions in the elderly population. Key words:Elderly, Latent class analysis (LCA), oral health, social security, Mexico.

  13. The lambda sign: a new radiographic indicator of latent syndesmosis instability.

    Science.gov (United States)

    Ryan, Ltc Paul; Hills, Maj Chad; Chang, James; Wilson, Cpt David

    2014-09-01

    Latent syndesmotic instability is a common cause of chronic ankle pain. The diagnosis is not readily apparent on static imaging as the fibula remains reduced. The hypothesis of this study was that a previously undescribed novel finding on coronal MRI (lambda sign) is an independent indicator of latent syndesmosis instability. We also report on the utility of classic radiographic and physical exam findings. A total of 23 patients with latent syndesmotic instability diagnosed via arthroscopy (group I) were compared to a cohort of 40 patients who were found to have a stable syndesmosis during arthroscopy for unrelated conditions (group II). A retrospective chart review was performed evaluating their clinical history, preoperative physical examination, and radiologic findings. The lambda sign is a high intensity signal seen on coronal MR imaging that resembles the Greek letter lambda. All of the physical exam findings tested were statistically significant. Pain at the syndesmosis had the highest sensitivity (83%), while pain reproduced with the proximal squeeze test resulted in the highest specificity (89%). The external rotation stress test had the highest positive predictive value (75%). Of the radiographic examinations performed, only the lambda sign was found to have statistical significance with a sensitivity of 75% and a specificity of 63%. The presence of a lambda sign on the MRI of patients with physical exam findings suggestive of syndesmotic pain was highly sensitive (75%) and specific (85%). The lambda sign noted on the coronal MRI was both sensitive and specific for injuries involving greater than 2 mm of diastasis on arthroscopic stress examination of the syndesmosis. While neither the lambda sign nor any other finding on physical or radiographic examination represented an independent predictor of syndesmotic instability, the presence of a lambda sign in concert with positive physical exam findings might help health care providers determine which patients

  14. Waste heat of HTR power stations for district heating

    International Nuclear Information System (INIS)

    Bonnenberg, H.; Schlenker, H.V.

    1975-01-01

    The market situation, the applied techniques, and the transport, for district heating in combination with HTR plants are considered. Analysis of the heat market indicates a high demand for heat at temperatures between 100 and 150 0 C in household and industry. This market for district heating can be supplied by heat generated in HTR plants using two methods: (1) the combined heat and power generation in steam cycle plants by extracting steam from the turbine, and (2) the use of waste heat of a closed gas turbine cycle. The heat generation costs of (2) are negligible. The cost for transportation of heat over the average distance between existing plant sites and consumer regions (25 km) are between 10 and 20% of the total heat price, considering the high heat output of nuclear power stations. Comparing the price of heat gained by use of waste heat in HTR plants with that of conventional methods, considerable advantages are indicated for the combined heat and power generation in HTR plants. (author)

  15. Heat exchanger

    Science.gov (United States)

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  16. Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables

    Science.gov (United States)

    Henson, Robert A.; Templin, Jonathan L.; Willse, John T.

    2009-01-01

    This paper uses log-linear models with latent variables (Hagenaars, in "Loglinear Models with Latent Variables," 1993) to define a family of cognitive diagnosis models. In doing so, the relationship between many common models is explicitly defined and discussed. In addition, because the log-linear model with latent variables is a general model for…

  17. Polytomous latent scales for the investigation of the ordering of items

    NARCIS (Netherlands)

    Ligtvoet, R.; van der Ark, L.A.; Bergsma, W. P.; Sijtsma, K.

    2011-01-01

    We propose three latent scales within the framework of nonparametric item response theory for polytomously scored items. Latent scales are models that imply an invariant item ordering, meaning that the order of the items is the same for each measurement value on the latent scale. This ordering

  18. The Integration of Continuous and Discrete Latent Variable Models: Potential Problems and Promising Opportunities

    Science.gov (United States)

    Bauer, Daniel J.; Curran, Patrick J.

