WorldWideScience

Sample records for total input power

  1. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  2. High-power tests of a single-cell copper accelerating cavity driven by two input couplers

    International Nuclear Information System (INIS)

    Horan, D.; Bromberek, D.; Meyer, D.; Waldschmidt, G.

    2008-01-01

    High-power tests were conducted on a 350-MHz, single-cell copper accelerating cavity driven simultaneously by two H-loop input couplers for the purpose of determining the reliability, performance, and power-handling capability of the cavity and related components, which have routinely operated at 100-kW power levels. The test was carried out utilizing the APS 350-MHz RF Test Stand, which was modified to split the input rf power into two frac12-power feeds, each supplying power to a separate H-loop coupler on the cavity. Electromagnetic simulations of the two-coupler feed system were used to determine coupler match, peak cavity fields, and the effect of phasing errors between the coupler feed lines. The test was conducted up to a maximum total rf input power of 164-kW CW. Test apparatus details and performance data will be presented.

  3. A guidance on MELCOR input preparation : An input deck for Ul-Chin 3 and 4 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Song Won

    1997-02-01

    The objective of this study is to enhance the capability of assessing the severe accident sequence analyses and the containment behavior using MELCOR computer code and to provide the guideline of its efficient use. This report shows the method of the input deck preparation as well as the assessment strategy for the MELCOR code. MELCOR code is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. The code is being developed at Sandia National Laboratories for the U.S. NRC as a second generation plant risk assessment tool and the successor to the source term code package. The accident sequence of the reference input deck prepared in this study for Ulchin unit 3 and 4 nuclear power plants, is the total loss of feedwater (TLOFW) without any success of safety systems, which is similar to station blackout (TLMB). It is very useful to simulate a well-known sequence through the best estimated code or experiment, because the results of the simulation before core melt can be compared with the FSAR, but no data is available after core melt. The precalculation for the TLOFW using the reference input deck is performed successfully as expected. The other sequences will be carried out with minor changes in the reference input. This input deck will be improved continually by the adding of the safety systems not included in this input deck, and also through the sensitivity and uncertainty analyses. (author). 19 refs., 10 tabs., 55 figs.

  4. A guidance on MELCOR input preparation : An input deck for Ul-Chin 3 and 4 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Cho, Song Won.

    1997-02-01

    The objective of this study is to enhance the capability of assessing the severe accident sequence analyses and the containment behavior using MELCOR computer code and to provide the guideline of its efficient use. This report shows the method of the input deck preparation as well as the assessment strategy for the MELCOR code. MELCOR code is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. The code is being developed at Sandia National Laboratories for the U.S. NRC as a second generation plant risk assessment tool and the successor to the source term code package. The accident sequence of the reference input deck prepared in this study for Ulchin unit 3 and 4 nuclear power plants, is the total loss of feedwater (TLOFW) without any success of safety systems, which is similar to station blackout (TLMB). It is very useful to simulate a well-known sequence through the best estimated code or experiment, because the results of the simulation before core melt can be compared with the FSAR, but no data is available after core melt. The precalculation for the TLOFW using the reference input deck is performed successfully as expected. The other sequences will be carried out with minor changes in the reference input. This input deck will be improved continually by the adding of the safety systems not included in this input deck, and also through the sensitivity and uncertainty analyses. (author). 19 refs., 10 tabs., 55 figs

  5. An Approach to Sensorless Detection of Human Input Torque and Its Application to Power Assist Motion in Electric Wheelchair

    Science.gov (United States)

    Kaida, Yukiko; Murakami, Toshiyuki

    A wheelchair is an important apparatus of mobility for people with disability. Power-assist motion in an electric wheelchair is to expand the operator's field of activities. This paper describes force sensorless detection of human input torque. Reaction torque estimation observer calculates the total disturbance torque first. Then, the human input torque is extracted from the estimated disturbance. In power-assist motion, assist torque is synthesized according to the product of assist gain and the average torque of the right and left input torque. Finally, the proposed method is verified through the experiments of power-assist motion.

  6. Instantaneous input electrical power measurements of HITU transducer

    International Nuclear Information System (INIS)

    Karaboece, B; Guelmez, Y; Rajagapol, S; Shaw, A

    2011-01-01

    HITU (High Intensity Theraupetic Ultrasound) transducers are widely used in therapeutic ultrasound in medicine. The output ultrasonic power of HITU transducer can be measured in number of methods described in IEC 61161 standard [1]. New IEC standards specifically for measurement of HITU equipment are under development. The ultrasound power radiated from a transducer is dependent on applied input electrical voltage and current and consequently power. But, up to now, no standardised method has been developed and adopted for the input electrical power measurements. Hence, a workpackage was carried out for the establishment of such method in the frequency range of 1 to 3 MHz as a part of EURAMET EMRP Era-net plus 'External Beam Cancer Therapy' project. Several current shunts were developed and evaluated. Current measurements were also realized with Philips current probe and preamplifier at NPL and Agilent current probe at UME. In this paper, a method for the measurement of instantaneous electrical power delivered to a reactive ultrasound transducer in the required frequency range is explored.

  7. Instantaneous input electrical power measurements of HITU transducer

    Energy Technology Data Exchange (ETDEWEB)

    Karaboece, B; Guelmez, Y [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey); Rajagapol, S; Shaw, A, E-mail: baki.karaboce@ume.tubitak.gov.t [National Physical Laboratory (NPL), Hampton Road, Teddington TW11 0LW (United Kingdom)

    2011-02-01

    HITU (High Intensity Theraupetic Ultrasound) transducers are widely used in therapeutic ultrasound in medicine. The output ultrasonic power of HITU transducer can be measured in number of methods described in IEC 61161 standard [1]. New IEC standards specifically for measurement of HITU equipment are under development. The ultrasound power radiated from a transducer is dependent on applied input electrical voltage and current and consequently power. But, up to now, no standardised method has been developed and adopted for the input electrical power measurements. Hence, a workpackage was carried out for the establishment of such method in the frequency range of 1 to 3 MHz as a part of EURAMET EMRP Era-net plus 'External Beam Cancer Therapy' project. Several current shunts were developed and evaluated. Current measurements were also realized with Philips current probe and preamplifier at NPL and Agilent current probe at UME. In this paper, a method for the measurement of instantaneous electrical power delivered to a reactive ultrasound transducer in the required frequency range is explored.

  8. Radiation characteristics of input power from surface wave sustained plasma antenna

    Energy Technology Data Exchange (ETDEWEB)

    Naito, T., E-mail: Naito.Teruki@bc.MitsubishiElectric.co.jp [Advanced Technology R& D Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Yamaura, S. [Information Technology R& D Center, Mitsubishi Electric Corporation, Kamakura, Kanagawa 247-8501 (Japan); Fukuma, Y. [Communication System Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Sakai, O. [Department of Electronic System Engineering, The University of Shiga Prefecture, Hikone, Shiga 522-8533 (Japan)

    2016-09-15

    This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.

  9. Radiation characteristics of input power from surface wave sustained plasma antenna

    International Nuclear Information System (INIS)

    Naito, T.; Yamaura, S.; Fukuma, Y.; Sakai, O.

    2016-01-01

    This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.

  10. Optimal Power Allocation for Downstream xDSL With Per-Modem Total Power Constraints: Broadcast Channel Optimal Spectrum Balancing (BC-OSB)

    Science.gov (United States)

    Le Nir, Vincent; Moonen, Marc; Verlinden, Jan; Guenach, Mamoun

    2009-02-01

    Recently, the duality between Multiple Input Multiple Output (MIMO) Multiple Access Channels (MAC) and MIMO Broadcast Channels (BC) has been established under a total power constraint. The same set of rates for MAC can be achieved in BC exploiting the MAC-BC duality formulas while preserving the total power constraint. In this paper, we describe the BC optimal power allo- cation applying this duality in a downstream x-Digital Subscriber Lines (xDSL) context under a total power constraint for all modems over all tones. Then, a new algorithm called BC-Optimal Spectrum Balancing (BC-OSB) is devised for a more realistic power allocation under per-modem total power constraints. The capacity region of the primal BC problem under per-modem total power constraints is found by the dual optimization problem for the BC under per-modem total power constraints which can be rewritten as a dual optimization problem in the MAC by means of a precoder matrix based on the Lagrange multipliers. We show that the duality gap between the two problems is zero. The multi-user power allocation problem has been solved for interference channels and MAC using the OSB algorithm. In this paper we solve the problem of multi-user power allocation for the BC case using the OSB algorithm as well and we derive a computational efficient algorithm that will be referred to as BC-OSB. Simulation results are provided for two VDSL2 scenarios: the first one with Differential-Mode (DM) transmission only and the second one with both DM and Phantom- Mode (PM) transmissions.

  11. Space Vector Modulation for an Indirect Matrix Converter with Improved Input Power Factor

    Directory of Open Access Journals (Sweden)

    Nguyen Dinh Tuyen

    2017-04-01

    Full Text Available Pulse width modulation strategies have been developed for indirect matrix converters (IMCs in order to improve their performance. In indirect matrix converters, the LC input filter is used to remove input current harmonics and electromagnetic interference problems. Unfortunately, due to the existence of the input filter, the input power factor is diminished, especially during operation at low voltage outputs. In this paper, a new space vector modulation (SVM is proposed to compensate for the input power factor of the indirect matrix converter. Both computer simulation and experimental studies through hardware implementation were performed to verify the effectiveness of the proposed modulation strategy.

  12. The effect of cutting conditions on power inputs when machining

    Science.gov (United States)

    Petrushin, S. I.; Gruby, S. V.; Nosirsoda, Sh C.

    2016-08-01

    Any technological process involving modification of material properties or product form necessitates consumption of a certain power amount. When developing new technologies one should take into account the benefits of their implementation vs. arising power inputs. It is revealed that procedures of edge cutting machining are the most energy-efficient amongst the present day forming procedures such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc, such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc. An expanded formula for calculation of power inputs is deduced, which takes into consideration the mode of cutting together with the tip radius, the form of the replaceable multifaceted insert and its wear. Having taken as an example cutting of graphite iron by the assembled cutting tools with replaceable multifaceted inserts the authors point at better power efficiency of high feeding cutting in comparison with high-speed cutting.

  13. Development the Controller Input Power of Peripheral Interfacing Controller Using Other Micro controller

    International Nuclear Information System (INIS)

    Syirrazie Che Soh; Harzawardi Hashim; Nor Arymaswati Abdullah; Nur Aira Abdul Rahman; Mohd Ashhar Khalid

    2011-01-01

    This Controller Input Power of a Peripheral Interfacing Controller was developed using the other micro controller. This paper discuss the switching technique are practiced using proper electronic device to develop the controller, thus enable to control the input power of a PIC in order to expand their interfacing capacity and control. This may allow the PIC could be used to acquire input and control output signal from electronic and electromechanical device and instrument as well as software in wide scale and application. (author)

  14. Wireless Power Transmission via Sheet Medium Using Automatic Phase Adjustment of Multiple Inputs

    Science.gov (United States)

    Matsuda, Takashi; Oota, Toshifumi; Kado, Youiti; Zhang, Bing

    The wireless power transmission via sheet medium is a novel physical form of communication that utilizes the surface as a medium to provide both data and power transmission services. To efficiently transmit a relatively-large amount of electric power (several watts), we have developed a wireless power transmission system via sheet medium that concentrates the electric power on a specific spot by using phase control of multiple inputs. However, to find the optimal phases of the multiple inputs making the microwave converge on a specific spot in the sheet medium, the prior knowledge of the device's position, and the pre-experiment measuring the output power, are needed. In wireless communication area, it is known that the retrodirective array scheme can efficiently transmit the power in a self-phasing manner, which uses the pilot signals sent by the client devices. In this paper, we apply the retrodirective array scheme to the wireless power transmission system via sheet medium, and propose a power transmission scheme using the phase-adjustment of multiple inputs. To confirm the effectiveness of the proposal scheme, we evaluate its performance by computer simulation and realistic measurement. Both results show that the proposal scheme can achieve the retrodirectivity over the wireless power transmission via sheet medium.

  15. Real-time transient stabilization and voltage regulation of power generators with unknown mechanical power input

    International Nuclear Information System (INIS)

    Kenne, Godpromesse; Goma, Raphael; Nkwawo, Homere; Lamnabhi-Lagarrigue, Francoise; Arzande, Amir; Vannier, Jean Claude

    2010-01-01

    A nonlinear adaptive excitation controller is proposed to enhance the transient stability and voltage regulation of synchronous generators with unknown power angle and mechanical power input. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of relative angular speed, active electric power, infinite bus and generator terminal voltages. The operating conditions are computed online using the above physical available measurements, the terminal voltage reference value and the estimate of the mechanical power input. The proposed design is therefore capable of providing satisfactory voltage in the presence of unknown variations of the power system operating conditions. Using the concept of sliding mode equivalent control techniques, a robust decentralized adaptive controller which insures the exponential convergence of the outputs to the desired ones, is obtained. Real-time experimental results are reported, comparing the performance of the proposed adaptive nonlinear control scheme to one of the conventional AVR/PSS controller. The high simplicity of the overall adaptive control scheme and its robustness with respect to line impedance variation including critical unbalanced operating condition and temporary turbine fault, constitute the main positive features of the proposed approach.

  16. Real-time transient stabilization and voltage regulation of power generators with unknown mechanical power input

    Energy Technology Data Exchange (ETDEWEB)

    Kenne, Godpromesse, E-mail: gokenne@yahoo.co [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, Universite de Dschang, B.P. 134 Bandjoun (Cameroon); Goma, Raphael, E-mail: raphael.goma@lss.supelec.f [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Nkwawo, Homere, E-mail: homere.nkwawo@iutv.univ-paris13.f [Departement GEII, Universite Paris XIII, 99 Avenue Jean Baptiste Clement, 93430 Villetaneuse (France); Lamnabhi-Lagarrigue, Francoise, E-mail: lamnabhi@lss.supelec.f [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Arzande, Amir, E-mail: Amir.arzande@supelec.f [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Vannier, Jean Claude, E-mail: Jean-claude.vannier@supelec.f [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)

    2010-01-15

    A nonlinear adaptive excitation controller is proposed to enhance the transient stability and voltage regulation of synchronous generators with unknown power angle and mechanical power input. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of relative angular speed, active electric power, infinite bus and generator terminal voltages. The operating conditions are computed online using the above physical available measurements, the terminal voltage reference value and the estimate of the mechanical power input. The proposed design is therefore capable of providing satisfactory voltage in the presence of unknown variations of the power system operating conditions. Using the concept of sliding mode equivalent control techniques, a robust decentralized adaptive controller which insures the exponential convergence of the outputs to the desired ones, is obtained. Real-time experimental results are reported, comparing the performance of the proposed adaptive nonlinear control scheme to one of the conventional AVR/PSS controller. The high simplicity of the overall adaptive control scheme and its robustness with respect to line impedance variation including critical unbalanced operating condition and temporary turbine fault, constitute the main positive features of the proposed approach.

  17. Effect of Orifice Nozzle Design and Input Power on Two-Phase Flow and Mass Transfer Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hei Cheon [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)

    2016-04-15

    It is necessary to investigate the input power as well as the mass transfer characteristics of the aeration process in order to improve the energy efficiency of an aerobic water treatment. The objective of this study is to experimentally investigate the effect of orifice nozzle design and input power on the flow and mass transfer characteristics of a vertical two-phase flow. The mass ratio, input power, volumetric mass transfer coefficient, and mass transfer efficiency were calculated using the measured data. It was found that as the input power increases the volumetric mass transfer coefficient increases, while the mass ratio and mass transfer efficiency decrease. The mass ratio, volumetric mass transfer coefficient, and mass transfer efficiency were higher for the orifice configuration with a smaller orifice nozzle area ratio. An empirical correlation was proposed to estimate the effect of mass ratio, input power, and Froude number on the volumetric mass transfer coefficient.

  18. Energy Inputs Uncertainty: Total Amount, Distribution and Correlation Between Different Forms of Energy

    Science.gov (United States)

    Deng, Yue

    2014-01-01

    Describes solar energy inputs contributing to ionospheric and thermospheric weather processes, including total energy amounts, distributions and the correlation between particle precipitation and Poynting flux.

  19. TOKMINA, Toroidal Magnetic Field Minimization for Tokamak Fusion Reactor. TOKMINA-2, Total Power for Tokamak Fusion Reactor

    International Nuclear Information System (INIS)

    Hatch, A.J.

    1975-01-01

    1 - Description of problem or function: TOKMINA finds the minimum magnetic field, Bm, required at the toroidal coil of a Tokamak type fusion reactor when the input is beta(ratio of plasma pressure to magnetic pressure), q(Kruskal-Shafranov plasma stability factor), and y(ratio of plasma radius to vacuum wall radius: rp/rw) and arrays of PT (total thermal power from both d-t and tritium breeding reactions), Pw (wall loading or power flux) and TB (thickness of blanket), following the method of Golovin, et al. TOKMINA2 finds the total power, PT, of such a fusion reactor, given a specified magnetic field, Bm, at the toroidal coil. 2 - Method of solution: TOKMINA: the aspect ratio(a) is minimized, giving a minimum value for Bm. TOKMINA2: a search is made for PT; the value of PT which minimizes Bm to the required value within 50 Gauss is chosen. 3 - Restrictions on the complexity of the problem: Input arrays presently are dimensioned at 20. This restriction can be overcome by changing a dimension card

  20. Total dose induced increase in input offset voltage in JFET input operational amplifiers

    International Nuclear Information System (INIS)

    Pease, R.L.; Krieg, J.; Gehlhausen, M.; Black, J.

    1999-01-01

    Four different types of commercial JFET input operational amplifiers were irradiated with ionizing radiation under a variety of test conditions. All experienced significant increases in input offset voltage (Vos). Microprobe measurement of the electrical characteristics of the de-coupled input JFETs demonstrates that the increase in Vos is a result of the mismatch of the degraded JFETs. (authors)

  1. The scaling of edge parameters in jet with plasma input power

    International Nuclear Information System (INIS)

    Erents, S.K.; McCracken, G.M.; Harbour, P.J.; Clement, S.; Summers, D.D.R.; Tagle, J.A.; Kock, L. de

    1989-01-01

    The scaling of edge parameters of density and temperature with central density and ohmic power in JET has been presented previously for the discrete limiter geometry and more recently for the new belt limiter configuration. However, the scaling with plasma current (I p ) is difficult to interpret because varying I p does not only change the input power but also the safety factor qs and consequently the SOL thickness. The use of additional heating at constant current allows more direct observation of the effects of changing heating power. In this paper we present data in which the plasma input power is increased by ICRH, (Pt<20MW), using a 3MA target plasma, and compare data for different plasma currents using discrete and belt limiter geometries. Edge data is presented from Langmuir probes in tiles at the top of the torus, when the tokamak is operated in single null magnetic separatrix (divertor) mode, as well as for probes in the main plasma boundary to contrast these data with limiter data. (author) 3 refs., 4 figs

  2. New approach to derive linear power/burnup history input for CANDU fuel codes

    International Nuclear Information System (INIS)

    Lac Tang, T.; Richards, M.; Parent, G.

    2003-01-01

    The fuel element linear power / burnup history is a required input for the ELESTRES code in order to simulate CANDU fuel behavior during normal operating conditions and also to provide input for the accident analysis codes ELOCA and SOURCE. The purpose of this paper is to present a new approach to derive 'true', or at least more realistic linear power / burnup histories. Such an approach can be used to recreate any typical bundle power history if only a single pair of instantaneous values of bundle power and burnup, together with the position in the channel, are known. The histories obtained could be useful to perform more realistic simulations for safety analyses for cases where the reference (overpower) history is not appropriate. (author)

  3. A Low-input-voltage Wireless Power Transfer for Biomedical Implants

    DEFF Research Database (Denmark)

    Jiang, Hao; Bai, Kangjun; Zhu, Weijie

    2015-01-01

    Wireless power transfer is an essential technology to increase implants' longevity. A pair of inductivelycoupled coils operating at radio-frequency is extensively used to deliver electrical power to implants wirelessly. In this system, a power conditioning circuit is required convert the induced...... in the rectifier for the efficient AC to DC conversion. This requirement results in larger coil size, shorter operating distance or more stringent geometrical alignment between the two coils. In this paper, a low-input-voltage wireless power transfer has been demonstrated. In this system, the opencircuit voltage...... time-varying AC power harvested by the receiving coil to a stable DC power that is needed for powering circuits and sensors. Most existing power conditioning circuits require the induced voltage of the receiving coil to be significantly higher than the turn-on voltage of the diodes used...

  4. A low power and low distortion rail-to-rail input/output amplifier using constant current technique

    International Nuclear Information System (INIS)

    Liu Yan; Zhao Yiqiang; Zhang Shilin; Zhao Hongliang

    2011-01-01

    A rail-to-rail amplifier with constant transconductance, intended for audio processing, is presented. The constant transconductance is obtained by a constant current technique based on the input differential pairs operating in the weak inversion region. MOSFETs working in the weak inversion region have the advantages of low power and low distortion. The proposed rail-to-rail amplifier, fabricated in a standard 0.35 μm CMOS process, occupies a core die area of 75 x 183 μm 2 . Measured results show that the maximum power consumption is 85.37 μW with a supply voltage of 3.3 V and the total harmonic distortion level is 1.2% at 2 kHz. (semiconductor integrated circuits)

  5. Radioactive inputs to the North Sea and the Channel

    International Nuclear Information System (INIS)

    1984-01-01

    The subject is covered in sections: introduction (radioactivity; radioisotopes; discharges from nuclear establishments); data sources (statutory requirements); sources of liquid radioactive waste (figure showing location of principal sources of radioactive discharges; tables listing principal discharges by activity and by nature of radioisotope); Central Electricity Generating Board nuclear power stations; research and industrial establishments; Ministy of Defence establishments; other UK inputs of radioactive waste; total inputs to the North Sea and the Channel (direct inputs; river inputs; adjacent sea areas); conclusions. (U.K.)

  6. Description of the CONTAIN input model for the Dodewaard nuclear power plant

    International Nuclear Information System (INIS)

    Velema, E.J.

    1992-02-01

    This report describes the ECN standard CONTAIN input model for the Dodewaard Nuclear Power Plant (NPP) that has been developed by ECN. This standard input model will serve as a basis for analyses of the phenomena which may occur inside the Dodewaard containment in the event of a postulated severe accident. Boundary conditions for specific containment analyses can easily be implemented in the input model. as a result ECN will be able to respond quickly on requests for analyses from the utilities of the authorities. The report also includes brief descriptions of the Dodewaard NPP and the CONTAIN computer program. (author). 7 refs.; 5 figs.; 3 tabs

  7. CMOS single-stage input-powered bridge rectifier with boost switch and duty cycle control

    Science.gov (United States)

    Radzuan, Roskhatijah; Mohd Salleh, Mohd Khairul; Hamzah, Mustafar Kamal; Ab Wahab, Norfishah

    2017-06-01

    This paper presents a single-stage input-powered bridge rectifier with boost switch for wireless-powered devices such as biomedical implants and wireless sensor nodes. Realised using CMOS process technology, it employs a duty cycle switch control to achieve high output voltage using boost technique, leading to a high output power conversion. It has only six external connections with the boost inductance. The input frequency of the bridge rectifier is set at 50 Hz, while the switching frequency is 100 kHz. The proposed circuit is fabricated on a single 0.18-micron CMOS die with a space area of 0.024 mm2. The simulated and measured results show good agreement.

  8. Multi-Input Converter with MPPT Feature for Wind-PV Power Generation System

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A multi-input converter (MIC to process wind-PV power is proposed, designed, analyzed, simulated, and implemented. The MIC cannot only process solar energy but deal with wind power, of which structure is derived from forward-type DC/DC converter to step-down/up voltage for charger systems, DC distribution applications, or grid connection. The MIC comprises an upper modified double-ended forward, a lower modified double-ended forward, a common output inductor, and a DSP-based system controller. The two modified double-ended forwards can operate individually or simultaneously so as to accommodate the variation of the hybrid renewable energy under different atmospheric conditions. While the MIC operates at interleaving mode, better performance can be achieved and volume also is reduced. The proposed MIC is capable of recycling the energy stored in the leakage inductance and obtaining high step-up output voltage. In order to draw maximum power from wind turbine and PV panel, perturb-and-observe method is adopted to achieve maximum power point tracking (MPPT feature. The MIC is constructed, analyzed, simulated, and tested. Simulations and hardware measurements have demonstrated the feasibility and functionality of the proposed multi-input converter.

  9. Input energy measurement toward warm dense matter generation using intense pulsed power generator

    Science.gov (United States)

    Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.

    2016-05-01

    In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.

  10. Road simulation for four-wheel vehicle whole input power spectral density

    Science.gov (United States)

    Wang, Jiangbo; Qiang, Baomin

    2017-05-01

    As the vibration of running vehicle mainly comes from road and influence vehicle ride performance. So the road roughness power spectral density simulation has great significance to analyze automobile suspension vibration system parameters and evaluate ride comfort. Firstly, this paper based on the mathematical model of road roughness power spectral density, established the integral white noise road random method. Then in the MATLAB/Simulink environment, according to the research method of automobile suspension frame from simple two degree of freedom single-wheel vehicle model to complex multiple degrees of freedom vehicle model, this paper built the simple single incentive input simulation model. Finally the spectrum matrix was used to build whole vehicle incentive input simulation model. This simulation method based on reliable and accurate mathematical theory and can be applied to the random road simulation of any specified spectral which provides pavement incentive model and foundation to vehicle ride performance research and vibration simulation.

  11. Effect of Power Point Enhanced Teaching (Visual Input) on Iranian Intermediate EFL Learners' Listening Comprehension Ability

    Science.gov (United States)

    Sehati, Samira; Khodabandehlou, Morteza

    2017-01-01

    The present investigation was an attempt to study on the effect of power point enhanced teaching (visual input) on Iranian Intermediate EFL learners' listening comprehension ability. To that end, a null hypothesis was formulated as power point enhanced teaching (visual input) has no effect on Iranian Intermediate EFL learners' listening…

  12. A novel implementation of kNN classifier based on multi-tupled meteorological input data for wind power prediction

    International Nuclear Information System (INIS)

    Yesilbudak, Mehmet; Sagiroglu, Seref; Colak, Ilhami

    2017-01-01

    Highlights: • An accurate wind power prediction model is proposed for very short-term horizon. • The k-nearest neighbor classifier is implemented based on the multi-tupled inputs. • The variation of wind power prediction errors is evaluated in various aspects. • Our approach shows the superior prediction performance over the persistence method. - Abstract: With the growing share of wind power production in the electric power grids, many critical challenges to the grid operators have been emerged in terms of the power balance, power quality, voltage support, frequency stability, load scheduling, unit commitment and spinning reserve calculations. To overcome such problems, numerous studies have been conducted to predict the wind power production, but a small number of them have attempted to improve the prediction accuracy by employing the multidimensional meteorological input data. The novelties of this study lie in the proposal of an efficient and easy to implement very short-term wind power prediction model based on the k-nearest neighbor classifier (kNN), in the usage of wind speed, wind direction, barometric pressure and air temperature parameters as the multi-tupled meteorological inputs and in the comparison of wind power prediction results with respect to the persistence reference model. As a result of the achieved patterns, we characterize the variation of wind power prediction errors according to the input tuples, distance measures and neighbor numbers, and uncover the most influential and the most ineffective meteorological parameters on the optimization of wind power prediction results.

  13. Low Power Very High Frequency Switch-Mode Power Supply with 50 V Input and 5 V Output

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the design of a resonant converter with a switching frequency in the very high frequencyrange (30-300 MHz), a large step down ratio (10 times) and low output power (1 W). Several different invertersand rectifiers are analyzed and compared. The class E inverter and rectifier...... are selected based on complexity andefficiency estimates. Three different power stages are implemented; one with a large input inductor, one with a switch with small capacitances and one with a switch with low on resistance. The power stages are designed with the same specifications and efficiencies from 60...

  14. The energy input in the construction and operation of nuclear power stations

    International Nuclear Information System (INIS)

    Kolb, G.; Niehaus, F.; Rath-Nagel, S.; Voss, A.

    1975-08-01

    The production of electric energy requires energy investments not only for direct fuel input but for the construction of power plants and for the extraction of primary energy fuels as well. When the overall energy balance of energy converting systems has to be assessed these energetic investments must be included. In the present investigation the overall energy input of different nuclear power plant types (comprising the nuclear fuel cycle) is computed and compared with a coal-fired plant. Moreover a time-dependent energy balance for the expansion of nuclear capacity according to the existing nuclear programs is calculated. Even applying only Light Water Reactors the nuclear expansion program (with an installed capacity of 50 GWsub(el) in 1985 and 170 GWsub(el) in 2000) would result in an accumulated fossil fuel saving of approximately the tenfold amount of primary energy consumed in the Federal Republic of Germany yearly today. (orig.) [de

  15. Comparison Study on Empirical Correlation for Mass Transfer Coefficient with Gas Hold-up and Input Power of Aeration Process

    International Nuclear Information System (INIS)

    Park, Sang Kyoo; Yang, Hei Cheon

    2017-01-01

    As stricter environmental regulation have led to an increase in the water treatment cost, it is necessary to quantitatively study the input power of the aeration process to improve the energy efficiency of the water treatment processes. The objective of this study is to propose the empirical correlations for the mass transfer coefficient with the gas hold-up and input power in order to investigate the mass transfer characteristics of the aeration process. It was found that as the input power increases, the mass transfer coefficient increases because of the decrease of gas hold-up and increase of Reynolds number, the penetration length, and dispersion of mixed flow. The correlations for the volumetric mass transfer coefficients with gas hold-up and input power were consistent with the experimental data, with the maximum deviation less than approximately ±10.0%.

  16. Comparison Study on Empirical Correlation for Mass Transfer Coefficient with Gas Hold-up and Input Power of Aeration Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Kyoo; Yang, Hei Cheon [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)

    2017-06-15

    As stricter environmental regulation have led to an increase in the water treatment cost, it is necessary to quantitatively study the input power of the aeration process to improve the energy efficiency of the water treatment processes. The objective of this study is to propose the empirical correlations for the mass transfer coefficient with the gas hold-up and input power in order to investigate the mass transfer characteristics of the aeration process. It was found that as the input power increases, the mass transfer coefficient increases because of the decrease of gas hold-up and increase of Reynolds number, the penetration length, and dispersion of mixed flow. The correlations for the volumetric mass transfer coefficients with gas hold-up and input power were consistent with the experimental data, with the maximum deviation less than approximately ±10.0%.

  17. The AAEC rotamak experiment description and preliminary results at low input power

    International Nuclear Information System (INIS)

    Durance, G.; Hogg, G.R.; Tendys, J.

    1984-12-01

    A description is given of the initial experiments on a rotamak device operating with 10 kW input power at a frequency of 1.85 MHz. The experimental apparatus and the diagnostic systems are also described. The matching of the radiofrequency power sources to the drive coils is discussed and details are given of the results from discharges in hydrogen, deuterium, helium and argon. The plasma/magnetic field configuration appears to be stable although, under certain conditions, fluctuations of the magnetic field structure have been observed

  18. Parallel combination of FC and UC for vehicular power systems using a multi-input converter-based power interface

    Energy Technology Data Exchange (ETDEWEB)

    Vural, B.; Erdinc, O.; Uzunoglu, M. [Department of Electrical Engineering, Yildiz Technical University, Istanbul 34349 (Turkey)

    2010-12-15

    Fuel cells (FC) are widely recognized as one of the most promising technologies to meet future power requirements of vehicular applications. However, a FC system combined with an energy storage system (ESS) can perform better for vehicle propulsion as considering several points. As the additional ESS can fulfill the transient power demand fluctuations, the FC system can be downsized to fit the base power demand without facing peak loads. Besides, braking energy can be recovered by the ESS. Interfacing of traction drive requirements with characteristics and modes of operation of on-board generation units and ESSs calls for suitable power electronic converter configuration. In this paper, a FC/UC hybrid vehicular power system using a multi-input converter-based power interface is proposed. The applied power interface topology ensures the active power sharing and DC link voltage stabilization for the hybrid vehicular system. The mathematical and electrical models of the hybrid vehicular system are developed in detail and simulated using MATLAB registered, Simulink registered and SimPowerSystems registered environments. (author)

  19. Parallel combination of FC and UC for vehicular power systems using a multi-input converter-based power interface

    International Nuclear Information System (INIS)

    Vural, B.; Erdinc, O.; Uzunoglu, M.

    2010-01-01

    Fuel cells (FC) are widely recognized as one of the most promising technologies to meet future power requirements of vehicular applications. However, a FC system combined with an energy storage system (ESS) can perform better for vehicle propulsion as considering several points. As the additional ESS can fulfill the transient power demand fluctuations, the FC system can be downsized to fit the base power demand without facing peak loads. Besides, braking energy can be recovered by the ESS. Interfacing of traction drive requirements with characteristics and modes of operation of on-board generation units and ESSs calls for suitable power electronic converter configuration. In this paper, a FC/UC hybrid vehicular power system using a multi-input converter-based power interface is proposed. The applied power interface topology ensures the active power sharing and DC link voltage stabilization for the hybrid vehicular system. The mathematical and electrical models of the hybrid vehicular system are developed in detail and simulated using MATLAB (registered) , Simulink (registered) and SimPowerSystems (registered) environments.

  20. Optimal testing input sets for reduced diagnosis time of nuclear power plant digital electronic circuits

    International Nuclear Information System (INIS)

    Kim, D.S.; Seong, P.H.

    1994-01-01

    This paper describes the optimal testing input sets required for the fault diagnosis of the nuclear power plant digital electronic circuits. With the complicated systems such as very large scale integration (VLSI), nuclear power plant (NPP), and aircraft, testing is the major factor of the maintenance of the system. Particularly, diagnosis time grows quickly with the complexity of the component. In this research, for reduce diagnosis time the authors derived the optimal testing sets that are the minimal testing sets required for detecting the failure and for locating of the failed component. For reduced diagnosis time, the technique presented by Hayes fits best for the approach to testing sets generation among many conventional methods. However, this method has the following disadvantages: (a) it considers only the simple network (b) it concerns only whether the system is in failed state or not and does not provide the way to locate the failed component. Therefore the authors have derived the optimal testing input sets that resolve these problems by Hayes while preserving its advantages. When they applied the optimal testing sets to the automatic fault diagnosis system (AFDS) which incorporates the advanced fault diagnosis method of artificial intelligence technique, they found that the fault diagnosis using the optimal testing sets makes testing the digital electronic circuits much faster than that using exhaustive testing input sets; when they applied them to test the Universal (UV) Card which is a nuclear power plant digital input/output solid state protection system card, they reduced the testing time up to about 100 times

  1. Development of 20 kW input power coupler for 1.3 GHz ERL main linac. Component test at 30 kW IOT test stand

    International Nuclear Information System (INIS)

    Sakai, Hiroshi; Umemori, Kensei; Sakanaka, Shogo; Takahashi, Takeshi; Furuya, Takaaki; Shinoe, Kenji; Ishii, Atsushi; Nakamura, Norio; Sawamura, Masaru

    2009-01-01

    We started to develop an input coupler for a 1.3 GHz ERL superconducting cavity. Required input power is about 20 kW for the cavity acceleration field of 20 MV/m and the beam current of 100 mA in energy recovery operation. The input coupler is designed based on the STF-BL input coupler and some modifications are applied to the design for the CW 20 kW power operation. We fabricated input coupler components such as ceramic windows and bellows and carried out the high-power test of the components by using a 30 kW IOT power source and a test stand constructed for the highpower test. In this report, we mainly describe the results of the high-power test of ceramic window and bellows. (author)

  2. Preparation of Input Deck to analyze the Nuclear Power Plant for the Use of Regulatory Verification

    International Nuclear Information System (INIS)

    Kang, Doo Hyuk; Kim, Hyung Seok; Suh, Jae Seung; Ahn, Seung Hoon

    2009-01-01

    The objectives of this paper are to make out the input deck that analyzes a nuclear power plant for the use of regulatory verification and to produce its calculation note. We have been maintained the input deck of T/H safety codes used in existing domestic reactors to ensure independent and accurate regulatory verification for the thermal-hydraulic safety analysis in domestic NPPs. This paper is mainly divided into two steps: first step is to compare existing input deck to the calculation note in order to verify the consistency. Next step is to model 3-dimensional reactor pressure vessel using MULTID component instead of the 1D existing input deck

  3. Material input of nuclear fuel

    International Nuclear Information System (INIS)

    Rissanen, S.; Tarjanne, R.

    2001-01-01

    The Material Input (MI) of nuclear fuel, expressed in terms of the total amount of natural material needed for manufacturing a product, is examined. The suitability of the MI method for assessing the environmental impacts of fuels is also discussed. Material input is expressed as a Material Input Coefficient (MIC), equalling to the total mass of natural material divided by the mass of the completed product. The material input coefficient is, however, only an intermediate result, which should not be used as such for the comparison of different fuels, because the energy contents of nuclear fuel is about 100 000-fold compared to the energy contents of fossil fuels. As a final result, the material input is expressed in proportion to the amount of generated electricity, which is called MIPS (Material Input Per Service unit). Material input is a simplified and commensurable indicator for the use of natural material, but because it does not take into account the harmfulness of materials or the way how the residual material is processed, it does not alone express the amount of environmental impacts. The examination of the mere amount does not differentiate between for example coal, natural gas or waste rock containing usually just sand. Natural gas is, however, substantially more harmful for the ecosystem than sand. Therefore, other methods should also be used to consider the environmental load of a product. The material input coefficient of nuclear fuel is calculated using data from different types of mines. The calculations are made among other things by using the data of an open pit mine (Key Lake, Canada), an underground mine (McArthur River, Canada) and a by-product mine (Olympic Dam, Australia). Furthermore, the coefficient is calculated for nuclear fuel corresponding to the nuclear fuel supply of Teollisuuden Voima (TVO) company in 2001. Because there is some uncertainty in the initial data, the inaccuracy of the final results can be even 20-50 per cent. The value

  4. Design of a 300-Watt Isolated Power Supply with Minimized Circuit Input-to-Output Parasitic Capacitance

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Petersen, Lars Press; Knott, Arnold

    2014-01-01

    This paper presents the design of a 300-Watt isolated power supply for MOS gate driver circuit in medium and high voltage applications. The key feature of the developed power supply is having a very low circuit input-to-output parasitic capacitance, thus maximizing its noise immunity. This makes...

  5. Substantial reductions of input energy and peak power requirements in targets for heavy ion fusion

    International Nuclear Information System (INIS)

    Mark, J.W.K.; Pan, Y.L.

    1986-01-01

    Two ways of reducing the requirements of the heavy ion driver for inertial confinement fusion (ICF) target implosion are described. Compared to estimates of target gain not using these methods, the target input energy and peak power may be reduced by about a factor of two with the use of the hybrid-implosion concept. Another factor of two reduction in input energy may be obtained with the use of spin-polarized DT fuel in the ICF target

  6. A self-adaptive thermal switch array for rapid temperature stabilization under various thermal power inputs

    International Nuclear Information System (INIS)

    Geng, Xiaobao; Patel, Pragnesh; Narain, Amitabh; Meng, Dennis Desheng

    2011-01-01

    A self-adaptive thermal switch array (TSA) based on actuation by low-melting-point alloy droplets is reported to stabilize the temperature of a heat-generating microelectromechanical system (MEMS) device at a predetermined range (i.e. the optimal working temperature of the device) with neither a control circuit nor electrical power consumption. When the temperature is below this range, the TSA stays off and works as a thermal insulator. Therefore, the MEMS device can quickly heat itself up to its optimal working temperature during startup. Once this temperature is reached, TSA is automatically turned on to increase the thermal conductance, working as an effective thermal spreader. As a result, the MEMS device tends to stay at its optimal working temperature without complex thermal management components and the associated parasitic power loss. A prototype TSA was fabricated and characterized to prove the concept. The stabilization temperatures under various power inputs have been studied both experimentally and theoretically. Under the increment of power input from 3.8 to 5.8 W, the temperature of the device increased only by 2.5 °C due to the stabilization effect of TSA

  7. Power Flow Control of a Dual-Input Interleaved Buck/Boost Converter with Galvanic Isolation for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen; Zhang, Zhe; Knott, Arnold

    2015-01-01

    DC microgrids or nanogrids have attracted increasing research interest in recent years. Therefore, as a critical component, dc-dc converters with multiple inputs are required. In this paper, a dual-input interleaved buck/boost converter is proposed and its corresponding power flow control methods...

  8. Student preparation and the power of visual input in veterinary surgical education

    DEFF Research Database (Denmark)

    Langebæk, Rikke; Nielsen, Søren Saxmose; Koch, Bodil Cathrine

    2016-01-01

    In recent years, veterinary educational institutions have implemented alternative teaching methods, including video demonstrations of surgical procedures. However, the power of the dynamic visual input from videos in relation to recollection of a surgical procedure has never been evaluated. The aim...... a basic surgical skills course, 112 fourth-year veterinary students participated in the study by completing a questionnaire regarding method of recollection, influence of individual types of educational input, and homework preparation. Furthermore, we observed students performing an orchiectomy...... in a terminal pig lab. Preparation for the pig lab consisted of homework (textbook, online material, including videos), lecture, cadaver lab, and toy animal models in a skills lab. In the instructional video, a detail was used that was not described elsewhere. Results show that 60% of the students used a visual...

  9. Elements of the system for RF power input into linear accelerator-injector for booster

    International Nuclear Information System (INIS)

    Mazurov, E.V.; Mal'tsev, I.G.; Shalashov, I.M.

    1981-01-01

    The elements of the original system for RF power input into 30 MeV linear accelerator-injector for the IHEP proton synchrotron booster are considered. A 3 dB coaxial directional coupler (T-bridge) is describedd. The characteristics of the bridge containing elements and the parameters of ballast matched load are given [ru

  10. Operational experience on reduction of feedwater iron and liquid radwaste input for Kuosheng Nuclear Power Plant

    International Nuclear Information System (INIS)

    Wen, T.J.; Huang, Theresa Chen; Liu, Wen Tsung; Liu, T.C.; Shyur, Tzu Sheng; Shen, S.C.

    1998-01-01

    Other than cobalt alloys, or low cobalt materials, feedwater iron content plays an important role in crud activation and transport causing the growth of out-of-core radiation fields and associated with radwaste generation. Before installing prefilter in the upstream of condensate deep-bed demineralizer, increasing demand for suspended solid removal required new backwash and regeneration technique in Kuosheng Nuclear Power Plant. At steady state full power operation, the average iron concentration in condensate demineralizer influent was 8-15 ppb. Considering both the necessity of backwash and reduction of liquid radwaste input, several actions had been taken to promote the crud removal capabilities without using ultrasonic resin cleaner and controlled feedwater iron content between 0.5 and 2.0 ppb. This modified resin backwash technique would also generate minimum liquid radwaste. Meanwhile, significant efforts have been made to promote the quality of waste water by carefully control input streams as well as backwash modification to reduce liquid radwaste generation. The daily quantity of liquid radwaste has decreased dramatically in the past two years and is effectively controlled under the expected average daily input of design basis. (author)

  11. A three-phase to three-phase series-resonant power converter with optimal input current waveforms, Part I: control strategy

    NARCIS (Netherlands)

    Huisman, H.

    1988-01-01

    A control strategy for multiphase-input multiphase-output AC to AC series-resonant (SR) power converters is presented. After reviewing some basics in SR power converters, a hierarchy of control mechanisms is presented, together with their respective theoretical backgrounds and practical limitations.

  12. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices

    Science.gov (United States)

    Pinero, Luis R.; Scheidegger, Robert J.; Aulsio, Michael V.; Birchenough, Arthur G.

    2014-01-01

    A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.

  13. PLEXOS Input Data Generator

    Energy Technology Data Exchange (ETDEWEB)

    2017-02-01

    The PLEXOS Input Data Generator (PIDG) is a tool that enables PLEXOS users to better version their data, automate data processing, collaborate in developing inputs, and transfer data between different production cost modeling and other power systems analysis software. PIDG can process data that is in a generalized format from multiple input sources, including CSV files, PostgreSQL databases, and PSS/E .raw files and write it to an Excel file that can be imported into PLEXOS with only limited manual intervention.

  14. TVF-NMCRC-A powerful program for writing and executing simulation inputs for the FLUKA Monte Carlo Code system

    International Nuclear Information System (INIS)

    Mark, S.; Khomchenko, S.; Shifrin, M.; Haviv, Y.; Schwartz, J.R.; Orion, I.

    2007-01-01

    We at the Negev Monte Carlo Research Center (NMCRC) have developed a powerful new interface for writing and executing FLUKA input files-TVF-NMCRC. With the TVF tool a FLUKA user has the ability to easily write an input file without requiring any previous experience. The TVF-NMCRC tool is a LINUX program that has been verified for the most common LINUX-based operating systems, and is suitable for the latest version of FLUKA (FLUKA 2006.3)

  15. Input-output model of regional environmental and economic impacts of nuclear power plants

    International Nuclear Information System (INIS)

    Johnson, M.H.; Bennett, J.T.

    1979-01-01

    The costs of delayed licensing of nuclear power plants calls for a more-comprehensive method of quantifying the economic and environmental impacts on a region. A traditional input-output (I-O) analysis approach is extended to assess the effects of changes in output, income, employment, pollution, water consumption, and the costs and revenues of local government disaggregated among 23 industry sectors during the construction and operating phases. Unlike earlier studies, this model uses nonlinear environmental interactions and specifies environmental feedbacks to the economic sector. 20 references

  16. 5 Watt GaN HEMT Power Amplifier for LTE

    Directory of Open Access Journals (Sweden)

    K. Niotaki

    2014-04-01

    Full Text Available This work presents the design and implementation of a stand-alone linear power amplifier at 2.4 GHz with high output power. A GaN HEMT transistor is selected for the design and implementation of the power amplifier. The device exhibits a gain of 11.7 dB and a drain efficiency of 39% for an output power of 36.7 dBm at 2.4 GHz for an input power of 25dBm. The carrier to intermodulation ratio is better than 25 dB for a two tone input signal of 25 dBm of total power and a spacing of 5 MHz. The fabricated device is also tested with LTE input signals of different bandwidths (5MHz to 20MHz.

  17. Effect of finite heat input on the power performance of micro heat engines

    International Nuclear Information System (INIS)

    Khu, Kerwin; Jiang, Liudi; Markvart, Tom

    2011-01-01

    Micro heat engines have attracted considerable interest in recent years for their potential exploitation as micro power sources in microsystems and portable devices. Thermodynamic modeling can predict the theoretical performance that can be potentially achieved by micro heat engine designs. An appropriate model can not only provide key information at the design stage but also indicate the potential room for improvement in existing micro heat engines. However, there are few models reported to date which are suitable for evaluating the power performance of micro heat engines. This paper presents a new thermodynamic model for determining the theoretical limit of power performance of micro heat engines with consideration to finite heat input and heat leakage. By matching the model components to those of a representative heat engine layout, the theoretical power, power density, and thermal efficiency achievable for a micro heat engine can be obtained for a given set of design parameters. The effects of key design parameters such as length and thermal conductivity of the engine material on these theoretical outputs are also investigated. Possible trade-offs among these performance objectives are discussed. Performance results derived from the developed model are compared with those of a working micro heat engine (P3) as an example. -- Highlights: → Thermodynamic model for micro heat engines. → Effect of different parameters on potential performance. → Tradeoffs for determining optimal size of micro engines.

  18. A three-phase to three-phase series-resonant power converter with optimal input current waveforms, Part II: implementation and results

    NARCIS (Netherlands)

    Huisman, H.

    1988-01-01

    For pt.I see ibid., vol.35, no.2, p.263-8 (1988). A 15 kW three-phase prototype series-resonant power converter is constructed. The converter features sinusoidal output voltage and sinusoidal input currents. The control concepts and necessary electronics, as well as the layout of the power circuit,

  19. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  20. Hole-assisted fiber based fiber fuse terminator supporting 22 W input

    Science.gov (United States)

    Tsujikawa, Kyozo; Kurokawa, Kenji; Hanzawa, Nobutomo; Nozoe, Saki; Matsui, Takashi; Nakajima, Kazuhide

    2018-05-01

    We investigated the air hole structure in hole-assisted fiber (HAF) with the aim of terminating fiber fuse propagation. We focused on two structural parameters c/MFD and S1/S2, which are related respectively to the position and area of the air holes, and mapped their appropriate values for terminating fiber fuse propagation. Here, MFD is the mode field diameter, c is the diameter of an inscribed circle linking the air holes, S1 is the total area of the air holes, and S2 is the area of a circumscribed circle linking the air holes. On the basis of these results, we successfully realized a compact fiber fuse terminator consisting of a 1.35 mm-long HAF, which can terminate fiber fuse propagation even with a 22 W input. In addition, we observed fiber fuse termination using a high-speed camera. We additionally confirmed that the HAF-based fiber fuse terminator is effective under various input power conditions. The penetration length of the optical discharge in the HAF was only less than 300 μm when the input power was from 2 to 22 W.

  1. Controlling total spot power from holographic laser by superimposing a binary phase grating.

    Science.gov (United States)

    Liu, Xiang; Zhang, Jian; Gan, Yu; Wu, Liying

    2011-04-25

    By superimposing a tunable binary phase grating with a conventional computer-generated hologram, the total power of multiple holographic 3D spots can be easily controlled by changing the phase depth of grating with high accuracy to a random power value for real-time optical manipulation without extra power loss. Simulation and experiment results indicate that a resolution of 0.002 can be achieved at a lower time cost for normalized total spot power.

  2. Jupiter's Auroral Energy Input Observed by Hisaki/EXCEED and its Modulations by Io's Volcanic Activity

    Science.gov (United States)

    Tao, C.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Yoshioka, K.; Kita, H.; Yamazaki, A.; Kasaba, Y.; Yoshikawa, I.; Fujimoto, M.

    2016-12-01

    Aurora is an important indicator representing the momentum transfer from the fast-rotating outer planet to the magnetosphere and the energy input into the atmosphere through the magnetosphere-ionosphere coupling. Long-term monitoring of Jupiter's northern aurora was achieved by the Extreme Ultraviolet (EUV) spectrometer called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) onboard JAXA's Earth-orbiting planetary space telescope Hisaki until today after its launch in September 2013. We have proceeded the statistical survey of the Jupiter's auroral energy input into the upper atmosphere. The auroral electron energy is estimated using a hydrocarbon color ratio (CR) adopted for the wavelength range of EXCEED, and the emission power in the long wavelength range 138.5-144.8 nm is used as an indicator of total emitted power before hydrocarbon absorption and auroral electron energy flux. Temporal dynamic variation of the auroral intensity was detected when Io's volcanic activity and thus EUV emission from the Io plasma torus are enhanced in the early 2015. Average of the total input power over 80 days increases by 10% with sometimes sporadically more than a factor of 3 upto 7, while the CR indicates the auroral electron energy decrease by 20% during the volcanic event compared to the other period. This indicates much more increase in the current system and Joule heating which contributes heating of the upper atmosphere. We will discuss the impact of this event on the upper atmosphere and ionosphere.

  3. Test input of radio-frequency power into the resonator mockup to the second part of the linear accelerator of a meson factory

    International Nuclear Information System (INIS)

    Andreev, V.G.; Belugin, V.M.; Galkin, V.M.

    1976-01-01

    On the experimental stand of the Radio Engineering Institute of the Academy of Sciences of the USSR the accelerating structures for the second portion of the ''meson factory'' are researched. The test power input into the models of of the accelerating structures is accomplished from a powerful pulse klystron generator with external excitation and operating frequency of 991 MHz. The pulse duration of 140 μ s can be diminished as required during ageing of the resonator. The power is adjusted within wide limits. The wave-guide feeders measuring 220 104 terminate in the can-type sealing ports incorporating fused quartz discs and matching diaphragms. The standing wave coefficient in the feeder does not exceed 1.4. The temperature of the cooling water at the resonator input is kept stable. Under nominal conditions the average intensity of the electric field on the axis is 36 kV/cm, the pulse power of the r-f losses in the resonator is equal to 0.9 MW, the average power amounts to 11 kW

  4. Klystron bias power supplies for Indus-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Hannurkar, P.R.

    2008-01-01

    The functioning of an alternating current (AC) voltage regulator based high voltage direct current (HVDC) power supplies with better input and output performances has been presented in this paper. The authors have incorporated a 3-phase series limiting inductor, along with detuned passive filter in each power supply, to take care of line harmonics and the input power factor (IPF), which is simple, cost effective, reliable and provides input performance matching that of an equivalent active filter. Such arrangement has special significance for controlled HVDC power supplies supplying to fixed load but operated from widely varying input voltages. It achieves line voltage total harmonic distortion (THD) below 4% and IPF better than 0.97, for 415 V - 30% to 415 V + 10% variations in 3-phase input voltages. A properly designed crowbar, along with suitable limiting elements, is incorporated in each power supply and stringent wire survivability tests were carried out to limit klystron fault energy below 10 Joules. Several simulated waveforms and experiment results are also presented. (author)

  5. Decoupled Power Solution for Dual-input Isolated DC-DC Converters Using Four Quadrants Integrated Transformers (FQIT)

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.; Thomsen, Ole Cornelius

    2012-01-01

    ) space orthogonal flux is proposed in this paper. And thus a new geometry core and relative winding arrangements are proposed in accordance with the rthogonal flux decoupling technology. Due to the four secondary windings are arranged in a quadratic pattern at the base core plate with the two...... perpendicular primary windings, a name of “four quadrants integrated transformers” (FQIT) is therefore given to the proposed construction. Since the two primary windings are uncoupled, the FQIT allows the two input power stages to transfer the energy into the output load simultaneously or at any...... timemultiplexing scheme, which can optimize the utilization of diversified power energy sources, simplify the system structure, improve the flexibility and reduce the overall cost, so they are attractive for the hybrid renewable power system. Section IV initiates a discussion for the advantages of the FQIT...

  6. Study of industrial consumption behavior in the conditions of low power consumption and decrease of pollution using input-output analysis

    International Nuclear Information System (INIS)

    Ragalie, S.; Gaftea, V.

