WorldWideScience

Sample records for total high-speed running

  1. Kinematic and Kinetic Evaluation of High Speed Backward Running

    Science.gov (United States)

    1999-06-30

    Designed using Perform Pro , WHS/DIOR, Oct 94 KINEMATIC AND KINETIC EVALUATION OF HIGH SPEED BACKWARD RUNNING by ALAN WAYNE ARATA A DISSERTATION...Project Manager, Engineering Division, Kelly Air Force Base, Texas, 1983-86 AWARDS AND HONORS: All-American, 50yd Freestyle , 1979 Winner, Rocky...redirection #include <stdlib.h> // for exit #include <iomanip.h> // for set precision #include <string.h> // for string copy const int NUMPOINTS

  2. High Speed Running and Sprinting Profiles of Elite Soccer Players

    Directory of Open Access Journals (Sweden)

    Miñano-Espin Javier

    2017-08-01

    Full Text Available Real Madrid was named as the best club of the 20th century by the International Federation of Football History and Statistics. The aim of this study was to compare if players from Real Madrid covered shorter distances than players from the opposing team. One hundred and forty-nine matches including league, cup and UEFA Champions League matches played by the Real Madrid were monitored during the 2001-2002 to the 2006-2007 seasons. Data from both teams (Real Madrid and the opponent were recorded. Altogether, 2082 physical performance profiles were examined, 1052 from the Real Madrid and 1031 from the opposing team (Central Defenders (CD = 536, External Defenders (ED = 491, Central Midfielders (CM = 544, External Midfielders (EM = 233, and Forwards (F = 278. Match performance data were collected using a computerized multiple-camera tracking system (Amisco Pro®, Nice, France. A repeated measures analysis of variance (ANOVA was performed for distances covered at different intensities (sprinting (>24.0 km/h and high-speed running (21.1-24.0 km/h and the number of sprints (21.1-24.0 km/h and >24.0 km/h during games for each player sectioned under their positional roles. Players from Real Madrid covered shorter distances in high-speed running and sprint than players from the opposing team (p 0.01 from Real Madrid covered shorter distances in high-intensity running and sprint and performed less sprints than their counterparts. Finally, no differences were found in the high-intensity running and sprint distances performed by players from Real Madrid depending on the quality of the opposition.

  3. Match-to-match variability in high-speed running activity in a professional soccer team.

    Science.gov (United States)

    Carling, Christopher; Bradley, Paul; McCall, Alan; Dupont, Gregory

    2016-12-01

    This study investigated variability in competitive high-speed running performance in an elite soccer team. A semi-automated tracking system quantified running performance in 12 players over a season (median 17 matches per player, 207 observations). Variability [coefficient of variation (CV)] was compared for total sprint distance (TSD, >25.2 km/h), high-speed running (HSR, 19.8-25.2 km/h), total high-speed running (THSR, ≥19.8 km/h); THSR when the team was in and out of ball possession, in individual ball possession, in the peak 5 min activity period; and distance run according to individual maximal aerobic speed (MAS). Variability for % declines in THSR and distance covered at ≥80% MAS across halves, at the end of play (final 15 min vs. mean for all 15 min periods) and transiently (5 min period following peak 5 min activity period), was analysed. Collectively, variability was higher for TSD versus HSR and THSR and lowest for distance run at ≥80% MAS (CVs: 37.1%, 18.1%, 19.8% and 11.8%). THSR CVs when the team was in/out of ball possession, in individual ball possession and during the peak 5 min period were 31.5%, 26.1%, 60.1% and 23.9%. Variability in THSR declines across halves, at the end of play and transiently, ranged from 37.1% to 142.6%, while lower CVs were observed in these metrics for running at ≥80% MAS (20.9-53.3%).These results cast doubt on the appropriateness of general measures of high-speed activity for determining variability in an elite soccer team, although individualisation of HSR thresholds according to fitness characteristics might provide more stable indicators of running performance and fatigue occurrence.

  4. Effect of high-speed running on hamstring strain injury risk.

    Science.gov (United States)

    Duhig, Steven; Shield, Anthony J; Opar, David; Gabbett, Tim J; Ferguson, Cameron; Williams, Morgan

    2016-12-01

    Hamstring strain injuries (HSIs) are common within the Australian Football League (AFL) with most occurring during high-speed running (HSR). Therefore, this study investigated possible relationships between mean session running distances, session ratings of perceived exertion (s-RPE) and HSIs within AFL footballers. Global positioning system (GPS)-derived running distances and s-RPE for all matches and training sessions over two AFL seasons were obtained from one AFL team. All HSIs were documented and each player's running distances and s-RPE were standardised to their 2-yearly session average, then compared between injured and uninjured players in the 4 weeks (weeks -1, -2, -3 and -4) preceding each injury. Higher than 'typical' (ie, z=0) HSR session means were associated with a greater likelihood of HSI (week -1: OR=6.44, 95% CI=2.99 to 14.41, p<0.001; summed weeks -1 and -2: OR=3.06, 95% CI=2.03 to 4.75, p<0.001; summed weeks -1, -2 and -3: OR=2.22, 95% CI=1.66 to 3.04, p<0.001; and summed weeks -1, -2, -3 and -4: OR=1.96, 95% CI=1.54 to 2.51, p<0.001). However, trivial differences were observed between injured and uninjured groups for standardised s-RPE, total distance travelled and distances covered whilst accelerating and decelerating. Increasing AFL experience was associated with a decreased HSI risk (OR=0.77, 95% CI 0.57 to 0.97, p=0.02). Furthermore, HSR data modelling indicated that reducing mean distances in week -1 may decrease the probability of HSI. Exposing players to large and rapid increases in HSR distances above their 2-yearly session average increased the odds of HSI. However, reducing HSR in week -1 may offset HSI risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search.

    Science.gov (United States)

    Krasny, Darren P; Orin, David E

    2004-08-01

    Over the past several decades, there has been a considerable interest in investigating high-speed dynamic gaits for legged robots. While much research has been published, both in the biomechanics and engineering fields regarding the analysis of these gaits, no single study has adequately characterized the dynamics of high-speed running as can be achieved in a realistic, yet simple, robotic system. The goal of this paper is to find the most energy-efficient, natural, and unconstrained gallop that can be achieved using a simulated quadrupedal robot with articulated legs, asymmetric mass distribution, and compliant legs. For comparison purposes, we also implement the bound and canter. The model used here is planar, although we will show that it captures much of the predominant dynamic characteristics observed in animals. While it is not our goal to prove anything about biological locomotion, the dynamic similarities between the gaits we produce and those found in animals does indicate a similar underlying dynamic mechanism. Thus, we will show that achieving natural, efficient high-speed locomotion is possible even with a fairly simple robotic system. To generate the high-speed gaits, we use an efficient evolutionary algorithm called set-based stochastic optimization. This algorithm finds open-loop control parameters to generate periodic trajectories for the body. Several alternative methods are tested to generate periodic trajectories for the legs. The combined solutions found by the evolutionary search and the periodic-leg methods, over a range of speeds up to 10.0 m/s, reveal "biological" characteristics that are emergent properties of the underlying gaits.

  6. A typical wave wake from high-speed vessels: its group structure and run-up

    Directory of Open Access Journals (Sweden)

    I. Didenkulova

    2013-02-01

    Full Text Available High-amplitude water waves induced by high-speed vessels are regularly observed in Tallinn Bay, the Baltic Sea, causing intense beach erosion and disturbing marine habitants in the coastal zone. Such a strong impact on the coast may be a result of a certain group structure of the wave wake. In order to understand it, here we present an experimental study of the group structure of these wakes at Pikakari beach, Tallinn Bay. The most energetic vessel waves at this location (100 m from the coast at the water depth 2.7 m have amplitudes of about 1 m and periods of 8–10 s and cause maximum run-up heights on a beach up to 1.4 m. These waves represent frequency modulated packets where the largest and longest waves propagate ahead of other smaller amplitude and period waves. Sometimes the groups of different heights and periods can be separated even within one wave wake event. The wave heights within a wake are well described by the Weibull distribution, which has different parameters for wakes from different vessels. Wave run-up heights can also be described by Weibull distribution and its parameters can be connected to the parameters of the distribution of wave heights 100 m from the coast. Finally, the run-up of individual waves within a packet is studied. It is shown that the specific structure of frequency modulated wave packets, induced by high-speed vessels, leads to a sequence of high wave run-ups at the coast, even when the original wave heights are rather moderate. This feature can be a key to understanding the significant impact on coasts caused by fast vessels.

  7. FORECASTING OF PASSENGER TRAFFIC UPON IMPLEMENTATION OF HIGH-SPEED RUNNING

    Directory of Open Access Journals (Sweden)

    M. B. Kurhan

    2017-02-01

    Full Text Available Purpose. Forecasting of passenger traffic flows in the future is an essential and integral part of the complex process of designing of high-speed network (HSN. HSN direction and its parameters are determined by the volume of passenger traffic, the estimated value of which depends on the economic performance of the country, as well as the material status of citizens living in HSN concentration area, transport mobility of population, development of competing modes of transport and so on. The purpose of this work is to analyse the existing methods of passenger traffic forecasting, to evaluate errors of the existing models concerning determination of traffic volumes and to specify the scientific approach to the development of high-speed rail transport in Ukraine. Methodology. The existing forecasting methods are reduced to the following ones: Delphi approach, extrapolation method, factor and correlation analysis, simulation method. The method described in this paper is based on scientific approaches such as analysis – a comprehensive and detailed study of various aspects of the known forecasting methods, comparing of existing methods for establishing differences and similarities, as well as deduction – use of general knowledge to get the new particular one. Thus, the unified indicators determined for the country as a whole, such as gross domestic product, national income, total population and others cannot be used to forecast the traffic flow on specific areas of HSN construction. Therefore, it is necessary to move from the overall forecast to traffic volume forecast on particular direction. Findings. The conclusions are derived from the analysis of different approaches and methods of passenger flow forecasting. It is proposed to create typical techniques of traffic flow forecasting using modern mathematical methods that would allow avoiding unreasonable decisions and shortening project development time. The resulting recommendations will help

  8. Research of x-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes

    Science.gov (United States)

    Wang, Junfeng; Miao, Changyun; Wang, Wei; Lu, Xiaocui

    2008-03-01

    An X-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes is researched in the paper. The principle of X-ray nondestructive testing (NDT) is analyzed, the general scheme of the X-ray nondestructive testing system is proposed, and the nondestructive detector for high-speed running conveyor belt with steel wire ropes is developed. The hardware of system is designed with Xilinx's VIRTEX-4 FPGA that embeds PowerPC and MAC IP core, and its network communication software based on TCP/IP protocol is programmed by loading LwIP to PowerPC. The nondestructive testing of high-speed conveyor belt with steel wire ropes and network transfer function are implemented. It is a strong real-time system with rapid scanning speed, high reliability and remotely nondestructive testing function. The nondestructive detector can be applied to the detection of product line in industry.

  9. Influence of “J”-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion

    Directory of Open Access Journals (Sweden)

    Runxiao Wang

    2016-01-01

    Full Text Available Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1 both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2 at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  10. ANALISA PENGARUH BENTUK LAMBUNG AXE BOW PADA KAPAL HIGH SPEED CRAFT TERHADAP HAMBATAN TOTAL

    Directory of Open Access Journals (Sweden)

    Romadhoni Oni

    2015-06-01

    Full Text Available Hambatan merupakan salah satu faktor utama yang mempengaruhi proses perancangan sebuah kapal. Kapal dengan bentuk lambung yang baik akan menghasilkan hambatan yang efisiensi sehingga operasional kapal dan pergerakan kapal lebih baik. Pada ini penelitian dilakukan dengan memodelkan kapal high speed craft tipe Crew boat panjang 38 meter, lebar 7.6 meter, tinggi 3.65 meter dan draft 1.89 meter. Selanjutnya diselidiki model lambung kapal yang menghasilkan hambatan total paling kecil menggunakan pendekatan studi numerik software (maxsuft hullspeed metode savitsky dan holtrop dan software Computational Fluid Dynamics (CFD. Hasil penelitian berdasarkan analisa numerik (Maxsuft –Hullspeed dan CFD menujukkan pada kecepatan sevice bentuk lambung model AXE Bow memiliki nilai hambatan yang lebih kecil dibandingkan model kapal planing hull chine (HPC dan rounded hull (RH. Hasil perhitungan numerik dan CFD memiliki nilai yang hampir sama pada setiap variasi model. Hasil komparisi yang dilakukan didapatkan selisih total hambatan pada kecepatan 25 knot yaitu  model HPC 1.8 kN, model HPCAB 5.2 kN, model RH 4.8 kN dan model 5.1 kN. Dari perbandingan kedua metode tersebut memiliki selisih cukup kecil yaitu  kurang dari 5%. Selain mendapatkan nilai hambatan Software CFD akan menghasilkan nilai  perbandingan gaya angkat (lift force, dan total pressure yang terdistribusi  pada permukaan model setiap variasi kecepatan.

  11. On forecasting ionospheric total electron content responses to high-speed solar wind streams

    Directory of Open Access Journals (Sweden)

    Meng Xing

    2016-01-01

    Full Text Available Conditions in the ionosphere have become increasingly important to forecast, since more and more spaceborne and ground-based technological systems rely on ionospheric weather. Here we explore the feasibility of ionospheric forecasts with the current generation of physics-based models. In particular, we focus on total electron content (TEC predictions using the Global Ionosphere-Thermosphere Model (GITM. Simulations are configured in a forecast mode and performed for four typical high-speed-stream events during 2007–2012. The simulated TECs are quantified through a metric, which divides the globe into a number of local regions and robustly differentiates between quiet and disturbed periods. Proposed forecast products are hourly global maps color-coded by the TEC disturbance level of each local region. To assess the forecasts, we compare the simulated TEC disturbances with global TEC maps derived from Global Positioning System (GPS satellite observations. The forecast performance is found to be merely acceptable, with a large number of regions where the observed variations are not captured by the simulations. Examples of model-data agreements and disagreements are investigated in detail, aiming to understand the model behavior and improve future forecasts. For one event, we identify two adjacent regions with similar TEC observations but significant differences in how local chemistry versus plasma transport contribute to electron density changes in the simulation. Suggestions for further analysis are described.

  12. Fatigue resistance of welded joints in aluminium high-speed craft : A total stress concept

    NARCIS (Netherlands)

    Den Besten, J.H.

    2015-01-01

    Crew transfers, surveillance duties and {security, rescue, interception} operations at sea typically require high-speed craft. Aluminium is quite often selected as hull structure material because of its weight save potential in comparison to steel. The fatigue strength, however, may become a point

  13. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part II: Implications for exercise.

    Science.gov (United States)

    Van Hooren, Bas; Bosch, Frans

    2017-12-01

    We have previously argued that there may actually be no significant eccentric, but rather predominantly an isometric action of the hamstring muscle fibres during the swing phase of high-speed running when the attachment points of the hamstrings are moving apart. Based on this we suggested that isometric rather than eccentric exercises are a more specific way of conditioning the hamstrings for high-speed running. In this review we argue that some of the presumed beneficial adaptations following eccentric training may actually not be related to the eccentric muscle fibre action, but to other factors such as exercise intensity. Furthermore, we discuss several disadvantages associated with commonly used eccentric hamstring exercises. Subsequently, we argue that high-intensity isometric exercises in which the series elastic element stretches and recoils may be equally or even more effective at conditioning the hamstrings for high-speed running, since they also avoid some of the negative side effects associated with eccentric training. We provide several criteria that exercises should fulfil to effectively condition the hamstrings for high-speed running. Adherence to these criteria will guarantee specificity with regards to hamstrings functioning during running. Practical examples of isometric exercises that likely meet several criteria are provided.

  14. Passenger Sharing of the High-Speed Railway from Sensitivity Analysis Caused by Price and Run-time Based on the Multi-Agent System

    Directory of Open Access Journals (Sweden)

    Ma Ning

    2013-09-01

    Full Text Available Purpose: Nowadays, governments around the world are active in constructing the high-speed railway. Therefore, it is significant to make research on this increasingly prevalent transport.Design/methodology/approach: In this paper, we simulate the process of the passenger’s travel mode choice by adjusting the ticket fare and the run-time based on the multi-agent system (MAS.Findings: From the research we get the conclusion that increasing the run-time appropriately and reducing the ticket fare in some extent are effective ways to enhance the passenger sharing of the high-speed railway.Originality/value: We hope it can provide policy recommendations for the railway sectors in developing the long-term plan on high-speed railway in the future.

  15. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? part I: A critical review of the literature.

    Science.gov (United States)

    Van Hooren, Bas; Bosch, Frans

    2017-12-01

    It is widely assumed that there is an eccentric hamstring muscle fibre action during the swing phase of high-speed running. However, animal and modelling studies in humans show that the increasing distance between musculotendinous attachment points during forward swing is primarily due to passive lengthening associated with the take-up of muscle slack. Later in the swing phase, the contractile element (CE) maintains a near isometric action while the series elastic (tendinous) element first stretches as the knee extends, and then recoils causing the swing leg to forcefully retract prior to ground contact. Although modelling studies showed some active lengthening of the contractile (muscular) element during the mid-swing phase of high-speed running, we argue that the increasing distance between the attachment points should not be interpreted as an eccentric action of the CE due to the effects of muscle slack. Therefore, there may actually be no significant eccentric, but rather predominantly an isometric action of the hamstrings CE during the swing phase of high-speed running when the attachment points of the hamstrings are moving apart. Based on this, we propose that isometric rather than eccentric exercises are a more specific way of conditioning the hamstrings for high-speed running.

  16. High Speed Liquid Chromatographic Determination of Total Aromatics in Enamel and Lacquer Solvents.

    Science.gov (United States)

    Esposito, G. G.

    Aromatic solvents possess the strongest solvency of the hydrogen types, but various air pollution control districts have established maximum limits on the amount that may be present in organic coatings. In the proposed procedure, high efficiency liquid chromatography is used to determine total aromatics in enamels and lacquer thinners, their…

  17. EMD-Based Methodology for the Identification of a High-Speed Train Running in a Gear Operating State.

    Science.gov (United States)

    Bustos, Alejandro; Rubio, Higinio; Castejón, Cristina; García-Prada, Juan Carlos

    2018-03-06

    An efficient maintenance is a key consideration in systems of railway transport, especially in high-speed trains, in order to avoid accidents with catastrophic consequences. In this sense, having a method that allows for the early detection of defects in critical elements, such as the bogie mechanical components, is a crucial for increasing the availability of rolling stock and reducing maintenance costs. The main contribution of this work is the proposal of a methodology that, based on classical signal processing techniques, provides a set of parameters for the fast identification of the operating state of a critical mechanical system. With this methodology, the vibratory behaviour of a very complex mechanical system is characterised, through variable inputs, which will allow for the detection of possible changes in the mechanical elements. This methodology is applied to a real high-speed train in commercial service, with the aim of studying the vibratory behaviour of the train (specifically, the bogie) before and after a maintenance operation. The results obtained with this methodology demonstrated the usefulness of the new procedure and allowed for the disclosure of reductions between 15% and 45% in the spectral power of selected Intrinsic Mode Functions (IMFs) after the maintenance operation.

  18. Side-suspended High- Tc Superconducting Maglev Prototype Vehicle Running at a High Speed in an Evacuated Circular Test Track

    International Nuclear Information System (INIS)

    Zhou, Dajin; Zhao, Lifeng; Cui, Chenyu; Zhang, Yong; Guo, Jianqiang; Zhao, Yong

    2017-01-01

    High- T c superconductor (HTS) and permanent magnetic guideway (PMG) based maglev train is intensively studied in China, Japan, Germany and Brazil, mainly through static or vibration test. Amongst these studies, only a few of reports are available for the direct and effective assessment on the dynamic performance of the HTS maglev vehicle by running on a straight or circular PMG track. The highest running speed of these experiments is lower than 50 km/h. In this paper, a side-suspended HTS permanent magnetic guideway maglev system was proposed and constructed in order to increase the running speed in a circular track. By optimizing the arrangement of YBCO bulks besides the PMG, the side-suspended HTS maglev prototype vehicle was successfully running stably at a speed as high as 150 km/h in a circular test track with 6.5 m in diameter, and in an evacuated tube environment, in which the pressure is 5 × 10 3 Pa. (paper)

  19. High-speed running and sprinting as an injury risk factor in soccer: Can well-developed physical qualities reduce the risk?

    Science.gov (United States)

    Malone, Shane; Owen, Adam; Mendes, Bruno; Hughes, Brian; Collins, Kieran; Gabbett, Tim J

    2018-03-01

    This study investigated the association between high-speed running (HSR) and sprint running (SR) and injuries within elite soccer players. The impact of intermittent aerobic fitness as measured by the end speed of the 30-15 intermittent fitness test (30-15V IFT ) and high chronic workloads (average 21-day) as potential mediators of injury risk were also investigated. Observational Cohort Study. 37 elite soccer players from one elite squad were involved in a one-season study. Training and game workloads (session-RPE×duration) were recorded in conjunction with external training loads (using global positioning system technology) to measure the HSR (>14.4kmh -1 ) and SR (>19.8kmh -1 ) distance covered across weekly periods during the season. Lower limb injuries were also recorded. Training load and GPS data were modelled against injury data using logistic regression. Odds ratios (OR) were calculated with 90% confidence intervals based on 21-day chronic training load status (sRPE), aerobic fitness, HSR and SR distance with these reported against a reference group. Players who completed moderate HSR (701-750-m: OR: 0.12, 90%CI: 0.08-0.94) and SR distances (201-350-m: OR: 0.54, 90%CI: 0.41-0.85) were at reduced injury risk compared to low HSR (≤674-m) and SR (≤165-m) reference groups. Injury risk was higher for players who experienced large weekly changes in HSR (351-455-m; OR: 3.02; 90%CI: 2.03-5.18) and SR distances (between 75-105-m; OR: 6.12, 90%CI: 4.66-8.29). Players who exerted higher chronic training loads (≥2584 AU) were at significantly reduced risk of injury when they covered 1-weekly HSR distances of 701-750m compared to the reference group of soccer players. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Development of a running robot in super high speed tube. Aiming at realization of in-tube inspection for primary cooler and so forth of nuclear reactor

    International Nuclear Information System (INIS)

    Kato, Shigeo

    2000-01-01

    Authors have carried out a study on an in-tube running robot in living body on a base of laying stretching of bellows at a means of running by thinking application of in-tube inspection in living body such as large and small bowels. As a result, an in-tube running robot with about 20 mm in inner diameter capable of running in soft small bowel as well as in hard running tube was developed successfully. After an accident of the Tsuruga nuclear power plant, inspection of a large diameter tube with 76 mm in inner diameter was found to be much important, to begin development of an in-tube running robot for 50 mm class diameter tube. As a result, an in-tube running robot capable of enough holding a micro video camera with about 20 g in mass and showing 4.6 N in tension at more than ten times higher speed of 248 mm/s in no loading state, could be made in trial. Here was reported on a foothold realizable on an in-tube running robot for the 76 mm class large diameter tube to be investigated in future. (G.K.)

  1. Non-linear vehicle-bridge-wind interaction model for running safety assessment of high-speed trains over a high-pier viaduct

    Science.gov (United States)

    Olmos, José M.; Astiz, Miguel Á.

    2018-04-01

    In order to properly study the high-speed traffic safety on a high-pier viaduct subject to episodes of lateral turbulent winds, an efficient dynamic interaction train-bridge-wind model has been developed and experimentally validated. This model considers the full wheel and rail profiles, the friction between these two bodies in contact, and the piers P-Delta effect. The model has been used to determine the critical train and wind velocities from which the trains cannot travel safely over the O'Eixo Bridge. The dynamic simulations carried out and the results obtained in the time domain show that traffic safety rates exceed the allowed limits for turbulent winds with mean velocities at the deck higher than 25 m/s.

  2. Side-suspended High-Tc Superconducting Maglev Prototype Vehicle Running at a High Speed in an Evacuated Circular Test Track

    Science.gov (United States)

    Zhou, Dajin; Zhao, Lifeng; Cui, Chenyu; Zhang, Yong; Guo, Jianqiang; Zhao, Yong

    2017-07-01

    High-T c superconductor (HTS) and permanent magnetic guideway (PMG) based maglev train is intensively studied in China, Japan, Germany and Brazil, mainly through static or vibration test. Amongst these studies, only a few of reports are available for the direct and effective assessment on the dynamic performance of the HTS maglev vehicle by running on a straight or circular PMG track. The highest running speed of these experiments is lower than 50 km/h. In this paper, a side-suspended HTS permanent magnetic guideway maglev system was proposed and constructed in order to increase the running speed in a circular track. By optimizing the arrangement of YBCO bulks besides the PMG, the side-suspended HTS maglev prototype vehicle was successfully running stably at a speed as high as 150 km/h in a circular test track with 6.5 m in diameter, and in an evacuated tube environment, in which the pressure is 5 × 103 Pa.

  3. High-Speed Photography

    International Nuclear Information System (INIS)

    Paisley, D.L.; Schelev, M.Y.

    1998-01-01

    The applications of high-speed photography to a diverse set of subjects including inertial confinement fusion, laser surgical procedures, communications, automotive airbags, lightning etc. are briefly discussed. (AIP) copyright 1998 Society of Photo-Optical Instrumentation Engineers

  4. High speed data acquisition

    International Nuclear Information System (INIS)

    Cooper, P.S.

    1997-07-01

    A general introduction to high speed data acquisition system techniques in modern particle physics experiments is given. Examples are drawn from the SELEX(E78 1) high statistics charmed baryon production and decay experiment now taking data at Fermilab

  5. High speed heterostructure devices

    CERN Document Server

    Beer, Albert C; Willardson, R K; Kiehl, Richard A; Sollner, T C L Gerhard

    1994-01-01

    Volume 41 includes an in-depth review of the most important, high-speed switches made with heterojunction technology. This volume is aimed at the graduate student or working researcher who needs a broad overview andan introduction to current literature. Key Features * The first complete review of InP-based HFETs and complementary HFETs, which promise very low power and high speed * Offers a complete, three-chapter review of resonant tunneling * Provides an emphasis on circuits as well as devices.

  6. RpA ratio: total shadowing due to running coupling

    OpenAIRE

    Iancu, E.; Triantafyllopoulos, D. N.

    2007-01-01

    We predict that the RpA ratio at the most forward rapidities to be measured at LHC should be strongly suppressed, close to "total shadowing'' (RpA = A^(-1/3)), as a consequence of running coupling effects in the nonlinear QCD evolution.

  7. High speed atom source

    International Nuclear Information System (INIS)

    Hoshino, Hitoshi.

    1990-01-01

    In a high speed atom source, since the speed is not identical between ions and electrons, no sufficient neutralizing effect for ionic rays due to the mixing of the ionic rays and the electron rays can be obtained failing to obtain high speed atomic rays at high density. In view of the above, a speed control means is disposed for equalizing the speed of ions forming ionic rays and the speed of electrons forming electron rays. Further, incident angle of the electron rays and/or ionic rays to a magnet or an electrode is made variable. As a result, the relative speed between the ions and the electrons to the processing direction is reduced to zero, in which the probability of association between the ions and the electrons due to the coulomb force is increased to improve the neutralizing efficiency to easily obtain fine and high density high speed electron rays. Further, by varying the incident angle, a track capable of obtaining an ideal mixing depending on the energy of the neutralized ionic rays is formed. Since the high speed electron rays has such high density, they can be irradiated easily to the minute region of the specimen. (N.H.)

  8. High speed network sampling

    OpenAIRE

    Rindalsholt, Ole Arild

    2005-01-01

    Master i nettverks- og systemadministrasjon Classical Sampling methods play an important role in the current practice of Internet measurement. With today’s high speed networks, routers cannot manage to generate complete Netflow data for every packet. They have to perform restricted sampling. This thesis summarizes some of the most important sampling schemes and their applications before diving into an analysis on the effect of sampling Netflow records.

  9. High Speed Photomicrography

    Science.gov (United States)

    Hyzer, William G.

    1983-03-01

    One of the most challenging areas in applying high-speed photography and videography in the plant and laboratory is in the recording of rapid events at macro and microscopic scales. Depth of field, exposure efficiency, working distance, and required exposure time are all reduced as optical magnification is increased, which severely taxes the skill and ingenuity of workers interested in recording any fast moving phenomena through the microscope or with magnifying lenses. This paper defines the problems inherent in photographing within macro and microscopic ranges and offers a systematic approach to optimizing the selection of equipment and choice of applicable techniques.

  10. High speed rotary drum

    Energy Technology Data Exchange (ETDEWEB)

    Sagara, H

    1970-03-25

    A high speed rotary drum is disclosed in which the rotor vessel is a double-wall structure comprising an inner wave-shaped pipe inserted coaxially within an outer straight pipe, the object being to provide a strengthened composite light-weight structure. Since force induced axial deformation of the straight pipe and radial deformation of the corrugated pipe are small, the composite effectively resists external forces and, if the waves of the inner pipe are given a sufficient amplitude, the thickness of both pipes may be reduced to lower the overall weight. Thus high angular velocities can be obtained to separate U/sup 235/ from gaseous UF/sub 6/.

  11. High Speed Exit Taxiways.

    Science.gov (United States)

    1981-02-01

    the runway with 1800 ft. radius and no specified runout distance, was developed circa 1958 and standardized in the 19609. A considerable nur, ber of...cornerinl) . Even wi th eaync);e wheel steering, the small fraction of total weight on thle nose whoel prevents tricycle airplaines from being very...would provide more runout but would require greater clearance travel distances at both Fnds. Z2 The results of reference (a) indicated that

  12. SEAL FOR HIGH SPEED CENTRIFUGE

    Science.gov (United States)

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  13. High-speed holographic camera

    International Nuclear Information System (INIS)

    Novaro, Marc

    The high-speed holographic camera is a disgnostic instrument using holography as an information storing support. It allows us to take 10 holograms, of an object, with exposures times of 1,5ns, separated in time by 1 or 2ns. In order to get these results easily, no mobile part is used in the set-up [fr

  14. Development of a super high speed railway and ML 100

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Y

    1973-07-01

    A history of the development progress is given, followed by a discussion of the propulsion system for a super high speed railway-structure. Induction linear motors and synchronous linear motors are discussed in some detail. The maintenance system is then described (basic test apparatus-rotary type superconductive magnetic force maintenance system, etc.). Experiments using a linear running superconductive magnetic test car are discussed. Developments of super high speed railways in America, France, England, West Germany, etc. are described.

  15. High-speed parallel counter

    International Nuclear Information System (INIS)

    Gus'kov, B.N.; Kalinnikov, V.A.; Krastev, V.R.; Maksimov, A.N.; Nikityuk, N.M.

    1985-01-01

    This paper describes a high-speed parallel counter that contains 31 inputs and 15 outputs and is implemented by integrated circuits of series 500. The counter is designed for fast sampling of events according to the number of particles that pass simultaneously through the hodoscopic plane of the detector. The minimum delay of the output signals relative to the input is 43 nsec. The duration of the output signals can be varied from 75 to 120 nsec

  16. High-speed AC motors

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, T.; Arkkio, A. [Helsinki University of Technology Laboratory of Electromechanics, Otaniemi (Finland)

    1997-12-31

    The paper deals with various types of highspeed electric motors, and their limiting powers. Standard machines with laminated rotors can be utilised if the speed is moderate. The solid rotor construction makes it possible to reach higher power and speed levels than those of laminated rotors. The development work on high-speed motors done at Helsinki University of Technology is presented, too. (orig.) 12 refs.