    2004-01-01

    Structural equation mixture modeling (SEMM) integrates continuous and discrete latent variable models. Drawing on prior research on the relationships between continuous and discrete latent variable models, the authors identify 3 conditions that may lead to the estimation of spurious latent classes in SEMM: misspecification of the structural model,…

  19. Heat pipe

    International Nuclear Information System (INIS)

    Triggs, G.W.; Lightowlers, R.J.; Robinson, D.; Rice, G.

    1986-01-01

    A heat pipe for use in stabilising a specimen container for irradiation of specimens at substantially constant temperature within a liquid metal cooled fast reactor, comprises an evaporator section, a condenser section, an adiabatic section therebetween, and a gas reservoir, and contains a vapourisable substance such as sodium. The heat pipe further includes a three layer wick structure comprising an outer relatively fine mesh layer, a coarse intermediate layer and a fine mesh inner layer for promoting unimpeded return of condensate to the evaporation section of the heat pipe while enhancing heat transfer with the heat pipe wall and reducing entrainment of the condensate by the upwardly rising vapour. (author)

  20. Characteristics of latent damage trails due to high energy 208Pb and 238U ions in CR-39 and muscovite mica

    International Nuclear Information System (INIS)

    Chohan, A.S.; Akhtar, S.M.

    1988-01-01

    Experiments have been performed to study the characteristics of latent damage trails produced by (a) 17.14 MeV/nucleon- 208 Pb ions in mica and CR-39 track detectors and (b) 13.7 MeV/nucleon- 238 U in CR-39 track detectors. The parameters studied include (a) V t , average etching velocity along the track, (b) thermal stability of the latent damage trails, (c) the total etchable ranges, and (d) V g the general etching velocity of CR-39 track detectors previously annealed at different temperatures. It has been observed that the latent damage trails in CR-39 are greatly affected at temperatures around 200 0 C in CR-39 track detectors. The general etching velocity of a CR-39 detector has been found to increase with increasing annealing temperatures. (author)

  1. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.

    Science.gov (United States)

    Tu, Y D; Wang, R Z; Ge, T S; Zheng, X

    2017-01-12

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  2. Visualisation of heat transfer in laminar flows

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Steenhoven, van A.A.

    2009-01-01

    Heat transfer in fluid flows traditionally is examined in terms of temperature field and heat-transfer coefficients at non-adiabatic walls. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the

  3. Energy storage using phase-change materials for active solar heating and cooling: An evaluation of future research and development direction

    Science.gov (United States)

    Borkowski, R. J.; Stovall, T. K.; Kedl, R. J.; Tomlinson, J. J.

    1982-04-01

    The current state of the art and commercial potential of active solar heating and cooling systems for buildings, and the use of thermal energy storage with these systems are assessed. The need for advanced latent heat storage subsystems in these applications and priorities for their development are determined. Latent storage subsystems are advantageous in applications where their compactness may be exploited. It is suggested that subsystems could facilitate storage in retrofit applications in which storage would be physically impossible otherwise.

  4. Examination of Conservatism in Early/Latent Fatality Estimation in Level 3 PRA

    International Nuclear Information System (INIS)