    1996-01-01

    This study, regarding the industrial consumption behaviour at low power consumption and under low pollution constraints, making use of the input-output analysis, is based on models for prices, energy demand, and pollution. Numerical applications were developed by use of MATILDA program and the methods of setting the model parameters and data acquisition are presented. The analysis provided prognoses for pollution coefficients for given price and consumption input data and very important data for industrial consumption behavior. (author) 7 refs

  7. H∞ Excitation Control Design for Stochastic Power Systems with Input Delay Based on Nonlinear Hamiltonian System Theory

    Directory of Open Access Journals (Sweden)

    Weiwei Sun

    2015-01-01

    Full Text Available This paper presents H∞ excitation control design problem for power systems with input time delay and disturbances by using nonlinear Hamiltonian system theory. The impact of time delays introduced by remote signal transmission and processing in wide-area measurement system (WAMS is well considered. Meanwhile, the systems under investigation are disturbed by random fluctuation. First, under prefeedback technique, the power systems are described as a nonlinear Hamiltonian system. Then the H∞ excitation controller of generators connected to distant power systems with time delay and stochasticity is designed. Based on Lyapunov functional method, some sufficient conditions are proposed to guarantee the rationality and validity of the proposed control law. The closed-loop systems under the control law are asymptotically stable in mean square independent of the time delay. And we through a simulation of a two-machine power system prove the effectiveness of the results proposed in this paper.

  8. When the test of mediation is more powerful than the test of the total effect.

    Science.gov (United States)

    O'Rourke, Holly P; MacKinnon, David P

    2015-06-01

    Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase power has not been investigated. To address this deficit, in a first study we compared the analytical power values of the mediated effect and the total effect in a single-mediator model, to identify the situations in which the inclusion of one mediator increased statistical power. The results from this first study indicated that including a mediator increased statistical power in small samples with large coefficients and in large samples with small coefficients, and when coefficients were nonzero and equal across models. Next, we identified conditions under which power was greater for the test of the total mediated effect than for the test of the total effect in the parallel two-mediator model. These results indicated that including two mediators increased power in small samples with large coefficients and in large samples with small coefficients, the same pattern of results that had been found in the first study. Finally, we assessed the analytical power for a sequential (three-path) two-mediator model and compared the power to detect the three-path mediated effect to the power to detect both the test of the total effect and the test of the mediated effect for the single-mediator model. The results indicated that the three-path mediated effect had more power than the mediated effect from the single-mediator model and the test of the total effect. Practical implications of these results for researchers are then discussed.

  9. High voltage power supplies for INDUS-2 RF system

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Hannurkar, P.R.

    2003-01-01

    The RF system of Indus-2 employs klystron amplifiers operating at 505.812 MHz. A precession controlled high voltage DC supply of appropriate rating is needed for each klystron amplifier, as its bias supply. Since internal flashover and arcing are common with the operation of these klystrons and stored energies beyond particular limit inside its bias power supply is detrimental to this device, a properly designed crowbar is incorporated between each klystron and its power supply. This crowbar bypass these stored energies and helps protecting klystron under any of these unfavorable conditions. In either case, power supply sees a near short circuit across its load. So, its power circuit is designed to reduce the fault current level and its various components are also designed to withstand these fault currents, as and when it appears. Finally, operation of these high voltage power supplies (HVPS) generates lot of harmonics on the source side, which distort the input waveform substantially and reduces the input power factor also. Source multiplication between two power supplies are planned to improve upon above parameters and suitable detuned line filters are incorporated to keep the input voltage total harmonics distortion (THD) below 5 % and input power factor (IFF) near unity. (author)

  10. Multivariable polynomial fitting of controlled single-phase nonlinear load of input current total harmonic distortion

    Science.gov (United States)

    Sikora, Roman; Markiewicz, Przemysław; Pabjańczyk, Wiesława

    2018-04-01

    The power systems usually include a number of nonlinear receivers. Nonlinear receivers are the source of disturbances generated to the power system in the form of higher harmonics. The level of these disturbances describes the total harmonic distortion coefficient THD. Its value depends on many factors. One of them are the deformation and change in RMS value of supply voltage. A modern LED luminaire is a nonlinear receiver as well. The paper presents the results of the analysis of the influence of change in RMS value of supply voltage and the level of dimming of the tested luminaire on the value of the current THD. The analysis was made using a mathematical model based on multivariable polynomial fitting.

  11. Efficient design and simulation of an expandable hybrid (wind-photovoltaic) power system with MPPT and inverter input voltage regulation features in compliance with electric grid requirements

    Energy Technology Data Exchange (ETDEWEB)

    Skretas, Sotirios B.; Papadopoulos, Demetrios P. [Electrical Machines Laboratory, Department of Electrical and Computer Engineering, Democritos University of Thrace (DUTH), 12 V. Sofias, 67100 Xanthi (Greece)

    2009-09-15

    In this paper an efficient design along with modeling and simulation of a transformer-less small-scale centralized DC - bus Grid Connected Hybrid (Wind-PV) power system for supplying electric power to a single phase of a three phase low voltage (LV) strong distribution grid are proposed and presented. The main components of the hybrid system are: a PV generator (PVG); and an array of horizontal-axis, fixed-pitch, small-size, variable-speed wind turbines (WTs) with direct-driven permanent magnet synchronous generator (PMSG) having an embedded uncontrolled bridge rectifier. An overview of the basic theory of such systems along with their modeling and simulation via Simulink/MATLAB software package are presented. An intelligent control method is applied to the proposed configuration to simultaneously achieve three desired goals: to extract maximum power from each hybrid power system component (PVG and WTs); to guarantee DC voltage regulation/stabilization at the input of the inverter; to transfer the total produced electric power to the electric grid, while fulfilling all necessary interconnection requirements. Finally, a practical case study is conducted for the purpose of fully evaluating a possible installation in a city site of Xanthi/Greece, and the practical results of the simulations are presented. (author)

  12. Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization

    Science.gov (United States)

    Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.

    2014-01-01

    This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.

  13. SO2 policy and input substitution under spatial monopoly

    International Nuclear Information System (INIS)

    Gerking, Shelby; Hamilton, Stephen F.

    2010-01-01

    Following the U.S. Clean Air Act Amendments of 1990, electric utilities dramatically increased their utilization of low-sulfur coal from the Powder River Basin (PRB). Recent studies indicate that railroads hauling PRB coal exercise a substantial degree of market power and that relative price changes in the mining and transportation sectors were contributing factors to the observed pattern of input substitution. This paper asks the related question: To what extent does more stringent SO 2 policy stimulate input substitution from high-sulfur coal to low-sulfur coal when railroads hauling low-sulfur coal exercise spatial monopoly power? The question underpins the effectiveness of incentive-based environmental policies given the essential role of market performance in input, output, and abatement markets in determining the social cost of regulation. Our analysis indicates that environmental regulation leads to negligible input substitution effects when clean and dirty inputs are highly substitutable and the clean input market is mediated by a spatial monopolist. (author)

  14. Evaluation of Current Controllers for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian; Liserre, Marco; Teodorescu, Remus

    2009-01-01

    This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional-integral, proportio......This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional......-integral, proportional-resonant, and deadbeat (DB) controllers. Additionally, an improved DB controller robust against grid impedance variation is also presented. Since the paper discusses the implementation of these controllers for grid-connected applications, their evaluation is made in three operating conditions....... First, in steady-state conditions, the contribution of controllers to the total harmonic distortion of the grid current is pursued. Further on, the behavior of controllers in the case of transient conditions like input power variations and grid voltage faults is also examined. Experimental results...

  15. Power plant project success through total productive generation

    Energy Technology Data Exchange (ETDEWEB)

    Kaivola, R.; Tamminen, L.

    1996-11-01

    The Total Productive Generation concept (TPG) defines the lines of action adopted by IVO Generation Services Ltd (IGS) for the operation and maintenance of power plants. The TPG concept is based on procedures tested in practice. The main idea of TPG is continuous development of quality, which is a joint effort of the entire staff. Its objective is to benefit IGS`s own staff and, in particular, the company`s customers. (orig.)

  16. Multivariable polynomial fitting of controlled single-phase nonlinear load of input current total harmonic distortion

    Directory of Open Access Journals (Sweden)

    Sikora Roman

    2018-04-01

    Full Text Available The power systems usually include a number of nonlinear receivers. Nonlinear receivers are the source of disturbances generated to the power system in the form of higher harmonics. The level of these disturbances describes the total harmonic distortion coefficient THD. Its value depends on many factors. One of them are the deformation and change in RMS value of supply voltage. A modern LED luminaire is a nonlinear receiver as well. The paper presents the results of the analysis of the influence of change in RMS value of supply voltage and the level of dimming of the tested luminaire on the value of the current THD. The analysis was made using a mathematical model based on multivariable polynomial fitting.

  17. Control Board Digital Interface Input Devices – Touchscreen, Trackpad, or Mouse?

    Energy Technology Data Exchange (ETDEWEB)

    Thomas A. Ulrich; Ronald L. Boring; Roger Lew

    2015-08-01

    The authors collaborated with a power utility to evaluate input devices for use in the human system interface (HSI) for a new digital Turbine Control System (TCS) at a nuclear power plant (NPP) undergoing a TCS upgrade. A standalone dynamic software simulation of the new digital TCS and a mobile kiosk were developed to conduct an input device study to evaluate operator preference and input device effectiveness. The TCS software presented the anticipated HSI for the TCS and mimicked (i.e., simulated) the turbine systems’ responses to operator commands. Twenty-four licensed operators from the two nuclear power units participated in the study. Three input devices were tested: a trackpad, mouse, and touchscreen. The subjective feedback from the survey indicates the operators preferred the touchscreen interface. The operators subjectively rated the touchscreen as the fastest and most comfortable input device given the range of tasks they performed during the study, but also noted a lack of accuracy for selecting small targets. The empirical data suggest the mouse input device provides the most consistent performance for screen navigation and manipulating on screen controls. The trackpad input device was both empirically and subjectively found to be the least effective and least desired input device.

  18. Power conditioning unit for photovoltaic power systems

    Science.gov (United States)

    Beghin, G.; Nguyen Phuoc, V. T.

    Operational features and components of a power conditioning unit for interconnecting solar cell module powers with a utility grid are outlined. The two-stage unit first modifies the voltage to desired levels on an internal dc link, then inverts the current in 2 power transformers connected to a vector summation control to neutralize harmonic distortion up to the 11th harmonic. The system operates in parallel with the grid with extra inductors to absorb line-to-line voltage and phase differences, and permits peak power use from the PV array. Reactive power is gained internally, and a power system controller monitors voltages, frequencies, and currents. A booster preregulator adjusts the input voltage from the array to provide voltage regulation for the inverter, and can commutate 450 amps. A total harmonic distortion of less than 5 percent is claimed, with a rating of 5 kVA, 50/60 Hz, 3-phase, and 4-wire.

  19. Resistive vs. total power depositions by Alfven modes in pre-heated low aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Cuperman, S.; Bruma, C.; Komoshvili, K.

    2004-01-01

    The power deposition of fast waves launched by a LFS located antenna in a pre-heated, strongly non-uniform low aspect ratio tokamak (START) is investigated. The rigorous computational results indicate a total power deposition by far larger than that predicted for Alfven continuum eigenmodes in cylindrical plasmas. For toroidal wave numbers |N| > 1, the resistive and total power depositions are almost equal. (author)

  20. Improvement of input power dynamic range for 20 Gbit/s optical WDM switch nodes using an integrated Michelson wavelength converter

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Hansen, Peter Bukhave; Jørgensen, Carsten

    1997-01-01

    be improved compared to switch blocks without IWCs. This is especially important at high bit rates where the cascadability of the SOA gates decreases. Here, more than 15 dB improvement of the input power dynamic range is achieved at 20 Gbit/s using a high-speed Michelson interferometer wavelength converter...

  1. Feature determination from powered wheelchair user joystick input characteristics for adapting driving assistance [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Michael Gillham

    2018-05-01

    Full Text Available Background: Many powered wheelchair users find their medical condition and their ability to drive the wheelchair will change over time. In order to maintain their independent mobility, the powered chair will require adjustment over time to suit the user's needs, thus regular input from healthcare professionals is required. These limited resources can result in the user having to wait weeks for appointments, resulting in the user losing independent mobility, consequently affecting their quality of life and that of their family and carers. In order to provide an adaptive assistive driving system, a range of features need to be identified which are suitable for initial system setup and can automatically provide data for re-calibration over the long term. Methods: A questionnaire was designed to collect information from powered wheelchair users with regard to their symptoms and how they changed over time. Another group of volunteer participants were asked to drive a test platform and complete a course which represented manoeuvring in a very confined space as quickly as possible. Two of those participants were also monitored over a longer period in their normal home daily environment. Features, thought to be suitable, were examined using pattern recognition classifiers to determine their suitability for identifying the changing user input over time. Results: The results are not designed to provide absolute insight into the individual user behaviour, as no ground truth of their ability has been determined, they do nevertheless demonstrate the utility of the measured features to provide evidence of the users’ changing ability over time whilst driving a powered wheelchair. Conclusions: Determining the driving features and adjustable elements provides the initial step towards developing an adaptable assistive technology for the user when the ground truths of the individual and their machine have been learned by a smart pattern recognition system.

  2. Carrier Distortion in Hysteretic Self-Oscillating Class-D Audio Power

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Kofod; Andersen, Michael A. E.

    2009-01-01

    An important distortion mechanism in hysteretic self-oscillating (SO) class-D (switch mode) power amplifiers-–carrier distortion-–is analyzed and an optimization method is proposed. This mechanism is an issue in any power amplifier application where a high degree of proportionality between input...... and output is required, such as in audio power amplifiers or xDSL drivers. From an average-mode point of view, carrier distortion is shown to be caused by nonlinear variation of the hysteretic comparator input average voltage with the output average voltage. This easily causes total harmonic distortion...... figures in excess of 0.1–0.2%, inadequate for high-quality audio applications. Carrier distortion is shown to be minimized when the feedback system is designed to provide a triangular carrier (sliding) signal at the input of a hysteretic comparator. The proposed optimization method is experimentally...

  3. Conceptual Design of GRIG (GUI Based RETRAN Input Generator)

    International Nuclear Information System (INIS)

    Lee, Gyung Jin; Hwang, Su Hyun; Hong, Soon Joon; Lee, Byung Chul; Jang, Chan Su; Um, Kil Sup

    2007-01-01

    For the development of high performance methodology using advanced transient analysis code, it is essential to generate the basic input of transient analysis code by rigorous QA procedures. There are various types of operating NPPs (Nuclear Power Plants) in Korea such as Westinghouse plants, KSNP(Korea Standard Nuclear Power Plant), APR1400 (Advance Power Reactor), etc. So there are some difficulties to generate and manage systematically the input of transient analysis code reflecting the inherent characteristics of various types of NPPs. To minimize the user faults and investment man power and to generate effectively and accurately the basic inputs of transient analysis code for all domestic NPPs, it is needed to develop the program that can automatically generate the basic input, which can be directly applied to the transient analysis, from the NPP design material. ViRRE (Visual RETRAN Running Environment) developed by KEPCO (Korea Electric Power Corporation) and KAERI (Korea Atomic Energy Research Institute) provides convenient working environment for Kori Unit 1/2. ViRRE shows the calculated results through on-line display but its capability is limited on the convenient execution of RETRAN. So it can not be used as input generator. ViSA (Visual System Analyzer) developed by KAERI is a NPA (Nuclear Plant Analyzer) using RETRAN and MARS code as thermal-hydraulic engine. ViSA contains both pre-processing and post-processing functions. In the pre-processing, only the trip data cards and boundary conditions can be changed through GUI mode based on pre-prepared text-input, so the capability of input generation is very limited. SNAP (Symbolic Nuclear Analysis Package) developed by Applied Programming Technology, Inc. and NRC (Nuclear Regulatory Commission) provides efficient working environment for the use of nuclear safety analysis codes such as RELAP5 and TRAC-M codes. SNAP covers wide aspects of thermal-hydraulic analysis from model creation through data analysis

  4. Input filter compensation for switching regulators

    Science.gov (United States)

    Lee, F. C.; Kelkar, S. S.

    1982-01-01

    The problems caused by the interaction between the input filter, output filter, and the control loop are discussed. The input filter design is made more complicated because of the need to avoid performance degradation and also stay within the weight and loss limitations. Conventional input filter design techniques are then dicussed. The concept of pole zero cancellation is reviewed; this concept is the basis for an approach to control the peaking of the output impedance of the input filter and thus mitigate some of the problems caused by the input filter. The proposed approach for control of the peaking of the output impedance of the input filter is to use a feedforward loop working in conjunction with feedback loops, thus forming a total state control scheme. The design of the feedforward loop for a buck regulator is described. A possible implementation of the feedforward loop design is suggested.

  5. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    Science.gov (United States)

    Ruma; Lukes, P.; Aoki, N.; Spetlikova, E.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.

    2013-03-01

    A repetitive pulsed-power modulator, which employs a magnetic pulse compression circuit with a high-speed thyristor switch, was used to study the effects of the pulse repetition rate of input power on the physical and chemical properties of pulsed discharges in water. Positive high-voltage pulses of 20 kV with repetition rates of up to 1 kHz were used to generate a discharge in water using the point-to-plane electrode geometry. By varying the pulse repetition rate, two distinct modes of the discharge plasma were formed in water. The first mode was characterized by the formation of a corona-like discharge propagating through water in the form of streamer channels. The second mode was formed typically above 500 Hz, when the formation of streamer channels in water was suppressed and all plasmas occurred inside a spheroidal aggregate of very fine gas bubbles surrounding the tip of the high-voltage electrode. The production of hydrogen peroxide, degradation of organic dye Acid Orange 7 (AO7) and inactivation of bacteria Escherichia coli by the discharge in water were studied under different discharge plasma modes in dependence on the pulse repetition rate of input power. The efficiency of both chemical and biocidal processes induced by the plasma in water decreased significantly with pulse repetition rates above 500 Hz.

  6. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    International Nuclear Information System (INIS)

    Ruma; Aoki, N; Hosseini, S H R; Sakugawa, T; Akiyama, H; Lukes, P; Spetlikova, E

    2013-01-01

    A repetitive pulsed-power modulator, which employs a magnetic pulse compression circuit with a high-speed thyristor switch, was used to study the effects of the pulse repetition rate of input power on the physical and chemical properties of pulsed discharges in water. Positive high-voltage pulses of 20 kV with repetition rates of up to 1 kHz were used to generate a discharge in water using the point-to-plane electrode geometry. By varying the pulse repetition rate, two distinct modes of the discharge plasma were formed in water. The first mode was characterized by the formation of a corona-like discharge propagating through water in the form of streamer channels. The second mode was formed typically above 500 Hz, when the formation of streamer channels in water was suppressed and all plasmas occurred inside a spheroidal aggregate of very fine gas bubbles surrounding the tip of the high-voltage electrode. The production of hydrogen peroxide, degradation of organic dye Acid Orange 7 (AO7) and inactivation of bacteria Escherichia coli by the discharge in water were studied under different discharge plasma modes in dependence on the pulse repetition rate of input power. The efficiency of both chemical and biocidal processes induced by the plasma in water decreased significantly with pulse repetition rates above 500 Hz. (paper)

  7. Research on prediction of agricultural machinery total power based on grey model optimized by genetic algorithm

    Science.gov (United States)

    Xie, Yan; Li, Mu; Zhou, Jin; Zheng, Chang-zheng

    2009-07-01

    Agricultural machinery total power is an important index to reflex and evaluate the level of agricultural mechanization. It is the power source of agricultural production, and is the main factors to enhance the comprehensive agricultural production capacity expand production scale and increase the income of the farmers. Its demand is affected by natural, economic, technological and social and other "grey" factors. Therefore, grey system theory can be used to analyze the development of agricultural machinery total power. A method based on genetic algorithm optimizing grey modeling process is introduced in this paper. This method makes full use of the advantages of the grey prediction model and characteristics of genetic algorithm to find global optimization. So the prediction model is more accurate. According to data from a province, the GM (1, 1) model for predicting agricultural machinery total power was given based on the grey system theories and genetic algorithm. The result indicates that the model can be used as agricultural machinery total power an effective tool for prediction.

  8. Comparing apples and oranges: fold-change detection of multiple simultaneous inputs.

    Directory of Open Access Journals (Sweden)

    Yuval Hart

    Full Text Available Sensory systems often detect multiple types of inputs. For example, a receptor in a cell-signaling system often binds multiple kinds of ligands, and sensory neurons can respond to different types of stimuli. How do sensory systems compare these different kinds of signals? Here, we consider this question in a class of sensory systems - including bacterial chemotaxis- which have a property known as fold-change detection: their output dynamics, including amplitude and response time, depends only on the relative changes in signal, rather than absolute changes, over a range of several decades of signal. We analyze how fold-change detection systems respond to multiple signals, using mathematical models. Suppose that a step of fold F1 is made in input 1, together with a step of F2 in input 2. What total response does the system provide? We show that when both input signals impact the same receptor with equal number of binding sites, the integrated response is multiplicative: the response dynamics depend only on the product of the two fold changes, F1F2. When the inputs bind the same receptor with different number of sites n1 and n2, the dynamics depend on a product of power laws, [Formula: see text]. Thus, two input signals which vary over time in an inverse way can lead to no response. When the two inputs affect two different receptors, other types of integration may be found and generally the system is not constrained to respond according to the product of the fold-change of each signal. These predictions can be readily tested experimentally, by providing cells with two simultaneously varying input signals. The present study suggests how cells can compare apples and oranges, namely by comparing each to its own background level, and then multiplying these two fold-changes.

  9. Energy analysis of nuclear power stations

    International Nuclear Information System (INIS)

    Lindhout, A.H.

    1975-01-01

    A study based on a 1000MWe light water reactor power station was carried out to determine the total energy input and output of the power station. The calculations took into account the mining and processing of the ore, enrichment of the uranium, treatment of used nuclear fuel, investment in land, buildings, machinery, and transport. 144 tons of natural uranium produce 6100 million kWh (electric) and 340 million kWh (thermal) per annum. (J.S.)

  10. Human Powered Centrifuge

    Science.gov (United States)

    Mulenburg, Gerald M. (Inventor); Vernikos, Joan (Inventor)

    1997-01-01

    A human powered centrifuge has independently established turntable angular velocity and human power input. A control system allows excess input power to be stored as electric energy in a battery or dissipated as heat through a resistors. In a mechanical embodiment, the excess power is dissipated in a friction brake.

  11. Input-output rearrangement of isolated converters

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Kovacevic, Milovan; Mønster, Jakob Døllner

    2015-01-01

    This paper presents a new way of rearranging the input and output of isolated converters. The new arrangement posses several advantages, as increased voltage range, higher power handling capabilities, reduced voltage stress and improved efficiency, for applications where galvanic isolation...

  12. Analyzing Power Supply and Demand on the ISS

    Science.gov (United States)

    Thomas, Justin; Pham, Tho; Halyard, Raymond; Conwell, Steve

    2006-01-01

    Station Power and Energy Evaluation Determiner (SPEED) is a Java application program for analyzing the supply and demand aspects of the electrical power system of the International Space Station (ISS). SPEED can be executed on any computer that supports version 1.4 or a subsequent version of the Java Runtime Environment. SPEED includes an analysis module, denoted the Simplified Battery Solar Array Model, which is a simplified engineering model of the ISS primary power system. This simplified model makes it possible to perform analyses quickly. SPEED also includes a user-friendly graphical-interface module, an input file system, a parameter-configuration module, an analysis-configuration-management subsystem, and an output subsystem. SPEED responds to input information on trajectory, shadowing, attitude, and pointing in either a state-of-charge mode or a power-availability mode. In the state-of-charge mode, SPEED calculates battery state-of-charge profiles, given a time-varying power-load profile. In the power-availability mode, SPEED determines the time-varying total available solar array and/or battery power output, given a minimum allowable battery state of charge.

  13. Power inverter with optical isolation

    Science.gov (United States)

    Duncan, Paul G.; Schroeder, John Alan

    2005-12-06

    An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.

  14. Development of an Input Model to MELCOR 1.8.5 for the Oskarshamn 3 BWR

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Lars [Lentek, Nykoeping (Sweden)

    2006-05-15

    .8.6 code, but its models are incorporated in the COR package. Two demonstration runs with the NONBH version were carried out, a total loss of power case and a case simulating a large steam line LOCA. The results are briefly presented and discussed in the report. Complete lists of the input files can be found in the appendices. However, the appendices are not included in the report for disclosure reasons.

  15. Alternative input medium development for wheelchair user with severe spinal cord injury

    Science.gov (United States)

    Ihsan, Izzat Aqmar; Tomari, Razali; Zakaria, Wan Nurshazwani Wan; Othman, Nurmiza

    2017-09-01

    Quadriplegia or tetraplegia patients have restricted four limbs as well as torso movement caused by severe spinal cord injury. Undoubtedly, these patients face difficulties when operating their powered electric wheelchair since they are unable to control the wheelchair by means of a standard joystick. Due to total loss of both sensory and motor function of the four limbs and torso, an alternative input medium for the wheelchair will be developed to assist the user in operating the wheelchair. In this framework, the direction of the wheelchair movement is determined by the user's conscious intent through a brain control interface (BCI) based on Electroencephalogram (EEG) signal. A laser range finder (LFR) is used to perceive environment information for determining a safety distance of the wheelchair's surrounding. Local path planning algorithm will be developed to provide navigation planner along with user's input to prevent collision during control operation.

  16. Total Magnetic Field Signatures over Submarine HVDC Power Cables

    Science.gov (United States)

    Johnson, R. M.; Tchernychev, M.; Johnston, J. M.; Tryggestad, J.

    2013-12-01

    Mikhail Tchernychev, Geometrics, Inc. Ross Johnson, Geometrics, Inc. Jeff Johnston, Geometrics, Inc. High Voltage Direct Current (HVDC) technology is widely used to transmit electrical power over considerable distances using submarine cables. The most commonly known examples are the HVDC cable between Italy and Greece (160 km), Victoria-Tasmania (300 km), New Jersey - Long Island (82 km) and the Transbay cable (Pittsburg, California - San-Francisco). These cables are inspected periodically and their location and burial depth verified. This inspection applies to live and idle cables; in particular a survey company could be required to locate pieces of a dead cable for subsequent removal from the sea floor. Most HVDC cables produce a constant magnetic field; therefore one of the possible survey tools would be Marine Total Field Magnetometer. We present mathematical expressions of the expected magnetic fields and compare them with fields observed during actual surveys. We also compare these anomalies fields with magnetic fields produced by other long objects, such as submarine pipelines The data processing techniques are discussed. There include the use of Analytic Signal and direct modeling of Total Magnetic Field. The Analytic Signal analysis can be adapted using ground truth where available, but the total field allows better discrimination of the cable parameters, in particular to distinguish between live and idle cable. Use of a Transverse Gradiometer (TVG) allows for easy discrimination between cable and pipe line objects. Considerable magnetic gradient is present in the case of a pipeline whereas there is less gradient for the DC power cable. Thus the TVG is used to validate assumptions made during the data interpretation process. Data obtained during the TVG surveys suggest that the magnetic field of a live HVDC cable is described by an expression for two infinite long wires carrying current in opposite directions.

  17. A review on power reducing methods of neural recording amplifiers

    Directory of Open Access Journals (Sweden)

    samira mehdipour

    2016-10-01

    Full Text Available Implantable multi-channel neural recording Microsystems comprise a large number of neural amplifiers, that can affect the overall power consumption and chip area of the analog part of the system.power, noise, size and dc offset are the main challenge faced by designers. Ideally the output of the opamp should be at zero volts when the inputs are grounded.In reality the input terminals are at slightly different dc potentials.The input offset voltage is defined as the voltage that must be applied between the two input terminals of the opamp to obtain zero volts at the output. Amplifier must have capability to reject this dc offset. First method that uses a capacitor feedback network with ac coupling of input devices to reject the offset is very popular in designs.very small low-cutoff frequency.The second method employs a closed-loop resistive feedback and electrode capacitance to form a highpass filter.Moreover,The third method adopts the symmetric floating resistor the feedback path of low noise amplifier to achieve low-frequency cutoff and rejects DC offset voltage. .In some application we can use folded cascade topology.The telescopic topology is a good candidate in terms of providing large gain and phase margin while dissipating small power. the cortical VLSI neuron model reducing power consumption of circuits.Power distribution is the best way to reduce power, noise and silicon area. The total power consumption of the amplifier array is reduced by applying the partial OTA sharing technique. The silicon area is reduced as a benefit of sharing the bulky capacitor.

  18. A Three-Phase Dual-Input Matrix Converter for Grid Integration of Two AC Type Energy Resources

    DEFF Research Database (Denmark)

    Liu, Xiong; Wang, Peng; Chiang Loh, Poh

    2013-01-01

    This paper proposes a novel dual-input matrix converter (DIMC) to integrate two three-phase ac type energy resources to a power grid. The proposed matrix converter is developed based on the traditional indirect matrix converter under reverse power flow operation mode, but with its six......-to-output voltage boost capability since power flows from the converter’s voltage source side to its current source side. Commanded currents can be extracted from the two input sources to the grid. The proposed control and modulation schemes guarantee sinusoidal input and output waveforms as well as unity input......-switch voltage source converter replaced by a nine-switch configuration. With the additional three switches, the proposed DIMC can provide six in put terminals, which make it possible to integrate two independent ac sources into a single grid-tied power electronics interface. The proposed converter has input...

  19. Total life cycle cost model for electric power stations

    International Nuclear Information System (INIS)

    Cardullo, M.W.

    1995-01-01

    The Total Life Cycle Cost (TLCC) model for electric power stations was developed to provide a technology screening model. The TLCC analysis involves normalizing cost estimates with respect to performance standards and financial assumptions and preparing a profile of all costs over the service life of the power station. These costs when levelized present a value in terms of a utility electricity rate. Comparison of cost and the pricing of the electricity for a utility shows if a valid project exists. Cost components include both internal and external costs. Internal costs are direct costs associated with the purchase, and operation of the power station and include initial capital costs, operating and maintenance costs. External costs result from societal and/or environmental impacts that are external to the marketplace and can include air quality impacts due to emissions, infrastructure costs, and other impacts. The cost stream is summed (current dollars) or discounted (constant dollars) to some base year to yield a overall TLCC of each power station technology on a common basis. While minimizing life cycle cost is an important consideration, it may not always be a preferred method for some utilities who may prefer minimizing capital costs. Such consideration does not always result in technology penetration in a marketplace such as the utility sector. Under various regulatory climates, the utility is likely to heavily weigh initial capital costs while giving limited consideration to other costs such as societal costs. Policy makers considering external costs, such as those resulting from environmental impacts, may reach significantly different conclusions about which technologies are most advantageous to society. The TLCC analysis model for power stations was developed to facilitate consideration of all perspectives

  20. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ramsden, T.

    2013-04-01

    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  1. Full-sky formulae for weak lensing power spectra from total angular momentum method

    International Nuclear Information System (INIS)

    Yamauchi, Daisuke; Taruya, Atsushi; Namikawa, Toshiya

    2013-01-01

    We systematically derive full-sky formulae for the weak lensing power spectra generated by scalar, vector and tensor perturbations from the total angular momentum (TAM) method. Based on both the geodesic and geodesic deviation equations, we first give the gauge-invariant expressions for the deflection angle and Jacobi map as observables of the CMB lensing and cosmic shear experiments. We then apply the TAM method, originally developed in the theoretical studies of CMB, to a systematic derivation of the angular power spectra. The TAM representation, which characterizes the total angular dependence of the spatial modes projected along a line-of-sight, can carry all the information of the lensing modes generated by scalar, vector, and tensor metric perturbations. This greatly simplifies the calculation, and we present a complete set of the full-sky formulae for angular power spectra in both the E-/B-mode cosmic shear and gradient-/curl-mode lensing potential of deflection angle. Based on the formulae, we give illustrative examples of non-vanishing B-mode cosmic shear and curl-mode of deflection angle in the presence of the vector and tensor perturbations, and explicitly compute the power spectra

  2. The Economic Value of Korean Nuclear Power Industry in the National Economy: An Input-Output Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M. K.; Kim, S. S.; Lee, J. H.; Kim, S. H. [Nuclear Policy Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In 1978, Korea introduced the first nuclear power plant, Kori-1 unit, in parallel with the nation's industrialization policy. Thereafter, Korea has carried out a very ambitious nuclear power program and sustained a strong commitment to nuclear power development. Thus, nuclear is a prime energy source which presently meets about 30 percent of Korea's power demands. Also, Korea won a contract for APR-1400 NPPs to the UAE in 2009 which led to Korea as a significant exporter in the world nuclear market. Recently, the new government of Korea has been launching 'Creative Economy', from this perspective, the quantitative contributions of nuclear sector to the national economic growth are required to be estimated. This paper is to estimate quantitatively the economic values created by nuclear power industry in the framework of national economy. The total economic values created by nuclear power industry are estimated to be 63.6 trillion won for the study period.

  3. Accuracy requirements on operational measurements in nuclear power plants with regard to balance methodology

    International Nuclear Information System (INIS)

    Holecek, C.

    1986-01-01

    Accurate in-service measurement is necessary for power balancing of nuclear power plants, i.e., the determination of fuel consumption, electric power generation, heat delivery and the degree of fuel power utilization. The only possible method of determining the input of total consumed energy from the fuel is the balance of the primary coolant circuit. This is because for the purposes of power balancing it is not possible to measure the amount of power generated from nuclear fuel. Relations are presented for the calculation of basic indices of the power balance. It is stated that for the purposes of power balancing and analyses the precision of measuring instrument at the input and output of balancing circuits is of primary importance, followed by the precision of measuring instruments inside balancing circuits and meters of auxiliary parameters. (Z.M.). 7 refs., 1 tab

  4. Low Power Digital Clock Design Using LVCMOS Input/Output Standards on 45nm FPGA

    DEFF Research Database (Denmark)

    Pandey, Sujeet; Mehta, Rishabh; Kalia, Kartik

    2016-01-01

    metal oxide semiconductor i.e. LVCMOS and 45nm Spartan-6 FPGA family is used for simulation and amount of total power consumed is noted down. There is 90.02%, 98.88%, 99.86% and 100% reduction in the clock when we scale down frequency from 100GHz to 10GHz, 1GHz, 0.1GHz, and 0.01GHz respectively....

  5. Input and Intake in Language Acquisition

    Science.gov (United States)

    Gagliardi, Ann C.

    2012-01-01

    This dissertation presents an approach for a productive way forward in the study of language acquisition, sealing the rift between claims of an innate linguistic hypothesis space and powerful domain general statistical inference. This approach breaks language acquisition into its component parts, distinguishing the input in the environment from…

  6. Energy Consumptions of Text Input Methods on Smartphones

    OpenAIRE

    Obison, Henry; Ajuorah, Chiagozie

    2013-01-01

    Mobile computing devices, in particular smartphones are powered from Lithium-ion batteries, which are limited in capacity. With the increasing popularity of mobile systems, various text input methods have been developed to improve user experience and performance. Briefly, text input method is a user interface that can be used to compose an electronic mail, configure mobile Virtual Private Network, and carryout bank transactions and online purchases. Efficient energy management in these system...

  7. A new interpretation and validation of variance based importance measures for models with correlated inputs

    Science.gov (United States)

    Hao, Wenrui; Lu, Zhenzhou; Li, Luyi

    2013-05-01

    In order to explore the contributions by correlated input variables to the variance of the output, a novel interpretation framework of importance measure indices is proposed for a model with correlated inputs, which includes the indices of the total correlated contribution and the total uncorrelated contribution. The proposed indices accurately describe the connotations of the contributions by the correlated input to the variance of output, and they can be viewed as the complement and correction of the interpretation about the contributions by the correlated inputs presented in "Estimation of global sensitivity indices for models with dependent variables, Computer Physics Communications, 183 (2012) 937-946". Both of them contain the independent contribution by an individual input. Taking the general form of quadratic polynomial as an illustration, the total correlated contribution and the independent contribution by an individual input are derived analytically, from which the components and their origins of both contributions of correlated input can be clarified without any ambiguity. In the special case that no square term is included in the quadratic polynomial model, the total correlated contribution by the input can be further decomposed into the variance contribution related to the correlation of the input with other inputs and the independent contribution by the input itself, and the total uncorrelated contribution can be further decomposed into the independent part by interaction between the input and others and the independent part by the input itself. Numerical examples are employed and their results demonstrate that the derived analytical expressions of the variance-based importance measure are correct, and the clarification of the correlated input contribution to model output by the analytical derivation is very important for expanding the theory and solutions of uncorrelated input to those of the correlated one.

  8. Maximum power point tracking: a cost saving necessity in solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Enslin, J H.R. [Stellenbosch Univ. (South Africa). Dept. of Electrical and Electronic Engineering

    1992-12-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking (MPPT) can improve cost effectiveness, has a higher reliability and can improve the quality of life in remote areas. A high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of between 15 and 25% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply (RAPS) systems. The advantages at large temperature variations and high power rated systems are much higher. Other advantages include optimal sizing and system monitor and control. (author).

  9. Combination N-Way Power Divider/Combiner and Noninvasive Reflected Power Detection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An N-way RF/microwave power divider/combiner utilizes one input and N outputs, or conversely N inputs and one output to divide (or combine) RF/microwave power while...

  10. Multi-Output Power Converter, Operated from a Regulated Input Bus, for the Sireus Rate Sensor

    Directory of Open Access Journals (Sweden)

    Torrecilla Marcos Compadre

    2017-01-01

    Full Text Available This paper describes a DC to DC converter designed to meet the power supply requirements of the SiREUS Coarse Rate Sensor (CRS which is a 3-axis MEMS Rate Sensor (MRS that uses a resonating ring gyro and will be used in different ESA missions. The converter supplies +5V, −5V, 3.3V, 1.8V and 40V and it has been designed and prototyped by Clyde Space Ltd with the EQM and FM units being manufactured by Selex ES. The first model was designed for a 28V un-regulated bus and the second model presented here has been designed for a 50V regulated bus. PWM voltage regulation was not used because of the noise requirements and the regulated input bus allowed an unregulated power stage approach. There are also stringent volume and interface constraints, which also affected the design. For such reasons, a fixed dutycycle, quasi-resonant single-ended topology with output linear regulators has been implemented; having the advantages of providing low switching losses, low radiated and conducted noise and no over-voltage failure mode. This paper highlights the techniques used to satisfy stringent noise and protection requirements of the load.

  11. How the type of input function affects the dynamic response of conducting polymer actuators

    Science.gov (United States)

    Xiang, Xingcan; Alici, Gursel; Mutlu, Rahim; Li, Weihua

    2014-10-01

    There has been a growing interest in smart actuators typified by conducting polymer actuators, especially in their (i) fabrication, modeling and control with minimum external data and (ii) applications in bio-inspired devices, robotics and mechatronics. Their control is a challenging research problem due to the complex and nonlinear properties of these actuators, which cannot be predicted accurately. Based on an input-shaping technique, we propose a new method to improve the conducting polymer actuators’ command-following ability, while minimizing their electric power consumption. We applied four input functions with smooth characteristics to a trilayer conducting polymer actuator to experimentally evaluate its command-following ability under an open-loop control strategy and a simulated feedback control strategy, and, more importantly, to quantify how the type of input function affects the dynamic response of this class of actuators. We have found that the four smooth inputs consume less electrical power than sharp inputs such as a step input with discontinuous higher-order derivatives. We also obtained an improved transient response performance from the smooth inputs, especially under the simulated feedback control strategy, which we have proposed previously [X Xiang, R Mutlu, G Alici, and W Li, 2014 “Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization’, Journal of Smart Materials and Structure, 23]. The idea of using a smooth input command, which results in lower power consumption and better control performance, can be extended to other smart actuators. Consuming less electrical energy or power will have a direct effect on enhancing the operational life of these actuators.

  12. How the type of input function affects the dynamic response of conducting polymer actuators

    International Nuclear Information System (INIS)

    Xiang, Xingcan; Alici, Gursel; Mutlu, Rahim; Li, Weihua

    2014-01-01

    There has been a growing interest in smart actuators typified by conducting polymer actuators, especially in their (i) fabrication, modeling and control with minimum external data and (ii) applications in bio-inspired devices, robotics and mechatronics. Their control is a challenging research problem due to the complex and nonlinear properties of these actuators, which cannot be predicted accurately. Based on an input-shaping technique, we propose a new method to improve the conducting polymer actuators’ command-following ability, while minimizing their electric power consumption. We applied four input functions with smooth characteristics to a trilayer conducting polymer actuator to experimentally evaluate its command-following ability under an open-loop control strategy and a simulated feedback control strategy, and, more importantly, to quantify how the type of input function affects the dynamic response of this class of actuators. We have found that the four smooth inputs consume less electrical power than sharp inputs such as a step input with discontinuous higher-order derivatives. We also obtained an improved transient response performance from the smooth inputs, especially under the simulated feedback control strategy, which we have proposed previously [X Xiang, R Mutlu, G Alici, and W Li, 2014 “Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization’, Journal of Smart Materials and Structure, 23]. The idea of using a smooth input command, which results in lower power consumption and better control performance, can be extended to other smart actuators. Consuming less electrical energy or power will have a direct effect on enhancing the operational life of these actuators. (paper)

  13. Analyzing the impacts of final demand changes on total output using input-output approach: The case of Japanese ICT sectors

    Science.gov (United States)

    Zuhdi, Ubaidillah

    2014-03-01

    The purpose of this study is to analyze the impacts of final demand changes on total output of Japanese Information and Communication Technologies (ICT) sectors in future time. This study employs one of analysis tool in Input-Output (IO) analysis, demand-pull IO quantity model, in achieving the purpose. There are three final demand changes used in this study, namely (1) export, (2) import, and (3) outside households consumption changes. This study focuses on "pure change" condition, the condition that final demand changes only appear in analyzed sectors. The results show that export and outside households consumption modifications give positive impact while opposite impact could be seen in import change.

  14. Dual-Input Isolated Full-Bridge Boost DC-DC Converter Based on the Distributed Transformers

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    In this paper, a new two-input isolated boost dc-dc converter based on a distributed multi-transformer structure which is suitable for hybrid renewable energy systems is investigated and designed. With a novel transformer winding-connecting strategy, the two input ports can be decoupled completely...... and the single-input mode, respectively. The main advantage of the proposed topology is that the four transformers and the secondary rectifiers are fully utilized whether the converter is connected with two input power sources or only one input. Although the four transformers are employed, the nominal powers...... of each transformer and rectifier are both reduced by four times. Furthermore, some special issues on converter design, such as increasing number of the input ports, the magnetic integration and the ground loop decoupling are discussed. A 2 kW prototype was built and tested. Experiments on the converter...

  15. A new interleaved double-input three-level boost converter

    DEFF Research Database (Denmark)

    Chen, Jianfei; Hou, Shiying; Sun, Tao

    2016-01-01

    This paper proposes a new interleaved double-input three-level Boost (DITLB) converter, which is composed of two boost converters indirectly in series. Thus, a high voltage gain, together with a low component stress and a small input current ripple due to the interleaved control scheme, is achieved....... The operating principle of the DITLB converter under the individual supplying power (ISP) and simultaneous supplying power (SSP) mode is analyzed. In addition, closed-loop control strategies composed of a voltage-current loop and a voltage-balance loop, have been researched to make the converter operate...... steadily and to alleviate the neutral-point imbalance issue. Experimental results verify correctness and feasibility of the proposed topology and control strategies....

  16. First evidence of the role of zonal flows for the L-H transition at marginal input power in the EAST tokamak

    DEFF Research Database (Denmark)

    Xu, G. S.; Wan, B. N.; Wang, H. Q.

    2011-01-01

    A quasiperiodic Er oscillation at a frequency of transition, has been observed for the first time in the EAST tokamak, using two...... toroidally separated reciprocating probes. Just prior to the L-H transition, the Er oscillation often evolves into intermittent negative Er spikes. The low-frequency Er oscillation, as well as the Er spikes, is strongly correlated with the turbulence-driven Reynolds stress, thus providing first evidence...... of the role of the zonal flows in the L-H transition at marginal input power. These new findings not only shed light on the underlying physics mechanism for the L-H transition, but also have significant implications for ITER operations close to the L-H transition threshold power....

  17. Step-Up Partial Power DC-DC Converters for Two-Stage PV Systems with Interleaved Current Performance

    Directory of Open Access Journals (Sweden)

    Jaime Wladimir Zapata

    2018-02-01

    Full Text Available This work presents a partial power converter allowing us to obtain, with a single DC-DC converter, the same feature as the classical interleaved operation of two converters. More precisely, the proposed topology performs similarly as the input-parallel output-series (IPOS configuration reducing the current ripple at the input of the system and dividing the individual converters power rating, compared to a single converter. The proposed topology consists of a partial DC-DC converter processing only a fraction of the total power, thus allowing high efficiency. Experimental results are provided to validate the proposed converter topology with a Flyback-based 100 W test bench with a transformer turns ratio n 1 = n 2 . Experimental results show high performances reducing the input current ripple around 30 % , further increasing the conversion efficiency.

  18. Reliability of fossil-fuel and nuclear power installations

    International Nuclear Information System (INIS)

    1983-01-01

    The conference heard a total of 37 papers of which 24 were inputted in INIS. The subject area was mainly the use of reliability information systems and the production of data banks for these systems, the application of the reliability theory and the reliability analysis of equipment and systems of nuclear power plants. (J.P.)

  19. Design of an Input-Parallel Output-Parallel LLC Resonant DC-DC Converter System for DC Microgrids

    Science.gov (United States)

    Juan, Y. L.; Chen, T. R.; Chang, H. M.; Wei, S. E.

    2017-11-01

    Compared with the centralized power system, the distributed modularized power system is composed of several power modules with lower power capacity to provide a totally enough power capacity for the load demand. Therefore, the current stress of the power components in each module can then be reduced, and the flexibility of system setup is also enhanced. However, the parallel-connected power modules in the conventional system are usually controlled to equally share the power flow which would result in lower efficiency in low loading condition. In this study, a modular power conversion system for DC micro grid is developed with 48 V dc low voltage input and 380 V dc high voltage output. However, in the developed system control strategy, the numbers of power modules enabled to share the power flow is decided according to the output power at lower load demand. Finally, three 350 W power modules are constructed and parallel-connected to setup a modular power conversion system. From the experimental results, compared with the conventional system, the efficiency of the developed power system in the light loading condition is greatly improved. The modularized design of the power system can also decrease the power loss ratio to the system capacity.

  20. Four Quadrants Integrated Transformers for Dual-input Isolated DC-DC Converters

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Zhang, Zhe; Andersen, Michael A. E.

    2012-01-01

    A common limitation of power coupling effect in some known multiple-input dc-dc converters has been addressed in many literatures. In order to overcome this limitation, a new concept for decoupling the primary windings in the integrated multiple-winding transformers based on 3-dimensional (3D...... perpendicular primary windings, a name of “four quadrants integrated transformers” (FQIT) is therefore given to the proposed construction. Since the two primary windings are uncoupled, the FQIT allows the two input power stages to transfer the energy into the output load simultaneously or at any...

  1. 'Quantization' of stochastic variables: description and effects on the input noise sources in a BWR

    International Nuclear Information System (INIS)

    Matthey, M.

    1979-01-01

    A set of macrostochastic and discrete variables, with Markovian properties, is used to characterize the state of a BWR, whose input noise sources are of interest. The ratio between the auto-power spectral density (APSD) of the neutron noise fluctuations and the square modulus of the transfer function (SMTF) defines 'the total input noise source' (TINS), the components of which are the different noise source corresponding to the relevant variables. A white contribution to TINS arises from the birth and death processes of neutrons in the reactor and corresponds to a 'shot noise' (SN). Non-white contributions arise from fluctuations of the neutron cross-sections caused by fuel temperature and steam content variations. These terms called 'Flicker noises' (FN) are characterized by cut-off frequencies related to time constants of reactivity feedback effects. The respective magnitudes of the shot and flicker noises depend not only on the frequency, the feedback reactivity coefficients or the power of the reactor, but also on the 'quantization' of the continuous variables introduced such as fuel temperature and steam content. The effects of this last 'quantization' on the shapes of the noise sources and their sum are presented in this paper. (author)

  2. Total decay heat estimates in a proto-type fast reactor

    International Nuclear Information System (INIS)

    Sridharan, M.S.

    2003-01-01

    Full text: In this paper, total decay heat values generated in a proto-type fast reactor are estimated. These values are compared with those of certain fast reactors. Simple analytical fits are also obtained for these values which can serve as a handy and convenient tool in engineering design studies. These decay heat values taken as their ratio to the nominal operating power are, in general, applicable to any typical plutonium based fast reactor and are useful inputs to the design of decay-heat removal systems

  3. Analyzing the impacts of final demand changes on total output using input-output approach: The case of Japanese ICT sectors

    International Nuclear Information System (INIS)

    Zuhdi, Ubaidillah

    2014-01-01

    The purpose of this study is to analyze the impacts of final demand changes on total output of Japanese Information and Communication Technologies (ICT) sectors in future time. This study employs one of analysis tool in Input-Output (IO) analysis, demand-pull IO quantity model, in achieving the purpose. There are three final demand changes used in this study, namely (1) export, (2) import, and (3) outside households consumption changes. This study focuses on ''pure change'' condition, the condition that final demand changes only appear in analyzed sectors. The results show that export and outside households consumption modifications give positive impact while opposite impact could be seen in import change

  4. Fertilizer consumption and energy input for 16 crops in the United States

    Science.gov (United States)

    Amenumey, Sheila E.; Capel, Paul D.

    2014-01-01

    Fertilizer use by U.S. agriculture has increased over the past few decades. The production and transportation of fertilizers (nitrogen, N; phosphorus, P; potassium, K) are energy intensive. In general, about a third of the total energy input to crop production goes to the production of fertilizers, one-third to mechanization, and one-third to other inputs including labor, transportation, pesticides, and electricity. For some crops, fertilizer is the largest proportion of total energy inputs. Energy required for the production and transportation of fertilizers, as a percentage of total energy input, was determined for 16 crops in the U.S. to be: 19–60% for seven grains, 10–41% for two oilseeds, 25% for potatoes, 12–30% for three vegetables, 2–23% for two fruits, and 3% for dry beans. The harvested-area weighted-average of the fraction of crop fertilizer energy to the total input energy was 28%. The current sources of fertilizers for U.S. agriculture are dependent on imports, availability of natural gas, or limited mineral resources. Given these dependencies plus the high energy costs for fertilizers, an integrated approach for their efficient and sustainable use is needed that will simultaneously maintain or increase crop yields and food quality while decreasing adverse impacts on the environment.

  5. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...

  6. Asymmetric focusing study from twin input power couplers using realistic rf cavity field maps

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford

    2011-03-01

    Full Text Available Advanced simulation codes now exist that can self-consistently solve Maxwell’s equations for the combined system of an rf cavity and a beam bunch. While these simulations are important for a complete understanding of the beam dynamics in rf cavities, they require significant time and computing power. These techniques are therefore not readily included in real time simulations useful to the beam physicist during beam operations. Thus, there exists a need for a simplified algorithm which simulates realistic cavity fields significantly faster than self-consistent codes, while still incorporating enough of the necessary physics to ensure accurate beam dynamics computation. To this end, we establish a procedure for producing realistic field maps using lossless cavity eigenmode field solvers. This algorithm incorporates all relevant cavity design and operating parameters, including beam loading from a nonrelativistic beam. The algorithm is then used to investigate the asymmetric quadrupolelike focusing produced by the input couplers of the Cornell ERL injector cavity for a variety of beam and operating parameters.

  7. Using multiple-accumulator CMACs to improve efficiency of the X part of an input-buffered FX correlator

    Science.gov (United States)

    Lapshev, Stepan; Hasan, S. M. Rezaul

    2017-04-01

    This paper presents the approach of using complex multiplier-accumulators (CMACs) with multiple accumulators to reduce the total number of memory operations in an input-buffered architecture for the X part of an FX correlator. A processing unit of this architecture uses an array of CMACs that are reused for different groups of baselines. The disadvantage of processing correlations in this way is that each input data sample has to be read multiple times from the memory because each input signal is used in many of these baseline groups. While a one-accumulator CMAC cannot switch to a different baseline until it is finished integrating the current one, a multiple-accumulator CMAC can. Thus, the array of multiple-accumulator CMACs can switch between processing different baselines that share some input signals at any moment to reuse the current data in the processing buffers. In this way significant reductions in the number of memory read operations are achieved with only a few accumulators per CMAC. For example, for a large number of input signals three-accumulator CMACs reduce the total number of memory operations by more than a third. Simulated energy measurements of four VLSI designs in a high-performance 28 nm CMOS technology are presented in this paper to demonstrate that using multiple accumulators can also lead to reduced power dissipation of the processing array. Using three accumulators as opposed to one has been found to reduce the overall energy of 8-bit CMACs by 1.4% through the reduction of the switching activity within their circuits, which is in addition to a more than 30% reduction in the memory.

  8. Total quality control: the deming management philosophy applied to nuclear power plants

    International Nuclear Information System (INIS)

    Heising, C.D.; Wetherell, D.L.; Melhem, S.A.; Sato, M.

    1987-01-01

    In recent years, a call has come for the development of inherently safe nuclear reactor systems that cannot have large-scale accidents. In the search for the perfect inherently safe reactor system, some are calling for the institution of computerized automated control of reactors eliminating most human operators from the control room. A different approach to the problem of the control of inherently safe reactors is that both future and present nuclear power plants need to institute total quality control (TQC) to plant operations and management. The Deming management philosophy of TQC has been implemented in a wide range of industries - particularly in Japan and the US. Specific attention is given, however, to TQC implementation in the electric power industry as applied to nuclear plants. The Kansai Electric Power Company and Florida Power and Light Company have recently implemented TQC. Statistical quality control methods have been applied to monitor and control reactor variables (for example, to the steam generator water level important to start-up operations of pressurized water reactors)

  9. Input-output model for MACCS nuclear accident impacts estimation¹

    Energy Technology Data Exchange (ETDEWEB)

    Outkin, Alexander V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bixler, Nathan E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vargas, Vanessa N [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-27

    Since the original economic model for MACCS was developed, better quality economic data (as well as the tools to gather and process it) and better computational capabilities have become available. The update of the economic impacts component of the MACCS legacy model will provide improved estimates of business disruptions through the use of Input-Output based economic impact estimation. This paper presents an updated MACCS model, bases on Input-Output methodology, in which economic impacts are calculated using the Regional Economic Accounting analysis tool (REAcct) created at Sandia National Laboratories. This new GDP-based model allows quick and consistent estimation of gross domestic product (GDP) losses due to nuclear power plant accidents. This paper outlines the steps taken to combine the REAcct Input-Output-based model with the MACCS code, describes the GDP loss calculation, and discusses the parameters and modeling assumptions necessary for the estimation of long-term effects of nuclear power plant accidents.

  10. Effect of resonance frequency, power input, and saturation gas type on the oxidation efficiency of an ultrasound horn.