  17. The use of high-speed imaging in education

    Science.gov (United States)

    Kleine, H.; McNamara, G.; Rayner, J.

    2017-02-01

    Recent improvements in camera technology and the associated improved access to high-speed camera equipment have made it possible to use high-speed imaging not only in a research environment but also specifically for educational purposes. This includes high-speed sequences that are created both with and for a target audience of students in high schools and universities. The primary goal is to engage students in scientific exploration by providing them with a tool that allows them to see and measure otherwise inaccessible phenomena. High-speed imaging has the potential to stimulate students' curiosity as the results are often surprising or may contradict initial assumptions. "Live" demonstrations in class or student- run experiments are highly suitable to have a profound influence on student learning. Another aspect is the production of high-speed images for demonstration purposes. While some of the approaches known from the application of high speed imaging in a research environment can simply be transferred, additional techniques must often be developed to make the results more easily accessible for the targeted audience. This paper describes a range of student-centered activities that can be undertaken which demonstrate how student engagement and learning can be enhanced through the use of high speed imaging using readily available technologies.

  18. High speed computer assisted tomography

    International Nuclear Information System (INIS)

    Maydan, D.; Shepp, L.A.

    1980-01-01

    X-ray generation and detection apparatus for use in a computer assisted tomography system which permits relatively high speed scanning. A large x-ray tube having a circular anode (3) surrounds the patient area. A movable electron gun (8) orbits adjacent to the anode. The anode directs into the patient area xrays which are delimited into a fan beam by a pair of collimating rings (21). After passing through the patient, x-rays are detected by an array (22) of movable detectors. Detector subarrays (23) are synchronously movable out of the x-ray plane to permit the passage of the fan beam

  19. Application of Beyond Bound Decoding for High Speed Optical Communications

    DEFF Research Database (Denmark)

    Li, Bomin; Larsen, Knud J.; Vegas Olmos, Juan José

    2013-01-01

    This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB.......This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB....

  20. High-speed data search

    Science.gov (United States)

    Driscoll, James N.

    1994-01-01

    The high-speed data search system developed for KSC incorporates existing and emerging information retrieval technology to help a user intelligently and rapidly locate information found in large textual databases. This technology includes: natural language input; statistical ranking of retrieved information; an artificial intelligence concept called semantics, where 'surface level' knowledge found in text is used to improve the ranking of retrieved information; and relevance feedback, where user judgements about viewed information are used to automatically modify the search for further information. Semantics and relevance feedback are features of the system which are not available commercially. The system further demonstrates focus on paragraphs of information to decide relevance; and it can be used (without modification) to intelligently search all kinds of document collections, such as collections of legal documents medical documents, news stories, patents, and so forth. The purpose of this paper is to demonstrate the usefulness of statistical ranking, our semantic improvement, and relevance feedback.

  1. High speed laser tomography system

    Science.gov (United States)

    Samsonov, D.; Elsaesser, A.; Edwards, A.; Thomas, H. M.; Morfill, G. E.

    2008-03-01

    A high speed laser tomography system was developed capable of acquiring three-dimensional (3D) images of optically thin clouds of moving micron-sized particles. It operates by parallel-shifting an illuminating laser sheet with a pair of galvanometer-driven mirrors and synchronously recording two-dimensional (2D) images of thin slices of the imaged volume. The maximum scanning speed achieved was 120000slices/s, sequences of 24 volume scans (up to 256 slices each) have been obtained. The 2D slices were stacked to form 3D images of the volume, then the positions of the particles were identified and followed in the consecutive scans. The system was used to image a complex plasma with particles moving at speeds up to cm/s.

  2. A data-acquisition system for high speed linear CCD

    International Nuclear Information System (INIS)

    Liu Zhiyan; Chen Xiangcai; Jiang Xiaoshan; Zhang Hongyu; Liang Zhongwang; Xiang Haisheng; Hu Jun

    2010-01-01

    A data-acquisition system for high speed linear CCD (Charge Coupled device) is mainly introduced. The optical fiber transmission technology is used. The data is sent to PC through USB or PCI interface. The construction of the system, the design of the PCI interface hardware, software design and the design of the control program running on host computer are also introduced. (authors)

  3. High speed diesel consumption and economic growth in India

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sajal [Management Development Institute (MDI), Gurgaon 122001 (India)

    2010-04-15

    This study probes the long-term equilibrium relationship among High Speed Diesel (HSD) consumption, real GDP and price of HSD in India using autoregressive distributed lag (ARDL) bounds testing approach of cointegration for the time span 1972-1973 to 2005-2006. Empirical results reveal that the series are cointegrated and long term income elasticity for HSD demand in India is 1.27 while that for short-run is 0.46. Both long-run and short-run price elasticities are found to be statistically insignificant. The study also establishes a short-run bi-directional causality between economic growth and HSD consumption and the existence of a long-run unidirectional causality running from economic growth to HSD consumption. Finally, a set of policy prescriptions have been suggested to reduce the consumption of HSD, which should have no adverse impact on economy in the long-run. (author)

  4. High-speed railway signal trackside equipment patrol inspection system

    Science.gov (United States)

    Wu, Nan

    2018-03-01

    High-speed railway signal trackside equipment patrol inspection system comprehensively applies TDI (time delay integration), high-speed and highly responsive CMOS architecture, low illumination photosensitive technique, image data compression technique, machine vision technique and so on, installed on high-speed railway inspection train, and achieves the collection, management and analysis of the images of signal trackside equipment appearance while the train is running. The system will automatically filter out the signal trackside equipment images from a large number of the background image, and identify of the equipment changes by comparing the original image data. Combining with ledger data and train location information, the system accurately locate the trackside equipment, conscientiously guiding maintenance.

  5. A Fuzzy Optimization Model for High-Speed Railway Timetable Rescheduling

    Directory of Open Access Journals (Sweden)

    Li Wang

    2012-01-01

    Full Text Available A fuzzy optimization model based on improved symmetric tolerance approach is introduced, which allows for rescheduling high-speed railway timetable under unexpected interferences. The model nests different parameters of the soft constraints with uncertainty margin to describe their importance to the optimization purpose and treats the objective in the same manner. Thus a new optimal instrument is expected to achieve a new timetable subject to little slack of constraints. The section between Nanjing and Shanghai, which is the busiest, of Beijing-Shanghai high-speed rail line in China is used as the simulated measurement. The fuzzy optimization model provides an accurate approximation on train running time and headway time, and hence the results suggest that the number of seriously impacted trains and total delay time can be reduced significantly subject to little cost and risk.

  6. Network Based High Speed Product Innovation

    DEFF Research Database (Denmark)

    Lindgren, Peter

    In the first decade of the 21st century, New Product Development has undergone major changes in the way NPD is managed and organised. This is due to changes in technology, market demands, and in the competencies of companies. As a result NPD organised in different forms of networks is predicted...... to be of ever-increasing importance to many different kinds of companies. This happens at the same times as the share of new products of total turnover and earnings is increasing at unprecedented speed in many firms and industries. The latter results in the need for very fast innovation and product development...... - a need that can almost only be resolved by organising NPD in some form of network configuration. The work of Peter Lindgren is on several aspects of network based high speed product innovation and contributes to a descriptive understanding of this phenomenon as well as with normative theory on how NPD...

  7. High Speed On-Wafer Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At the High Speed On-Wafer Characterization Laboratory, researchers characterize and model devices operating at terahertz (THz) and millimeter-wave frequencies. The...

  8. A High-Speed Train Operation Plan Inspection Simulation Model

    Directory of Open Access Journals (Sweden)

    Yang Rui

    2018-01-01

    Full Text Available We developed a train operation simulation tool to inspect a train operation plan. In applying an improved Petri Net, the train was regarded as a token, and the line and station were regarded as places, respectively, in accordance with the high-speed train operation characteristics and network function. Location change and running information transfer of the high-speed train were realized by customizing a variety of transitions. The model was built based on the concept of component combination, considering the random disturbance in the process of train running. The simulation framework can be generated quickly and the system operation can be completed according to the different test requirements and the required network data. We tested the simulation tool when used for the real-world Wuhan to Guangzhou high-speed line. The results showed that the proposed model can be developed, the simulation results basically coincide with the objective reality, and it can not only test the feasibility of the high-speed train operation plan, but also be used as a support model to develop the simulation platform with more capabilities.

  9. Design of very high speed electric generators

    International Nuclear Information System (INIS)

    Labollita, Santiago

    2008-01-01

    This work approaches the design process of an electric generator suitable for running efficiently at high speed, driven by a turbo shaft.The axial flux concept was used.For the mechanical design of the prototype, cooling capacity and mounting method were considered, looking for simplicity of the parts evolved. Neodymium-iron-boron permanent magnets were used as magnetic source.For the electrical design, a calculation tool was developed in order to predict the prototype electrical parameters and optimize its geometry.The goal was to obtain 1 kW of electric power at a speed of 100,000 rpm.The efficiency and electrical behaviour of the prototype were characterized at speeds between 2,000 rpm and 30,000 rpm and then the behaviour at the design condition was predicted by obtaining an equivalent electric circuit.The estimated load voltage was 237 V as well as an electrical efficiency of 95%.Eddy current effects were not recognized. Increase of the internal resistance and decree of inductance were observed while raising the electric frequency.Finally, an electronic system was developed in order to use the prototype as a c.c. motor. Global performance was measured according to different supply characteristic. An optimum supply voltage was found.A maximum efficiency of 63% was reached. [es

  10. Reducing Heating In High-Speed Cinematography

    Science.gov (United States)

    Slater, Howard A.

    1989-01-01

    Infrared-absorbing and infrared-reflecting glass filters simple and effective means for reducing rise in temperature during high-speed motion-picture photography. "Hot-mirror" and "cold-mirror" configurations, employed in projection of images, helps prevent excessive heating of scenes by powerful lamps used in high-speed photography.

  11. High Speed White Dwarf Asteroseismology with the Herty Hall Cluster

    Science.gov (United States)

    Gray, Aaron; Kim, A.

    2012-01-01

    Asteroseismology is the process of using observed oscillations of stars to infer their interior structure. In high speed asteroseismology, we complete that by quickly computing hundreds of thousands of models to match the observed period spectra. Each model on a single processor takes five to ten seconds to run. Therefore, we use a cluster of sixteen Dell Workstations with dual-core processors. The computers use the Ubuntu operating system and Apache Hadoop software to manage workloads.

  12. Experimental high-speed network

    Science.gov (United States)

    McNeill, Kevin M.; Klein, William P.; Vercillo, Richard; Alsafadi, Yasser H.; Parra, Miguel V.; Dallas, William J.

    1993-09-01

    Many existing local area networking protocols currently applied in medical imaging were originally designed for relatively low-speed, low-volume networking. These protocols utilize small packet sizes appropriate for text based communication. Local area networks of this type typically provide raw bandwidth under 125 MHz. These older network technologies are not optimized for the low delay, high data traffic environment of a totally digital radiology department. Some current implementations use point-to-point links when greater bandwidth is required. However, the use of point-to-point communications for a total digital radiology department network presents many disadvantages. This paper describes work on an experimental multi-access local area network called XFT. The work includes the protocol specification, and the design and implementation of network interface hardware and software. The protocol specifies the Physical and Data Link layers (OSI layers 1 & 2) for a fiber-optic based token ring providing a raw bandwidth of 500 MHz. The protocol design and implementation of the XFT interface hardware includes many features to optimize image transfer and provide flexibility for additional future enhancements which include: a modular hardware design supporting easy portability to a variety of host system buses, a versatile message buffer design providing 16 MB of memory, and the capability to extend the raw bandwidth of the network to 3.0 GHz.

  13. High - speed steel for precise cased tools

    International Nuclear Information System (INIS)

    Karwiarz, J.; Mazur, A.

    2001-01-01

    The test results of high-vanadium high - speed steel (SWV9) for precise casted tools are presented. The face -milling cutters of NFCa80A type have been tested in industrial operating conditions. An average life - time of SWV9 steel tools was 3-10 times longer compare to the conventional high - speed milling cutters. Metallography of SWB9 precise casted steel revealed beneficial for tool properties distribution of primary vanadium carbides in the steel matrix. Presented results should be a good argument for wide application of high - vanadium high - speed steel for precise casted tools. (author)

  14. Assessment of rural soundscapes with high-speed train noise.

    Science.gov (United States)

    Lee, Pyoung Jik; Hong, Joo Young; Jeon, Jin Yong

    2014-06-01

    In the present study, rural soundscapes with high-speed train noise were assessed through laboratory experiments. A total of ten sites with varying landscape metrics were chosen for audio-visual recording. The acoustical characteristics of the high-speed train noise were analyzed using various noise level indices. Landscape metrics such as the percentage of natural features (NF) and Shannon's diversity index (SHDI) were adopted to evaluate the landscape features of the ten sites. Laboratory experiments were then performed with 20 well-trained listeners to investigate the perception of high-speed train noise in rural areas. The experiments consisted of three parts: 1) visual-only condition, 2) audio-only condition, and 3) combined audio-visual condition. The results showed that subjects' preference for visual images was significantly related to NF, the number of land types, and the A-weighted equivalent sound pressure level (LAeq). In addition, the visual images significantly influenced the noise annoyance, and LAeq and NF were the dominant factors affecting the annoyance from high-speed train noise in the combined audio-visual condition. In addition, Zwicker's loudness (N) was highly correlated with the annoyance from high-speed train noise in both the audio-only and audio-visual conditions. © 2013.

  15. High-Speed Sealift Technology Development Plan

    National Research Council Canada - National Science Library

    2002-01-01

    .... The purpose of the project was to define the technology investments required to enable development of the high-speed commercial and military ships needed to provide realistic future mission capabilities...

  16. Lubrication and cooling for high speed gears

    Science.gov (United States)

    Townsend, D. P.

    1985-01-01

    The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.

  17. Radiation response of high speed CMOS integrated circuits

    International Nuclear Information System (INIS)

    Yue, H.; Davison, D.; Jennings, R.F.; Lothongkam, P.; Rinerson, D.; Wyland, D.

    1987-01-01

    This paper studies the total dose and dose rate radiation response of the FCT family of high speed CMOS integrated circuits. Data taken on the devices is used to establish the dominant failure modes, and this data is further analyzed using one-sided tolerance factors for normal distribution statistical analysis

  18. Changes of indicators of high-speed and high-speed and power preparedness at volleyball players of 12–13 years old

    Directory of Open Access Journals (Sweden)

    Oleg Shevchenko

    2016-04-01

    Full Text Available Purpose: to define changes of indicators of high-speed and high-speed and power preparedness of volleyball players of 12–13 years old. Material & Methods: the test exercises, which are recommended by the training program of CYSS on volleyball, were used for the definition of the level of development of high-speed and high-speed and power abilities of volleyball players. 25 young volleyball players from the group of the previous basic preparation took part in the experiment. Sports experience of sportsmen is 3–4 years. The analysis of scientifically-methodical literature, pedagogical testing, pedagogical experiment, methods of mathematical statistics were carried out. Results: the analyzed level of high-speed and high-speed and power abilities of volleyball players. Conclusions: the results had reliable changes (t=2,2–2,4 at р<0,05 of the level of high-speed and high-speed and power abilities of volleyball players of 12–13years old in the experimental group at the end of the experiment, except run on 30 m that demonstrates a positive influence of application of special exercises in the educational-training process.

  19. Aerodynamic design on high-speed trains

    Science.gov (United States)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  20. High-Speed Videography Instrumentation And Procedures

    Science.gov (United States)

    Miller, C. E.

    1982-02-01

    High-speed videography has been an electronic analog of low-speed film cameras, but having the advantages of instant-replay and simplicity of operation. Recent advances have pushed frame-rates into the realm of the rotating prism camera. Some characteristics of videography systems are discussed in conjunction with applications in sports analysis, and with sports equipment testing.

  1. High Speed Wireless Signal Generation and Demodulation

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Sambaraju, Rakesh; Zibar, Darko

    We present the experimental demonstration of high speed wireless generation, up to 40 Gb/s, in the 75-110 GHz wireless band. All-optical OFDM and photonic up-conversion are used for generation and single side-band modulation with digital coherent detection for demodulation....

  2. High speed CAMAC differential branch highway driver

    International Nuclear Information System (INIS)

    McMillan, D.E.; Nelson, R.O.; Poore, R.V.; Sunier, J.W.; Ross, J.J.

    1979-01-01

    A new CAMAC branch driver is described that incorporates several unusual features which combine to give reliable, high-speed performance. These include balanced line driver/receivers, stored CAMAC command lists, 8 DMA channels, pseudo LAMS, hardware priority encoding of LAMS, and hardware-implemented Q-controlled block transfers. 3 figures

  3. Building and Running the Yucca Mountain Total System Performance Model in a Quality Environment

    International Nuclear Information System (INIS)

    D.A. Kalinich; K.P. Lee; J.A. McNeish

    2005-01-01

    A Total System Performance Assessment (TSPA) model has been developed to support the Safety Analysis Report (SAR) for the Yucca Mountain High-Level Waste Repository. The TSPA model forecasts repository performance over a 20,000-year simulation period. It has a high degree of complexity due to the complexity of its underlying process and abstraction models. This is reflected in the size of the model (a 27,000 element GoldSim file), its use of dynamic-linked libraries (14 DLLs), the number and size of its input files (659 files totaling 4.7 GB), and the number of model input parameters (2541 input database entries). TSPA model development and subsequent simulations with the final version of the model were performed to a set of Quality Assurance (QA) procedures. Due to the complexity of the model, comments on previous TSPAs, and the number of analysts involved (22 analysts in seven cities across four time zones), additional controls for the entire life-cycle of the TSPA model, including management, physical, model change, and input controls were developed and documented. These controls did not replace the QA. procedures, rather they provided guidance for implementing the requirements of the QA procedures with the specific intent of ensuring that the model development process and the simulations performed with the final version of the model had sufficient checking, traceability, and transparency. Management controls were developed to ensure that only management-approved changes were implemented into the TSPA model and that only management-approved model runs were performed. Physical controls were developed to track the use of prototype software and preliminary input files, and to ensure that only qualified software and inputs were used in the final version of the TSPA model. In addition, a system was developed to name, file, and track development versions of the TSPA model as well as simulations performed with the final version of the model

  4. 77 FR 62396 - Annual Company-Run Stress Test Requirements for Banking Organizations With Total Consolidated...

    Science.gov (United States)

    2012-10-12

    ... minimum risk-based capital requirements.\\3\\ Stress testing is one tool that helps both bank supervisors... the FDIC and the OCC to help to ensure that the company-run stress testing regulations are consistent... purposes of the annual company-run stress tests so that the same set of scenarios can be used to conduct...

  5. The economic effects of high speed rail investment

    OpenAIRE

    de Rus, Ginés

    2008-01-01

    The allocation of traffic between different transport modes follows transport user decisions which depend on the generalized cost of travel in the available alternatives. High Speed Rail (HSR) investment is a government decision with significant effects on the generalized cost of rail transport; and therefore on the modal split in corridors where private operators compete for traffic and charge prices close to total producer costs (infrastructure included). The rationale for HSR investment is...

  6. CARS measurement of vibrational and rotational temperature with high power laser and high speed visualization of total radiation behind hypervelocity shock waves of 5-7km/s

    Science.gov (United States)

    Sakurai, Kotaro; Bindu, Venigalla Hima; Niinomi, Shota; Ota, Masanori; Maeno, Kazuo

    2010-09-01

    Coherent Anti-Stokes Raman Spectroscopy (CARS) method is commonly used for measuring molecular structure or condition. In the aerospace technology, this method is applies to measure the temperature in thermic fluid with relatively long time duration of millisecond or sub millisecond. On the other hand, vibrational/rotational temperatures behind hypervelocity shock wave are important for heat-shield design in phase of reentry flight. The non-equilibrium flow with radiative heating from strongly shocked air ahead of the vehicles plays an important role on the heat flux to the wall surface structure as well as convective heating. In this paper CARS method is applied to measure the vibrational/rotational temperature of N2 behind hypervelocity shock wave. The strong shock wave in front of the reentering space vehicles can be experimentally realigned by free-piston, double-diaphragm shock tube with low density test gas. However CARS measurement is difficult for our experiment. Our measurement needs very short pulse which order of nanosecond and high power laser for CARS method. It is due to our measurement object is the momentary phenomena which velocity is 7km/s. In addition the observation section is low density test gas, and there is the strong background light behind the shock wave. So we employ the CARS method with high power, order of 1J/pulse, and very short pulse (10ns) laser. By using this laser the CARS signal can be acquired even in the strong radiation area. Also we simultaneously try to use the CCD camera to obtain total radiation with CARS method.

  7. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in a uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation are discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  8. A high speed digital noise generator

    Science.gov (United States)

    Obrien, J.; Gaffney, B.; Liu, B.

    In testing of digital signal processing hardware, a high speed pseudo-random noise generator is often required to simulate an input noise source to the hardware. This allows the hardware to be exercised in a manner analogous to actual operating conditions. In certain radar and communication environments, a noise generator operating at speeds in excess of 60 MHz may be required. In this paper, a method of generating high speed pseudo-random numbers from an arbitrarily specified distribution (Gaussian, Log-Normal, etc.) using a transformation from a uniform noise source is described. A noise generator operating at 80 MHz has been constructed. Different distributions can be readily obtained by simply changing the ROM set. The hardware and test results will be described. Using this approach, the generation of pseudo-random sequences with arbitrary distributions at word rates in excess of 200 MHz can be readily achieved.

  9. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current tre...

  10. Copper infiltrated high speed steels based composites

    International Nuclear Information System (INIS)

    Madej, M.; Lezanski, J.

    2003-01-01

    High hardness, mechanical strength, heat resistance and wear resistance of M3/2 high speed steel (HSS) make it an attractive material. Since technological and economical considerations are equally important, infiltration of high-speed steel skeleton with liquid cooper has proved to be a suitable technique whereby fully dense material is produced at low cost. Attempts have been made to describe the influence of the production process parameters and alloying additives, such as tungsten carbide on the microstructure and mechanical properties of copper infiltrated HSS based composites. The compositions of powder mixtures are 100% M3/2, M3/2+10% Wc, M3/2=30% WC. The powders were uniaxially cold compacted in a cylindrical die at 800 MPa. The green compacts were sintered in vacuum at 1150 o C for 60 minutes. Thereby obtained porous skeletons were subsequently infiltrated with cooper, by gravity method, in vacuum furnace at 1150 o C for 15 minutes. (author)

  11. High speed printing with polygon scan heads

    Science.gov (United States)

    Stutz, Glenn

    2016-03-01

    To reduce and in many cases eliminate the costs associated with high volume printing of consumer and industrial products, this paper investigates and validates the use of the new generation of high speed pulse on demand (POD) lasers in concert with high speed (HS) polygon scan heads (PSH). Associated costs include consumables such as printing ink and nozzles, provisioning labor, maintenance and repair expense as well as reduction of printing lines due to high through put. Targets that are applicable and investigated include direct printing on plastics, printing on paper/cardboard as well as printing on labels. Market segments would include consumer products (CPG), medical and pharmaceutical products, universal ID (UID), and industrial products. In regards to the POD lasers employed, the wavelengths include UV(355nm), Green (532nm) and IR (1064nm) operating within the repetition range of 180 to 250 KHz.

  12. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in an uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation is discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  13. Data Capture Technique for High Speed Signaling

    Science.gov (United States)

    Barrett, Wayne Melvin; Chen, Dong; Coteus, Paul William; Gara, Alan Gene; Jackson, Rory; Kopcsay, Gerard Vincent; Nathanson, Ben Jesse; Vranas, Paylos Michael; Takken, Todd E.

    2008-08-26

    A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.

  14. Development of high-speed video cameras

    Science.gov (United States)

    Etoh, Takeharu G.; Takehara, Kohsei; Okinaka, Tomoo; Takano, Yasuhide; Ruckelshausen, Arno; Poggemann, Dirk

    2001-04-01

    Presented in this paper is an outline of the R and D activities on high-speed video cameras, which have been done in Kinki University since more than ten years ago, and are currently proceeded as an international cooperative project with University of Applied Sciences Osnabruck and other organizations. Extensive marketing researches have been done, (1) on user's requirements on high-speed multi-framing and video cameras by questionnaires and hearings, and (2) on current availability of the cameras of this sort by search of journals and websites. Both of them support necessity of development of a high-speed video camera of more than 1 million fps. A video camera of 4,500 fps with parallel readout was developed in 1991. A video camera with triple sensors was developed in 1996. The sensor is the same one as developed for the previous camera. The frame rate is 50 million fps for triple-framing and 4,500 fps for triple-light-wave framing, including color image capturing. Idea on a video camera of 1 million fps with an ISIS, In-situ Storage Image Sensor, was proposed in 1993 at first, and has been continuously improved. A test sensor was developed in early 2000, and successfully captured images at 62,500 fps. Currently, design of a prototype ISIS is going on, and, hopefully, will be fabricated in near future. Epoch-making cameras in history of development of high-speed video cameras by other persons are also briefly reviewed.

  15. Feature Tracking for High Speed AFM Imaging of Biopolymers.

    Science.gov (United States)

    Hartman, Brett; Andersson, Sean B

    2018-03-31

    The scanning speed of atomic force microscopes continues to advance with some current commercial microscopes achieving on the order of one frame per second and at least one reaching 10 frames per second. Despite the success of these instruments, even higher frame rates are needed with scan ranges larger than are currently achievable. Moreover, there is a significant installed base of slower instruments that would benefit from algorithmic approaches to increasing their frame rate without requiring significant hardware modifications. In this paper, we present an experimental demonstration of high speed scanning on an existing, non-high speed instrument, through the use of a feedback-based, feature-tracking algorithm that reduces imaging time by focusing on features of interest to reduce the total imaging area. Experiments on both circular and square gratings, as well as silicon steps and DNA strands show a reduction in imaging time by a factor of 3-12 over raster scanning, depending on the parameters chosen.

  16. High Speed SPM of Functional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huey, Bryan D. [Univ. of Connecticut, Storrs, CT (United States)

    2015-08-14

    The development and optimization of applications comprising functional materials necessitates a thorough understanding of their static and dynamic properties and performance at the nanoscale. Leveraging High Speed SPM and concepts enabled by it, efficient measurements and maps with nanoscale and nanosecond temporal resolution are uniquely feasible. This includes recent enhancements for topographic, conductivity, ferroelectric, and piezoelectric properties as originally proposed, as well as newly developed methods or improvements to AFM-based mechanical, friction, thermal, and photoconductivity measurements. The results of this work reveal fundamental mechanisms of operation, and suggest new approaches for improving the ultimate speed and/or efficiency, of data storage systems, magnetic-electric sensors, and solar cells.

  17. High-speed photography. Technique and evolution

    International Nuclear Information System (INIS)

    Sanchez-Tembleque, R.

    1981-01-01

    It is intended to present some general considerations about ''Higg-speed photography'' as a tool of work common in mos research laboratories in the world. ''High-speed photography'' relies on the principles of photography of actions, that change rapidly with the time. The evolution of this technique goes along with the discovering of new phenomena in wich higher speeds are involved. At present is normal to deal with changing rates involving picoseconds times (10 -12 s) and new developments on the field of femtosecond (10 -15 s) theoretically are contemplated. (author)

  18. Continuous QKD and high speed data encryption

    Science.gov (United States)

    Zbinden, Hugo; Walenta, Nino; Guinnard, Olivier; Houlmann, Raphael; Wen, Charles Lim Ci; Korzh, Boris; Lunghi, Tommaso; Gisin, Nicolas; Burg, Andreas; Constantin, Jeremy; Legré, Matthieu; Trinkler, Patrick; Caselunghe, Dario; Kulesza, Natalia; Trolliet, Gregory; Vannel, Fabien; Junod, Pascal; Auberson, Olivier; Graf, Yoan; Curchod, Gilles; Habegger, Gilles; Messerli, Etienne; Portmann, Christopher; Henzen, Luca; Keller, Christoph; Pendl, Christian; Mühlberghuber, Michael; Roth, Christoph; Felber, Norbert; Gürkaynak, Frank; Schöni, Daniel; Muheim, Beat

    2013-10-01

    We present the results of a Swiss project dedicated to the development of high speed quantum key distribution and data encryption. The QKD engine features fully automated key exchange, hardware key distillation based on finite key security analysis, efficient authentication and wavelength division multiplexing of the quantum and the classical channel and one-time pas encryption. The encryption device allows authenticated symmetric key encryption (e.g AES) at rates of up to 100 Gb/s. A new quantum key can uploaded up to 1000 times second from the QKD engine.

  19. High speed PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beele, W. [Sulzer Metco Coatings BV (Netherlands); Eschendorff, G. [Sulzer Metco Coatings BV (Netherlands); Eldim BV (Netherlands)

    2006-07-15

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  20. Pulsed laser triggered high speed microfluidic switch

    Science.gov (United States)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  1. Architecture Of High Speed Image Processing System

    Science.gov (United States)

    Konishi, Toshio; Hayashi, Hiroshi; Ohki, Tohru

    1988-01-01

    One of architectures for a high speed image processing system which corresponds to a new algorithm for a shape understanding is proposed. And the hardware system which is based on the archtecture was developed. Consideration points of the architecture are mainly that using processors should match with the processing sequence of the target image and that the developed system should be used practically in an industry. As the result, it was possible to perform each processing at a speed of 80 nano-seconds a pixel.

  2. High speed UNIBUS-VME interface

    International Nuclear Information System (INIS)

    Olmos, P.

    1987-01-01

    An interface between VME an the UNIBUS of PDP or VAX computer is presented. The system supports high speed parallel communication (up to 1MB/S) and is composed of two modules. One of these is a commercial DR11M board which performs DMA transfers between UNIBUS and the external word. The other is a VME module specifically developed for this application. The interface has been tested under VMS operating system in VAX and VALET-PLUS system for the VME Bus. We describe in detail the VME module and its connection with the DR11M. Software, both in WMS and VALET, is also described. (Author) 7 refs

  3. High-speed reconstruction of compressed images

    Science.gov (United States)

    Cox, Jerome R., Jr.; Moore, Stephen M.

    1990-07-01

    A compression scheme is described that allows high-definition radiological images with greater than 8-bit intensity resolution to be represented by 8-bit pixels. Reconstruction of the images with their original intensity resolution can be carried out by means of a pipeline architecture suitable for compact, high-speed implementation. A reconstruction system is described that can be fabricated according to this approach and placed between an 8-bit display buffer and the display's video system thereby allowing contrast control of images at video rates. Results for 50 CR chest images are described showing that error-free reconstruction of the original 10-bit CR images can be achieved.

  4. High speed drying of saturated steam

    International Nuclear Information System (INIS)

    Marty, C.; Peyrelongue, J.P.