    Kim, Sung-yeop; Lee, Haneol; Yim, Man-Sung

    2014-01-01

    Due to the computational model driven-nature of the work, there exist various sources of uncertainty in level 3 PRA. They are related with source release, environmental transport and deposition, human behavior involved in dosimetry, health effect and risk assessment. For instance, a total of 376 parameters have been considered in Probabilistic Accident Consequence Uncertainty Assessment Using COSYMA and the details on the number of parameters in each analysis are listed in Table 1. In 2012, the report of NPP accident consequence simulation was distributed by the Korean Federation for Environmental Movement (KFEM). They insisted that Kori Nuclear Power Plant (NPP) accident would lead to 48,000 early fatalities and 850,000 cancer fatalities in Busan and Hanbit NPP accident would lead to 550,000 cancer fatalities in Seoul. This report exemplifies the misuse of collective dose, that is effective dose multiplied by population and time. Even though very low effective dose is considered, collective dose could give over-conservative estimate when high population and long time period is multiplied. International Commission on Radiological Protection (ICRP) forewarned about the misuse of collective dose, in their ICRP Publication 103, such as applying it to simplified calculation of fatality and risk. As part of investigation of conservatism in early and latent fatality estimation, the existing methods of early and latent fatality calculation was reviewed and the results from the use of the existing methodology were examined in this study. The method of early and latent fatality estimation in level 3 PRA was investigated and the conservatism in the result was examined in this study. For the purpose of estimating both early and latent fatality, appropriate dose distributions among the affected population are found to be important. This study showed that large conservatism may be involved in the estimated fatality if the distribution of population dose as a function of

  5. Examination of Conservatism in Early/Latent Fatality Estimation in Level 3 PRA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-yeop; Lee, Haneol; Yim, Man-Sung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Due to the computational model driven-nature of the work, there exist various sources of uncertainty in level 3 PRA. They are related with source release, environmental transport and deposition, human behavior involved in dosimetry, health effect and risk assessment. For instance, a total of 376 parameters have been considered in Probabilistic Accident Consequence Uncertainty Assessment Using COSYMA and the details on the number of parameters in each analysis are listed in Table 1. In 2012, the report of NPP accident consequence simulation was distributed by the Korean Federation for Environmental Movement (KFEM). They insisted that Kori Nuclear Power Plant (NPP) accident would lead to 48,000 early fatalities and 850,000 cancer fatalities in Busan and Hanbit NPP accident would lead to 550,000 cancer fatalities in Seoul. This report exemplifies the misuse of collective dose, that is effective dose multiplied by population and time. Even though very low effective dose is considered, collective dose could give over-conservative estimate when high population and long time period is multiplied. International Commission on Radiological Protection (ICRP) forewarned about the misuse of collective dose, in their ICRP Publication 103, such as applying it to simplified calculation of fatality and risk. As part of investigation of conservatism in early and latent fatality estimation, the existing methods of early and latent fatality calculation was reviewed and the results from the use of the existing methodology were examined in this study. The method of early and latent fatality estimation in level 3 PRA was investigated and the conservatism in the result was examined in this study. For the purpose of estimating both early and latent fatality, appropriate dose distributions among the affected population are found to be important. This study showed that large conservatism may be involved in the estimated fatality if the distribution of population dose as a function of

  6. The effects of radiative heat transfer during the melting process of a high temperature phase change material confined in a spherical shell

    International Nuclear Information System (INIS)

    Archibold, Antonio Ramos; Rahman, Muhammad M.; Yogi Goswami, D.; Stefanakos, Elias K.

    2015-01-01

    Highlights: • Analyzed effects of radiation heat transfer during melting in spherical shell. • Performed analyses to ascertain the effects of optical thickness and the Planck, Grashof and Stefan numbers. • Present correlations for melt fraction and modified Nusselt number. - Abstract: The influence of radiation heat transfer during the phase change process of a storage material has been numerically analyzed in this study. Emphasis has been placed on the thermal characterization of a single constituent storage module rather than an entire storage system, in order to precisely capture the energy exchange contributions of all the fundamental heat transfer mechanisms during the melting of a phase change material (PCM) with tailored optical properties. The equations describing the conservation of mass, momentum and energy have been solved by using the control volume discretization approach, while the radiative transfer equation (RTE) was solved by the discrete ordinate method (DOM). The enthalpy–porosity method was used to track the PCM liquid/solid interface during the process. A parametric analysis has been performed in order to ascertain the effects of the optical thickness and the Planck, Grashof and Stefan numbers on the melting rate, as well as the total and radiative heat transfer rates at the inner surface of the shell. The results show that the presence of thermal radiation enhances the melting process. Correlations for the melt fraction and modified Nusselt number are developed for application in the design process of packed bed heat exchangers for latent heat thermal energy storage