    Science.gov (United States)

    Rooze, Joost; Rebrov, Evgeny V; Schouten, Jaap C; Keurentjes, Jos T F

    2011-01-01

    The sonochemical oxidation efficiency (η(ox)) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to minimise secondary effects such as changing bubble stability, and time available for radical diffusion from the bubble to the liquid. The oxidation efficiency, η(ox), is proportional to the frequency and to the power transmitted to the liquid (275 mL) in the applied power range (1-6 W) under argon. Luminol radical visualisation measurements show that the radical generation rate increases and a redistribution of radical producing zones is achieved at increasing frequency. Argon, helium, air, nitrogen, oxygen, and carbon dioxide have been used as saturation gases in potassium iodide oxidation experiments. The highest η(ox) has been observed at 5 W under air at 62 kHz. The presence of carbon dioxide in air gives enhanced nucleation at 41 and 62 kHz and has a strong influence on η(ox). This is supported by the luminol images, the measured dependence of η(ox) on input power, and bubble images recorded under carbon dioxide. The results give insight into the interplay between saturation gas and frequency, nucleation, and their effect on η(ox). Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Power absorption and confinement studies of ICRF-heated plasma in JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Ida, K.; Ogawa, Y.; Toi, K.

    1988-08-01

    The energy confinement characteristics of ICRF-heated tokamak plasmas are studied at high input power density ∼ 2 MWm -3 volume averaged, on the JIPP T-IIU device(R = 0.91 m/a = 0.23 m). High electron and ion temperatures (T e ∼ 2.5 keV, T i ∼ 2.0 keV, at each maximum) have been achieved by the operation at a plasma current I P of 280 kA, plasma line-averaged electron density n-bar e of 7 x 10 13 cm -3 and input power of 2 MW, with a suppression of total radiation loss (30 to 40 % of the total input power) by a carbon coating on the vacuum vessel. The fraction of ICRF power absorbed by the plasma, α, is determined experimentally from the decay of the stored plasma energy just after the ICRF pulse is terminated. The value of α increases slightly with increasing electron density and decreases from 90 to 70 % as the ICRF power is increased from 1 MWm -3 to 2 MWm -3 volume averaged. The global energy confinement time τ E , defined by W P /(P OH + αP rf ), decreases by a factor of 2 ∼ 3 from that in ohmic plasmas as the heating power increases up to 2 MW. It is found that the energy confinement time has a strong line-averaged electron density dependence as τ E ∝n-bar e 0.6 , which is obtained by the use of the measured absorbed power, while the Kaye-Goldston scaling predicts τ E ∝n-bar e 0.26 . (author)

  12. Subsidy or subtraction: how do terrestrial inputs influence consumer production in lakes?

    Science.gov (United States)

    Jones, Stuart E.; Solomon, Christopher T.; Weidel, Brian C.

    2012-01-01

    Cross-ecosystem fluxes are ubiquitous in food webs and are generally thought of as subsidies to consumer populations. Yet external or allochthonous inputs may in fact have complex and habitat-specific effects on recipient ecosystems. In lakes, terrestrial inputs of organic carbon contribute to basal resource availability, but can also reduce resource availability via shading effects on phytoplankton and periphyton. Terrestrial inputs might therefore either subsidise or subtract from consumer production. We developed and parameterised a simple model to explore this idea. The model estimates basal resource supply and consumer production given lake-level characteristics including total phosphorus (TP) and dissolved organic carbon (DOC) concentration, and consumer-level characteristics including resource preferences and growth efficiencies. Terrestrial inputs diminished primary production and total basal resource supply at the whole-lake level, except in ultra-oligotrophic systems. However, this system-level generalisation masked complex habitat-specific effects. In the pelagic zone, dissolved and particulate terrestrial carbon inputs were available to zooplankton via several food web pathways. Consequently, zooplankton production usually increased with terrestrial inputs, even as total whole-lake resource availability decreased. In contrast, in the benthic zone the dominant, dissolved portion of the terrestrial carbon load had predominantly negative effects on resource availability via shading of periphyton. Consequently, terrestrial inputs always decreased zoobenthic production except under extreme and unrealistic parameterisations of the model. Appreciating the complex and habitat-specific effects of allochthonous inputs may be essential for resolving the effects of cross-habitat fluxes on consumers in lakes and other food webs.

  13. Modular high-voltage bias generator powered by dual-looped self-adaptive wireless power transmission.

    Science.gov (United States)

    Xie, Kai; Huang, An-Feng; Li, Xiao-Ping; Guo, Shi-Zhong; Zhang, Han-Lu

    2015-04-01

    We proposed a modular high-voltage (HV) bias generator powered by a novel transmitter-sharing inductive coupled wireless power transmission technology, aimed to extend the generator's flexibility and configurability. To solve the problems caused through an uncertain number of modules, a dual-looped self-adaptive control method is proposed that is capable of tracking resonance frequency while maintaining a relatively stable induction voltage for each HV module. The method combines a phase-locked loop and a current feedback loop, which ensures an accurate resonance state and a relatively constant boost ratio for each module, simplifying the architecture of the boost stage and improving the total efficiency. The prototype was built and tested. The input voltage drop of each module is less than 14% if the module number varies from 3 to 10; resonance tracking is completed within 60 ms. The efficiency of the coupling structure reaches up to 95%, whereas the total efficiency approaches 73% for a rated output. Furthermore, this technology can be used in various multi-load wireless power supply applications.

  14. Day-Ahead Wind Power Forecasting Using a Two-Stage Hybrid Modeling Approach Based on SCADA and Meteorological Information, and Evaluating the Impact of Input-Data Dependency on Forecasting Accuracy

    Directory of Open Access Journals (Sweden)

    Dehua Zheng

    2017-12-01

    Full Text Available The power generated by wind generators is usually associated with uncertainties, due to the intermittency of wind speed and other weather variables. This creates a big challenge for transmission system operators (TSOs and distribution system operators (DSOs in terms of connecting, controlling and managing power networks with high-penetration wind energy. Hence, in these power networks, accurate wind power forecasts are essential for their reliable and efficient operation. They support TSOs and DSOs in enhancing the control and management of the power network. In this paper, a novel two-stage hybrid approach based on the combination of the Hilbert-Huang transform (HHT, genetic algorithm (GA and artificial neural network (ANN is proposed for day-ahead wind power forecasting. The approach is composed of two stages. The first stage utilizes numerical weather prediction (NWP meteorological information to predict wind speed at the exact site of the wind farm. The second stage maps actual wind speed vs. power characteristics recorded by SCADA. Then, the wind speed forecast in the first stage for the future day is fed to the second stage to predict the future day’s wind power. Comparative selection of input-data parameter sets for the forecasting model and impact analysis of input-data dependency on forecasting accuracy have also been studied. The proposed approach achieves significant forecasting accuracy improvement compared with three other artificial intelligence-based forecasting approaches and a benchmark model using the smart persistence method.

  15. Simulation of a Multidimensional Input Quantum Perceptron

    Science.gov (United States)

    Yamamoto, Alexandre Y.; Sundqvist, Kyle M.; Li, Peng; Harris, H. Rusty

    2018-06-01

    In this work, we demonstrate the improved data separation capabilities of the Multidimensional Input Quantum Perceptron (MDIQP), a fundamental cell for the construction of more complex Quantum Artificial Neural Networks (QANNs). This is done by using input controlled alterations of ancillary qubits in combination with phase estimation and learning algorithms. The MDIQP is capable of processing quantum information and classifying multidimensional data that may not be linearly separable, extending the capabilities of the classical perceptron. With this powerful component, we get much closer to the achievement of a feedforward multilayer QANN, which would be able to represent and classify arbitrary sets of data (both quantum and classical).

  16. Analysis of Input and Output Ripples of PWM AC Choppers

    Directory of Open Access Journals (Sweden)

    Pekik Argo Dahono

    2008-11-01

    Full Text Available This paper presents an analysis of input and output ripples of PWM AC choppers. Expressions of input and output current and voltage ripples of single-phase PWM AC choppers are first derived. The derived expressions are then extended to three-phase PWM AC choppers. As input current and output voltage ripples specification alone cannot be used to determine the unique values of inductance and capacitance of the LC filters, an additional criterion based on the minimum reactive power is proposed. Experimental results are included in this paper to show the validity of the proposed analysis method.

  17. Efficiency assessment and benchmarking of thermal power plants in India

    International Nuclear Information System (INIS)

    Shrivastava, Naveen; Sharma, Seema; Chauhan, Kavita

    2012-01-01

    Per capita consumption of electricity in India is many folds lesser than Canada, USA, Australia, Japan, Chaina and world average. Even though, total energy shortage and peaking shortage were recorded as 11.2% and 11.85%, respectively, in 2008–09 reflecting non-availability of sufficient supply of electricity. Performance improvement of very small amount can lead to large contribution in financial terms, which can be utilized for capacity addition to reduce demand supply gap. Coal fired thermal power plants are main sources of electricity in India. In this paper, relative technical efficiency of 60 coal fired power plants has been evaluated and compared using CCR and BCC models of data envelopment analysis. Target benchmark of input variables has also been evaluated. Performance comparison includes small versus medium versus large power plants and also state owned versus central owned versus private owned. Result indicates poor performance of few power plants due to over use of input resources. Finding reveals that efficiency of small power plants is lower in comparison to medium and large category and also performance of state owned power plants is comparatively lower than central and privately owned. Study also suggests different measures to improve technical efficiency of the plants. - Highlights: ► This study evaluates relative technical efficiency of 60 coal fired thermal power plants of India. ► Input oriented CCR and BCC models of data envelopment analysis have been used. ► Small, medium and large power plants have been compared. ► Study will help investor while setting up new power projects. ► Power plants of different ownerships have also been compared.

  18. Modeling river total bed material load discharge using artificial intelligence approaches (based on conceptual inputs)

    Science.gov (United States)

    Roushangar, Kiyoumars; Mehrabani, Fatemeh Vojoudi; Shiri, Jalal

    2014-06-01

    This study presents Artificial Intelligence (AI)-based modeling of total bed material load through developing the accuracy level of the predictions of traditional models. Gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS)-based models were developed and validated for estimations. Sediment data from Qotur River (Northwestern Iran) were used for developing and validation of the applied techniques. In order to assess the applied techniques in relation to traditional models, stream power-based and shear stress-based physical models were also applied in the studied case. The obtained results reveal that developed AI-based models using minimum number of dominant factors, give more accurate results than the other applied models. Nonetheless, it was revealed that k-fold test is a practical but high-cost technique for complete scanning of applied data and avoiding the over-fitting.

  19. Production Function Geometry with "Knightian" Total Product

    Science.gov (United States)

    Truett, Dale B.; Truett, Lila J.

    2007-01-01

    Authors of principles and price theory textbooks generally illustrate short-run production using a total product curve that displays first increasing and then diminishing marginal returns to employment of the variable input(s). Although it seems reasonable that a temporary range of increasing returns to variable inputs will likely occur as…

  20. SISTEM KONTROL OTOMATIK DENGAN MODEL SINGLE-INPUT-DUAL-OUTPUT DALAM KENDALI EFISIENSI UMUR-PEMAKAIAN INSTRUMEN

    Directory of Open Access Journals (Sweden)

    S.N.M.P. Simamora

    2014-10-01

    Full Text Available Efficiency condition occurs when the value of the used outputs compared to the resource total that has been used almost close to the value 1 (absolute environment. An instrument to achieve efficiency if the power output level has decreased significantly in the life of the instrument used, if it compared to the previous condition, when the instrument is not equipped with additional systems (or proposed model improvement. Even more effective if the inputs model that are used in unison to achieve a homogeneous output. On this research has been designed and implemented the automatic control system for models of single input-dual-output, wherein the sampling instruments used are lamp and fan. Source voltage used is AC (alternate-current and tested using quantitative research methods and instrumentation (with measuring instruments are observed. The results obtained demonstrate the efficiency of the instrument experienced a significant current model of single-input-dual-output applied separately instrument trials such as lamp and fan when it compared to the condition or state before. And the result show that the design has been built, can also run well.

  1. Design of Low Voltage Low Power CMOS OP-AMPS with Rail-to-Rail Input/Output Swing

    OpenAIRE

    Gopalaiah, SV; Shivaprasad, AP; Panigrahi, Sukanta K

    2004-01-01

    A novel input and output biasing circuit to extend the input common mode (CM) voltage range and the output swing to rail-to-rail in a low voltage op-amp in standard CMOS technology is presented. The input biasing circuit uses a Switched Capacitor Based Attenuator (SCBA) approach to establish rail-to-rail common mode input voltage range. And the output biasing circuit uses an Output Driver (OD), with floating bias to give the rail-to-rail swing at output stage. Three different OD schemes in op...

  2. Cochlear Outer-Hair-Cell Power Generation and Viscous Fluid Loss

    Science.gov (United States)

    Wang, Yanli; Steele, Charles R.; Puria, Sunil

    2016-01-01

    Since the discovery of otoacoustic emissions and outer hair cell (OHC) motility, the fundamental question of whether the cochlea produces mechanical power remains controversial. In the present work, direct calculations are performed on power loss due to fluid viscosity and power generated by the OHCs. A three-dimensional box model of the mouse cochlea is used with a feed-forward/feed-backward approximation representing the organ of Corti cytoarchitecture. The model is fit to in vivo basilar membrane motion with one free parameter for the OHCs. The calculations predict that the total power output from the three rows of OHCs can be over three orders of magnitude greater than the acoustic input power at 10 dB sound pressure level (SPL). While previous work shows that the power gain, or the negative damping, diminishes with intensity, we show explicitly based on our model that OHC power output increases and saturates with SPL. The total OHC power output is about 2 pW at 80 dB SPL, with a maximum of about 10 fW per OHC.

  3. Total-factor energy efficiency of regions in China

    International Nuclear Information System (INIS)

    Hu, J.-L.; Wang, S.-C.

    2006-01-01

    This paper analyzes energy efficiencies of 29 administrative regions in China for the period 1995-2002 with a newly introduced index. Most existing studies of regional productivity and efficiency neglect energy inputs. We use the data envelopment analysis (DEA) to find the target energy input of each region in China at each particular year. The index of total-factor energy efficiency (TFEE) then divides the target energy input by the actual energy input. In our DEA model, labor, capital stock, energy consumption, and total sown area of farm crops used as a proxy of biomass energy are the four inputs and real GDP is the single output. The conventional energy productivity ratio regarded as a partial-factor energy efficiency index is computed for comparison in contrast to TFEE; our index is found fitting better to the real case. According to the TFEE index rankings, the central area of China has the worst energy efficiency and its total adjustmentof energy consumption amount is over half of China's total. Regional TFEE in China generally improved during the research period except for the western area. A U-shape relation between the area's TFEE and per capita income in the areas of China is found, confirming the scenario that energy efficiency eventually improves with economic growth

  4. Programmable Input Mode Instrumentation Amplifier Using Multiple Output Current Conveyors

    Directory of Open Access Journals (Sweden)

    Pankiewicz Bogdan

    2017-03-01

    Full Text Available In this paper a programmable input mode instrumentation amplifier (IA utilising second generation, multiple output current conveyors and transmission gates is presented. Its main advantage is the ability to choose a voltage or current mode of inputs by setting the voltage of two configuration nodes. The presented IA is prepared as an integrated circuit block to be used alone or as a sub-block in a microcontroller or in a field programmable gate array (FPGA, which shall condition analogue signals to be next converted by an analogue-to-digital converter (ADC. IA is designed in AMS 0.35 µm CMOS technology and the power supply is 3.3 V; the power consumption is approximately 9.1 mW. A linear input range in the voltage mode reaches ± 1.68 V or ± 250 µA in current mode. A passband of the IA is above 11 MHz. The amplifier works in class A, so its current supply is almost constant and does not cause noise disturbing nearby working precision analogue circuits.

  5. Normalized knee-extension strength or leg-press power after fast-track total knee arthroplasty

    DEFF Research Database (Denmark)

    Aalund, Peter K; Larsen, Kristian; Hansen, Torben Bæk

    2013-01-01

    OBJECTIVE: (s): To investigate which of the two muscle-impairment measures for the operated leg, normalized knee extension strength or leg press power, is more closely associated to performance-based and self-reported measures of function shortly following total knee arthroplasty (TKA). DESIGN...... and dynamic leg presses to determine their body-mass normalized knee extension strength and leg press power, respectively. The 10-m fast speed walking and 30-s chair stand tests were used to determine performance-based function, while the Western Ontario McMaster University Osteoarthritis Index (WOMAC......) and Oxford Knee scores were used to determine self-reported function. RESULTS: Normalized leg press power was more closely associated to both performance-based (r=.82, P...

  6. A digital input class-D audio amplifier with sixth-order PWM

    International Nuclear Information System (INIS)

    Luo Shumeng; Li Dongmei

    2013-01-01

    A digital input class-D audio amplifier with a sixth-order pulse-width modulation (PWM) modulator is presented. This modulator moves the PWM generator into the closed sigma—delta modulator loop. The noise and distortions generated at the PWM generator module are suppressed by the high gain of the forward loop of the sigma—delta modulator. Therefore, at the output of the modulator, a very clean PWM signal is acquired for driving the power stage of the class-D amplifier. A sixth-order modulator is designed to balance the performance and the system clock speed. Fabricated in standard 0.18 μm CMOS technology, this class-D amplifier achieves 110 dB dynamic range, 100 dB signal-to-noise rate, and 0.0056% total harmonic distortion plus noise. (semiconductor integrated circuits)

  7. An extended dual input dual output three level Z source inverter with improved switch loss reduction technique

    Directory of Open Access Journals (Sweden)

    N.B. Deshmukh

    2016-12-01

    Full Text Available Multilevel inverter (MLI is a proven technology used for industrial applications due to low output total harmonic distortion (THD, high power handling capability and low active device rating. Dual output inverter is a recent trend associated with inverter topologies for specialized applications. This paper deals with three phase three level dual input dual output inverter topology with minimum active device count. Reduction in switch count leads to reduction in losses and improves reliability. Both the input sources share power equally as neutral point current ripple is maintained low. For further reduction in switching losses at higher switching frequencies, the concept of “no switching zone” or discontinuous pulse width modulation (DPWM has been put forth recently. This paper proposes modification in the placement of “no switching zone” in order to optimize switching losses and output THD (output filtering requirements for low power factor load. This study also proposes novel graphical approach to analyze the loss reduction along with its effect on output THD. The sinusoidal PWM (SPWM is used which gives satisfactory switching loss reduction without complex calculations. Moreover, the proposed topology is generalized to provide dual output at higher voltage levels. It is seen that the components reduction phenomenon becomes more pronounced as number of levels goes on increasing. The proposed converter is simulated in MATLAB software environment and results are obtained.

  8. Measuring Input Thresholds on an Existing Board

    Science.gov (United States)

    Kuperman, Igor; Gutrich, Daniel G.; Berkun, Andrew C.

    2011-01-01

    A critical PECL (positive emitter-coupled logic) interface to Xilinx interface needed to be changed on an existing flight board. The new Xilinx input interface used a CMOS (complementary metal-oxide semiconductor) type of input, and the driver could meet its thresholds typically, but not in worst-case, according to the data sheet. The previous interface had been based on comparison with an external reference, but the CMOS input is based on comparison with an internal divider from the power supply. A way to measure what the exact input threshold was for this device for 64 inputs on a flight board was needed. The measurement technique allowed an accurate measurement of the voltage required to switch a Xilinx input from high to low for each of the 64 lines, while only probing two of them. Directly driving an external voltage was considered too risky, and tests done on any other unit could not be used to qualify the flight board. The two lines directly probed gave an absolute voltage threshold calibration, while data collected on the remaining 62 lines without probing gave relative measurements that could be used to identify any outliers. The PECL interface was forced to a long-period square wave by driving a saturated square wave into the ADC (analog to digital converter). The active pull-down circuit was turned off, causing each line to rise rapidly and fall slowly according to the input s weak pull-down circuitry. The fall time shows up as a change in the pulse width of the signal ready by the Xilinx. This change in pulse width is a function of capacitance, pulldown current, and input threshold. Capacitance was known from the different trace lengths, plus a gate input capacitance, which is the same for all inputs. The pull-down current is the same for all inputs including the two that are probed directly. The data was combined, and the Excel solver tool was used to find input thresholds for the 62 lines. This was repeated over different supply voltages and

  9. Evaluation of severe accident risks: Quantification of major input parameters: MAACS [MELCOR Accident Consequence Code System] input

    International Nuclear Information System (INIS)

    Sprung, J.L.; Jow, H-N; Rollstin, J.A.; Helton, J.C.

    1990-12-01

    Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric and biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs

  10. Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Ali; Omid, Mahmoud [Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj (Iran)

    2010-01-15

    This paper studies the energy balance between the input and the output per unit area for greenhouse cucumber production. For this purpose, the data on 43 cucumber production greenhouses in the Tehran province, Iran, were collected and analyzed. The results indicated that a total energy input of 148836.76 MJ ha{sup -1} was consumed for cucumber production. Diesel fuel (with 41.94%) and chemical fertilizers (with 19.69%) were amongst the highest energy inputs for cucumber production. The energy productivity was estimated as 0.80 kg MJ{sup -1}. The ratio of energy output to energy input was approximately 0.64. Results indicate 10.93% and 89.07% of total energy input was in renewable and non-renewable forms, respectively. The regression results revealed that the contribution of energy inputs on crop yield (except for fertilizers and seeds energies) was significant. The human labour energy had the highest impact (0.35) among the other inputs in greenhouse cucumber production. Econometric analysis indicated that the total cost of production for one hectare of cucumber production was around 33425.70$. Accordingly, the benefit-cost ratio was estimated as 2.58. (author)

  11. Efficient Load Scheduling Method For Power Management

    Directory of Open Access Journals (Sweden)

    Vijo M Joy

    2015-08-01

    Full Text Available An efficient load scheduling method to meet varying power supply needs is presented in this paper. At peak load times the power generation system fails due to its instability. Traditionally we use load shedding process. In load shedding process disconnect the unnecessary and extra loads. The proposed method overcomes this problem by scheduling the load based on the requirement. Artificial neural networks are used for this optimal load scheduling process. For generate economic scheduling artificial neural network has been used because generation of power from each source is economically different. In this the total load required is the inputs of this network and the power generation from each source and power losses at the time of transmission are the output of the neural network. Training and programming of the artificial neural networks are done using MATLAB.

  12. Using Economic Input/Output Tables to Predict a Country's Nuclear Status

    International Nuclear Information System (INIS)

    Weimar, Mark R.; Daly, Don S.; Wood, Thomas W.

    2010-01-01

    Both nuclear power and nuclear weapons programs should have (related) economic signatures which are detectible at some scale. We evaluated this premise in a series of studies using national economic input/output (IO) data. Statistical discrimination models using economic IO tables predict with a high probability whether a country with an unknown predilection for nuclear weapons proliferation is in fact engaged in nuclear power development or nuclear weapons proliferation. We analyzed 93 IO tables, spanning the years 1993 to 2005 for 37 countries that are either members or associates of the Organization for Economic Cooperation and Development (OECD). The 2009 OECD input/output tables featured 48 industrial sectors based on International Standard Industrial Classification (ISIC) Revision 3, and described the respective economies in current country-of-origin valued currency. We converted and transformed these reported values to US 2005 dollars using appropriate exchange rates and implicit price deflators, and addressed discrepancies in reported industrial sectors across tables. We then classified countries with Random Forest using either the adjusted or industry-normalized values. Random Forest, a classification tree technique, separates and categorizes countries using a very small, select subset of the 2304 individual cells in the IO table. A nation's efforts in nuclear power, be it for electricity or nuclear weapons, are an enterprise with a large economic footprint -- an effort so large that it should discernibly perturb coarse country-level economics data such as that found in yearly input-output economic tables. The neoclassical economic input-output model describes a country's or region's economy in terms of the requirements of industries to produce the current level of economic output. An IO table row shows the distribution of an industry's output to the industrial sectors while a table column shows the input required of each industrial sector by a given

  13. Input of biomass in power plants or the power generation. Calculation of the financial gap

    International Nuclear Information System (INIS)

    De Vries, H.J.; Van Tilburg, X.; Pfeiffer, A.E.; Cleijne, H.

    2005-09-01

    The project on the title subject concerns two questions: (1) Are projects in which wood-pellets are co-fired in a coalfired power plant representative for bio-oil fueled co-firing projects in a gas-fired plant?; and (2) are new projects representative for existing projects? To answer those questions the financial gaps have been calculated for five different situations: Co-firing bio-oil in a gas-fired power plant; Co-firing bio-oil in a coal-fired power plant; Co-firing wood pellets in a coal-fired power plant; Co-firing agro-residues in a coal-fired power plant; and Co-firing waste-wood (A- and B-grade) in a coal-fired power plant. The ranges and reference cases in this report show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that by using waste wood or agro-residues, the financial gaps can decrease [nl

  14. Review of the total system related to operation of nuclear-powered ship

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Miyashita, Kunio

    2000-01-01

    It is essential to establish a marine reactor having excellent safety and reliability, which is capable of competing economically with conventional ships, and which can be accepted by international society, in order to be prepared for practical application of future nuclear-powered ships. For this purpose, it is important not only to demonstrate a marine reactor using a model or test device to simulate actual operation, but also to establish the environmental requirements for operation of a nuclear-powered ship, such as safety standards that are operationally and internationally common for ships, and to establish a repair base for nuclear-powered ships. Systems research for the practical application of nuclear-powered ships was conducted for five years, fiscal years 1992 through 1996, by a group in the Japan Atomic Energy Research Institute (JAERI), under the project title 'Review of the total system related to operation of nuclear-powered ships.' The project sought to summarize requirements for the practical application of nuclear-powered ships from the standpoint of the need side, e.g., what nuclear-powered ships will be requested, and what functions will be provided under the expected future social environment; to show a complete system concept for the operation of nuclear-powered ships; and to clarify the situations creating demand for nuclear-powered ships, as well as the system and environmental conditions to be established for operation of practical nuclear-powered ships. Study considerations included the size of the operation system for a nuclear-powered ship, a scenario for introducing a nuclear-powered container ship, and economic evolution from the effects on the whole shipping system, based on container ships, of introducing a nuclear-powered ship. The results of these considerations were made the framework for constructing an entire system and evaluating its economy. The treatment and disposal of radioactive waste from a nuclear-powered ship, and the

  15. Optimal Input Strategy for Plug and Play Process Control Systems

    DEFF Research Database (Denmark)

    Kragelund, Martin Nygaard; Leth, John-Josef; Wisniewski, Rafal

    2010-01-01

    This paper considers the problem of optimal operation of a plant, which goal is to maintain production at minimum cost. The system considered in this work consists of a joined plant and redundant input systems. It is assumed that each input system contributes to a flow of goods into the joined pa...... the performance of the plant. The results are applied to a coal fired power plant where an additional new fuel system, gas, becomes available....

  16. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.

    Science.gov (United States)

    McGarry, Laura M; Carter, Adam G

    2016-09-07

    with nearby corticostriatal neurons. However, these inputs are even more powerful at parvalbumin and somatostatin expressing interneurons. BLA inputs thus activate two parallel inhibitory networks, whose contributions change during repetitive activity. Finally, connections from these interneurons are also more powerful at corticoamygdala neurons compared with corticostriatal neurons. Together, our results demonstrate how the BLA predominantly inhibits the PFC via a complex sequence involving multiple cell-type and input-specific connections. Copyright © 2016 the authors 0270-6474/16/369391-16$15.00/0.

  17. Design and performance study of a DC-DC flyback converter based on wide bandgap power devices for photovoltaic applications

    Science.gov (United States)

    Alharbi, Salah S.; Alharbi, Saleh S.; Al-bayati, Ali M. S.; Matin, Mohammad

    2017-08-01

    This paper presents a high-performance dc-dc flyback converter design based on wide bandgap (WBG) semiconductor devices for photovoltaic (PV) applications. Two different power devices, a gallium nitride (GaN)-transistor and a silicon (Si)-MOSFET, are implemented individually in the flyback converter to examine their impact on converter performance. The total power loss of the converter with different power devices is analyzed for various switching frequencies. Converter efficiency is evaluated at different switching frequencies, input voltages, and output power levels. The results reveal that the converter with the GaN-transistor has lower total power loss and better efficiency compared to the converter with the conventional Si-MOSFET.

  18. Total CMB analysis of streaker aerosol samples by PIXE, PIGE, beta- and optical-absorption analyses

    International Nuclear Information System (INIS)

    Annegarn, H.J.; Przybylowicz, W.J.

    1993-01-01

    Multielemental analyses of aerosol samples are widely used in air pollution receptor modelling. Specifically, the chemical mass balance (CMB) model has become a powerful tool in urban air quality studies. Input data required for the CMB includes not only the traditional X-ray fluorescence (and hence PIXE) detected elements, but also total mass, organic and inorganic carbon, and other light elements including Mg, Na and F. The circular streaker sampler, in combination with PIXE analysis, has developed into a powerful tool for obtaining time-resolved, multielemental aerosol data. However, application in CMB modelling has been limited by the absence of total mass and complementary light element data. This study reports on progress in using techniques complementary to PIXE to obtain additional data from circular streaker samples, maintaining the nondestructive, instrumental approach inherent in PIXE: Beta-gauging using a 147 Pm source for total mass; optical absorption for inorganic carbon; and PIGE to measure the lighter elements. (orig.)

  19. The method of the correlation and dispersion defining of the total power components in the electric transport devices

    Directory of Open Access Journals (Sweden)

    A. V. Nikitenko

    2013-04-01

    Full Text Available Purpose. Development and theoretical ground of the analytical method for the calculation of the active, reactive and total powers in the electric traction devices, taking into consideration the non-stationary character of the stochastic processes change of the voltage and current in the elements of these systems. Methodology. The mathematical methods of the random processes theory and the “discrete electrical engineering” methods are used for solving the main problem of this paper. Findings. The Method of the Correlation and Dispersion is developed for definition of the active power, the reactive power by Fryse and the total power of the devices in the elements of the electric traction system of the main-line railways. The method is based on the well-known concepts of auto- and inter-correlation functions of the random processes which govern the feeder voltages and the currents in the traction power supply subsystem as well as the currents and voltages of the electric rolling stock. The method developed in this paper allows estimating the powers of both stationary and non-stationary processes. This method can be used for the analysis of both the traction mode and the regenerative braking mode of the electric rolling stock. The total power components were calculated for the one of the feeder areas of the Prydniprovsk railway using this method. The results show the significant flow of the reactive power in the traction power supply system. This fact is also confirmed by the high values of the reactive power coefficient. Originality. Scientific novelty of the research is consisted in the following. Firstly, for defining the active and reactive powers in elements of the traction power supply system the new method (the Method of Correlation and Dispersion is created and grounded. This method is different from other existing methods because it takes into consideration the varying non-stationary character of the chance processes of the feeder and

  20. A novel power amplifier structure for RFID tag applications

    International Nuclear Information System (INIS)

    Deng Jianbao; Zhang Shilin; Li De; Zhang Yanzheng; Mao Luhong; Xie Sheng

    2011-01-01

    A novel matching method between the power amplifier (PA) and antenna of an active or semi-active RFID tag is presented. A PCB dipole antenna is used as the resonance inductor of a differential power amplifier. The total PA chip area is reduced greatly to only 240 × 70 μm 2 in a 0.18 μm CMOS process due to saving two on-chip integrated inductors. Operating in class AB with a 1.8 V supply voltage and 2.45 GHz input signal, the PA shows a measured output power of 8 dBm at the 1 dB compression point. (semiconductor integrated circuits)

  1. Analysis of Power Network for Line Reactance Variation to Improve Total Transmission Capacity

    Directory of Open Access Journals (Sweden)

    Ikram Ullah

    2016-11-01

    Full Text Available The increasing growth in power demand and the penetration of renewable distributed generations in competitive electricity market demands large and flexible capacity from the transmission grid to reduce transmission bottlenecks. The bottlenecks cause transmission congestion, reliability problems, restrict competition, and limit the maximum dispatch of low cost generations in the network. The electricity system requires efficient utilization of the current transmission capability to improve the Available Transfer Capability (ATC. To improve the ATC, power flow among the lines can be managed by using Flexible AC Transmission System (FACTS devices as power flow controllers, which alter the parameters of power lines. It is important to place FACTS devices on suitable lines to vary the reactance for improving Total Transmission Capacity (TTC of the network and provide flexibility in the power flow. In this paper a transmission network is analyzed based on line parameters variation to improve TTC of the interconnected system. Lines are selected for placing FACTS devices based on real power flow Performance Index (PI sensitivity factors. TTC is computed using the Repeated Power Flow (RPF method using the constraints of lines thermal limits, bus voltage limits and generator limits. The reactance of suitable lines, selected on the basis of PI sensitivity factors are changed to divert the power flow to other lines with enough transfer capacity available. The improvement of TTC using line reactance variation is demonstrated with three IEEE test systems with multi-area networks. The results show the variation of the selected lines’ reactance in improving TTC for all the test networks with defined contingency cases.

  2. A low-power high-sensitivity analog front-end for PPG sensor.

    Science.gov (United States)

    Binghui Lin; Atef, Mohamed; Guoxing Wang

    2017-07-01

    This paper presents a low-power analog front-end (AFE) photoplethysmography (PPG) sensor fabricated in 0.35 μm CMOS process. The AFE amplifies the weak photocurrent from the photodiode (PD) and converts it to a strong voltage at the output. In order to decrease the power consumption, the circuits are designed in subthreshold region; so the total biasing current of the AFE is 10 μ A. Since the large input DC photocurrent is a big issue for the PPG sensing circuit, we apply a DC photocurrent rejection technique by adding a DC current-cancellation loop to reject the large DC photocurrent up to 10 μA. In addition, a pseudo resistor is used to reduce the high-pass corner frequency below 0.5 Hz and Gm-C filter is adapted to reject the out-of-band noise higher than 16 Hz. For the whole sensor, the amplifier chain can achieve a total gain of 140 dBμ and an input integrated noise current of 68.87 pA rms up to 16 Hz.

  3. Boiling and burnout phenomena under transient heat input, 1

    International Nuclear Information System (INIS)

    Aoki, Shigebumi; Kozawa, Yoshiyuki; Iwasaki, Hideaki.

    1976-01-01

    In order to simulate the thermo-hydrodynamic conditions at reactor power excursions, a test piece was placed in a forced convective channel and heated with exponential power inputs. The boiling heat transfer and the burnout heat flux under the transient heat input were measured, and pressure and water temperature changes in the test section were recorded at the same time. Following experimental results were obtained; (1) Transient boiling heat transfer characteristics at high heat flux stayed on the stationary nucleate boiling curve of each flow condition, or extrapolated line of the curves. (2) Transient burnout heat flux increased remarkably with decreasing heating-time-constant, when the flow rate was lower and the subcooling was higher. (3) Transient burnout phenomena were expressed with the relation of (q sub(max) - q sub(sBO)) tau = constant at several flow conditions. This relation was derived from the stationary burnout mechanism of pool boiling. (auth.)

  4. Power Delivered to Mechanical Systems by Random Vibrations

    Directory of Open Access Journals (Sweden)

    Timothy S. Edwards

    2009-01-01

    Full Text Available This paper develops deformational response power descriptions of multiple degree-of-freedom systems due to stationary random vibration excitation. Two new concepts are developed. The deformational response power density (DRPD can be computed when a structure's natural frequencies and modal masses are available. The DRPD shows the spectral content of the deformational power delivered to a specific structure by the stationary, random excitation. This function can be found through a weighted windowing of the power spectrum of the input acceleration excitation. Deformational response input power spectra (DRIPS, similar to the input energy spectrum and shock response spectrum, give the power delivered to single-degree-of-freedom systems as a function of natural frequency. It is shown that the DRIPS is simply a smoothed version of the power spectrum of the input acceleration excitation. The DRIPS gives rise to a useful power-based data smoothing operation.

  5. 30-year changes in the nitrogen inputs to the Yangtze River Basin

    International Nuclear Information System (INIS)

    Wang, Qinxue; Koshikawa, Hiroshi; Liu, Chen; Otsubo, Kuninori

    2014-01-01

    To understand both spatial and temporal changes in nitrogen inputs to the Yangtze River Basin (YRB), we collected decadal statistical data for 1980, 1990, 2000 and 2010 at the county level and the annual statistical data for the period 1980–2010 at the provincial level of China. Based on these datasets, we estimated the nitrogen inputs, including the atmospheric deposition, synthetic N fertilizer, biological N fixation and recycling reactive N inputs, such as N from human waste and animal excrement, crop residue recycled as manure, and N emission from burning crop residue. The results showed that, geographically, the variation of the total amount of N input during the last 30 years (δN = N 2010  – N 1980 ) has increased about 0–50 kg ha −1 over most of the area of the YRB. Moreover, it has increased dramatically by about 50–300 kg ha −1 in the Sichuan Basin, the Han River Basin, the Poyang and Dongting lake basins, and the Yangtze Delta as well. Temporally, the total amount of N inputs to the whole YRB was approximately 16.4 Tg N in 2010, which was a 2.0-fold increase over 1980. It increased dramatically in the 1990s and then stabilized at a high level in the 2000s. The major N inputs were human and animal wastes as well as synthetic fertilizers, but they varied regionally. Animal waste was the major input to the water source regions, and its contribution percentage gradually decreased from upper to lower reaches. In contrast, the contribution of N fertilizer increased from upper to lower reaches, and became the major input to the middle and lower reaches. The total N inputs changed slightly in the upper reaches, but increased largely in the middle reaches in the last 30 years. However, in the lower reaches, it had increased remarkably before 2000, and then tended to decrease in the last decade. Finally, the atmospheric N deposition over the basin increased continuously in the last 30 years. (paper)

  6. An energy harvesting converter to power sensorized total human knee prosthesis

    International Nuclear Information System (INIS)

    Luciano, V; Sardini, E; Serpelloni, M; Baronio, G

    2014-01-01

    Monitoring the internal loads acting in a total knee prosthesis (TKP) is fundamental aspect to improve their design. One of the main benefits of this improvement is the longer duration of the tibial inserts. In this work, an electromagnetic energy harvesting system, which is implantable in a TKP, is presented. This is conceived for powering a future implantable system that is able to monitor the loads (and, possibly, other parameters) that could influence the working conditions of a TKP in real-time. The energy harvesting system (EHS) is composed of two series of NdFeB magnets, positioned into each condyle, and a coil that is placed in a pin of the tibial insert and connected to an implantable power management circuit. The magnetic flux variation and the induced voltage are generated by the knee's motion. A TKP prototype has been realized in order to reproduce the knee mechanics and to test the EHS performance. In the present work, the experimental results are obtained by adopting a resistive load of 2.2 kΩ, in order to simulate a real implanted autonomous system with a current consumption of 850 µA and voltage of 2 V. The tests showed that, after 7 to 30 s of walking with a gait cycle frequency of about 1.0 Hz, the EHS can generate an energy of about 70 μJ, guaranteeing a voltage between 2 and 1.4 V every 7.6 s. With this prototype we can verify that it is possible to power for 16 ms a circuit having a power consumption of 1.7 mW every 7.6 s. The proposed generator is a viable solution to power an implanted electronic system that is conceived for measuring and transmitting the TKP load parameters. (paper)

  7. Development of the RETRAN input model for Ulchin 3/4 visual system analyzer

    International Nuclear Information System (INIS)

    Lee, S. W.; Kim, K. D.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Jeong, J. J.; Hwang, M. K.

    2004-01-01

    As a part of the Long-Term Nuclear R and D program, KAERI has developed the so-called Visual System Analyzer (ViSA) based on best-estimate codes. The MARS and RETRAN codes are used as the best-estimate codes for ViSA. Between these two codes, the RETRAN code is used for realistic analysis of Non-LOCA transients and small-break loss-of-coolant accidents, of which break size is less than 3 inch diameter. So it is necessary to develop the RETRAN input model for Ulchin 3/4 plants (KSNP). In recognition of this, the RETRAN input model for Ulchin 3/4 plants has been developed. This report includes the input model requirements and the calculation note for the input data generation (see the Appendix). In order to confirm the validity of the input data, the calculations are performed for a steady state at 100 % power operation condition, inadvertent reactor trip and RCP trip. The results of the steady-state calculation agree well with the design data. The results of the other transient calculations seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the RETRAN input data can be used as a base input deck for the RETRAN transient analyzer for Ulchin 3/4. Moreover, it is found that Core Protection Calculator (CPC) module, which is modified by Korea Electric Power Research Institute (KEPRI), is well adapted to ViSA

  8. Calculations of total fusion power and spatial distribution of emissivity for a D-T thermal plasma

    International Nuclear Information System (INIS)

    Batistoni, P.; Pillon, M.

    1987-01-01

    The preliminary project of a diagnostic tool to measure the neutron emissivity profile for NET (Next European Torus) with an array of collimators is presented. With the help of a neutron transport code the maximum possible number of collimators, compatible with the crosstalk noise and the space available in the NET 2.2.B is determined within these constraints. An array of 17 collimators can be used, and some experimental results are simulated using a Monte Carlo code. These results are analyzed and an inversion procedure is used to obtain the emissivity profile and evaluate the total fusion power. The results show that the total fusion power can be measured within 10% for different emission profiles

  9. Power distribution monitor in a nuclear reactor

    International Nuclear Information System (INIS)

    Uematsu, Hitoshi

    1983-01-01

    Purpose: To enable accurate monitoring for the reactor power distribution within a short time in a case where abnormality occurs in in-core neutron monitors or in a case where the reactor core state changes after the calibration for the neutron monitors. Constitution: The power distribution monitor comprises a power distribution calculator adapted to be inputted counted values from a reactor core present state data instruments and calculate the neutron flux distribution in the reactor core and the power distribution based on previously incorporated physical models, an RCF calculator adapted to be inputted with the counted values from the in-core neutron monitors and the neutron flux distribution and the power distribution calculated in the power distribution calculator and compensate the counted errors included in the counted values form the in-core neutron monitors and the calculation errors included in the power distribution calculated in the power distribution calculator to thereby calculate the power distribution within the reactor core, and an input/output device for the input of the data required for said power distribution calculator and the display for the calculation result calculated in the RCF calculator. (Ikeda, J.)

  10. Total-factor energy efficiency of regions in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Honma, Satoshi [Faculty of Economics, Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503 (Japan); Hu, Jin-Li [Institute of Business and Management, National Chiao Tung University (China)

    2008-02-15

    This study computes the regional total-factor energy efficiency (TFEE) in Japan by employing the data envelopment analysis (DEA). A dataset of 47 prefectures in Japan for the period 1993-2003 is constructed. There are 14 inputs, including three production factors (labor employment, private, and public capital stocks) and 11 energy sources (electric power for commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke). GDP is the sole output. Following Fukao and Yue [2000. Regional factor inputs and convergence in Japan - how much can we apply closed economy neoclassical growth models? Economic Review 51, 136-151 (in Japanese)], data on private and public capital stocks are extended. All the nominal variables are transformed into real variables, taking into consideration the 1995 price level. For kerosene, gas oil, heavy oil, butane gas, coal, and coke, there are a few prefectures with TFEEs less than 0.7. The five most inefficient prefectures are Niigata, Wakayama, Hyogo, Chiba, and Yamaguchi. Inland regions and most regions along the Sea of Japan are efficient in energy use. Most of the inefficient prefectures that are developing mainly upon energy-intensive industries are located along the Pacific Belt Zone. A U-shaped relation similar to the environmental Kuznets curve (EKC) is discovered between energy efficiency and per capita income for the regions in Japan. (author)

  11. Total-factor energy efficiency of regions in Japan

    International Nuclear Information System (INIS)

    Honma, Satoshi; Hu, Jin-Li

    2008-01-01

    This study computes the regional total-factor energy efficiency (TFEE) in Japan by employing the data envelopment analysis (DEA). A dataset of 47 prefectures in Japan for the period 1993-2003 is constructed. There are 14 inputs, including three production factors (labor employment, private, and public capital stocks) and 11 energy sources (electric power for commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke). GDP is the sole output. Following Fukao and Yue [2000. Regional factor inputs and convergence in Japan-how much can we apply closed economy neoclassical growth models? Economic Review 51, 136-151 (in Japanese)], data on private and public capital stocks are extended. All the nominal variables are transformed into real variables, taking into consideration the 1995 price level. For kerosene, gas oil, heavy oil, butane gas, coal, and coke, there are a few prefectures with TFEEs less than 0.7. The five most inefficient prefectures are Niigata, Wakayama, Hyogo, Chiba, and Yamaguchi. Inland regions and most regions along the Sea of Japan are efficient in energy use. Most of the inefficient prefectures that are developing mainly upon energy-intensive industries are located along the Pacific Belt Zone. A U-shaped relation similar to the environmental Kuznets curve (EKC) is discovered between energy efficiency and per capita income for the regions in Japan

  12. Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply

    DEFF Research Database (Denmark)

    Lund, Henrik

    2006-01-01

    This article presents the results of analyses of large-scale integration of wind power, photo voltaic (PV) and wave power into a Danish reference energy system. The possibility of integrating Renewable Energy Sources (RES) into the electricity supply is expressed in terms of the ability to avoid...... ancillary services are needed in order to secure the electricity supply system. The idea is to benefit from the different patterns in the fluctuations of different renewable sources. And the purpose is to identify optimal mixtures from a technical point of view. The optimal mixture seems to be when onshore...... wind power produces approximately 50% of the total electricity production from RES. Meanwhile, the mixture between PV and wave power seems to depend on the total amount of electricity production from RES. When the total RES input is below 20% of demand, PV should cover 40% and wave power only 10%. When...

  13. Noise guidelines across Canada : a practical look at the key inputs

    International Nuclear Information System (INIS)

    Marshall, J.

    2010-01-01

    Methods of applying noise guidelines in Canada to wind turbine siting plans were discussed. A noise impact analysis is a critical feature of wind turbine siting. However, noise impacts at the receptor (dBA) and their relation to the sound power levels emitted from wind turbines are not well-understood by wind power operators. Decibel and perceived sound levels were discussed, and issues related to noise modelling at the basic component level were reviewed. The inputs defined by different noise guidelines across Canada were outlined in order to determine the impact that inputs may have on the results of noise modelling studies. Various Canadian noise models were evaluated and compared. Noise modelling techniques were also discussed in relation to constraint maps and turbine siting strategies. tabs., figs.

  14. The human motor neuron pools receive a dominant slow‐varying common synaptic input

    Science.gov (United States)

    Negro, Francesco; Yavuz, Utku Şükrü

    2016-01-01

    Key points Motor neurons in a pool receive both common and independent synaptic inputs, although the proportion and role of their common synaptic input is debated.Classic correlation techniques between motor unit spike trains do not measure the absolute proportion of common input and have limitations as a result of the non‐linearity of motor neurons.We propose a method that for the first time allows an accurate quantification of the absolute proportion of low frequency common synaptic input (60%) of common input, irrespective of their different functional and control properties.These results increase our knowledge about the role of common and independent input to motor neurons in force control. Abstract Motor neurons receive both common and independent synaptic inputs. This observation is classically based on the presence of a significant correlation between pairs of motor unit spike trains. The functional significance of different relative proportions of common input across muscles, individuals and conditions is still debated. One of the limitations in our understanding of correlated input to motor neurons is that it has not been possible so far to quantify the absolute proportion of common input with respect to the total synaptic input received by the motor neurons. Indeed, correlation measures of pairs of output spike trains only allow for relative comparisons. In the present study, we report for the first time an approach for measuring the proportion of common input in the low frequency bandwidth (60%) proportion of common low frequency oscillations with respect to their total synaptic input. These results suggest that the central nervous system provides a large amount of common input to motor neuron pools, in a similar way to that for muscles with different functional and control properties. PMID:27151459

  15. Total Quality Education: Profiles of Schools That Demonstrate the Power of Deming's Management Principles.

    Science.gov (United States)

    Schmoker, Michael J.; Wilson, Richard B.

    This book presents profiles of schools that have demonstrated the power of Deming's Total Quality Management (TQM) principles. It describes schools that have successfully applied those strategies for change. The book explores what public education needs most--a compelling but flexible action plan for improvement. Chapter 1 offers a rationale for…

  16. K2: Extending Kepler's Power to the Ecliptic-Ecliptic Plane Input Catalog

    Science.gov (United States)

    Huber, Daniel; Bryson, Stephen T.

    2017-01-01

    This document describes the Ecliptic Plane Input Catalog (EPIC) for the K2 mission (Howell et al. 2014). The primary purpose of this catalog is to provide positions and Kepler magnitudes for target management and aperture photometry. The Ecliptic Plane Input Catalog is hosted at MAST (http://archive.stsci.edu/k2/epic/search.php) and should be used for selecting targets when ever possible. The EPIC is updated for future K2 campaigns as their fields of view are finalized and the associated target management is completed. Table 0 summarizes the EPIC updates to date and the ID range for each. The main algorithms used to construct the EPIC are described in Sections 2 through 4. The details for individual campaigns are described in the subsequent sections, with the references listed in the last section. Further details can be found in Huber et al. (2016).

  17. Monitoring device for the reactor power distribution

    International Nuclear Information System (INIS)

    Uematsu, Hitoshi; Tsuiki, Makoto

    1982-01-01

    Purpose: To enable accurate monitoring for the power distribution in a short time, as well as independent detection for in-core neutron flux detectors in abnormal operation due to failures or like other causes to thereby surely provide reliable substitute values. Constitution: Counted values are inputted from a reactor core present status data detector by a power distribution calculation device to calculate the in-core neutron flux density and the power distribution based on previously stored physical models. While on the other hand, counted value from the in-core neutron detectors and the neutron flux distribution and the power distribution calculated from the power distribution calculation device are inputted from a BCF calculation device to compensate the counting errors incorporated in the counted value from the in-core neutron flux detectors and the calculation errors incorporated in the power distribution calculated in the power distribution calculation device respectively and thereby calculate the power distribution in the reactor core. Further, necessary data are inputted to the power distribution calculation device by an input/output device and the results calculated in the BCF calculation device are displayed. (Aizawa, K.)

  18. Input-profile-based software failure probability quantification for safety signal generation systems

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Lim, Ho Gon; Lee, Ho Jung; Kim, Man Cheol; Jang, Seung Cheol

    2009-01-01

    The approaches for software failure probability estimation are mainly based on the results of testing. Test cases represent the inputs, which are encountered in an actual use. The test inputs for the safety-critical application such as a reactor protection system (RPS) of a nuclear power plant are the inputs which cause the activation of protective action such as a reactor trip. A digital system treats inputs from instrumentation sensors as discrete digital values by using an analog-to-digital converter. Input profile must be determined in consideration of these characteristics for effective software failure probability quantification. Another important characteristic of software testing is that we do not have to repeat the test for the same input value since the software response is deterministic for each specific digital input. With these considerations, we propose an effective software testing method for quantifying the failure probability. As an example application, the input profile of the digital RPS is developed based on the typical plant data. The proposed method in this study is expected to provide a simple but realistic mean to quantify the software failure probability based on input profile and system dynamics.

  19. Response of the Black Sea methane budget to massive short-term submarine inputs of methane

    DEFF Research Database (Denmark)

    Schmale, O.; Haeckel, M.; McGinnis, D. F.

    2011-01-01

    A steady state box model was developed to estimate the methane input into the Black Sea water column at various water depths. Our model results reveal a total input of methane of 4.7 Tg yr(-1). The model predicts that the input of methane is largest at water depths between 600 and 700 m (7......% of the total input), suggesting that the dissociation of methane gas hydrates at water depths equivalent to their upper stability limit may represent an important source of methane into the water column. In addition we discuss the effects of massive short-term methane inputs (e. g. through eruptions of deep......-water mud volcanoes or submarine landslides at intermediate water depths) on the water column methane distribution and the resulting methane emission to the atmosphere. Our non-steady state simulations predict that these inputs will be effectively buffered by intense microbial methane consumption...

  20. Solar cell power source system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoichi; Toma, Kunio; Fukuwa, Shinji

    1988-05-14

    This invention aims to supply a power source system with stable power output by reducing the power loss due to switching in the voltage stabilization even when the power source is a solar cell with frequent voltage variation. For this purpose, in a solar cell power source system consisting of a solar cell, a storage battery, a switching regulator placed between the storage cell and the load, and a load, arrangement was made that, by judging the input voltage from the storage battery, switch-acting the transistor of the switching regulator, if the input voltage is higher than the specified voltage; is the input voltage is lower than the specified voltage, the transistor is put in a full-on state. By this, the supply voltage can be stabilized even when the voltage fluctuates, and system gets more efficient as the switching loss decreases in the voltage stabilizing means. (1 fig)

  1. A response analysis with effective stress model by using vertical input motions

    International Nuclear Information System (INIS)

    Yamanouchi, H.; Ohkawa, I.; Chiba, O.; Tohdo, M.; Kaneko, O.

    1987-01-01

    The nuclear power plant reactor buildings are to be directly supported on a hard soil as a rule in Japan. In case of determining the input motions in order to design those buildings, the amplifications of the hard soil deposits are examined by the total stress analysis in general. However, when the supporting hard soil is replaced with the slightly softer medium such as sandy or gravelly soil, the existence of pore water, in other words, the contribution of the pore water pressure to the total stress cannot be ignored even in a practical sense. In this paper the authors defined an analytical model considering the effective stress-strain relation. In the analyses, the response in the vertical direction is used to evaluate the confining pressure, at first. In the next step, the process of the generation and dissipation of the pore water pressure, is taken into account, together with the effect of the confining pressure. They applied these procedures for the response computations of the horizontally layered soil deposits

  2. CBM first-level event selector input interface

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, Dirk [Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The CBM First-level Event Selector (FLES) is the central event selection system of the upcoming CBM experiment at FAIR. Designed as a high-performance computing cluster, its task is an online analysis of the physics data at a total data rate exceeding 1 TByte/s. To allow efficient event selection, the FLES performs timeslice building, which combines the data from all given input links to self-contained, overlapping processing intervals and distributes them to compute nodes. Partitioning the input data streams into specialized containers allows to perform this task very efficiently. The FLES Input Interface defines the linkage between FEE and FLES data transport framework. Utilizing a custom FPGA board, it receives data via optical links, prepares them for subsequent timeslice building, and transfers the data via DMA to the PC's memory. An accompanying HDL module implements the front-end logic interface and FLES link protocol in the front-end FPGAs. Prototypes of all Input Interface components have been implemented and integrated into the FLES framework. In contrast to earlier prototypes, which included components to work without a FPGA layer between FLES and FEE, the structure matches the foreseen final setup. This allows the implementation and evaluation of the final CBM read-out chain. An overview of the FLES Input Interface as well as studies on system integration and system start-up are presented.