    1993-01-01

    This paper describes the development of the drying process for the saturated steam used in the PWR nuclear plant turbines in order to prevent negative effects of water on turbine efficiency, maintenance costs and equipment lifetime. The high speed drying concept is based on rotating the incoming saturated steam in order to separate water which is more denser than the steam; the water film is then extracted through an annular slot. A multicellular modular equipment has been tested. Applications on high and low pressure extraction of various PWR plants are described (Bugey, Loviisa)

  5. High speed PVD thermal barrier coatings

    International Nuclear Information System (INIS)

    Beele, W.; Eschendorff, G.

    2006-01-01

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  6. Increase of Total Body Water with Decrease of Body Mass while Running 100 km Nonstop--Formation of Edema?

    Science.gov (United States)

    Knechtle, Beat; Wirth, Andrea; Knechtle, Patrizia; Rosemann, Thomas

    2009-01-01

    We investigated whether ultraendurance runners in a 100-km run suffer a decrease of body mass and whether this loss consists of fat mass, skeletal muscle mass, or total body water. Male ultrarunners were measured pre- and postrace to determine body mass, fat mass, and skeletal muscle mass by using the anthropometric method. In addition,…

  7. High-speed elevators controlled by inverters

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yoshio; Takahashi, Hideaki; Nakamura, Kiyoshi; Kinoshita, Hiroshi

    1988-10-25

    The super-high-speed elevator with superiority to 300m/min of speed, requires both the large capacity power and wide range speed controls. Therefore, in order to materialize the smooth and quiet operation characteristics, by applying the inverter control, the low torque ripple control in the low frequency range and high frequency large capacity inverting for lowering the motor in noise are necessary with their being assured of reliability. To satisfy the above necessary items, together with the development of a sine wave pulse width and frequency modulation (PWM/PFM) control system, to more precisely enable the sine wave electric current control, and 3kHz switching power converter, using a 800A power transistor module, a supervoltage control circuit under the extraordinary condition was designed. As a result of commercializing a 360m/min super-high speed inverter elevator, the power source unit, due to the effect of high power factor, could be reduced by 30% in capacity and also the higher harmonic wave including ratio could be considerably lowered to the inferiority to 5%. 2 references, 7 figures, 1 table.

  8. Investigations on high speed MHD liquid flow

    International Nuclear Information System (INIS)

    Yamasaki, Takasuke; Kamiyama, Shin-ichi.

    1982-01-01

    Lately, the pressure drop problem of MHD two-phase flow in a duct has been investigated theoretically and experimentally in conjunction with the problems of liquid metal MHD two-phase flow power-generating cycle or of liquid metal boiling two-phase flow in the blanket of a nuclear fusion reactor. Though many research results have been reported so far for MHD single-phase flow, the hydrodynamic studies on high speed two-phase flow are reported only rarely, specifically the study dealing with the generation of cavitation is not found. In the present investigation, the basic equation was derived, analyzing the high speed MHD liquid flow in a diverging duct as the one-dimensional flow of homogeneous two-phase fluid of small void ratio. Furthermore, the theoretical solution for the effect of magnetic field on cavitation-generating conditions was tried. The pressure distribution in MHD flow in a duct largely varies with load factor, and even if the void ratio is small, the pressure distribution in two-phase flow is considerably different from that in single-phase flow. Even if the MHD two-phase flow in a duct is subsonic flow at the throat, the critical conditions may be achieved sometimes in a diverging duct. It was shown that cavitation is more likely to occur as magnetic field becomes more intense if it is generated downstream of the throat. This explains the experimental results qualitatively. (Wakatsuki, Y.)

  9. High-speed motion neutron radiography

    International Nuclear Information System (INIS)

    Bossi, R.H.; Barton, J.P.; Robinson, A.H.

    1982-01-01

    A system has been developed to perform neutron radiographic analysis of dynamic events having a duration of several milliseconds. The system has been operated in the range of 2000 to 10,000 frames. Synchronization has provided high-speed motion neutron radiographs for evaluation of the firing cycles of 7.62-mm munition rounds within a thick steel rifle barrel. The system has also been used to demonstrate its ability to produce neutron radiographic movies of two-phase flow. The equipment includes a TRIGA reactor capable of pulsing to a peak power of 3000 MW, a neutron beam collimator, a scintillator neutron conversion screen coupled to an image intensifier, and a 16-mm high-speed movie camera. The peak neutron flux incident at the object position is about 4 X 10 11 n/cm 2 X s with a pulse, full-width at half-maximum, of 9 ms. Modulation transfer function techniques have been used to assist optimization of the system performance. Special studies have been performed on the scintillator conversion screens and on the effects of statistical limitations on information availability

  10. The Effects of Gouge Accumulation on High Speed Rock Friction

    Science.gov (United States)

    Barbery, M. R.; Chester, F. M.; Chester, J. S.; Saber, O.

    2016-12-01

    Previous experiments demonstrate that a significant reduction in the coefficient of sliding friction typically occurs as sliding velocity approaches seismic slip rates and that weakening may reflect flash heating of surface contacts. Experiments also show differences in the weakening behavior of bare rock and gouge-lined surfaces across different rock types. We conducted high-speed velocity-step (VS) experiments on ground surfaces of granite (Westerly) and quartzite (Sioux) using a double-direct shear (DDS) configuration, with a sliding area of 75cm2, to investigate the effects of gouge generation and accumulation on frictional weakening behavior. Sliding surface temperatures were measured using a high-speed infrared camera. Experiments were conducted at 7-9 MPa normal stress and achieved VS from 1 mm/s up to 1 m/s at high acceleration (100g) over a small distance ( 2 mm), and with sustained high-speed sliding for 30 mm. Successive experiments were run without disassembling the blocks or disturbing the sliding surfaces to generate and accumulate gouge for cumulative displacements up to 0.5 m. Locally high temperatures were observed correlating to corrugated structures within the gouge. For VS tests on bare granite, we observed an abrupt decrease in the coefficient of friction from 0.7 at quasi-static slip rates to 0.5 at m/s slip rates, and a typical weakening distance, dc, of 3 mm. This observation is consistent with rotary shear experiments conducted at similar displacements, accelerations, and sliding velocities. With the accumulation of gouge along the sliding surface, dc progressively increases to 2 cm. In contrast, VS tests on bare quartzite produce an abrupt increase in friction, from 0.65 to 0.7 within 1 mm of slip, followed by gradual weakening for the duration of high-speed sliding. With the accumulation of quartz gouge, similar behavior is observed, but with a slightly greater magnitude of strengthening. The results for quartzite are unlike those

  11. Positional Match Running Performance in Elite Gaelic Football.

    Science.gov (United States)

    Malone, Shane; Solan, Barry; Collins, Kieran D; Doran, Dominic A

    2016-08-01

    Malone, S, Solan, B, Collins, KD, and Doran, DA. Positional match running performance in elite Gaelic football. J Strength Cond Res 30(8): 2292-2298, 2016-There is currently limited information available on match running performance in Gaelic football. The objective of the current study was to report on the match running profile of elite male Gaelic football and assess positional running performance. In this observational study, 50 elite male Gaelic football players wore 4-Hz global positioning systems units (VX Sports) across 30 competitive games with a total of 215 full game data sets collected. Activity was classed according to total distance, high-speed distance (≥17 km·h), sprint distance (≥22 km·h), mean velocity (km·h), peak velocity (km·h), and number of accelerations. The average match distance was 8,160 ± 1,482 m, reflective of a relative distance of 116 ± 21 m·min, with 1,731 ± 659 m covered at high speed, which is reflective of a relative high-speed distance of 25 ± 9 m·min. The observed sprint distance was 445 ± 169 m distributed across 44 sprint actions. The peak velocity was 30.3 ± 1.8 km·h with a mean velocity of 6.5 ± 1.2 km·h. Players completed 184 ± 40 accelerations, which represent 2.6 ± 0.5 accelerations per minute. There were significant differences between positional groups for both total running distance, high-speed running distance, and sprint distance, with midfielders covering more total and high-speed running distance, compared with other positions (p football match play.

  12. Superconducting magnet suspensions in high speed ground transport

    Energy Technology Data Exchange (ETDEWEB)

    Alston, I A

    1973-08-01

    A technical and economic definition of high speed ground transport systems using magnetic suspensions is given. The full range of common superconducting suspensions and of propulsions are covered with designs produced for speeds ranging from 100 m/s (225 miles/hr) to 250 m/s (560 mile/hr). Technical descriptions of the vehicles, their suspensions, propulsions and tracks are given in some detail and operating costs are presented for all the systems together with details of the breakdown of costs and the capital costs involved. The design assumptions, the costing procedure and a cost sensitivity study are presented. It is concluded that the systems are technically feasible; that they are suited to existing duorail track for low speed running and that, in these circumstances, they would be economically viable over many routes.

  13. Design of high-speed ECT and ERT system

    International Nuclear Information System (INIS)

    Wang Baoliang; Huang Zhiyao; Li Haiqing

    2009-01-01

    Process tomography technique provides a novel method to investigate the multi-phase flow distribution inside pipe or vessel. Electrical resistance tomography (ERT) and electrical capacitance tomography (ECT) are extensively studied in recent years. As the capacitance to voltage and resistance to voltage converters run faster, the speeds of other circuits in the system, such as MCU, A/D, D/A etc, have become the bottlenecks of improving the speed. This paper describes a new dual-modal, ECT and ERT, data acquisition system. The system is controlled by a digital signal processor. Both the ERT and the ECT systems use one platform to simplify the system design and maintenance. The system can work at high speed which is only limited by the capacitance to voltage converter or resistance to voltage converter. Primary test results show the speed of the new system is 1400 frames/second for 16-electrode ERT and 2200 frames/second for 12-electrode ECT.

  14. Numerical study on wake characteristics of high-speed trains

    Science.gov (United States)

    Yao, Shuan-Bao; Sun, Zhen-Xu; Guo, Di-Long; Chen, Da-Wei; Yang, Guo-Wei

    2013-12-01

    Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of unsteady Reynold-averaged Navier-Stokes (URANS) and detached eddy simulation (DES) are utilized, respectively. Results reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system.

  15. BLOSTREAM: A HIGH SPEED STREAM CIPHER

    Directory of Open Access Journals (Sweden)

    ALI H. KASHMAR

    2017-04-01

    Full Text Available Although stream ciphers are widely utilized to encrypt sensitive data at fast speeds, security concerns have led to a shift from stream to block ciphers, judging that the current technology in stream cipher is inferior to the technology of block ciphers. This paper presents the design of an improved efficient and secure stream cipher called Blostream, which is more secure than conventional stream ciphers that use XOR for mixing. The proposed cipher comprises two major components: the Pseudo Random Number Generator (PRNG using the Rabbit algorithm and a nonlinear invertible round function (combiner for encryption and decryption. We evaluate its performance in terms of implementation and security, presenting advantages and disadvantages, comparison of the proposed cipher with similar systems and a statistical test for randomness. The analysis shows that the proposed cipher is more efficient, high speed, and secure than current conventional stream ciphers.

  16. High-speed cineradiographies acquisition and processing

    International Nuclear Information System (INIS)

    Kahn, E.; Nourrissat, Yves; Viguier, Philippe

    A high-speed cineradiography installation provides dimensional informations recorded either on a film, or on a magnetic tape. In the event of the film, the imperfection of our visual sense leads us to look for a method of measurement which allows us to extract the information from a noisy image; the association of an optical flying spot scanner with a computer is adapted to this use and allows us, for instance, to determine the inside and outside diameters of a sphere during its implosion. On the other hand, the radiographic recording on magnetic tape is processed, after numerisation by the computer, in the same way as the numeric tape generated after the optical scanner. We compare the results achieved by the two recording methods [fr

  17. High-speed Maglev studies in Canada

    International Nuclear Information System (INIS)

    Atherton, D.L.; Eastham, A.R.

    1974-01-01

    This paper reports on Canadian studies of superconducting magnetic levitation and variable-speed linear synchronous motor propulsion for high-speed inter-city guided ground transport. Levitation is obtained by the interaction of vehicle-mounted superconducting magnets and the eddy currents induced in aluminium strip conductors on the guideway. Non-contact propulsion by linear synchronous motor (LSM) is obtained by using vehicle-borne superconducting magnets and powered guideway coils. A suggested guidance scheme uses a flat guideway with 'null-flux' loops overlying the LSM windings. The propulsion magnets interact with the loops and the edges of the levitation strips to provide lateral stabilization. The test facility is a 7.6m wheel, rotating with a peripheral speed of 33m/s. (author)

  18. Inlet design for high-speed propfans

    Science.gov (United States)

    Little, B. H., Jr.; Hinson, B. L.

    1982-01-01

    A two-part study was performed to design inlets for high-speed propfan installation. The first part was a parametric study to select promising inlet concepts. A wide range of inlet geometries was examined and evaluated - primarily on the basis of cruise thrust and fuel burn performance. Two inlet concepts were than chosen for more detailed design studies - one apropriate to offset engine/gearbox arrangements and the other to in-line arrangements. In the second part of this study, inlet design points were chosen to optimize the net installed thrust, and detailed design of the two inlet configurations was performed. An analytical methodology was developed to account for propfan slipstream effects, transonic flow efects, and three-dimensional geometry effects. Using this methodology, low drag cowls were designed for the two inlets.

  19. High Speed Magnetostrictive MEMS Actuated Mirror Deflectors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this proposal is to develop high speed magnetostrictive and MEMS actuators for rapidly deflecting or deforming mirrors. High speed, light-weight,...

  20. Potential scenarios of concern for high speed rail operations

    Science.gov (United States)

    2011-03-16

    Currently, multiple operating authorities are proposing the : introduction of high-speed rail service in the United States. : While high-speed rail service shares a number of basic : principles with conventional-speed rail service, the operational : ...

  1. High-speed and intercity passenger rail testing strategy.

    Science.gov (United States)

    2013-05-01

    This high-speed and intercity passenger rail (HSIPR) testing strategy addresses the requirements for testing of high-speed train sets and technology before introduction to the North American railroad system. The report documents the results of a surv...

  2. High-speed railways in Japan

    International Nuclear Information System (INIS)

    Kyotani, Y.

    1974-01-01

    This paper reviews the development of conventional railways in Japan, leading up to the Shinkansen line, which at present runs at speeds up to 210km/h, and will in the future be speeded up to 260km/h. It then goes on to review the development of a superconductive, magnetically levitated train, which will constitute the next generation of railways, running at speeds of up to 500km/h. (author)

  3. Smart Sensor Based Obstacle Detection for High-Speed Unmanned Surface Vehicle

    DEFF Research Database (Denmark)

    Hermann, Dan; Galeazzi, Roberto; Andersen, Jens Christian

    2015-01-01

    This paper describes an obstacle detection system for a high-speed and agile unmanned surface vehicle (USV), running at speeds up to 30 m/s. The aim is a real-time and high performance obstacle detection system using both radar and vision technologies to detect obstacles within a range of 175 m. ...... performance using sensor fusion of radar and computer vision....

  4. A REVIEW OF HIGH-SPEED RAIL PLAN IN JAVA ISLAND: A COMPARISON WITH EXISTING MODES OF TRANSPORT

    Directory of Open Access Journals (Sweden)

    Eko Hartono

    2013-05-01

    It can be concluded that journey time and fare of the high-speed rail is very competitive to the air transport in Jakarta-Surabaya corridor. The journey time to travel from Jakarta to Surabaya is 4 hours and 19 minutes by high-speed train and 4 hours and 40 minutes by air. Based on the benchmarking analysis, the suitable fare for the high-speed rail should be 70% of the air transport. This study predicted that 61% of air passenger, 18% of conventional rail passenger and 12% of bus passenger will switch to the high-speed rail service in 2020. In total, the high-speed rail will have 24% of market share for the passenger transport and becomes the second largest market share after road transport (52%. The conventional rail and air transport have 14% and 9% of total market share to travel from Jakarta to Surabaya and vice versa. The high-speed rail development reduces carbon emissions caused by transportation systems in Java Island. It has been calculated that there are 2.542 million tonnages of CO2 per annum without introducing high-speed rail, however, the CO2 emissions decrease to 1.694 million tonnages per annum if the high-speed rail is developed in Java Island. Generalized cost of the high-speed rail is higher than road and conventional rail. However, it is lower than air transport. Keywords: Java high-speed rail, HSR Comparison, modal share, journey time

  5. Florida intercity high speed rail passenger service

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, F.T.; Watford, S.; Moore, G.; Des, A. [Florida Univ., Gainesville, FL (United States). Dept. of Civil Engineering

    1997-10-01

    Plans for a new high-speed rail (HSR) transportation system in Florida were reviewed. HSR is believed to be the least expensive, most energy-efficient and least environmentally harmful alternative to air and highway travel. The system in Florida will be used as a case study to determine its overall impact on the environment, people and economy. The 300-plus mile system will move travelers at speeds of over 200 mph between Miami, Orlando, and Tampa. The study will identify the impacts of a HSR system on existing transportation networks, environment, energy, growth and growth distribution, safety, economy, travel time, and tourism. Transportation problems and the innovative mechanisms needed to realize the joint public and private venture approach to planning, locating, permitting, managing, financing, constructing and maintaining an inter-regional HSR line for the state were studied. The all-electric train would greatly help the environment in two ways: (1) zero emissions from the train itself, and (2) the reduction of trips by automobile and aircraft would reduce the amount of fuel and energy being used. 4 refs., 1 fig.

  6. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.; Li, Erqiang; Thoroddsen, Sigurdur T

    2017-01-01

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  7. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.

    2017-08-31

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  8. Canadian high speed magnetically levitated vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, D L [Queen' s Univ., Kingston, Ont.; Belanger, P R; Burke, P E; Dawson, G E; Eastham, A R; Hayes, W F; Ooi, B T; Silvester, P; Slemon, G R

    1978-04-01

    A technically feasible high speed (400 to 480 km/h) guided ground transportation system, based on the use of the vehicle-borne superconducting magnets for electrodynamic suspension and guidance and for linear synchronous motor propulsion was defined as a future modal option for Canadian application. Analysis and design proposals were validated by large-scale tests on a rotating wheel facility and by modelling system components and their interactions. Thirty ton vehicles carrying 100 passengers operate over a flat-topped elevated guideway, which minimizes system down-time due to ice and snow accumulation and facilitates the design of turn-outs. A clearance of up to 15 cm is produced by the electrodynamic interaction between the vehicle-borne superconducting magnets and aluminum guideway strips. Propulsion and automatic system control is provided by the superconducting linear synchronous motor which operates at good efficiency (0.74) and high power factor (0.95). The vehicle is guided primarily by the interaction between the LSM field magnet array and flat null-flux loops overlying the stator windings in the guideway. The linear synchronous motor, electrodynamic suspension as well as levitation strip joints, parasitic LSM winding losses and limitations to the use of ferromagnetic guideway reinforcement were investigated experimentally on the test wheel facility. The use of a secondary suspension assures adequate dynamic stability, and good ride quality is achieved by optimized passive components with respect to lateral modes and by an actively controlled secondary suspension with respect to vertical motion.

  9. Material constraints on high-speed design

    Science.gov (United States)

    Bucur, Diana; Militaru, Nicolae

    2015-02-01

    Current high-speed circuit designs with signal rates up to 100Gbps and above are implying constraints for dielectric and conductive materials and their dependence of frequency, for component elements and for production processes. The purpose of this paper is to highlight through various simulation results the frequency dependence of specific parameters like insertion and return loss, eye diagrams, group delay that are part of signal integrity analyses type. In low-power environment designs become more complex as the operation frequency increases. The need for new materials with spatial uniformity for dielectric constant is a need for higher data rates circuits. The fiber weave effect (FWE) will be analyzed through the eye diagram results for various dielectric materials in a differential signaling scheme given the fact that the FWE is a phenomenon that affects randomly the performance of the circuit on balanced/differential transmission lines which are typically characterized through the above mentioned approaches. Crosstalk between traces is also of concern due to propagated signals that have tight rise and fall times or due to high density of the boards. Criteria should be considered to achieve maximum performance of the designed system requiring critical electronic properties.

  10. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  11. High-Speed RaPToRS

    Science.gov (United States)

    Henchen, Robert; Esham, Benjamin; Becker, William; Pogozelski, Edward; Padalino, Stephen; Sangster, Thomas; Glebov, Vladimir

    2008-11-01

    The High-Speed Rapid Pneumatic Transport of Radioactive Samples (HS-RaPToRS) system, designed to quickly and safely move radioactive materials, was assembled and tested at the Mercury facility of the Naval Research Laboratory (NRL) in Washington D.C. A sample, which is placed inside a four-inch-diameter carrier, is activated before being transported through a PVC tube via airflow. The carrier travels from the reaction chamber to the end station where it pneumatically brakes prior to the gate. A magnetic latch releases the gate when the carrier arrives and comes to rest. The airflow, optical carrier-monitoring devices, and end gate are controlled manually or automatically with LabView software. The installation and testing of the RaPToRS system at NRL was successfully completed with transport times of less than 3 seconds. The speed of the carrier averaged 16 m/s. Prospective facilities for similar systems include the Laboratory for Laser Energetics and the National Ignition Facility.

  12. High speed all-silicon optical modulator

    International Nuclear Information System (INIS)

    Marris-Morini, Delphine; Le Roux, Xavier; Pascal, Daniel; Vivien, Laurent; Cassan, Eric; Fedeli, Jean Marc; Damlencourt, Jean Francois; Bouville, David; Palomo, Jose; Laval, Suzanne

    2006-01-01

    Electrorefractive effect is experimentally demonstrated in an all-silicon optical structure. A highly doped Si P + layer is embedded in the intrinsic region of a PIN diode integrated in a SOI waveguide. Holes are confined at equilibrium around the P + layer. By applying a reverse bias to the diode, electrical field sweeps the carriers out of the active region. Free carrier concentration variations are responsible for local refractive index variations leading to an effective index variation of the waveguide optical mode and to an optical absorption variation. As a figure of merit, the product V π L π , determined from the measured effective index variation, is equal to 3.1 V cm. Furthermore, the device performances have theoretically been investigated. Estimations show that V π L π as small as 1 V cm are feasible using optimized structures. Response times lower than 2 ps are predicted, which gives the possibility to achieve very high-speed modulation. Furthermore, a temperature increases from 300 to 400 K does not change the index variation amplitude, and despite the carrier mobility reduction, response times are still lower than 2 ps

  13. The high speed civil transport and NASA's High Speed Research (HSR) program

    Science.gov (United States)

    Shaw, Robert J.

    1994-01-01

    Ongoing studies being conducted not only in this country but in Europe and Asia suggest that a second generation supersonic transport, or High-Speed Civil Transport (HSCT), could become an important part of the 21st century international air transportation system. However, major environmental compatibility and economic viability issues must be resolved if the HSCT is to become a reality. This talk will overview the NASA High-Speed Research (HSR) program which is aimed at providing the U.S. industry with a technology base to allow them to consider launching an HSCT program early in the next century. The talk will also discuss some of the comparable activities going on within Europe and Japan.

  14. System Design of a Cheetah Robot Toward Ultra-high Speed

    OpenAIRE

    Mantian Li; Xin Wang; Wei Guo; Pengfei Wang; Lining Sun

    2014-01-01

    High-speed legged locomotion pushes the limits of the most challenging problems of design and development of the mechanism, also the control and the perception method. The cheetah is an existence proof of concept of what we imitate for high-speed running, and provides us lots of inspiration on design. In this paper, a new model of a cheetah-like robot is developed using anatomical analysis and design. Inspired by a biological neural mechanism, we propose a novel control method for controlling...

  15. High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications

    Science.gov (United States)

    Taveniku, Mikael

    2013-01-01

    A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges. The current generation data recor - ders used within the VLBI community are aging, special-purpose machines that are both slow (do not meet today's requirements) and are very expensive to maintain and operate. Furthermore, they are not easily upgraded to take advantage of commercial technology development, and are not scalable to multiple 10s of Gbit/s data rates required by new applications. The innovation provides a softwaredefined, high-speed data recorder that is scalable with technology advances in the commercial space. It maximally utilizes current technologies without being locked to a particular hardware platform. The innovation also provides a cost-effective way of streaming large amounts of data from sensors to disk, enabling many applications to store raw sensor data and perform post and signal processing offline. This recording system will be applicable to many applications needing realworld, high-speed data collection, including electronic warfare, softwaredefined radar, signal history storage of multispectral sensors, development of autonomous vehicles, and more.

  16. ECONOMIC REASONING MAXIMUM SLOPE IN DESIGN HIGH-SPEED LINES

    Directory of Open Access Journals (Sweden)

    CHERNYSHOVA O. S.

    2016-04-01

    Full Text Available Raising of problem The worldwide design standards high-speed lines are somewhat different. This is due to several reasons: different levels of design speed, differences of characteristics of rolling stock and, in particular, the features of the design plan and longitudinal profile, that are associated primarily with the conditions of the relief. In the design of high-speed railways in Ukraine should take into account these features and determine what the maximum slope values can be used in difficult conditions, as well as how it will affect the operational and capital costs. Purpose. To determine the optimal design parameters of the longitudinal profile. Conclusion. The results are based not only on technical, but also economic indicators and allow the assessment of the necessary capital expenditures and expected cost of the railway in the future. Analytical dependences, to predict the expected operating costs of the railway, depending on the maximum slope, its length and the total length of the section.

  17. Dark matter phenomenology of high-speed galaxy cluster collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Yuriy [Izmir University of Economics, Faculty of Engineering, Izmir (Turkey); Ji, Chueng-Ryong [North Carolina State University, Department of Physics, Raleigh, NC (United States)

    2017-08-15

    We perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos' distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark matter expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90 {sup circle}. Our simulations indicate that as much as 20% of the total collision's mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions. Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017. (orig.)

  18. A High-Speed Design of Montgomery Multiplier

    Science.gov (United States)

    Fan, Yibo; Ikenaga, Takeshi; Goto, Satoshi

    With the increase of key length used in public cryptographic algorithms such as RSA and ECC, the speed of Montgomery multiplication becomes a bottleneck. This paper proposes a high speed design of Montgomery multiplier. Firstly, a modified scalable high-radix Montgomery algorithm is proposed to reduce critical path. Secondly, a high-radix clock-saving dataflow is proposed to support high-radix operation and one clock cycle delay in dataflow. Finally, a hardware-reused architecture is proposed to reduce the hardware cost and a parallel radix-16 design of data path is proposed to accelerate the speed. By using HHNEC 0.25μm standard cell library, the implementation results show that the total cost of Montgomery multiplier is 130 KGates, the clock frequency is 180MHz and the throughput of 1024-bit RSA encryption is 352kbps. This design is suitable to be used in high speed RSA or ECC encryption/decryption. As a scalable design, it supports any key-length encryption/decryption up to the size of on-chip memory.

  19. High speed intravascular photoacoustic imaging of atherosclerotic arteries (Conference Presentation)

    Science.gov (United States)

    Piao, Zhonglie; Ma, Teng; Qu, Yueqiao; Li, Jiawen; Yu, Mingyue; He, Youmin; Shung, K. Kirk; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2016-02-01

    Cardiovascular disease is the leading cause of death in the industrialized nations. Accurate quantification of both the morphology and composition of lipid-rich vulnerable atherosclerotic plaque are essential for early detection and optimal treatment in clinics. In previous works, intravascular photoacoustic (IVPA) imaging for detection of lipid-rich plaque within coronary artery walls has been demonstrated in ex vivo, but the imaging speed is still limited. In order to increase the imaging speed, a high repetition rate laser is needed. In this work, we present a high speed integrated IVPA/US imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A miniature catheter with 1.0 mm outer diameter was designed with a 200 μm multimode fiber and an ultrasound transducer with 45 MHz center frequency. The fiber was polished at 38 degree and enclosed in a glass capillary for total internal reflection. An optical/electrical rotary junction and pull-back mechanism was applied for rotating and linearly scanning the catheter to obtain three-dimensional imaging. Atherosclerotic rabbit abdominal aorta was imaged as two frame/second at 1725 nm. Furthermore, by wide tuning range of the laser wavelength from 1680 nm to 1770 nm, spectroscopic photoacoustic analysis of lipid-mimicking phantom and an human atherosclerotic artery was performed ex vivo. The results demonstrated that the developed IVPA/US imaging system is capable for high speed intravascular imaging for plaque detection.

  20. Dark matter phenomenology of high-speed galaxy cluster collisions

    International Nuclear Information System (INIS)

    Mishchenko, Yuriy; Ji, Chueng-Ryong

    2017-01-01

    We perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos' distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark matter expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90 "c"i"r"c"l"e. Our simulations indicate that as much as 20% of the total collision's mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions. Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017. (orig.)

  1. Teaching high-speed photography and photo-instrumentation

    Science.gov (United States)

    Davidhazy, Andrew

    2005-03-01

    As the tools available to the high speed photographer have become more powerful the underlying technology has increased in complexity and often is beyond the reach of most practitioners in terms of in-the-field troubleshooting or adaptation and this specialization has also driven many systems beyond the reach of high school, community college and undergraduate, non-research funded, universities. In spite of this and with the belief that fundamental techniques, reasoning and approaches have not changed much over the years, several courses in photo-instrumentation at the Imaging and Photographic Technology program at the Rochester Institute of Technology present to a couple dozen undergraduate students a year the principles associated with a various imaging systems and techniques for visualization and data analysis of high speed or "invisible" phenomena. This paper reviews the objectives and philosophy of these courses in the context of a total imaging technology education. It describes and illustrates current topics included in the program. In brief, calibration and time measurement concepts, instantaneous and repetitive time sampling equipment, various visualization technologies, strip and streak cameras and applications using film and improvised digital recorders, basic velocimetry techniques including sensitometric velocimetry and synchro-ballistic photography plus other related techniques are introduced to undergraduate students.

  2. High Speed Dynamics in Brittle Materials

    Science.gov (United States)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural

  3. High Speed/ Low Effluent Process for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  4. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system

    Science.gov (United States)

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.

  5. On-Board Video Recording Unravels Bird Behavior and Mortality Produced by High-Speed Trains

    Directory of Open Access Journals (Sweden)

    Eladio L. García de la Morena

    2017-10-01

    Full Text Available Large high-speed railway (HSR networks are planned for the near future to accomplish increased transport demand with low energy consumption. However, high-speed trains produce unknown avian mortality due to birds using the railway and being unable to avoid approaching trains. Safety and logistic difficulties have precluded until now mortality estimation in railways through carcass removal, but information technologies can overcome such problems. We present the results obtained with an experimental on-board system to record bird-train collisions composed by a frontal recording camera, a GPS navigation system and a data storage unit. An observer standing in the cabin behind the driver controlled the system and filled out a form with data of collisions and bird observations in front of the train. Photographs of the train front taken before and after each journey were used to improve the record of killed birds. Trains running the 321.7 km line between Madrid and Albacete (Spain at speeds up to 250–300 km/h were equipped with the system during 66 journeys along a year, totaling approximately 14,700 km of effective recording. The review of videos produced 1,090 bird observations, 29.4% of them corresponding to birds crossing the infrastructure under the catenary and thus facing collision risk. Recordings also showed that 37.7% bird crossings were of animals resting on some element of the infrastructure moments before the train arrival, and that the flight initiation distance of birds (mean ± SD was between 60 ± 33 m (passerines and 136 ± 49 m (raptors. Mortality in the railway was estimated to be 60.5 birds/km year on a line section with 53 runs per day and 26.1 birds/km year in a section with 25 runs per day. Our results are the first published estimation of bird mortality in a HSR and show the potential of information technologies to yield useful data for monitoring the impact of trains on birds via on-board recording systems. Moreover

  6. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  7. High speed operation of permanent magnet machines

    Science.gov (United States)

    El-Refaie, Ayman M.