  7. District heating versus local heating - Social supportability

    International Nuclear Information System (INIS)

    Matei, Magdalena; Enescu, Diana; Varjoghie, Elena; Radu, Florin; Matei, Lucian

    2004-01-01

    District heating, DH, is an energy source which can provide a cost-effective, environmentally friendly source of heat and power for cities, but only in the case of well running systems, with reasonable technological losses. The benefits of DH system are well known: environmental friendly, energy security, economic and social advantages. DH already covers 60% of heating and hot water needs in transition economies. Today, 70 % of Russian, Latvian and Belarus homes use DH, and heating accounts for one-third of total Russian energy consumption. Yet a large number of DH systems in the region face serious financial, marketing or technical problems because of the policy framework. How can DH issues be best addressed in national and local policy? What can governments do to create the right conditions for the sustainable development of DH while improving service quality? What policies can help capture the economic, environmental and energy security benefits of co-generation and DH? To address these questions, the International Energy Agency (IEA) hosted in 2002 and 2004 conference focusing on the crucial importance of well-designed DH policies, for exchanging information on policy approaches. The conclusions of the conference have shown that 'DH systems can do much to save energy and boost energy security, but stronger policy measures are needed to encourage wise management and investment. With a stronger policy framework, DH systems in formerly socialist countries could save the equivalent of 80 billion cubic meters of natural gas a year through supply side efficiency improvements. This is greater than total annual natural gas consumption in Italy'. More efficient systems will also decrease costs, reducing household bills and making DH competitive on long-term. This paper presents the issues: -Theoretical benefits of the district heating and cooling systems; - Municipal heating in Romania; - Technical and economic problems of DH systems and social supportability; - How

  8. Laboratory Testing of Solar Combi System with Compact Long Term PCM Heat Storage

    DEFF Research Database (Denmark)

    Johansen, Jakob Berg; Englmair, Gerald; Dannemand, Mark

    2016-01-01

    To enable the transition from fossil fuels as a primary heat source for domestic hot water preparation and space heating solar thermal energy has great potential. The heat from the sun has the disadvantage that it is not always available when there is a demand. To solve this mismatch a thermal...... seasonal storage can be used to store excess heat from the summer to the winter when the demand is higher than the supply. Installing a long term thermal storage in a one family house it needs to be compact and sensible heat storages are not suitable. A latent heat storage with a phase change material (PCM...

  9. Trends of total water vapor column above the Arctic from satellites observations

    Science.gov (United States)

    Alraddawi, Dunya; Sarkissian, Alain; Keckhut, Philippe; Bock, Olivier; Claud, Chantal; Irbah, Abdenour

    2016-04-01

    Atmospheric water vapor (H2O) is the most important natural (as opposed to man-made) greenhouse gas, accounting for about two-thirds of the natural greenhouse effect. Despite this importance, its role in climate and its reaction to climate change are still difficult to assess. Many details of the hydrological cycle are poorly understood, such as the process of cloud formation and the transport and release of latent heat contained in the water vapor. In contrast to other important greenhouse gases like carbon dioxide (CO2) and methane, water vapor has a much higher temporal and spatial variability. Total precipitable water (TPW) or the total column of water vapor (TCWV) is the amount of liquid water that would result if all the water vapor in the atmospheric column of unit area were condensed. TCWV distribution contains valuable information on the vigor of the hydrological processes and moisture transport in the atmosphere. Measurement of TPW can be obtained based on atmospheric water vapor absorption or emission of radiation in the spectral range from UV to MW. TRENDS were found over the terrestrial Arctic by means of TCWV retrievals (using Moderate Resolution Imaging Spectro-radiometer (MODIS) near-infrared (2001-2015) records). More detailed approach was made for comparisons with ground based instruments over Sodankyla - Finland (TCWV from: SCIAMACHY 2003-2011, GOME-2A 2007-2011, SAOZ 2003-2011, GPS 2003-2011, MODIS 2003-2011)