  3. Stirling engine with hydraulic power output for powering artificial hearts

    International Nuclear Information System (INIS)

    Johnston, R.P.; Noble, J.E.; Emigh, S.G.; White, M.A.; Griffith, W.R.; Perrone, R.E.

    1975-01-01

    The DWDL heart power source combines the high efficiency of Stirling engines with the reliability, efficiency, and flexibility of hydraulic power transfer and control to ensure long system life and physiological effectiveness. Extended life testing has already been achieved with an engine module; animal in-vivo tests with an assist heart have consistently demonstrated required performance by biological synchronization and effective ventricle relief. The present System 5 can reliably meet near-term thousand-hour animal in-vivo test goals as far as the durability and efficacy of the power source are concerned. Carefully planned development of System 6 has produced major reductions in size and required input power. Research engine tests have provided the basis for achieving performance goals and the approach for further improvement is well established. The near term goal is 33 W heat input with 16 W input projected for normal physical activity. The goal of reduction of engine module volume to 0.9 liter has been achieved. Demonstrated reliability of 292 d for the engine and 35 d for the full system, as well as effectiveness of the artificial heart power source in short-term in-vivo tests indicate that life-limiting problems are now blood pump reliability and the machine-animal interface

  4. Nitrogen deposition and its contribution to nutrient inputs to intensively managed agricultural ecosystems.

    Science.gov (United States)

    He, Chun-E; Wang, Xin; Liu, Xuejun; Fangmeier, Andreas; Christie, Peter; Zhang, Fusuo

    2010-01-01

    Interest in nitrogen inputs via atmospheric deposition to agricultural ecosystems has increased recently, especially on the North China Plain because of extremely intensive agricultural systems and rapid urbanization in this region. Nitrogen deposition may make a significant contribution to crop N requirements but may also impose a considerable nutrient burden on the environment in general. We quantified total N deposition at two locations, Dongbeiwang near Beijing and Quzhou in Hebei province, over a two-year period from 2005 to 2007 using an 15N tracer method, the integrated total N input (ITNI) system. Total airborne N inputs to a maize wheat rotation system at both locations ranged from 99 to 117 kg N x ha(-1) x yr(-1), with higher N deposition during the maize season (57-66 kg N/ha) than the wheat season (42-51 kg N/ha). Plant available N from deposition for maize and wheat was about 52 kg N x ha(-1) x yr(-1), accounting for 50% of the total N deposition or 31% of total N uptake by the two crop species. In addition, a correction factor was derived for the maize season to adjust values obtained from small pots (0.057 m2) compared with field trays (0.98 m2) because of higher plant density in the pots. The results indicate that atmospheric N deposition is a very important N input and must be taken into account when calculating nutrient budgets in very intensively managed agricultural ecosystems.

  5. Net-energy analysis of nuclear and wind power systems

    International Nuclear Information System (INIS)

    Tyner, G.T. Sr.

    1985-01-01

    The following question is addressed: can nuclear power and wind power (a form of solar energy) systems yield enough energy to replicate themselves out of their own energy and leave a residual of net energy in order to provide society with its needs and wants. Evidence is provided showing that there is a proportionality between the real monetary cost and energy inputs. The life-cycle, economic cost of the energy-transformation entity is the basis for calculating the amount of energy needed, as inputs, to sustain energy transformation. This study is unique as follows: others were based on preliminary cost and performance estimates. This study takes advantage of updated cost and performance data. Second, most prior studies did not include the energy cost of labor, government, and financial services, transmission and distribution, and overhead in arriving at energy inputs. This study includes all economic costs as a basis for calculating energy-input estimates. Both static (single-entity analysis) and dynamic (total systems over time) analyses were done and the procedures are shown in detail. It was found that the net-energy yield will be very small and most likely negative. System costs must be substantially lowered or efficiencies materially improved before these systems can become sources of enough net energy to drive the United States economic system at even the present level of economic output

  6. Atmospheric Inputs of Nitrogen, Carbon, and Phosphorus across an Urban Area: Unaccounted Fluxes and Canopy Influences

    Science.gov (United States)

    Decina, Stephen M.; Templer, Pamela H.; Hutyra, Lucy R.

    2018-02-01

    Rates of atmospheric deposition are declining across the United States, yet urban areas remain hotspots of atmospheric deposition. While past studies show elevated rates of inorganic nitrogen (N) deposition in cities, less is known about atmospheric inputs of organic N, organic carbon (C), and organic and inorganic phosphorus (P), all of which can affect ecosystem processes, water quality, and air quality. Further, the effect of the tree canopy on amounts and forms of nutrients reaching urban ground surfaces is not well-characterized. We measured growing season rates of total N, organic C, and total P in bulk atmospheric inputs, throughfall, and soil solution around the greater Boston area. We found that organic N constitutes a third of total N inputs, organic C inputs are comparable to rural inputs, and inorganic P inputs are 1.2 times higher than those in sewage effluent. Atmospheric inputs are enhanced two-to-eight times in late spring and are elevated beneath tree canopies, suggesting that trees augment atmospheric inputs to ground surfaces. Additionally, throughfall inputs may directly enter runoff when trees extend above impervious surfaces, as is the case with 26.1% of Boston's tree canopy. Our results indicate that the urban atmosphere is a significant source of elemental inputs that may impact urban ecosystems and efforts to improve water quality, particularly in terms of P. Further, as cities create policies encouraging tree planting to provide ecosystem services, locating trees above permeable surfaces to reduce runoff nutrient loads may be essential to managing urban biogeochemical cycling and water quality.

  7. Calibration of controlling input models for pavement management system.

    Science.gov (United States)

    2013-07-01

    The Oklahoma Department of Transportation (ODOT) is currently using the Deighton Total Infrastructure Management System (dTIMS) software for pavement management. This system is based on several input models which are computational backbones to dev...

  8. A new quantum flux parametron logic gate with large input margin

    International Nuclear Information System (INIS)

    Hioe, W.; Hosoya, M.; Goto, E.

    1991-01-01

    This paper reports on the Quantum Flux Parametron (QFP) which is a flux transfer, flux activated Josephson logic device which realizes much lower power dissipation than other Josephson logic devices. Being a two-terminal device its correct operation may be affected by coupling to other QFPs. The problems include backcoupling from active QFPs through inactive QFPs (relay noise), coupling between QFPs activated at different times because of clock skew (homophase noise), and interaction between active QFPs (reaction hazard). Previous QFP circuits worked by wired-majority, which being a linear input logic, has low input margin. A new logic gate (D-gate) using a QFP to perform logic operations has been analyzed and tested by computer simulation. Relay noise, homophase noise and reaction hazard are substantially reduced. Moreover, the input have little interaction hence input margin is greatly improved

  9. A Markovian model of evolving world input-output network.

    Directory of Open Access Journals (Sweden)

    Vahid Moosavi

    Full Text Available The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money.

  10. A Markovian model of evolving world input-output network.

    Science.gov (United States)

    Moosavi, Vahid; Isacchini, Giulio

    2017-01-01

    The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money.

  11. The state of the art in Japan's telecommunications energy systems - Strategy for Total Power Management -

    Energy Technology Data Exchange (ETDEWEB)

    Muroyama, Seiichi [NTT Power and Building Facilities Inc., Midori-cho, Musashino-shi, Tokyo (Japan)

    2000-07-01

    The ''strategy for total power management (STPM)'' was developed for managing problems in relation to energy for multimedia services in a comprehensive manner from the viewpoints of risk, cost, and environment. To provide integrated services based on STPM, a DC power supply system, a highly reliable UPS, and a co-generation system have been developed. (orig.)

  12. NDARC NASA Design and Analysis of Rotorcraft - Input, Appendix 4

    Science.gov (United States)

    Johnson, Wayne

    2016-01-01

    The NDARC code performs design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance analysis, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. The principal tasks (sizing, mission analysis, flight performance analysis) are shown in the figure as boxes with heavy borders. Heavy arrows show control of subordinate tasks. The aircraft description consists of all the information, input and derived, that denes the aircraft. The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. This information can be the result of the sizing task; can come entirely from input, for a fixed model; or can come from the sizing task in a previous case or previous job. The aircraft description information is available to all tasks and all solutions. The sizing task determines the dimensions, power, and weight of a rotorcraft that can perform a specified set of design conditions and missions. The aircraft size is characterized by parameters such as design gross weight, weight empty, rotor radius, and engine power available. The relations between dimensions, power, and weight generally require an iterative solution. From the design flight conditions and missions, the task can determine the total engine power or the rotor radius (or both power and radius can be fixed), as well as the design gross weight, maximum takeoff weight, drive system torque limit, and fuel tank capacity. For each propulsion group, the engine power or the rotor radius can be sized. Missions are defined for the sizing task, and for the mission performance analysis. A mission consists of a number of mission segments, for which time, distance, and fuel burn are evaluated. For the sizing task, certain missions are designated to be used for design gross weight calculations; for

  13. Resonant power converter comprising adaptive dead-time control

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates in a first aspect to a resonant power converter comprising: a first power supply rail for receipt of a positive DC supply voltage and a second power supply rail for receipt of a negative DC supply voltage. The resonant power converter comprises a resonant network with an input...... terminal for receipt of a resonant input voltage from a driver circuit. The driver circuit is configured for alternatingly pulling the resonant input voltage towards the positive and negative DC supply voltages via first and second semiconductor switches, respectively, separated by intervening dead......-time periods in accordance with one or more driver control signals. A dead-time controller is configured to adaptively adjusting the dead-time periods based on the resonant input voltage....

  14. Estimated anthropogenic nitrogen and phosphorus inputs to the land surface of the conterminous United States--1992, 1997, and 2002

    Science.gov (United States)

    Sprague, Lori A.; Gronberg, Jo Ann M.

    2013-01-01

    Anthropogenic inputs of nitrogen and phosphorus to each county in the conterminous United States and to the watersheds of 495 surface-water sites studied as part of the U.S. Geological Survey National Water-Quality Assessment Program were quantified for the years 1992, 1997, and 2002. Estimates of inputs of nitrogen and phosphorus from biological fixation by crops (for nitrogen only), human consumption, crop production for human consumption, animal production for human consumption, animal consumption, and crop production for animal consumption for each county are provided in a tabular dataset. These county-level estimates were allocated to the watersheds of the surface-water sites to estimate watershed-level inputs from the same sources; these estimates also are provided in a tabular dataset, together with calculated estimates of net import of food and net import of feed and previously published estimates of inputs from atmospheric deposition, fertilizer, and recoverable manure. The previously published inputs are provided for each watershed so that final estimates of total anthropogenic nutrient inputs could be calculated. Estimates of total anthropogenic inputs are presented together with previously published estimates of riverine loads of total nitrogen and total phosphorus for reference.

  15. Demand-driven water withdrawals by Chinese industry: a multi-regional input-output analysis

    Science.gov (United States)

    Zhang, Bo; Chen, Z. M.; Zeng, L.; Qiao, H.; Chen, B.

    2016-03-01

    With ever increasing water demands and the continuous intensification of water scarcity arising from China's industrialization, the country is struggling to harmonize its industrial development and water supply. This paper presents a systems analysis of water withdrawals by Chinese industry and investigates demand-driven industrial water uses embodied in final demand and interregional trade based on a multi-regional input-output model. In 2007, the Electric Power, Steam, and Hot Water Production and Supply sector ranks first in direct industrial water withdrawal (DWW), and Construction has the largest embodied industrial water use (EWU). Investment, consumption, and exports contribute to 34.6%, 33.3%, and 30.6% of the national total EWU, respectively. Specifically, 58.0%, 51.1%, 48.6%, 43.3%, and 37.5% of the regional EWUs respectively in Guangdong, Shanghai, Zhejiang, Jiangsu, and Fujian are attributed to international exports. The total interregional import/export of embodied water is equivalent to about 40% of the national total DWW, of which 55.5% is associated with the DWWs of Electric Power, Steam, and Hot Water Production and Supply. Jiangsu is the biggest interregional exporter and deficit receiver of embodied water, in contrast to Guangdong as the biggest interregional importer and surplus receiver. Without implementing effective water-saving measures and adjusting industrial structures, the regional imbalance between water availability and water demand tends to intensify considering the water impact of domestic trade of industrial products. Steps taken to improve water use efficiency in production, and to enhance embodied water saving in consumption are both of great significance for supporting China's water policies.

  16. Step-Up DC-DC Power Converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a step-up DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage and an input...... being charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier in accordance with a switch control signal to produce the converter output voltage. The step-up DC-DC power converter comprises an electrical short-circuit connection across the galvanic...

  17. Real power regulation for the utility power grid via responsive loads

    Science.gov (United States)

    McIntyre, Timothy J [Knoxville, TN; Kirby, Brendan J [Knoxville, TN; Kisner, Roger A

    2009-05-19

    A system for dynamically managing an electrical power system that determines measures of performance and control criteria for the electric power system, collects at least one automatic generation control (AGC) input parameter to at least one AGC module and at least one automatic load control (ALC) input parameter to at least one ALC module, calculates AGC control signals and loads as resources (LAR) control signals in response to said measures of performance and control criteria, propagates AGC control signals to power generating units in response to control logic in AGC modules, and propagates LAR control signals to at least one LAR in response to control logic in ALC modules.

  18. Thermoelectric power generator for variable thermal power source

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  19. A Direct Power Conversion Topology for Grid Integration of Hybrid AC/DC Energy Resources

    DEFF Research Database (Denmark)

    Liu, Xiong; Loh, Poh Chiang; Wang, Peng

    2013-01-01

    This paper proposes a multiple-input versatile matrix converter (VMC) for integrating hybrid ac/dc energy resources and storages to the power grid. The VMC is developed from the traditional indirect matrix converter but operates in the reverse-boost mode rather than in the forward-buck mode....... The reverse-boost mode is more relevant here since most renewable sources and energy storages have lower voltages than the grid. The eventual VMC developed uses an alternative nine-switch converter, rather than usual six-switch voltage-source converter, for providing six input terminals in total. One three...

  20. Generalization of some hidden subgroup algorithms for input sets of arbitrary size

    Science.gov (United States)

    Poslu, Damla; Say, A. C. Cem

    2006-05-01

    We consider the problem of generalizing some quantum algorithms so that they will work on input domains whose cardinalities are not necessarily powers of two. When analyzing the algorithms we assume that generating superpositions of arbitrary subsets of basis states whose cardinalities are not necessarily powers of two perfectly is possible. We have taken Ballhysa's model as a template and have extended it to Chi, Kim and Lee's generalizations of the Deutsch-Jozsa algorithm and to Simon's algorithm. With perfectly equal superpositions of input sets of arbitrary size, Chi, Kim and Lee's generalized Deutsch-Jozsa algorithms, both for evenly-distributed and evenly-balanced functions, worked with one-sided error property. For Simon's algorithm the success probability of the generalized algorithm is the same as that of the original for input sets of arbitrary cardinalities with equiprobable superpositions, since the property that the measured strings are all those which have dot product zero with the string we search, for the case where the function is 2-to-1, is not lost.

  1. Deliberative Political Leaders: The Role of Policy Input in Political Leadership

    Directory of Open Access Journals (Sweden)

    Jennifer Lees-Marshment

    2016-06-01

    Full Text Available This article provides a fresh perspective on political leadership by demonstrating that government ministers take a deliberative approach to decision making. Getting behind the closed doors of government through 51 elite interviews in the UK, US, Australia, Canada and New Zealand, the article demonstrates that modern political leadership is much more collaborative than we usually see from media and public critique. Politicians are commonly perceived to be power-hungry autocratic, elite figures who once they have won power seek to implement their vision. But as previous research has noted, not only is formal power circumscribed by the media, public opinion, and unpredictability of government, more collaborative approaches to leadership are needed given the rise of wicked problems and citizens increasingly demand more say in government decisions and policy making. This article shows that politicians are responding to their challenging environment by accepting they do not know everything and cannot do everything by themselves, and moving towards a leadership style that incorporates public input. It puts forward a new model of Deliberative Political Leadership, where politicians consider input from inside and outside government from a diverse range of sources, evaluate the relative quality of such input, and integrate it into their deliberations on the best way forward before making their final decision. This rare insight into politician’s perspectives provides a refreshing view of governmental leadership in practice and new model for future research.

  2. Comparison of isokinetic peak force and power in adults with partial and total blindness.

    Science.gov (United States)

    Horvat, Michael; Ray, Christopher; Nocera, Joe; Croce, Ron

    2006-08-01

    For many populations the ability to move efficiently is compromised by an impaired muscular functioning. Strength development is necessary to overcome the effects of gravity to maintain posture and generate movement responses for mobility. The strength and power capabilities of individuals with total blindness (n = 12) were compared to those with partial vision (n = 12) to evaluate effects of vision on performance. Results indicate that (1) no significant differences were apparent between total blindness and partial vision, (2) significant sex differences were evident in each group, and (3) better performance was apparent at lower velocities. It was concluded that physical performance in individuals with blindness and partial vision are equally deficient.

  3. Optimized control strategy for crowbarless solid state modular power supply

    International Nuclear Information System (INIS)

    Upadhyay, R.; Badapanda, M.K.; Tripathi, A.; Hannurkar, P.R.; Pithawa, C.K.

    2009-01-01

    Solid state modular power supply with series connected IGBT based power modules have been employed as high voltage bias power supply of klystron amplifier. Auxiliary compensation of full wave inverter bridge with ZVS/ZCS operations of all IGBTs over entire operating range is incorporated. An optimized control strategy has been adopted for this power supply needing no output filter, making this scheme crowbarless and is presented in this paper. DSP based fully digital control with same duty cycle for all power modules, have been incorporated for regulating this power supply along with adequate protection features. Input to this power supply is taken directly from 11 kV line and the input system is intentionally made 24 pulsed to reduce the input harmonics, improve the input power factor significantly, there by requiring no line filters. Various steps have been taken to increase the efficiency of major subsystems, so as to improve the overall efficiency of this power supply significantly. (author)

  4. Input of biomass in power plants for power generation. Calculation of the financial gap. Final report

    International Nuclear Information System (INIS)

    Van Tilburg, X.; De Vries, H.J.; Pfeiffer, A.E.; Cleijne, J.W.

    2005-09-01

    The Ministry of Economic Affairs has requested ECN and KEMA to answer two questions. (1) Are the costs and benefits of projects in which wood-pellets are co-fired in a coal fired power plant representative for those of bio-oil fueled co-firing projects in a gas fired plant?; and (2) Are new projects representative for existing projects? To answer these questions, ECN and KEMA have calculated the financial gaps in six different situations: co-firing bio-oil in a gas fired power plant; co-firing bio-oil in a coal fired power plant; gasification of solid biomass; co-firing wood pellets in a coal fired power plant; co-firing agricultural residues in a coal fired power plant; and co-firing waste wood (A- and B-grade) in a coal fired power plant. The ranges and reference cases show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that when using waste wood or agro-residues, the financial gaps are smaller. Based on these findings it is concluded that: (1) The reference case of co-firing wood pellets in a coal fired power plant are not representative for bio-fuel options. A new category for bio-oil options seems appropriate; and (2) The financial gap of new projects as calculated in November 2004, is often higher then the ranges for existing projects indicate [nl

  5. Evaluation of seismic input for nuclear power plants; Evaluacion del input sismico para plantas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Saragoni, G. R.

    2012-07-01

    The accident that affected the Fukushima Daiichi nuclear power plant on March 11th 2011 was the result of the Tohoku earthquake (Japan), the fifth largest ever registered in the world. The characteristics of the event will be a subject for study by the nuclear and seismology communities for many years to come. (Author)

  6. Voltage Gain Derivation Based on Energy-Balanced Criterion for a Novel Hybrid-Input PV-Wind Power Conversion System

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2015-01-01

    Full Text Available This paper applies energy-balanced criterion to a novel hybrid-input PV-wind power conversion system (HPWPCS for voltage gain derivation. With the energy-balanced concept, complicated mathematical problems related to voltage gain derivation can be readily resolved. Based on the derived results, it is proven that the proposed HPWPCS is able to process two different kinds of renewable energy resources simultaneously. Even though the HPWPCS includes seven capacitors and three magnetic components, its voltage gain still can be found by the mathematical analysis. In the theoretical derivation, only the energy status of output inductor is dealt with such that complicated derivation procedure is avoided. This analysis method can also be applied to other hybrid green-energy conversion systems. In this paper, a 200 W 50 kHz prototype of HPWPCS is built and examined to verify the mathematical results.

  7. From LCC to LCA Using a Hybrid Input Output Model – A Maritime Case Study

    DEFF Research Database (Denmark)

    Kjær, Louise Laumann; Pagoropoulos, Aris; Hauschild, Michael Zwicky

    2015-01-01

    As companies try to embrace life cycle thinking, Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) have proven to be powerful tools. In this paper, an Environmental Input-Output model is used for analysis as it enables an LCA using the same economic input data as LCC. This approach helps...

  8. Design and Control of a Multiple Input DC/DC Converter for Battery/Ultra-capacitor Based Electric Vehicle Power System

    DEFF Research Database (Denmark)

    Schaltz, Erik; Li, Zhihao; Onar, Omer

    2009-01-01

    Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi-input con......Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi...

  9. Precipitation and total power consumption in the ionosphere: Global MHD simulation results compared with Polar and SNOE observations

    Directory of Open Access Journals (Sweden)

    M. Palmroth

    2006-05-01

    Full Text Available We compare the ionospheric electron precipitation morphology and power from a global MHD simulation (GUMICS-4 with direct measurements of auroral energy flux during a pair of substorms on 28-29 March 1998. The electron precipitation power is computed directly from global images of auroral light observed by the Polar satellite ultraviolet imager (UVI. Independent of the Polar UVI measurements, the electron precipitation energy is determined from SNOE satellite observations on the thermospheric nitric oxide (NO density. We find that the GUMICS-4 simulation reproduces the spatial variation of the global aurora rather reliably in the sense that the onset of the substorm is shown in GUMICS-4 simulation as enhanced precipitation in the right location at the right time. The total integrated precipitation power in the GUMICS-4 simulation is in quantitative agreement with the observations during quiet times, i.e., before the two substorm intensifications. We find that during active times the GUMICS-4 integrated precipitation is a factor of 5 lower than the observations indicate. However, we also find factor of 2-3 differences in the precipitation power among the three different UVI processing methods tested here. The findings of this paper are used to complete an earlier objective, in which the total ionospheric power deposition in the simulation is forecasted from a mathematical expression, which is a function of solar wind density, velocity and magnetic field. We find that during this event, the correlation coefficient between the outcome of the forecasting expression and the simulation results is 0.83. During the event, the simulation result on the total ionospheric power deposition agrees with observations (correlation coefficient 0.8 and the AE index (0.85.

  10. Greenhouse gas emissions in China 2007: Inventory and input-output analysis

    International Nuclear Information System (INIS)

    Chen, G.Q.; Zhang Bo

    2010-01-01

    For greenhouse gas (GHG) emissions by the Chinese economy in 2007 with the most recent statistics availability, a concrete inventory covering CO 2 , CH 4 , and N 2 O is composed and associated with an input-output analysis to reveal the emission embodiment in final consumption and international trade. The estimated total direct GHG emission amounts to 7456.12 Mt CO 2 -eq by the commonly referred IPCC global warming potentials, with 63.39% from energy-related CO 2 , 22.31% from non-energy-related CO 2 , 11.15% from CH 4 and 3.15% from N 2 O. Responsible for 81.32% of the total GHG emissions are the five sectors of the Electric Power/Steam and Hot Water Production and Supply, Smelting and Pressing of Ferrous and Nonferrous Metals, Nonmetal Mineral Products, Agriculture, and Coal Mining and Dressing, with distinctive emission structures. The sector of Construction holds the top GHG emissions embodied in both domestic production and consumption, and the emission embodied in gross capital formation is prominently more than those in other components of the final consumption characterized by extensive investment in contrast to limited household consumption. China is a net exporter of embodied GHG emissions, with emissions embodied in exports of 3060.18 Mt CO 2 -eq, in magnitude up to 41.04% of the total direct emission.

  11. Input and language development in bilingually developing children.

    Science.gov (United States)

    Hoff, Erika; Core, Cynthia

    2013-11-01

    Language skills in young bilingual children are highly varied as a result of the variability in their language experiences, making it difficult for speech-language pathologists to differentiate language disorder from language difference in bilingual children. Understanding the sources of variability in bilingual contexts and the resulting variability in children's skills will help improve language assessment practices by speech-language pathologists. In this article, we review literature on bilingual first language development for children under 5 years of age. We describe the rate of development in single and total language growth, we describe effects of quantity of input and quality of input on growth, and we describe effects of family composition on language input and language growth in bilingual children. We provide recommendations for language assessment of young bilingual children and consider implications for optimizing children's dual language development. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters

    Science.gov (United States)

    Reese, Bradley

    2015-01-01

    Arkansas Power Electronics International (APEI), Inc., is developing a high-efficiency, radiation-hardened 3.8-kW SiC power supply for the PPU of Hall effect thrusters. This project specifically targets the design of a PPU for the high-voltage Hall accelerator (HiVHAC) thruster, with target specifications of 80- to 160-V input, 200- to 700-V/5A output, efficiency greater than 96 percent, and peak power density in excess of 2.5 kW/kg. The PPU under development uses SiC junction field-effect transistor power switches, components that APEI, Inc., has irradiated under total ionizing dose conditions to greater than 3 MRad with little to no change in device performance.

  13. Global sensitivity analysis of computer models with functional inputs

    International Nuclear Information System (INIS)

    Iooss, Bertrand; Ribatet, Mathieu

    2009-01-01

    Global sensitivity analysis is used to quantify the influence of uncertain model inputs on the response variability of a numerical model. The common quantitative methods are appropriate with computer codes having scalar model inputs. This paper aims at illustrating different variance-based sensitivity analysis techniques, based on the so-called Sobol's indices, when some model inputs are functional, such as stochastic processes or random spatial fields. In this work, we focus on large cpu time computer codes which need a preliminary metamodeling step before performing the sensitivity analysis. We propose the use of the joint modeling approach, i.e., modeling simultaneously the mean and the dispersion of the code outputs using two interlinked generalized linear models (GLMs) or generalized additive models (GAMs). The 'mean model' allows to estimate the sensitivity indices of each scalar model inputs, while the 'dispersion model' allows to derive the total sensitivity index of the functional model inputs. The proposed approach is compared to some classical sensitivity analysis methodologies on an analytical function. Lastly, the new methodology is applied to an industrial computer code that simulates the nuclear fuel irradiation.

  14. Cost of unserved power in Karnataka, India

    International Nuclear Information System (INIS)

    Bose, Ranjan Kumar; Shukla, Megha; Srivastava, Leena; Yaron, Gil

    2006-01-01

    This paper proposes an empirical analysis concerning the cost of unserved energy (CUE) or value of lost load in agriculture and industrial sectors and provides insights that can provide useful inputs in designing effective policies for the power sector. About 500 manufacturing units and 900 farmers were surveyed in the south Indian state of Karnataka using a two-stage random sampling to provide interval estimates of CUE for the industrial and agricultural consumers. The results from the survey help in providing guidance on consumer perceptions and their willingness to pay different or higher tariffs. The estimated economic loss due to power outage in the agriculture sector varies from 1.9% to 3.6% of total State Domestic Product (SDP), i.e., Rs 950 billion at 1999/2000 prices, while in industry, the economic loss varies between 0.04% and 0.17% of total SDP depending upon the size of industry during the study period in 1999

  15. Power MOSFET Linearizer of a High-Voltage Power Amplifier for High-Frequency Pulse-Echo Instrumentation.

    Science.gov (United States)

    Choi, Hojong; Woo, Park Chul; Yeom, Jung-Yeol; Yoon, Changhan

    2017-04-04

    A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reducing the echo harmonic distortion components generated by the ultrasonic transducers. In order to verify the performance improvement of the HVPA implementing the power MOSFET linearizer, we measured and found that the gain deviation of the power MOSFET linearizer integrated with HVPA under 10 V DC bias voltage was reduced (-1.8 and -0.96 dB, respectively) compared to that of the HVPA without the power MOSFET linearizer (-2.95 and -3.0 dB, respectively) when 70 and 80 MHz, three-cycle, and 26 dB m input pulse waveforms are applied, respectively. The input 1-dB compression point (an index of linearity) of the HVPA with power MOSFET linearizer (24.17 and 26.19 dB m at 70 and 80 MHz, respectively) at 10 V DC bias voltage was increased compared to that of HVPA without the power MOSFET linearizer (22.03 and 22.13 dB m at 70 and 80 MHz, respectively). To further verify the reduction of the echo harmonic distortion components generated by the ultrasonic transducers, the pulse-echo responses in the pulse-echo instrumentation were compared when using HVPA with and without the power MOSFET linearizer. When three-cycle 26 dB m input power was applied, the second, third, fourth, and fifth harmonic distortion components of a 75 MHz transducer driven by the HVPA with power MOSFET linearizer (-48.34, -44.21, -48.34, and -46.56 dB, respectively) were lower than that of the HVPA without the power MOSFET linearizer (-45.61, -41.57, -45.01, and -45.51 dB, respectively). When five-cycle 20 dB m input

  16. Model predictive control for wind power gradients

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Boyd, Stephen; Jørgensen, John Bagterp

    2015-01-01

    We consider the operation of a wind turbine and a connected local battery or other electrical storage device, taking into account varying wind speed, with the goal of maximizing the total energy generated while respecting limits on the time derivative (gradient) of power delivered to the grid. We...... ranges. The system dynamics are quite non-linear, and the constraints and objectives are not convex functions of the control inputs, so the resulting optimal control problem is difficult to solve globally. In this paper, we show that by a novel change of variables, which focuses on power flows, we can...... wind data and modern wind forecasting methods. The simulation results using real wind data demonstrate the ability to reject the disturbances from fast changes in wind speed, ensuring certain power gradients, with an insignificant loss in energy production....

  17. A Single-Stage High-Power-Factor Light-Emitting Diode (LED Driver with Coupled Inductors for Streetlight Applications

    Directory of Open Access Journals (Sweden)

    Chun-An Cheng

    2017-02-01

    Full Text Available This paper presents and implements a single-stage high-power-factor light-emitting diode (LED driver with coupled inductors, suitable for streetlight applications. The presented LED driver integrates an interleaved buck-boost power factor correction (PFC converter with coupled inductors and a half-bridge-type series-resonant converter cascaded with a full-bridge rectifier into a single-stage power conversion circuit. Coupled inductors inside the interleaved buck-boost PFC converter sub-circuit are designed to operate in discontinuous conduction mode (DCM for achieving input-current shaping, and the half-bridge-type series resonant converter cascaded with a full-bridge rectifier is designed for obtaining zero-voltage switching (ZVS on two power switches to reduce their switching losses. Analysis of operational modes and design equations for the presented LED driver are described and included. In addition, the presented driver features a high power factor, low total harmonic distortion (THD of input current, and soft switching. Finally, a prototype driver is developed and implemented to supply a 165-W-rated LED streetlight module with utility-line input voltages ranging from 210 to 230 V. Experimental results demonstrate that high power factor (>0.99, low utility-line current THD (<7%, low-output voltage ripples (<1%, low-output current ripples (<10%, and high circuit efficiency (>90% are obtained in the presented single-stage driver for LED streetlight applications.

  18. A technical and financial analysis of two recuperated, reciprocating engine driven power plants. Part 2: Financial analysis

    International Nuclear Information System (INIS)

    Orbaiz, Pedro Jose; Brear, Michael J.

    2014-01-01

    Highlights: • The financial performance of two hybrid power plants is analyzed. • Biomass and solar thermal energy are used as the renewable energy inputs. • The LCOE of both power plants is estimated using reference data. • The proposed power plants are of comparable LCOE to natural gas combined cycle. • Hybrid cycles resulted in cost-effective renewable energy generation. - Abstract: This paper is the second of a two part study that analyses the technical and financial performance of particular, recuperated engine systems. This second paper examines the financial performance of two hybrid (renewable/fossil), chemically recuperated power plants. One of these plants uses the combustion of biomass as the renewable energy input. The other assumes that solar thermal energy is used. This financial analysis estimates the so-called Levelized Cost of Electricity (LCOE) of both hybrids using reference data from several sources. Using consistent financial inputs, the LCOE of both hybrid plants is found to be comparable to the LCOE of natural gas combined cycle (NGCC) power generation. Further, the LCOE of the renewable portion of the hybrid plants’ total power output is significantly cheaper than that of all the renewable plants examined in the EPRI report, and is competitive with the fossil plants. As a result, the proposed hybrids appear to be a cost-effective form of greenhouse gas mitigation

  19. Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex.

    Science.gov (United States)

    Hang, Giao B; Dan, Yang

    2011-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.

  20. TART input manual

    International Nuclear Information System (INIS)

    Kimlinger, J.R.; Plechaty, E.F.

    1982-01-01

    The TART code is a Monte Carlo neutron/photon transport code that is only on the CRAY computer. All the input cards for the TART code are listed, and definitions for all input parameters are given. The execution and limitations of the code are described, and input for two sample problems are given

  1. Mixed-Signal Architectures for High-Efficiency and Low-Distortion Digital Audio Processing and Power Amplification

    Directory of Open Access Journals (Sweden)

    Pierangelo Terreni

    2010-01-01

    Full Text Available The paper addresses the algorithmic and architectural design of digital input power audio amplifiers. A modelling platform, based on a meet-in-the-middle approach between top-down and bottom-up design strategies, allows a fast but still accurate exploration of the mixed-signal design space. Different amplifier architectures are configured and compared to find optimal trade-offs among different cost-functions: low distortion, high efficiency, low circuit complexity and low sensitivity to parameter changes. A novel amplifier architecture is derived; its prototype implements digital processing IP macrocells (oversampler, interpolating filter, PWM cross-point deriver, noise shaper, multilevel PWM modulator, dead time compensator on a single low-complexity FPGA while off-chip components are used only for the power output stage (LC filter and power MOS bridge; no heatsink is required. The resulting digital input amplifier features a power efficiency higher than 90% and a total harmonic distortion down to 0.13% at power levels of tens of Watts. Discussions towards the full-silicon integration of the mixed-signal amplifier in embedded devices, using BCD technology and targeting power levels of few Watts, are also reported.

  2. Wide Input Range Power Converters Using a Variable Turns Ratio Transformer

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2016-01-01

    A new integrated transformer with variable turns ratio is proposed to enable dc-dc converters operating over a wide input voltage range. The integrated transformer employs a new geometry of magnetic core with “four legs”, two primary windings with orthogonal arrangement, and “8” shape connection...... of diagonal secondary windings, in order to make the transformer turns ratio adjustable by controlling the phase between the two current excitations subjected to the two primary windings. Full-bridge boost dc-dc converter is employed with the proposed transformer to demonstrate the feasibility of the variable...

  3. Performance analysis of active damped small DC-link capacitor based drive for unbalanced input voltage supply

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig

    2011-01-01

    A small DC-link capacitor based drive is presented in this paper. The drive shows negative impedance instability at operating points with high power load. A phase portrait is presented for input filter states which exhibit a limit cycle. When the drive is operated with unbalanced input supply...

  4. Boost Half-Bridge DC-DC Converter with Reconfigurable Rectifier for Ultra-Wide Input Voltage Range Applications

    DEFF Research Database (Denmark)

    Vinnikov, Dmitri; Chub, Andrii; Liivik, Elizaveta

    2018-01-01

    This paper introduces a novel galvanically isolated boost half-bridge dc-dc converter intended for modern power electronic applications where ultra-wide input voltage regulation range is needed. A reconfigurable output rectifier stage performs a transition between the voltage doubler and the full......-bridge diode rectifiers and, by this means, extends the regulation range significantly. The converter features a low number of components and resonant soft switching of semiconductors, which result in high power conversion efficiency over a wide input voltage and load range. The paper presents the operating...

  5. Regional economic impacts of changes in electricity rates resulting from Western Area Power Administration`s power marketing alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Allison, T.; Griffes, P.; Edwards, B.K.

    1995-03-01

    This technical memorandum describes an analysis of regional economic impacts resulting from changes in retail electricity rates due to six power marketing programs proposed by Western Area Power Administration (Western). Regional economic impacts of changes in rates are estimated in terms of five key regional economic variables: population, gross regional product, disposable income, employment, and household income. The REMI (Regional Impact Models, Inc.) and IMPLAN (Impact Analysis for Planning) models simulate economic impacts in nine subregions in the area in which Western power is sold for the years 1993, 2000, and 2008. Estimates show that impacts on aggregate economic activity in any of the subregions or years would be minimal for three reasons. First, the utilities that buy power from Western sell only a relatively small proportion of the total electricity sold in any of the subregions. Second, reliance of Western customers on Western power is fairly low in each subregion. Finally, electricity is not a significant input cost for any industry or for households in any subregion.

  6. Impact of environmental inputs on reverse-engineering approach to network structures.

    Science.gov (United States)

    Wu, Jianhua; Sinfield, James L; Buchanan-Wollaston, Vicky; Feng, Jianfeng

    2009-12-04

    Uncovering complex network structures from a biological system is one of the main topic in system biology. The network structures can be inferred by the dynamical Bayesian network or Granger causality, but neither techniques have seriously taken into account the impact of environmental inputs. With considerations of natural rhythmic dynamics of biological data, we propose a system biology approach to reveal the impact of environmental inputs on network structures. We first represent the environmental inputs by a harmonic oscillator and combine them with Granger causality to identify environmental inputs and then uncover the causal network structures. We also generalize it to multiple harmonic oscillators to represent various exogenous influences. This system approach is extensively tested with toy models and successfully applied to a real biological network of microarray data of the flowering genes of the model plant Arabidopsis Thaliana. The aim is to identify those genes that are directly affected by the presence of the sunlight and uncover the interactive network structures associating with flowering metabolism. We demonstrate that environmental inputs are crucial for correctly inferring network structures. Harmonic causal method is proved to be a powerful technique to detect environment inputs and uncover network structures, especially when the biological data exhibit periodic oscillations.

  7. Total gamma activity measurements for determining the radioactivity of residual materials from nuclear power stations

    International Nuclear Information System (INIS)

    Auler, I.; Meyer, M.; Stickelmann, J.

    1995-01-01

    Large amounts of residual materials from retrofitting measures and from decommissioning of nuclear power stations shows such a weak level of radioactivity that they could be released after decision measurements. Expenses incurred with complex geometry cannot be taken with common methods. NIS developed a Release Measurement Facility (RMF) based on total gamma activity measurements especially for these kind of residual materials. The RMF has been applied for decision measurements in different nuclear power plants. Altogether about 2,000 Mg of various types of materials have been measured up to now. More than 90 % of these materials could be released 0 without any restriction after decision measurements

  8. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rautenstrauch

    2004-09-10

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.

  9. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception

  10. Harmonic-suppressed quadrature-input frequency divider for OFDM systems

    International Nuclear Information System (INIS)

    Fu Haipeng; Ren Junyan; Li Wei; Li Ning

    2011-01-01

    A fully balanced harmonic-suppressed quadrature-input frequency divider is proposed. The frequency divider improves the quadrature phase accuracy at the output by using both input I/Q signals. Compared with conventional dividers, the circuit achieves an output I/Q phase sequence that is independent of the input I/Q phase sequence. Moreover, the third harmonic is effectively suppressed by employing a double degeneration technique. The design is fabricated in TSMC 0.13-μm CMOS and operated at 1.2 V. While locked at 8.5 GHz, the proposed divider measures a maximum third harmonic rejection of 45 dB and a phase noise of −124 dBc/Hz at a 10 MHz offset. The circuit achieves a locking range of 15% while consuming a total current of 4.5 mA. (semiconductor integrated circuits)

  11. 47 CFR 73.51 - Determining operating power.

    Science.gov (United States)

    2010-10-01

    ...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the product of the licensed antenna or common point resistance at the operating frequency (see § 73.54), and... the resistance has been determined. (b) The authorized antenna input power for each station shall be...

  12. The relative importance of oceanic nutrient inputs for Bass Harbor Marsh Estuary at Acadia National Park, Maine

    Science.gov (United States)

    Huntington, Thomas G.; Culbertson, Charles W.; Fuller, Christopher; Glibert, Patricia; Sturtevant, Luke

    2014-01-01

    The U.S. Geological Survey and Acadia National Park (ANP) collaborated on a study of nutrient inputs into Bass Harbor Marsh Estuary on Mount Desert Island, Maine, to better understand ongoing eutrophication, oceanic nutrient inputs, and potential management solutions. This report includes the estimation of loads of nitrate, ammonia, total dissolved nitrogen, and total dissolved phosphorus to the estuary derived from runoff within the watershed and oceanic inputs during summers 2011 and 2012. Nutrient outputs from the estuary were also monitored, and nutrient inputs in direct precipitation to the estuary were calculated. Specific conductance, water temperature, and turbidity were monitored at the estuary outlet. This report presents a first-order analysis of the potential effects of projected sea-level rise on the inundated area and estuary volume. Historical aerial photographs were used to investigate the possibility of widening of the estuary channel over time. The scope of this report also includes analysis of sediment cores collected from the estuary and fringing marsh surfaces to assess the sediment mass accumulation rate. Median concentrations of nitrate, ammonium, and total dissolved phosphorus on the flood tide were approximately 25 percent higher than on the ebb tide during the 2011 and 2012 summer seasons. Higher concentrations on the flood tide suggest net assimilation of these nutrients in biota within the estuary. The dissolved organic nitrogen fraction dominated the dissolved nitrogen fraction in all tributaries. The median concentration of dissolved organic nitrogen was about twice as high on the on the ebb tide than the flood tide, indicating net export of dissolved organic nitrogen from the estuary. The weekly total oceanic inputs of nitrate, ammonium, and total dissolved phosphorus to the estuary were usually much larger than inputs from runoff or direct precipitation. The estuary was a net sink for nitrate and ammonium in most weeks during both

  13. Productivity and efficiency analysis of privatized hydroelectric generation with a sometimes free input

    Science.gov (United States)

    Halabi, Claudia Elizabeth

    2000-10-01

    In this paper I use a stochastic distance frontier approach to assess the performance of Chile's hydroelectric industry, which operates within a regulatory framework designed to achieve a competitive outcome. An occasionally free input, water, is the sole energy input. The econometric analysis indicates substantial technical and allocative inefficiencies as well as volatile productivity scores, due presumably to the volatility of the energy input. Some allocative inefficiencies have diminished dramatically as the time under deregulation has grown. The Lerner index suggests that firms in the industry enjoy some degree of market power, reflected by prices that exceed marginal costs. This market power is consistent with operation within a centralized dispatch center, as predicted by a strategic bidding model. I also find that run-of-river plants exhibit increasing returns to scale, while plants relying on dams show slightly diminishing returns. The shadow marginal cost for run-of-river plants is found to be close to zero. Substantial cost savings could be realized if firms in Chile's hydro-electric generation industry were to operate efficiently.

  14. Self-oscillating resonant power converter

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to resonant power converters and inverters comprising a self-oscillating feedback loop coupled from a switch output to a control input of a switching network comprising one or more semiconductor switches. The self-oscillating feedback loop sets a switching frequency...... of the power converter and comprises a first intrinsic switch capacitance coupled between a switch output and a control input of the switching network and a first inductor. The first inductor is coupled in-between a first bias voltage source and the control input of the switching network and has...... a substantially fixed inductance. The first bias voltage source is configured to generate an adjustable bias voltage applied to the first inductor. The output voltage of the power converter is controlled in a flexible and rapid manner by controlling the adjustable bias voltage....

  15. A novel wireless power and data transmission AC to DC converter for an implantable device.

    Science.gov (United States)

    Liu, Jhao-Yan; Tang, Kea-Tiong

    2013-01-01

    This article presents a novel AC to DC converter implemented by standard CMOS technology, applied for wireless power transmission. This circuit combines the functions of the rectifier and DC to DC converter, rather than using the rectifier to convert AC to DC and then supplying the required voltage with regulator as in the transitional method. This modification can reduce the power consumption and the area of the circuit. This circuit also transfers the loading condition back to the external circuit by the load shift keying(LSK), determining if the input power is not enough or excessive, which increases the efficiency of the total system. The AC to DC converter is fabricated with the TSMC 90nm CMOS process. The circuit area is 0.071mm(2). The circuit can produce a 1V DC voltage with maximum output current of 10mA from an AC input ranging from 1.5V to 2V, at 1MHz to 10MHz.

  16. Current Practices in Defining Seismic Input for Nuclear Facilities

    International Nuclear Information System (INIS)

    2015-05-01

    This report has been written in the framework of seismic subgroup of the OECD/NEA CSNI Working Group on Integrity and Ageing of Components and Structures (WGIAGE) to provide a brief review of current practices regarding the definition of the seismic input for design and reevaluation of nuclear power plants. It is taken for granted that, prior to conducting the seismic design of a nuclear facility, a seismic hazard analysis (SHA) has been conducted for the site where the facility is located. This provides some reference motions for defining those that will later be used as input for the dynamic analyses of the facility. The objective of the report is to clarify the current practices in various OECD Member States for defining the seismic input to be used in the dynamic calculations of NPPs, once the SHA results are already at hand. Current practices have been summarized for Canada, Czech Republic, Finland, France, Germany, Japan, Slovenia, South Korea, Spain, Sweden, The Netherlands, United Kingdom and United States. The main findings of the report are: a) The approaches followed by the regulatory bodies of OECD Member States differ substantially, certainly in relation with the consideration of site effects, but also in the probability level of the event that a nuclear facility should be required to withstand. b) In many countries a probabilistic approach is adopted for the design, in some cases combined with a deterministic one; in other cases, like France, Japan or South Korea, a deterministic approach is followed. c) The US and Japan have the more complete guidelines in relation with site effects. The former provide specific approaches for definition of the seismic input. The latter clearly recognizes the need to propagate the bedrock motion to foundation level, thereby introducing the site effect in some way. d) The definition of bedrock is very heterogeneous in the various countries, although this should not constitute a serious problem if the starting

  17. Building Input Adaptive Parallel Applications: A Case Study of Sparse Grid Interpolation

    KAUST Repository

    Murarasu, Alin

    2012-12-01

    The well-known power wall resulting in multi-cores requires special techniques for speeding up applications. In this sense, parallelization plays a crucial role. Besides standard serial optimizations, techniques such as input specialization can also bring a substantial contribution to the speedup. By identifying common patterns in the input data, we propose new algorithms for sparse grid interpolation that accelerate the state-of-the-art non-specialized version. Sparse grid interpolation is an inherently hierarchical method of interpolation employed for example in computational steering applications for decompressing highdimensional simulation data. In this context, improving the speedup is essential for real-time visualization. Using input specialization, we report a speedup of up to 9x over the nonspecialized version. The paper covers the steps we took to reach this speedup by means of input adaptivity. Our algorithms will be integrated in fastsg, a library for fast sparse grid interpolation. © 2012 IEEE.

  18. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...

  19. Distributed Flexibility Management Targeting Energy Cost and Total Power Limitations in Electricity Distribution Grids

    DEFF Research Database (Denmark)

    Bessler, Sanford; Kemal, Mohammed Seifu; Silva, Nuno

    2018-01-01

    Demand Management uses the interaction and information exchange between multiple control functions in order to achieve goals that can vary in different application contexts. Since there are several stakeholders involved, these may have diverse objectives and even use different architectures...... to actively manage power demand. This paper utilizes an existing distributed demand management architecture in order to provide the following contributions: (1) It develops and evaluates a set of algorithms that combine the optimization of energy costs in scenarios of variable day-ahead prices with the goal...... to improve distribution grid operation reliability, here implemented by a total Power limit. (2) It evaluates the proposed scheme as a distributed system where flexibility information is exchanged with the existing industry standard OpenADR. A Hardware-in-the-Loop testbed realization demonstrates...

  20. LCA of electricity systems with high wind power penetration

    DEFF Research Database (Denmark)

    Turconi, Roberto; O' Dwyer, C. O.; Flynn, D.

    Electricity systems are shifting from being based on fossil fuels towards renewable sources to enhance energy security and mitigate climate change. However, by introducing high shares of variable renewables - such as wind and solar - dispatchable power plants are required to vary their output...... to fulfill the remaining electrical demand, potentially increasing their environmental impacts [1,2]. In this study the environmental impacts of potential short-term future electricity systems in Ireland with high shares of wind power (35-50% of total installed capacity) were evaluated using life cycle...... considered: while not outweighing the benefits from increasing wind energy, cycling emissions are not negligible and should thus be systematically included (i.e. by using emission factors per unit of fuel input rather than per unit of power generated). Cycling emissions increased with the installed wind...

  1. Development of the MARS input model for Ulchin 1/2 transient analyzer

    International Nuclear Information System (INIS)

    Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Chung, B. D.; Hwang, M.

    2003-03-01

    KAERI has been developing the NSSS transient analyzer based on best-estimate codes for Ulchin 1/2 plants. The MARS and RETRAN code are used as the best-estimate codes for the NSSS transient analyzer. Among the two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the input model requirements and the calculation note for the Ulchin 1/2 MARS input data generation (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 1/2

  2. Development of the MARS input model for Ulchin 3/4 transient analyzer

    International Nuclear Information System (INIS)

    Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Hwang, M. G.

    2003-12-01

    KAERI has been developing the NSSS transient analyzer based on best-estimate codes.The MARS and RETRAN code are adopted as the best-estimate codes for the NSSS transient analyzer. Among these two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the MARS input model requirements and the calculation note for the MARS input data generation (see the Appendix) for Ulchin 3/4 plant analyzer. In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 3/4

  3. Innovative Digitally Controlled Particle Accelerator Magnet Power Supply

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Ørndrup; Bidoggia, Benoit; Maheshwari, Ram Krishan

    2013-01-01

    Particle accelerator magnet power supplies needs to be extremely precise. A new and innovative power supply for particle accelerator magnets is proposed. The topologies for the input and the output converter are shown and the control architecture is described.......Particle accelerator magnet power supplies needs to be extremely precise. A new and innovative power supply for particle accelerator magnets is proposed. The topologies for the input and the output converter are shown and the control architecture is described....

  4. Power distribution forecasting device for reactors

    International Nuclear Information System (INIS)

    Tsukii, Makoto

    1981-01-01

    Purpose: To save expensive calculations on the forecasting of reactor power distribution. Constitution: Core status (CSD) such as entire coolant flow rate, pressures in the reactor, temperatures at the outlet and inlet and positions for control rods are inputted into a power distribution calculation device to calculate the power distribution based on physical models intermittently. Further, present power distribution is calculated based on in-core neutron flux measured values and CSD in a process control computer. Further, the ratio of the calculation results of the latter to those of the former is calculated, stored and inputted into a correction device to correct the forecast power distribution obtained by the power distribution calculation device. This enables to forecast the power distribution with excellent responsivity in the reactor site. (Furukawa, Y.)

  5. A study on the multi-dimensional spectral analysis for response of a piping model with two-seismic inputs

    International Nuclear Information System (INIS)

    Suzuki, K.; Sato, H.

    1975-01-01

    The power and the cross power spectrum analysis by which the vibration characteristic of structures, such as natural frequency, mode of vibration and damping ratio, can be identified would be effective for the confirmation of the characteristics after the construction is completed by using the response for small earthquakes or the micro-tremor under the operating condition. This method of analysis previously utilized only from the view point of systems with single input so far, is extensively applied for the analysis of a medium scale model of a piping system subjected to two seismic inputs. The piping system attached to a three storied concrete structure model which is constructed on a shaking table was excited due to earthquake motions. The inputs to the piping system were recorded at the second floor and the ceiling of the third floor where the system was attached to. The output, the response of the piping system, was instrumented at a middle point on the system. As a result, the multi-dimensional power spectrum analysis is effective for a more reliable identification of the vibration characteristics of the multi-input structure system

  6. Input-output supervisor

    International Nuclear Information System (INIS)

    Dupuy, R.

    1970-01-01

    The input-output supervisor is the program which monitors the flow of informations between core storage and peripheral equipments of a computer. This work is composed of three parts: 1 - Study of a generalized input-output supervisor. With sample modifications it looks like most of input-output supervisors which are running now on computers. 2 - Application of this theory on a magnetic drum. 3 - Hardware requirement for time-sharing. (author) [fr

  7. Optimizing design of converters using power cycling lifetime models

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Ørndrup; Munk-Nielsen, Stig

    2015-01-01

    Converter power cycling lifetime depends heavily on converter operation point. A lifetime model of a single power module switched mode power supply with wide input voltage range is shown. A lifetime model is created using a power loss model, a thermal model and a model for power cycling capability...... with a given mission profile. A method to improve the expected lifetime of the converter is presented, taking into account switching frequency, input voltage and transformer turns ratio....

  8. Calcium Input Frequency, Duration and Amplitude Differentially Modulate the Relative Activation of Calcineurin and CaMKII

    Science.gov (United States)

    Li, Lu; Stefan, Melanie I.; Le Novère, Nicolas

    2012-01-01

    NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca2+/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors. PMID:22962589

  9. Approximating the constellation constrained capacity of the MIMO channel with discrete input

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Forchhammer, Søren; Larsen, Knud J.

    2015-01-01

    In this paper the capacity of a Multiple Input Multiple Output (MIMO) channel is considered, subject to average power constraint, for multi-dimensional discrete input, in the case when no channel state information is available at the transmitter. We prove that when the constellation size grows, t...... for the equivalent orthogonal channel, obtained by the singular value decomposition. Furthermore, lower bounds on the constrained capacity are derived for the cases of square and tall MIMO matrix, by optimizing the constellation for the equivalent channel, obtained by QR decomposition....

  10. VHF Series-Input Parallel-Output Interleaved Self-Oscillating Resonant SEPIC Converter

    DEFF Research Database (Denmark)

    Kovacevic, Milovan; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    If the switches of two resonant SEPIC converters are capacitively coupled, it is possible to obtain a self-oscillating converter in which the two power stages operate in interleaved mode. This paper describes a topology where the inputs of two SEPIC converters are connected in series, thereby sha...