    This work proposes methods to extend the high-speed operating capabilities of both the interior PM (IPM) and surface PM (SPM) machines. For interior PM machines, this research has developed and presented the first thorough analysis of how a new bi-state magnetic material can be usefully applied to the design of IPM machines. Key elements of this contribution include identifying how the unique properties of the bi-state magnetic material can be applied most effectively in the rotor design of an IPM machine by "unmagnetizing" the magnet cavity center posts rather than the outer bridges. The importance of elevated rotor speed in making the best use of the bi-state magnetic material while recognizing its limitations has been identified. For surface PM machines, this research has provided, for the first time, a clear explanation of how fractional-slot concentrated windings can be applied to SPM machines in order to achieve the necessary conditions for optimal flux weakening. A closed-form analytical procedure for analyzing SPM machines designed with concentrated windings has been developed. Guidelines for designing SPM machines using concentrated windings in order to achieve optimum flux weakening are provided. Analytical and numerical finite element analysis (FEA) results have provided promising evidence of the scalability of the concentrated winding technique with respect to the number of poles, machine aspect ratio, and output power rating. Useful comparisons between the predicted performance characteristics of SPM machines equipped with concentrated windings and both SPM and IPM machines designed with distributed windings are included. Analytical techniques have been used to evaluate the impact of the high pole number on various converter performance metrics. Both analytical techniques and FEA have been used for evaluating the eddy-current losses in the surface magnets due to the stator winding subharmonics. Techniques for reducing these losses have been

  8. A wide range and high speed automatic gain control

    International Nuclear Information System (INIS)

    Tacconi, E.; Christiansen, C.

    1993-05-01

    Automatic gain control (AGC) techniques have been largely used since the beginning of electronics, but in most of the applications the dynamic response is slow compared with the carrier frequency. The problem of developing an automatic gain control with high dynamic response and wide control range simultaneously is analyzed in this work. An ideal gain control law, with the property that the total loop gain remains constant independent of the carrier amplitude, is obtained. The resulting AGC behavior is compared by computer simulations with a linear multiplier AGC. The ideal gain control law can be approximated using a transconductance amplifier. A practical circuit that has been used at CERN in the radio frequency loops of the Booster Synchrotron is presented. The circuit has high speed and 80-dB gain control range

  9. High Speed Water Sterilization Using One-Dimensional Nanostructures

    KAUST Repository

    Schoen, David T.; Schoen, Alia P.; Hu, Liangbing; Kim, Han Sun; Heilshorn, Sarah C.; Cui, Yi

    2010-01-01

    The removal of bacteria and other organisms from water is an extremely important process, not only for drinking and sanitation but also industrially as biofouling is a commonplace and serious problem. We here present a textile based multiscale device for the high speed electrical sterilization of water using silver nanowires, carbon nanotubes, and cotton. This approach, which combines several materials spanning three very different length scales with simple dying based fabrication, makes a gravity fed device operating at 100000 L/(h m2) which can inactivate >98% of bacteria with only several seconds of total incubation time. This excellent performance is enabled by the use of an electrical mechanism rather than size exclusion, while the very high surface area of the device coupled with large electric field concentrations near the silver nanowire tips allows for effective bacterial inactivation. © 2010 American Chemical Society.

  10. High-speed railway lines. Fatigue of contact wires

    Energy Technology Data Exchange (ETDEWEB)

    Avronsart, Stephane; Kalsbeek, Guido van [SNCF, La Plaine St. Denis (France); Mai, Si Hai; Massat, Jean Pierre; Nguyen-Tajan, Thi Mac-Lan [SNCF, Paris (France)

    2013-06-15

    With more than 30 years of operation of High-Speed Lines, SNCF has a large feedback on behaviour of components. Regarding the contact wire, the only operation of maintenance consists in measuring the thickness in order to estimate the remaining lifetime which in total is around 50 years. With such a long period of operation the question was raised on fatigue phenomena. The research project launched by SNCF on this topic in 2011 includes tests on copper material characteristics, modelling of the crack initiation and propagation and detection of cracks on the contact wire. The result of this research project could lead to request for changes in EN 50149 by introducing new material characteristic parameters for contact wire related to fatigue. (orig.)

  11. SPAD electronics for high-speed quantum communications

    Science.gov (United States)

    Bienfang, Joshua C.; Restelli, Alessandro; Migdall, Alan

    2011-01-01

    We discuss high-speed electronics that support the use of single-photon avalanche diodes (SPADs) in gigahertz singlephoton communications systems. For InGaAs/InP SPADs, recent work has demonstrated reduced afterpulsing and count rates approaching 500 MHz can be achieved with gigahertz periodic-gating techniques designed to minimize the total avalanche charge to less than 100 fC. We investigate afterpulsing in this regime and establish a connection to observations using more conventional techniques. For Si SPADs, we report the benefits of improved timing electronics that enhance the temporal resolution of Si SPADs used in a free-space quantum key distribution (QKD) system operating in the GHz regime. We establish that the effects of count-rate fluctuations induced by daytime turbulent scintillation are significantly reduced, benefitting the performance of the QKD system.

  12. High Speed Water Sterilization Using One-Dimensional Nanostructures

    KAUST Repository

    Schoen, David T.

    2010-09-08

    The removal of bacteria and other organisms from water is an extremely important process, not only for drinking and sanitation but also industrially as biofouling is a commonplace and serious problem. We here present a textile based multiscale device for the high speed electrical sterilization of water using silver nanowires, carbon nanotubes, and cotton. This approach, which combines several materials spanning three very different length scales with simple dying based fabrication, makes a gravity fed device operating at 100000 L/(h m2) which can inactivate >98% of bacteria with only several seconds of total incubation time. This excellent performance is enabled by the use of an electrical mechanism rather than size exclusion, while the very high surface area of the device coupled with large electric field concentrations near the silver nanowire tips allows for effective bacterial inactivation. © 2010 American Chemical Society.

  13. Chicago-St. Louis high speed rail plan

    International Nuclear Information System (INIS)

    Stead, M.E.

    1994-01-01

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team's analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor

  14. 33 CFR 84.24 - High-speed craft.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at a...

  15. A Historical Review of High Speed Metal Forming

    OpenAIRE

    Zittel, G.

    2010-01-01

    This paper will present a Historical Review of High Speed Metal Forming beginning with the first thought of forming metal by using an electromagnetic impulse to today, whereby High Speed Metal Forming is an accepted production process. Although this paper will briefly cover the basic physics of the process, it will not dwell on it. It will rather show how the industrial acceptance of High Speed Metal Forming is tightly connected to the knowledge acquired from many applications studies. These ...

  16. Chicago-St. Louis high speed rail plan

    Energy Technology Data Exchange (ETDEWEB)

    Stead, M.E.

    1994-12-31

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team`s analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor.

  17. ALICE HLT high speed tracking on GPU

    CERN Document Server

    Gorbunov, Sergey; Aamodt, Kenneth; Alt, Torsten; Appelshauser, Harald; Arend, Andreas; Bach, Matthias; Becker, Bruce; Bottger, Stefan; Breitner, Timo; Busching, Henner; Chattopadhyay, Sukalyan; Cleymans, Jean; Cicalo, Corrado; Das, Indranil; Djuvsland, Oystein; Engel, Heiko; Erdal, Hege Austrheim; Fearick, Roger; Haaland, Oystein Senneset; Hille, Per Thomas; Kalcher, Sebastian; Kanaki, Kalliopi; Kebschull, Udo Wolfgang; Kisel, Ivan; Kretz, Matthias; Lara, Camillo; Lindal, Sven; Lindenstruth, Volker; Masoodi, Arshad Ahmad; Ovrebekk, Gaute; Panse, Ralf; Peschek, Jorg; Ploskon, Mateusz; Pocheptsov, Timur; Ram, Dinesh; Rascanu, Theodor; Richter, Matthias; Rohrich, Dieter; Ronchetti, Federico; Skaali, Bernhard; Smorholm, Olav; Stokkevag, Camilla; Steinbeck, Timm Morten; Szostak, Artur; Thader, Jochen; Tveter, Trine; Ullaland, Kjetil; Vilakazi, Zeblon; Weis, Robert; Yin, Zhong-Bao; Zelnicek, Pierre

    2011-01-01

    The on-line event reconstruction in ALICE is performed by the High Level Trigger, which should process up to 2000 events per second in proton-proton collisions and up to 300 central events per second in heavy-ion collisions, corresponding to an inp ut data stream of 30 GB/s. In order to fulfill the time requirements, a fast on-line tracker has been developed. The algorithm combines a Cellular Automaton method being used for a fast pattern recognition and the Kalman Filter method for fitting of found trajectories and for the final track selection. The tracker was adapted to run on Graphics Processing Units (GPU) using the NVIDIA Compute Unified Device Architecture (CUDA) framework. The implementation of the algorithm had to be adjusted at many points to allow for an efficient usage of the graphics cards. In particular, achieving a good overall workload for many processor cores, efficient transfer to and from the GPU, as well as optimized utilization of the different memories the GPU offers turned out to be cri...

  18. A high-speed interface for multi-channel analyzer

    International Nuclear Information System (INIS)

    Shen Ji; Zheng Zhong; Qiao Chong; Chen Ziyu; Ye Yunxiu; Ye Zhenyu

    2003-01-01

    This paper presents a high-speed computer interface for multi-channel analyzer based on DMA technique. Its essential principle and operating procedure are introduced. By the detecting of γ spectrum of 137 Cs with the interface, it's proved that the interface can meet the requirements of high-speed data acquisition

  19. Advancing high-speed rail policy in the United States.

    Science.gov (United States)

    2012-06-01

    This report builds on a review of international experience with high-speed rail projects to develop recommendations for a High-speed rail policy framework for the United States. The international review looked at the experience of Korea, Taiwan, Chin...

  20. High-Speed Photo-Polarimetry of Magnetic Cataclysmic Variables

    Directory of Open Access Journals (Sweden)

    S. B. Potter

    2015-02-01

    Full Text Available I review recent highlights of the SAAO High-speed Photo-POlarimeter (HIPPO on the study of magnetic Cataclysmic Variables. Its high-speed capabilities are demonstrated with example observations made of the intermediate polar NY Lup and the polar IGRJ14536-5522.

  1. 14 CFR 23.253 - High speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  2. Observer Based Traction/Braking Control Design for High Speed Trains Considering Adhesion Nonlinearity

    OpenAIRE

    Cai, Wenchuan; Liao, Wenhao; Li, Danyong; Song, Yongduan

    2014-01-01

    Train traction/braking control, one of the key enabling technologies for automatic train operation, literally takes its action through adhesion force. However, adhesion coefficient of high speed train (HST) is uncertain in general because it varies with wheel-rail surface condition and running speed; thus, it is extremely difficult to be measured, which makes traction/braking control design and implementation of HSTs greatly challenging. In this work, force observers are applied to estimate t...

  3. High Speed impedance tomography for cardiac imaging

    International Nuclear Information System (INIS)

    Tehrani, J.N.; Jin, C.; Schaik, Andre

    2010-01-01

    Full text: Electrical Impedance Tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. Previous investigation has shown that optimizing electrode placement can give better information about the stroke volume and better separation between the ventricles and atria than with the electrodes attached in the transverse plane. In our investigation we are developing fast three dimensional imaging of the heart (two planes of 16 electrodes) including internal electrodes in esophagus. The reconstruction speed in EIT is one of the main limitations for real time imaging when using a detailed three dimensional finite element mesh. For that reason we investigated new iterative algorithms for solving large scale LJ regularization. In this research we compare these algorithms on noise reliability and speed for 2D cardiac models. The four methods were as follows: (I) an interior point method for solving Ll-regularized least squares problems (Ll-LS); (2) total variation using a Lagrangian multiplier (TV AL3); (3) a two step iterative shrinkage/thresholding method (TWIST) for solving the Lo-regularized least squares problem; (4) The Least Absolute Shrinkage and Selection Operator (LASSO). In our investigation, using 1600 elements, we found all four algorithms provided an improvement over the best conventional EIT reconstruction method, Total Variation, in three important areas: robustness to noise, increased computational speed of at least 40 x and a visually apparent improvement in spatial resolution. Out of the four algorithms we found TWIST was the fastest with at least a 1 00 x speed increase. (author)

  4. High-speed scanning: an improved algorithm

    Science.gov (United States)

    Nachimuthu, A.; Hoang, Khoi

    1995-10-01

    In using machine vision for assessing an object's surface quality, many images are required to be processed in order to separate the good areas from the defective ones. Examples can be found in the leather hide grading process; in the inspection of garments/canvas on the production line; in the nesting of irregular shapes into a given surface... . The most common method of subtracting the total area from the sum of defective areas does not give an acceptable indication of how much of the `good' area can be used, particularly if the findings are to be used for the nesting of irregular shapes. This paper presents an image scanning technique which enables the estimation of useable areas within an inspected surface in terms of the user's definition, not the supplier's claims. That is, how much useable area the user can use, not the total good area as the supplier estimated. An important application of the developed technique is in the leather industry where the tanner (the supplier) and the footwear manufacturer (the user) are constantly locked in argument due to disputed quality standards of finished leather hide, which disrupts production schedules and wasted costs in re-grading, re- sorting... . The developed basic algorithm for area scanning of a digital image will be presented. The implementation of an improved scanning algorithm will be discussed in detail. The improved features include Boolean OR operations and many other innovative functions which aim at optimizing the scanning process in terms of computing time and the accurate estimation of useable areas.

  5. High-speed large angle mammography tomosynthesis system

    Science.gov (United States)

    Eberhard, Jeffrey W.; Staudinger, Paul; Smolenski, Joe; Ding, Jason; Schmitz, Andrea; McCoy, Julie; Rumsey, Michael; Al-Khalidy, Abdulrahman; Ross, William; Landberg, Cynthia E.; Claus, Bernhard E. H.; Carson, Paul; Goodsitt, Mitchell; Chan, Heang-Ping; Roubidoux, Marilyn; Thomas, Jerry A.; Osland, Jacqueline

    2006-03-01

    A new mammography tomosynthesis prototype system that acquires 21 projection images over a 60 degree angular range in approximately 8 seconds has been developed and characterized. Fast imaging sequences are facilitated by a high power tube and generator for faster delivery of the x-ray exposure and a high speed detector read-out. An enhanced a-Si/CsI flat panel digital detector provides greater DQE at low exposure, enabling tomo image sequence acquisitions at total patient dose levels between 150% and 200% of the dose of a standard mammographic view. For clinical scenarios where a single MLO tomographic acquisition per breast may replace the standard CC and MLO views, total tomosynthesis breast dose is comparable to or below the dose in standard mammography. The system supports co-registered acquisition of x-ray tomosynthesis and 3-D ultrasound data sets by incorporating an ultrasound transducer scanning system that flips into position above the compression paddle for the ultrasound exam. Initial images acquired with the system are presented.

  6. Research on Aerodynamic Noise Reduction for High-Speed Trains

    OpenAIRE

    Zhang, Yadong; Zhang, Jiye; Li, Tian; Zhang, Liang; Zhang, Weihua

    2016-01-01

    A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H)...

  7. High-speed ground transportation development outside United States

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, T.R. [Queen`s Univ., Kingston, Ontario (United Kingdom)

    1995-09-01

    This paper surveys the state of high-speed (in excess of 200 km/h) ground-transportation developments outside the United States. Both high-speed rail and Maglev systems are covered. Many vehicle systems capable of providing intercity service in the speed range 200--500 km/h are or will soon be available. The current state of various technologies, their implementation, and the near-term plans of countries that are most active in high-speed ground transportation development are reported.

  8. Trend on High-speed Power Line Communication Technology

    Science.gov (United States)

    Ogawa, Osamu

    High-speed power line communication (PLC) is useful technology to easily build the communication networks, because construction of new infrastructure is not necessary. In Europe and America, PLC has been used for broadband networks since the beginning of 21th century. In Japan, high-speed PLC was deregulated only indoor usage in 2006. Afterward it has been widely used for home area network, LAN in hotels and school buildings and so on. And recently, PLC is greatly concerned as communication technology for smart grid network. In this paper, the author surveys the high-speed PLC technology and its current status.

  9. High-speed AFM of human chromosomes in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Picco, L M; Dunton, P G; Ulcinas, A; Engledew, D J; Miles, M J [H H Wills Physics Laboratory and IRC in Nanotechnology, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Hoshi, O; Ushiki, T [Division of Microscopic Anatomy and Bio-Imaging, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi-Dori 1, Niigata, 951-8150 (Japan)], E-mail: m.j.miles@bristol.ac.uk

    2008-09-24

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  10. Complete de-Dopplerization and acoustic holography for external noise of a high-speed train.

    Science.gov (United States)

    Yang, Diange; Wen, Junjie; Miao, Feng; Wang, Ziteng; Gu, Xiaoan; Lian, Xiaomin

    2016-09-01

    Identification and measurement of moving sound sources are the bases for vehicle noise control. Acoustic holography has been applied in successfully identifying the moving sound source since the 1990s. However, due to the high demand for the accuracy of holographic data, currently the maximum velocity achieved by acoustic holography is just above 100 km/h. The objective of this study was to establish a method based on the complete Morse acoustic model to restore the measured signal in high-speed situations, and to propose a far-field acoustic holography method applicable for high-speed moving sound sources. Simulated comparisons of the proposed far-field acoustic holography with complete Morse model, the acoustic holography with simplified Morse model and traditional delay-and-sum beamforming were conducted. Experiments with a high-speed train running at the speed of 278 km/h validated the proposed far-field acoustic holography. This study extended the applications of acoustic holography to high-speed situations and established the basis for quantitative measurements of far-field acoustic holography.

  11. High-speed rail turnout literature review : final report.

    Science.gov (United States)

    2016-08-01

    High-speed rail (HSR) turnout design criteria generally address unbalanced lateral acceleration or cant deficiency (CD), cant deficiency change rate (CDCR), and entry and exit jerk. Various countries have adopted different design values for their HSR...

  12. Multicast Performance Analysis for High-Speed Torus Networks

    National Research Council Canada - National Science Library

    Oral, S; George, A

    2002-01-01

    ... for unicast-based and path-based multicast communication on high-speed torus networks. Software-based multicast performance results of selected algorithms on a 16-node Scalable Coherent Interface (SCI) torus are given...

  13. Novel high speed fiber-optic pressure sensor systems.

    Science.gov (United States)

    2014-03-01

    The goal of this project is to develop a complete test of this technology for high-speed, high-accuracy applications, specifically cost-effective data acquisition techniques and practical mounting methods tailored for the subject environment. The sec...

  14. Thermomechanical simulations and experimental validation for high speed incremental forming

    Science.gov (United States)

    Ambrogio, Giuseppina; Gagliardi, Francesco; Filice, Luigino; Romero, Natalia

    2016-10-01

    Incremental sheet forming (ISF) consists in deforming only a small region of the workspace through a punch driven by a NC machine. The drawback of this process is its slowness. In this study, a high speed variant has been investigated from both numerical and experimental points of view. The aim has been the design of a FEM model able to perform the material behavior during the high speed process by defining a thermomechanical model. An experimental campaign has been performed by a CNC lathe with high speed to test process feasibility. The first results have shown how the material presents the same performance than in conventional speed ISF and, in some cases, better material behavior due to the temperature increment. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process confirming substantially experimental evidence.

  15. High speed railway track dynamics models, algorithms and applications

    CERN Document Server

    Lei, Xiaoyan

    2017-01-01

    This book systematically summarizes the latest research findings on high-speed railway track dynamics, made by the author and his research team over the past decade. It explores cutting-edge issues concerning the basic theory of high-speed railways, covering the dynamic theories, models, algorithms and engineering applications of the high-speed train and track coupling system. Presenting original concepts, systematic theories and advanced algorithms, the book places great emphasis on the precision and completeness of its content. The chapters are interrelated yet largely self-contained, allowing readers to either read through the book as a whole or focus on specific topics. It also combines theories with practice to effectively introduce readers to the latest research findings and developments in high-speed railway track dynamics. It offers a valuable resource for researchers, postgraduates and engineers in the fields of civil engineering, transportation, highway & railway engineering.

  16. Progress in the development of niobium alloyed high speed steel

    International Nuclear Information System (INIS)

    Guimaraes, J.R.C.

    1987-01-01

    The development of economy-grades of niobium alloyed high speed steel is described. Both the metallurgical concepts behind the steel design and the results of performance tests are presented. (Author) [pt

  17. High-Speed Thermal Characterization of Cryogenic Flows, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  18. Energy Efficient Control of High Speed IPMSM Drives - A Generalized PSO Approach

    Directory of Open Access Journals (Sweden)

    GECIC, M.

    2016-02-01

    Full Text Available In this paper, a generalized particle swarm optimization (GPSO algorithm was applied to the problems of optimal control of high speed low cost interior permanent magnet motor (IPMSM drives. In order to minimize the total controllable electrical losses and to increase the efficiency, the optimum current vector references are calculated offline based on GPSO for the wide speed range and for different load conditions. The voltage and current limits of the drive system and the variation of stator inductances are all included in the optimization method. The stored optimal current vector references are used during the real time control and the proposed algorithm is compared with the conventional high speed control algorithm, which is mostly voltage limit based. The computer simulations and experimental results on 1 kW low cost high speed IPMSM drive are discussed in details.

  19. High Speed Rail (HSR) in the United States

    Science.gov (United States)

    2009-12-08

    announced that it will expand the capacity on its aging high speed line between Tokyo and Osaka, the most heavily traveled intercity rail segment in the...United States, in most of these countries intercity rail travel (including both conventional and high speed rail) represents less than 10% of all...that is sometimes mentioned by its advocates. Intercity passenger rail transport is relatively safe, at least compared with highway travel . And HSR in

  20. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    OpenAIRE

    Idris, Jamaliah; Christian, Chukwuekezie; Gaius, Eyu

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  1. Double Tunneling Injection Quantum Dot Lasers for High Speed Operation

    Science.gov (United States)

    2017-10-23

    Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...State University Title: Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation Report Term: 0-Other Email: asryan@vt.edu Distribution

  2. High-speed optical signal processing using time lenses

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Guan, Pengyu

    2015-01-01

    This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle.......This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle....

  3. Integrated computer network high-speed parallel interface

    International Nuclear Information System (INIS)

    Frank, R.B.

    1979-03-01

    As the number and variety of computers within Los Alamos Scientific Laboratory's Central Computer Facility grows, the need for a standard, high-speed intercomputer interface has become more apparent. This report details the development of a High-Speed Parallel Interface from conceptual through implementation stages to meet current and future needs for large-scle network computing within the Integrated Computer Network. 4 figures

  4. High speed data transmission at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Leskovar, B.

    1990-04-01

    High speed data transmission using fiber optics in the data acquisition system of the Superconducting Super Collider has been investigated. Emphasis is placed on the high speed data transmission system overview, the local data network and on subassemblies, such as optical transmitters and receivers. Also, the performance of candidate subassemblies having a low power dissipation for the data acquisition system is discussed. 14 refs., 5 figs

  5. California statewide model for high-speed rail

    OpenAIRE

    Outwater, Maren; Tierney, Kevin; Bradley, Mark; Sall, Elizabeth; Kuppam, Arun; Modugala, Vamsee

    2010-01-01

    The California High Speed Rail Authority (CHSRA) and the Metropolitan Transportation Commission (MTC) have developed a new statewide model to support evaluation of high-speed rail alternatives in the State of California. This statewide model will also support future planning activities of the California Department of Transportation (Caltrans). The approach to this statewide model explicitly recognizes the unique characteristics of intraregional travel demand and interregional travel demand. A...

  6. Minimum Plate Thickness in High-Speed Craft

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The minimum plate thickness requirements specified by the classification societies for high-speed craft are supposed to ensure adequate resistance to impact loads such as collision with floating objects and objects falling on the deck. The paper presents analytical methods of describing such impact...... phenomena and proposes performance requirements instead of thickness requirements for hull panels in high-speed craft made of different building materials....

  7. Attacking 22 entries in rugby union: running demands and differences between successful and unsuccessful entries.

    Science.gov (United States)

    Tierney, P; Tobin, D P; Blake, C; Delahunt, E

    2017-12-01

    Global Positioning System (GPS) technology is commonly utilized in team sports, including rugby union. It has been used to describe the average running demands of rugby union. This has afforded an enhanced understanding of the physical fitness requirements for players. However, research in team sports has suggested that training players relative to average demands may underprepare them for certain scenarios within the game. To date, no research has investigated the running demands of attacking 22 entries in rugby union. Additionally, no research has been undertaken to determine whether differences exist in the running intensity of successful and unsuccessful attacking 22 entries in rugby union. The first aim of this study was to describe the running intensity of attacking 22 entries. The second aim of this study was to investigate whether differences exist in the running intensity of successful and unsuccessful attacking 22 entries. Running intensity was measured using meters per minute (m min -1 ) for (a) total distance, (b) running distance, (c) high-speed running distance, and (d) very high-speed running distance. This study provides normative data for the running intensity of attacking 22 entries in rugby union. Forwards achieved greater high-speed running intensity in successful (3.6 m min -1 ) compared to unsuccessful (1.8 m min -1 ) attacking 22 entries. Forwards should try and achieve greater high-speed running intensity in attacking 22 entries to increase the likelihood of successful outcomes during this period of gameplay. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Integrated design and manufacturing for the high speed civil transport

    Science.gov (United States)

    1993-01-01

    In June 1992, Georgia Tech's School of Aerospace Engineering was awarded a NASA University Space Research Association (USRA) Advanced Design Program (ADP) to address 'Integrated Design and Manufacturing for the High Speed Civil Transport (HSCT)' in its graduate aerospace systems design courses. This report summarizes the results of the five courses incorporated into the Georgia Tech's USRA ADP program. It covers AE8113: Introduction to Concurrent Engineering, AE4360: Introduction to CAE/CAD, AE4353: Design for Life Cycle Cost, AE6351: Aerospace Systems Design One, and AE6352: Aerospace Systems Design Two. AE8113: Introduction to Concurrent Engineering was an introductory course addressing the basic principles of concurrent engineering (CE) or integrated product development (IPD). The design of a total system was not the objective of this course. The goal was to understand and define the 'up-front' customer requirements, their decomposition, and determine the value objectives for a complex product, such as the high speed civil transport (HSCT). A generic CE methodology developed at Georgia Tech was used for this purpose. AE4353: Design for Life Cycle Cost addressed the basic economic issues for an HSCT using a robust design technique, Taguchi's parameter design optimization method (PDOM). An HSCT economic sensitivity assessment was conducted using a Taguchi PDOM approach to address the robustness of the basic HSCT design. AE4360: Introduction to CAE/CAD permitted students to develop and utilize CAE/CAD/CAM knowledge and skills using CATIA and CADAM as the basic geometric tools. AE6351: Aerospace Systems Design One focused on the conceptual design refinement of a baseline HSCT configuration as defined by Boeing, Douglas, and NASA in their system studies. It required the use of NASA's synthesis codes FLOPS and ACSYNT. A criterion called the productivity index (P.I.) was used to evaluate disciplinary sensitivities and provide refinements of the baseline HSCT

  9. Systematics of atom-atom collision strengths at high speeds

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Inokuti, M.

    1980-01-01

    The collision strengths for atom-atom collisions at high speeds are calculated in the first Born approximation. We studied four classes of collisions, distinguished depending upon whether each of the collision partners becomes excited or not. The results of numerical calculations of the collision strengths are presented for all neutral atoms with Z< or =18. The calculations are based on atomic form factors and incoherent scattering functions found in the literature. The relative contribution of each class of collision processes to the total collision cross section is examined in detail. In general, inelastic processes dominate for low-Z atoms, while elastic scattering is more important for large Z. Other systematics of the collision strengths are comprehensively discussed. The relevant experimental literature has been surveyed and the results of this work for the three collision systems H-He, He-He, and H-Ar are compared with the data for electron-loss processes. Finally, suggestions are made for future work in measurements of atom-atom and ion-atom collision cross sections

  10. Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.

    Science.gov (United States)

    Niu, D; Zhu, F; Qiu, R; Niu, Q

    2016-01-01

    High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.

  11. The application of high-speed cinematography for the quantitative analysis of equine locomotion.

    Science.gov (United States)

    Fredricson, I; Drevemo, S; Dalin, G; Hjertën, G; Björne, K

    1980-04-01

    Locomotive disorders constitute a serious problem in horse racing which will only be rectified by a better understanding of the causative factors associated with disturbances of gait. This study describes a system for the quantitative analysis of the locomotion of horses at speed. The method is based on high-speed cinematography with a semi-automatic system of analysis of the films. The recordings are made with a 16 mm high-speed camera run at 500 frames per second (fps) and the films are analysed by special film-reading equipment and a mini-computer. The time and linear gait variables are presented in tabular form and the angles and trajectories of the joints and body segments are presented graphically.

  12. Review of High-Speed Fiber Optic Grating Sensors Systems

    Energy Technology Data Exchange (ETDEWEB)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  13. High-speed and supersonic upward plasma drifts: multi-instrumental study

    Science.gov (United States)

    Astafyeva, E.; Zakharenkova, I.; Hairston, M. R.; Huba, J.; Coley, W. R.

    2017-12-01

    Since the pioneering observations by Aggson et al. (1992, JGR, doi: 10.1002/92JA00644), there have been several reports of the occurrence of high-speed (Vz>800 m/s) and supersonic plasma flows in the post-sunset (e.g., Hysell et al., 1994, JGR, doi: 10.1029/94JA00476; Hanson et al., 1997, JGR, doi: 10.1029/96JA03376) and the pre-dawn sector (Astafyeva and Zakharenkova, 2015, GRL, doi:10.1002/2015GL066369). However, despite this observational evidence, these events remain rare and are not well understood. The main issue is to determine the background conditions leading to the occurrence of these high-speed plasma drifts. In this work, we perform a multi-instrumental study of high-speed and supersonic upward plasma drift events/structures. For this purpose, we analyze data from several ground-based and space-borne instruments, including data from the DMSP, Swarm and C/NOFS (IVM instrument) satellites. In addition to the space-borne instruments, we use data from ground-based GPS-receivers and ionosondes to further investigate the background ionosphere conditions, as well as the effects produced by the plasma bubbles and ionospheric irregularities. Besides the observations, we add the SAMI3/ESF modeling results on plasma bubble simulations and high-speed drifts inside plasma bubbles. TIE-GCM runs (from the CCMC, https://ccmc.gsfc.nasa.gov) are used to define the background atmospheric/ionospheric and electrodynamical conditions leading to the occurrence of the high-speed and supersonic plasma drift events. Our search of events with upward plasma drift exceeding 800 m/s in the data of DMSP for the years 2002-2016 shows that such high-speed events are extremely rare. During this period of time, only 6 events were found, two of them occurred during the recovery phase of a geomagnetic storm, while the other four were detected during geomagnetically quiet conditions. Concerning the generation of such events, our preliminary results show that enhanced electric fields are

  14. Research on the tool holder mode in high speed machining

    Science.gov (United States)

    Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao

    2018-03-01

    High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.