  10. The intersectionality of discrimination attributes and bullying among youth: an applied latent class analysis.

    Science.gov (United States)

    Garnett, Bernice Raveche; Masyn, Katherine E; Austin, S Bryn; Miller, Matthew; Williams, David R; Viswanath, Kasisomayajula

    2014-08-01

    Discrimination is commonly experienced among adolescents. However, little is known about the intersection of multiple attributes of discrimination and bullying. We used a latent class analysis (LCA) to illustrate the intersections of discrimination attributes and bullying, and to assess the associations of LCA membership to depressive symptoms, deliberate self harm and suicidal ideation among a sample of ethnically diverse adolescents. The data come from the 2006 Boston Youth Survey where students were asked whether they had experienced discrimination based on four attributes: race/ethnicity, immigration status, perceived sexual orientation and weight. They were also asked whether they had been bullied or assaulted for these attributes. A total of 965 (78%) students contributed to the LCA analytic sample (45% Non-Hispanic Black, 29% Hispanic, 58% Female). The LCA revealed that a 4-class solution had adequate relative and absolute fit. The 4-classes were characterized as: low discrimination (51%); racial discrimination (33%); sexual orientation discrimination (7%); racial and weight discrimination with high bullying (intersectional class) (7%). In multivariate models, compared to the low discrimination class, individuals in the sexual orientation discrimination class and the intersectional class had higher odds of engaging in deliberate self-harm. Students in the intersectional class also had higher odds of suicidal ideation. All three discrimination latent classes had significantly higher depressive symptoms compared to the low discrimination class. Multiple attributes of discrimination and bullying co-occur among adolescents. Research should consider the co-occurrence of bullying and discrimination.

  11. Latent profile analysis and comorbidity in a sample of individuals with compulsive buying disorder.

    Science.gov (United States)

    Mueller, Astrid; Mitchell, James E; Black, Donald W; Crosby, Ross D; Berg, Kelly; de Zwaan, Martina

    2010-07-30

    The aims of this study were to perform a latent profile analysis in a sample of individuals with compulsive buying, to explore the psychiatric comorbidity, and to examine whether or not more severe compulsive buying is associated with greater comorbidity. Compulsive buying measures and SCID data obtained from 171 patients with compulsive buying behavior who had participated in treatment trials at different clinical centers in the U.S. and Germany were analyzed. Latent profile analysis produced two clusters. Overall, cluster 2, included subjects with more severe compulsive buying, and was characterized by higher lifetime as well as current prevalence rates for Axis I and impulse control disorders. Nearly 90% of the total sample reported at least one lifetime Axis I diagnosis, particularly mood (74%) and anxiety (57%) disorders. Twenty-one percent had a comorbid impulse control disorder, most commonly intermittent explosive disorder (11%). Half of the sample presented with at least one current Axis I disorder, most commonly anxiety disorders (44%). Given the substantial psychiatric comorbidity, it is reasonable to question whether or not compulsive buying represents a distinct psychiatric entity vs. an epiphenomenon of other psychiatric disorders. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Consumption Patterns of Nightlife Attendees in Munich: A Latent-Class Analysis.

    Science.gov (United States)