  11. Current production costs in various power plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Weible, H.

    1977-01-01

    The costs of producing electric power were evaluated for flowing water power plants, storage and pumped storage power plants, bituminous coal power plants, heating oil power plants (fired with heavy heating oil), natural gas-fired power plants, gas turbines, pressurized water reactors, and boiling water reactors. The calculational methods used for evaluating costs and the input data for methods used for the KOSKON and KOSKERN computer programs are described. It is emphasized that the calculations are examples to indicate the possible effects of the cost program and are only as valid as the input data. (JSR)

  12. A 1.1nW Energy Harvesting System with 544pW Quiescent Power for Next Generation Implants.

    Science.gov (United States)

    Bandyopadhyay, Saurav; Mercier, Patrick P; Lysaght, Andrew C; Stankovic, Konstantina M; Chandrakasan, Anantha P

    2014-12-01

    This paper presents a nW power management unit (PMU) for an autonomous wireless sensor that sustains itself by harvesting energy from the endocochlear potential (EP), the 70-100 mV electrochemical bio-potential inside the mammalian ear. Due to the anatomical constraints inside the inner ear, the total extractable power from the EP is limited to 1.1-6.25 nW. A nW boost converter is used to increase the input voltage (30-55 mV) to a higher voltage (0.8 to 1.1 V) usable by CMOS circuits in the sensor. A pW Charge Pump circuit is used to minimize the leakage in the boost converter. Further, ultra-low-power control circuits consisting of digital implementations of input impedance adjustment circuits and Zero Current Switching circuits along with Timer and Reference circuits keep the quiescent power of the PMU down to 544 pW. The designed boost converter achieves a peak power conversion efficiency of 56%. The PMU can sustain itself and a duty-cyled ultra-low power load while extracting power from the EP of a live guinea pig. The PMU circuits have been implemented on a 0.18µm CMOS process.

  13. Local Buyer Market Power and Horizontally Differentiated Manufacturers

    OpenAIRE

    Wang, Shinn-Shyr; Rojas, Christian; Lavoie, Nathalie

    2010-01-01

    In this paper we study a farmer-processor relationship, where market power is bidirectional: processors have buyer as well as seller market power. Farmers supply a homogeneous raw input to the processors, which, in turn, process it into a horizontally differentiated product. The analysis shows that the spread between prices that both parties receive can be decomposed into two components: one due to buyer market power in the agricultural input market and one due to seller market power in the d...

  14. On Optimal Input Design for Feed-forward Control

    OpenAIRE

    Hägg, Per; Wahlberg, Bo

    2013-01-01

    This paper considers optimal input design when the intended use of the identified model is to construct a feed-forward controller based on measurable disturbances. The objective is to find a minimum power excitation signal to be used in a system identification experiment, such that the corresponding model-based feed-forward controller guarantees, with a given probability, that the variance of the output signal is within given specifications. To start with, some low order model problems are an...

  15. Photovoltaic power system tests on an 8-kilowatt single-phase line-commutated inverter

    Science.gov (United States)

    Stover, J. B.

    1978-01-01

    Efficiency and power factor were measured as functions of solar array voltage and current. The effects of input shunt capacitance and series inductance were determined. Tests were conducted from 15 to 75 percent of the 8 kW rated inverter input power. Measured efficiencies ranged from 76 percent to 88 percent at about 50 percent of rated inverter input power. Power factor ranged from 36 percent to 72 percent.

  16. Improved adaptive input voltage control of a solar array interfacing current mode controlled boost power stage

    International Nuclear Information System (INIS)

    Sitbon, Moshe; Schacham, Shmuel; Suntio, Teuvo; Kuperman, Alon

    2015-01-01

    Highlights: • Photovoltaic generator dynamic resistance online estimation method is proposed. • Control method allowing to achieve nominal performance at all time is presented. • The method is suitable for any type of photovoltaic system. - Abstract: Nonlinear characteristics of photovoltaic generators were recently shown to significantly influence the dynamics of interfacing power stages. Moreover, since the dynamic resistance of photovoltaic generators is both operating point and environmental variables dependent, the combined dynamics exhibits these dependencies as well, burdening control challenge. Typically, linear time invariant input voltage loop controllers (e.g. Proportional-Integrative-Derivative) are utilized in photovoltaic applications, designed according to nominal operating conditions. Nevertheless, since actual dynamics is seldom nominal, closed loop performance of such systems varies as well. In this paper, adaptive control method is proposed, allowing to estimate photovoltaic generator resistance online and utilize it to modify the controller parameters such that closed loop performance remains nominal throughout the whole operation range. Unlike previously proposed method, utilizing double-grid-frequency component for estimation purposes and suffering from various drawbacks such as operation point dependence and applicability to single-phase grid connected systems only, the proposed method is based on harmonic current injection and is independent on operating point and system topology

  17. The Miksova water power station

    International Nuclear Information System (INIS)

    2005-01-01

    Miksova water power station produced total of about 7,161,342 MWh of electricity in its 40 years of activity. According to its functionality, the Miksova pumped storage station (Miksova II) the upper reservoir of which was built from 1963 to 1966 on the Benovsky stream, was an interesting hydro-energy construction. The lower reservoir was formed by the enlarged discharge channel of the Miksova water power station. This power station was a pilot project, at which pumping reversible turbines and other mechanical-technical equipment for hydro power stations were tested, especially for the future construction of PVE Ruzin and Liptovska Mara. A turbine set with a diagonal reversible turbine and an installed capacity of 2.6 MW, which had an operational capacity of 11.2 m 3 .s -1 in a turbine mode of operation and using a head of 22 to 28 m, was installed in the machine room. It pumped 8.8 m 3 .s -1 of water with a power input of 3.1 MW in a pumping mode of operation. During the period of its operation from 1971 to 1984, pumping hydro power station Miksova II produced a total of 13,042 MWh of electricity in total, but by testing reversible turbines and the simulation of some special hydraulic phenomena, this power station lost its importance as low-efficiency source, stopped working and its technological equipment was demounted. Experiences from its construction and from its few years of operation were later used during the construction of our pumping hydro power stations. Prolonging its operating period should help with the installation of a bigger basin on the inflow, from which a greater amount of water could be used for the generation of electrical power in turbine mode of operation

  18. A New Generalized Two-Stage Direct Power Conversion Topology to Independently Supply Multiple AC Loads from Multiple Power Grids with Adjustable Power Loading

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2004-01-01

    ) and continuously adjust these power fractions will become a desired feature. This paper presents a generalized Direct Power Converter topology, which is able to connect to multiple AC supplies proving complete decoupling and no circulating power between the input ports and to independently control multiple AC...

  19. Power source system for nuclear fusion

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: When using an external system power source and an exclusive power source in a power source circuit for supplying power to the coils of a nuclear fusion apparatus, to minimize the capacity of the exclusive power source and provide an economical power source circuit construction. Structure: In the initial stage of the power supply, rectifying means provided in individual blocks are connected in parallel on the AC side, and power is supplied to the coils of the nuclear fusion apparatus from an external system power source with the exclusive power source held in the disconnected state. Further, at an instant when the limit of permissible input is reached, the afore-mentioned parallel circuit consisting of rectifying means is disconnected, while at the same time the exclusive power source is connected to the input side of the rectifying means provided in a block corresponding to the exclusive power source side, thereby supplying power to the coils of the nuclear fusion apparatus from both the external system power source and exclusive power source. (Kamimura, M.)

  20. Investigation of energy inputs for peach production using sensitivity analysis in Iran

    International Nuclear Information System (INIS)

    Royan, Mahsa; Khojastehpour, Mehdi; Emadi, Bagher; Mobtaker, Hassan Ghasemi

    2012-01-01

    Highlights: ► We investigated energy use and inputs–output relationship in peach production. ► Total energy consumption in peach production was 37536.96 MJ ha −1 . ► Diesel fuel with about (26.32%) was the major energy consumer. ► Energy use efficiency and energy productivity were 0.55 and 0.29 kg MJ −1 . ► The machinery energy was the most significant input affecting the output level. - Abstract: The purpose of this research was to investigate the energy balance between the energy inputs and yield in peach production in Golestan province of Iran as a case study. The results showed that total energy consumption in peach production was 37536.96 MJ ha −1 where the diesel fuel with about (26.32%) was the major energy consumer. The direct energy shared about (50.98%) whereas the indirect energy did (49.02%). Energy use efficiency, energy productivity, specific energy and net energy were 0.55, 0.29 kg MJ −1 , 3.41 MJ kg −1 and −16642.03 MJ ha −1 , respectively. Econometric assessment results revealed that the energy inputs of human labor, machinery, diesel fuel, chemical fertilizers and farm yard manure had significant influence on the yield. The impact of human labor energy (1.36) was found as the highest among the other input parameters. Sensitivity analysis indicated that the MPP value of energy inputs was between −2.8 and 11.31. Also the MPP value of human labor was the highest, followed by diesel fuel and farm yard manure energy inputs, respectively.

  1. Self-Biased Differential Rectifier with Enhanced Dynamic Range for Wireless Powering

    KAUST Repository

    Ouda, Mahmoud H.

    2016-08-29

    A self-biased, cross-coupled, differential rectifier is proposed with enhanced power-conversion efficiency over an extended range of input power. A prototype is designed for UHF 433MHz RF power-harvesting applications and is implemented using 0.18μm CMOS technology. The proposed rectifier architecture is compared to the conventional cross-coupled rectifier. It demonstrates an improvement of more than 40% in the rectifier power conversion efficiency (PCE) and an input power range extension of more than 50% relative to the conventional crosscoupled rectifier. A sensitivity of -15.2dBm (30μW) input power for 1V output voltage and a peak power-conversion efficiency of 65% are achieved for a 50kω load. © 2004-2012 IEEE.

  2. Method and apparatus to provide power conversion with high power factor

    Energy Technology Data Exchange (ETDEWEB)

    Perreault, David J.; Lim, Seungbum; Otten, David M.

    2017-05-23

    A power converter circuit rectifies a line voltage and applies the rectified voltage to a stack of capacitors. Voltages on the capacitors are coupled to a plurality of regulating converters to be converted to regulated output signals. The regulated output signals are combined and converted to a desired DC output voltage of the power converter. Input currents of the regulating converters are modulated in a manner that enhances the power factor of the power converter.

  3. Exergetic analysis and optimization of a solar-powered reformed methanol fuel cell micro-powerplant

    Science.gov (United States)

    Hotz, Nico; Zimmerman, Raúl; Weinmueller, Christian; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Rosengarten, Gary; Poulikakos, Dimos

    The present study proposes a combination of solar-powered components (two heaters, an evaporator, and a steam reformer) with a proton exchange membrane fuel cell to form a powerplant that converts methanol to electricity. The solar radiation heats up the mass flows of methanol-water mixture and air and sustains the endothermic methanol steam reformer at a sufficient reaction temperature (typically between 220 and 300 °C). In order to compare the different types of energy (thermal, chemical, and electrical), an exergetic analysis is applied to the entire system, considering only the useful part of energy that can be converted to work. The effect of the solar radiation intensity and of different operational and geometrical parameters like the total inlet flow rate of methanol-water mixture, the size of the fuel cell, and the cell voltage on the performance of the entire system is investigated. The total exergetic efficiency comparing the electrical power output with the exergy input in form of chemical and solar exergy reaches values of up to 35%, while the exergetic efficiency only accounting for the conversion of chemical fuel to electricity (and neglecting the 'cost-free' solar input) is increased up to 59%. At the same time, an electrical power density per irradiated area of more than 920 W m -2 is obtained for a solar heat flux of 1000 W m -2.

  4. Post-BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) Benchmark Phase II: Identification of Influential Parameters

    International Nuclear Information System (INIS)

    Kovtonyuk, A.; Petruzzi, A.; D'Auria, F.

    2015-01-01

    proposed in Specifications, and others used their own methodologies. This fact was a partial reason for the different ranges of input parameter variation identified by participants, in addition to differences of the physical models adopted by the different codes. Therefore, such different variation ranges of IP and, correspondingly, such different variation ranges of cladding temperature and time of re-wet, make rather difficult the task of meaningful and easy-comprehensible comparison of Phase II results. Out of a total of 72 input parameters, initially considered by all participants, only 6 were identified as influential by more than 4 participants that are: - bundle power; - wall heat transfer coefficient; - interphase friction coefficient; - interphase heat transfer coefficient; - heat transfer (enhancement) at the quench front; - droplet diameter. It should be noted that actual parameters considered in parameter 'Heat transfer (enhancement) at the quench front' are code-specific and may have different influence on calculation results. Several participants discarded some identified influential parameters (e.g., droplet diameter) due to existing relation between this kind of parameters so-called 'Input Coefficient Parameters' and more global parameters (e.g. interfacial friction coefficient and interphase heat transfer coefficient which use the droplet diameter) so-called 'Input Global Parameters'. Some participants also discarded identified influential so-called 'Input Basic Coefficients' (e.g. bundle power) since their uncertainty has not to be determined in the Phase III but will be provided by the coordinator from experimental data. The behaviour of the variation of the responses at the extremes of IP range of variation greatly depends on the type of input parameter and on the code used. Mainly, the following two different behaviours can be characterized: - For some parameters, like power, wall heat transfer and interphase

  5. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics

    Science.gov (United States)

    Kimble, H. J.; Levin, Yuri; Matsko, Andrey B.; Thorne, Kip S.; Vyatchanin, Sergey P.

    2002-01-01

    The LIGO-II gravitational-wave interferometers (ca. 2006-2008) are designed to have sensitivities near the standard quantum limit (SQL) in the vicinity of 100 Hz. This paper describes and analyzes possible designs for subsequent LIGO-III interferometers that can beat the SQL. These designs are identical to a conventional broad band interferometer (without signal recycling), except for new input and/or output optics. Three designs are analyzed: (i) a squeezed-input interferometer (conceived by Unruh based on earlier work of Caves) in which squeezed vacuum with frequency-dependent (FD) squeeze angle is injected into the interferometer's dark port; (ii) a variational-output interferometer (conceived in a different form by Vyatchanin, Matsko and Zubova), in which homodyne detection with FD homodyne phase is performed on the output light; and (iii) a squeezed-variational interferometer with squeezed input and FD-homodyne output. It is shown that the FD squeezed-input light can be produced by sending ordinary squeezed light through two successive Fabry-Pérot filter cavities before injection into the interferometer, and FD-homodyne detection can be achieved by sending the output light through two filter cavities before ordinary homodyne detection. With anticipated technology (power squeeze factor e-2R=0.1 for input squeezed vacuum and net fractional loss of signal power in arm cavities and output optical train ɛ*=0.01) and using an input laser power Io in units of that required to reach the SQL (the planned LIGO-II power, ISQL), the three types of interferometer could beat the amplitude SQL at 100 Hz by the following amounts μ≡(Sh)/(SSQLh) and with the following corresponding increase V=1/μ3 in the volume of the universe that can be searched for a given noncosmological source: Squeezed input-μ~=(e-2R)~=0.3 and V~=1/0.33~=30 using Io/ISQL=1. Variational-output-μ~=ɛ1/4*~=0.3 and V~=30 but only if the optics can handle a ten times larger power: Io/ISQL~=1/(ɛ*)=10

  6. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics

    International Nuclear Information System (INIS)

    Kimble, H.J.; Levin, Yuri; Thorne, Kip S.; Matsko, Andrey B.; Vyatchanin, Sergey P.

    2002-01-01

    The LIGO-II gravitational-wave interferometers (ca. 2006-2008) are designed to have sensitivities near the standard quantum limit (SQL) in the vicinity of 100 Hz. This paper describes and analyzes possible designs for subsequent LIGO-III interferometers that can beat the SQL. These designs are identical to a conventional broad band interferometer (without signal recycling), except for new input and/or output optics. Three designs are analyzed: (i) a squeezed-input interferometer (conceived by Unruh based on earlier work of Caves) in which squeezed vacuum with frequency-dependent (FD) squeeze angle is injected into the interferometer's dark port; (ii) a variational-output interferometer (conceived in a different form by Vyatchanin, Matsko and Zubova), in which homodyne detection with FD homodyne phase is performed on the output light; and (iii) a squeezed-variational interferometer with squeezed input and FD-homodyne output. It is shown that the FD squeezed-input light can be produced by sending ordinary squeezed light through two successive Fabry-Perot filter cavities before injection into the interferometer, and FD-homodyne detection can be achieved by sending the output light through two filter cavities before ordinary homodyne detection. With anticipated technology (power squeeze factor e -2R =0.1 for input squeezed vacuum and net fractional loss of signal power in arm cavities and output optical train ε * =0.01) and using an input laser power I o in units of that required to reach the SQL (the planned LIGO-II power, I SQL ), the three types of interferometer could beat the amplitude SQL at 100 Hz by the following amounts μ≡√(S h )/√(S h SQL ) and with the following corresponding increase V=1/μ 3 in the volume of the universe that can be searched for a given noncosmological source: Squeezed input--μ≅√(e -2R )≅0.3 and V≅1/0.3 3 ≅30 using I o /I SQL =1. Variational-output--μ≅ε * 1/4 ≅0.3 and V≅30 but only if the optics can handle a ten

  7. Power conditioner without isolation transformer; Toransuresu power conditioner no shohin kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okado, C; Itami, T; Kimoto, K [Toshiba Corp., Tokyo (Japan)

    1996-10-27

    A light-weight downsized and high efficiency transformer-less type 4 kW power conditioner (inverter) has been developed. This power conditioner insures the system interconnection protection by monitoring the voltage of two single-phase three-line circuits. The power conditioner has weight of 17.5 kg and efficiency of 94%. Potential fluctuation of photovoltaic cells due to the switching of power devices at the inverter was reduced. Output capacity was reduced in the low input voltage range. Outflow of DC component was prevented in high accuracy by usually correcting the zero point drift of detector, and by using the current detector with excellent linearity. To detect the DC ground fault, and to trip the output side breaker locating at the ground fault current pass, a zero phase converter detection circuit has been developed, by which the DC component can be detected at the DC input side. As a result of performance verification, the efficiency, power factor, EMI level, protection of outflow of DC component, protection of ground fault, protection of single operation detection, and noise level were satisfied. This system is prospective for the diffusion of photovoltaic power generation in the future. 3 refs., 8 figs., 1 tab.

  8. Power flow studies of magnetically insulated lines

    International Nuclear Information System (INIS)

    McDaniel, D.H.; Poukey, J.W.; Bergeron, K.D.; VanDevender, J.P.; Johnson, D.L.

    1977-01-01

    The designs for relativistic electron beam accelerators with power levels of 20 to 100 TW are greatly restricted by the inductance of a single diode of reasonable size. This fact leads to modular designs of very large accelerators. One concept uses several small insulators at a large radius arranged around the accelerator center. The total effective inductance is then low, but the energy must then be transported by self-magnetic insulated vacuum lines to the target volume. A triplate vacuum line configuration eases many mechanical support problems and allows more A-K gaps or feeds to be packaged around a given radius. This type of vacuum transmission line was chosen for initial experiments at Sandia. The experiments were conducted on the MITE (Magnetically Insulated Transmission Experiment) accelerator. The water pulse forming lines are connected to a vacuum triplate line through a conventional stacked insulator. Diagnostics on the experiment consisted of: (1) input V; (2) input I; (3) I monitors at the input, middle, and output of both the center conductor and ground plane of the transmission line; (4) magnetic energy analyzer to view peak electron energy in the A-K gap; (5) calorimetry; and (6) Faraday cups to look at electron current flowing across the transmission line. The main goal of the experiment is to obtain input impedance of the transmission line as a function of voltage and to measure electron loss currents. These measurements are compared to theoretical models for the input impedance and energy losses

  9. Estimation of monthly wind power outputs of WECS with limited record period using artificial neural networks

    International Nuclear Information System (INIS)

    Tu, Yi-Long; Chang, Tsang-Jung; Chen, Cheng-Lung; Chang, Yu-Jung

    2012-01-01

    Highlights: ► ANN with short record training data is used to estimate power outputs in an existing station. ► The suitable numbers/parameters of input neurons for ANN are presented. ► Current wind speeds and previous power outputs are the most important input neurons. ► Choosing suitable input parameters is more important than choosing multiple parameters. - Abstract: For the brand new wind power industry, online recordings of wind power data are always in a relatively limited period. The aim of the study is to investigate the suitable numbers/parameters of input neurons for artificial neural networks under a short record of measured data. Measured wind speeds, wind directions (yaw angles) and power outputs with 10-min resolution at an existing wind power station, located at Jhongtun, Taiwan, are integrated to form three types of input neuron numbers and sixteen cases of input neurons. The first-10 days of each month in 2006 are used for data training to simulate the following 20-day power generation of the same month. The performance of various input neuron cases is evaluated. The simulated results show that using the first 10-day training data with adequate input neurons can estimate energy outputs well except the weak wind regime (May, June, and July). Among the input neuron parameters used, current wind speeds V(t) and previous power outputs P(t − 1) are the most important. Individually using one of them into input neurons can only provide satisfactory estimation. However, simultaneously using these two parameters into input neurons can give the best estimation. Thus, choosing suitable input parameters is more important than choosing multiple parameters.

  10. A NOVEL THREE PHASE UNITY POWER FACTOR CONVERTER

    Directory of Open Access Journals (Sweden)

    Bekir Sami SAZAK

    1998-03-01

    Full Text Available The proposed unity power factor converter system which is able to operate from a 150V three-phase supply whilst delivering the required 200V DC voltage has been built and tested. This circuit functions as a high power factor low harmonic rectifier based on the concept that the peak capacitor voltages are proportional to the line input currents. Hence the low frequency components of the capacitor voltages are also approximately proportional to the line input currents. The system can be designed to achieve nearly sinusoidal supply input currents, when operated with discontinuous resonant capacitor voltages Output power control is achieved by variations of the IGBTs switching frequency. The converter is therefore able to compensate for any changes in the load resistance. The proposed topology offers advantages, including: a relatively simple power, control and protection circuits, high power capability, and high converter efficiencies.

  11. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    Science.gov (United States)

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  12. A Single-Stage LED Tube Lamp Driver with Power-Factor Corrections and Soft Switching for Energy-Saving Indoor Lighting Applications

    Directory of Open Access Journals (Sweden)

    Chun-An Cheng

    2017-01-01

    Full Text Available This paper presents a single-stage alternating current (AC/direct current (DC light-emitting diode (LED tube lamp driver for energy-saving indoor lighting applications; this driver features power-factor corrections and soft switching, and also integrates a dual buck-boost converter with coupled inductors and a half-bridge series resonant converter cascaded with a bridge rectifier into a single-stage power-conversion topology. The features of the presented driver are high efficiency (>91%, satisfying power factor (PF > 0.96, low input-current total-harmonic distortion (THD < 10%, low output voltage ripple factor (<7.5%, low output current ripple factor (<8%, and zero-voltage switching (ZVS obtained on both power switches. Operational principles are described in detail, and experimental results obtained from an 18 W-rated LED tube lamp for T8/T10 fluorescent lamp replacements with input utility-line voltages ranging from 100 V to 120 V have demonstrated the functionality of the presented driver suitable for indoor lighting applications.

  13. The importance of input interactions in the uncertainty and sensitivity analysis of nuclear fuel behavior

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, T., E-mail: timo.ikonen@vtt.fi; Tulkki, V.

    2014-08-15

    Highlights: • Uncertainty and sensitivity analysis of modeled nuclear fuel behavior is performed. • Burnup dependency of the uncertainties and sensitivities is characterized. • Input interactions significantly increase output uncertainties for irradiated fuel. • Identification of uncertainty sources is greatly improved with higher order methods. • Results stress the importance of using methods that take interactions into account. - Abstract: The propagation of uncertainties in a PWR fuel rod under steady-state irradiation is analyzed by computational means. A hypothetical steady-state scenario of the Three Mile Island 1 reactor fuel rod is modeled with the fuel performance FRAPCON, using realistic input uncertainties for the fabrication and model parameters, boundary conditions and material properties. The uncertainty and sensitivity analysis is performed by extensive Monte Carlo sampling of the inputs’ probability distribution and by applying correlation coefficient and Sobol’ variance decomposition analyses. The latter includes evaluation of the second order and total effect sensitivity indices, allowing the study of interactions between input variables. The results show that the interactions play a large role in the propagation of uncertainties, and first order methods such as the correlation coefficient analyses are in general insufficient for sensitivity analysis of the fuel rod. Significant improvement over the first order methods can be achieved by using higher order methods. The results also show that both the magnitude of the uncertainties and their propagation depends not only on the output in question, but also on burnup. The latter is due to onset of new phenomena (such as the fission gas release) and the gradual closure of the pellet-cladding gap with increasing burnup. Increasing burnup also affects the importance of input interactions. Interaction effects are typically highest in the moderate burnup (of the order of 10–40 MWd

  14. Segmented correlation measurements on superconducting bandpass delta-sigma modulator with and without input tone

    International Nuclear Information System (INIS)

    Bulzacchelli, John F; Lee, Hae-Seung; Hong, Merit Y; Misewich, James A; Ketchen, Mark B

    2003-01-01

    Segmented correlation is a useful technique for testing a superconducting analogue-to-digital converter, as it allows the output spectrum to be estimated with fine frequency resolution even when data record lengths are limited by small on-chip acquisition memories. Previously, we presented segmented correlation measurements on a superconducting bandpass delta-sigma modulator sampling at 40.2 GHz under idle channel (no input) conditions. This paper compares the modulator output spectra measured by segmented correlation with and without an input tone. Important practical considerations of calculating segmented correlations are discussed in detail. Resolution enhancement by segmented correlation does reduce the spectral width of the input tone in the desired manner, but the signal power due to the input increases the variance of the spectral estimate near the input frequency, hindering accurate calculation of the in-band noise. This increased variance, which is predicted by theory, must be considered carefully in the application of segmented correlation. Methods for obtaining more accurate estimates of the quantization noise spectrum which are closer to those measured with no input are described

  15. RESONANT STEP-DOWN DC-DC POWER CONVERTERS

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant step-down DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage...... charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier by a semiconductor switch arrangement in accordance with a switch control signal to produce the converter output voltage. The resonant step-down DC-DC power converter comprises an electrical short......-circuit connection across the galvanic isolation barrier connecting, in a first case, the second negative electrode of the output capacitor to the positive input terminal of the primary side circuit or, in a second case, connecting the second positive electrode of the output capacitor to the negative input terminal...

  16. Influence of active dendritic currents on input-output processing in spinal motoneurons in vivo.

    Science.gov (United States)

    Lee, R H; Kuo, J J; Jiang, M C; Heckman, C J

    2003-01-01

    The extensive dendritic tree of the adult spinal motoneuron generates a powerful persistent inward current (PIC). We investigated how this dendritic PIC influenced conversion of synaptic input to rhythmic firing. A linearly increasing, predominantly excitatory synaptic input was generated in triceps ankle extensor motoneurons by slow stretch (duration: 2-10 s) of the Achilles tendon in the decerebrate cat preparation. The firing pattern evoked by stretch was measured by injecting a steady current to depolarize the cell to threshold for firing. The effective synaptic current (I(N), the net synaptic current reaching the soma of the cell) evoked by stretch was measured during voltage clamp. Hyperpolarized holding potentials were used to minimize the activation of the dendritic PIC and thus estimate stretch-evoked I(N) for a passive dendritic tree (I(N,PASS)). Depolarized holding potentials that approximated the average membrane potential during rhythmic firing allowed strong activation of the dendritic PIC and thus resulted in marked enhancement of the total stretch-evoked I(N) (I(N,TOT)). The net effect of the dendritic PIC on the generation of rhythmic firing was assessed by plotting stretch-evoked firing (strong PIC activation) versus stretch-evoked I(N,PASS) (minimal PIC activation). The gain of this input-output function for the neuron (I-O(N)) was found to be ~2.7 times as high as for the standard injected frequency current (F-I) function in low-input conductance neurons. However, about halfway through the stretch, firing rate tended to become constant, resulting in a sharp saturation in I-O(N) that was not present in F-I. In addition, the gain of I-O(N) decreased sharply with increasing input conductance, resulting in much lower stretch-evoked firing rates in high-input conductance cells. All three of these phenomena (high initial gain, saturation, and differences in low- and high-input conductance cells) were also readily apparent in the differences between

  17. Power system stabilization by SMES using current-fed pwm power conditioner

    International Nuclear Information System (INIS)

    Ishikawa, T.; Akita, S.; Taniguchi, H.; Kosho, S.; Tanaka, T.

    1988-01-01

    A superconducting magnetic energy storage (SMES) unit, consisted of superconducting coil and AC/DC power conditioner, can be used to suppress various kinds of instability that may cause service interruption in electric power system as it has high controllability of input/output electric power. Power system stabilizing ability of SMES has been examined experimentally by using model power system and small SMES unit. Current-fed PWM power conditioner was used to obtain maximum stabilizing effect by controlling active and reactive power simultaneously and independently. Power conditioner configuration, operating characteristics and control scheme for power system stabilization are also described. Results from experiments show the effectiveness of SMES on power system stabilization

  18. Input vector optimization of feed-forward neural networks for fitting ab initio potential-energy databases

    Science.gov (United States)

    Malshe, M.; Raff, L. M.; Hagan, M.; Bukkapatnam, S.; Komanduri, R.

    2010-05-01

    The variation in the fitting accuracy of neural networks (NNs) when used to fit databases comprising potential energies obtained from ab initio electronic structure calculations is investigated as a function of the number and nature of the elements employed in the input vector to the NN. Ab initio databases for H2O2, HONO, Si5, and H2CCHBr were employed in the investigations. These systems were chosen so as to include four-, five-, and six-body systems containing first, second, third, and fourth row elements with a wide variety of chemical bonding and whose conformations cover a wide range of structures that occur under high-energy machining conditions and in chemical reactions involving cis-trans isomerizations, six different types of two-center bond ruptures, and two different three-center dissociation reactions. The ab initio databases for these systems were obtained using density functional theory/B3LYP, MP2, and MP4 methods with extended basis sets. A total of 31 input vectors were investigated. In each case, the elements of the input vector were chosen from interatomic distances, inverse powers of the interatomic distance, three-body angles, and dihedral angles. Both redundant and nonredundant input vectors were investigated. The results show that among all the input vectors investigated, the set employed in the Z-matrix specification of the molecular configurations in the electronic structure calculations gave the lowest NN fitting accuracy for both Si5 and vinyl bromide. The underlying reason for this result appears to be the discontinuity present in the dihedral angle for planar geometries. The use of trigometric functions of the angles as input elements produced significantly improved fitting accuracy as this choice eliminates the discontinuity. The most accurate fitting was obtained when the elements of the input vector were taken to have the form Rij-n, where the Rij are the interatomic distances. When the Levenberg-Marquardt procedure was modified

  19. An approach for coupled-code multiphysics core simulations from a common input

    International Nuclear Information System (INIS)

    Schmidt, Rodney; Belcourt, Kenneth; Hooper, Russell; Pawlowski, Roger; Clarno, Kevin; Simunovic, Srdjan; Slattery, Stuart; Turner, John; Palmtag, Scott

    2015-01-01

    Highlights: • We describe an approach for coupled-code multiphysics reactor core simulations. • The approach can enable tight coupling of distinct physics codes with a common input. • Multi-code multiphysics coupling and parallel data transfer issues are explained. • The common input approach and how the information is processed is described. • Capabilities are demonstrated on an eigenvalue and power distribution calculation. - Abstract: This paper describes an approach for coupled-code multiphysics reactor core simulations that is being developed by the Virtual Environment for Reactor Applications (VERA) project in the Consortium for Advanced Simulation of Light-Water Reactors (CASL). In this approach a user creates a single problem description, called the “VERAIn” common input file, to define and setup the desired coupled-code reactor core simulation. A preprocessing step accepts the VERAIn file and generates a set of fully consistent input files for the different physics codes being coupled. The problem is then solved using a single-executable coupled-code simulation tool applicable to the problem, which is built using VERA infrastructure software tools and the set of physics codes required for the problem of interest. The approach is demonstrated by performing an eigenvalue and power distribution calculation of a typical three-dimensional 17 × 17 assembly with thermal–hydraulic and fuel temperature feedback. All neutronics aspects of the problem (cross-section calculation, neutron transport, power release) are solved using the Insilico code suite and are fully coupled to a thermal–hydraulic analysis calculated by the Cobra-TF (CTF) code. The single-executable coupled-code (Insilico-CTF) simulation tool is created using several VERA tools, including LIME (Lightweight Integrating Multiphysics Environment for coupling codes), DTK (Data Transfer Kit), Trilinos, and TriBITS. Parallel calculations are performed on the Titan supercomputer at Oak

  20. Modeling of power train by applying the virtual prototype concept; Kaso genkei ni yoru power train no model ka

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, S; Harada, Y; Arakawa, H; Komori, S [Mazda Motor Corp., Hiroshima (Japan); Sumida, S [U-Shin Corp., Tokyo (Japan)

    1997-10-01

    This paper describes the simulation of power train that includes the model developed by applying the virtual prototype concept. By this concept, subsystem models which consist of functional model and mechanism models are integrated into a total system model. This peculiarity in architecture of model, which is called the hierarchical structure, enables us to model a system of large scale with many units, systems and parts easily. Two kinds of computer simulations are performed. One is engine revolution fluctuation by accessory load input, and the other is changing gears by automatic transmission. They are verified to have sufficient accuracy. 2 refs., 12 figs.

  1. Screening important inputs in models with strong interaction properties

    International Nuclear Information System (INIS)

    Saltelli, Andrea; Campolongo, Francesca; Cariboni, Jessica

    2009-01-01

    We introduce a new method for screening inputs in mathematical or computational models with large numbers of inputs. The method proposed here represents an improvement over the best available practice for this setting when dealing with models having strong interaction effects. When the sample size is sufficiently high the same design can also be used to obtain accurate quantitative estimates of the variance-based sensitivity measures: the same simulations can be used to obtain estimates of the variance-based measures according to the Sobol' and the Jansen formulas. Results demonstrate that Sobol' is more efficient for the computation of the first-order indices, while Jansen performs better for the computation of the total indices.

  2. Screening important inputs in models with strong interaction properties

    Energy Technology Data Exchange (ETDEWEB)

    Saltelli, Andrea [European Commission, Joint Research Centre, 21020 Ispra, Varese (Italy); Campolongo, Francesca [European Commission, Joint Research Centre, 21020 Ispra, Varese (Italy)], E-mail: francesca.campolongo@jrc.it; Cariboni, Jessica [European Commission, Joint Research Centre, 21020 Ispra, Varese (Italy)

    2009-07-15

    We introduce a new method for screening inputs in mathematical or computational models with large numbers of inputs. The method proposed here represents an improvement over the best available practice for this setting when dealing with models having strong interaction effects. When the sample size is sufficiently high the same design can also be used to obtain accurate quantitative estimates of the variance-based sensitivity measures: the same simulations can be used to obtain estimates of the variance-based measures according to the Sobol' and the Jansen formulas. Results demonstrate that Sobol' is more efficient for the computation of the first-order indices, while Jansen performs better for the computation of the total indices.

  3. Effects of Aeration, Vegetation, and Iron Input on Total P Removal in a Lacustrine Wetland Receiving Agricultural Drainage

    Directory of Open Access Journals (Sweden)

    Yuanchun Zou

    2018-01-01

    Full Text Available Utilizing natural wetlands to remove phosphorus (P from agricultural drainage is a feasible approach of protecting receiving waterways from eutrophication. However, few studies have been carried out about how these wetlands, which act as buffer zones of pollutant sinks, can be operated to achieve optimal pollutant removal and cost efficiency. In this study, cores of sediments and water were collected from a lacustrine wetland of Lake Xiaoxingkai region in Northeastern China, to produce a number of lab-scale wetland columns. Ex situ experiments, in a controlled environment, were conducted to study the effects of aeration, vegetation, and iron (Fe input on the removal of total P (TP and values of dissolved oxygen (DO and pH of the water in these columns. The results demonstrated the links between Fe, P and DO levels. The planting of Glyceria spiculosa in the wetland columns was found to increase DO and pH values, whereas the Fe:P ratio was found to inversely correlate to the pH values. The TP removal was the highest in aerobic and planted columns. The pattern of temporal variation of TP removals matched first-order exponential growth model, except for under aerobic condition and with Fe:P ratio of 10:1. It was concluded that Fe introduced into a wetland by either surface runoff or agricultural drainage is beneficial for TP removal from the overlying water, especially during the growth season of wetland vegetation.

  4. ColloInputGenerator

    DEFF Research Database (Denmark)

    2013-01-01

    This is a very simple program to help you put together input files for use in Gries' (2007) R-based collostruction analysis program. It basically puts together a text file with a frequency list of lexemes in the construction and inserts a column where you can add the corpus frequencies. It requires...... it as input for basic collexeme collostructional analysis (Stefanowitsch & Gries 2003) in Gries' (2007) program. ColloInputGenerator is, in its current state, based on programming commands introduced in Gries (2009). Projected updates: Generation of complete work-ready frequency lists....

  5. Characterization, impact and fate of atmospheric inputs in the water column

    International Nuclear Information System (INIS)

    Sandroni, V.; Migon, C.

    1999-01-01

    The present results, obtained from continuous sampling (wet, dry and total inputs) at the Cap Ferrat sampling station (Ligurian Sea) enable to quantify the dissolved and particulate fractions relative to various types of metals (dust-derived, anthropogenic, medium)

  6. Variable-Width Datapath for On-Chip Network Static Power Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Michelogiannakis, George; Shalf, John

    2013-11-13

    With the tight power budgets in modern large-scale chips and the unpredictability of application traffic, on-chip network designers are faced with the dilemma of designing for worst- case bandwidth demands and incurring high static power overheads, or designing for an average traffic pattern and risk degrading performance. This paper proposes adaptive bandwidth networks (ABNs) which divide channels and switches into lanes such that the network provides just the bandwidth necessary in each hop. ABNs also activate input virtual channels (VCs) individually and take advantage of drowsy SRAM cells to eliminate false VC activations. In addition, ABNs readily apply to silicon defect tolerance with just the extra cost for detecting faults. For application traffic, ABNs reduce total power consumption by an average of 45percent with comparable performance compared to single-lane power-gated networks, and 33percent compared to multi-network designs.

  7. Regional Capital Inputs in Chinese Industry and Manufacturing, 1978-2003

    NARCIS (Netherlands)

    Wang, Lili; Szirmai, Adam

    2008-01-01

    This paper provides new estimates of capital inputs in the Chinese economy. Estimates are made for the total economy (1953-2003), for the industrial sector (1978-2003) and for the manufacturing sector (1985-2003). The estimates for industry and manufacturing are broken down by thirty regions. The

  8. Power inverter implementing phase skipping control

    Science.gov (United States)

    Somani, Utsav; Amirahmadi, Ahmadreza; Jourdan, Charles; Batarseh, Issa

    2016-10-18

    A power inverter includes a DC/AC inverter having first, second and third phase circuitry coupled to receive power from a power source. A controller is coupled to a driver for each of the first, second and third phase circuitry (control input drivers). The controller includes an associated memory storing a phase skipping control algorithm, wherein the controller is coupled to receive updating information including a power level generated by the power source. The drivers are coupled to control inputs of the first, second and third phase circuitry, where the drivers are configured for receiving phase skipping control signals from the controller and outputting mode selection signals configured to dynamically select an operating mode for the DC/AC inverter from a Normal Control operation and a Phase Skipping Control operation which have different power injection patterns through the first, second and third phase circuitry depending upon the power level.

  9. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target.

    Science.gov (United States)

    Dubey, P K; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  10. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    Science.gov (United States)

    Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  11. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    International Nuclear Information System (INIS)

    Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-01-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique

  12. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols.

    Science.gov (United States)

    Gillman, I G; Kistler, K A; Stewart, E W; Paolantonio, A R

    2016-03-01

    The study objective was to determine the effect of variable power applied to the atomizer of refillable tank based e-cigarette (EC) devices. Five different devices were evaluated, each at four power levels. Aerosol yield results are reported for each set of 25 EC puffs, as mass/puff, and normalized for the power applied to the coil, in mass/watt. The range of aerosol produced on a per puff basis ranged from 1.5 to 28 mg, and, normalized for power applied to the coil, ranged from 0.27 to 1.1 mg/watt. Aerosol samples were also analyzed for the production of formaldehyde, acetaldehyde, and acrolein, as DNPH derivatives, at each power level. When reported on mass basis, three of the devices showed an increase in total aldehyde yield with increasing power applied to the coil, while two of the devices showed the opposite trend. The mass of formaldehyde, acetaldehyde, and acrolein produced per gram of total aerosol produced ranged from 0.01 to 7.3 mg/g, 0.006 to 5.8 mg/g, and acrolein from EC aerosols from specific devices, and were compared to estimated exposure from consumption of cigarettes, to occupational and workplace limits, and to previously reported results from other researchers. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Analysis of North Sea Offshore Wind Power Variability

    Directory of Open Access Journals (Sweden)

    Aymeric Buatois

    2014-05-01

    Full Text Available This paper evaluates, for a 2030 scenario, the impact on onshore power systems in terms of the variability of the power generated by 81 GW of offshore wind farms installed in the North Sea. Meso-scale reanalysis data are used as input for computing the hourly power production for offshore wind farms, and this total production is analyzed to identify the largest aggregated hourly power variations. Based on publicly available information, a simplified representation of the coastal power grid is built for the countries bordering the North Sea. Wind farms less than 60 km from shore are connected radially to the mainland, while the rest are connected to a hypothetical offshore HVDC (High-Voltage Direct Current power grid, designed such that wind curtailment does not exceed 1% of production. Loads and conventional power plants by technology and associated cost curves are computed for the various national power systems, based on 2030 projections. Using the MATLAB-based MATPOWER toolbox, the hourly optimal power flow for this regional hybrid AC/DC grid is computed for high, low and medium years from the meso-scale database. The largest net load variations are evaluated per market area and related to the extra load-following reserves that may be needed from conventional generators.

  14. Optical Fiber for High-Power Optical Communication

    Directory of Open Access Journals (Sweden)

    Kenji Kurokawa

    2012-09-01

    Full Text Available We examined optical fibers suitable for avoiding such problems as the fiber fuse phenomenon and failures at bends with a high power input. We found that the threshold power for fiber fuse propagation in photonic crystal fiber (PCF and hole-assisted fiber (HAF can exceed 18 W, which is more than 10 times that in conventional single-mode fiber (SMF. We considered this high threshold power in PCF and HAF to be caused by a jet of high temperature fluid penetrating the air holes. We showed examples of two kinds of failures at bends in conventional SMF when the input power was 9 W. We also observed the generation of a fiber fuse under a condition that caused a bend-loss induced failure. We showed that one solution for the failures at bends is to use optical fibers with a low bending loss such as PCF and HAF. Therefore, we consider PCF and HAF to be attractive solutions to the problems of the fiber fuse phenomenon and failures at bends with a high power input.

  15. Stochastic reactive power dispatch in hybrid power system with intermittent wind power generation

    International Nuclear Information System (INIS)

    Taghavi, Reza; Seifi, Ali Reza; Samet, Haidar

    2015-01-01

    Environmental concerns besides fuel costs are the predominant reasons for unprecedented escalating integration of wind turbine on power systems. Operation and planning of power systems are affected by this type of energy due to the intermittent nature of wind speed inputs with high uncertainty in the optimization output variables. Consequently, in order to model this high inherent uncertainty, a PRPO (probabilistic reactive power optimization) framework should be devised. Although MC (Monte-Carlo) techniques can solve the PRPO with high precision, PEMs (point estimate methods) can preserve the accuracy to attain reasonable results when diminishing the computational effort. Also, this paper introduces a methodology for optimally dispatching the reactive power in the transmission system, while minimizing the active power losses. The optimization problem is formulated as a LFP (linear fuzzy programing). The core of the problem lay on generation of 2m + 1 point estimates for solving PRPO, where n is the number of input stochastic variables. The proposed methodology is investigated using the IEEE-14 bus test system equipped with HVDC (high voltage direct current), UPFC (unified power flow controller) and DFIG (doubly fed induction generator) devices. The accuracy of the method is demonstrated in the case study. - Highlights: • This paper uses stochastic loads in optimization process. • AC–DC load flow is modified to use some advantages of DC part in optimization process. • UPFC and DFIG are simulated in a way that could be effective in optimization process. • Fuzzy set has been used as an uncertainty analysis tool in the optimization

  16. Modular Power Supply for Micro Resistance Welding

    Directory of Open Access Journals (Sweden)

    Bondarenko Oleksandr

    2017-07-01

    Full Text Available The study is devoted to the important issue of enhancing the circuitry and characteristics of power supplies for micro resistance welding machines. The aim of the research is to provide high quality input current and to increase the energy efficiency of the output pulse generator by means of improving the circuit topologies of the power supply main blocks. In study, the principle of constructing the power supply for micro resistance welding, which provides high values of output welding current and high accuracy of welding pulse formation, makes it possible to reduce energy losses, and provides high quality of consumed input current, is represented. The multiphase topology of the charger with power factor correction based on SEPIC converters is suggested as the most efficient for charging the supercapacitor storage module. The multicell topology of the supercapacitor energy storage with voltage equalizing is presented. The parameters of the converter cells are evaluated. The calculations of energy efficiency of the power supply’s input and output converters based on suggested topologies are carried out and verified in MATLAB Simulink. The power factor value greater than 99 % is derived.

  17. The reliability of nuclear power plant safety systems

    International Nuclear Information System (INIS)

    Susnik, J.

    1978-01-01

    A criterion was established concerning the protection that nuclear power plant (NPP) safety systems should afford. An estimate of the necessary or adequate reliability of the total complex of safety systems was derived. The acceptable unreliability of auxiliary safety systems is given, provided the reliability built into the specific NPP safety systems (ECCS, Containment) is to be fully utilized. A criterion for the acceptable unreliability of safety (sub)systems which occur in minimum cut sets having three or more components of the analysed fault tree was proposed. A set of input MTBF or MTTF values which fulfil all the set criteria and attain the appropriate overall reliability was derived. The sensitivity of results to input reliability data values was estimated. Numerical reliability evaluations were evaluated by the programs POTI, KOMBI and particularly URSULA, the last being based on Vesely's kinetic fault tree theory. (author)

  18. Development and validation of gui based input file generation code for relap

    International Nuclear Information System (INIS)

    Anwar, M.M.; Khan, A.A.; Chughati, I.R.; Chaudri, K.S.; Inyat, M.H.; Hayat, T.

    2009-01-01

    Reactor Excursion and Leak Analysis Program (RELAP) is a widely acceptable computer code for thermal hydraulics modeling of Nuclear Power Plants. It calculates thermal- hydraulic transients in water-cooled nuclear reactors by solving approximations to the one-dimensional, two-phase equations of hydraulics in an arbitrarily connected system of nodes. However, the preparation of input file and subsequent analysis of results in this code is a tedious task. The development of a Graphical User Interface (GUI) for preparation of the input file for RELAP-5 is done with the validation of GUI generated Input File. The GUI is developed in Microsoft Visual Studio using Visual C Sharp (C) as programming language. The Nodalization diagram is drawn graphically and the program contains various component forms along with the starting data form, which are launched for properties assignment to generate Input File Cards serving as GUI for the user. The GUI is provided with Open / Save function to store and recall the Nodalization diagram along with Components' properties. The GUI generated Input File is validated for several case studies and individual component cards are compared with the originally required format. The generated Input File of RELAP is found consistent with the requirement of RELAP. The GUI provided a useful platform for simulating complex hydrodynamic problems efficiently with RELAP. (author)

  19. Multilevel push pull power converter

    DEFF Research Database (Denmark)

    2007-01-01

    A power converter for converting an input voltage (Vin) into an output voltage (Vout), comprising a first supply potential and a second supply potential established by the input voltage, and at least one primary winding having two terminals, a center tap arranged between the two terminals and con...

  20. A Glitch-Free Novel DET-FF in 22 nm CMOS for Low-Power Application

    Directory of Open Access Journals (Sweden)

    Sumitra Singar

    2018-01-01

    Full Text Available Dual edge triggered (DET techniques are most liked choice for the researchers in the field of digital VLSI design because of its high-performance and low-power consumption standard. Dual edge triggered techniques give the similar throughput at half of the clock frequency as compared to the single edge triggered (SET techniques. Dual edge triggered techniques can reduce the 50% power consumption and increase the total system power savings. The low-power glitch-free novel dual edge triggered flip-flop (DET-FF design is proposed in this paper. Still now, existing DET-FF designs are constructed by using either C-element circuit or 1P-2N structure or 2P-1N structure, but the proposed novel design is designed by using the combination of C-element circuit and 2P-1N structure. In this design, if any glitch affects one of the structures, then it is nullified by the other structure. To control the input loading, the two circuits are merged to share the transistors connected to the input. In the proposed design, we have used an internal dual feedback structure. The proposed design reduces the delay and power consumption and increases the speed and efficiency of the system.

  1. FED, Geometry Input Generator for Program TRUMP

    International Nuclear Information System (INIS)

    Schauer, D.A.; Elrod, D.C.

    1996-01-01

    1 - Description of program or function: FED reduces the effort required to obtain the necessary geometric input for problems which are to be solved using the heat-transfer code, TRUMP (NESC 771). TRUMP calculates transient and steady-state temperature distributions in multidimensional systems. FED can properly zone any body of revolution in one, or three dimensions. 2 - Method of solution: The region of interest must first be divided into areas which may consist of a common material. The boundaries of these areas are the required FED input. Each area is subdivided into volume nodes, and the geometrical properties are calculated. Finally, FED connects the adjacent nodes to one another, using the proper surface area, interface distance, and, if specified, radiation form factor and interface conductance. 3 - Restrictions on the complexity of the problem: Rectangular bodies can only be approximated by using a very large radius of revolution compared to the total radial thickness and by considering only a small angular segment in the circumferential direction

  2. A novel symmetrical microwave power sensor based on GaAs monolithic microwave integrated circuit technology

    International Nuclear Information System (INIS)

    Wang, De-bo; Liao, Xiao-ping

    2009-01-01

    A novel symmetrical microwave power sensor based on GaAs monolithic microwave integrated circuit (MMIC) technology is presented in this paper. In this power sensor, the left section inputs the microwave power, while the right section inputs the dc power. Because of the symmetrical structure, this power sensor is created to provide more accurate microwave power measurement capability without mismatch uncertainty and restrain temperature drift. The loss model is built and the loss voltage is 0.8 mV at 20 GHz when the input power is 100 mW. This power sensor is designed and fabricated using GaAs MMIC technology. And it is measured in the frequency range up to 20 GHz with the input power in the −20 dBm to 19 dBm range. Over the 19 dBm dynamic range, the sensitivity can achieve about 0.2 mV mW −1 . The difference between the input powers in the two sections is below 0.1% for equal output voltages. For an amplitude modulation measurement, the carrier frequency is the main factor to influence the measurement results. In short, the key aspect of this power sensor is that the microwave power measurement can be replaced by a dc power measurement with precise wideband

  3. The Conditional Entropy Power Inequality for Bosonic Quantum Systems

    DEFF Research Database (Denmark)

    de Palma, Giacomo; Trevisan, Dario

    2018-01-01

    We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally...... independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically...... achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under...

  4. On and off controlled resonant dc-dc power converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter comprising an input side circuit comprising a positive and a negative input terminal for receipt of an input voltage or current and an output side circuit comprising positive and negative output terminals for supply of a converter...... output voltage and connection to a converter load. The resonant DC-DC power converter further comprises a rectification circuit connected between an output of a resonant network and the output side circuit. The resonant network is configured for alternatingly being charged from the input voltage...... or current and discharged through the rectification circuit by a first controllable switch arrangement in accordance with a first switch control signal. A second controllable switch arrangement of the resonant DC-DC power converter is configured to select a first impedance characteristic of the resonant...

  5. The Increase of Power Efficiency of Underground Coal Mining by the Forecasting of Electric Power Consumption

    Science.gov (United States)

    Efremenko, Vladimir; Belyaevsky, Roman; Skrebneva, Evgeniya

    2017-11-01

    In article the analysis of electric power consumption and problems of power saving on coal mines are considered. Nowadays the share of conditionally constant costs of electric power for providing safe working conditions underground on coal mines is big. Therefore, the power efficiency of underground coal mining depends on electric power expense of the main technological processes and size of conditionally constant costs. The important direction of increase of power efficiency of coal mining is forecasting of a power consumption and monitoring of electric power expense. One of the main approaches to reducing of electric power costs is increase in accuracy of the enterprise demand in the wholesale electric power market. It is offered to use artificial neural networks to forecasting of day-ahead power consumption with hourly breakdown. At the same time use of neural and indistinct (hybrid) systems on the principles of fuzzy logic, neural networks and genetic algorithms is more preferable. This model allows to do exact short-term forecasts at a small array of input data. A set of the input parameters characterizing mining-and-geological and technological features of the enterprise is offered.

  6. Development of the MARS input model for Kori nuclear units 1 transient analyzer

    International Nuclear Information System (INIS)

    Hwang, M.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Jeong, J. J.

    2004-11-01

    KAERI has been developing the 'NSSS transient analyzer' based on best-estimate codes for Kori Nuclear Units 1 plants. The MARS and RETRAN codes have been used as the best-estimate codes for the NSSS transient analyzer. Among these codes, the MARS code is adopted for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. So it is necessary to develop the MARS input model for Kori Nuclear Units 1 plants. This report includes the input model (hydrodynamic component and heat structure models) requirements and the calculation note for the MARS input data generation for Kori Nuclear Units 1 plant analyzer (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Kori Nuclear Units 1

  7. Analysis of input variables of an artificial neural network using bivariate correlation and canonical correlation

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Valter Magalhaes; Pereira, Iraci Martinez, E-mail: valter.costa@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The monitoring of variables and diagnosis of sensor fault in nuclear power plants or processes industries is very important because a previous diagnosis allows the correction of the fault and, like this, to prevent the production stopped, improving operator's security and it's not provoking economics losses. The objective of this work is to build a set, using bivariate correlation and canonical correlation, which will be the set of input variables of an artificial neural network to monitor the greater number of variables. This methodology was applied to the IEA-R1 Research Reactor at IPEN. Initially, for the input set of neural network we selected the variables: nuclear power, primary circuit flow rate, control/safety rod position and difference in pressure in the core of the reactor, because almost whole of monitoring variables have relation with the variables early described or its effect can be result of the interaction of two or more. The nuclear power is related to the increasing and decreasing of temperatures as well as the amount radiation due fission of the uranium; the rods are controls of power and influence in the amount of radiation and increasing and decreasing of temperatures; the primary circuit flow rate has the function of energy transport by removing the nucleus heat. An artificial neural network was trained and the results were satisfactory since the IEA-R1 Data Acquisition System reactor monitors 64 variables and, with a set of 9 input variables resulting from the correlation analysis, it was possible to monitor 51 variables. (author)

  8. Analysis of input variables of an artificial neural network using bivariate correlation and canonical correlation

    International Nuclear Information System (INIS)

    Costa, Valter Magalhaes; Pereira, Iraci Martinez

    2011-01-01

    The monitoring of variables and diagnosis of sensor fault in nuclear power plants or processes industries is very important because a previous diagnosis allows the correction of the fault and, like this, to prevent the production stopped, improving operator's security and it's not provoking economics losses. The objective of this work is to build a set, using bivariate correlation and canonical correlation, which will be the set of input variables of an artificial neural network to monitor the greater number of variables. This methodology was applied to the IEA-R1 Research Reactor at IPEN. Initially, for the input set of neural network we selected the variables: nuclear power, primary circuit flow rate, control/safety rod position and difference in pressure in the core of the reactor, because almost whole of monitoring variables have relation with the variables early described or its effect can be result of the interaction of two or more. The nuclear power is related to the increasing and decreasing of temperatures as well as the amount radiation due fission of the uranium; the rods are controls of power and influence in the amount of radiation and increasing and decreasing of temperatures; the primary circuit flow rate has the function of energy transport by removing the nucleus heat. An artificial neural network was trained and the results were satisfactory since the IEA-R1 Data Acquisition System reactor monitors 64 variables and, with a set of 9 input variables resulting from the correlation analysis, it was possible to monitor 51 variables. (author)

  9. Design and Modeling of RF Power Amplifiers with Radial Basis Function Artificial Neural Networks

    OpenAIRE

    Ali Reza Zirak; Sobhan Roshani

    2016-01-01

    A radial basis function (RBF) artificial neural network model for a designed high efficiency radio frequency class-F power amplifier (PA) is presented in this paper. The presented amplifier is designed at 1.8 GHz operating frequency with 12 dB of gain and 36 dBm of 1dB output compression point. The obtained power added efficiency (PAE) for the presented PA is 76% under 26 dBm input power. The proposed RBF model uses input and DC power of the PA as inputs variables and considers output power a...