  15. Energetic optimization of regenerative braking for high speed railway systems

    International Nuclear Information System (INIS)

    Frilli, Amedeo; Meli, Enrico; Nocciolini, Daniele; Pugi, Luca; Rindi, Andrea

    2016-01-01

    Highlights: • A model of longitudinal dynamics of the High-speed train ETR1000 is presented. • The model includes on board traction and braking subsystems. • Interactions between overhead line and power line are modelled. • The model is validated on real experimental data. • An energy storage strategy for a high-speed line is proposed. - Abstract: The current development trend in the railway field has led to an ever increasing interest for the energetic optimization of railway systems (especially considering the braking phases), with a strong attention to the mutual interactions between the loads represented by railway vehicles and the electrical infrastructure, including all the sub-systems related to distribution and smart energy management such as energy storage systems. In this research work, the authors developed an innovative coupled modelling approach suitable for the analysis of the energetic optimization of railway systems and based on the use of the new object oriented language Matlab-Simscape™, which presents several advantages with respect to conventional modelling tools. The proposed model has been validated considering an Italian Direct Current High-speed line and the High-speed train ETR 1000. Furthermore, the model has been used to perform an efficiency analysis, considering the use of energy storage devices. The results obtained with the developed model show that the use of energy recovery systems in high-speed railway can provide great opportunities of energy savings.

  16. Modern trends in designing high-speed trains

    Directory of Open Access Journals (Sweden)

    Golubović Snežana D.

    2015-01-01

    Full Text Available Increased advantages of railway transportation systems over other types of transportation systems in the past sixty years have been a result of an intensive development of the new generations of high-speed trains. Not only do these types of trains comply with the need for increased speed of transportation and make the duration of the journey shorter, but they also meet the demands for increased reliability, safety and direct application of energy efficiency to the transportation system itself. Along with increased train speed, the motion resistance is increased as well, whereby at speeds over 200 km/h the proportion of air resistance becomes the most dominant member. One of the most efficient measures for reducing air resistance, as well as other negative consequences of high-speed motion, is the development of the aerodynamic shape of the train. This paper presents some construction solutions that affect the aerodynamic properties of high-speed trains, first and foremost, the nose shape, as well as the similarities and differences of individual subsystems necessary for the functioning of modern high-speed rail systems. We analysed two approaches to solving the problem of the aerodynamic shape of the train and the appropriate infrastructure using the examples of Japan and France. Two models of high-speed trains, Shinkansen (Japan and TGV, i.e. AGV (France, have been discussed.

  17. High-speed solar wind flow parameters at 1 AU

    International Nuclear Information System (INIS)

    Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1976-01-01

    To develop a set of constraints for theories of solar wind high-speed streams, a detailed study was made of the fastest streams observed at 1 AU during the time period spanning March 1971 through July 1974. Streams were accepted for study only if (1) the maximum speed exceeded 650 km s -1 ; (2) effects of stream-stream dynamical interaction on the flow parameters could be safely separated from the intrinsic characteristics of the high-speed regions; (3) the full width at half maximum (FWHM) of the stream when mapped back to 20 solar radii by using a constant speed approximation was greater than 45degree in Carrington longitude; and (4) there were no obvious solar-activity-induced contaminating effects. Nineteen streams during this time interval satisfied these criteria. Average parameters at 1 AU for those portions of these streams above V=650 km s -1 are given.Not only is it not presently known why electrons are significantly cooler than the protons within high-speed regions, but also observed particle fluxes and convected energy fluxes for speed greater than 650 km s -1 are substantially larger than those values predicted by any of the existing theories of solar wind high-speed streams. More work is therefore needed in refining present solar wind models to see whether suitable modifications and/or combinations of existing theories based on reasonable coronal conditions can accommodate the above high-speed flow parameters

  18. Nickel/Diamond Composite Coating Prepared by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    ZHANG Yan

    2016-10-01

    Full Text Available Nickel/diamond composite coatings were prepared on the basis of a new high speed electroplating bath. The influence of additives, plating parameters and diamond concentration on internal stress was investigated in order to find the solution to decrease the stress introduced by high current density; the micro morphology of the coatings were observed by SEM. The bath and depositing parameters were optimized that thick nickel/diamond composite coatings with low internal stress can be high speed electroplated with a high cathode current density of 30A/dm2. The results show that when plated with bath composition and parameters as follows: sodium dodecyl sulfate 0.5g/L, ammonium acetate 3g/L, sodium citrate 1.5g/L, diamond particles 30g/L; pH value 3-4, temperature 50℃, the composite coatings prepared in high speed have the lowest internal stress.

  19. Material requirements for the High Speed Civil Transport

    Science.gov (United States)

    Stephens, Joseph R.; Hecht, Ralph J.; Johnson, Andrew M.

    1993-01-01

    Under NASA-sponsored High Speed Research (HSR) programs, the materials and processing requirements have been identified for overcoming the environmental and economic barriers of the next generation High Speed Civil Transport (HSCT) propulsion system. The long (2 to 5 hours) supersonic cruise portion of the HSCT cycle will place additional durability requirements on all hot section engine components. Low emissions combustor designs will require high temperature ceramic matrix composite liners to meet an emission goal of less than 5g NO(x) per Kg fuel burned. Large axisymmetric and two-dimensional exhaust nozzle designs are now under development to meet or exceed FAR 36 Stage III noise requirements, and will require lightweight, high temperature metallic, intermetallic, and ceramic matrix composites to reduce nozzle weight and meet structural and acoustic component performance goals. This paper describes and discusses the turbomachinery, combustor, and exhaust nozzle requirements of the High Speed Civil Transport propulsion system.

  20. High-speed LWR transients simulation for optimizing emergency response

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Mallen, A.N.; Stritar, A.

    1984-01-01

    The purpose of computer-assisted emergency response in nuclear power plants, and the requirements for achieving such a response, are presented. An important requirement is the attainment of realistic high-speed plant simulations at the reactor site. Currently pursued development programs for plant simulations are reviewed. Five modeling principles are established and a criterion is presented for selecting numerical procedures and efficient computer hardware to achieve high-speed simulations. A newly developed technology for high-speed power plant simulation is described and results are presented. It is shown that simulation speeds ten times greater than real-time process-speeds are possible, and that plant instrumentation can be made part of the computational loop in a small, on-site minicomputer. Additional technical issues are presented which must still be resolved before the newly developed technology can be implemented in a nuclear power plant

  1. High-speed measurement of firearm primer blast waves

    OpenAIRE

    Courtney, Michael; Daviscourt, Joshua; Eng, Jonathan; Courtney, Amy

    2012-01-01

    This article describes a method and results for direct high-speed measurements of firearm primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Key findings are: 1) Most of the lead styphnate based primer models tested show 5.2-11.3% standard deviation in the magnitudes of their peak pressure. 2) In contrast, lead-free diazodinitrophenol (DDNP) based primers had standard deviations of the peak blast p...

  2. High-speed centrifugation induces aggregation of extracellular vesicles.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Arraud, Nicolas; Brisson, Alain R

    2015-01-01

    Plasma and other body fluids contain cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  3. High-speed photodetectors in optical communication system

    Science.gov (United States)

    Zhao, Zeping; Liu, Jianguo; Liu, Yu; Zhu, Ninghua

    2017-12-01

    This paper presents a review and discussion for high-speed photodetectors and their applications on optical communications and microwave photonics. A detailed and comprehensive demonstration of high-speed photodetectors from development history, research hotspots to packaging technologies is provided to the best of our knowledge. A few typical applications based on photodetectors are also illustrated, such as free-space optical communications, radio over fiber and millimeter terahertz signal generation systems. Project supported by the Preeminence Youth Fund of China (No. 61625504).

  4. Single-Photon Tracking for High-Speed Vision

    Directory of Open Access Journals (Sweden)

    Istvan Gyongy

    2018-01-01

    Full Text Available Quanta Imager Sensors provide photon detections at high frame rates, with negligible read-out noise, making them ideal for high-speed optical tracking. At the basic level of bit-planes or binary maps of photon detections, objects may present limited detail. However, through motion estimation and spatial reassignment of photon detections, the objects can be reconstructed with minimal motion artefacts. We here present the first demonstration of high-speed two-dimensional (2D tracking and reconstruction of rigid, planar objects with a Quanta Image Sensor, including a demonstration of depth-resolved tracking.

  5. High-speed centrifugation induces aggregation of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Romain Linares

    2015-12-01

    Full Text Available Plasma and other body fluids contain cell-derived extracellular vesicles (EVs, which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  6. Application of high-speed photography to hydrodynamic instability research

    International Nuclear Information System (INIS)

    Chang Lihua; Li Zuoyou; Xiao Zhengfei; Zou Liyong; Liu Jinhong; Xiong Xueshi

    2012-01-01

    High-speed photography is used to study the Rayleigh-Taylor instability of air-water interface driven by high- pressure exploding gas. Clear images illustrating the instability are obtained, along with the air bubble peak speed and turbulent mixing speed. The RM (Richtmyer-Meshkov) instability of air/SF 6 interface driven by shock wave is also researched by using high-speed Schlieren technique on the horizontal shock tube and primary experimental results are obtained, which show the change of the turbulent mixing region clearly. (authors)

  7. Recent progress on high-speed optical transmission

    Directory of Open Access Journals (Sweden)

    Jianjun Yu

    2016-05-01

    Full Text Available The recently reported high spectral efficiency (SE and high-baud-rate signal transmission are all based on digital coherent optical communications and digital signal processing (DSP. DSP simplifies the reception of advanced modulation formats and also enables the major electrical and optical impairments to be processed and compensated in the digital domain, at the transmitter or receiver side. In this paper, we summarize the research progress on high-speed signal generation and detection and also show the progress on DSP for high-speed signal detection. We also report the latest progress on multi-core and multi-mode multiplexing.

  8. Plasma-Assisted Chemistry in High-Speed Flow

    International Nuclear Information System (INIS)

    Leonov, Sergey B.; Yarantsev, Dmitry A.; Napartovich, Anatoly P.; Kochetov, Igor V.

    2007-01-01

    Fundamental problems related to the high-speed combustion are analyzed. The result of plasma-chemical modeling is presented as a motivation of experimental activity. Numerical simulations of the effect of uniform non-equilibrium discharge on the premixed hydrogen and ethylene-air mixture in supersonic flow demonstrate an advantage of such a technique over a heating. Experimental results on multi-electrode non-uniform discharge maintenance behind wallstep and in cavity of supersonic flow are presented. The model test on hydrogen and ethylene ignition is demonstrated at direct fuel injection to low-temperature high-speed airflow

  9. Magneto-optical system for high speed real time imaging

    Science.gov (United States)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  10. High speed motion neutron radiography of dynamic events

    International Nuclear Information System (INIS)

    Robinson, A.H.; Barton, J.P.

    1983-01-01

    The development of a technique that permits neutron radiographic analysis of dynamic processes over a period lasting from one to ten milliseconds is described. The key to the technique is the use of a neutron pulse broad enough to span the duration of a brief event and intense enough to allow recording of the results on a high-speed movie film at frame rates of 10,000 frames/sec. Some typical application results in ballistic studies and two-phase flow are shown and discussed. The use of scintillator screens in the high-speed motion neutron radiography system is summarized and the statistical limitations of the technique are discussed

  11. Acoustic grating fringe projector for high-speed and high-precision three-dimensional shape measurements

    International Nuclear Information System (INIS)

    Yin Xuebing; Zhao Huijie; Zeng Junyu; Qu Yufu

    2007-01-01

    A new acoustic grating fringe projector (AGFP) was developed for high-speed and high-precision 3D measurement. A new acoustic grating fringe projection theory is also proposed to describe the optical system. The AGFP instrument can adjust the spatial phase and period of fringes with unprecedented speed and accuracy. Using rf power proportional-integral-derivative (PID) control and CCD synchronous control, we obtain fringes with fine sinusoidal characteristics and realize high-speed acquisition of image data. Using the device, we obtained a precise phase map for a 3D profile. In addition, the AGFP can work in running fringe mode, which could be applied in other measurement fields

  12. Design optimization of high speed gamma-ray tomography

    International Nuclear Information System (INIS)

    Maad, Rachid

    2009-01-01

    This thesis concerns research and development of efficient gamma-ray systems for high speed tomographic imaging of hydrocarbon flow dynamics with a particular focus on gas liquid imaging. The Bergen HSGT (High Speed Gamma-ray Tomograph) based on instant imaging with a fixed source-detector geometry setup, has been thoroughly characterized with a variety of image reconstruction algorithms and flow conditions. Experiments in flow loops have been carried out for reliable characterization and error analysis, static flow phantoms have been applied for the majority of experiments to provide accurate imaging references. A semi-empirical model has been developed for estimation of the contribution of scattered radiation to each HSGT detector and further for correction of this contribution prior to data reconstruction. The Bergen FGGT (Flexible Geometry Gamma-ray Tomograph) has been further developed, particularly on the software side. The system emulates any fan beam tomography. Based on user input of geometry and other conditions, the new software perform scanning, data acquisition and storage, and also weight matrix calculation and image reconstruction with the desired method. The FGGT has been used for experiments supporting those carried out with the HSGT, and in addition for research on other fan beam geometries suitable for hydrocarbon flow imaging applications. An instant no-scanning tomograph like the HSGT has no flexibility with respect to change of geometry, which usually is necessary when applying the tomograph for a new application. A computer controlled FGGT has been designed and built at the UoB. The software developed for the FGGT controls the scanning procedure, the data acquisition, calculates the weight matrix necessary for the image reconstruction, reconstructs the image using standard reconstruction algorithms, and calculates the error of the reconstructed image. The performance of the geometry has been investigated using a 100 mCi 241 Am disk source, a

  13. Nearly Interactive Parabolized Navier-Stokes Solver for High Speed Forebody and Inlet Flows

    Science.gov (United States)

    Benson, Thomas J.; Liou, May-Fun; Jones, William H.; Trefny, Charles J.

    2009-01-01

    A system of computer programs is being developed for the preliminary design of high speed inlets and forebodies. The system comprises four functions: geometry definition, flow grid generation, flow solver, and graphics post-processor. The system runs on a dedicated personal computer using the Windows operating system and is controlled by graphical user interfaces written in MATLAB (The Mathworks, Inc.). The flow solver uses the Parabolized Navier-Stokes equations to compute millions of mesh points in several minutes. Sample two-dimensional and three-dimensional calculations are demonstrated in the paper.

  14. Surrogate Based Optimization of Aerodynamic Noise for Streamlined Shape of High Speed Trains

    Directory of Open Access Journals (Sweden)

    Zhenxu Sun

    2017-02-01

    Full Text Available Aerodynamic noise increases with the sixth power of the running speed. As the speed increases, aerodynamic noise becomes predominant and begins to be the main noise source at a certain high speed. As a result, aerodynamic noise has to be focused on when designing new high-speed trains. In order to perform the aerodynamic noise optimization, the equivalent continuous sound pressure level (SPL has been used in the present paper, which could take all of the far field observation probes into consideration. The Non-Linear Acoustics Solver (NLAS approach has been utilized for acoustic calculation. With the use of Kriging surrogate model, a multi-objective optimization of the streamlined shape of high-speed trains has been performed, which takes the noise level in the far field and the drag of the whole train as the objectives. To efficiently construct the Kriging model, the cross validation approach has been adopted. Optimization results reveal that both the equivalent continuous sound pressure level and the drag of the whole train are reduced in a certain extent.

  15. Carbody elastic vibrations of high-speed vehicles caused by bogie hunting instability

    Science.gov (United States)

    Wei, Lai; Zeng, Jing; Chi, Maoru; Wang, Jianbin

    2017-09-01

    In particular locations of the high-speed track, the worn wheel profile matched up with the worn rail profile will lead to an extremely high-conicity wheel-rail contact. Consequently, the bogie hunting instability arises, which further results in the so-called carbody shaking phenomenon. In this paper, the carbody elastic vibrations of a high-speed vehicle in service are firstly introduced. Modal tests are conducted to identity the elastic modes of the carbody. The ride comfort and running safety indices for the tested vehicle are evaluated. The rigid-flexible coupling dynamic model for the high-speed passenger car is then developed by using the FE and MBS coupling approach. The rail profiles in those particular locations are measured and further integrated into the simulation model to reproduce the bogie hunting and carbody elastic vibrations. The effects of wheel and rail wear on the vehicle system response, e.g. wheelset bifurcation graph and carbody vibrations, are studied. Two improvement measures, including the wheel profile modification and rail grinding, are proposed to provide possible solutions. It is found that the wheel-rail contact conicity can be lowered by decreasing wheel flange thickness or grinding rail corner, which is expected to improve the bogie hunting stability under worn rail and worn wheel conditions. The carbody elastic vibrations caused by bogie hunting instability can be further restrained.

  16. Application of high speed photography for high current vacuum arcs

    NARCIS (Netherlands)

    Damstra, G.C.; Merck, W.F.H.; Vossen, J.W.G.L.; Janssen, M.F.P.; Bouwmeester, C.E.

    1998-01-01

    A high speed image detection system for 106 frames per second or 107 streaks per second has been developed for the testing of vacuum circuit breakers, using 10×16 optical fibres for light transfer to 160 fast photo diodes. The output of these diodes is multiplexed, AD converted in a 4 bit

  17. High-speed photography application to pulsed hot plasma investigation

    International Nuclear Information System (INIS)

    Borov'etskij, M.; Koz'yarkevich, V.; Skrzhechanovskij, V.; Socha, R.

    1986-01-01

    Plasma focus is investigated using an electron-optical chamber for high-speed photography (KSK-1). Experimental devices for studying dynamics and structure of a plasma layer in the chosen interval, recording plasma spectra with time resolution as well as for studying the dynamics and structure of a plasma layer by Schlieren- and shadow methods are briefly described. Experimental results are presented

  18. Modelling Of Residual Stresses Induced By High Speed Milling Process

    International Nuclear Information System (INIS)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-01-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction.Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge registered software, is based on data taken from Outeiro and al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature.Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R and D to those given by numerical simulations is achieved.

  19. Intel Legend and CERN would build up high speed Internet

    CERN Multimedia

    2002-01-01

    Intel, Legend and China Education and Research Network jointly announced on the 25th of April that they will be cooperating with each other to build up the new generation high speed internet, over the next three years (1/2 page).

  20. Visualization of Projectile Flying at High Speed in Dusty Atmosphere

    Science.gov (United States)

    Masaki, Chihiro; Watanabe, Yasumasa; Suzuki, Kojiro

    2017-10-01

    Considering a spacecraft that encounters particle-laden environment, such as dust particles flying up over the regolith by the jet of the landing thruster, high-speed flight of a projectile in such environment was experimentally simulated by using the ballistic range. At high-speed collision of particles on the projectile surface, they may be reflected with cracking into smaller pieces. On the other hand, the projectile surface will be damaged by the collision. To obtain the fundamental characteristics of such complicated phenomena, a projectile was launched at the velocity up to 400 m/s and the collective behaviour of particles around projectile was observed by the high-speed camera. To eliminate the effect of the gas-particle interaction and to focus on only the effect of the interaction between the particles and the projectile's surface, the test chamber pressure was evacuated down to 30 Pa. The particles about 400μm diameter were scattered and formed a sheet of particles in the test chamber by using two-dimensional funnel with a narrow slit. The projectile was launched into the particle sheet in the tangential direction, and the high-speed camera captured both projectile and particle motions. From the movie, the interaction between the projectile and particle sheet was clarified.

  1. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    All these facts are the outcome of research on optical solitons in fibers in spite of the fact that the commonly used RZ format is not always called a soliton format. The overview presented here attempts to incorporate the role of soliton-based communications research in present day ultra-high speed communications.

  2. The impact of high speed rail on airport competition

    NARCIS (Netherlands)

    Terpstra, I.; Lijesen, M.G.

    2015-01-01

    We study the effects of introducing a high speed train connection on competition between airports, focusing on the new HST-link between Amsterdam and Brussels. We conduct a detailed analysis regarding the airport choice of passengers living in the Netherlands, Belgium, Luxembourg, Northern France

  3. Research in high speed fiber optics local area networks

    Science.gov (United States)

    Tobagi, F. A.

    1986-01-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: the network medium and its topology, the medium access control, and the network interface. Considerable progress was already made in the first two areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given.

  4. APPLICATION OF POWDER HIGH-SPEED STEEL AS ANTIFRICTION MATERIAL

    Directory of Open Access Journals (Sweden)

    M. Beznak

    2011-01-01

    Full Text Available The influence of disulphide molybdenum additives on antifriction characteristics of powder high-speed steel produced by means of hot hydrostatic pressing is investigated. It is shown that disulphide molybdenum additives promote the decrease of coefficient of friction and temperature in hearth of friction as a result the increase of wear resistance of steel.

  5. Towards a high-speed quantum random number generator

    Science.gov (United States)

    Stucki, Damien; Burri, Samuel; Charbon, Edoardo; Chunnilall, Christopher; Meneghetti, Alessio; Regazzoni, Francesco

    2013-10-01

    Randomness is of fundamental importance in various fields, such as cryptography, numerical simulations, or the gaming industry. Quantum physics, which is fundamentally probabilistic, is the best option for a physical random number generator. In this article, we will present the work carried out in various projects in the context of the development of a commercial and certified high speed random number generator.

  6. Modeling of high speed micro rotors in moderate flow confinement

    NARCIS (Netherlands)

    Dikmen, E.; van der Hoogt, Peter; Aarts, Ronald G.K.M.; Sas, P.; Bergen, B.

    2008-01-01

    The recent developments in high speed micro rotating machinery lead to the need for multiphysical modeling of the rotor and the surrounding medium. In this study, thermal and flow induced effects on rotor dynamics of geometries with moderate flow confinement are studied. The structure is modeled via

  7. Comprehensive surface treatment of high-speed steel tool

    Science.gov (United States)

    Fedorov, Sergey V.; Aleshin, Sergey V.; Swe, Min Htet; Abdirova, Raushan D.; Kapitanov, Alexey V.; Egorov, Sergey B.

    2018-03-01

    One of the promising directions of hardening of high-speed steel tool is the creation on their surface of the layered structures with the gradient of physic-chemical properties between the wear-resistant coatings to the base material. Among the methods of such surface modification, a special process takes place based on the use of pulsed high-intensity charged particle beams. The high speed of heating and cooling allows structural-phase transformations in the surface layer, which cannot be realized in a stationary mode. The treatment was conducted in a RITM-SP unit, which constitutes a combination of a source of low-energy high-current electron beams "RITM" and two magnetron spraying systems on a single vacuum chamber. The unit enables deposition of films on the surface of the desired product and subsequent liquid-phase mixing of materials of the film and the substrate by an intense pulse electron beam. The article discusses features of the structure of the subsurface layer of high-speed steel M2, modified by surface alloying of a low-energy high-current electron beam, and its effect on the wear resistance of the tool when dry cutting hard to machine Nickel alloy. A significant decrease of intensity of wear of high-speed steel with combined treatment happens due to the displacement of the zone of wear and decrease the radius of rounding of the cutting edge because of changes in conditions of interaction with the material being treated.

  8. High speed VLSI neural network for high energy physics

    NARCIS (Netherlands)

    Masa, P.; Masa, P.; Hoen, K.; Hoen, Klaas; Wallinga, Hans

    1994-01-01

    A CMOS neural network IC is discussed which was designed for very high speed applications. The parallel architecture, analog computing and digital weight storage provides unprecedented computing speed combined with ease of use. The circuit classifies up to 70 dimensional vectors within 20

  9. Incorporating YBCO Coated Conductors in High-speed Superconducting Generators

    Science.gov (United States)

    2008-07-01

    4.0 kW/lb (8.82 kW/kg). The machine configuration chosen by GE for design was a homopolar inductor alternator (HIA) which locates the...extremely severe ac loss environment. Even if this is ultimately impossible for high speed generators, it may not preclude lower speed motors and

  10. Bottom Raking Damage to High-Speed Craft

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1998-01-01

    This paper presents a comparative study of the raking damage to high speed craft (HSC) and conventional ships. The analysis is based on a detailed theoretical model for the raking resistance of an assembled ship bottom structure and on the idea that the impact conditions for various ship types have...

  11. A high current, high speed pulser using avalanche transistors

    International Nuclear Information System (INIS)

    Hosono, Yoneichi; Hasegawa, Ken-ichi

    1985-01-01

    A high current, high speed pulser for the beam pulsing of a linear accelerator is described. It uses seven avalanche transistors in cascade. Design of a trigger circuit to obtain fast rise time is discussed. The characteristics of the pulser are : (a) Rise time = 0.9 ns (FWHM) and (d) Life time asymptotically equals 2000 -- 3000 hr (at 50 Hz). (author)

  12. Characterising argon-bomb balloons for high-speed photography

    CSIR Research Space (South Africa)

    Olivier, M

    2013-08-01

    Full Text Available A method to optimise the geometry, explosive charge mass and volume of an argon bomb for specific lighting requirements has been proposed. The method is specifically aimed at applications that require photographic diagnostics with ultra-high speed...

  13. High-Speed Railways and Urban Networks in China

    NARCIS (Netherlands)

    Yang, Haoran

    2018-01-01

    Worldwide, High-Speed Railway (HSR) networks have been developed intensely over the last few decades, such as Tokyo-Osaka, the first HSR corridor in Japan, the TGV in France and the ICE in Germany. HSR has also experienced exponential growth in China so that currently China’s HSR networks are the

  14. Time-interleaved high-speed D/A converters

    NARCIS (Netherlands)

    Olieman, E.

    2016-01-01

    This thesis is on power efficient very high-speed digital-to-analog converters (DACs) in CMOS technology, intended to generate signals from DC to RF. Components in RF signal chains are nowadays often moved from the analog domain to the digital domain. This allows for more flexibility and better

  15. High speed electro optic polymer micro-ringresonator

    NARCIS (Netherlands)

    Leinse, Arne; Diemeer, Mart; Driessen, A.

    2004-01-01

    An electro-optic polymer micro-ring resonator for high speed modulation was designed, realized and characterized. The design of layer-stack and electrodes was done such that modulation frequencies up till 1 GHz should be possible. The device consists of a ridge waveguide, defined in a negative

  16. 14 CFR 25.253 - High-speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and recovery characteristics must be met: (1) Operating conditions and characteristics likely to cause...

  17. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...

  18. Cutting force model for high speed machining process

    International Nuclear Information System (INIS)

    Haber, R. E.; Jimenez, J. E.; Jimenez, A.; Lopez-Coronado, J.

    2004-01-01

    This paper presents cutting force-based models able to describe a high speed machining process. The model considers the cutting force as output variable, essential for the physical processes that are taking place in high speed machining. Moreover, this paper shows the mathematical development to derive the integral-differential equations, and the algorithms implemented in MATLAB to predict the cutting force in real time MATLAB is a software tool for doing numerical computations with matrices and vectors. It can also display information graphically and includes many toolboxes for several research and applications areas. Two end mill shapes are considered (i. e. cylindrical and ball end mill) for real-time implementation of the developed algorithms. the developed models are validated in slot milling operations. The results corroborate the importance of the cutting force variable for predicting tool wear in high speed machining operations. The developed models are the starting point for future work related with vibration analysis, process stability and dimensional surface finish in high speed machining processes. (Author) 19 refs

  19. Optimum Design of High Speed Prop-Rotors

    Science.gov (United States)

    Chattopadhyay, Aditi

    1992-01-01

    The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop optimization process. The procedures involve the consideration of blade aeroelastic, aerodynamic performance, structural and dynamic design requirements. Further, since the design involves consideration of several different objectives, multiobjective function formulation techniques are developed.

  20. Design of high-speed planing hulls for the improvement of resistance and seakeeping performance

    Directory of Open Access Journals (Sweden)

    Dong Jin Kim

    2013-03-01

    Full Text Available High-speed vessels require good resistance and seakeeping performance for safe operations in rough seas. The resistance and seakeeping performance of high-speed vessels varies significantly depending on their hull forms. In this study, three planing hulls that have almost the same displacement and principal dimension are designed and the hydrodynamic characteristics of those hulls are estimated by high-speed model tests. All model ships are deep-V type planing hulls. The bows of no.2 and no.3 model ships are designed to be advantageous for wave-piercing in rough water. No. 2 and no. 3 model ships have concave and straight forebody cross-sections, respectively. And length-to-beam ratios of no.2 and no.3 models are larger than that of no.1 model. In calm water tests, running attitude and resistance of model ships are measured at various speeds. And motion tests in regular waves are performed to measure the heave and pitch motion responses of the model ships. The required power of no.1 (VPS model is smallest, but its vertical motion amplitudes in waves are the largest. No.2 (VWC model shows the smallest motion amplitudes in waves, but needs the greatest power at high speed. The resistance and seakeeping performance of no.3 (VWS model ship are the middle of three model ships, respectively. And in regular waves, no.1 model ship experiences ‘fly over’ phenomena around its resonant frequency. Vertical accelerations at specific locations such as F.P., center of gravity of model ships are measured at their resonant frequency. It is necessary to measure accelerations by accelerometers or other devices in model tests for the accurate prediction of vertical accelerations in real ships.

  1. Holistic design in high-speed optical interconnects

    Science.gov (United States)

    Saeedi, Saman

    receiver sensitivity is measured to be -8.8dBm at 32Gb/s. Next, on the optical transmitter side, three new techniques will be presented. First one is a differential ring modulator that breaks the optical bandwidth/quality factor trade-off known to limit the speed of high-Q ring modulators. This structure maintains a constant energy in the ring to avoid pattern-dependent power droop. As a first proof of concept, a prototype has been fabricated and measured up to 10Gb/s. The second technique is thermal stabilization of micro-ring resonator modulators through direct measurement of temperature using a monolithic PTAT temperature sensor. The measured temperature is used in a feedback loop to adjust the thermal tuner of the ring. A prototype is fabricated and a closed-loop feedback system is demonstrated to operate at 20Gb/s in the presence of temperature fluctuations. The third technique is a switched-capacitor based pre-emphasis technique designed to extend the inherently low bandwidth of carrier injection micro-ring modulators. A measured prototype of the optical transmitter achieves energy efficiency of 342fJ/bit at 10Gb/s and the wavelength stabilization circuit based on the monolithic PTAT sensor consumes 0.29mW. Lastly, a first-order frequency synthesizer that is suitable for high-speed on-chip clock generation will be discussed. The proposed design features an architecture combining an LC quadrature VCO, two sample-and-holds, a PI, digital coarse-tuning, and rotational frequency detection for fine-tuning. In addition to an electrical reference clock, as an extra feature, the prototype chip is capable of receiving a low jitter optical reference clock generated by a high-repetition-rate mode-locked laser. The output clock at 8GHz has an integrated RMS jitter of 490fs, peak-to-peak periodic jitter of 2.06ps, and total RMS jitter of 680fs. The reference spurs are measured to be 64.3dB below the carrier frequency. At 8GHz the system consumes 2.49mW from a 1V supply.

  2. High-Speed Measurements on a Swept-Back Wing (Sweepback Angle phi = 35 Deg)

    Science.gov (United States)

    Goethert, B.

    1947-01-01

    In the following, high-speed measurements on a swept-back wing are reported. The curves of lift, moment, and drag have been determined up to Mach numbers of M = 0.87, and they are compared to a rectangular wing. Through measurements of the total-head loss behind the wing and through schlieren pictures, an insight into the formation of the compression shock at high Mach numbers has been obtained.