    Hannemann, Tessa-Virginia; Kraus, Ludwig; Piontek, Daniela

    2017-09-19

    The affinity for substance use among patrons of nightclubs has been well established. With novel psychoactive substances (NPS) quickly emerging on the European drug market, trends, and patterns of use are potentially changing. (1) The detection of subgroups of consumers in the electronic dance music scene of a major German metropolitan city, (2) describing the consumption patterns of these subgroups, (3) exploring the prevalence and type of NPS consumption in this population at nightlife events in Munich. A total of 1571 patrons answered questions regarding their own substance use and the emergence of NPS as well as their experience with these substances. A latent class analysis was employed to detect consumption patterns within the sample. A four class model was determined reflecting different consumption patterns: the conservative class (34.9%) whose substance was limited to cannabis; the traditional class (36.6%) which especially consumed traditional club drugs; the psychedelic class (17.5%) which, in addition to traditional club drugs also consumed psychedelic drugs; and an unselective class (10.9%) which displayed the greatest likelihood of consumption of all assessed drugs. "Smoking mixtures" and methylone were the new substances mentioned most often, the number of substances mentioned differed between latent classes. Specific strategies are needed to reduce harm in those displaying the riskiest substance use. Although NPS use is still a fringe phenomenon its prevalence is greater in this subpopulation than in the general population, especially among users in the high-risk unselective class.

  13. Investigation of diffusional transport of heat and its enhancement in phase-change thermal energy storage systems

    International Nuclear Information System (INIS)

    Saraswat, Amit; Bhattacharjee, Rajdeep; Verma, Ankit; Das, Malay K.; Khandekar, Sameer

    2017-01-01

    Thermal energy storage in general, and phase-change materials (PCMs) in particular, have been a major topic of research for the last thirty years. Due to their favorable thermo-dynamical characteristics, such as high density, specific heat and latent heat of fusion, PCMs are usually employed as working fluids for thermal storage. However, low thermal conductivities of organic PCMs have posed a continuous challenge in its large scale deployment. This study focuses on experimental and numerical investigation of the melting process of industrial grade paraffin wax inside a semi-cylindrical enclosure with a heating strip attached axially along the center of semi-cylinder. During the first part of the study, the solid-liquid interface location, the liquid flow patterns in the melt pool, and the spatial and temporal variation of PCM temperature were recorded. For numerical simulation of the system, open source library OpenFOAM® was used in order to solve the coupled Navier-Stokes and energy equations in the considered system. It is seen that the enthalpy-porosity technique implemented on OpenFOAM® is reasonably well suited for handling melting/solidification problems and can be employed for system level design. Next, to overcome the inherent thermal limitations of PCM storage material, the study further explored the potential of coupling the existing heat source with copper-water heat pipes, so as to help augment the rate of heat dissipation within the medium by increasing the effective system-level thermal conductivity. Integration of heat pipes led to enhanced transport, and hence, a substantial decrease in the total required melting time. The study provides a framework for designing of large systems with integration of heat pipes with PCM based thermal storage systems.

  14. Air to air fixed plate enthalpy heat exchanger, performance variation and energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, Mohammad Shakir [Universiti Teknologi Petronas, Bandar Seri Iskandar (Malaysia); Alwaked, Rafat [Prince Mohammad Bin Fahd University, Al Khobar (Saudi Arabia); Behnia, Masud [University of Sydney, Sydney (Australia); Morrison, Graham [The University of New South Wales, Sydney (Australia)

    2013-11-15

    The thermal performance of a Z shape enthalpy heat exchanger utilising 70 gsm Kraft paper as the heat and moisture transfer surface has been investigated. Effects of different inlet air humidity ratio conditions on the heat exchanger effectiveness and on the energy recovered by the heat exchanger have been the main focus of this investigation. A typical air conditioning cooling coil which incorporates an enthalpy heat exchanger has been modelled for tropical climate. Under test conditions, results have shown that latent effectiveness and the moisture resistance coefficient have strong dependency on the inlet air humidity ratio. Moreover, the latent effectiveness has been found to be strongly dependent on the moisture resistance coefficient rather than the convective mass transfer coefficient. Finally, annual energy analysis for Singapore weather conditions have also shown that energy recovered under variable inlet air conditions is 15% less than that recovered under constant inlet air conditions for the same heat exchanger.

  15. Thermal energy storage system using phase change materials: Constant heat source

    Directory of Open Access Journals (Sweden)

    Reddy Meenakshi R.