  10. Near-Field Acoustic Power Level Analysis of F31/A31 Open Rotor Model at Simulated Cruise Conditions, Technical Report II

    Science.gov (United States)

    Sree, Dave

    2015-01-01

    Near-field acoustic power level analysis of F31A31 open rotor model has been performed to determine its noise characteristics at simulated cruise flight conditions. The non-proprietary parts of the test data obtained from experiments in the 8x6 supersonic wind tunnel were provided by NASA-Glenn Research Center. The tone and broadband components of total noise have been separated from raw test data by using a new data analysis tool. Results in terms of sound pressure levels, acoustic power levels, and their variations with rotor speed, freestream Mach number, and input shaft power, with different blade-pitch setting angles at simulated cruise flight conditions, are presented and discussed. Empirical equations relating models acoustic power level and input shaft power have been developed. The near-field acoustic efficiency of the model at simulated cruise conditions is also determined. It is hoped that the results presented in this work will serve as a database for comparison and improvement of other open rotor blade designs and also for validating open rotor noise prediction codes.

  11. Anterior Cingulate Cortex Input to the Claustrum Is Required for Top-Down Action Control

    Directory of Open Access Journals (Sweden)

    Michael G. White

    2018-01-01

    Full Text Available Summary: Cognitive abilities, such as volitional attention, operate under top-down, executive frontal cortical control of hierarchically lower structures. The circuit mechanisms underlying this process are unresolved. The claustrum possesses interconnectivity with many cortical areas and, thus, is hypothesized to orchestrate the cortical mantle for top-down control. Whether the claustrum receives top-down input and how this input may be processed by the claustrum have yet to be formally tested, however. We reveal that a rich anterior cingulate cortex (ACC input to the claustrum encodes a preparatory top-down information signal on a five-choice response assay that is necessary for optimal task performance. We further show that ACC input monosynaptically targets claustrum inhibitory interneurons and spiny glutamatergic projection neurons, the latter of which amplify ACC input in a manner that is powerfully constrained by claustrum inhibitory microcircuitry. These results demonstrate ACC input to the claustrum is critical for top-down control guiding action. : White et al. show that anterior cingulate cortex (ACC input to the claustrum encodes a top-down preparatory signal on a 5-choice response assay that is critical for task performance. Claustrum microcircuitry amplifies top-down ACC input in a frequency-dependent manner for eventual propagation to the cortex for cognitive control of action. Keywords: 5CSRTT, optogenetics, fiber photometry, microcircuit, attention, bottom-up, sensory cortices, motor cortices

  12. An energy harvesting system for passively generating power from human activities

    International Nuclear Information System (INIS)

    Rao, Yuan; Cheng, Shuo; Arnold, David P

    2013-01-01

    This paper presents a complete, self-contained energy harvesting system composed of a magnetic energy harvester, an input-powered interface circuit and a rechargeable battery. The system converts motion from daily human activities such as walking, jogging, and cycling into usable electrical energy. By using an input-powered interface circuit, the system requires no external power supplies and features zero standby power when the input motion is too small for successful energy reclamation. When attached to a person's ankle during walking, the 100 cm 3 system prototype is shown to charge a 3.7 V, 65 mAh lithium-ion polymer battery at an average power of 300 µW. The design and testing of the system under other operating conditions are presented herein. (paper)

  13. Measuring sustainability by Energy Efficiency Analysis for Korean Power Companies: A Sequential Slacks-Based Efficiency Measure

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2014-03-01

    Full Text Available Improving energy efficiency has been widely regarded as one of the most cost-effective ways to improve sustainability and mitigate climate change. This paper presents a sequential slack-based efficiency measure (SSBM application to model total-factor energy efficiency with undesirable outputs. This approach simultaneously takes into account the sequential environmental technology, total input slacks, and undesirable outputs for energy efficiency analysis. We conduct an empirical analysis of energy efficiency incorporating greenhouse gas emissions of Korean power companies during 2007–2011. The results indicate that most of the power companies are not performing at high energy efficiency. Sequential technology has a significant effect on the energy efficiency measurements. Some policy suggestions based on the empirical results are also presented.

  14. Statistical analysis of two-degree of freedom systems to time history inputs with different durations

    International Nuclear Information System (INIS)

    Lin, C.W.; Li, D.L.

    1987-01-01

    A statistical study is conducted to determine the effect of input time history duration on the response of systems supported by the structure. The model used in the study is a one-degree-of-freedom system mass supported by another one degree of freedom structure mass. The input used is generated from a Monte-Carlo simulation procedure with a prescribed power spectrum density such that the input response spectrum matched the Reg. Guide 1.60 response spectrum. The models were analyzed for different combinations of mass ratios and frequency ratios (ratios of the system versus the supporting structure). Time history inputs used vary from 5 to 20 seconds. Only the 20 second time history matched the Reg. Guide 1.60 response spectrum. Time history inputs shorter than 20 seconds were simply truncated at the tail end. The results of the study indicate that it is necessary to increase the response magnitude by about 20% if a 5-second time history is to be used. For a 10-second input, an increase of 10% will suffice. Whereas for a 15-second input, no adjustment is necessary. (orig./HP)

  15. Load-Dependent Increases in Delay-Period Alpha-Band Power Track the Gating of Task-Irrelevant Inputs to Working Memory

    Directory of Open Access Journals (Sweden)

    Andrew J. Heinz

    2017-05-01

    Full Text Available Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band power (ABP during the delay period of verbal and visual working memory (VWM tasks. There have been various proposals regarding the functional significance of such increases, including the inhibition of task-irrelevant cortical areas as well as the active retention of information in VWM. The present study examines the role of delay-period ABP in mediating the effects of interference arising from on-going visual processing during a concurrent VWM task. Specifically, we reasoned that, if set-size dependent increases in ABP represent the gating out of on-going task-irrelevant visual inputs, they should be predictive with respect to some modulation in visual evoked potentials resulting from a task-irrelevant delay period probe stimulus. In order to investigate this possibility, we recorded the electroencephalogram while subjects performed a change detection task requiring the retention of two or four novel shapes. On a portion of trials, a novel, task-irrelevant bilateral checkerboard probe was presented mid-way through the delay. Analyses focused on examining correlations between set-size dependent increases in ABP and changes in the magnitude of the P1, N1 and P3a components of the probe-evoked response and how such increases might be related to behavior. Results revealed that increased delay-period ABP was associated with changes in the amplitude of the N1 and P3a event-related potential (ERP components, and with load-dependent changes in capacity when the probe was presented during the delay. We conclude that load-dependent increases in ABP likely play a role in supporting short-term retention by gating task-irrelevant sensory inputs and suppressing potential sources of disruptive interference.

  16. Eddy current and total power loss separation in the iron-phosphate-polyepoxy soft magnetic composites

    International Nuclear Information System (INIS)

    Taghvaei, A.H.; Shokrollahi, H.; Janghorban, K.; Abiri, H.

    2009-01-01

    This work investigates the magnetic properties of iron-phosphate-polyepoxy soft magnetic composite materials. FTIR spectra, EDX analysis, distribution maps, X-ray diffraction pattern and density measurements show that the particles surface layer contains a thin layer of nanocrystalline/amorphous phosphate with high coverage of powders surface. In this paper, a formula for calculating the eddy current loss and total loss components by loss separation method is presented and finally the different parts of power losses are calculated. The results show that, the contribution of eddy current in the bulk material for single coating layer (k b = 0.18) is higher in comparison with double coating layer (k b = 0.09). Moreover, iron-phosphate-polyepoxy composites (P = 0.000004f 2 ) have lower power loss in comparison with iron-phosphate composites (P = 0.00002f 2 ).

  17. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1981-10-01

    The net energy balance for a tokamak fusion power plant was determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the net energy balance of the fusion power plant turns out to be more advantageous than that of an LWR, HTR or coal-fired power plant and nearly in the same range as FBR power plants. (orig.)

  18. A Practical pedestrian approach to parsimonious regression with inaccurate inputs

    Directory of Open Access Journals (Sweden)

    Seppo Karrila

    2014-04-01

    Full Text Available A measurement result often dictates an interval containing the correct value. Interval data is also created by roundoff, truncation, and binning. We focus on such common interval uncertainty in data. Inaccuracy in model inputs is typically ignored on model fitting. We provide a practical approach for regression with inaccurate data: the mathematics is easy, and the linear programming formulations simple to use even in a spreadsheet. This self-contained elementary presentation introduces interval linear systems and requires only basic knowledge of algebra. Feature selection is automatic; but can be controlled to find only a few most relevant inputs; and joint feature selection is enabled for multiple modeled outputs. With more features than cases, a novel connection to compressed sensing emerges: robustness against interval errors-in-variables implies model parsimony, and the input inaccuracies determine the regularization term. A small numerical example highlights counterintuitive results and a dramatic difference to total least squares.

  19. Effect of heat input on dilution and heat affected zone in submerged ...

    Indian Academy of Sciences (India)

    Proper management of heat input in weld- ing is important .... total nugget area, heat transfer boundary length, and nugget parameter. 3. ... Predominant parameters that had greater influence on welding quality were identified as wire feed rate ...

  20. Power system damping - Structural aspects of controlling active power

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, O.

    1997-04-01

    Environmental and economical aspects make it difficult to build new power lines and to reinforce existing ones. The continued growth in demand for electric power must therefore to a great extent be met by increased loading of available lines. A consequence is that power system damping is reduced, leading to a risk of poorly damped power oscillations between the generators. This thesis proposes the use of controlled active loads to increase damping of such electro-mechanical oscillations. The focus is on structural aspects of controller interaction and of sensor and actuator placement. On-off control based on machine frequency in a single machine infinite bus system is analysed using energy function analysis and phase plane plots. An on-off controller with estimated machine frequency as input has been implemented. At a field test it damped oscillations of a 0.9 MW hydro power generator by controlling a 20kW load. The linear analysis uses two power system models with three and twenty-three machines respectively. Each damper has active power as output and local bus frequency or machine frequency as input. The power system simulator EUROSTAG is used both for generation of the linearized models and for time simulations. Measures of active power mode controllability and phase angle mode observability are obtained from the eigenvectors of the differential-algebraic models. The geographical variation in the network of these quantities is illustrated using the resemblance to bending modes of flexible mechanical structures. Eigenvalue sensitivities are used to determine suitable damper locations. A spring-mass equivalent to an inter-area mode provides analytical expressions, that together with the concept of impedance matching explain the structural behaviour of the power systems. For large gains this is investigated using root locus plots. 64 refs, 99 figs, 20 tabs

  1. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1983-01-01

    The net energy balance for a tokamak fusion power plant of present day design is determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the energy expenditures of the fusion power plant turn out to be lower than that of an LWR, HTR, or coal-fired power plant of equal net electric power output and nearly in the same range as FBR power plants. (orig.)

  2. Global warming and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  3. Economic impact associated with the decommissioning process of Vandellos I Nuclear Power Plant; Informe final. Impacto economico del desmantelamiento de la central nuclear Vandellos I

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Silva, M.

    2005-07-01

    This economic study examines the economic impact associated with the decommissioning process of the Vandellos I Nuclear Power Plant, measured in terms of the global income that generated the ending of the Nuclear Power Plant activity, on the territory. To this end, we will take into account the total investment that has been necessary to complete the process of decommissioning. The economic impact is calculated using the Input- Output methodology. Briefly, the Input-Output model defines a group of accounting relationships that reflect the links taking place within the production system. The Input-Output model is based on the assumption that given an increase (decrease) in the final demand of one sector, this sector should produce more (less) to satisfy this new demand. At the same time, this will lead to demand more (less) intermediate consumption goods from the remainder sectors of the economy. Then, these sectors should produce more (less) and use more (less) intermediate inputs, and so on. Therefore, an increase (decrease) in the final demand of one sector multiplies the effect throughout the economy, following the interdependency relationships that exist among the productive activities. We will start by collecting an exhaustive economic information. This information covers the whole decommissioning process and the whole economic and productive activity of the province of Tarragona. Next, this information is used with the objective of building an Input-Output table of the province that will serve as a base to establish the global economic impact of Vandellos I. The incomes and employment generation has been evaluated in the province of Tarragona that, following the main assumptions, correspond to the global effects of the decommissioning. In addition, we have evaluated the income and employment generation within the region where the nuclear power plant is located. The total income impacts show a high multiplier effect due to the investment carried out during the

  4. On the redistribution of existing inputs using the spherical frontier dea model

    Directory of Open Access Journals (Sweden)

    José Virgilio Guedes de Avellar

    2010-04-01

    Full Text Available The Spherical Frontier DEA Model (SFM (Avellar et al., 2007 was developed to be used when one wants to fairly distribute a new and fixed input to a group of Decision Making Units (DMU's. SFM's basic idea is to distribute this new and fixed input in such a way that every DMU will be placed on an efficiency frontier with a spherical shape. We use SFM to analyze the problems that appear when one wants to redistribute an already existing input to a group of DMU's such that the total sum of this input will remain constant. We also analyze the case in which this total sum may vary.O Modelo de Fronteira Esférica (MFE (Avellar et al., 2007 foi desenvolvido para ser usado quando se deseja distribuir de maneira justa um novo insumo a um conjunto de unidades tomadoras de decisão (DMU's, da sigla em inglês, Decision Making Units. A ideia básica do MFE é a de distribuir esse novo insumo de maneira que todas as DMU's sejam colocadas numa fronteira de eficiência com um formato esférico. Neste artigo, usamos MFE para analisar o problema que surge quando se deseja redistribuir um insumo já existente para um grupo de DMU's de tal forma que a soma desse insumo para todas as DMU's se mantenha constante. Também analisamos o caso em que essa soma possa variar.

  5. CBM First-level Event Selector Input Interface Demonstrator

    Science.gov (United States)

    Hutter, Dirk; de Cuveland, Jan; Lindenstruth, Volker

    2017-10-01

    CBM is a heavy-ion experiment at the future FAIR facility in Darmstadt, Germany. Featuring self-triggered front-end electronics and free-streaming read-out, event selection will exclusively be done by the First Level Event Selector (FLES). Designed as an HPC cluster with several hundred nodes its task is an online analysis and selection of the physics data at a total input data rate exceeding 1 TByte/s. To allow efficient event selection, the FLES performs timeslice building, which combines the data from all given input links to self-contained, potentially overlapping processing intervals and distributes them to compute nodes. Partitioning the input data streams into specialized containers allows performing this task very efficiently. The FLES Input Interface defines the linkage between the FEE and the FLES data transport framework. A custom FPGA PCIe board, the FLES Interface Board (FLIB), is used to receive data via optical links and transfer them via DMA to the host’s memory. The current prototype of the FLIB features a Kintex-7 FPGA and provides up to eight 10 GBit/s optical links. A custom FPGA design has been developed for this board. DMA transfers and data structures are optimized for subsequent timeslice building. Index tables generated by the FPGA enable fast random access to the written data containers. In addition the DMA target buffers can directly serve as InfiniBand RDMA source buffers without copying the data. The usage of POSIX shared memory for these buffers allows data access from multiple processes. An accompanying HDL module has been developed to integrate the FLES link into the front-end FPGA designs. It implements the front-end logic interface as well as the link protocol. Prototypes of all Input Interface components have been implemented and integrated into the FLES test framework. This allows the implementation and evaluation of the foreseen CBM read-out chain.

  6. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-04-01

    The actualized version (April 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear facilities, and radiation protection.

  7. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. A. Wasiolek

    2003-01-01

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air inhaled by a receptor. Concentrations in air to which the

  8. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2006-06-05

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This

  9. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2006-01-01

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the

  10. Overview paper on nuclear power

    International Nuclear Information System (INIS)

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power

  11. Input and output budgets of radiocesium concerning the forest floor in the mountain forest of Fukushima released from the TEPCO's Fukushima Dai-ichi nuclear power plant accident

    International Nuclear Information System (INIS)

    Niizato, Tadafumi; Abe, Hironobu; Mitachi, Katsuaki; Sasaki, Yoshito; Ishii, Yasuo; Watanabe, Takayoshi

    2016-01-01

    Estimations of radiocesium input and output concerning the forest floor within a mountain forest region have been conducted in the north and central part of the Abukuma Mountains of Fukushima, northeast Japan, after a 2–3 year period following the TEPCO Fukushima Dai-ichi nuclear power plant accident. The radiocesium input and output associated with surface washoff, throughfall, stemflow, and litterfall processes at experimental plots installed on the forest floor of evergreen Japanese cedars and deciduous Konara oaks have been monitored. Despite the high output potential in the mountainous forest of Fukushima, the results at both monitoring locations show the radiocesium input to be 4–50 times higher than the output during the summer monsoon in Fukushima. These results indicate that the radiocesium tends to be preserved in the forest ecosystem due to extremely low output ratios (0.05%–0.19%). Thus, the associated fluxes throughout the circulation process are key issues for the projecting the environmental fate of the radiocesium levels, along with the subsequent reconstruction of life emphasized within the setting. - Highlights: • Input and output budgets of radiocesium in the mountainous forest of Fukushima were investigated in 2013 and 2014. • "1"3"7Cs outputs were 4–50 times higher than the "1"3"7Cs outputs during the monsoons. • The proportion of "1"3"7Cs output to radiocesium inventories was in the range of 0.05%–0.19% during the monsoons. • Radiocesium tends to be preserved in the forest ecosystem due to extremely low output ratios. • The forest floor seems to be a sink of radiocesium contamination than a source for the other ecosystems.

  12. Pengaruh Sektor Pariwisata Terhadap Perekonomian dan Keruangan Kota Bukittinggi (Pendekatan Analisis Input Output

    Directory of Open Access Journals (Sweden)

    Desi Arianti

    2014-12-01

    Full Text Available Bukittinggi city is one of the city located in the province of West Sumatra .  Although it does not have the potential of natural resources that can be exploited , Bukittinggi has another potential, which is a beautiful natural conditions, the air is cool, has a historic heritage places, and is located in a strategic position potentially make this city as tourists visiting the area.  Because of the potential of the tourism sector serve as a leading sector in the city of Bukittinggi, which is expected to be the main driver of the city economy.  This research was conducted with input-output analysis approach , to examine how the influence of the tourism sector and linkages with other sectors of the economy of the town of Bukittinggi.  Moreover it will be seen also how the spatial effect of the tourism sector on the pattern and structure of urban space Bukittinggi. The influence of the tourism sector to the economy of Bukittinggi shows the role of the tourism sector to the total demand is 40.86% when grouped into the business field of agriculture and mining sector, industrial sector, tourism sector and the service sector. Linkages with other sectors of the tourism sector seen from the spread of the power index and the degree of sensitivity, all sectors related to tourism activities have spread of power index > 1.  But the degree of sensitivity index > 1 only occurs in large & retail trade sector and the transport, while the hotel secto , restaurants and entertainment and recreation has index < 1.  Multiplier effect of all relevant sectors of tourism activities have a relatively large effect on both the output multiplier effects, household income and employment.  Application of financial input scenarios, showing the influence of the tourism sector on the economy will be larger Bukittinggi if allocated greater financial inputs to the sectors of tourism, both in the form of government spending and investment spending.  The existence of

  13. Power characteristics of a Stirling radioisotope power system over the life of the mission

    International Nuclear Information System (INIS)

    Schreiber, Jeffrey G.

    2001-01-01

    Stirling radioisotope power systems are presently being considered for use on long life deep space missions. Some applications that Stirling technology has been developed for in the past could control the heat input to the engine, as was the case in the Automotive Stirling Engine (ASE) program. The combustion system could change the rate at which fuel was burned in response to the Stirling heater head temperature and the desired set point. In other cases, heat input was not controlled. An example is the solar terrestrial Advanced Stirling Conversion System (ASCS), where the heat input was a function of solar intensity and the performance of the solar concentrator and receiver. The control system for this application would measure the Stirling heater head temperature and throttle the Stirling convertor to once again, maintain the Stirling heater head temperature at the desired set point. In both of these examples, the design was driven to be cost effective. In the Stirling radioisotope power system, the heat generated by the decay in plutonium is reduced with the half-life of the isotope, and the control system must be as simple as possible and still meet the mission requirements. The most simple control system would be one that allows the Stirling power convertor to autonomously change its operating conditions in direct response to the reduced heat input, with no intervention from the control system, merely seeking a new equilibrium point as the isotope decays. This paper presents an analysis of power system performance with this simple control system, which has no feedback and does not actively alter the operating point as the isotope decays

  14. Online short-term solar power forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2009-01-01

    This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 hours. The data used is fifteen......-minute observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is found using statistical smoothing techniques....... Then forecasts of the normalized solar power are calculated using adaptive linear time series models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical weather predictions (NWPs) as input. The results indicate that for forecasts up to two hours...

  15. Input and execution

    International Nuclear Information System (INIS)

    Carr, S.; Lane, G.; Rowling, G.

    1986-11-01

    This document describes the input procedures, input data files and operating instructions for the SYVAC A/C 1.03 computer program. SYVAC A/C 1.03 simulates the groundwater mediated movement of radionuclides from underground facilities for the disposal of low and intermediate level wastes to the accessible environment, and provides an estimate of the subsequent radiological risk to man. (author)

  16. Studies on total polyphenols and reducing power of aqueous extracts from selected lamiaceae species

    Directory of Open Access Journals (Sweden)

    Maria Cioroi

    2010-08-01

    Full Text Available Certain phytochemicals in species are attracting increased attention because of a wide range of biological activities especially the possible cancer preventive properties. Polyphenols, the naturalantioxidants are present in plant extracts and they play a key role in antioxidative defence mechanisms in biological systems and they act as free radicals scavenging agents. Polyphenols might thereforeinhibit development of coronary heart disease and cancers. Basil, oregano and sage are highly fragrant plants whose leaves are used as a seasoning herb for many different types of foods. Aqueous extractswere prepared from basil (Ocimum basilicum L., oregano (Origanum vulgare L. and sage (Salvia officinalis L.. To check the phenols presence, the UV-VIS spectrum was made. The amount of polyphenolic compounds from selected Lamiaceae species was determined by spectrophotometry method using the Folin - Ciocalteau reagent and gallic acid as standard. The range of polyphenols total was between 516,352 mg/100g dried species and 859,617 mg/100g dried species.Reducing power has been established by measuring the redox potential of aqueous extracts. Antioxidant activity was directly correlated with the total amount of polyphenols in the species extracts.The free reducing sugars in aqueous extracts from species were analyzed and correlated to the total content of polyphenols.

  17. Power cycle heat balance software for personal computer (PC)2TM

    International Nuclear Information System (INIS)

    Bockh, P. von; Rodriguez, H.

    1996-01-01

    This paper describes the PC-based power cycle balance of plant software (PC)trademark (Power Cycle on Personal Computer). It is designed to assist nuclear, fossil, and industrial power plants so that steam cycles can be simulated, analyzed and optimized. First, the cycle model is developed on the screen. The elements of the power cycle are taken from a tool box containing all components of a modern power cycle. The elements are connected by using a mouse. The next step is the input of the design values of the components or data taken from performance tests. This entire input sequence is guided by the program. Based on the input data, the physical behavior of each component is simulated according to established physical rules. Part load operation or other off-design conditions can be calculated. The program is designed for use by power plant engineers and power engineering firms to optimize new power cycles, perform problem-solving analyses, optimize component retrofit, and train power plant engineers and operators. It also can be used by universities to educate engineering students

  18. Evaluation of Frequency and Restoration time for Loss of Offsite Power events based on domestic operation experience

    International Nuclear Information System (INIS)

    Park, Jin-Hee; Han, Sang-Hoon; Lee, Ho Joong

    2006-01-01

    It is recognized that the availability of AC power to nuclear power plants is essential for safe operation and shutdown and accident recovery of commercial nuclear power plants (NPPs). Unavailability of AC power can be a important adverse impact on a plant's ability to recover accident sequences and maintain safe shutdown. The probabilistic safety assessment (PSA or PRA) performed for Korea NPPs also indicated that a loss of offsite power (LOOP) event and a station blackout (SBO) event can be a important contributors to total risk at nuclear power plant, contributing from 30% to 70% of the total risk at some NPPs in Korea. But, up to now, the LOOP and subsequent restoration time are important inputs to plant probabilistic risk assessment have relied upon foreign data. Therefore, in this paper, the actual LOOP events that have occurred from 1978 to 2004 at commercial nuclear power plants in Korea are collected. A statistical analysis for LOOP frequency and restoration time are performed to apply NPPs's specific and realistic risk model in Korea. Additionally, an engineering analysis is also performed to obtain the insights about the LOOP events

  19. Use of Three-Level Power Converters in Wind-Driven Permanent-Magnet Synchronous Generators with Unbalanced Loads

    Directory of Open Access Journals (Sweden)

    Ming-Hung Chen

    2015-06-01

    Full Text Available This paper describes the design and implementation of three-level power converters for wind-driven permanent-magnet synchronous generators with unbalanced loads. To increase voltage stress and reduce current harmonics in the electrical power generated by a wind generator, a three-phase, three-level rectifier is used. Because a synchronous rotating frame is used on the AC-input side, the use of a neutral-point-clamped controller is proposed to increase the power factor to unity and reduce current harmonics. Furthermore, a novel six-leg inverter is proposed for transferring energy from the DC voltage to a three-phase, four-wire AC source with a constant voltage and a constant frequency. The power converters also contain output transformers and filters for power buffering and filtering, respectively. All three output phase voltages are fed back to control the inverter output during load variations. A digital signal processor is used as the core control device for implementing a 1.5 kV, 75 kW drive system. Experimental data show that the power factor is successfully increased to unity and the total current harmonic distortion is 3.2% on the AC-input side. The entire system can attain an efficiency of 91%, and the voltage error between the upper and lower capacitors is approximately zero. Experimental results that confirm the high performance of the proposed system are presented.

  20. Microstructural characterization of the HAZ of the AISI 439 with different heat input

    International Nuclear Information System (INIS)

    Silva, Lorena de Azevedo; Lima, Luciana Iglesias Lourenco; Campos, Wagner Reis da Costa

    2007-01-01

    Ferritic stainless steels have certain useful corrosion properties, such as resistance to chloride, corrosion in oxidizing aqueous media, oxidation at high temperatures, etc. It is suitable for the aqueous chloride environments, heat transfer applications, condenser tubing for fresh water power plants, industrial buildings, and recently, the ferritic stainless steels have also received attention owing to its superior performance under irradiation. Sometimes in these applications the use of welding processes is necessary. The object of the present work was to research the relationship between microstructure and microhardness in the heat affect zone (HAZ) of the AISI 439, for two different heat input. The base metal shows a random distribution of the precipitates. The HAZ size, grain size, and the amount of precipitates had increased to the bigger heat input weld. The precipitation occurred in bigger amount in the sample with greater heat input, had increased the microhardness. It was observed that the grain size is related with heat input, and that the microhardness is more strong related with other feature, as carbides and nitrites precipitation. (author)

  1. CO2 emissions embodied in China-US trade: Input-output analysis based on the emergy/dollar ratio

    International Nuclear Information System (INIS)

    Du Huibin; Guo Jianghong; Mao Guozhu; Smith, Alexander M.; Wang Xuxu; Wang, Yuan

    2011-01-01

    To gain insight into changes in CO 2 emissions embodied in China-US trade, an input-output analysis based on the emergy/dollar ratio (EDR) is used to estimate embodied CO 2 emissions; a structural decomposition analysis (SDA) is employed to analyze the driving factors for changes in CO 2 emissions embodied in China's exports to the US during 2002-2007. The results of the input-output analysis show that net export of CO 2 emissions increased quickly from 2002 to 2005 but decreased from 2005 to 2007. These trends are due to a reduction in total CO 2 emission intensity, a decrease in the exchange rate, and small imports of embodied CO 2 emissions. The results of the SDA demonstrate that total export volume was the largest driving factor for the increase in embodied CO 2 emissions during 2002-2007, followed by intermediate input structure. Direct CO 2 emissions intensity had a negative effect on changes in embodied CO 2 emissions. The results suggest that China should establish a framework for allocating emission responsibilities, enhance energy efficiency, and improve intermediate input structure. - Highlights: → An input-output analysis based on the emergy/dollar ratio estimated embodied CO 2 . → A structural decomposition analysis analyzed the driving factors. → Net export of CO 2 increased from 2002 to 2005 but decreased from 2005 to 2007. → Total export volume was the largest driving factor. → A framework for allocating emission responsibilities.

  2. A single-phase PWM controlled AC to DC converter based on control of unity displacement power factor

    OpenAIRE

    Funabiki, Shigeyuki

    1990-01-01

    A modified pulse-width modulation (PWM) technique that improves the displacement power factor and the input power factor of a single-phase AC to DC converter is discussed. The modified converter is shown to have a high input power factor and allows the of DC voltage from zero to more than the maximum value of the source voltage. The displacement power factor is unity, and the input power factor is almost unity in the wide range of current command

  3. Duty-based control of maximum power point regulation for power converter in solar fan system with battery storage

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, J.-L.; Hong, P.-J. [National Kaohsiung First Univ. of Science and Technology, Nantze, Kaohsiung, Taiwan (China). Dept. of Mechanical and Automation Engineering; Chao, K.-L. [National Kaohsiung Univ. of Applied Sciences, Nantze, Kaohsiung, Taiwan (China). Dept. of Electrical Engineering; Wang, T.-Y. [Chang-Gung Univ., Kwei-Shan, Tao-Yuan, Taiwan (China). Dept. of Electrical Engineering

    2007-07-01

    Solar energy is a popular renewable energy source for the future because it does not produce any pollution. In addition, it is unlimited and a clean source of energy. This paper discussed a photovoltaic solar fan system that could be used inside the house with the potential of cooling the indoor temperature. The solar cell module is located at the eaves of the house and could block the sunlight directly into the house, and convert solar power into electric power through the battery. The paper described software implementation and hardware circuit design in detail. The paper also illustrated a different algorithm to calculate the maximum power point regulation. The conventional algorithm calculates the solar cell module output power by multiplying the input voltage and input current for the solar cell module directly. By changing the input voltage variable into duty variable, the voltage sensor is not required under the proposed scheme. Only the duty and current variables are needed to calculate the maximum power. The microchip dsPIC microcontroller was used to implement the algorithm. Different DC link levels were verified and implemented for comparison. It was concluded that the characteristics of the solar cell module could be measured automatically, and the maximum power point could be guaranteed by the proposed algorithm. 9 refs., 6 tabs., 14 figs.

  4. Artificial Neural Network Application for Power Transfer Capability and Voltage Calculations in Multi-Area Power System

    Directory of Open Access Journals (Sweden)

    Palukuru NAGENDRA

    2010-12-01

    Full Text Available In this study, the use of artificial neural network (ANN based model, multi-layer perceptron (MLP network, to compute the transfer capabilities in a multi-area power system was explored. The input for the ANN is load status and the outputs are the transfer capability among the system areas, voltage magnitudes and voltage angles at concerned buses of the areas under consideration. The repeated power flow (RPF method is used in this paper for calculating the power transfer capability, voltage magnitudes and voltage angles necessary for the generation of input-output patterns for training the proposed MLP neural network. Preliminary investigations on a three area 30-bus system reveal that the proposed model is computationally faster than the conventional method.

  5. Interleaved Boost-Half-Bridge Dual–Input DC-DC Converter with a PWM plus Phase-Shift Control for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    This paper presents an isolated dual-input DC-DC converter with a PWM plus phase-shift control for fuel cell hybrid energy systems. The power switches are controlled by phase shifted PWM signals with a variable duty cycle, and thus the two input voltages as well as the output voltage can...

  6. Quantitative biomonitoring of nitrogen deposition with TONIS (Total N Input Biomonitoring System)

    International Nuclear Information System (INIS)

    Mohr, Karsten; Suda, Jerzy

    2017-01-01

    Monitoring of air pollutants is an important instrument to detect threats and to observe temporal trends of emissions. Determining the spatial distribution of oxidized and reduced N species via modelling requires sufficient knowledge about innumerous small sources from traffic, settlements and agriculture. Empirical studies are required to validate the model data but measurements of the total N deposition (e.g. micrometeorological measurements) are very expensive. Against this background, the TONIS, a new suitable technique which combines a biomonitoring with plants and technical measurements was developed. During 6 exposures between 2012 and 2016 at different polluted sites in Northwest Germany, TONIS accumulated between 17 and 25 kg N ha-1 yr −1 t. The results are feasible compared to simultaneously measured NH 3 and NO 2 concentration and bulk N deposition. At one site within a peat bog the accumulated N in TONIS was found to be in the range of total N deposition derived from a micrometeorological approach. - Highlights: • A new suitable biomonitoring technique is presented to determine N deposition rates relating to low-growing vegetation on nutrient-poor sites. • TONIS combines the advantages of biomonitoring and technical measurements. • The results of 6 exposures between 2012 and 2016 are feasible compared to technical measurements and modelled data.

  7. A Novel Dual-input Isolated Current-Fed DC-DC Converter for Renewable Energy System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2010-01-01

    In this paper, a novel isolated current-fed DC-DC converter (boost-type) with two input power sources based on multi-transformer structure, which is suitable for fuel cells and super-capacitors hybrid energy system, is proposed and designed. With particular transformer windings connection strategy...

  8. Linguistic control of a nuclear power plant

    International Nuclear Information System (INIS)

    Feeley, J.J.; Johnson, J.C.

    1987-01-01

    A multivariable linguistic controller based on fuzzy set theory is discussed and its application to a pressurized water nuclear power plant control is illustrated by computer simulation. The nonlinear power plant simulation model has nine states, two control inputs, one disturbance input, and two outputs. Although relatively simple, the model captures the essential coupled nonlinear plant dynamics and is convenient to use for control system studies. The use of an adaptive version of the controller is also demonstrated by computer simulation

  9. Total diffusing power of perturbed lattices and dissymmetry of reflections. Case of groups of defects

    International Nuclear Information System (INIS)

    Tournarie, Max

    1959-01-01

    The total diffusing power for a crystallite of any form containing a centrosymmetric defect has been established. The antisymmetrical part of the deformation potential only contributes very slightly to the primary dissymmetry. We then go on to study the case of a group of defects of the same type. The calculation converges sufficiently to describe the thermal agitation of an infinite crystal. Reprint of a paper published in 'Comptes Rendus des Seances de l'Academie des Sciences', t. 248, p. 2103-2105, sitting of April 6, 1959 [fr

  10. Development of Input/Output System for the Reactor Transient Analysis System (RETAS)

    International Nuclear Information System (INIS)

    Suh, Jae Seung; Kang, Doo Hyuk; Cho, Yeon Sik; Ahn, Seung Hoon; Cho, Yong Jin

    2009-01-01

    A Korea Institute of Nuclear Safety Reactor Transient Analysis System (KINS-RETAS) aims at providing a realistic prediction of core and RCS response to the potential or actual event scenarios in Korean nuclear power plants (NPPs). A thermal hydraulic system code MARS is a pivot code of the RETAS, and used to predict thermal hydraulic (TH) behaviors in the core and associated systems. MARS alone can be applied to many types of transients, but is sometimes coupled with the other codes developed for different objectives. Many tools have been developed to aid users in preparing input and displaying the transient information and output data. Output file and Graphical User Interfaces (GUI) that help prepare input decks, as seen in SNAP (Gitnick, 1998), VISA (K.D. Kim, 2007) and display aids include the eFAST (KINS, 2007). The tools listed above are graphical interfaces. The input deck builders allow the user to create a functional diagram of the plant, pictorially on the screen. The functional diagram, when annotated with control volume and junction numbers, is a nodalization diagram. Data required for an input deck is entered for volumes and junctions through a mouse-driven menu and pop-up dialog; after the information is complete, an input deck is generated. Display GUIs show data from MARS calculations, either during or after the transient. The RETAS requires the user to first generate a set of 'input', two dimensional pictures of the plant on which some of the data is displayed either numerically or with a color map. The RETAS can generate XY-plots of the data. Time histories of plant conditions can be seen via the plots or through the RETAS's replay mode. The user input was combined with design input from MARS developers and experts from both the GUI and ergonomics fields. A partial list of capabilities follows. - 3D display for neutronics. - Easier method (less user time and effort) to generate 'input' for the 3D displays. - Detailed view of data at volume or

  11. Development of Input/Output System for the Reactor Transient Analysis System (RETAS)

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jae Seung; Kang, Doo Hyuk; Cho, Yeon Sik [ENESYS, Daejeon (Korea, Republic of); Ahn, Seung Hoon; Cho, Yong Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-05-15

    A Korea Institute of Nuclear Safety Reactor Transient Analysis System (KINS-RETAS) aims at providing a realistic prediction of core and RCS response to the potential or actual event scenarios in Korean nuclear power plants (NPPs). A thermal hydraulic system code MARS is a pivot code of the RETAS, and used to predict thermal hydraulic (TH) behaviors in the core and associated systems. MARS alone can be applied to many types of transients, but is sometimes coupled with the other codes developed for different objectives. Many tools have been developed to aid users in preparing input and displaying the transient information and output data. Output file and Graphical User Interfaces (GUI) that help prepare input decks, as seen in SNAP (Gitnick, 1998), VISA (K.D. Kim, 2007) and display aids include the eFAST (KINS, 2007). The tools listed above are graphical interfaces. The input deck builders allow the user to create a functional diagram of the plant, pictorially on the screen. The functional diagram, when annotated with control volume and junction numbers, is a nodalization diagram. Data required for an input deck is entered for volumes and junctions through a mouse-driven menu and pop-up dialog; after the information is complete, an input deck is generated. Display GUIs show data from MARS calculations, either during or after the transient. The RETAS requires the user to first generate a set of 'input', two dimensional pictures of the plant on which some of the data is displayed either numerically or with a color map. The RETAS can generate XY-plots of the data. Time histories of plant conditions can be seen via the plots or through the RETAS's replay mode. The user input was combined with design input from MARS developers and experts from both the GUI and ergonomics fields. A partial list of capabilities follows. - 3D display for neutronics. - Easier method (less user time and effort) to generate 'input' for the 3D displays. - Detailed view

  12. Bi-directional power control system for voltage converter

    Science.gov (United States)

    Garrigan, Neil Richard; King, Robert Dean; Schwartz, James Edward

    1999-01-01

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.

  13. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran

    International Nuclear Information System (INIS)

    Soltani, Afshin; Rajabi, M.H.; Zeinali, E.; Soltani, Elias

    2013-01-01

    The objectives of this study were to analyze energy use and greenhouse gases (GHG) emissions in various wheat production scenarios in north eastern Iran and to identify measures to reduce energy use and GHG emissions. Three high-input, a low-input, a better crop management and a usual production scenarios were included. All activities and production processes were monitored and recorded. Averages of total energy input and output were 15.58 and 94.4 GJ ha −1 , respectively. Average across scenarios, GHG emissions of 1137 kg CO 2 -eq ha −1 and 291 kg CO 2 -eq t −1 were estimated. The key factors relating to energy use and GHG emissions were seedbed preparation and sowing and applications of nitrogen fertilizer. The better crop management production scenario required 38% lower nitrogen fertilizer (and 33% lower total fertilizer), consumed 11% less input energy and resulted in 33% more grain yield and output energy compared to the usual production scenario. It also resulted in 20% less GHG emissions per unit field area and 40% less GHG emissions per ton of grain. It was concluded that this scenario was the cleaner production scenario in terms of energy use and GHG emissions. Measures of improvement in energy use and GHG emission were identified. - Highlights: ► Wheat production scenarios were evaluated for energy use and greenhouse gases emission. ► A better crop management production scenario was the cleaner production scenario. ► Measures to reduce energy use and greenhouse gases emission were identified

  14. Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis

    International Nuclear Information System (INIS)

    Honma, Satoshi; Hu, Jin-Li

    2014-01-01

    Highlights: • This study compares Japan with other developed countries for energy efficiency at the industry level. • We compute the total-factor energy efficiency (TFEE) for industries in 14 developed countries in 1995–2005. • Energy conservation can be further optimized in Japan’s industry sector. • Japan experienced a slight decrease in the weighted TFEE from 0.986 in 1995 to 0.927 in 2005. • Japan should adapt energy conservation technologies from the primary benchmark countries: Germany, UK, and USA. - Abstract: Japan’s energy security is more vulnerable today than it was before the Fukushima Daiichi nuclear power plant accident in March 2011. To alleviate its energy vulnerability, Japan has no choice but to improve energy efficiency. To aid in this improvement, this study compares Japan’s energy efficiency at the industry level with that of other developed countries. We compute the total-factor energy efficiency (TFEE) of industries in 14 developed countries for 1995–2005 using data envelopment analysis. We use four inputs: labor, capital stock, energy, and non-energy intermediate inputs. Value added is the only relevant output. Results indicate that Japan can further optimize energy conservation because it experienced only a marginal decrease in the weighted TFEE, from 0.986 in 1995 to 0.927 in 2005. To improve inefficient industries, Japan should adapt energy conservation technologies from benchmark countries such as Germany, the United Kingdom, and the United States

  15. The series-elastic shock absorber: tendons attenuate muscle power during eccentric actions.

    Science.gov (United States)

    Roberts, Thomas J; Azizi, Emanuel

    2010-08-01

    Elastic tendons can act as muscle power amplifiers or energy-conserving springs during locomotion. We used an in situ muscle-tendon preparation to examine the mechanical function of tendons during lengthening contractions, when muscles absorb energy. Force, length, and power were measured in the lateral gastrocnemius muscle of wild turkeys. Sonomicrometry was used to measure muscle fascicle length independently from muscle-tendon unit (MTU) length, as measured by a muscle lever system (servomotor). A series of ramp stretches of varying velocities was applied to the MTU in fully activated muscles. Fascicle length changes were decoupled from length changes imposed on the MTU by the servomotor. Under most conditions, muscle fascicles shortened on average, while the MTU lengthened. Energy input to the MTU during the fastest lengthenings was -54.4 J/kg, while estimated work input to the muscle fascicles during this period was only -11.24 J/kg. This discrepancy indicates that energy was first absorbed by elastic elements, then released to do work on muscle fascicles after the lengthening phase of the contraction. The temporary storage of energy by elastic elements also resulted in a significant attenuation of power input to the muscle fascicles. At the fastest lengthening rates, peak instantaneous power input to the MTU reached -2,143.9 W/kg, while peak power input to the fascicles was only -557.6 W/kg. These results demonstrate that tendons may act as mechanical buffers by limiting peak muscle forces, lengthening rates, and power inputs during energy-absorbing contractions.

  16. Friction Stir Welding of Copper Canisters Using Power and Temperature Control

    International Nuclear Information System (INIS)

    Cederqvist, Lars

    2011-01-01

    This thesis presents the development to reliably seal 50 mm thick copper canisters containing the Swedish nuclear waste using friction stir welding. To avoid defects and welding tool fractures, it is important to control the tool temperature within a process window of approximately 790 to 910 deg C. The welding procedure requires variable power input throughout the 45 minute long weld cycle to keep the tool temperature within its process window. This is due to variable thermal boundary conditions throughout the weld cycle. The tool rotation rate is the input parameter used to control the power input and tool temperature, since studies have shown that it is the most influential parameter, which makes sense since the product of tool rotation rate and spindle torque is power input. In addition to the derived control method, the reliability of the welding procedure was optimized by other improvements. The weld cycle starts in the lid above the joint line between the lid and the canister to be able to abort a weld during the initial phase without rejecting the canister. The tool shoulder geometry was modified to a convex scroll design that has shown a self-stabilizing effect on the power input. The use of argon shielding gas reduced power input fluctuations i.e. process disturbances, and the tool probe was strengthened against fracture by adding surface treatment and reducing stress concentrations through geometry adjustments. In the study, a clear relationship was shown between power input and tool temperature. This relationship can be used to more accurately control the process within the process window, not only for this application but for other applications where a slow responding tool temperature needs to be kept within a specified range. Similarly, the potential of the convex scroll shoulder geometry in force-controlled welding mode for use in applications with other metals and thicknesses is evident. The variable thermal boundary conditions throughout the weld

  17. The importance of flexible power plant operation for Jiangsu's wind integration

    DEFF Research Database (Denmark)

    Hong, Lixuan; Lund, Henrik; Möller, Bernd

    2012-01-01

    This paper presents the influence of different regulation strategies on wind energy integration into the existing energy system of Jiangsu. The ability of wind integration is defined in terms of the ability to avoid excess electricity production, to conserve primary energy consumption and to redu...... regulations of Jiangsu’s energy system are compared and analyzed in the range of a wind input from 0% to 42% of the total electricity demand. It is concluded that operating power plants in a flexible way facilitates the promotion of more intermittent wind integration....

  18. SSYST-3. Input description

    International Nuclear Information System (INIS)

    Meyder, R.

    1983-12-01

    The code system SSYST-3 is designed to analyse the thermal and mechanical behaviour of a fuel rod during a LOCA. The report contains a complete input-list for all modules and several tested inputs for a LOCA analysis. (orig.)

  19. A high power cross-field amplifier at X-Band

    International Nuclear Information System (INIS)

    Eppley, K.; Feinstein, J.; Ko, K.; Kroll, N.; Lee, T.; Nelson, E.

    1991-05-01

    A high power cross-field amplifier is under development at SLAC with the objective of providing sufficient peak power to feed a section of an X-Band (11.424 GHz) accelerator without the need for pulse compression. The CFA being designed employs a conventional distributed secondary emission cathode but a novel anode structure which consists of an array of vane resonators alternatively coupled to a rectangular waveguide. The waveguide impedance (width) is tapered linearly from input to output so as to provide a constant RF voltage at the vane tips, leading to uniform power generation along the structure. Nominal design for this tube calls for 300 MW output power, 20 dB gain, DC voltage 142 KV, magnetic field 5 KG, anode-cathode gap 3.6 mm and total interaction length of about 60 cm. These specifications have been supported by computer simulations of both the RF slow wave structure as well as the electron space charge wave interaction. We have used ARGUS to model the cold circuit properties and CONDOR to model the electronic power conversion. An efficiency of 60 percent can be expected. We will discuss the details of the design effort. 5 refs., 6 figs

  20. Energy Input Flux in the Global Quiet-Sun Corona

    Energy Technology Data Exchange (ETDEWEB)

    Mac Cormack, Cecilia; Vásquez, Alberto M.; López Fuentes, Marcelo; Nuevo, Federico A. [Instituto de Astronomía y Física del Espacio (IAFE), CONICET-UBA, CC 67—Suc 28, (C1428ZAA) Ciudad Autónoma de Buenos Aires (Argentina); Landi, Enrico; Frazin, Richard A. [Department of Climate and Space Sciences and Engineering (CLaSP), University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-07-01

    We present first results of a novel technique that provides, for the first time, constraints on the energy input flux at the coronal base ( r ∼ 1.025 R {sub ⊙}) of the quiet Sun at a global scale. By combining differential emission measure tomography of EUV images, with global models of the coronal magnetic field, we estimate the energy input flux at the coronal base that is required to maintain thermodynamically stable structures. The technique is described in detail and first applied to data provided by the Extreme Ultraviolet Imager instrument, on board the Solar TErrestrial RElations Observatory mission, and the Atmospheric Imaging Assembly instrument, on board the Solar Dynamics Observatory mission, for two solar rotations with different levels of activity. Our analysis indicates that the typical energy input flux at the coronal base of magnetic loops in the quiet Sun is in the range ∼0.5–2.0 × 10{sup 5} (erg s{sup −1} cm{sup −2}), depending on the structure size and level of activity. A large fraction of this energy input, or even its totality, could be accounted for by Alfvén waves, as shown by recent independent observational estimates derived from determinations of the non-thermal broadening of spectral lines in the coronal base of quiet-Sun regions. This new tomography product will be useful for the validation of coronal heating models in magnetohydrodinamic simulations of the global corona.

  1. Agricultural and Environmental Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Kaylie Rasmuson; Kurt Rautenstrauch

    2003-01-01

    This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN

  2. Reprocessing input data validation

    International Nuclear Information System (INIS)

    Persiani, P.J.; Bucher, R.G.; Pond, R.B.; Cornella, R.J.

    1990-01-01

    The Isotope Correlation Technique (ICT), in conjunction with the gravimetric (Pu/U ratio) method for mass determination, provides an independent verification of the input accountancy at the dissolver or accountancy stage of the reprocessing plant. The Isotope Correlation Technique has been applied to many classes of domestic and international reactor systems (light-water, heavy-water, graphite, and liquid-metal) operating in a variety of modes (power, research, production, and breeder), and for a variety of reprocessing fuel cycle management strategies. Analysis of reprocessing operations data based on isotopic correlations derived for assemblies in a PWR environment and fuel management scheme, yielded differences between the measurement-derived and ICT-derived plutonium mass determinations of (-0.02 ± 0.23)% for the measured U-235 and (+0.50 ± 0.31)% for the measured Pu-239, for a core campaign. The ICT analyses has been implemented for the plutonium isotopics in a depleted uranium assembly in a heavy-water, enriched uranium system and for the uranium isotopes in the fuel assemblies in light-water, highly-enriched systems. 7 refs., 5 figs., 4 tabs

  3. The Anthropogenic Effects of Hydrocarbon Inputs to Coastal Seas: Are There Potential Biogeochemical Impacts?

    Science.gov (United States)

    Anderson, M. R.; Rivkin, R. B.

    2016-02-01

    Petroleum hydrocarbon discharges related to fossil fuel exploitation have the potential to alter microbial processes in the upper ocean. While the ecotoxicological effects of such inputs are commonly evaluated, the potential for eutrophication from the constituent organic and inorganic nutrients has been largely ignored. Hydrocarbons from natural seeps and anthropogenic sources represent a measurable source of organic carbon for surface waters. The most recent (1989-1997) estimate of average world-wide input of hydrocarbons to the sea is 1.250 x 1012 g/yr ≈ 1.0 x 1012g C/year. Produced water from offshore platforms is the largest waste stream from oil and gas exploitation and contributes significant quantities of inorganic nutrients such as N, P and Fe. In coastal areas where such inputs are a significant source of these nutrients, model studies show the potential to shift production toward smaller cells and net heterotrophy. The consequences of these nutrient sources for coastal systems and semi enclosed seas are complex and difficult to predict, because (1) there is a lack of comprehensive data on inputs and in situ concentrations and (2) the is no conceptual or quantitative framework to consider their effects on ocean biogeochemical processes. Here we use examples from the North Sea (produced water discharges 1% total riverine input and NH4 3% of the annual riverine nitrogen load), the South China Sea (total petroleum hydrocarbons = 10-1750 μg/l in offshore waters), and the Gulf of Mexico (seeps = 76-106 x 109 gC/yr, Macondo blowout 545 x 109 gC) to demonstrate how hydrocarbon and produced water inputs can influence basin scale biogeochemical and ecosystem processes and to propose a framework to consider these effects on larger scales.

  4. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary

    International Nuclear Information System (INIS)

    Sadat-Noori, Mahmood; Santos, Isaac R.; Tait, Douglas R.; Maher, Damien T.

    2016-01-01

    The role of groundwater in transporting nutrients to coastal aquatic systems has recently received considerable attention. However, the relative importance of fresh versus saline groundwater-derived nutrient inputs to estuaries and how these groundwater pathways may alter surface water N:P ratios remains poorly constrained. We performed detailed time series measurements of nutrients in a tidal estuary (Hat Head, NSW, Australia) and used radium to quantify the contribution of fresh and saline groundwater to total surface water estuarine exports under contrasting hydrological conditions (wet and dry season). Tidally integrated nutrient fluxes showed that the estuary was a source of nutrients to the coastal waters. Dissolved inorganic nitrogen (DIN) export was 7-fold higher than the average global areal flux rate for rivers likely due to the small catchment size, surrounding wetlands and high groundwater inputs. Fresh groundwater discharge was dominant in the wet season accounting for up to 45% of total dissolved nitrogen (TDN) and 48% of total dissolved phosphorus (TDP) estuarine exports. In the dry season, fresh and saline groundwater accounted for 21 and 33% of TDN export, respectively. The combined fresh and saline groundwater fluxes of NO_3, PO_4, NH_4, DON, DOP, TDN and TDP were estimated to account for 66, 58, 55, 31, 21, 53 and 47% of surface water exports, respectively. Groundwater-derived nitrogen inputs to the estuary were responsible for a change in the surface water N:P ratio from typical N-limiting conditions to P-limiting as predicted by previous studies. This shows the importance of both fresh and saline groundwater as a source of nutrients for coastal productivity and nutrient budgets of coastal waters. - Highlights: • Groundwater TDN and TDP fluxes account for 53 and 47% of surface water exports. • The estuary DIN export was 7-fold higher than the average global areal flux. • Fresh GW nutrient input dominated the wet season and saline GW the

  5. Chemical sensors are hybrid-input memristors

    Science.gov (United States)

    Sysoev, V. I.; Arkhipov, V. E.; Okotrub, A. V.; Pershin, Y. V.

    2018-04-01

    Memristors are two-terminal electronic devices whose resistance depends on the history of input signal (voltage or current). Here we demonstrate that the chemical gas sensors can be considered as memristors with a generalized (hybrid) input, namely, with the input consisting of the voltage, analyte concentrations and applied temperature. The concept of hybrid-input memristors is demonstrated experimentally using a single-walled carbon nanotubes chemical sensor. It is shown that with respect to the hybrid input, the sensor exhibits some features common with memristors such as the hysteretic input-output characteristics. This different perspective on chemical gas sensors may open new possibilities for smart sensor applications.