  3. High-speed imaging of explosive eruptions: applications and perspectives

    Science.gov (United States)

    Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Capponi, Antonio; Alatorre-Ibarguengoitia, Miguel-Angel; Moroni, Monica

    2013-04-01

    Explosive eruptions, being by definition highly dynamic over short time scales, necessarily call for observational systems capable of relatively high sampling rates. "Traditional" tools, like as seismic and acoustic networks, have recently been joined by Doppler radar and electric sensors. Recent developments in high-speed camera systems now allow direct visual information of eruptions to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Here we summarize the methods employed to gather and process high-speed videos of explosive eruptions, and provide an overview of the several applications of these new type of data in understanding different aspects of explosive volcanism. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian

  4. COMPARISON OF HAMSTRING MUSCLE ACTIVATION DURING HIGH-SPEED RUNNING AND VARIOUS HAMSTRING STRENGTHENING EXERCISES

    Science.gov (United States)

    Solheim, Jens Asmund Brevik; Bencke, Jesper

    2017-01-01

    Purpose/Background Several studies have examined the effect of hamstring strength exercises upon hamstring strains in team sports that involve many sprints. However, there has been no cross comparison among muscle activation of these hamstring training exercises with actual sprinting. Therefore, the aim of this study was to examine different hamstring exercises and compare the muscle activity in the hamstring muscle group during various exercises with the muscular activity produced during maximal sprints. Methods Twelve male sports students (age 25 ± 6.2 years, 1.80 ± 7.1 m, body mass 81.1 ± 15.6 kg) participated in this study. Surface EMG electrodes were placed on semimembranosus, semitendinosus and biceps femoris to measure muscle activity during seven hamstrings exercises and sprinting together with 3D motion capture to establish at what hip and knee angles maximal muscle activation (EMG) occurs. Maximal EMG activity during sprints for each muscle was used in order to express each exercise as a percentage of max activation during sprinting. Results The main findings were that maximal EMG activity of the different hamstring exercises were on average between 40-65% (Semitendinosus), 18-40% (biceps femoris) and 40-75% (Semimembranosus) compared with the max EMG activity in sprints, which were considered as 100%. The laying kick together with the Nordic hamstring exercises and its variations had the highest muscle activations, while the cranes showed the lowest muscle activation (in all muscles) together with the standing kick for the semimembranosus. In addition, angles at which the peak EMG activity of the hamstring muscle occurs were similar for the Nordic hamstring exercises and different for the two crane exercises (hip angle), standing kick (hip angle) and the laying kick (knee angle) compared with the sprint. Conclusions Nordic hamstring exercises with its variation together with the laying kick activates the hamstrings at high levels and at angles similar to the joint angles at which peak hamstring activation occurs during sprinting, while cranes did not reach high levels of hamstring activation compared with sprinting. Level of Evidence 1b PMID:29181249

  5. High-speed imaging polarimetry using liquid crystal modulators

    Directory of Open Access Journals (Sweden)

    Ambs P.

    2010-06-01

    Full Text Available This paper deals with dynamic polarimetric imaging techniques. The basics of modern polarimetry have been known for one and a half century, but no practical high-speed implementation providing the full polarization information is currently available. Various methods are reviewed which prove to be a trade-off between the complexity of the optical set-up and the amount of polarimetric information they provide (ie the number of components of the Stokes vector. Techniques using liquid crystal devices, incepted in the late 1990's, are emphasized. Optical set-ups we implemented are presented. We particularly focus on high-speed techniques (i.e. faster than 200 Hz using ferroelectric liquid crystal devices.

  6. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Jamaliah Idris

    2013-01-01

    Full Text Available Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis parameters, such as cathodic current density and temperature at constant pH, on electrodeposition and microstructure of Ni-Co alloys were examined. A homogeneous surface morphology was obtained at all current densities of the plated samples, and it was evident that the current density and temperature affect the coating thickness of Ni-Co alloy coatings.

  7. The high speed interconnect system architecture and operation

    Science.gov (United States)

    Anderson, Steven C.

    The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.

  8. Multimode polymer waveguides for high-speed optical interconnects

    Science.gov (United States)

    Bamiedakis, N.; Ingham, J. D.; Penty, R. V.; White, I. H.; DeGroot, J. V.; Clapp, T. V.

    2017-11-01

    Polymeric multimode waveguides are of particular interest for optical interconnections in short-reach data links. In some applications, for example in space-borne systems, the use of advanced materials with outstanding performance in extreme environments is required (temperature and radiation). In this paper therefore, we present novel siloxane polymers suitable for these applications. The materials are used to form straight, 90° bent and spiral polymer waveguides by low-cost conventional photolithographic techniques on FR4 substrates. The samples have been tested to investigate their propagation characteristics and demonstrate their potential for high-speed data links. Overall, there is strong evidence that these multimode waveguides can be successfully employed as high-speed short-reach data links. Their excellent thermal properties, their low cost and the simple fabrication process indicate their suitability for a wide range of space applications.

  9. High-speed Integrated Circuits for electrical/Optical Interfaces

    DEFF Research Database (Denmark)

    Jespersen, Christoffer Felix

    2008-01-01

    This thesis is a continuation of the effort to increase the bandwidth of communicationnetworks. The thesis presents the results of the design of several high-speed electrical ircuits for an electrical/optical interface. These circuits have been a contribution to the ESTA project in collaboration...... circuits at the receiver interface, though VCOs are also found in the transmitter where a multitude of independent sources have to be mutually synchronized before multiplexing. The circuits are based on an InP DHBT process (VIP-2) supplied by Vitesse and made publicly available as MPW. The VIP-2 process...... represents the avant-garde of InP technology, with ft and fmax well above 300 GHz. Principles of high speed design are presented and described as a useful background before proceeding to circuits. A static divider is used as an example to illustrate many of the design principles. Theory and fundamentals...

  10. High-speed packet filtering utilizing stream processors

    Science.gov (United States)

    Hummel, Richard J.; Fulp, Errin W.

    2009-04-01

    Parallel firewalls offer a scalable architecture for the next generation of high-speed networks. While these parallel systems can be implemented using multiple firewalls, the latest generation of stream processors can provide similar benefits with a significantly reduced latency due to locality. This paper describes how the Cell Broadband Engine (CBE), a popular stream processor, can be used as a high-speed packet filter. Results show the CBE can potentially process packets arriving at a rate of 1 Gbps with a latency less than 82 μ-seconds. Performance depends on how well the packet filtering process is translated to the unique stream processor architecture. For example the method used for transmitting data and control messages among the pseudo-independent processor cores has a significant impact on performance. Experimental results will also show the current limitations of a CBE operating system when used to process packets. Possible solutions to these issues will be discussed.

  11. High speed movies of turbulence in Alcator C-Mod

    International Nuclear Information System (INIS)

    Terry, J.L.; Zweben, S.J.; Bose, B.; Grulke, O.; Marmar, E.S.; Lowrance, J.; Mastrocola, V.; Renda, G.

    2004-01-01

    A high speed (250 kHz), 300 frame charge coupled device camera has been used to image turbulence in the Alcator C-Mod Tokamak. The camera system is described and some of its important characteristics are measured, including time response and uniformity over the field-of-view. The diagnostic has been used in two applications. One uses gas-puff imaging to illuminate the turbulence in the edge/scrape-off-layer region, where D 2 gas puffs localize the emission in a plane perpendicular to the magnetic field when viewed by the camera system. The dynamics of the underlying turbulence around and outside the separatrix are detected in this manner. In a second diagnostic application, the light from an injected, ablating, high speed Li pellet is observed radially from the outer midplane, and fast poloidal motion of toroidal striations are seen in the Li + light well inside the separatrix

  12. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2016-07-01

    Full Text Available The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC, hydroxypropyl methylcellulose phthalate (HPMCP, and hydroxypropyl methylcellulose acetate succinate (HPMCAS film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.

  13. Development of Industrial High-Speed Transfer Parallel Robot

    International Nuclear Information System (INIS)

    Kim, Byung In; Kyung, Jin Ho; Do, Hyun Min; Jo, Sang Hyun

    2013-01-01

    Parallel robots used in industry require high stiffness or high speed because of their structural characteristics. Nowadays, the importance of rapid transportation has increased in the distribution industry. In this light, an industrial parallel robot has been developed for high-speed transfer. The developed parallel robot can handle a maximum payload of 3 kg. For a payload of 0.1 kg, the trajectory cycle time is 0.3 s (come and go), and the maximum velocity is 4.5 m/s (pick amp, place work, adept cycle). In this motion, its maximum acceleration is very high and reaches approximately 13g. In this paper, the design, analysis, and performance test results of the developed parallel robot system are introduced

  14. Aero-Mechanical Coupling in a High-Speed Compressor

    Science.gov (United States)

    2010-02-01

    freedom mass-spring- damper system as χ = ς 2 √ κµ . (51) ς represents the viscous damping, κ is the system stiffness and µ the system mass. χ expresses...between the fluid and structures which are common in modern, high-speed axial compressors. There were two major areas of focus. The first was the...development of measurement technique specifically for the study of these phenomena, termed Blade Image Velocimetry (BIV). The technique can measure fluid and

  15. Modeling and simulation of high-speed milling centers dynamics

    OpenAIRE

    Msaddek , El Bechir; Bouaziz , Zoubeir; Baili , Maher; Dessein , Gilles

    2011-01-01

    International audience; High-speed machining is a milling operation in industrial production of aeronautic parts, molds, and dies. The parts production is being reduced because of the slowing down of the machining resulting from the tool path discontinuity machining strategy. In this article, we propose a simulation tool of the machine dynamic behavior, in complex parts machining. For doing this, analytic models have been developed expressing the cutting tool feed rate. Afterwards, a simulati...

  16. High speed motion-picture photography. Instrumentation and application

    International Nuclear Information System (INIS)

    Bertin-Maghit, G.; Delli, C.; Falgayrettes, M.

    1981-01-01

    Filming technology at 5,000 frames/second is presented in this paper for the determination of the volume and the expension speed of a gas bubble in water. The high speed 16 mm movie camera, fitted with ultra-wide angle lenses, is placed in front of a side light facing the bubble. Ten 60 ms fast flashes, released in succession, illuminate the bubble [fr

  17. Study on Electromagnetic Interference of high-speed railway EMU

    OpenAIRE

    CHENG Qiang; LIU Jin-jiang; CHENG Ning

    2013-01-01

    Electromagnetic radiation generated by pantograph-catenaries detachment is one of the inevitable problems with the development of high-speed railway this paper is focusing on the generating mechanism and characteristics of electromagnetic noise caused by pantograph-catenaries system. Based on previous research, we build an integrated model of catenaries and locomotive system, and study the electromagnetic disturbance characteristics using software FEKO. The simulation experiment results in th...

  18. High speed trains Velaro for Russia; Hochgeschwindigkeitszuege Velaro fuer Russland

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Andreas; John, David [Siemens AG, I MO TR HI RUS, Erlangen (Germany); Mangler, Ruediger [Siemens AG, I MO TR DH, Krefeld (Germany); Nazarov, Aleksander S. [OAO RZD, Moscow (Russian Federation). Dept. of Technical Policy; Nazarov, Oleg N. [VNIIZhT Moscow (Russian Federation); Shilkin, Vitali P. [OAO RZD, Moscow (Russian Federation)

    2008-07-01

    From December 2008 on, eight ten-piece high-speed trains from the Velaro family from Siemens will be delivered to Russia. The two electrical multiple unit versions - single and double system trains equipped with distributed traction - will be put into service on the existing Moscow - St. Petersburg and Moscow - Nizhni Novgorod lines. The technical design and the special features for deployment in Russia are described. (orig.)

  19. High Speed Trimaran (HST) Seatrain Experiments, Model 5714

    Science.gov (United States)

    2013-12-01

    wave absorbing beach at the other. The carriage has electro-hydraulic drive and a regenerative braking system with a maximum carriage speed of 20...Carderock Division To: Commander, Naval Sea Systems Command (PMS3 85) Subj FORWARDING OF REPORT Encl: (1) NSWCCD-80-TR-2013/015, "High Speed Trimaran...and verify the system processes and capability. Your comments will be reviewed and are appreciated. JUDE F. BROWN By direction Copy to: NAVSEA

  20. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  1. Open tube guideway for high speed air cushioned vehicles

    Science.gov (United States)

    Goering, R. S. (Inventor)

    1974-01-01

    This invention is a tubular shaped guideway for high-speed air-cushioned supported vehicles. The tubular guideway is split and separated such that the sides of the guideway are open. The upper portion of the tubular guideway is supported above the lower portion by truss-like structural members. The lower portion of the tubular guideway may be supported by the terrain over which the vehicle travels, on pedestals or some similar structure.

  2. Noise factor of a high-speed cinematography system

    International Nuclear Information System (INIS)

    Secroun, A.

    2000-01-01

    Inertial confinement fusion simulates in a laboratory the thermodynamic state of the center of stars, thus leading to the determination of stellar parameters. In order to reach that aim, high-speed cinematography brings up instruments specifically adapted to picosecond measurement, for which it is necessary to know the final precision. A model of the noise factor of the instruments under study is introduced and confronted to the experimental results obtained. (authors)

  3. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J.

    1996-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  4. Noise in the passenger cars of high-speed trains.

    Science.gov (United States)

    Hong, Joo Young; Cha, Yongwon; Jeon, Jin Yong

    2015-12-01

    The aim of this study is to investigate the effects of both room acoustic conditions and spectral characteristics of noises on acoustic discomfort in a high-speed train's passenger car. Measurement of interior noises in a high-speed train was performed when the train was operating at speeds of 100 km/h and 300 km/h. Acoustic discomfort caused by interior noises was evaluated by paired comparison methods based on the variation of reverberation time (RT) in a passenger car and the spectral differences in interior noises. The effect of RT on acoustic discomfort was not significant, whereas acoustic discomfort significantly varied depending on spectral differences in noise. Acoustic discomfort increased with increment of the sound pressure level (SPL) ratio at high frequencies, and variation in high-frequency noise components were described using sharpness. Just noticeable differences of SPL with low- and high-frequency components were determined to be 3.7 and 2.9 dB, respectively. This indicates that subjects were more sensitive to differences in SPLs at the high-frequency range than differences at the low-frequency range. These results support that, for interior noises, reduction in SPLs at high frequencies would significantly contribute to improved acoustic quality in passenger cars of high-speed trains.

  5. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J

    1997-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  6. Double Helical Gear Performance Results in High Speed Gear Trains

    Science.gov (United States)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  7. Multivariable Techniques for High-Speed Research Flight Control Systems

    Science.gov (United States)

    Newman, Brett A.

    1999-01-01

    This report describes the activities and findings conducted under contract with NASA Langley Research Center. Subject matter is the investigation of suitable multivariable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Design and analysis techniques considered in this body of work are both conventional-based and contemporary-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include: (1) control architectures based on aft tail only are not well suited for highly flexible, high-speed vehicles, (2) theoretical underpinnings of the Wykes structural mode control logic is based on several assumptions concerning vehicle dynamic characteristics, and if not satisfied, the control logic can break down leading to mode destabilization, (3) two-loop control architectures that utilize small forward vanes with the aft tail provide highly attractive and feasible solutions to the longitudinal axis control challenges, and (4) closed-loop simulation sizing analyses indicate the baseline vane model utilized in this report is most likely oversized for normal loading conditions.

  8. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. (Los Alamos National Lab., NM (United States)); Levine, G.F. (California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services)

    1993-01-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  9. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. [Los Alamos National Lab., NM (United States); Levine, G.F. [California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services

    1993-05-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  10. Flank wear analysing of high speed end milling for hardened steel D2 using Taguchi Method

    Science.gov (United States)

    Hazza Faizi Al-Hazza, Muataz; Ibrahim, Nur Asmawiyah bt; Adesta, Erry T. Y.; Khan, Ahsan Ali; Abdullah Sidek, Atiah Bt.

    2017-03-01

    One of the main challenges for any manufacturer is how to decrease the machining cost without affecting the final quality of the product. One of the new advanced machining processes in industry is the high speed hard end milling process that merges three advanced machining processes: high speed milling, hard milling and dry milling. However, one of the most important challenges in this process is to control the flank wear rate. Therefore a analyzing the flank wear rate during machining should be investigated in order to determine the best cutting levels that will not affect the final quality of the product. In this research Taguchi method has been used to investigate the effect of cutting speed, feed rate and depth of cut and determine the best level s to minimize the flank wear rate up to total length of 0.3mm based on the ISO standard to maintain the finishing requirements.

  11. 78 FR 59791 - Annual Company-Run Stress Tests at Banking Organizations With Total Consolidated Assets of More...

    Science.gov (United States)

    2013-09-30

    ... bank on its Consolidated Financial Statements for Bank Holding Companies (FR Y-9C) or Consolidated... companies with $50 billion or more in total consolidated assets and any non-bank financial companies... with total consolidated assets of $50 billion or more and nonbank financial companies supervised by the...

  12. Correlation of Pc5 wave power inside and outside themagnetosphere during high speed streams

    Directory of Open Access Journals (Sweden)

    R. L. Kessel

    2004-01-01

    Full Text Available We show a clear correlation between the ULF wave power (Pc5 range inside and outside the Earth's magnetosphere during high speed streams in 1995. We trace fluctuations beginning 200RE upstream using Wind data, to fluctuations just upstream from Earth's bow shock and in the magnetosheath using Geotail data and compare to pulsations on the ground at the Kilpisjarvi ground station. With our 5-month data set we draw the following conclusions. ULF fluctuations in the Pc5 range are found in high speed streams; they are non-Alfvénic at the leading edge and Alfvénic in the central region. Compressional and Alfvénic fluctuations are modulated at the bow shock, some features of the waveforms are preserved in the magnetosheath, but overall turbulence and wave power is enhanced by about a factor of 10. Parallel (compressional and perpendicular (transverse power are at comparable levels in the solar wind and magnetosheath, both in the compression region and in the central region of high speed streams. Both the total parallel and perpendicular Pc5 power in the solar wind (and to a lesser extent in the magnetosheath correlate well with the total Pc5 power of the ground-based H-component magnetic field. ULF fluctuations in the magnetosheath during high speed streams are common at frequencies from 1–4mHz and can coincide with the cavity eigenfrequencies of 1.3, 1.9, 2.6, and 3.4mHz, though other discrete frequencies are also often seen.

    Key words. Interplanetary physics (MHD waves and turbulence – Magnetospheric physics (solar wind-magnetosphere interactions; MHD waves and instabilities

  13. Fermilab DART run control

    International Nuclear Information System (INIS)

    Oleynik, G.; Engelfried, J.; Mengel, L.

    1996-01-01

    DART is the high speed, Unix based data acquisition system being developed by Fermilab in collaboration with seven High Energy Physics Experiments. This paper describes DART run control, which has been developed over the past year and is a flexible, distributed, extensible system for the control and monitoring of the data acquisition systems. The authors discuss the unique and interesting concepts of the run control and some of the experiences in developing it. They also give a brief update and status of the whole DART system

  14. Fermilab DART run control

    International Nuclear Information System (INIS)

    Oleynik, G.; Engelfried, J.; Mengel, L.

    1995-05-01

    DART is the high speed, Unix based data acquisition system being developed by Fermilab in collaboration with seven High Energy Physics Experiments. This paper describes DART run control, which has been developed over the past year and is a flexible, distributed, extensible system for the, control and monitoring of the data acquisition systems. We discuss the unique and interesting concepts of the run control and some of our experiences in developing it. We also give a brief update and status of the whole DART system

  15. Sleep apnea syndrome. Examination of pharyngeal obstruction with high-speed MR and polysomnography

    International Nuclear Information System (INIS)

    Suto, Y.; Inoue, Y.

    1995-01-01

    We attempted to determine the usefulness of high-speed MR imaging for evaluating the severity of sleep apnea syndrome (SAS) by comparing findings of pharyngeal obstruction obtained with high-speed MR with those of all-night polysomnography (PSG). A total of 33 patients with SAS underwent turbo-FLASH MR examination, while awake and after i.v. injection of hydroxyzine hydrochloride. Serial images were examined by cinemode. Pharyngeal findings on MR were divided into single-site obstruction (SO) at the velopharynx, multiple-site obstruction (MO), and no obstruction (NO). PSG findings were analyzed to determine the predominant type of apnea, severity as evaluated by an apnea index (AI), and the lowest SaO 2 value during sleep. Seventy-five percent of the central apnea group had SO, and 70% of the mixed apneas had MO, while only 15% of the obstructed apneas had MO. The percentage of patients with severe SAS (AI of 20% or higher) was 48% for the SO, and 70% for the MO. The lowest SaO 2 value tended to be low in the mixed apnea in the case of PSG, and tended to be low in the MO at MR examination. Analysis of pharyngeal dynamics using high-speed MR may provide some useful information for evaluating the severity of SAS. (orig.)

  16. Analysis of base fuze functioning of HESH ammunitions through high-speed photographic technique

    Science.gov (United States)

    Biswal, T. K.

    2007-01-01

    High-speed photography plays a major role in a Test Range where the direct access is possible through imaging in order to understand a dynamic process thoroughly and both qualitative and quantitative data are obtained thereafter through image processing and analysis. In one of the trials it was difficult to understand the performance of HESH ammunitions on rolled homogeneous armour. There was no consistency in scab formation even though all other parameters like propellant charge mass, charge temperature, impact velocity etc are maintained constant. To understand the event thoroughly high-speed photography was deployed to have a frontal view of the total process. Clear information of shell impact, embedding of HE propellant on armour and base fuze initiation are obtained. In case of scab forming rounds these three processes are clearly observed in sequence. However in non-scab ones base fuze is initiated before the completion of the embedding process resulting non-availability of threshold thrust on to the armour to cause scab. This has been revealed in two rounds where there was a failure of scab formation. As a quantitative measure, fuze delay was calculated for each round and there after premature functioning of base fuze was ascertained in case of non-scab rounds. Such potency of high-speed photography has been depicted in details in this paper.

  17. High-speed AFM for Studying Dynamic Biomolecular Processes

    Science.gov (United States)

    Ando, Toshio

    2008-03-01

    Biological molecules show their vital activities only in aqueous solutions. It had been one of dreams in biological sciences to directly observe biological macromolecules (protein, DNA) at work under a physiological condition because such observation is straightforward to understanding their dynamic behaviors and functional mechanisms. Optical microscopy has no sufficient spatial resolution and electron microscopy is not applicable to in-liquid samples. Atomic force microscopy (AFM) can visualize molecules in liquids at high resolution but its imaging rate was too low to capture dynamic biological processes. This slow imaging rate is because AFM employs mechanical probes (cantilevers) and mechanical scanners to detect the sample height at each pixel. It is quite difficult to quickly move a mechanical device of macroscopic size with sub-nanometer accuracy without producing unwanted vibrations. It is also difficult to maintain the delicate contact between a probe tip and fragile samples. Two key techniques are required to realize high-speed AFM for biological research; fast feedback control to maintain a weak tip-sample interaction force and a technique to suppress mechanical vibrations of the scanner. Various efforts have been carried out in the past decade to materialize high-speed AFM. The current high-speed AFM can capture images on video at 30-60 frames/s for a scan range of 250nm and 100 scan lines, without significantly disturbing week biomolecular interaction. Our recent studies demonstrated that this new microscope can reveal biomolecular processes such as myosin V walking along actin tracks and association/dissociation dynamics of chaperonin GroEL-GroES that occurs in a negatively cooperative manner. The capacity of nanometer-scale visualization of dynamic processes in liquids will innovate on biological research. In addition, it will open a new way to study dynamic chemical/physical processes of various phenomena that occur at the liquid-solid interfaces.

  18. Liquid metal current collectors for high-speed rotating machinery

    International Nuclear Information System (INIS)

    Carr, S.L.

    1976-01-01

    Recent interest in superconducting motors and generators has created a renewed interest in homopolar machinery. Homopolar machine designs have always been limited by the need for compact, high-current, low-voltage, sliding electrical curent collectors. Conventional graphite-based solid brushes are inadequate for use in homopolar machines. Liquid metals, under certain conditions of relative sliding velocities, electrical currents, and magnetic fields are known to be capable of performing well in homopolar machines. An effort to explore the capabilities and limits of a tongue-and-groove style current collector, utilizing sodium-potassium eutectic alloy (NaK) as the working fluid in high sliding speed operation is reported here. A double current collector generator model with a 14.5-cm maximum rotor diameter, 20,000 rpm rotational capability, and electrical current carrying ability was constructed and operated successfully at a peripheral velocity of 125 m/s. The limiting factor in these experiments was a high-speed fluid-flow instability resulting in the ejection of the working fluid from the operating portions of the collectors. The effects of collector size and geometry, working fluid (NaK or water), and cover gas pressure are reported. Hydrodynamic frictional torque-speed curves are given for the two fluids and for several geometries. Electrical resistances as a function of peripheral velocity at 60 amperes are reported, and the phenomenology of the high-speed fluid-flow instabilities is discussed. The possibility of long-term high-speed operation of current collectors of the tongue-and-groove type, along with experimental and theoretical hydrodynamic friction losses at high peripheral velocities, is considered

  19. High speed motion neutron radiography of two-phase flow

    International Nuclear Information System (INIS)

    Robinson, A.H.; Wang, S.L.

    1983-01-01

    Current research in the area of two-phase flow utilizes a wide variety of sensing devices, but some limitations exist on the information which can be obtained. Neutron radiography is a feasible alternative to ''see'' the two-phase flow. A system to perform neutron radiographic analysis of dynamic events which occur on the order of several milliseconds has been developed at Oregon State University. Two different methods have been used to radiograph the simulated two-phase flow. These are pulsed, or ''flash'' radiography, and high speed movie neutron radiography. The pulsed method serves as a ''snap-shot'' with an exposure time ranging from 10 to 20 milliseconds. In high speed movie radiography, a scintillator is used to convert neutrons into light which is enhanced by an optical intensifier and then photographed by a high speed camera. Both types of radiography utilize the pulsing capability of the OSU TRIGA reactor. The principle difficulty with this type of neutron radiography is the fogging of the image due to the large amount of scattering in the water. This difficulty can be overcome by using thin regions for the two-phase flow or using heavy water instead of light water. The results obtained in this paper demonstrate the feasibility of using neutron radiography to obtain data in two-phase flow situations. Both movies and flash radiographs have been obtained of air bubbles in water and boiling from a heater element. The neutron radiographs of the boiling element show both nucleate boiling and film boiling. (Auth.)

  20. Coronal holes and high-speed wind streams

    International Nuclear Information System (INIS)

    Zirker, J.B.

    1977-01-01

    Coronal holes low have been identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the Sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. The latitude variation of the divergence of the coronal magnetic field lines produces corresponding variations in wind speed.During the years of declining solar activity the global field of the corona approximates a perturbed dipole. The divergence of field lines in each hemisphere produces a high-speed wind near the poles and low-speed wind in a narrow belt that coincides with the magnetic neutral sheet. The analysis of electron density measurements within a polar hole indicates that solar wind is accelerated principally in the region between 2 and 5 R/sub s/ and that mechanical wave pressure (possibly Alfven wave) may be responsible for the accleration of the wind. Phenomenological models for the birth and decay of coronal holes have been proposed. Attempts to explain the birth and rigid rotation of holes through dynamo action have been only partially successful. The 11-year variation of cosmic ray intensities at the earth may result from cyclic variation of open field regions associated with coronal holes

  1. Implementation of High Speed Distributed Data Acquisition System

    Science.gov (United States)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high

  2. High speed digital TDC for D0 vertex reconstruction

    International Nuclear Information System (INIS)

    Gao Guosheng; Partridge, R.

    1992-01-01

    A high speed digital TDC has been built as part of the Level 0 trigger for the D0 experiment at Fermilab. The digital TDC is used to make a fast determination of the primary vertex position by timing the arrival time of beam jets detected in the Level 0 counters. The vertex position is then used by the Level 1 trigger to determine the proper sinθ weighting factors for calculation transverse energies. Commercial GaAs integrated circuits are used in the digital TDC to obtain a time resolution of σ t == 226 ps

  3. Time resolution performance studies of contemporary high speed photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1978-01-01

    The time resolution capabilities of prototype microchannel plate and static crossed-field photomultipliers have been investigated. Measurements were made of electron transit time, rise time, time response, single phtoelectron time spread and multiphotoelectron time spread for LEP HR350 proximity focused high gain curved microchannel plate and VPM-154A/1.6L static crossed-field photomultipliers. The experimental data have been compared with results obtained with conventionally designed high speed photomultipliers. Descriptions are given of both the measuring techniques and the measuring systems. 16 refs

  4. Design of a high speed rotating mechanical shutter

    International Nuclear Information System (INIS)

    Stowers, I.F.; Merritt, B.T.; McFann, C.B.

    1979-01-01

    A high-speed rotating shutter was designed to operate in a 10 -6 Torr vacuum at the optical focus of a laser spatial filter. The shutter is basically a wheel, with a single 3 x 10-mm slot at the perimeter, which rotates with a peripheral speed of 1 km/s. The motor to drive the rotating wheel is magnetically suspended and synchronously wound. The wheel achieves a 4 μs opening time and a timing accuracy of better than 0.2 μs

  5. High speed fiber optics local area networks: Design and implementation

    Science.gov (United States)

    Tobagi, Fouad A.

    1988-01-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: (1) the network medium and its topology; (2) the medium access control; and (3) the network interface. Considerable progress has been made in all areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given in Section 2, including references to papers which appeared in the literature, as well as to Ph.D. dissertations and technical reports published at Stanford University.

  6. Time resolution performance studies of contemporary high speed photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1977-01-01

    The time resolution capabilities of prototype microchannel plate and static crossed-field photomultipliers have been investigated. Measurements were made of electron transit time, rise time, time response, single photoelectron time spread and multiphotoelectron time spread for LEP HR350 proximity focused high gain curved microchannel plate and VPM-154A/1.6L static crossed-field photomultipliers. The experimental data have been compared with results obtained with conventionally designed RCS 8850 and C31024 high speed photomultipliers. Descriptions are given of both the measuring techniques and the measuring systems

  7. Error mapping of high-speed AFM systems

    Science.gov (United States)

    Klapetek, Petr; Picco, Loren; Payton, Oliver; Yacoot, Andrew; Miles, Mervyn

    2013-02-01

    In recent years, there have been several advances in the development of high-speed atomic force microscopes (HSAFMs) to obtain images with nanometre vertical and lateral resolution at frame rates in excess of 1 fps. To date, these instruments are lacking in metrology for their lateral scan axes; however, by imaging a series of two-dimensional lateral calibration standards, it has been possible to obtain information about the errors associated with these HSAFM scan axes. Results from initial measurements are presented in this paper and show that the scan speed needs to be taken into account when performing a calibration as it can lead to positioning errors of up to 3%.

  8. Magnetic suspension and guidance of high speed vehicles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alston, I A; Clark, J M; Hayden, J T

    1972-12-01

    Technical and economical assessments of magnetic suspensions for high speed vehicles and transport systems are reported. In these suspensions the suspending magnet takes the form of a powerful superconducting electromagnet that induces currents while it moves over conducting sheets or loops. A number of vehicle track designs are evaluated for operating cost effectiveness. It is shown that propulsion systems using power collected from the track are more expensive than those using power generated onboard the vehicle, and that the conducting sheet suspension is slightly more expensive than the null flux suspension.