    2012-01-01

    Full Text Available The usage of phase change materials (PCM to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation paraffin and stearic acid are employed as PCMs in thermal energy storage (TES system to store the heat as sensible and latent heat also. A constant heat source is used to supply heat transfer fluid (HTF at constant temperature to the TES system. In the TES system PCMs are stored in the form of spherical capsules of 38 mm diameter made of high density poly ethylene (HDPE. The results of the investigation are related to the charging time and recovery of stored energy from the TES system.

  16. Age is associated with latent tuberculosis in nurses

    Directory of Open Access Journals (Sweden)

    Naesinee Chaiear

    2016-12-01

    Full Text Available Objective: To evaluate risk factors for developing latent tuberculosis (LTB in Thai nurses. Methods: A comparison study was conducted at Srinagarind Hospital, Khon Kaen, Thailand. Clinical factors were compared between persons with tuberculin conversion and those without tuberculin conversion identified by tuberculin skin test. Results: There were 173 eligible persons with the LTB (34.7%. There were five workplaces where participants worked regularly including the general ward, surgical ward, pediatric ward, medical ward and critical care ward. In a multivariate model, two factors were significantly associated with LTB including age and history of tuberculosis in colleagues. The adjusted odds ratio (95% confidence interval of both variables were 1.056 (1.004–1.104 and 0.202 (0.044– 0.941. Conclusions: Older age is associated with latent tuberculosis in nurses. LTB should be screened routinely and treated if diagnosed for nurses.

  17. Explicit estimating equations for semiparametric generalized linear latent variable models

    KAUST Repository

    Ma, Yanyuan

    2010-07-05

    We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.

  18. Managing latent tuberculosis infection and tuberculosis in children

    Directory of Open Access Journals (Sweden)

    I. Carvalho

    2018-03-01

    Full Text Available Tuberculosis (TB is a major cause of childhood morbidity and mortality worldwide. The aim of this review is to describe the management of the child with TB and latent tuberculosis infection (LTBI.To develop this article, a working group reviewed relevant epidemiological and other scientific studies and established practices in conducting LBTI and TB in children. The article describes how to manage the child with LTBI, considering transmission and infectiousness of tuberculosis, contact screening and prioritization of contacts and recommendations on treatment of children with LTBI and how to manage the child with TB considering the susceptibility of children to developing tuberculosis, epidemiology and classification of tuberculosis in children, diagnosis and treatment. Keywords: Tuberculosis, Pediatric, Childhood, Latent tuberculosis infection

  19. Thermal performance analysis of heat exchanger for closed wet cooling tower using heat and mass transfer analogy

    International Nuclear Information System (INIS)

    Yoo, Seong Yeon; Han, Kyu Hyun; Kim, Jin Hyuck

    2010-01-01

    In closed wet cooling towers, the heat transfer between the air and external tube surfaces can be composed of the sensible heat transfer and the latent heat transfer. The heat transfer coefficient can be obtained from the equation for external heat transfer of tube banks. According to experimental data, the mass transfer coefficient was affected by the air velocity and spray water flow rate. This study provides the correlation equation for mass transfer coefficient based on the analogy of the heat and mass transfer and the experimental data. The results from this correlation equation showed fairly good agreement with experimental data. The cooling capacity and thermal efficiency of the closed wet cooling tower were calculated from the correlation equation to analyze the performance of heat exchanger for the tower

  20. Linear latent variable models: the lava-package

    DEFF Research Database (Denmark)

    Holst, Klaus Kähler; Budtz-Jørgensen, Esben

    2013-01-01

    are implemented including robust standard errors for clustered correlated data, multigroup analyses, non-linear parameter constraints, inference with incomplete data, maximum likelihood estimation with censored and binary observations, and instrumental variable estimators. In addition an extensive simulation......An R package for specifying and estimating linear latent variable models is presented. The philosophy of the implementation is to separate the model specification from the actual data, which leads to a dynamic and easy way of modeling complex hierarchical structures. Several advanced features...