  6. Discontinuous Mode Power Supply

    Science.gov (United States)

    Lagadinos, John; Poulos, Ethel

    2012-01-01

    A document discusses the changes made to a standard push-pull inverter circuit to avoid saturation effects in the main inverter power supply. Typically, in a standard push-pull arrangement, the unsymmetrical primary excitation causes variations in the volt second integral of each half of the excitation cycle that could lead to the establishment of DC flux density in the magnetic core, which could eventually cause saturation of the main inverter transformer. The relocation of the filter reactor normally placed across the output of the power supply solves this problem. The filter reactor was placed in series with the primary circuit of the main inverter transformer, and is presented as impedance against the sudden changes on the input current. The reactor averaged the input current in the primary circuit, avoiding saturation of the main inverter transformer. Since the implementation of the described change, the above problem has not reoccurred, and failures in the main power transistors have been avoided.

  7. Introduction to market power issues

    International Nuclear Information System (INIS)

    2002-01-01

    This paper presents an initial introduction to market power issues in wholesale electric power markets. Market power was described as the ability of sellers to act together to profitably maintain prices above competitive levels for a significant period of time. The two general forms of market power, vertical and horizontal market power, were described with reference to how they may be exercised. The factors that should be considered when evaluating the competitiveness of a market include: (1) market share of suppliers, (2) overall market concentration, (3) elasticity of demand, (4) shape of the industry supply curve, (5) the amount and distribution of excess supply, (6) typical contractual arrangements and the process for establishing prices, and (7) the relative ease to enter the market. It was noted that a narrow market scope allows only wholesale market sector (such as municipal utilities) to access competitive electricity supplies, however, a more expansive definition of market scope would consider the sale of electricity to industrial customers. This would allow more players to enter the Nova Scotia market. The barriers to entry for wholesale electric power markets are: (1) access to the transmission grids and services, (2) sites for new capacity development, (3) major inputs to power generation, (4) transportation of major inputs to generation, and (5) lack of liquidity

  8. Operation control device for nuclear power plants

    International Nuclear Information System (INIS)

    Suto, Osamu.

    1982-01-01

    Purpose: To render the controlling functions of a central control console more centralized by constituting the operation controls for a nuclear power plant with computer systems having substantially independent functions such as those of plant monitor controls, reactor monitor management and CRT display and decreasing interactions between each of the systems. Constitution: An input/output device for the input of process data for a nuclear power plant and indication data for a plant control console is connected to a plant supervisory and control computer system and a display computer system, the plant supervisory control computer system and a reactor and management computer system are connected with a CRT display control device, a printer and a CRT display input/output device, and the display computer system is connected with the CRT display control device and the CRT display unit on the central control console, whereby process input can be processed and displayed at high speed. (Yoshino, Y.)

  9. Low reflectance high power RF load

    Science.gov (United States)

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  10. Ground motion input in seismic evaluation studies

    International Nuclear Information System (INIS)

    Sewell, R.T.; Wu, S.C.

    1996-07-01

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants

  11. Total-Factor Energy Efficiency (TFEE Evaluation on Thermal Power Industry with DEA, Malmquist and Multiple Regression Techniques

    Directory of Open Access Journals (Sweden)

    Jin-Peng Liu

    2017-07-01

    Full Text Available Under the background of a new round of power market reform, realizing the goals of energy saving and emission reduction, reducing the coal consumption and ensuring the sustainable development are the key issues for thermal power industry. With the biggest economy and energy consumption scales in the world, China should promote the energy efficiency of thermal power industry to solve these problems. Therefore, from multiple perspectives, the factors influential to the energy efficiency of thermal power industry were identified. Based on the economic, social and environmental factors, a combination model with Data Envelopment Analysis (DEA and Malmquist index was constructed to evaluate the total-factor energy efficiency (TFEE in thermal power industry. With the empirical studies from national and provincial levels, the TFEE index can be factorized into the technical efficiency index (TECH, the technical progress index (TPCH, the pure efficiency index (PECH and the scale efficiency index (SECH. The analysis showed that the TFEE was mainly determined by TECH and PECH. Meanwhile, by panel data regression model, unit coal consumption, talents and government supervision were selected as important indexes to have positive effects on TFEE in thermal power industry. In addition, the negative indexes, such as energy price and installed capacity, were also analyzed to control their undesired effects. Finally, considering the analysis results, measures for improving energy efficiency of thermal power industry were discussed widely, such as strengthening technology research and design (R&D, enforcing pollutant and emission reduction, distributing capital and labor rationally and improving the government supervision. Relative study results and suggestions can provide references for Chinese government and enterprises to enhance the energy efficiency level.

  12. An ultra low-power off-line APDM-based switchmode power supply with very high conversion efficiency

    DEFF Research Database (Denmark)

    Nielsen, Nils

    2001-01-01

    This article describes the results from the research work on design of a ultra low power off-line power supply with very high conversion efficiency. The input voltage is 230 VAC nominal and output voltage is 5 VDC. By ultra low power levels, an output power level in the area ranging from 50 m......W and up to 1000 mW is meant. The small power supply is intended for use as a standby power supply in mains operated equipment, which requires a small amount of power in standby mode....

  13. Electromagnetic Compatibility of Transcutaneous Energy Transmission Systemfor Totally Implantable Artificial Heart

    Science.gov (United States)

    Shiba, Kenji; Koshiji, Kohji

    Transcutaneous Energy Transmission (TET) is one way of providing the energy needed to power a totally implantable artificial heart (TIAH). In the present study, an externally coupled TET system was implanted in a prototype human phantom to evaluate emission and immunity. In the emission evaluation, measurements were conducted based on CISPR Pub.11 and VDE 0871 standards, while immunity tests were based on the standards of the IEC 61000-4 series. The magnetic field of the radiated emission was measured using a loop antenna. At 0.1[MHz], we found the greatest magnetic field of 47.8 [dBμA/m], somewhat less than CISPR’s upper limit of 54 [dBμA/m]. For the conducted emission, by installing a noise filter and ferrite beads in the input section of the DC-power supply, conducted emission could be kept within the allowable limits of CISPR Pub.11 and VDE 0871. Finally, the immunity tests against radiated and conducted emission, electrostatic discharge and voltage fluctuation proved that the prototype could withstand the maximum level of disturbance. These results confirmed that the TET system implanted in a human phantom could, through modification, meet the emission and immunity standards.

  14. Simulation and Evaluation of Small Scale Solar Power Tower Performance under Malaysia Weather Conditions

    Science.gov (United States)

    Gamil, A. M.; Gilani, S. I.; Al-Kayiem, H. H.

    2013-06-01

    Solar energy is the most available, clean, and inexpensive source of energy among the other renewable sources of energy. Malaysia is an encouraging location for the development of solar energy systems due to abundant sunshine (10 hours daily with average solar energy received between 1400 and 1900 kWh/m2). In this paper the design of heliostat field of 3 dual-axis heliostat units located in Ipoh, Malaysia is introduced. A mathematical model was developed to estimate the sun position and calculate the cosine losses in the field. The study includes calculating the incident solar power to a fixed target on the tower by analysing the tower height and ground distance between the heliostat and the tower base. The cosine efficiency was found for each heliostat according to the sun movement. TRNSYS software was used to simulate the cosine efficiencies and field hourly incident solar power input to the fixed target. The results show the heliostat field parameters and the total incident solar input to the receiver.

  15. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-09-24

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air

  16. Adaptive Environmentally Contained Power and Cooling IT Infrastructure for the Data Center

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Ron; Chavez, Miguel, E.

    2012-06-27

    The objectives of this program were to research and develop a fully enclosed Information Technology (IT) rack system for 100 kilowatts (KW) of IT load that provides its own internal power and cooling with High Voltage Alternating Current (HVAC defined as 480 volt) and chilled water as the primary inputs into the system and accepts alternative energy power sources such as wind and solar. For maximum efficiency, internal power to the IT equipment uses distributed High Voltage Direct Current power (HVDC defined as 360-380 volt) from the power source to the IT loads. The management scheme aggressively controls energy use to insure the best utilization of available power and cooling resources. The solution incorporates internal active management controls that not only optimizes the system environment for the given dynamic IT loads and changing system conditions, but also interfaces with data center Building Management Systems (BMS) to provide a complete end-to-end view of power and cooling chain. This technology achieves the goal of a Power Usage Effectiveness (PUE) of 1.25, resulting in a 38% reduction in the total amount of energy needed to support a 100KW IT load compared to current data center designs.

  17. River inputs and organic matter fluxes in the northern Bay of Bengal: Fatty acids

    Digital Repository Service at National Institute of Oceanography (India)

    Reemtsma, T.; Ittekkot, V.; Bartsch, M.; Nair, R.R

    ) 55-71 55 Elsevier Science Publishers B.V., Amsterdam \\[RA\\] River inputs and organic matter fluxes in the northern Bay of Bengal: fatty acids T. Reemtsma a, V. Ittekkot a, M. Bartsch a and R.R. Nair b alnstitut fiir Biogeochemie und Meereschemie..., R.R., 1993. River inputs and organic matter fluxes in the northern Bay of Bengal: fatty acids. Chem. Geol., 103: 55-71. Total particulate matter flux and organic carbon and fatty acid fluxes associated with settling particles collected during...

  18. Using Random Forests to Select Optimal Input Variables for Short-Term Wind Speed Forecasting Models

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2017-10-01

    Full Text Available Achieving relatively high-accuracy short-term wind speed forecasting estimates is a precondition for the construction and grid-connected operation of wind power forecasting systems for wind farms. Currently, most research is focused on the structure of forecasting models and does not consider the selection of input variables, which can have significant impacts on forecasting performance. This paper presents an input variable selection method for wind speed forecasting models. The candidate input variables for various leading periods are selected and random forests (RF is employed to evaluate the importance of all variable as features. The feature subset with the best evaluation performance is selected as the optimal feature set. Then, kernel-based extreme learning machine is constructed to evaluate the performance of input variables selection based on RF. The results of the case study show that by removing the uncorrelated and redundant features, RF effectively extracts the most strongly correlated set of features from the candidate input variables. By finding the optimal feature combination to represent the original information, RF simplifies the structure of the wind speed forecasting model, shortens the training time required, and substantially improves the model’s accuracy and generalization ability, demonstrating that the input variables selected by RF are effective.

  19. Application of total quality tools in the operational process modernization and optimization of large hydroelectric power plants; Aplicacao de ferramentas da qualidade total na modernizacao e otimizacao de processos operacionais de grandes usinas hidreletricas

    Energy Technology Data Exchange (ETDEWEB)

    Potenza, Luiz Frederico; Kassem, Faisal Ali; Medlo, Gerson Ricardo; Santos, Valdemir Chalito dos [Companhia Paranaense de Energia (COPEL), Capitao Leonidas Marques, PR (Brazil). Superintendencia de Gerencia da Manutencao. Area de Operacao e Manutencao Salto Caxias]. E-mail: potenza@mail.copel.br

    1998-07-01

    This work highlights a practical example of Total Quality tools application, and as the institutional changes advances, the necessity of being better and more competitive becomes evident. By using Total Quality Control tools in the modernization and optimization of operational processes for large hydroelectric power plants of the COPEL-Brazil this work contributes for the continuous increasing of the customers satisfaction and the profitability of the company.

  20. Net energy from nuclear power

    International Nuclear Information System (INIS)

    Perry, A.M.; Rotty, R.M.; Reister, D.B.

    1977-01-01

    Non-fission energy inputs to nuclear fuel cycles were calculated for four types of power reactors and for two grades of uranium ore. Inputs included all requirements for process operations, materials, and facility construction. Process stages are mining, milling, uranium conversion, enrichment, fuel fabrication, reprocessing, waste disposal, reactor construction and operation, and all transportation. Principal inputs were analyzed explicitly; small contributions and facility construction were obtained from input-output tables. For major facilities, the latter approach was based on disaggregated descriptions. Enrichment energy was that of U.S. diffusion plants, with uranium tails assay retained as a variable parameter. Supplemental electrical requirements, as a percentage of lifetime electrical output, are 5-6% for LWRs (0.3 - 0.2% tails assay) using ores with 0.2% uranium and without recycle. Recycle of uranium and plutonium reduces the electrical requirements 30%. Chattanooga Shales (0.006% U) require one-third more electricity. Thermal energy requirements are about 5% of electrical output with conventional ores; shales raise this to about 14%, with 0.2% enrichment tails and full recycle. About one-tenth of the electrical supplements and about a third of the thermal energy supplements are required prior to operation. A typical LWR will repay its energy loan within 15 months, allowing for low initial load factors. Enrichment requiring only 10% as much separative work as gaseous diffusion would reduce electrical requirements about 80%, but have little effect on thermal energy inputs. HTGRs require slightly less supplemental energy than LWRs. HWRs (with natural uranium) require about one-third as much supplemental electricity, but half again as much thermal energy, largely for heavy water production. The paper presents detailed data for several combinations of reactor type, ore grade and tails assay and compares them with conventional power plants. It also exhibits

  1. The Conditional Entropy Power Inequality for Bosonic Quantum Systems

    Science.gov (United States)

    De Palma, Giacomo; Trevisan, Dario

    2018-06-01

    We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.

  2. Enhanced Input in LCTL Pedagogy

    Directory of Open Access Journals (Sweden)

    Marilyn S. Manley

    2009-08-01

    Full Text Available Language materials for the more-commonly-taught languages (MCTLs often include visual input enhancement (Sharwood Smith 1991, 1993 which makes use of typographical cues like bolding and underlining to enhance the saliency of targeted forms. For a variety of reasons, this paper argues that the use of enhanced input, both visual and oral, is especially important as a tool for the lesscommonly-taught languages (LCTLs. As there continues to be a scarcity of teaching resources for the LCTLs, individual teachers must take it upon themselves to incorporate enhanced input into their own self-made materials. Specific examples of how to incorporate both visual and oral enhanced input into language teaching are drawn from the author’s own experiences teaching Cuzco Quechua. Additionally, survey results are presented from the author’s Fall 2010 semester Cuzco Quechua language students, supporting the use of both visual and oral enhanced input.

  3. Enhanced Input in LCTL Pedagogy

    Directory of Open Access Journals (Sweden)

    Marilyn S. Manley

    2010-08-01

    Full Text Available Language materials for the more-commonly-taught languages (MCTLs often include visual input enhancement (Sharwood Smith 1991, 1993 which makes use of typographical cues like bolding and underlining to enhance the saliency of targeted forms. For a variety of reasons, this paper argues that the use of enhanced input, both visual and oral, is especially important as a tool for the lesscommonly-taught languages (LCTLs. As there continues to be a scarcity of teaching resources for the LCTLs, individual teachers must take it upon themselves to incorporate enhanced input into their own self-made materials. Specific examples of how to incorporate both visual and oral enhanced input into language teaching are drawn from the author’s own experiences teaching Cuzco Quechua. Additionally, survey results are presented from the author’s Fall 2010 semester Cuzco Quechua language students, supporting the use of both visual and oral enhanced input.

  4. Adapting Total Quality Management (TQM) to Government.

    Science.gov (United States)

    Swiss, James E.

    1992-01-01

    Total quality management will not work well in government agencies because of stress on products, not services; on well-defined consumer groups; on inputs/processes, not results; and on preoccupation with quality. An effective revised version emphasizes client feedback, performance monitoring, continuous improvement, and worker participation. (SK)

  5. Design of neutral beam injection power supplies for ITER

    International Nuclear Information System (INIS)

    Watanabe, Kazuhiro; Okumura, Yoshikazu; Ono, Youichi; Tanaka, Masanobu

    2000-03-01

    Design study on a power supply system for the ITER neutral beam injector(NBI) has been performed. Circuits of converter/inverter system and other components of the acceleration power supply whose capacity is 1 MV, 45 A have been designed in detail. Performance of the negative ion production power supplies such as an arc and an extraction power supplies was investigated using the EMTDC code. It was confirmed that ripples of 0.34%p-p for the extraction power supply and 1.7%p-p for the arc power supply are small enough. It was also confirmed that an energy input to a negative ion generator from the arc power supply at an arcing can be suppressed smaller than 8 J. The extraction power supply was designed to suppress the energy input lower than 13 J at the breakdown in the extractor. These performances satisfy the required specification of the power supply system. (author)

  6. Safety analysis code input automation using the Nuclear Plant Data Bank

    International Nuclear Information System (INIS)

    Kopp, H.; Leung, J.; Tajbakhsh, A.; Viles, F.

    1985-01-01

    The Nuclear Plant Data Bank (NPDB) is a computer-based system that organizes a nuclear power plant's technical data, providing mechanisms for data storage, retrieval, and computer-aided engineering analysis. It has the specific objective to describe thermohydraulic systems in order to support: rapid information retrieval and display, and thermohydraulic analysis modeling. The Nuclear Plant Data Bank (NPBD) system fully automates the storage and analysis based on this data. The system combines the benefits of a structured data base system and computer-aided modeling with links to large scale codes for engineering analysis. Emphasis on a friendly and very graphically oriented user interface facilitates both initial use and longer term efficiency. Specific features are: organization and storage of thermohydraulic data items, ease in locating specific data items, graphical and tabular display capabilities, interactive model construction, organization and display of model input parameters, input deck construction for TRAC and RELAP analysis programs, and traceability of plant data, user model assumptions, and codes used in the input deck construction process. The major accomplishments of this past year were the development of a RELAP model generation capability and the development of a CRAY version of the code

  7. Regional economic impacts of nuclear power plants

    International Nuclear Information System (INIS)

    Isard, W.; Reiner, T.; Van Zele, R.; Stratham, J.

    1976-08-01

    This study of economic and social impacts of nuclear power facilities compares a nuclear energy center (NEC) consisting of three surrogate sites in Ocean County, New Jersey with nuclear facilities dispersed in the Pennsylvania - New Jersey - Maryland area. The NEC studied in this report is assumed to contain 20 reactors of 1200 MW(e) each, for a total NEC capacity of 24,000 MW(e). Following the Introductory chapter, Chapter II discusses briefly the methodological basis for estimating impacts. This part of the analysis only considers impacts of wages and salaries and not purchase of construction materials within the region. Chapters III and IV, respectively, set forth the scenarios of an NEC at each of three sites in Ocean County, N.J. and of a pattern of dispersed nuclear power plants of total equivalent generating capacity. In each case, the economic impacts (employment and income) are calculated, emphasizing the regional effects. In Chapter V these impacts are compared and some more general conclusions are reported. A more detailed analysis of the consequences of the construction of a nuclear power plant is given in Chapter VI. An interindustry (input-output) study, which uses rather finely disaggregated data to estimate the impacts of a prototype plant that might be constructed either as a component of the dispersed scenario or as part of an NEC, is given. Some concluding remarks are given in Chapter VII, and policy questions are emphasized

  8. Modeling of Maximum Power Point Tracking Controller for Solar Power System

    Directory of Open Access Journals (Sweden)

    Aryuanto Soetedjo

    2012-09-01

    Full Text Available In this paper, a Maximum Power Point Tracking (MPPT controller for solar power system is modeled using MATLAB Simulink. The model consists of PV module, buck converter, and MPPT controller. The contribution of the work is in the modeling of buck converter that allowing the input voltage of the converter, i.e. output voltage of PV is changed by varying the duty cycle, so that the maximum power point could be tracked when the environmental changes. The simulation results show that the developed model performs well in tracking the maximum power point (MPP of the PV module using Perturb and Observe (P&O Algorithm.

  9. Mercury emission and speciation of coal-fired power plants in China

    Science.gov (United States)

    Wang, S. X.; Zhang, L.; Li, G. H.; Wu, Y.; Hao, J. M.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2010-02-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  10. Total energy consumption in Finland increased by one percent

    International Nuclear Information System (INIS)

    Timonen, L.

    2000-01-01

    The total energy consumption in Finland increased by less than a percent in 1999. The total energy consumption in 1999 was 1310 PJ corresponding to about 31 million toe. The electric power consumption increased moderately by 1.6%, which is less than the growth of the gross national product (3.5%). The final consumption of energy grew even less, only by 0.5%. Import of electric power increased by 19% in 1999. The import of electric power was due to the availability of low-priced electric power on the Nordic electricity markets. Nuclear power generation increased by 5% and the consumption of wood-based fuels by 3%. The increment of the nuclear power generation increased because of the increased output capacity and good operability of the power plants. Wind power production doubles, but the share of it in the total energy consumption is only about 0.01%. The peat consumption decreased by 12% and the consumption of hydroelectric power by 15%. The decrease in production of hydroelectric power was compensated by an increase import of electric power. The consumption of fossil fuels, coal, oil and natural gas remained nearly the same as in 1998. The gasoline consumption, however, decreased, but the consumption of diesel oil increased due to the increased road transport. The share of the fossil fuels was nearly half of the total energy consumption. The consumption of renewable energy sources remained nearly the same, in 23% if the share of peat is excluded, and in 30% if the share of peat is included. Wood-based fuels are the most significant type of renewable fuels. The share of them in 1999 was over 80% of the total usage of the renewable energy sources. The carbon dioxide emissions in Finland decreased in 1999 by 1.0 million tons. The total carbon dioxide emissions were 56 million tons. The decrease was mainly due to the decrease of the peat consumption. The final consumption of energy increased by 0.5%, being hence about 1019 PJ. Industry is the main consumer of energy

  11. Lead isotopic signatures in Antarctic marine sediment cores: A comparison between 1 M HCl partial extraction and HF total digestion pre-treatments for discerning anthropogenic inputs

    International Nuclear Information System (INIS)

    Townsend, A.T.; Snape, I.; Palmer, A.S.; Seen, A.J.

    2009-01-01

    Sensitive analytical techniques are typically required when dealing with samples from Antarctica as even low concentrations of contaminants can have detrimental environmental effects. Magnetic Sector ICP-MS is an ideal technique for environmental assessment as it offers high sensitivity, multi-element capability and the opportunity to determine isotope ratios. Here we consider the Pb isotope record of five marine sediment cores collected from three sites in the Windmill Islands area of East Antarctica: Brown Bay adjacent to the current Australian station Casey, Wilkes near the abandoned US/Australian Station and McGrady Cove lying midway between the two. Two sediment pre-treatment approaches were considered, namely partial extraction with 1 M HCl and total dissolution involving HF. Lead isotope ratio measurements made following sediment partial extraction provided a more sensitive indication of Pb contamination than either Pb concentrations alone (irrespective of sample pre-treatment method) or isotope ratios made after HF digestion, offering greater opportunity for discrimination between impacted and natural/geogenic samples and sites. Over 90% of the easily extractable Pb from sediments near Casey was anthropogenic in origin, consisting of Pb from major Australian deposits. At Wilkes impact from discarded batteries with a unique isotopic signature was found to be a key source of Pb contamination to the marine environment with ∼ 70-80% of Pb being anthropogenic in origin. The country and source of origin of these batteries remain unknown. Little evidence was found suggesting contamination at Wilkes by Pb originating from the major US source, Missouri. No definitive assessment could be made regarding Pb impact at McGrady Cove as the collected sediment core was of insufficient depth. Although Pb isotope ratio signatures may indicate anthropogenic input, spatial concentration gradients at nearby Brown Bay suggest contamination at McGrady Cove is unlikely. We

  12. Understanding How Kurtosis Is Transferred from Input Acceleration to Stress Response and Its Influence on Fatigue Llife

    Science.gov (United States)

    Kihm, Frederic; Rizzi, Stephen A.; Ferguson, Neil S.; Halfpenny, Andrew

    2013-01-01

    High cycle fatigue of metals typically occurs through long term exposure to time varying loads which, although modest in amplitude, give rise to microscopic cracks that can ultimately propagate to failure. The fatigue life of a component is primarily dependent on the stress amplitude response at critical failure locations. For most vibration tests, it is common to assume a Gaussian distribution of both the input acceleration and stress response. In real life, however, it is common to experience non-Gaussian acceleration input, and this can cause the response to be non-Gaussian. Examples of non-Gaussian loads include road irregularities such as potholes in the automotive world or turbulent boundary layer pressure fluctuations for the aerospace sector or more generally wind, wave or high amplitude acoustic loads. The paper first reviews some of the methods used to generate non-Gaussian excitation signals with a given power spectral density and kurtosis. The kurtosis of the response is examined once the signal is passed through a linear time invariant system. Finally an algorithm is presented that determines the output kurtosis based upon the input kurtosis, the input power spectral density and the frequency response function of the system. The algorithm is validated using numerical simulations. Direct applications of these results include improved fatigue life estimations and a method to accelerate shaker tests by generating high kurtosis, non-Gaussian drive signals.

  13. MDS MIC Catalog Inputs

    Science.gov (United States)

    Johnson-Throop, Kathy A.; Vowell, C. W.; Smith, Byron; Darcy, Jeannette

    2006-01-01

    This viewgraph presentation reviews the inputs to the MDS Medical Information Communique (MIC) catalog. The purpose of the group is to provide input for updating the MDS MIC Catalog and to request that MMOP assign Action Item to other working groups and FSs to support the MITWG Process for developing MIC-DDs.

  14. A low power 3-5 GHz CMOS UWB receiver front-end

    International Nuclear Information System (INIS)

    Li Weinan; Huang Yumei; Hong Zhiliang

    2009-01-01

    A novel low power RF receiver front-end for 3-5 GHz UWB is presented. Designed in the 0.13 μm CMOS process, the direct conversion receiver features a wideband balun-coupled noise cancelling transconductance input stage, followed by quadrature passive mixers and transimpedance loading amplifiers. Measurement results show that the receiver achieves an input return loss below -8.5 dB across the 3.1-4.7 GHz frequency range, maximum voltage conversion gain of 27 dB, minimum noise figure of 4 dB, IIP3 of -11.5 dBm, and IIP2 of 33 dBm. Working under 1.2 V supply voltage, the receiver consumes total current of 18 mA including 10 mA by on-chip quadrature LO signal generation and buffer circuits. The chip area with pads is 1.1 x 1.5 mm 2 .

  15. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Kaylie Rasmuson; Kurt Rautenstrauch

    2003-06-20

    This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN.

  16. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions.

    Science.gov (United States)

    Luo, Zhongkui; Feng, Wenting; Luo, Yiqi; Baldock, Jeff; Wang, Enli

    2017-10-01

    Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (r C , Mg C ha -1  yr -1 ). Among these variables, we found that the most influential variables on r C were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on r C , followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining r C . The direct correlation of r C with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process-based SOC models. © 2017 John Wiley & Sons Ltd.

  17. Quantitative Evidence Synthesis with Power Priors

    NARCIS (Netherlands)

    Rietbergen, C.|info:eu-repo/dai/nl/322847796

    2016-01-01

    The aim of this thesis is to provide the applied researcher with a practical approach for quantitative evidence synthesis using the conditional power prior that allows for subjective input and thereby provides an alternative tgbgo deal with the difficulties as- sociated with the joint power prior

  18. Numerical simulation of waveguide input/output couplers for a planar mm-wave linac cavity

    International Nuclear Information System (INIS)

    Kang, Y.W.

    1994-01-01

    A double-sided planar mm-wave linear accelerating cavity structure has been studied. The input/output couplers for the accelerating cavity structure have been designed using the Hewlett-Packard High Frequency Structure Simulator (HFSS). The program is a frequency domain finite element 3-D field solver and can include matched port boundary conditions. The power transmission property of the structure is calculated in the frequency domain. The dimensions of the, coupling cavities and the irises at the input/output ports are adjusted to have the structure matched to rectangular waveguides. The field distributions in the accelerating structure for the 2π/3-mode traveling wave are shown

  19. Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy

    Science.gov (United States)

    Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng

    2018-06-01

    To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.

  20. The virtual digital nuclear power plant: A modern tool for supporting the lifecycle of VVER-based nuclear power units

    Science.gov (United States)

    Arkadov, G. V.; Zhukavin, A. P.; Kroshilin, A. E.; Parshikov, I. A.; Solov'ev, S. L.; Shishov, A. V.

    2014-10-01

    The article describes the "Virtual Digital VVER-Based Nuclear Power Plant" computerized system comprising a totality of verified initial data (sets of input data for a model intended for describing the behavior of nuclear power plant (NPP) systems in design and emergency modes of their operation) and a unified system of new-generation computation codes intended for carrying out coordinated computation of the variety of physical processes in the reactor core and NPP equipment. Experiments with the demonstration version of the "Virtual Digital VVER-Based NPP" computerized system has shown that it is in principle possible to set up a unified system of computation codes in a common software environment for carrying out interconnected calculations of various physical phenomena at NPPs constructed according to the standard AES-2006 project. With the full-scale version of the "Virtual Digital VVER-Based NPP" computerized system put in operation, the concerned engineering, design, construction, and operating organizations will have access to all necessary information relating to the NPP power unit project throughout its entire lifecycle. The domestically developed commercial-grade software product set to operate as an independently operating application to the project will bring about additional competitive advantages in the modern market of nuclear power technologies.

  1. Stirling/hydraulic artificial heart power source

    International Nuclear Information System (INIS)

    Johnston, R.P.; Bennett, A.; Emigh, S.G.; Griffith, W.R.; Noble, J.E.; Perrone, R.E.; White, M.A.; Martini, W.R.; Alexander, J.E.

    1977-01-01

    The REL power source combines the high efficiency of Stirling engines with the reliability, efficiency, and flexibility of hydraulic power transfer and control to ensure long system life and physiological effectiveness. Extended life testing has been achieved with an engine (2.6 years) and hydraulic actuator/controller (1.6 years). Peak power source efficiency is 15.5 percent on 5 to 10 watts delivered to the blood pump push plate with 33 watts steady thermal input. Planned incorporation of power source output control is expected to reduce daily average thermal input to 18 watts. Animal in-vivo tests with an assist heart have consistently demonstrated required performance by biological synchronization and effective ventricle relief. Volume and weight are 0.93 liter and 2.4 kg (excluding blood pump) with an additional 0.4 liter of low temperature foam insulation required to preclude tissue thermal damage. Carefully planned development of System 7 is expected to produce major reductions in size

  2. SWITCH MODE PULSE WIDTH MODULATED DC-DC CONVERTER WITH MULTIPLE POWER TRANSFORMERS

    DEFF Research Database (Denmark)

    2009-01-01

    A switch mode pulse width modulated DC-DC power converter comprises at least one first electronic circuit on a input side (1) and a second electronic circuit on a output side (2). The input side (1) and the output side (2) are coupled via at least two power transformers (T1, T2). Each power...... transformer (T1, T2) comprises a first winding (T1a, T2a) arranged in a input side converter stage (3, 4) on the input side (1) and a second winding (T1 b, T2b) arranged in a output side converter stage (5) on the output side (2), and each of the windings (T1a, T1 b, T2a, T2b) has a first end and a second end....... The first electronic circuit comprises terminals (AO, A1) for connecting a source or a load, at least one energy storage inductor (L) coupled in series with at least one of the first windings (T1a, T2a) of the power transformers (T1, T2), and for each power transformer (T1, T2), an arrangement of switches...

  3. Power plant allocation in East Kalimantan considering total cost and emissions

    Science.gov (United States)

    Muslimin; Utomo, D. S.

    2018-04-01

    The fulfillment of electricity need in East Kalimantan is the responsibility of State Electricity Company/Perusahaan Listrik Negara (PLN). But PLN faces constraints in the lack of generating capacity it has. So the allocation of power loads in East Kalimantan has its own challenges. Additional power supplies from other parties are required. In this study, there are four scenarios tested to meet the electricity needs in East Kalimantan with the goal of minimizing costs and emissions. The first scenario is only by using PLN power plant. The second scenario is by combining PLN + Independent Power Producer (IPP) power plants. The third scenario is by using PLN + Rented power plants. The fourth scenario is by using PLN + Excess capacity generation. Numerical experiment using nonlinear programming is conducted with the help of the solver. The result shows that in the peak load condition, the best combination is scenario 2 (PLN + IPP). While at the lowest load condition, the cheapest scenario is PLN + IPP while the lowest emission is PLN + Rent.

  4. Total-system expertise in economically efficient operation of nuclear power plants

    International Nuclear Information System (INIS)

    2000-01-01

    Siemens Nuclear Power GmbH can look back on well over 40 years of experience in developing and constructing nuclear power plants. 23 Power plant units of Siemens design are in operation in five countries, and in autumn this year, another one will start commercial operation, while yet another one is under construction. In comparative international power plant surveys, the Siemens-design systems usually rank in top positions when it comes to comparing systems availability and electric power generation, and Siemens have build a reputation in manufacturing power plants up to the highest safety standards worldwide. Our experience as a manufacturer of turnkey PWR and BWR type reactors, as well as our profound knowledge of international nuclear standardisation, engineering codes and safety guides, has been used and processed to the benefit of the services offered by Siemens, resulting in well-devised service packages, and enhancements and optimisation of our machinery and equipment. Siemens has of course obtained the relevant licenses and certification for all its services and products according to DIN ISO 9001, KTA and ASME standards [de

  5. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-06-01

    The actualized version (June 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.

  6. Environmental Transport Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2004-01-01

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573])

  7. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-09-10

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis

  8. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    Science.gov (United States)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and

  9. Generation of electrical power

    International Nuclear Information System (INIS)

    Hursen, T.F.; Kolenik, S.A.; Purdy, D.L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, the thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element

  10. Efficient Direct-Matching Rectenna Design for RF Power Transfer Applications

    Science.gov (United States)

    Keyrouz, Shady; Visser, Huib

    2013-12-01

    This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an antenna, which captures the transmitted RF signal, connected to a rectifier which converts the AC captured signal into a DC power signal. For maximum power transfer, a matching network is designed between the rectifier and the antenna. At an input power level of -10 dBm, the system is able to achieve an RF/DC power conversion efficiency of 49.7%.

  11. Efficient Direct-Matching Rectenna Design for RF Power Transfer Applications

    International Nuclear Information System (INIS)

    Keyrouz, Shady; Visser, Huib

    2013-01-01

    This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an antenna, which captures the transmitted RF signal, connected to a rectifier which converts the AC captured signal into a DC power signal. For maximum power transfer, a matching network is designed between the rectifier and the antenna. At an input power level of −10 dBm, the system is able to achieve an RF/DC power conversion efficiency of 49.7%

  12. Using modular neural networks to monitor accident conditions in nuclear power plants

    International Nuclear Information System (INIS)

    Guo, Z.

    1992-01-01

    Nuclear power plants are very complex systems. The diagnoses of transients or accident conditions is very difficult because a large amount of information, which is often noisy, or intermittent, or even incomplete, need to be processed in real time. To demonstrate their potential application to nuclear power plants, neural networks axe used to monitor the accident scenarios simulated by the training simulator of TVA's Watts Bar Nuclear Power Plant. A self-organization network is used to compress original data to reduce the total number of training patterns. Different accident scenarios are closely related to different key parameters which distinguish one accident scenario from another. Therefore, the accident scenarios can be monitored by a set of small size neural networks, called modular networks, each one of which monitors only one assigned accident scenario, to obtain fast training and recall. Sensitivity analysis is applied to select proper input variables for modular networks

  13. E-beam high voltage switching power supply

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  14. E-beam high voltage switching power supply

    International Nuclear Information System (INIS)

    Shimer, D.W.; Lange, A.C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360 degree/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs

  15. Research on Power Factor Correction Boost Inductor Design Optimization – Efficiency vs. Power Density

    DEFF Research Database (Denmark)

    Li, Qingnan; Andersen, Michael A. E.; Thomsen, Ole Cornelius

    2011-01-01

    Nowadays, efficiency and power density are the most important issues for Power Factor Correction (PFC) converters development. However, it is a challenge to reach both high efficiency and power density in a system at the same time. In this paper, taking a Bridgeless PFC (BPFC) as an example......, a useful compromise between efficiency and power density of the Boost inductors on 3.2kW is achieved using an optimized design procedure. The experimental verifications based on the optimized inductor are carried out from 300W to 3.2kW at 220Vac input....

  16. Evaluation of a microwave high-power reception-conversion array for wireless power transmission

    Science.gov (United States)

    Dickinson, R. M.

    1975-01-01

    Initial performance tests of a 24-sq m area array of rectenna elements are presented. The array is used as the receiving portion of a wireless microwave power transmission engineering verification test system. The transmitting antenna was located at a range of 1.54 km. Output dc voltage and power, input RF power, efficiency, and operating temperatures were obtained for a variety of dc load and RF incident power levels at 2388 MHz. Incident peak RF intensities of up to 170 mW/sq cm yielded up to 30.4 kW of dc output power. The highest derived collection-conversion efficiency of the array was greater than 80 percent.

  17. Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces

    DEFF Research Database (Denmark)

    Rinker, Jennifer M.

    2016-01-01

    at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four......This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a high-dimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data...... turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project...

  18. Input data requirements for performance modelling and monitoring of photovoltaic plants

    DEFF Research Database (Denmark)

    Gavriluta, Anamaria Florina; Spataru, Sergiu; Sera, Dezso

    2018-01-01

    This work investigates the input data requirements in the context of performance modeling of thin-film photovoltaic (PV) systems. The analysis focuses on the PVWatts performance model, well suited for on-line performance monitoring of PV strings, due to its low number of parameters and high......, modelling the performance of the PV modules at high irradiances requires a dataset of only a few hundred samples in order to obtain a power estimation accuracy of ~1-2\\%....

  19. Point-to-point microwave power transmission experiment; Maikuroha ni yoru denryoku yuso no kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimokura, N.; Kirihara, T. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1997-09-30

    In order to demonstrate the power transmission using microwave and arrange advantages and problems in the wireless power transmission, field tests of point-to-point power transmission were conducted. Microwave frequency of 2.45 GHz was used, which is assigned as the industrial, scientific and medical frequency. The transmission system is composed of generator, director tube, primary radiator, and transmission antenna. The maximum 5 kW of microwave power can be transmitted by combining a 3 m-diameter parabolic antenna and a magnetron. The receiving system is composed of devices called as RECTENNA (rectifying antenna). A large capacity and high efficiency RECTENNA was developed, by which the maximum 2.5 W of input power per single device can be provided. As a result of the experiments, efficiency at the transmission side was over 70%, and RF-DC efficiency at the receiving side was about 51%. At the open-air test site, however, the total efficiency of only 14.8% could be obtained. 8 refs., 12 figs.

  20. Reactor protection system software test-case selection based on input-profile considering concurrent events and uncertainties

    International Nuclear Information System (INIS)

    Khalaquzzaman, M.; Lee, Seung Jun; Cho, Jaehyun; Jung, Wondea

    2016-01-01

    Recently, the input-profile-based testing for safety critical software has been proposed for determining the number of test cases and quantifying the failure probability of the software. Input-profile of a reactor protection system (RPS) software is the input which causes activation of the system for emergency shutdown of a reactor. This paper presents a method to determine the input-profile of a RPS software which considers concurrent events/transients. A deviation of a process parameter value begins through an event and increases owing to the concurrent multi-events depending on the correlation of process parameters and severity of incidents. A case of reactor trip caused by feedwater loss and main steam line break is simulated and analyzed to determine the RPS software input-profile and estimate the number of test cases. The different sizes of the main steam line breaks (e.g., small, medium, large break) with total loss of feedwater supply are considered in constructing the input-profile. The uncertainties of the simulation related to the input-profile-based software testing are also included. Our study is expected to provide an option to determine test cases and quantification of RPS software failure probability. (author)

  1. Joint analysis of input and parametric uncertainties in watershed water quality modeling: A formal Bayesian approach

    Science.gov (United States)

    Han, Feng; Zheng, Yi

    2018-06-01

    Significant Input uncertainty is a major source of error in watershed water quality (WWQ) modeling. It remains challenging to address the input uncertainty in a rigorous Bayesian framework. This study develops the Bayesian Analysis of Input and Parametric Uncertainties (BAIPU), an approach for the joint analysis of input and parametric uncertainties through a tight coupling of Markov Chain Monte Carlo (MCMC) analysis and Bayesian Model Averaging (BMA). The formal likelihood function for this approach is derived considering a lag-1 autocorrelated, heteroscedastic, and Skew Exponential Power (SEP) distributed error model. A series of numerical experiments were performed based on a synthetic nitrate pollution case and on a real study case in the Newport Bay Watershed, California. The Soil and Water Assessment Tool (SWAT) and Differential Evolution Adaptive Metropolis (DREAM(ZS)) were used as the representative WWQ model and MCMC algorithm, respectively. The major findings include the following: (1) the BAIPU can be implemented and used to appropriately identify the uncertain parameters and characterize the predictive uncertainty; (2) the compensation effect between the input and parametric uncertainties can seriously mislead the modeling based management decisions, if the input uncertainty is not explicitly accounted for; (3) the BAIPU accounts for the interaction between the input and parametric uncertainties and therefore provides more accurate calibration and uncertainty results than a sequential analysis of the uncertainties; and (4) the BAIPU quantifies the credibility of different input assumptions on a statistical basis and can be implemented as an effective inverse modeling approach to the joint inference of parameters and inputs.

  2. The potential estimation and factor analysis of China′s energy conservation on thermal power industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Yang, Lisha

    2013-01-01

    At present, researches about energy conservation are focused on prediction. But there are few researches focused on the estimation of effective input and energy conservation potential, and there has been even no research on energy conservation of thermal power industry of China. This paper will try to fill in such a blank. Panel data on Chinese thermal power industry over 2005–2010 are established, and we adopt the stochastic frontier analysis approach to estimate the energy saving potential of thermal power industry. The results are as follows: (1) the average efficiency of energy inputs in China′s thermal power industry over 2005–2010 was about 0.85, and cumulative energy saving potential equals to 551.04 (Mtce); (2) by improving the non-efficiency factors, the relatively backward inland cities could achieve higher energy saving in thermal power industry; (3) the energy input efficiency of Eastern China Grid is shown to be the highest; (4) in order to realize the energy-saving goal of thermal power industry, one important policy method the government should adopt is to conduct a market-oriented reform in power industry and break the state-owned monopoly to provide incentives for private and foreign direct investment in thermal power sector. -- Highlights: •We adopt SFA model to estimate the coal input efficiency of power sector in China. •We calculate the cumulative energy saving potential equals to 551.04 Mtce. •East China power grid has the highest energy input efficiency. •Some backward inland cities may be the main force for future energy conservation. •Encourage private and foreign direct investment in power sector might be effective

  3. Development and operation of K-URT data input system

    International Nuclear Information System (INIS)

    Kim, Yun Jae; Myoung, Noh Hoon; Kim, Jong Hyun; Han, Jae Jun

    2010-05-01

    Activities for TSPA(Total System Performance Assessment) on the permanent disposal of high level radioactive waste includes production of input data, safety assessment using input data, license procedure and others. These activities are performed in 5 steps as follows; (1) Adequate planning, (2) Controlled execution, (3) Complete documentation, (4) Thorough review, (5) Independent oversight. For the confidence building, it is very important to record and manage the materials obtained from research works in transparency. For the documentation of disposal research work from planning stage to data management stage, KAERI developed CYPRUS named CYBER R and D Platform for Radwaste Disposal in Underground System with a QA(Quality Assurance) System. In CYPRUS, QA system makes effects on other functions such as data management, project management and others. This report analyzes the structure of CYPRUS and proposes to accumulate qualified data, to provide a convenient application and to promote access and use of CYPRUS for a future-oriented system

  4. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rasmuson; K. Rautenstrauch

    2004-09-14

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.

  5. Agricultural and Environmental Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rasmuson; K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters

  6. Semidefinite Relaxation-Based Optimization of Multiple-Input Wireless Power Transfer Systems

    Science.gov (United States)

    Lang, Hans-Dieter; Sarris, Costas D.

    2017-11-01

    An optimization procedure for multi-transmitter (MISO) wireless power transfer (WPT) systems based on tight semidefinite relaxation (SDR) is presented. This method ensures physical realizability of MISO WPT systems designed via convex optimization -- a robust, semi-analytical and intuitive route to optimizing such systems. To that end, the nonconvex constraints requiring that power is fed into rather than drawn from the system via all transmitter ports are incorporated in a convex semidefinite relaxation, which is efficiently and reliably solvable by dedicated algorithms. A test of the solution then confirms that this modified problem is equivalent (tight relaxation) to the original (nonconvex) one and that the true global optimum has been found. This is a clear advantage over global optimization methods (e.g. genetic algorithms), where convergence to the true global optimum cannot be ensured or tested. Discussions of numerical results yielded by both the closed-form expressions and the refined technique illustrate the importance and practicability of the new method. It, is shown that this technique offers a rigorous optimization framework for a broad range of current and emerging WPT applications.

  7. Streamwater fluxes of total mercury and methylmercury into and out of Lake Champlain

    International Nuclear Information System (INIS)

    Shanley, James B.; Chalmers, Ann T.

    2012-01-01

    From 2000 to 2004, we sampled for total mercury (THg) and methylmercury (MeHg) in inlet streams to Lake Champlain, targeting high flow periods to capture increases in THg and MeHg concentrations with increasing flow. We used these data to model stream THg and MeHg fluxes for Water Years 2001 through 2009. In this mountainous forested basin with a high watershed-to-lake area ratio of 18, fluvial export from the terrestrial watershed was the dominant source of Hg to the lake. Unfiltered THg and MeHg fluxes were dominated by the particulate fraction; about 40% of stream THg was in the filtered ( −2 yr −1 , or about 13% of atmospheric Hg wet and dry deposition to the basin. THg export from the lake represented only about 3% of atmospheric Hg input to the basin. - Highlights: ► We monitored total mercury and methylmercury in major tributaries to Lake Champlain. ► Mercury and methylmercury export was primarily as particulates during high flow. ► Only 13% of atmospheric total mercury input reached the lake via streams. ► Only 3% of atmospheric total mercury input reached the lake outlet. - Eighty-seven percent of total mercury deposition to the Lake Champlain basin is retained in the terrestrial basin; stream export of total and methylmercury to the lake is primarily in the particulate phase.

  8. Language input and acquisition in a Mayan village: how important is directed speech?

    Science.gov (United States)

    Shneidman, Laura A; Goldin-Meadow, Susan

    2012-09-01

    Theories of language acquisition have highlighted the importance of adult speakers as active participants in children's language learning. However, in many communities children are reported to be directly engaged by their caregivers only rarely (Lieven, 1994). This observation raises the possibility that these children learn language from observing, rather than participating in, communicative exchanges. In this paper, we quantify naturally occurring language input in one community where directed interaction with children has been reported to be rare (Yucatec Mayan). We compare this input to the input heard by children growing up in large families in the United States, and we consider how directed and overheard input relate to Mayan children's later vocabulary. In Study 1, we demonstrate that 1-year-old Mayan children do indeed hear a smaller proportion of total input in directed speech than children from the US. In Study 2, we show that for Mayan (but not US) children, there are great increases in the proportion of directed input that children receive between 13 and 35 months. In Study 3, we explore the validity of using videotaped data in a Mayan village. In Study 4, we demonstrate that word types directed to Mayan children from adults at 24 months (but not word types overheard by children or word types directed from other children) predict later vocabulary. These findings suggest that adult talk directed to children is important for early word learning, even in communities where much of children's early language input comes from overheard speech. © 2012 Blackwell Publishing Ltd.

  9. Feedback-linearization and feedback-feedforward decentralized control for multimachine power system

    Energy Technology Data Exchange (ETDEWEB)

    De Tuglie, Enrico [Dipartimento di Ingegneria dell' Ambiente, e per lo Sviluppo Sostenibile - DIASS, Politecnico di Bari, Viale del Turismo 8, 74100 Taranto (Italy); Iannone, Silvio Marcello; Torelli, Francesco [Dipartimento di Elettrotecnica, ed Elettronica - DEE, Politecnico di Bari, Via Re David 200, 70125 Bari (Italy)

    2008-03-15

    In this paper a decentralized nonlinear controller for large-scale power systems is investigated. The proposed controller design is based on the input-output feedback linearization methodology. In order to overcome computational difficulties in adopting such methodology, the overall interconnected nonlinear system, given as n-order, is analyzed as a cascade connection of an n{sub 1}-order nonlinear subsystem and an n{sub 2}-order linear subsystem. The controller design is obtained by applying input-output feedback linearization to the nonlinear subsystem and adopting a tracking control scheme, based on feedback-feedforward technique, for the linear subsystem. In the assumed system model, which is characterised by an interconnected structure between generating units, a decentralised adaptive controller is implemented by decentralizing these constraints. The use of a totally decentralised controller implies a system performance decay with respect to performance when the system is equipped with a centralised controller. Fortunately, the robustness of the proposed controller, based on input-output feedback procedure, guarantees good performance in terms of disturbance even when disturbances are caused by decentralization of interconnection constraints. Test results, provided on the IEEE 30 bus test system, demonstrate the effectiveness and practical applicability of proposed methodology. (author)

  10. High-Power Laser Cutting of Steel Plates: Heat Affected Zone Analysis

    Directory of Open Access Journals (Sweden)

    Imed Miraoui

    2016-01-01

    Full Text Available The thermal effect of CO2 high-power laser cutting on cut surface of steel plates is investigated. The effect of the input laser cutting parameters on the melted zone depth (MZ, the heat affected zone depth (HAZ, and the microhardness beneath the cut surface is analyzed. A mathematical model is developed to relate the output process parameters to the input laser cutting parameters. Three input process parameters such as laser beam diameter, cutting speed, and laser power are investigated. Mathematical models for the melted zone and the heat affected zone depth are developed by using design of experiment approach (DOE. The results indicate that the input laser cutting parameters have major effect on melted zone, heat affected zone, and microhardness beneath cut surface. The MZ depth, the HAZ depth, and the microhardness beneath cut surface increase as laser power increases, but they decrease with increasing cutting speed. Laser beam diameter has a negligible effect on HAZ depth but it has a remarkable effect on MZ depth and HAZ microhardness. The melted zone depth and the heat affected zone depth can be reduced by increasing laser cutting speed and decreasing laser power and laser beam diameter.

  11. Piezoelectric power converter with bi-directional power transfer

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a bi-directional piezoelectric power converter com¬ prising a piezoelectric transformer. The piezoelectric transformer comprises an input electrode electrically coupled to a primary section of the piezoelectric transformer and an output electrode electrically...... coupled to an output section of the piezoelectric transformer to provide a transformer output signal. A bi-directional switching circuit is coupled between the output electrode and a DC or AC output voltage of the power converter. Forward and reverse current conducting periods of the bi......, a reverse current is conducted through the bi-directional switching circuit from the DC or AC output voltage to the output electrode to discharge the DC or AC output voltage and return power to the primary section of the piezoelectric transformer....

  12. 7 CFR 3430.607 - Stakeholder input.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION... § 3430.607 Stakeholder input. CSREES shall seek and obtain stakeholder input through a variety of forums...

  13. Shifting and power sharing control of a novel dual input clutchless transmission for electric vehicles

    Science.gov (United States)

    Liang, Jiejunyi; Yang, Haitao; Wu, Jinglai; Zhang, Nong; Walker, Paul D.

    2018-05-01

    To improve the overall efficiency of electric vehicles and guarantee the driving comfort and vehicle drivability under the concept of simplifying mechanism complexity and minimizing manufacturing cost, this paper proposes a novel clutchless power-shifting transmission system with shifting control strategy and power sharing control strategy. The proposed shifting strategy takes advantage of the transmission architecture to achieve power-on shifting, which greatly improves the driving comfort compared with conventional automated manual transmission, with a bump function based shifting control method. To maximize the overall efficiency, a real-time power sharing control strategy is designed to solve the power distribution problem between the two motors. Detailed mathematical model is built to verify the effectiveness of the proposed methods. The results demonstrate the proposed strategies considerably improve the overall efficiency while achieve non-interrupted power-on shifting and maintain the vehicle jerk during shifting under an acceptable threshold.

  14. Power oscillation suppression by robust SMES in power system with large wind power penetration

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai; Cuk Supriyadi, A.N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions

  15. Power oscillation suppression by robust SMES in power system with large wind power penetration

    Science.gov (United States)

    Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.

  16. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary

    Energy Technology Data Exchange (ETDEWEB)

    Sadat-Noori, Mahmood, E-mail: mahmood.sadat-noori@scu.edu.au [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia); Santos, Isaac R. [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); Tait, Douglas R. [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia); Maher, Damien T. [School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia)

    2016-10-01

    The role of groundwater in transporting nutrients to coastal aquatic systems has recently received considerable attention. However, the relative importance of fresh versus saline groundwater-derived nutrient inputs to estuaries and how these groundwater pathways may alter surface water N:P ratios remains poorly constrained. We performed detailed time series measurements of nutrients in a tidal estuary (Hat Head, NSW, Australia) and used radium to quantify the contribution of fresh and saline groundwater to total surface water estuarine exports under contrasting hydrological conditions (wet and dry season). Tidally integrated nutrient fluxes showed that the estuary was a source of nutrients to the coastal waters. Dissolved inorganic nitrogen (DIN) export was 7-fold higher than the average global areal flux rate for rivers likely due to the small catchment size, surrounding wetlands and high groundwater inputs. Fresh groundwater discharge was dominant in the wet season accounting for up to 45% of total dissolved nitrogen (TDN) and 48% of total dissolved phosphorus (TDP) estuarine exports. In the dry season, fresh and saline groundwater accounted for 21 and 33% of TDN export, respectively. The combined fresh and saline groundwater fluxes of NO{sub 3}, PO{sub 4}, NH{sub 4}, DON, DOP, TDN and TDP were estimated to account for 66, 58, 55, 31, 21, 53 and 47% of surface water exports, respectively. Groundwater-derived nitrogen inputs to the estuary were responsible for a change in the surface water N:P ratio from typical N-limiting conditions to P-limiting as predicted by previous studies. This shows the importance of both fresh and saline groundwater as a source of nutrients for coastal productivity and nutrient budgets of coastal waters. - Highlights: • Groundwater TDN and TDP fluxes account for 53 and 47% of surface water exports. • The estuary DIN export was 7-fold higher than the average global areal flux. • Fresh GW nutrient input dominated the wet season and

  17. Market power behaviour in the danish food marketing chain

    DEFF Research Database (Denmark)

    Jensen, Jørgen Dejgård

    2009-01-01

    The paper presents and demonstrates an econometric approach to analysing food industry firms' market pricing behaviour within the framework of translog cost functions and based on firm-level accounts panel data. The study identifies effects that can be interpreted as firms' market power behaviour...... in output or input markets. The most robust indications of market power behaviour in output markets are found in the pork and poultry processing sectors, as well as for firms in the bakeries sector. On the other hand, the most robust market power behaviour indications regarding input markets are found...... for poultry processing. In general, the patterns with regard to market power behaviour seem to be more clearly identified in the processing sectors than in the distribution sectors....