  9. High speed electronic imaging application in aeroballistic research

    International Nuclear Information System (INIS)

    Brown, R.R.; Parker, J.R.

    1984-01-01

    Physical and temporal restrictions imposed by modern aeroballistics have pushed imaging technology to the point where special photoconductive surfaces and high-speed support electronics are dictated. Specifications for these devices can be formulated by a methodical analysis of critical parameters and how they interact. In terms of system theory, system transfer functions and state equations can be used in optimal coupling of devices to maximize system performance. Application of these methods to electronic imaging at the Eglin Aeroballistics Research Facility is described in this report. 7 references, 14 figures, 1 table

  10. Signal Conditioning in Process of High Speed Imaging

    Directory of Open Access Journals (Sweden)

    Libor Hargas

    2015-01-01

    Full Text Available The accuracy of cinematic analysis with camera system depends on frame rate of used camera. Specific case of cinematic analysis is in medical research focusing on microscopic objects moving with high frequencies (cilia of respiratory epithelium. The signal acquired by high speed video acquisition system has very amount of data. This paper describes hardware parts, signal condition and software, which is used for image acquiring thru digital camera, intelligent illumination dimming hardware control and ROI statistic creation. All software parts are realized as virtual instruments.

  11. CERNET - A high-speed packet-switching network

    International Nuclear Information System (INIS)

    Gerard, J.M.

    1981-01-01

    A general mesh-structured high-speed computer network has been designed and built. This network provides communication between any pair of connected user computers over distances of upto 6 km and at line speeds of 1 to 5 Mbit/second. The network is composed of a communication subnet providing a datagram service, complemented by tasks in the connected machines to implement an end-to-end logical link protocol. Details are given of the overall structure as well as the specific modules of which the system is composed. (orig.)

  12. Photonic Technologies for Ultra-High-Speed Information Highways

    DEFF Research Database (Denmark)

    Bouchoule, S; Lèfevre, R.; Legros, E.

    1999-01-01

    The ACTS project HIGHWAY (AC067) addresses promising ultra-high speed optoelectronic components and system technologies for 40 Gbit/s time-division-multiplexed (TDM) transport systems. Advanced 40 Gbit/s TDM system lab demonstrators are to be realized and tested over installed field fiber testbeds....... This paper reviews the current status of 40 Gbit/s TDM components and subsystem technologies achieved in HIGHWAY. The results of HIGHWAY 40 Gbit/s TDM systems and field tests will be reported in a subsequent paper. (C) 1999 Academic Press....

  13. Flexible, High-Speed CdSe Nanocrystal Integrated Circuits.

    Science.gov (United States)

    Stinner, F Scott; Lai, Yuming; Straus, Daniel B; Diroll, Benjamin T; Kim, David K; Murray, Christopher B; Kagan, Cherie R

    2015-10-14

    We report large-area, flexible, high-speed analog and digital colloidal CdSe nanocrystal integrated circuits operating at low voltages. Using photolithography and a newly developed process to fabricate vertical interconnect access holes, we scale down device dimensions, reducing parasitic capacitances and increasing the frequency of circuit operation, and scale up device fabrication over 4 in. flexible substrates. We demonstrate amplifiers with ∼7 kHz bandwidth, ring oscillators with <10 μs stage delays, and NAND and NOR logic gates.

  14. High-Speed Imaging of Dusty Plasma Instabilities

    International Nuclear Information System (INIS)

    Tawidian, H.; Mikikian, M.; Lecas, T.; Boufendi, L.; Coueedel, L.; Vallee, O.

    2011-01-01

    Dust particles in a plasma acquire negative charges by capturing electrons. If the dust particle density is high, a huge loss of free electrons can trigger unstable behaviors in the plasma. Several types of plasma behaviors are analyzed thanks to a high-speed camera like dust particle growth instabilities (DPGI) and a new phenomenon called plasma spheroids. These small plasma spheroids are about a few mm, have a slightly enhanced luminosity, and are observed in the vicinity of the electrodes. Different behaviors are identified for these spheroids like a rotational motion, or a chaotic regime (fast appearance and disappearance).

  15. High-Speed Imaging of Dusty Plasma Instabilities

    Science.gov (United States)

    Tawidian, H.; Couëdel, L.; Mikikian, M.; Lecas, T.; Boufendi, L.; Vallée, O.

    2011-11-01

    Dust particles in a plasma acquire negative charges by capturing electrons. If the dust particle density is high, a huge loss of free electrons can trigger unstable behaviors in the plasma. Several types of plasma behaviors are analyzed thanks to a high-speed camera like dust particle growth instabilities (DPGI) and a new phenomenon called plasma spheroids. These small plasma spheroids are about a few mm, have a slightly enhanced luminosity, and are observed in the vicinity of the electrodes. Different behaviors are identified for these spheroids like a rotational motion, or a chaotic regime (fast appearance and disappearance).

  16. High speed capacitor-inverter based carbon nanotube full adder.

    Science.gov (United States)

    Navi, K; Rashtian, M; Khatir, A; Keshavarzian, P; Hashemipour, O

    2010-03-18

    Carbon Nanotube filed-effect transistor (CNFET) is one of the promising alternatives to the MOS transistors. The geometry-dependent threshold voltage is one of the CNFET characteristics, which is used in the proposed Full Adder cell. In this paper, we present a high speed Full Adder cell using CNFETs based on majority-not (Minority) function. Presented design uses eight transistors and eight capacitors. Simulation results show significant improvement in terms of delay and power-delay product in comparison to contemporary CNFET Adder Cells. Simulations were carried out using HSPICE based on CNFET model with 0.6 V VDD.

  17. Ping-Pong Robotics with High-Speed Vision System

    DEFF Research Database (Denmark)

    Li, Hailing; Wu, Haiyan; Lou, Lei

    2012-01-01

    The performance of vision-based control is usually limited by the low sampling rate of the visual feedback. We address Ping-Pong robotics as a widely studied example which requires high-speed vision for highly dynamic motion control. In order to detect a flying ball accurately and robustly...... of the manipulator are updated iteratively with decreasing error. Experiments are conducted on a 7 degrees of freedom humanoid robot arm. A successful Ping-Pong playing between the robot arm and human is achieved with a high successful rate of 88%....

  18. Miniature high speed compressor having embedded permanent magnet motor

    Science.gov (United States)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  19. High-speed atomic force microscopy coming of age

    International Nuclear Information System (INIS)

    Ando, Toshio

    2012-01-01

    High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed. (topical review)

  20. High-speed atomic force microscopy coming of age

    Science.gov (United States)

    Ando, Toshio

    2012-02-01

    High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed.

  1. High speed photography diagnostics in laser-plasma interaction experiments

    International Nuclear Information System (INIS)

    Andre, M.L.

    1988-01-01

    The authors report on their effort in the development of techniques involved in laser-plasma experiments. This includes not only laser technology but also diagnostics studies and targets design and fabrication. Among the different kind of diagnostics currently used are high speed streak cameras, fast oscilloscopes and detectors sensitive in the i.r., visible, the u.v. region and the x-rays. In this presentation the authors describe the three high power lasers which are still in operation (P 102, OctAL and PHEBUS) and the main diagnostics used to characterize the plasma

  2. High-speed schlieren imaging of rocket exhaust plumes

    Science.gov (United States)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  3. High capacity, high speed histogramming data acquisition memory

    International Nuclear Information System (INIS)

    Epstein, A.; Boulin, C.

    1996-01-01

    A double width CAMAC DRAM store module was developed for use as a histogramming memory in fast time-resolved synchrotron radiation applications to molecular biology. High speed direct memory modify (3 MHz) is accomplished by using a discrete DRAM controller and fast page mode access. The module can be configured using standard SIMMs to sizes of up to 64M-words. The word width is 16 bit and the module can handle overflows by storing the overflow addresses in a dedicated FIFO. Simultaneous front panel DMM/DMI access and CAMAC readout of the overflow addresses is supported

  4. Tactile shoe inlays for high speed pressure monitoring

    DEFF Research Database (Denmark)

    Drimus, Alin; Mátéfi-Tempfli, Stefan

    2015-01-01

    This work describes the development of flexible tactile sensor shoe inlays for humanoid robots. Their design is based on a sandwich structure of flexible layers with a thin sheet of piezoresistive rubber as main transducer element. The layout and patterning of top and bottom electrodes give 1024...... pressure sensitive cells and the use of high speed electronics and multiplexing algorithms provides frame rates of 100 Hz. The sensors tolerate overloads while showing a consistent output. The developed prototypes show a high potential not only for robotics, but also for use in sensorised human prosthetics....

  5. OMNET - high speed data communications for PDP-11 computers

    International Nuclear Information System (INIS)

    Parkman, C.F.; Lee, J.G.

    1979-12-01

    Omnet is a high speed data communications network designed at CERN for PDP-11 computers. It has grown from a link multiplexor system built for a CII 10070 computer into a full multi-point network, to which some fifty computers are now connected. It provides communications facilities for several large experimental installations as well as many smaller systems and has connections to all parts of the CERN site. The transmission protocol is discussed and brief details are given of the hardware and software used in its implementation. Also described is the gateway interface to the CERN packet switching network, 'Cernet'. (orig.)

  6. Production of intermediate energy beams by high speed rotors

    International Nuclear Information System (INIS)

    Nutt, C.W.; Bale, T.J.; Cosgrove, P.; Kirby, M.J.

    1975-01-01

    A rotor apparatus intended for the study of gas/surface interaction processes is presently nearing completion. The carbon fiber rotors under consideration are constructed with shapes derived from long thin cylindrical rods oriented with the longest axis in a horizontal plane, and spun in a horizontal plane about an axis which is perpendicular to the long axis and passes through the mid-point of the cylinder. The beam formation processes are discussed and rotor diagrams presented. Performance of these types of high speed rotor show them to have a very important future as sources of intermediate energy molecular beams

  7. A wireless high-speed data acquisition system for geotechnical centrifuge model testing

    Science.gov (United States)

    Gaudin, C.; White, D. J.; Boylan, N.; Breen, J.; Brown, T.; DeCatania, S.; Hortin, P.

    2009-09-01

    This paper describes a novel high-speed wireless data acquisition system (WDAS) developed at the University of Western Australia for operation onboard a geotechnical centrifuge, in an enhanced gravitational field of up to 300 times Earth's gravity. The WDAS system consists of up to eight separate miniature units distributed around the circumference of a 0.8 m diameter drum centrifuge, communicating with the control room via wireless Ethernet. Each unit is capable of powering and monitoring eight instrument channels at a sampling rate of up to 1 MHz at 16-bit resolution. The data are stored within the logging unit in solid-state memory, but may also be streamed in real-time at low frequency (up to 10 Hz) to the centrifuge control room, via wireless transmission. The high-speed logging runs continuously within a circular memory (buffer), allowing for storage of a pre-trigger segment of data prior to an event. To suit typical geotechnical modelling applications, the system can record low-speed data continuously, until a burst of high-speed acquisition is triggered when an experimental event occurs, after which the system reverts back to low-speed acquisition to monitor the aftermath of the event. Unlike PC-based data acquisition solutions, this system performs the full sequence of amplification, conditioning, digitization and storage on a single circuit board via an independent micro-controller allocated to each pair of instrumented channels. This arrangement is efficient, compact and physically robust to suit the centrifuge environment. This paper details the design specification of the WDAS along with the software interface developed to control the units. Results from a centrifuge test of a submarine landslide are used to illustrate the performance of the new WDAS.

  8. A Systematic Approach to Identify Sources of Abnormal Interior Noise for a High-Speed Train

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2018-01-01

    Full Text Available A systematic approach to identify sources of abnormal interior noise occurring in a high-speed train is presented and applied in this paper to resolve a particular noise issue. This approach is developed based on a number of previous dealings with similar noise problems. The particular noise issue occurs in a Chinese high-speed train. It is measured that there is a difference of 7 dB(A in overall Sound Pressure Level (SPL between two nominally identical VIP cabins at 250 km/h. The systematic approach is applied to identify the root cause of the 7 dB(A difference. Well planned measurements are performed in both the VIP cabins. Sound pressure contributions, either in terms of frequency band or in terms of facing area, are analyzed. Order analysis is also carried out. Based on these analyses, it is found that the problematic frequency is the sleeper passing frequency of the train, and an area on the roof contributes the most. In order to determine what causes that area to be the main contributor without disassembling the structure of the roof, measured noise and vibration data for different train speeds are further analyzed. It is then reasoned that roof is the main contributor caused by sound pressure behind the panel. Up to this point, panels of the roof are removed, revealing that a hole of 300 cm2 for running cables is presented behind the red area without proper sound insulation. This study can provide a basis for abnormal interior noise analysis and control of high-speed trains.

  9. A wireless high-speed data acquisition system for geotechnical centrifuge model testing

    International Nuclear Information System (INIS)

    Gaudin, C; White, D J; Boylan, N; Breen, J; Brown, T; De Catania, S; Hortin, P

    2009-01-01

    This paper describes a novel high-speed wireless data acquisition system (WDAS) developed at the University of Western Australia for operation onboard a geotechnical centrifuge, in an enhanced gravitational field of up to 300 times Earth's gravity. The WDAS system consists of up to eight separate miniature units distributed around the circumference of a 0.8 m diameter drum centrifuge, communicating with the control room via wireless Ethernet. Each unit is capable of powering and monitoring eight instrument channels at a sampling rate of up to 1 MHz at 16-bit resolution. The data are stored within the logging unit in solid-state memory, but may also be streamed in real-time at low frequency (up to 10 Hz) to the centrifuge control room, via wireless transmission. The high-speed logging runs continuously within a circular memory (buffer), allowing for storage of a pre-trigger segment of data prior to an event. To suit typical geotechnical modelling applications, the system can record low-speed data continuously, until a burst of high-speed acquisition is triggered when an experimental event occurs, after which the system reverts back to low-speed acquisition to monitor the aftermath of the event. Unlike PC-based data acquisition solutions, this system performs the full sequence of amplification, conditioning, digitization and storage on a single circuit board via an independent micro-controller allocated to each pair of instrumented channels. This arrangement is efficient, compact and physically robust to suit the centrifuge environment. This paper details the design specification of the WDAS along with the software interface developed to control the units. Results from a centrifuge test of a submarine landslide are used to illustrate the performance of the new WDAS

  10. A large capacity, high-speed multiparameter multichannel analysis system

    International Nuclear Information System (INIS)

    Hendricks, R.W.; Suehiro, S.; Seeger, P.A.; Scheer, J.W.

    1982-01-01

    A data acquisition system for recording multiparameter digital data into a large memory array at over 2.5 MHz is described. The system consists of a MOSTEK MK 8600 2048 K x 24-bit memory system, I/O ports to various external devices including the CAMAC dataway, a memory incrementer/adder and a daisy-chain of experiment-specific modules which calculate the memory address which is to be incremented. The design of the daisy-chain permits multiple modules and provides for easy modification as experimental needs change. The system has been designed for use in multiparameter, multichannel analysis of high-speed data gathered by position-sensitive detectors at conventional and synchrotron X-ray sources as well as for fixed energy and time-of-flight diffraction at continuous and pulsed neutron sources. Modules which have been developed to date include a buffer for two-dimensional position-sensitive detectors, a mapper for high-speed coordinate transformations, a buffered time-of-flight clock, a time-correlator for synchronized diffraction experiments, and a display unit for data bus diagnostics. (orig.)

  11. High-speed uncooled MWIR hostile fire indication sensor

    Science.gov (United States)

    Zhang, L.; Pantuso, F. P.; Jin, G.; Mazurenko, A.; Erdtmann, M.; Radhakrishnan, S.; Salerno, J.

    2011-06-01

    Hostile fire indication (HFI) systems require high-resolution sensor operation at extremely high speeds to capture hostile fire events, including rocket-propelled grenades, anti-aircraft artillery, heavy machine guns, anti-tank guided missiles and small arms. HFI must also be conducted in a waveband with large available signal and low background clutter, in particular the mid-wavelength infrared (MWIR). The shortcoming of current HFI sensors in the MWIR is the bandwidth of the sensor is not sufficient to achieve the required frame rate at the high sensor resolution. Furthermore, current HFI sensors require cryogenic cooling that contributes to size, weight, and power (SWAP) in aircraft-mounted applications where these factors are at a premium. Based on its uncooled photomechanical infrared imaging technology, Agiltron has developed a low-SWAP, high-speed MWIR HFI sensor that breaks the bandwidth bottleneck typical of current infrared sensors. This accomplishment is made possible by using a commercial-off-the-shelf, high-performance visible imager as the readout integrated circuit and physically separating this visible imager from the MWIR-optimized photomechanical sensor chip. With this approach, we have achieved high-resolution operation of our MWIR HFI sensor at 1000 fps, which is unprecedented for an uncooled infrared sensor. We have field tested our MWIR HFI sensor for detecting all hostile fire events mentioned above at several test ranges under a wide range of environmental conditions. The field testing results will be presented.

  12. Application Of CO2 Lasers To High Speed Blanking

    Science.gov (United States)

    Grenier, L. E.

    1986-11-01

    While laser cutting of sheetmetal has attained wide acceptance in the automotive industry for the purposes of prototyping and very limited preproduction work, the production rates possible with currently available systems have precluded the use of this technique in a production environment. The device design to be described embodies a high speed X-Y positioner carrying a cutting head with limited Z-axis capability. This approach confers two main benefits, first, production rate is limited only by laser power, since the positioner technology selected will permit movement at rates up to 1.5 m/s (60 in/s), second, the use of a high speed non-contact surface follower to control the Z-axis movement reduces the need to clamp the workpiece rigidly to a precision reference surface. The realized reduction of the clamping requirement permits some latitude in the feed methods that can be employed, allowing the use of coil or sheet feeding as appropriate. The author will provide estimated production rates for the proposed design and demonstrate that a suitable choice of laser source and material feed will permit the production of parts at a rate and cost comparable to conventional blanking with the advantage of much greater flexibility and reduced retooling time.

  13. Recent Developments In High Speed Lens Design At The NPRL

    Science.gov (United States)

    Mcdowell, M. W.; Klee, H. W.

    1987-09-01

    Although the lens provides the link between the high speed camera and the outside world, there has over the years been little evidence of co-operation between the optical design and high speed photography communities. It is still only too common for a manufacturer to develop a camera of improved performance and resolution and then to combine this with a standard camera lens. These lenses were often designed for a completely different recording medium and, more often than not, their use results in avoidable degradation of the overall system performance. There is a tendency to assume that a specialized lens would be too expensive and that pushing the aperture automatically implies more complex optical systems. In the present paper some recent South African developments in the design of large aperture lenses are described. The application of a new design principle, based on the work earlier this century of Bernhard Schmidt, shows that ultra-fast lenses need not be overly complex and a basic four-element lens configuration can be adapted to a wide variety of applications.

  14. Design of a high-speed electrochemical scanning tunneling microscope.

    Science.gov (United States)

    Yanson, Y I; Schenkel, F; Rost, M J

    2013-02-01

    In this paper, we present a bottom-up approach to designing and constructing a high-speed electrochemical scanning tunneling microscope (EC-STM). Using finite element analysis (FEA) calculations of the frequency response of the whole mechanical loop of the STM, we analyzed several geometries to find the most stable one that could facilitate fast scanning. To test the FEA results, we conducted measurements of the vibration amplitudes using a prototype STM setup. Based on the FEA analysis and the measurement results, we identified the potentially most disturbing vibration modes that could impair fast scanning. By modifying the design of some parts of the EC-STM, we reduced the amplitudes as well as increased the resonance frequencies of these modes. Additionally, we designed and constructed an electrochemical flow-cell that allows STM imaging in a flowing electrolyte, and built a bi-potentiostat to achieve electrochemical potential control during the measurements. Finally, we present STM images acquired during high-speed imaging in air as well as in an electrochemical environment using our newly-developed EC-STM.

  15. High-speed VCSEL-based optical interconnects

    Science.gov (United States)

    Ishak, Waguih S.

    2001-11-01

    Vertical Cavity Surface Emitting Lasers (VCSEL) have made significant inroads into commercial realization especially in the area of data communications. Single VCSEL devices are key components in Gb Ethernet Transceivers. A multi-element VCSEL array is the key enabling technology for high-speed multi Gb/s parallel optical interconnect modules. In 1996, several companies introduced a new generation of fiber optic products based VCSEL technology such as multimode fiber transceivers for the ANSI Fiber Channel and Gigabit Ethernet IEEE 802.3 standards. VCSELs offer unique advantages over its edge-emitting counterparts in several areas. These include low-cost (LED-like) manufacturability, low current operation and array integrability. As data rates continue to increase, VCSELs offer the advantage of being able to provide the highest modulation bandwidth per milliamp of modulation current. Currently, most of the VCSEL-based products use short (780 - 980 nm) wavelength lasers. However, significant research efforts are taking place at universities and industrial research labs around the world to develop reliable, manufacturable and high-power long (1300 - 1550 nm) wavelength VCSELs. These lasers will allow longer (several km) transmission distances and will help alleviate some of the eye-safety issues. Perhaps, the most important advantage of VCSELs is the ability to form two-dimensional arrays much easier than in the case of edge-emitting lasers. These arrays (single and two-dimensional) will allow a whole new family of applications, specifically in very high-speed computer and switch interconnects.

  16. Large area high-speed metrology SPM system

    International Nuclear Information System (INIS)

    Klapetek, P; Valtr, M; Martinek, J; Picco, L; Payton, O D; Miles, M; Yacoot, A

    2015-01-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm 2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope. (paper)

  17. Large area high-speed metrology SPM system

    Science.gov (United States)

    Klapetek, P.; Valtr, M.; Picco, L.; Payton, O. D.; Martinek, J.; Yacoot, A.; Miles, M.

    2015-02-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.

  18. High speed auto-charging system for condenser bank

    International Nuclear Information System (INIS)

    Mizuno, Yasunori; Bito, Fumio; Fujita, Kazuhiko; Sometani, Taro

    1987-01-01

    A current-control type high-speed charging system, which is intended for auto-charging of the condenser bank, is developed. Moreover, the system can also serve to compensate the current leakage from the condenser bank so that the charged voltage can be kept constant. The system consists of a sequence circuit, a charging current control circuit (or auto-charging circuit) and a charging circuit. The auto-charging circuit is characterized by the use of a triac to control the current. The current, controlled by the circuit, is supplied to the condenser bank through a step-up transformer and voltage doubler rectifier circuit. It is demonstrated that the use of the high-speed auto-charging circuit can largely decrease the required charging time, compared to constant voltage charging. In addition, the compensation function is shown to serve effectively for maintaining a constant voltage after the completion of charging. The required charging time is decreases as the charging current increases. The maximum charging current is decided by the rating of the traic and the current rating of the rectifier diode in the secondary circuit. Major components of these circuits have decreased impedances to minimize the effect of noise, so that the possibility of an accident can be eliminated. Other various improvements are made in the grounding circuit and the charging protection circuit in order to ensure safety. (Nogami, K.)

  19. High speed TV-towing system for exploration manganese nodules

    International Nuclear Information System (INIS)

    Hartmann, P.

    1977-12-01

    For the oceanographic, special for the manganese nodules exploration in the deep sea a high speed-TV-towing system is to design on base of existing TV-towing systems to get better efficiency during the exploration phase. It is planned to increase to towing speed at the time of 2 knots up to 6-8 knots. The essential points of developments in this direction are 1) to decrease the hydrodynamical drag of the long towing cable with fairings. 2) To seperate to towing system into two units the passiv controlled towing cable end point 'SEP' with negativ buoyancy (weight) and the activ controlled TV-fish. With this separation it is possible to tow the TV-fish within a defined accuracy parallel to the sea floor without an influence to the overall system. 3) To adapt the TV- and photo stobe light unit for these towing conditions (high speed). 4) To design the control concept, the operating equipment, the energy and data transmission system, the towed body concept, the hydrodynamical calculation of towing phase and the other towed components. The results of this study is the definition of a two body towing system which is able towed by a research vessel to make continously TV-observation of the sea floor in depth down to 6,000 meters. (orig.) [de

  20. Automated high speed volume computed tomography for inline quality control

    International Nuclear Information System (INIS)

    Hanke, R.; Kugel, A.; Troup, P.

    2004-01-01

    Increasing complexity of innovative products as well as growing requirements on quality and reliability call for more detailed knowledge about internal structures of manufactured components rather by 100 % inspection than just by sampling test. A first-step solution, like radioscopic inline inspection machines, equipped with automated data evaluation software, have become state of the art in the production floor during the last years. However, these machines provide just ordinary two-dimensional information and deliver no volume data e.g. to evaluate exact position or shape of detected defects. One way to solve this problem is the application of X-ray computed tomography (CT). Compared to the performance of the first generation medical scanners (scanning times of many hours), today, modern Volume CT machines for industrial applications need about 5 minutes for a full object scan depending on the object size. Of course, this is still too long to introduce this powerful method into the inline production quality control. In order to gain acceptance, the scanning time including subsequent data evaluation must be decreased significantly and adapted to the manufacturing cycle times. This presentation demonstrates the new technical set up, reconstruction results and the methods for high-speed volume data evaluation of a new fully automated high-speed CT scanner with cycle times below one minute for an object size of less than 15 cm. This will directly create new opportunities in design and construction of more complex objects. (author)

  1. High speed digital holographic interferometry for hypersonic flow visualization

    Science.gov (United States)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  2. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    Directory of Open Access Journals (Sweden)

    Itay Remer

    2016-09-01

    Full Text Available We demonstrate a high-speed stimulated Brillouin scattering (SBS spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (∼25 dB in water samples and ∼15 dB in tissue phantoms. These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  3. Application of polarization in high speed, high contrast inspection

    Science.gov (United States)

    Novak, Matthew J.

    2017-08-01

    Industrial optical inspection often requires high speed and high throughput of materials. Engineers use a variety of techniques to handle these inspection needs. Some examples include line scan cameras, high speed multi-spectral and laser-based systems. High-volume manufacturing presents different challenges for inspection engineers. For example, manufacturers produce some components in quantities of millions per month, per week or even per day. Quality control of so many parts requires creativity to achieve the measurement needs. At times, traditional vision systems lack the contrast to provide the data required. In this paper, we show how dynamic polarization imaging captures high contrast images. These images are useful for engineers to perform inspection tasks in some cases where optical contrast is low. We will cover basic theory of polarization. We show how to exploit polarization as a contrast enhancement technique. We also show results of modeling for a polarization inspection application. Specifically, we explore polarization techniques for inspection of adhesives on glass.

  4. Profile parameters of wheelset detection for high speed freight train

    Science.gov (United States)

    Yang, Kai; Ma, Li; Gao, Xiaorong; Wang, Li

    2012-04-01

    Because of freight train, in China, transports goods on railway freight line throughout the country, it does not depart from or return to engine shed during a long phase, thus we cannot monitor the quality of wheel set effectively. This paper provides a system which uses leaser and high speed camera, applies no-contact light section technology to get precise wheel set profile parameters. The paper employs clamping-track method to avoid complex railway ballast modification project. And detailed descript an improved image-tracking algorithm to extract central line from profile curve. For getting one pixel width and continuous line of the profile curve, uses local gray maximum points as direction control points to direct tracking direction. The results based on practical experiment show the system adapted to detection environment of high speed and high vibration, and it can effectively detect the wheelset geometric parameters with high accuracy. The system fills the gaps in wheel set detection for freight train in main line and has an enlightening function on monitoring the quality of wheel set.

  5. Innovative technology summary report: High-speed clamshell pipe cutter

    International Nuclear Information System (INIS)

    1998-09-01

    The Hanford Site C Reactor Technology Demonstration Group demonstrated the High-Speed Clamshell Pipe Cutter technology, developed and marketed by Tri Tool Inc. (Rancho Cordova, California). The models demonstrated are portable, split-frame pipe lathes that require minimal radial and axial clearances for severing and/or beveling in-line pipe with ranges of 25 cm to 41 cm and 46 cm to 61 cm nominal diameter. The radial clearance requirement from the walls, floors, or adjacent pipes is 18 cm. The lathes were supplied with carbide insert conversion kits for the cutting bits for the high-speed technique that was demonstrated. Given site-specific factors, this demonstration showed the cost of the improved technology to be approximately 30% higher than the traditional (baseline) technology (oxyacetylene torch) cost of $14,400 for 10 cuts of contaminated 41-cm and 61-cm-diameter pipe at C Reactor. Actual cutting times were faster than the baseline technology; however, moving/staging the equipment took longer. Unlike the baseline torch, clamshell lathes do not involve applied heat, flames, or smoke and can be operated remotely, thereby helping personal exposures to be as low as reasonably achievable. The baseline technology was demonstrated at the C Reactor north and south water pipe tunnels August 19--22, 1997. The improved technology was demonstrated in the gas pipe tunnel December 15--19

  6. Technology of high-speed combined machining with brush electrode

    Science.gov (United States)

    Kirillov, O. N.; Smolentsev, V. P.; Yukhnevich, S. S.

    2018-03-01

    The new method was proposed for high-precision dimensional machining with a brush electrode when the true position of bundles of metal wire is adjusted by means of creating controlled centrifugal forces appeared due to the increased frequency of rotation of a tool. There are the ultimate values of circumferential velocity at which the bundles are pressed against a machined area of a workpiece in a stable manner despite the profile of the machined surface and variable stock of the workpiece. The special aspects of design of processing procedures for finishing standard parts, including components of products with low rigidity, are disclosed. The methodology of calculation and selection of processing modes which allow one to produce high-precision details and to provide corresponding surface roughness required to perform finishing operations (including the preparation of a surface for metal deposition) is presented. The production experience concerned with the use of high-speed combined machining with an unshaped tool electrode in knowledge-intensive branches of the machine-building industry for different types of production is analyzed. It is shown that the implementation of high-speed dimensional machining with an unshaped brush electrode allows one to expand the field of use of the considered process due to the application of a multipurpose tool in the form of a metal brush, as well as to obtain stable results of finishing and to provide the opportunities for long-term operation of the equipment without its changeover and readjustment.

  7. System Design of a Cheetah Robot Toward Ultra-high Speed

    Directory of Open Access Journals (Sweden)

    Mantian Li

    2014-05-01

    Full Text Available High-speed legged locomotion pushes the limits of the most challenging problems of design and development of the mechanism, also the control and the perception method. The cheetah is an existence proof of concept of what we imitate for high-speed running, and provides us lots of inspiration on design. In this paper, a new model of a cheetah-like robot is developed using anatomical analysis and design. Inspired by a biological neural mechanism, we propose a novel control method for controlling the muscles' flexion and extension, and simulations demonstrate good biological properties and leg's trajectory. Next, a cheetah robot prototype is designed and assembled with pneumatic muscles, a musculoskeletal structure, an antagonistic muscle arrangement and a J-type cushioning foot. Finally, experiments of the robot legs swing and kick ground tests demonstrate its natural manner and validate the design of the robot. In the future, we will test the bounding behaviour of a real legged system.

  8. A structural modification of the two dimensional fuel behaviour analysis code FEMAXI-III with high-speed vectorized operation

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Ishiguro, Misako; Yamazaki, Takashi; Tokunaga, Yasuo.