  18. The structures of energy consumption and emissions into air in Finnish economy in 1990. An input-output analysis

    International Nuclear Information System (INIS)

    Maeenpaeae, I.; Tervo, H.

    1994-01-01

    The structures of utilization of primary energy, final consumption of electricity, and the main emissions into the air in Finnish economy in 1990 have been derived in this report on the basis of input-output analysis. By using an input-output model it is possible to calculate what is the productional content of different products, i.e. how much in total, directly or indirectly, work of different fields of production is needed for production of commodities. Energy and emissions into air can be assumed as basic inputs of the production. By using input-output analysis it is possible to follow up how the energy inputs and emissions of different branches are bound into commodity flows of economy. Hence a systematic and expiring figure is obtained of energy and emission contents of different branches. The basic matrix for calculation of primary energy and emission coefficients of different branches are made in the chapter no. 2. The formulae for calculation of the energy and emission contents of commodities are derived from common basic formulae of input-output analysis in the chapter no. 3. The branch-based energy and emission coefficients of commodities are presented in the chapter no. 4. The energies bound into household commodities and emissions into the air are presented in the chapter no. 5. The total presentation of the Finnish national product, the gross national product and the energy and emission contents of the main commodities is made in the chapter no. 6. (11 refs.)

  19. World Input-Output Network.

    Directory of Open Access Journals (Sweden)

    Federica Cerina

    Full Text Available Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD is one of the first efforts to construct the global multi-regional input-output (GMRIO tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries.

  20. Scale-up from shake flasks to bioreactor, based on power input and Streptomyces lividans morphology, for the production of recombinant APA (45/47 kDa protein) from Mycobacterium tuberculosis.

    Science.gov (United States)

    Gamboa-Suasnavart, Ramsés A; Marín-Palacio, Luz D; Martínez-Sotelo, José A; Espitia, Clara; Servín-González, Luis; Valdez-Cruz, Norma A; Trujillo-Roldán, Mauricio A

    2013-08-01

    Culture conditions in shake flasks affect filamentous Streptomyces lividans morphology, as well the productivity and O-mannosylation of recombinant Ala-Pro-rich O-glycoprotein (known as the 45/47 kDa or APA antigen) from Mycobacterium tuberculosis. In order to scale up from previous reported shake flasks to bioreactor, data from the literature on the effect of agitation on morphology of Streptomyces strains were used to obtain gassed volumetric power input values that can be used to obtain a morphology of S. lividans in bioreactor similar to the morphology previously reported in coiled/baffled shake flasks by our group. Morphology of S. lividans was successfully scaled-up, obtaining similar mycelial sizes in both scales with diameters of 0.21 ± 0.09 mm in baffled and coiled shake flasks, and 0.15 ± 0.01 mm in the bioreactor. Moreover, the specific growth rate was successfully scaled up (0.09 ± 0.02 and 0.12 ± 0.01 h(-1), for bioreactors and flasks, respectively), and the recombinant protein productivity measured by densitometry, as well. More interestingly, the quality of the recombinant glycoprotein measured as the amount of mannoses attached to the C-terminal of APA was also scaled- up; with up to five mannose residues in cultures carried out in shake flasks; and six in the bioreactor. However, final biomass concentration was not similar, indicating that although the process can be scaled-up using the power input, others factors like oxygen transfer rate, tip speed or energy dissipation/circulation function can be an influence on bacterial metabolism.

  1. Coupled-Inductor-Based Aalborg Inverter With Input DC Energy Regulation

    DEFF Research Database (Denmark)

    Wang, Houqing; Wu, Weimin; Chung, Henry Shu-hung

    2018-01-01

    Due to the global environmental issues and energy crisis, the injection of renewable energy sources (RESs) into the power system is continuously increasing. As the interface between RESs and power grid, grid-tied inverters using MOSFET switches, without traditional line frequency transformers, show...... some potential advantages, in terms of low cost, high efficiency, and lightweight and small size. Among several proposed configurations, the Aalborg inverter was proposed as a new family of high efficiency MOSFET-switch-based hybrid source inverters. For a conventional “half bridge” type Aalborg...... inverter, due to the imbalance of two independent dc sources, the input dc energies may not be fully utilized, which may reduce the efficiency of whole system. In order to extract the maximum energy from two independent dc sources, a coupled-inductor-based “half bridge” type Aalborg inverter is proposed...

  2. Input-Independent Energy Harvesting in Bistable Lattices from Transition Waves.

    Science.gov (United States)

    Hwang, Myungwon; Arrieta, Andres F

    2018-02-26

    We demonstrate the utilisation of transition waves for realising input-invariant, frequency-independent energy harvesting in 1D lattices of bistable elements. We propose a metamaterial-inspired design with an integrated electromechanical transduction mechanism to the unit cell, rendering the power conversion capability an intrinsic property of the lattice. Moreover, focusing of transmitted energy to desired locations is demonstrated numerically and experimentally by introducing engineered defects in the form of perturbation in mass or inter-element forcing. We achieve further localisation of energy and numerically observe a breather-like mode for the first time in this type of lattice, improving the harvesting performance by an order of magnitude. Our approach considers generic bistable unit cells and thus provides a universal mechanism to harvest energy and realise metamaterials effectively behaving as a capacitor and power delivery system.

  3. Self-oscillating loop based piezoelectric power converter

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a piezoelectric power converter comprising an input driver electrically coupled directly to an input or primary electrode of the piezoelectric transformer without any intervening series or parallel inductor. A feedback loop is operatively coupled between an output......- oscillation loop within a zero-voltage-switching (ZVS) operation range of the piezoelectric transformer....

  4. 7 CFR 3430.15 - Stakeholder input.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Stakeholder input. 3430.15 Section 3430.15... Stakeholder input. Section 103(c)(2) of the Agricultural Research, Extension, and Education Reform Act of 1998... RFAs for competitive programs. CSREES will provide instructions for submission of stakeholder input in...

  5. Analysis of North Sea Offshore Wind Power Variability

    NARCIS (Netherlands)

    Buatois, A.; Gibescu, M.; Rawn, B.G.; Van der Meijden, M.A.M.M.

    2014-01-01

    This paper evaluates, for a 2030 scenario, the impact on onshore power systems in terms of the variability of the power generated by 81 GW of offshore wind farms installed in the North Sea. Meso-scale reanalysis data are used as input for computing the hourly power production for offshore wind

  6. High-performance nanostructured thermoelectric generators for micro combined heat and power systems

    International Nuclear Information System (INIS)

    Zhang, Yanliang; Wang, Xiaowei; Cleary, Martin; Schoensee, Luke; Kempf, Nicholas; Richardson, Joseph

    2016-01-01

    Highlights: • A TEG is fabricated using high-efficiency nanostructured thermoelectric materials. • The TEG produces high power density of 2.1 W/cm"2 with 5.3% electrical efficiency. • A micro-CHP system is demonstrated by integrating the TEG into a gas-fired boiler. - Graphical Abstract: - Abstract: Micro combined heat and power (micro-CHP) systems are promising pathways to increase power generation efficiencies. Here a new class of micro-CHP system without moving parts is experimentally demonstrated by integrating high-temperature thermoelectric generators (TEGs) and residential gas-fired boilers, thus enabling wide applications. The TEGs fabricated using high-efficiency nanostructured bulk half-Heusler alloys generate ultrahigh power density of 2.1 W/cm"2 with 5.3% electrical efficiency under 500 °C temperature differences between the hot and cold sides. The TEG system harnesses the untapped exergy between the combustion gas and water, and converts thermal energy into electric power with 4% heat-to-electricity efficiency based on the total heat input into the TEGs. The high-performance TEGs open lots of opportunities to transform power generation technologies and improve energy efficiency.

  7. DAIRY DEREGULATION AND LOW-INPUT DAIRY PRODUCTION: A BIOECONOMIC EVALUATION

    OpenAIRE

    Tozer, Peter R.; Huffaker, Ray G.

    1999-01-01

    Deregulation of the Australian dairy industry could affect the utilization of resources by milk producers and the profitability of dairy production. In this study we examine the feed mix that dairy producers use, both pastures and supplements, under partial and total deregulation. We are particularly interested in the interaction of pasture utilization and farm profitability. The results of this research demonstrate that profitable low-input dairy is constrained by the most limiting resource,...

  8. Input description for BIOPATH

    International Nuclear Information System (INIS)

    Marklund, J.E.; Bergstroem, U.; Edlund, O.

    1980-01-01

    The computer program BIOPATH describes the flow of radioactivity within a given ecosystem after a postulated release of radioactive material and the resulting dose for specified population groups. The present report accounts for the input data necessary to run BIOPATH. The report also contains descriptions of possible control cards and an input example as well as a short summary of the basic theory.(author)

  9. Do microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?

    Science.gov (United States)

    Zhang, ZhiJian; Li, HongYi; Hu, Jiao; Li, Xia; He, Qiang; Tian, GuangMing; Wang, Hang; Wang, ShunYao; Wang, Bei

    2015-04-01

    Ecological stoichiometry provides a powerful tool for integrating microbial biomass stoichiometry with ecosystem processes, opening far-reaching possibilities for linking microbial dynamics to soil carbon (C) metabolism in response to agricultural nutrient management. Despite its importance to crop yield, the role of phosphorus (P) with respect to ecological stoichiometry and soil C sequestration in paddy fields remains poorly understood, which limits our ability to predict nutrient-related soil C cycling. Here, we collected soil samples from a paddy field experiment after seven years of superphosphate application along a gradient of 0, 30, 60, and 90 (P-0 through P-90, respectively) kg.ha-1.yr-1 in order to evaluate the role of exogenous P on soil C sequestration through regulating microbial stoichiometry. P fertilization increased soil total organic C and labile organic C by 1-14% and 4-96%, respectively, while rice yield is a function of the activities of soil β-1,4-glucosidase (BG), acid phosphatase (AP), and the level of available soil P through a stepwise linear regression model. P input induced C limitation, as reflected by decreases in the ratios of C:P in soil and microbial biomass. An eco-enzymatic ratio indicating microbial investment in C vs. P acquisition, i.e., ln(BG): ln(AP), changed the ecological function of microbial C acquisition, and was stoichiometrically related to P input. This mechanism drove a shift in soil resource availability by increasing bacterial community richness and diversity, and stimulated soil C sequestration in the paddy field by enhancing C-degradation-related bacteria for the breakdown of plant-derived carbon sources. Therefore, the decline in the C:P stoichiometric ratio of soil microorganism biomass under P input was beneficial for soil C sequestration, which offered a "win-win" relationship for the maximum balance point between C sequestration and P availability for rice production in the face of climate change.

  10. Peak power ratio generator

    Science.gov (United States)

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  11. Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5.

    Science.gov (United States)

    Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan

    2017-07-12

    An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.

  12. Cost Savings of Nuclear Power with Total Fuel Reprocessing

    International Nuclear Information System (INIS)

    Solbrig, Charles W.; Benedict, Robert W.

    2006-01-01

    The cost of fast reactor (FR) generated electricity with pyro-processing is estimated in this article. It compares favorably with other forms of energy and is shown to be less than that produced by light water reactors (LWR's). FR's use all the energy in natural uranium whereas LWR's utilize only 0.7% of it. Because of high radioactivity, pyro-processing is not open to weapon material diversion. This technology is ready now. Nuclear power has the same advantage as coal power in that it is not dependent upon a scarce foreign fuel and has the significant additional advantage of not contributing to global warming or air pollution. A jump start on new nuclear plants could rapidly allow electric furnaces to replace home heating oil furnaces and utilize high capacity batteries for hybrid automobiles: both would reduce US reliance on oil. If these were fast reactors fueled by reprocessed fuel, the spent fuel storage problem could also be solved. Costs are derived from assumptions on the LWR's and FR's five cost components: 1) Capital costs: LWR plants cost $106/MWe. FR's cost 25% more. Forty year amortization is used. 2) The annual O and M costs for both plants are 9% of the Capital Costs. 3) LWR fuel costs about 0.0035 $/kWh. Producing FR fuel from spent fuel by pyro-processing must be done in highly shielded hot cells which is costly. However, the five foot thick concrete walls have the advantage of prohibiting diversion. LWR spent fuel must be used as feedstock for the FR initial core load and first two reloads so this FR fuel costs more than LWR fuel. FR fuel costs much less for subsequent core reloads ( 6 /MWe. The annual cost for a 40 year licensed plant would be 2.5 % of this or less if interest is taken into account. All plants will eventually have to replace those components which become radiation damaged. FR's should be designed to replace parts rather than decommission. The LWR costs are estimated to be 2.65 cents/kWh. FR costs are 2.99 cents/kWh for the first

  13. Power program and nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Yu.F.

    1990-01-01

    Main points of the USSR power program and the role of nuclear power in fuel and power complex of the country are considered. Data on dynamics of economic indices of electric power generation at nuclear power plants during 1980-1988 and forecasts till 2000 are presented. It is shown that real cost of 1 kW/h of electric power is equal to 1.3-1.8 cop., and total reduced cost is equal to 1.8-2.4 cop

  14. Reactor power control device

    International Nuclear Information System (INIS)

    Ishii, Yoshihiko; Arita, Setsuo; Miyamoto, Yoshiyuki; Fukazawa, Yukihisa; Ishii, Kazuhiko

    1998-01-01

    The present invention provides a reactor power control device capable of enhancing an operation efficiency while keeping high reliability and safety in a BWR type nuclear power plant. Namely, the device of the present invention comprises (1) a means for inputting a set value of a generator power and a set value of a reactor power, (2) a means for controlling the reactor power to either smaller one of the reactor power corresponding to the set value of the generator power and the set value of the reactor power. With such procedures, even if the nuclear power plant is set so as to operate it to make the reactor power 100%, when the generator power reaches the upper limit, the reactor power is controlled with a preference given to the upper limit value of the generator power. Accordingly, safety and reliability are not deteriorated. The operation efficiency of the plant can be improved. (I.S.)

  15. Socio-economic effects and benefits of biofuels in power and heat generation

    International Nuclear Information System (INIS)

    Turkki, J.

    1999-10-01

    This report studies the socioeconomic effects and benefits of domestic fuels - peat and wood and agricultural energy plants also - in power and heat generation. For evaluation of the employment and income effects, it compares the costs of domestic as well as imported fuels as regards to production, transportation and power stations by looking especially at the direct labour input and inputs in terms of intermediate products and investment. Their indirect employment effects and allocation to domestic factor income and imports are introduced by means of an input-output model. The net changes in the disposable incomes of local households, firms and municipalities, the government and other are derived from factor incomes by means of income redistribution. If in heat generation 15 MW oil heating plant is replaced by a peat heating plant, the annual local employment increases by 8 man years. If the fuel used is wood, employment increases by 9 man-years. The disposable income of the local economy rises annually about FIM 0,8 million with the peat alternative and FIM 0,9 million with the wood alternative. Although with the domestic fuel alternatives the income tax revenue grows and the unemployment security payments decrease, the loss of the high fuel taxes collected on oil means however, that the government is netloser by FIM 0,8-1,4 million annually. The total annual import bill decreases both with peat and wood by FIM 2,5 million respectively. Calculated by a small-sized 3/9 MW cogeneration station, which in heat generation replaces oil heating plants and in power generation replaces coal condensation power, the annual local employment effect is 11 man-years with peat and 12 with food fuel. The local economy gain an annual net income of FIM 0,8-0,9 million. The net increase of the government is FIM 0,1 million annually. With the wood alternative the government is a net looser by FIM 0,2 million. The annual import bill decreases by FIM 2,3-2,5 million. (orig.)

  16. High power factor, fixed frequency, three-phase AC/CC converter which uses a single power processing stage; Conversor CA/CC, trifasico, com alto fator de potencia, frequencia fixa, empregando um unico estagio de processamento de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Davila, Jose Gregorio Contreras

    1993-11-01

    This paper introduces a new switching mode power supply with the following properties: zero-voltage switching, pulse-width modulation at constant frequency, three-phase input with power factor and low input current distortion, using a simple power stage. The converter is designed in a manner that the input current harmonic content is reduced naturally. Circuit-operation, theoretical analysis, simulation, design procedure and example are presented. A laboratory prototype rated at 3 kW and operating at 100 Khz, has been fabricated and tested successfully. (author) 15 refs., 75 figs.

  17. Modeling and generating input processes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.E.

    1987-01-01

    This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.

  18. Single-stage unity power factor based electronic ballast

    Indian Academy of Sciences (India)

    This paper deals with the design, modeling, analysis and implementation of unity power factor (UPF) based electronic ballast for a fluorescent lamp (FL). The proposed electronic ballast uses a boost AC–DC converter as a power factor corrector (PFC) to improve the power quality at the input ac mains. In this singlestage ...

  19. Mercury emission and speciation of coal-fired power plants in China

    Directory of Open Access Journals (Sweden)

    S. X. Wang

    2010-02-01

    Full Text Available Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR, electrostatic precipitators (ESP, and flue gas desulfurization (FGD using the Ontario Hydro Method (OHM. The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92–27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66–94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  20. Development of an Input Model to MELCOR 1.8.5 for the Ringhals 3 PWR

    International Nuclear Information System (INIS)

    Nilsson, Lars

    2004-12-01

    An input file to the severe accident code MELCOR 1.8.5 has been developed for the Swedish pressurized water reactor Ringhals 3. The aim was to produce a file that can be used for calculations of various postulated severe accident scenarios, although the first application is specifically on cases involving large hydrogen production. The input file is rather detailed with individual modelling of all three cooling loops. The report describes the basis for the Ringhals 3 model and the input preparation step by step and is illustrated by nodalization schemes of the different plant systems. Present version of the report is restricted to the fundamental MELCOR input preparation, and therefore most of the figures of Ringhals 3 measurements and operating parameters are excluded here. These are given in another, complete version of the report, for limited distribution, which includes tables for pertinent data of all components. That version contains appendices with a complete listing of the input files as well as tables of data compiled from a RELAP5 file, that was a major basis for the MELCOR input for the cooling loops. The input was tested in steady-state calculations in order to simulate the initial conditions at current nominal operating conditions in Ringhals 3 for 2775 MW thermal power. The results of the steady-state calculations are presented in the report. Calculations with the MELCOR model will then be carried out of certain accident sequences for comparison with results from earlier MAAP4 calculations. That work will be reported separately

  1. Low Power Shutdown PSA for CANDU Type Plants

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yeon Kyoung; Kim, Myung Su [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    KHNP also have concentrated on full power PSA. Some recently constructed OPR1000 type plants and APR1400 type plants have performed the low power and shutdown (LPSD) PSA. The purpose of LPSD PSA is to identify the main contributors on the accident sequences of core damage and to find the measure of safety improvement. After the Fukushima accident, Korean regulatory agency required the shutdown severe accident management guidelines (SSAMG) development for safety enhancement. For the reliability of SSAMG, KHNP should develop the LPSD PSA. Especially, the LPSD PSA for CANDU type plant had developed for the first time in Korea. This paper illustrates how the LPSD PSA for CANDU type developed and the core damage frequency (CDF) is different with that of full power PSA. KHNP performed LPSD PSA to develop the SSAMG after the Fukushima accidents. The results show that risk at the specific operation mode during outage is higher than that of full power operation. Also, the results indicated that recovery failure of class 4 power at the POS 5A, 5B contribute dominantly to the total CDF from importances analysis. LPSD PSA results such as CDF with initiating events and POSs, risk results with plant damage state, and containment failure probability and frequency with POSs can be used by inputs for developing the SSAMG.

  2. An 8–18 GHz broadband high power amplifier

    International Nuclear Information System (INIS)

    Wang Lifa; Yang Ruixia; Li Yanlei; Wu Jingfeng

    2011-01-01

    An 8–18 GHz broadband high power amplifier (HPA) with a hybrid integrated circuit (HIC) is designed and fabricated. This HPA is achieved with the use of a 4-fingered micro-strip Lange coupler in a GaAs MMIC process. In order to decrease electromagnetic interference, a multilayer AlN material with good heat dissipation is adopted as the carrier of the power amplifier. When the input power is 25 dBm, the saturated power of the continuous wave (CW) outputted by the power amplifier is more than 39 dBm within the frequency range of 8–13 GHz, while it is more than 38.6 dBm within other frequency ranges. We obtain the peak power output, 39.4 dBm, at the frequency of 11.9 GHz. In the whole frequency band, the power-added efficiency is more than 18%. When the input power is 18 dBm, the small signal gain is 15.7 ± 0.7 dB. The dimensions of the HPA are 25 × 15 × 1.5 mm 3 . (semiconductor integrated circuits)

  3. Wave energy input into the Ekman layer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper is concerned with the wave energy input into the Ekman layer, based on 3 observational facts that surface waves could significantly affect the profile of the Ekman layer. Under the assumption of constant vertical diffusivity, the analytical form of wave energy input into the Ekman layer is derived. Analysis of the energy balance shows that the energy input to the Ekman layer through the wind stress and the interaction of the Stokes-drift with planetary vorticity can be divided into two kinds. One is the wind energy input, and the other is the wave energy input which is dependent on wind speed, wave characteristics and the wind direction relative to the wave direction. Estimates of wave energy input show that wave energy input can be up to 10% in high-latitude and high-wind speed areas and higher than 20% in the Antarctic Circumpolar Current, compared with the wind energy input into the classical Ekman layer. Results of this paper are of significance to the study of wave-induced large scale effects.

  4. Optimal input shaping for Fisher identifiability of control-oriented lithium-ion battery models

    Science.gov (United States)

    Rothenberger, Michael J.

    This dissertation examines the fundamental challenge of optimally shaping input trajectories to maximize parameter identifiability of control-oriented lithium-ion battery models. Identifiability is a property from information theory that determines the solvability of parameter estimation for mathematical models using input-output measurements. This dissertation creates a framework that exploits the Fisher information metric to quantify the level of battery parameter identifiability, optimizes this metric through input shaping, and facilitates faster and more accurate estimation. The popularity of lithium-ion batteries is growing significantly in the energy storage domain, especially for stationary and transportation applications. While these cells have excellent power and energy densities, they are plagued with safety and lifespan concerns. These concerns are often resolved in the industry through conservative current and voltage operating limits, which reduce the overall performance and still lack robustness in detecting catastrophic failure modes. New advances in automotive battery management systems mitigate these challenges through the incorporation of model-based control to increase performance, safety, and lifespan. To achieve these goals, model-based control requires accurate parameterization of the battery model. While many groups in the literature study a variety of methods to perform battery parameter estimation, a fundamental issue of poor parameter identifiability remains apparent for lithium-ion battery models. This fundamental challenge of battery identifiability is studied extensively in the literature, and some groups are even approaching the problem of improving the ability to estimate the model parameters. The first approach is to add additional sensors to the battery to gain more information that is used for estimation. The other main approach is to shape the input trajectories to increase the amount of information that can be gained from input

  5. Characterization of high power flashlamps and application to Nd:glass laser pumping

    International Nuclear Information System (INIS)

    Powell, H.T.; Erlandson, A.C.; Jancaitis, K.S.

    1986-01-01

    Detailed spectral and temporal measurements of the output radiation from Xe flashlamps are reported together with their use in predicting the pumping efficiency of Nd-doped laser glass. We have made absolute spectral-intensity measurements for 0.5, 1.5, and 4.2-cm-bore flashlamps for input powers ranging from 5 to 90 kW/cm 2 and pulselengths of 600 μs. Under quasi-stationary conditions these flashlamps emit essentially identical spectra when excited at equal input power per unit-area of the bore. This behavior is characteristic of an optically-thick radiator although it is not completely clear why flashlamps should behave this way. A simple model is also described which accounts for the transient response of flashlamps by characterizing the output spectra and radiation efficiencies in terms of the radiant output power rather than the electrical input power. 23 refs., 16 figs

  6. Active Power Factor Correction Using a Sliding Mode Controller

    Directory of Open Access Journals (Sweden)

    Korhan KAYIŞLI

    2008-03-01

    Full Text Available In this paper, a sliding mode controller is designed for active shaping of the input current in the boost converter. Robustness of the designed controller is tested with variable output voltage references, different loads and network voltage variations. For the simulations, MATLAB/Simulink programme is used. From simulation results, the same phase was provided between input current and input voltage and nearly unity power factor was obtained.

  7. Optimized Envelope Tracking Power Supply for Tetra2 Base Station RF Power Amplifier

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2008-01-01

    An ultra-fast tracking power supply (UFTPS) for envelope tracking in a 50kHz 64-QAM Tetra2 base station power amplification system is demonstrated. A simple method for optimizing the step response of the PID+PD sliding-mode control system is presented and demonstrated, along with a PLL-based scheme...... application. Also demonstrated is the effect of non-zero UFTPS output impedance on envelope tracking performance. At 13W average (156W peak) RF output, a reduction of DC input power consumption from 93W (14% efficiency) to 54W (24% efficiency) is obtained by moving from a fixed RF power amplifier supply...

  8. Development of Digital Control for High Power Permanent-Magnet Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Ming-Hung Chen

    2014-01-01

    Full Text Available This paper is concerned with the development of digital control system for high power permanent-magnet synchronous motor (PMSM to yield good speed regulation, low current harmonic, and stable output speed. The design of controller is conducted by digitizing the mathematical model of PMSM using impulse invariance technique. The predicted current estimator, which is insensitive to motor feedback currents, is proposed to function under stationary frame for harmonic current suppression. In the AC/DC power converter, mathematical model and dc-link voltage limit of the three-phase switch-mode rectifier are derived. In addition, a current controller under synchronous frame is introduced to reduce the current harmonics and increase the power factor on the input side. A digital control system for 75 kW PMSM is realized with digital signal processor (R5F5630EDDFP. Experimental results indicate that the total harmonic distortion of current is reduced from 4.1% to 2.8% for 50 kW output power by the proposed predicted current estimator technique.

  9. Using Bayes Model Averaging for Wind Power Forecasts

    Science.gov (United States)

    Preede Revheim, Pål; Beyer, Hans Georg

    2014-05-01

    For operational purposes predictions of the forecasts of the lumped output of groups of wind farms spread over larger geographic areas will often be of interest. A naive approach is to make forecasts for each individual site and sum them up to get the group forecast. It is however well documented that a better choice is to use a model that also takes advantage of spatial smoothing effects. It might however be the case that some sites tends to more accurately reflect the total output of the region, either in general or for certain wind directions. It will then be of interest giving these a greater influence over the group forecast. Bayesian model averaging (BMA) is a statistical post-processing method for producing probabilistic forecasts from ensembles. Raftery et al. [1] show how BMA can be used for statistical post processing of forecast ensembles, producing PDFs of future weather quantities. The BMA predictive PDF of a future weather quantity is a weighted average of the ensemble members' PDFs, where the weights can be interpreted as posterior probabilities and reflect the ensemble members' contribution to overall forecasting skill over a training period. In Revheim and Beyer [2] the BMA procedure used in Sloughter, Gneiting and Raftery [3] were found to produce fairly accurate PDFs for the future mean wind speed of a group of sites from the single sites wind speeds. However, when the procedure was attempted applied to wind power it resulted in either problems with the estimation of the parameters (mainly caused by longer consecutive periods of no power production) or severe underestimation (mainly caused by problems with reflecting the power curve). In this paper the problems that arose when applying BMA to wind power forecasting is met through two strategies. First, the BMA procedure is run with a combination of single site wind speeds and single site wind power production as input. This solves the problem with longer consecutive periods where the input data

  10. Testable, fault-tolerant power interface circuit for normally de-energized loads

    International Nuclear Information System (INIS)

    Hager, R.E.

    1987-01-01

    A power interface circuit is described for supplying power from a power line to a normally de-energized process control apparatus in a pressurized light water nuclear power system in dependence upon three input signals, comprising: voter means for supplying power to the normally de-energized load when at least two of the three input signals indicate that the normally de-energized load should be activated; a normally closed switch, operatively connected to the power line and the voter means, for supplying power to the voter means during ordinary operation; a first resistor operatively connected to the power line; a current detector operatively connected to the first resistor and the voter means; a second resistor operatively connected to the current detector and ground; and current sensor means, operatively connected between the voter means and the normally de-energized load, for detecting the power supplied to the normally de-energized load by the voter means

  11. Day-ahead load forecast using random forest and expert input selection

    International Nuclear Information System (INIS)

    Lahouar, A.; Ben Hadj Slama, J.

    2015-01-01

    Highlights: • A model based on random forests for short term load forecast is proposed. • An expert feature selection is added to refine inputs. • Special attention is paid to customers behavior, load profile and special holidays. • The model is flexible and able to handle complex load signal. • A technical comparison is performed to assess the forecast accuracy. - Abstract: The electrical load forecast is getting more and more important in recent years due to the electricity market deregulation and integration of renewable resources. To overcome the incoming challenges and ensure accurate power prediction for different time horizons, sophisticated intelligent methods are elaborated. Utilization of intelligent forecast algorithms is among main characteristics of smart grids, and is an efficient tool to face uncertainty. Several crucial tasks of power operators such as load dispatch rely on the short term forecast, thus it should be as accurate as possible. To this end, this paper proposes a short term load predictor, able to forecast the next 24 h of load. Using random forest, characterized by immunity to parameter variations and internal cross validation, the model is constructed following an online learning process. The inputs are refined by expert feature selection using a set of if–then rules, in order to include the own user specifications about the country weather or market, and to generalize the forecast ability. The proposed approach is tested through a real historical set from the Tunisian Power Company, and the simulation shows accurate and satisfactory results for one day in advance, with an average error exceeding rarely 2.3%. The model is validated for regular working days and weekends, and special attention is paid to moving holidays, following non Gregorian calendar

  12. Impacts on irrigated agriculture of changes in electricity costs resulting from Western Area Power Administration's power marketing alternatives

    International Nuclear Information System (INIS)

    Edwards, B.K.; Flaim, S.J.; Howitt, R.E.; Palmer, S.C.

    1995-03-01

    Irrigation is a major factor in the growth of US agricultural productivity, especially in western states, which account for more than 85% of the nation's irrigated acreage. In some of these states, almost all cropland is irrigated, and nearly 50% of the irrigation is done with electrically powered pumps. Therefore, even small increases in the cost of electricity could have a disproportionate impact on irrigated agriculture. This technical memorandum examines the impacts that could result from proposed changes in the power marketing programs of the Western Area Power Administration's Salt Lake City Area Office. The changes could increase the cost of power to all Western customers, including rural municipalities and irrigation districts that rely on inexpensive federal power to pump water. The impacts are assessed by translating changes in Western's wholesale power rate into changes in the cost of pumping water as an input for agricultural production. Farmers can adapt to higher electricity prices in many ways, such as (1) using different pumping fuels, (2) adding workers and increasing management to irrigate more efficiently, and (3) growing more drought-tolerant crops. This study projects several responses, including using less groundwater and planting fewer waterintensive crops. The study finds that when dependence on Western's power is high, the cost of power can have a major effect on energy use, agricultural practices, and the distribution of planted acreage. The biggest percentage changes in farm income would occur (1) in Nevada and Utah (however, all projected changes are less than 2% of the baseline) and (2) under the marketing alternatives that represent the lowest capacity and energy offer considered in Western's Electric Power Marketing Environmental Impact Statement. The aggregate impact on farm incomes and the value of total farm production would be much smaller than that suggested by the changes in water use and planted acreage

  13. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  14. Inter-laboratory comparison of HITU power measurement methods and capabilities

    International Nuclear Information System (INIS)

    Jenderka, K V; Durando, G; Karaboece, B; Rajagopal, S; Shaw, A

    2011-01-01

    High Intensity Therapeutic Ultrasound (HITU) is gaining in importance among the spectrum of therapeutic options to combat cancer. HITU has already been approved and is in clinical use for the treatment of organs like the prostate, the liver and the uterus. Nevertheless, the metrology of the applied high power ultrasound fields, and in consequence, reliable treatment planning and monitoring, is still a challenge. As part of a European Metrology Research Programme project, the four National Metrology Institutes from the UK, Germany, Italy and Turkey conducted an inter-laboratory comparison of their power measurement capabilities at power levels of 5, 25, 75 and 150 W each at frequencies of 1.1, 1.5 and 3.3 MHz. The task was to measure the total, time-averaged ultrasonic output power, emitted by the circulated transducers under specified electrical excitation conditions into an anechoic water load, and the actual rms transducer input voltage. The output value to be reported was the electro-acoustic radiation conductance including the associated standard and expanded uncertainties. Several different measurement techniques were applied to gain further insight into HITU power measurement. The deviations from the calculated comparison reference value found for the different techniques are discussed and conclusions for the further improvement of measuring procedures are drawn.

  15. Inter-laboratory comparison of HITU power measurement methods and capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Jenderka, K V [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Durando, G [Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino (Italy); Karaboece, B [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey); Rajagopal, S; Shaw, A, E-mail: kvjend@ieee.org [National Physical Laboratory (NPL), Hampton Road, Teddington, TW11 0LW (United Kingdom)

    2011-02-01

    High Intensity Therapeutic Ultrasound (HITU) is gaining in importance among the spectrum of therapeutic options to combat cancer. HITU has already been approved and is in clinical use for the treatment of organs like the prostate, the liver and the uterus. Nevertheless, the metrology of the applied high power ultrasound fields, and in consequence, reliable treatment planning and monitoring, is still a challenge. As part of a European Metrology Research Programme project, the four National Metrology Institutes from the UK, Germany, Italy and Turkey conducted an inter-laboratory comparison of their power measurement capabilities at power levels of 5, 25, 75 and 150 W each at frequencies of 1.1, 1.5 and 3.3 MHz. The task was to measure the total, time-averaged ultrasonic output power, emitted by the circulated transducers under specified electrical excitation conditions into an anechoic water load, and the actual rms transducer input voltage. The output value to be reported was the electro-acoustic radiation conductance including the associated standard and expanded uncertainties. Several different measurement techniques were applied to gain further insight into HITU power measurement. The deviations from the calculated comparison reference value found for the different techniques are discussed and conclusions for the further improvement of measuring procedures are drawn.

  16. Statistical identification of effective input variables

    International Nuclear Information System (INIS)

    Vaurio, J.K.

    1982-09-01

    A statistical sensitivity analysis procedure has been developed for ranking the input data of large computer codes in the order of sensitivity-importance. The method is economical for large codes with many input variables, since it uses a relatively small number of computer runs. No prior judgemental elimination of input variables is needed. The sceening method is based on stagewise correlation and extensive regression analysis of output values calculated with selected input value combinations. The regression process deals with multivariate nonlinear functions, and statistical tests are also available for identifying input variables that contribute to threshold effects, i.e., discontinuities in the output variables. A computer code SCREEN has been developed for implementing the screening techniques. The efficiency has been demonstrated by several examples and applied to a fast reactor safety analysis code (Venus-II). However, the methods and the coding are general and not limited to such applications

  17. Rethinking Rectification: AC-DC Power Supply in Package

    DEFF Research Database (Denmark)

    Pejtersen, Jens; Knott, Arnold; Jørgensen, Ivan Harald Holger

    efficiency, while drawing high input peak current with a high harmonic content. Mitigating these non-idealities requires higher order EMI filters and a subsequent power factor correction stage. Advanced active rectifier topologies can mitigate all three non-idealities simultaneously while balancing power...

  18. Gestures and multimodal input

    OpenAIRE

    Keates, Simeon; Robinson, Peter

    1999-01-01

    For users with motion impairments, the standard keyboard and mouse arrangement for computer access often presents problems. Other approaches have to be adopted to overcome this. In this paper, we will describe the development of a prototype multimodal input system based on two gestural input channels. Results from extensive user trials of this system are presented. These trials showed that the physical and cognitive loads on the user can quickly become excessive and detrimental to the interac...

  19. The effect of long-term changes in plant inputs on soil carbon stocks

    Science.gov (United States)

    Georgiou, K.; Li, Z.; Torn, M. S.

    2017-12-01

    Soil organic carbon (SOC) is the largest actively-cycling terrestrial reservoir of C and an integral component of thriving natural and managed ecosystems. C input interventions (e.g., litter removal or organic amendments) are common in managed landscapes and present an important decision for maintaining healthy soils in sustainable agriculture and forestry. Furthermore, climate and land-cover change can also affect the amount of plant C inputs that enter the soil through changes in plant productivity, allocation, and rooting depth. Yet, the processes that dictate the response of SOC to such changes in C inputs are poorly understood and inadequately represented in predictive models. Long-term litter manipulations are an invaluable resource for exploring key controls of SOC storage and validating model representations. Here we explore the response of SOC to long-term changes in plant C inputs across a range of biomes and soil types. We synthesize and analyze data from long-term litter manipulation field experiments, and focus our meta-analysis on changes to total SOC stocks, microbial biomass carbon, and mineral-associated (`protected') carbon pools and explore the relative contribution of above- versus below-ground C inputs. Our cross-site data comparison reveals that divergent SOC responses are observed between forest sites, particularly for treatments that increase C inputs to the soil. We explore trends among key variables (e.g., microbial biomass to SOC ratios) that inform soil C model representations. The assembled dataset is an important benchmark for evaluating process-based hypotheses and validating divergent model formulations.

  20. The Importance of Input and Interaction in SLA

    Institute of Scientific and Technical Information of China (English)

    党春花

    2009-01-01

    As is known to us, input and interaction play the crucial roles in second language acquisition (SLA). Different linguistic schools have different explanations to input and interaction Behaviorist theories hold a view that input is composed of stimuli and response, putting more emphasis on the importance of input, while mentalist theories find input is a necessary condition to SLA, not a sufficient condition. At present, social interaction theories, which is one type of cognitive linguistics, suggests that besides input, interaction is also essential to language acquisition. Then, this essay will discuss how input and interaction result in SLA.

  1. Microwave power coupling in a surface wave excited plasma

    Directory of Open Access Journals (Sweden)

    Satyananda Kar

    2015-01-01

    Full Text Available In recent decades, different types of plasma sources have been used for various types of plasma processing, such as, etching and thin film deposition. The critical parameter for effective plasma processing is high plasma density. One type of high density plasma source is Microwave sheath-Voltage combination Plasma (MVP. In the present investigation, a better design of MVP source is reported, in which over-dense plasma is generated for low input microwave powers. The results indicate that the length of plasma column increases significantly with increase in input microwave power.

  2. Lysimeter data as input to performance assessment models

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.

    1998-01-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste forms in a disposal environment. Waste forms fabricated using ion-exchange resins from EPICOR-117 prefilters employed in the cleanup of the Three Mile Island (TMI) Nuclear Power Station are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. The program includes reviewing radionuclide releases from those waste forms in the first 7 years of sampling and examining the relationship between code input parameters and lysimeter data. Also, lysimeter data are applied to performance assessment source term models, and initial results from use of data in two models are presented

  3. Pricing offshore wind power

    International Nuclear Information System (INIS)

    Levitt, Andrew C.; Kempton, Willett; Smith, Aaron P.; Musial, Walt; Firestone, Jeremy

    2011-01-01

    Offshore wind offers a very large clean power resource, but electricity from the first US offshore wind contracts is costlier than current regional wholesale electricity prices. To better understand the factors that drive these costs, we develop a pro-forma cash flow model to calculate two results: the levelized cost of energy, and the breakeven price required for financial viability. We then determine input values based on our analysis of capital markets and of 35 operating and planned projects in Europe, China, and the United States. The model is run for a range of inputs appropriate to US policies, electricity markets, and capital markets to assess how changes in policy incentives, project inputs, and financial structure affect the breakeven price of offshore wind power. The model and documentation are made publicly available. - Highlights: → We calculate the Breakeven Price (BP) required to deploy offshore wind plants. → We determine values for cost drivers and review incentives structures in the US. → We develop 3 scenarios using today's technology but varying in industry experience. → BP differs widely by Cost Scenario; relative policy effectiveness varies by stage. → The low-range BP is below regional market values in the Northeast United States.

  4. Bus Participation Factor Analysis for Harmonic Instability in Power Electronics Based Power Systems

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2018-01-01

    Compared with the conventional power systems, large-scale power electronics based power systems present a more complex situation, where harmonic instability may be induced by the mutual interactions between the inner control loops of the converters. This paper presents an approach to locate which...... power converters and buses are more sensitive and have significant contribution to the harmonic instability. In the approach, a power electronics based system is introduced as a Multi-Input Multi-Output (MIMO) dynamic system by means of a dynamic admittance matrix. Bus Participation Factors (PFs......) are calculated by the oscillatory mode sensitivity analysis versus the elements of the MIMO transfer function matrix. The PF analysis detects which power electronic converters or buses have a higher participation in harmonic instability excitation than others or at which buses such instability problems have...

  5. Challenges in thermal design of industrial single-phase power inverter

    Directory of Open Access Journals (Sweden)

    Ninković Predrag

    2016-01-01

    Full Text Available This paper presents the influence of thermal aspects in design process of an industrial single-phase inverter, choice of its topology and components. Stringent design inputs like very high overload level, demand for natural cooling and very wide input voltage range have made conventional circuit topology inappropriate therefore asking for alternative solution. Different power losses calculations in semiconductors are performed and compared, outlining the guidelines how to choose the final topology. Some recommendations in power magnetic components design are given. Based on the final project, a 20kVA single-phase inverter for thermal power plant supervisory and control system is designed and commissioned.

  6. Optimum filters with time width constraints for liquid argon total-absorption detectors

    International Nuclear Information System (INIS)

    Gatti, E.; Radeka, V.

    1977-10-01

    Optimum filter responses are found for triangular current input pulses occurring in liquid argon ionization chambers used as total absorption detectors. The filters considered are subject to the following constraints: finite width of the output pulse having a prescribed ratio to the width of the triangular input current pulse and zero area of a bipolar antisymmetrical pulse or of a three lobe pulse, as required for high event rates. The feasibility of pulse shaping giving an output equal to, or shorter than, the input one is demonstrated. It is shown that the signal-to-noise ratio remains constant for the chamber interelectrode gap which gives an input pulse width (i.e., electron drift time) greater than one third of the required output pulse width

  7. Gas--steam turbine combined cycle power plants

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1978-10-01

    The purpose of this technology evaluation is to provide performance and cost characteristics of the combined gas and steam turbine, cycle system applied to an Integrated Community Energy System (ICES). To date, most of the applications of combined cycles have been for electric power generation only. The basic gas--steam turbine combined cycle consists of: (1) a gas turbine-generator set, (2) a waste-heat recovery boiler in the gas turbine exhaust stream designed to produce steam, and (3) a steam turbine acting as a bottoming cycle. Because modification of the standard steam portion of the combined cycle would be necessary to recover waste heat at a useful temperature (> 212/sup 0/F), some sacrifice in the potential conversion efficiency is necessary at this temperature. The total energy efficiency ((electric power + recovered waste heat) divided by input fuel energy) varies from about 65 to 73% at full load to 34 to 49% at 20% rated electric power output. Two major factors that must be considered when installing a gas--steam turbine combines cycle are: the realiability of the gas turbine portion of the cycle, and the availability of liquid and gas fuels or the feasibility of hooking up with a coal gasification/liquefaction process.

  8. Conversion from HST ACS and STIS auroral counts into brightness, precipitated power and radiated power for H2 giant planets

    Science.gov (United States)

    Gustin, J.; Bonfond, B.; Grodent, D.; Gerard, J. C.

    2012-09-01

    The STIS and ACS instruments onboard HST are widely used to study the giant planet's aurora. Several assumptions have to be made to convert the instrumental counts into meaningful physical values (type and bandwidth of the filters, definition of the physical units, etc…), but these may significantly differ from one author to another, which makes it difficult to compare the auroral characteristics published in different studies. We present a method to convert the counts obtained in representative ACS and STIS imaging modes / filters used by the auroral scientific community to brightness, precipitated power and radiated power in the ultraviolet (700- 1800 Å). Since hydrocarbon absorption may considerably affect the observed auroral emission, the conversion factors are determined for several attenuation levels. Several properties of the auroral emission have been determined: the fraction of the H2 emission shortward and longward of the HLy-a line is 50.3 % and 49.7 % respectively, the contribution of HLy-a to the total unabsorbed auroral signal has been set to 9.1 % and an input of 1 mW m-2 produces 10 kR of H2 in the Lyman and Werner bands. A first application sets the order of magnitude of Saturn's auroral characteristics in the total UV bandwidth to a brightness of 10 kR and an emitted power of ~2.8 GW. A second application uses published brighnesses of Europa's footprint to determine the current density associated with the Europa auroral spot: 0.21 and 0.045 μA m-2 assuming no hydrocarbon absorption and a color ratio of 2, respectively.

  9. Method and system for conserving power in a telecommunications network during emergency situations

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Stephen H [Algodones, NM; O' Reilly, Gerard P [Manalapan, NJ

    2011-10-11

    Disclosed is a method and apparatus for conserving power in a telecommunications network during emergency situations. A permissible number list of emergency and/or priority numbers is stored in the telecommunications network. In the event of an emergency or power failure, input digits of a call to the telecommunications network are compared to the permissible number list. The call is processed in the telecommunications network and routed to its destination if the input digits match an entry in the permissible number list. The call is dropped without any further processing if the input digits do not match an entry in the permissible number list. Thus, power can be conserved in emergency situations by only allowing emergency and/or priority calls.

  10. Comparative Analysis of Semiconductor Power Losses of Galvanically Isolated Quasi-Z-Source and Full-Bridge Boost DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Kosenko Roman

    2015-07-01

    Full Text Available This paper compares semiconductor losses of the galvanically isolated quasi-Z-source converter and full-bridge boost DC-DC converter with active clamping circuit. Operation principle of both converters is described. Short design guidelines are provided as well. Results of steady state analysis are used to calculate semiconductor power losses for both converters. Analytical expressions are derived for all types of semiconductor power losses present in these converters. The theoretical results were verified by means of numerical simulation performed in the PSIM simulation software. Its add-on module “Thermal module” was used to estimate semiconductor power losses using the datasheet parameters of the selected semiconductor devices. Results of calculations and simulation study were obtained for four operating points with different input voltage and constant input current to compare performance of the converters in renewable applications, like photovoltaic, where input voltage and power can vary significantly. Power loss breakdown is detailed and its dependence on the converter output power is analyzed. Recommendations are given for the use of the converter topologies in applications with low input voltage and relatively high input current.

  11. Root carbon input in organic and inorganic fertilizer-based systems

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Olesen, Jørgen E; Porter, John

    2012-01-01

    C input to remain scant. This study aimed at determining macro-root C input and topsoil root related respiration in response to nutrient management and soil fertility building measures. Methods We sampled roots and shoots of cereals and catch crops in inorganic and organic fertilizer-based arable...... season of winter wheat by subtracting soil respiration from soil with and without exclusion of roots. Results Catch crop roots accounted for more than 40 % of total plant C. For spring barley in 2008 and spring wheat in 2010, root C was higher in the organic than in the inorganic fertilizer-based systems...... was higher (31–131 %) in inorganic than in organic fertilizer-based systems. Conclusions Our findings show that macro-roots of both cereal crops and catch crops play a relatively larger role in organically managed systems than in mineral fertilizer based systems; and that the use of fixed biomass S/R ratios...

  12. Environmental impact assessment including indirect effects--a case study using input-output analysis

    International Nuclear Information System (INIS)

    Lenzen, Manfred; Murray, Shauna A.; Korte, Britta; Dey, Christopher J.

    2003-01-01

    Environmental impact assessment (EIA) is a process covered by several international standards, dictating that as many environmental aspects as possible should be identified in a project appraisal. While the ISO 14011 standard stipulates a broad-ranging study, off-site, indirect impacts are not specifically required for an Environmental Impact Statement (EIS). The reasons for this may relate to the perceived difficulty of measuring off-site impacts, or the assumption that these are a relatively insignificant component of the total impact. In this work, we describe a method that uses input-output analysis to calculate the indirect effects of a development proposal in terms of several indicator variables. The results of our case study of a Second Sydney Airport show that the total impacts are considerably higher than the on-site impacts for the indicators land disturbance, greenhouse gas emissions, water use, emissions of NO x and SO 2 , and employment. We conclude that employing input-output analysis enhances conventional EIA, as it allows for national and international effects to be taken into account in the decision-making process

  13. One-Quadrant Switched-Mode Power Converters

    CERN Document Server

    Petrocelli, R.

    2015-06-15

    This article presents the main topics related to one-quadrant power convert- ers. The basic topologies are analysed and a simple methodology to obtain the steady-state output–input voltage ratio is set out. A short discussion of dif- ferent methods to control one-quadrant power converters is presented. Some of the reported derived topologies of one-quadrant power converters are also considered. Some topics related to one-quadrant power converters such as syn- chronous rectification, hard and soft commutation, and interleaved converters are discussed. Finally, a brief introduction to resonant converters is given.

  14. The total release of xenon-133 from the Fukushima Dai-ichi nuclear power plant accident

    International Nuclear Information System (INIS)

    Stohl, Andreas; Seibert, Petra; Wotawa, Gerhard

    2012-01-01

    The accident at the Fukushima Dai-ichi nuclear power plant (FD-NPP) on 11 March 2011 released large amounts of radioactivity into the atmosphere. We determine the total emission of the noble gas xenon-133 ( 133 Xe) using global atmospheric concentration measurements. For estimating the emissions, we used three different methods: (i) using a purely observation-based multi-box model, (ii) comparisons of dispersion model results driven with GFS meteorological data with the observation data, and (iii) such comparisons with the dispersion model driven by ECMWF data. From these three methods, we have obtained total 133 Xe releases from FD-NPP of (i) 16.7 ± 1.9 EBq, (ii) 14.2 ± 0.8 EBq, and (iii) 19.0 ± 3.4 EBq, respectively. These values are substantially larger than the entire 133 Xe inventory of FD-NPP of about 12.2 EBq derived from calculations of nuclear fuel burn-up. Complete release of the entire 133 Xe inventory of FD-NPP and additional release of 133 Xe due to the decay of iodine-133 ( 133 I), which can add another 2 EBq to the 133 Xe FD-NPP inventory, is required to explain the atmospheric observations. Two of our three methods indicate even higher emissions, but this may not be a robust finding given the differences between our estimates. - Highlights: ► We determine the total release of xenon-133 from the Fukushima nuclear accident. ► We used global measurements and a box model, as well as dispersion model estimates. ► Total 133 Xe release is about 14.2-19 EBq, more than Fukushima 133 Xe inventory. ► Additional release of iodine-133 and decay into 133 Xe needed to explain results.

  15. Analysis on relation between safety input and accidents

    Institute of Scientific and Technical Information of China (English)

    YAO Qing-guo; ZHANG Xue-mu; LI Chun-hui

    2007-01-01

    The number of safety input directly determines the level of safety, and there exists dialectical and unified relations between safety input and accidents. Based on the field investigation and reliable data, this paper deeply studied the dialectical relationship between safety input and accidents, and acquired the conclusions. The security situation of the coal enterprises was related to the security input rate, being effected little by the security input scale, and build the relationship model between safety input and accidents on this basis, that is the accident model.

  16. A Novel Realization of Low-Power and Low-Distortion Multiplier Circuit with Improved Dynamic Range

    Directory of Open Access Journals (Sweden)

    Ali Naderi Saatlo

    2017-01-01

    Full Text Available A novel topology of four-quadrant analog multiplier circuit is presented in this paper. The voltage mode technique is employed to design the circuit in CMOS technology. The dynamic input and output ranges of the circuit are improved owing to the fact that the circuit works in the saturation region not in weak inversion. Also the proposed multiplier is suitable for low voltage operation and its power consumption is relatively low. In order to verify the performance of the proposed circuit, performance of the circuit affected by second order effects including transistor mismatch and mobility reduction is analyzed in detail. It will be shown that any conceivable mismatch in the transistor parameters leads to second harmonic distortion. Additionally, the effect of mobility reduction in the third harmonic distortion will be computed. In order to simulate the circuit, Cadence and HSPICE software are used with TSMC level 49 (BSIM3v3 parameters for 0.18 μm CMOS technology, where under supply voltage of 1.5 V, total power consumption is 44 µW, the corresponding average nonlinearity remains as low as 1 %, and the input range of the circuit is ± 400 mV.

  17. Evaluation of the power consumption of a high-speed parallel robot

    Science.gov (United States)

    Han, Gang; Xie, Fugui; Liu, Xin-Jun

    2018-06-01

    An inverse dynamic model of a high-speed parallel robot is established based on the virtual work principle. With this dynamic model, a new evaluation method is proposed to measure the power consumption of the robot during pick-and-place tasks. The power vector is extended in this method and used to represent the collinear velocity and acceleration of the moving platform. Afterward, several dynamic performance indices, which are homogenous and possess obvious physical meanings, are proposed. These indices can evaluate the power input and output transmissibility of the robot in a workspace. The distributions of the power input and output transmissibility of the high-speed parallel robot are derived with these indices and clearly illustrated in atlases. Furtherly, a low-power-consumption workspace is selected for the robot.

  18. Dual-functional on-chip AlGaAs/GaAs Schottky diode for RF power detection and low-power rectenna applications.

    Science.gov (United States)

    Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul

    2011-01-01

    A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device's good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  19. Design of a Programmable Gain, Temperature Compensated Current-Input Current-Output CMOS Logarithmic Amplifier.

    Science.gov (United States)

    Ming Gu; Chakrabartty, Shantanu

    2014-06-01

    This paper presents the design of a programmable gain, temperature compensated, current-mode CMOS logarithmic amplifier that can be used for biomedical signal processing. Unlike conventional logarithmic amplifiers that use a transimpedance technique to generate a voltage signal as a logarithmic function of the input current, the proposed approach directly produces a current output as a logarithmic function of the input current. Also, unlike a conventional transimpedance amplifier the gain of the proposed logarithmic amplifier can be programmed using floating-gate trimming circuits. The synthesis of the proposed circuit is based on the Hart's extended translinear principle which involves embedding a floating-voltage source and a linear resistive element within a translinear loop. Temperature compensation is then achieved using a translinear-based resistive cancelation technique. Measured results from prototypes fabricated in a 0.5 μm CMOS process show that the amplifier has an input dynamic range of 120 dB and a temperature sensitivity of 230 ppm/°C (27 °C- 57°C), while consuming less than 100 nW of power.

  20. Self-Biased Differential Rectifier with Enhanced Dynamic Range for Wireless Powering

    KAUST Repository

    Ouda, Mahmoud H.; Khalil, Waleed; Salama, Khaled N.

    2016-01-01

    A self-biased, cross-coupled, differential rectifier is proposed with enhanced power-conversion efficiency over an extended range of input power. A prototype is designed for UHF 433MHz RF power-harvesting applications and is implemented using 0.18μm