    1985-02-01

    Though the two-dimensional fuel behaviour analysis code FEMAXI-III has been developed by JAERI in form of optimized scalar computer code, the call for more efficient code usage generally arized from the recent trends like high burn-up and load follow operation asks the code into further modification stage. A principal aim of the modification is to transform the already implemented scalar type subroutines into vectorized forms to make the programme structure efficiently run on high-speed vector computers. The effort of such structural modification has been finished on a fair way to success. The benchmarking two tests subsequently performed to examine the effect of the modification led us the following concluding remarks: (1) In the first benchmark test, comparatively high-burned three fuel rods that have been irradiated in HBWR, BWR, and PWR condition are prepared. With respect to all cases, a net computing time consumed in the vectorized FEMAXI is approximately 50 % less than that consumed in the original one. (2) In the second benchmark test, a total of 26 PWR fuel rods that have been irradiated in the burn-up ranges of 13-30 MWd/kgU and subsequently power ramped in R2 reactor, Sweden is prepared. In this case the code is purposed to be used for making an envelop of PCI-failure threshold through 26 times code runs. Before coming to the same conclusion, the vectorized FEMAXI-III consumed a net computing time 18 min., while the original FEMAXI-III consumed a computing time 36 min. respectively. (3) The effects obtained from such structural modification are found to be significantly attributed to saving a net computing time in a mechanical calculation in the vectorized FEMAXI-III code. (author)

  9. High-speed radiation dose calculations for severe accidents using INDOS

    International Nuclear Information System (INIS)

    Davidson, G.R.; Godin-Jacqmin, L.J.; Raines, J.C.

    1992-01-01

    The computer code INDOS (in-plant dose) has been developed for the high-speed calculation of in-plant radiation dose rates and doses during and/or due to a severe accident at a nuclear power plant. This paper describes the current capabilities of the code and presents the results of calculations for several severe-accident scenarios. The INDOS code can be run either as a module of MAAP, a code widely used in the nuclear industry for simulating the response of a light water reactor system during severe accidents, or as a stand-alone code using output from an alternative companion code. INDOS calculates gamma dose rates and doses in major plant compartments caused by airborne and deposited fission products released during an accident. The fission product concentrations are determined by the companion code

  10. State control of translational movement in high-speed Maglev transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Schnieder, E

    1981-01-01

    The combination of state control with cascade control satisfies all demands made on train movements in a high-speed Maglev transportation system. The inner control loop compensates nonlinearities and disturbances and limits the acceleration. The dynamics of the control loop are determined by the riding characteristics. The superposed speed state control provides for running without overshoot within permissible limits. In order to reach a target point in the shortest possible time, the control signal for initiating the retardation is issued as late as possible and the speed is output as a function of position. The subsequent structure changeover to a position state control causes the train to come to a smooth halt at its destination in an almost optimal time.

  11. A high-speed CAMAC data acquisition system for PDP-11

    International Nuclear Information System (INIS)

    Berg, D.M.; Heinicke, P.; Quigg, L.

    1985-01-01

    This paper describes a high-speed data acquisition system for a PDP-11 running under the RSX-11M operating system. It has been used by several high-energy physics experiments at Fermilab. The system consists of several coordinated tasks which acquire data through a CAMAC interface, log data to magnetic tape, supply data to independent monitoring and analysis tasks (such as RSXMULTI), and perform control functions. A data buffer extending beyond the 18-bit address space of the PDP-11 is implemented using Konelar bank-switchable memory. Supported configurations range from small systems with single data acquisition and analysis tasks on the same processor, to large multi-processor systems with data acquisition on several PDPs and analysis on separate PDPs or VAXs

  12. Operational experience with a high speed video data acquisition system in Fermilab experiment E-687

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.; Knickerbocker, K.L.; Baumbaugh, B.; Ruchti, R.

    1987-01-01

    Operation of a high speed, triggerable, Video Data Acquisition System (VDAS) including a hardware data compactor and a 16 megabyte First-In-First-Out buffer memory (FIFO) will be discussed. Active target imaging techniques for High Energy Physics are described and preliminary experimental data is reported.. The hardware architecture for the imaging system and experiment will be discussed as well as other applications for the imaging system. Data rates for the compactor is over 30 megabytes/sec and the FIFO has been run at 100 megabytes/sec. The system can be operated at standard video rates or at any rate up to 30 million pixels/second. 7 refs., 3 figs

  13. Observer Based Traction/Braking Control Design for High Speed Trains Considering Adhesion Nonlinearity

    Directory of Open Access Journals (Sweden)

    Wenchuan Cai

    2014-01-01

    Full Text Available Train traction/braking control, one of the key enabling technologies for automatic train operation, literally takes its action through adhesion force. However, adhesion coefficient of high speed train (HST is uncertain in general because it varies with wheel-rail surface condition and running speed; thus, it is extremely difficult to be measured, which makes traction/braking control design and implementation of HSTs greatly challenging. In this work, force observers are applied to estimate the adhesion force or/and the resistance, based on which simple traction/braking control schemes are established under the consideration of actual wheel-rail adhesion condition. It is shown that the proposed controllers have simple structure and can be easily implemented from real applications. Numerical simulation also validates the effectiveness of the proposed control scheme.

  14. A New Vibration Absorber Design for Under-Chassis Device of a High-Speed Train

    Directory of Open Access Journals (Sweden)

    Yu Sun

    2017-01-01

    Full Text Available To realize the separation of vertical and lateral stiffness of the under-chassis device, a new type of vibration absorber is designed by using the negative stiffness of the disc spring in parallel with the rubber component. To solve its transmission characteristics, harmonic transfer method was used. A rigid-flexible coupling multibody dynamic model of a high-speed train with an elastic car body is established, and the vertical and lateral optimal stiffness of the under-chassis device are calculated. The Sperling index and acceleration PSD of the vehicle with the new vibration absorber and the vehicle with traditional rubber absorber are compared and analyzed. The results show that, with the new vibration absorber, vehicle’s running stability and vibration of the car body are more effective than the vehicle with the traditional rubber absorber.

  15. Improving the Efficiency of a High Speed Catamaran Through the Replacement of the Propulsion System

    Directory of Open Access Journals (Sweden)

    German de Melo Rodriguez

    2015-12-01

    Full Text Available The high speed vessels are primarily designed for short distances services as public transport of passengers and vehicles. The range of high speed, according to the Code of high-speed vessels begins at 20 knots, which depends on the cruise speed you desire for your vessel; you will have to use the most appropriate type of propellant. In general, in the past 20 years, they have been building high-speed vessels with speeds above 33 knots, which meant installing water jet propellants coupled to powerful engines and therefore of high consumption of fuel, increasing operating costs and causing increased air pollution. Although the prices of fuel have been reduced to half, due to the sharp fall in oil prices, the consumption of fuel and the air pollution remains high at these speeds and powers used, in addition to that the reduction of the time spent on each trip is not excessive, mainly in short routes that are less than an hour . This article is about adapting a ship of high-speed service, with a maximum speed in tests of 34 knots and to reduce its operating costs (fuel, maintenance, etc. and make it economically viable; before the transformation, this vessel was operating with a service speed of 22 knots, and with a consumption per mile of 135 litters of MGO. The transformation process has consisted by: – Replacement of the two original water jet with four shaft lines with fix pitch propeller. – Replacement of the two original main engines (2 x 6500 kW = 13000 kW by four engines (4 x 1380kW = 5.520 kW. – Changing the underwater hull shape to fit the new propellers and maximize its efficiency. – Relocation of auxiliary engines, to achieve the most efficient trim. – Installation of two lateral propellers to improve maneuverability and shorten the total time of journey. After the reform and the return to service of the vessel with a service speed of over 22 knots, it has been verified that the consumption per mile is of 45 litters MGO

  16. High speed turning of compacted graphite iron using controlled modulation

    Science.gov (United States)

    Stalbaum, Tyler Paul

    Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging

  17. Observation of the dynamic movement of fragmentations by high-speed camera and high-speed video

    Science.gov (United States)

    Suk, Chul-Gi; Ogata, Yuji; Wada, Yuji; Katsuyama, Kunihisa

    1995-05-01

    The experiments of blastings using mortal concrete blocks and model concrete columns were carried out in order to obtain technical information on fragmentation caused by the blasting demolition. The dimensions of mortal concrete blocks were 1,000 X 1,000 X 1,000 mm. Six kinds of experimental blastings were carried out using mortal concrete blocks. In these experiments precision detonators and No. 6 electric detonators with 10 cm detonating fuse were used and discussed the control of fragmentation. As the results of experiment it was clear that the flying distance of fragmentation can be controlled using a precise blasting system. The reinforced concrete model columns for typical apartment houses in Japan were applied to the experiments. The dimension of concrete test column was 800 X 800 X 2400 mm and buried 400 mm in the ground. The specified design strength of the concrete was 210 kgf/cm2. These columns were exploded by the blasting with internal loading of dynamite. The fragmentation were observed by two kinds of high speed camera with 500 and 2000 FPS and a high speed video with 400 FPS. As one of the results in the experiments, the velocity of fragmentation, blasted 330 g of explosive with the minimum resisting length of 0.32 m, was measured as much as about 40 m/s.

  18. Running the running

    OpenAIRE

    Cabass, Giovanni; Di Valentino, Eleonora; Melchiorri, Alessandro; Pajer, Enrico; Silk, Joseph

    2016-01-01

    We use the recent observations of Cosmic Microwave Background temperature and polarization anisotropies provided by the Planck satellite experiment to place constraints on the running $\\alpha_\\mathrm{s} = \\mathrm{d}n_{\\mathrm{s}} / \\mathrm{d}\\log k$ and the running of the running $\\beta_{\\mathrm{s}} = \\mathrm{d}\\alpha_{\\mathrm{s}} / \\mathrm{d}\\log k$ of the spectral index $n_{\\mathrm{s}}$ of primordial scalar fluctuations. We find $\\alpha_\\mathrm{s}=0.011\\pm0.010$ and $\\beta_\\mathrm{s}=0.027\\...

  19. Dynamic response of high speed centrifuge for reprocessing plant

    International Nuclear Information System (INIS)

    Rajput, Gaurav; Satish Kumar, V.; Selvaraj, T.; Ananda Rao, S.M.; Ravisankar, A.

    2012-01-01

    The standard for balancing the rotating bowl describes only the details about the selection of balance quality grade and the permissible residual unbalance for different operating speeds. This paper presents the effects of unbalance on the rotating bowl of high speed centrifuge used in reprocessing of spent nuclear fuel. In this study, the residual unbalance is evaluated for different recommended balancing grades in accordance with the ISO 1940. This unbalance mass generates dynamic force which acts on the rotor. The dynamic response of the rotor like displacements and stresses under this dynamic force are studied by numerical simulation. Finally, the effect of residual unbalance on the rotating bowl performance for different balancing grades is discussed. The experimental measurements are also carried out for the case of G 1.0 grade balanced rotating bowl to validate the resonance frequency as well as vibration amplitudes. (author)

  20. Towards high-speed autonomous navigation of unknown environments

    Science.gov (United States)

    Richter, Charles; Roy, Nicholas

    2015-05-01

    In this paper, we summarize recent research enabling high-speed navigation in unknown environments for dynamic robots that perceive the world through onboard sensors. Many existing solutions to this problem guarantee safety by making the conservative assumption that any unknown portion of the map may contain an obstacle, and therefore constrain planned motions to lie entirely within known free space. In this work, we observe that safety constraints may significantly limit performance and that faster navigation is possible if the planner reasons about collision with unobserved obstacles probabilistically. Our overall approach is to use machine learning to approximate the expected costs of collision using the current state of the map and the planned trajectory. Our contribution is to demonstrate fast but safe planning using a learned function to predict future collision probabilities.

  1. High-speed instrumentation complex for car crash testing

    Science.gov (United States)

    Baranov, S. V.; Gorin, I. M.; Drozhbin, Yu. A.; Kuznetsov, A. A.; Ponomaryov, A. M.; Semyonov, V. B.; Udalov, V. V.

    1993-01-01

    One of the most important car checking problems consists in safety testing which includes trials for different types of collision, e.g., frontal and lateral. This allows us to study deformations of the automobile and its parts during the impact. To obtain reliable data on overloading, acceleration, deformation, force load on the car's body as well as on the anthropomorphic dummies inside it, use is made of rather a great number of different techniques. Highly informative among them is high-speed cine recording which allows us to register variations that occur during a fraction of a second, and then to reproduce with variable rate the frame images obtained. This makes it possible to study the impact parameters variations much more accurately.

  2. High speed radiometric measurements of IED detonation fireballs

    Science.gov (United States)

    Spidell, Matthew T.; Gordon, J. Motos; Pitz, Jeremey; Gross, Kevin C.; Perram, Glen P.

    2010-04-01

    Continuum emission is predominant in fireball spectral phenomena and in some demonstrated cases, fine detail in the temporal evolution of infrared spectral emissions can be used to estimate size and chemical composition of the device. Recent work indicates that a few narrow radiometric bands may reveal forensic information needed for the explosive discrimination and classification problem, representing an essential step in moving from "laboratory" measurements to a rugged, fieldable system. To explore phenomena not observable in previous experiments, a high speed (10μs resolution) radiometer with four channels spanning the infrared spectrum observed the detonation of nine home made explosive (HME) devices in the 0.98) using blast model functional forms, suggesting that energy release could be estimated from single-pixel radiometric detectors. Comparison of radiometer-derived fireball size with FLIR infrared imagery indicate the Planckian intensity size estimates are about a factor of two smaller than the physical extent of the fireball.

  3. Electron curing for high speed paper, film and foil converting

    International Nuclear Information System (INIS)

    Nablo, S.V.; Tripp, E.P.

    1979-01-01

    The status of self-shielded, compact electron processors for flexible web converting applications is reviewed. The uses of these units for a variety of laminating applications are described, with emphasis on the application techniques appropriate for low weight, (1 to 2 gm/m 2 ) 100% convertible adhesives. Performance data for electron cured adhesives with polyester/polyethylene systems is presented and compared with conventional urethane systems. The unique surface features of electron cured gravure coatings applied and cured at high speed are discussed, with reference to both paper and film substrates. An important advantage of electron curing of buried adhesive layers is the process quality control permitted by this 'all-electric' system. The performance characteristics of curing atmosphere control (inerting) for coatings are reviewed. Industrial experience with these processors has shown that effective inerting of coated flexible webs at speeds to 250 m/minute is both practical and economical. (author)

  4. Large capacity, high-speed multiparameter multichannel analysis system

    International Nuclear Information System (INIS)

    Hendricks, R.W.; Seeger, P.A.; Scheer, J.W.; Suehiro, S.

    1980-01-01

    A data acquisition system for recording multiparameter digital data into a large memory array at over 2.5 MHz is described. The system consists of a MOSTEK MK8600 2048K x 24-bit memory system, I/O ports to various external devices including the CAMAC dataway, a memory incrementer/adder and a daisy-chain of experiment-specific modules which calculate the memory address which is to be incremented. The design of the daisy-chain permits multiple modules and provides for easy modification as experimental needs change. The system has been designed for use in multiparameter, multichannel analysis of high-speed data gathered by position-sensitive detectors at conventional and synchrotron x-ray sources as well as for fixed energy and time-of-flight diffraction at continuous and pulsed neutron sources

  5. Development of Simulator for High-Speed Elevator System

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hyung Min; Kim, Sung Jun; Sul, Seung Ki; Seok, Ki Riong [Seoul National University, Seoul(Korea); Kwon, Tae Seok [Hanyang University, Seoul(Korea); Kim, Ki Su [Konkuk University, Seoul(Korea); Shim, Young Seok [Inha University, incheon(Korea)

    2002-02-01

    This paper describes the dynamic load simulator for high-speed elevator system, which can emulate 3-mass system as well as equivalent 1-mass system 1-mass system. In order to implement the equivalent inertia of entire elevator system, the conventional simulators have generally utilized the mechanical inertia(flywheel) with large radius, which makes the entire system large and heavy. In addition, the mechanical inertia should be replaced each time in order to test another elevator system. In this paper, the dynamic load simulation methods using electrical inertia are presented so that the volume and weight of simulator system are greatly reduced and the adjustment of inertia value can be achieved easily by software. Experimental results show the feasibility of this simulator system. (author). 5 refs., 7 figs., 2 tabs.

  6. Compact system for high-speed velocimetry using heterodyne techniques

    International Nuclear Information System (INIS)

    Strand, O. T.; Goosman, D. R.; Martinez, C.; Whitworth, T. L.; Kuhlow, W. W.

    2006-01-01

    We have built a high-speed velocimeter that has proven to be compact, simple to operate, and fairly inexpensive. This diagnostic is assembled using off-the-shelf components developed for the telecommunications industry. The main components are fiber lasers, high-bandwidth high-sample-rate digitizers, and fiber optic circulators. The laser is a 2 W cw fiber laser operating at 1550 nm. The digitizers have 8 GHz bandwidth and can digitize four channels simultaneously at 20 GS/s. The maximum velocity of this system is ∼5000 m/s and is limited by the bandwidth of the electrical components. For most applications, the recorded beat frequency is analyzed using Fourier transform methods, which determine the time response of the final velocity time history. Using the Fourier transform method of analysis allows multiple velocities to be observed simultaneously. We have obtained high-quality data on many experiments such as explosively driven surfaces and gas gun assemblies

  7. High-speed digital holographic interferometry for vibration measurement

    International Nuclear Information System (INIS)

    Pedrini, Giancarlo; Osten, Wolfgang; Gusev, Mikhail E.

    2006-01-01

    A system based on digital holographic interferometry for the measurement of vibrations is presented. A high-power continuous laser(10 W) and a high-speed CCD camera are used. Hundreds of holograms of an object that has been subjected to dynamic deformation are recorded. The acquisition speed and the time of exposure of the detector are determined by the vibration frequency. Two methods are presented for triggering the camera in order to acquire at a given phase of the vibration. The phase of the wavefront is calculated from the recorded holograms by use of a two-dimensional digital Fourier-transform method. The deformation of the object is obtained from the phase. By combination of the deformations recorded at different times it is possible to reconstruct the vibration of the object

  8. High-speed rotary atherectomy under fluoroscopic and angioscopic guidance

    International Nuclear Information System (INIS)

    Deutsch, L.S.; Ahn, S.S.; Yeatman, L.A.; Marcus, D.R.; Auth, D.P.; Moore, W.S.

    1988-01-01

    This paper describes thirteen stenotic arteries treated by high-speed rotary abrasive burr atherectomy performed in the operating room under fluoroscopic-angioscopic control by a multidisciplinary team consisting of a vascular surgeon, an interventional radiologist, and an interventional cardiologist. Incrementally sized atherectomy burrs were used in each patient (1.75-4.0 mm in diameter). Rotary artherectomy was successful in 11 of 13 arteries ranging from 1 to 40 cm (median, 5 cm) with stenoses ranging from 50% to 99% (median, 90%), which improved to less than 30% in all 11 successfully atherectomized segments. Two early posttreatment failures (intimal dissection, burr shaft disruption), two posttreatment thromboses (unrelated to atherectomy), and two late failures (restenosis) occurred

  9. A hierarchy for modeling high speed propulsion systems

    Science.gov (United States)

    Hartley, Tom T.; Deabreu, Alex

    1991-01-01

    General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery such as inlets, ramjets, and scramjets. The discussion is separated into four sections: (1) computational fluid dynamics model for the entire nonlinear system or high order nonlinear models; (2) high order linearized model derived from fundamental physics; (3) low order linear models obtained from other high order models; and (4) low order nonlinear models. Included are special considerations on any relevant control system designs. The methods discussed are for the quasi-one dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, moving normal shocks, hammershocks, subsonic combustion via heat addition, temperature dependent gases, detonation, and thermal choking.

  10. High speed cutting of AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Liwei Lu

    2016-06-01

    Full Text Available Using LBR-370 numerical control lathe, high speed cutting was applied to AZ31 magnesium alloy. The influence of cutting parameters on microstructure, surface roughness and machining hardening were investigated by using the methods of single factor and orthogonal experiment. The results show that the cutting parameters have an important effect on microstructure, surface roughness and machine hardening. The depth of stress layer, roughness and hardening present a declining tendency with the increase of the cutting speed and also increase with the augment of the cutting depth and feed rate. Moreover, we established a prediction model of the roughness, which has an important guidance on actual machining process of magnesium alloy.

  11. High-speed nonvolatile CMOS/MNOS RAM

    International Nuclear Information System (INIS)

    Derbenwick, G.F.; Dodson, W.D.; Sokel, R.J.

    1979-01-01

    A bulk silicon technology for a high-speed static CMOS/MNOS RAM has been developed. Radiation-hardened, high voltage CMOS circuits have been fabricated for the memory array driving circuits and the enhancement-mode p-channel MNOS memory transistors have been fabricated using a native tunneling oxide with a 45 nm CVD Si 3 N 4 insulator deposited at 750 0 C. Read cycle times less than 350 ns and write cycle times of 1 μs are projected for the final 1Kx1 design. The CMOS circuits provide adequate speed for the write and read cycles and minimize the standby power dissipation. Retention times well in excess of 30 min are projected

  12. Hydrodynamic characteristics of high speed settling clarifiers by radiotracer method

    International Nuclear Information System (INIS)

    Griffith Martinez, J.; Flores Juan, P.; Cuesta Borges, J.; Damera Martinez, A.; Ramos Espinosa, K. A

    2005-01-01

    Results achieved in the evaluation of two high-speed settling cane juice Clarifiers, one denominated ICINAZ The Express and the other one with Low Residence Time (BTR), both located at the sugar factory Orlando Gonzalez employing the well established radiotracer method (Tc-99m) are presented. Several trials performed at the two Clarifiers demonstrated that the one identified as BTR was capable to assimilate the whole flow capacity of the factory with adequate characteristic of the pattern flux and residence time in the environment of 1 hour. In the other side, ICINAZ The Express Clarifier could only work at relative low flow capacity of the factory with residence time closely to the two hours and achieving occasionally a pattern flux seriously affected by fluctuations in the milling process. The radiotracer method was able to detect certain differences between the two clear juice outlet of the BTR Clarifier, probably due some problems in the construction of this equipment

  13. Quiet High Speed Fan II (QHSF II): Final Report

    Science.gov (United States)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  14. Ultra-high-speed Optical Signal Processing using Silicon Photonics

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Jensen, Asger Sellerup

    with a photonic layer on top to interconnect them. For such systems, silicon is an attractive candidate enabling both electronic and photonic control. For some network scenarios, it may be beneficial to use optical on-chip packet switching, and for high data-density environments one may take advantage...... of the ultra-fast nonlinear response of silicon photonic waveguides. These chips offer ultra-broadband wavelength operation, ultra-high timing resolution and ultra-fast response, and when used appropriately offer energy-efficient switching. In this presentation we review some all-optical functionalities based...... on silicon photonics. In particular we use nano-engineered silicon waveguides (nanowires) [1] enabling efficient phasematched four-wave mixing (FWM), cross-phase modulation (XPM) or self-phase modulation (SPM) for ultra-high-speed optical signal processing of ultra-high bit rate serial data signals. We show...

  15. Machining Chatter Analysis for High Speed Milling Operations

    Science.gov (United States)

    Sekar, M.; Kantharaj, I.; Amit Siddhappa, Savale

    2017-10-01

    Chatter in high speed milling is characterized by time delay differential equations (DDE). Since closed form solution exists only for simple cases, the governing non-linear DDEs of chatter problems are solved by various numerical methods. Custom codes to solve DDEs are tedious to build, implement and not error free and robust. On the other hand, software packages provide solution to DDEs, however they are not straight forward to implement. In this paper an easy way to solve DDE of chatter in milling is proposed and implemented with MATLAB. Time domain solution permits the study and model of non-linear effects of chatter vibration with ease. Time domain results are presented for various stable and unstable conditions of cut and compared with stability lobe diagrams.

  16. Towards realising high-speed large-bandwidth quantum memory

    Institute of Scientific and Technical Information of China (English)

    SHI BaoSen; DING DongSheng

    2016-01-01

    Indispensable for quantum communication and quantum computation,quantum memory executes on demand storage and retrieval of quantum states such as those of a single photon,an entangled pair or squeezed states.Among the various forms of quantum memory,Raman quantum memory has advantages forits broadband and high-speed characteristics,which results in a huge potential for applications in quantum networks and quantum computation.However,realising Raman quantum memory with true single photons and photonic entanglementis challenging.In this review,after briefly introducing the main benchmarks in the development of quantum memory and describing the state of the art,we focus on our recent experimental progress inquantum memorystorage of quantum states using the Raman scheme.

  17. High speed manyframe optical methods for plasma diagnostics

    International Nuclear Information System (INIS)

    Erokhin, A.A.; Shikanov, A.S.; Sklizkov, G.V.; Zakharenkov, Yu.A.; Zorev, N.N.

    1979-01-01

    A complex of active optical plasma and strong ionized shock wave diagnostics is described. The complex consisted of a specially developed high speed manyframe systems of shadow, schlieren and interferometric photography. The comparison of results obtained by a simultaneous registration of investigated object by means of different optical methods allowed us to determine optimal employment range for the methods. The sensitivity, temporal and space resolution of each optical method under conditions of high probe radiation refraction are discussed. The application boundaries of these methods for ionized shock wave investigation were found to depend on the shock wave front width. The methods described were used for the study of laser-produced plasma phenomena, occuring in the experiments on powerful nine-channel laser installation ''Kalmar''. (author)

  18. Miniaturized High-Speed Modulated X-Ray Source

    Science.gov (United States)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  19. Role of cavitation in high-speed droplet impact problems

    Science.gov (United States)

    Kondo, Tomoki; Ando, Keita

    2014-11-01

    High-speed droplet impact is found in physical cleaning using liquid jets, but its mechanisms for particle removal from target surfaces are yet unclear. In this study, we explore the possibility of having cavitation inside the droplet. The pressure evolution within a droplet colliding with a flat surface of deformable materials is determined by multicomponent Euler equations. Dynamics of cavitation bubbles heterogeneously nucleated from preexisting nuclei are determined from Rayleigh-Plesset calculations according to the pressure evolution within the droplet in one-way-coupling manner. The simulation shows that cavitation indeed occurs due to tension that arises from the water hammer shock reflection at the droplet interface. The role of cavitation including pressure emission from its collapse is to be discussed based on the one-way-coupling computations.

  20. High speed infrared radiation thermometer, system, and method

    Science.gov (United States)

    Markham, James R.

    2002-01-01

    The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.

  1. Biocavity laser for high-speed cell and tumour biology

    International Nuclear Information System (INIS)

    Gourley, P L

    2003-01-01

    Through recent interdisciplinary scientific research, modern medicine has significantly advanced the diagnosis and treatment of disease. However, little progress has been made in reducing the death rate due to cancer, which remains the leading cause of death in much of the world. Pathologists rely on microscopic examination of cell morphology using methods that originated over a hundred years ago. These staining methods are labour-intensive, time-consuming, and sometimes in error. New micro-analytical methods for high speed (real-time) automated screening of tissues and cells could advance pathology and minimize cancer deaths. By teaming experts in physical/chemical sciences and engineering with those in medicine, it may be possible to develop micro-analytical cell spectral/imaging techniques to rapidly distinguish normal and abnormal cells. In this paper, we review the physics and applications of the biocavity laser which may enable these advances in the near future. (topical review)

  2. Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  3. Ultra-high-speed inversion recovery echo planar MR imaging

    International Nuclear Information System (INIS)

    Stehling, M.K.; Ordidge, R.J.; Coxon, R.; Chapman, B.; Houseman, A.M.; Guifoyle, D.; Blamire, A.; Gibbs, P.; Mansfield, P.

    1988-01-01

    Fast two-dimensional FT MR imaging techniques such as fast low-angle shot do not allow inversion recovery (IR). Rapid repetition of low-angle pulses is incompatible with a 180 0 inversion pulse. Echo planar imaging (EPI) can be applied in conjunction with IR, because after preparation of the spin system, a complete image is acquired. Data acquisition in less than 100 msec and real-time display allows interactive optimization of inversion time (4.0-9,000 msec) with little time penalty. The authors have applied IR EPI to the study of the brain, liver, and kidneys in normal volunteers and patients. Technical details are presented, and the applications of this first ultra-high-speed IR technique will be shown

  4. High-speed detection of DNA translocation in nanopipettes

    Science.gov (United States)

    Fraccari, Raquel L.; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim

    2016-03-01

    We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface. Electronic supplementary information (ESI) available: Gel electrophoresis confirming lengths and purity of DNA samples, comparison between Axopatch 200B and custom-built setup, comprehensive low-noise amplifier characterization, representative I-V curves of nanopipettes used, typical scatter plots of τ vs. peak amplitude for the four LDNA's used, table of most probable τ values, a comparison between different fitting models for the DNA translocation time distribution, further details on the stochastic numerical simulation of the scaling statistics and the derivation of the extended

  5. The development of high-speed 100 fps CCD camera

    International Nuclear Information System (INIS)

    Hoffberg, M.; Laird, R.; Lenkzsus, F.; Liu, C.; Rodricks, B.

    1997-01-01

    This paper describes the development of a high-speed CCD digital camera system. The system has been designed to use CCDs from various manufacturers with minimal modifications. The first camera built on this design utilizes a Thomson 512 x 512 pixel CCD as its sensor, which is read out from two parallel outputs at a speed of 15 MHz/pixel/output. The data undergo correlated double sampling after which it is digitized into 12 bits. The throughput of the system translates into 60 MB/second, which is either stored directly in a PC or transferred to a custom-designed VXI module. The PC data acquisition version of the camera can collect sustained data in real time that is limited to the memory installed in the PC. The VXI version of the camera, also controlled by a PC, stores 512 MB of real-time data before it must be read out to the PC disk storage. The uncooled CCD can be used either with lenses for visible light imaging or with a phosphor screen for X-ray imaging. This camera has been tested with a phosphor screen coupled to a fiber-optic face plate for high-resolution, high-speed X-ray imaging. The camera is controlled through a custom event-driven user-friendly Windows package. The pixel clock speed can be changed from 1 to 15 MHz. The noise was measured to be 1.05 bits at a 13.3 MHz pixel clock. This paper will describe the electronics, software, and characterizations that have been performed using both visible and X-ray photons. (orig.)

  6. Zefiro 380. The new very high speed train for China; Zefiro 380. Der neue Hochgeschwindigkeitszug fuer China

    Energy Technology Data Exchange (ETDEWEB)

    Hoefler, Werner; Niklass, Ralf [Bombardier Transportation GmbH, Hennigsdorf (Germany)

    2013-04-01

    The Bombardier Zefiro 380 comprehensively redefines very high speed (VHS) travel by harmonizing the often-conflicting demands of economy and ecology. In China's visionary development of a national very high speed rail system, the Zefiro 380 train plays a key role: 70 of these train sets were ordered by the Ministry of Railways in September 2009. The world's fastest series-production train is also the world's most eco-friendly and one of the most economical VHS trains. Bombardier's energy-saving EC04 technologies and an advanced aerodynamic design that benefits from Bombardier's aviation know-how ensure that the Zefiro 380 train runs with an unprecedented degree of energy efficiency.

  7. Droplet deposition measurement with high-speed camera and novel high-speed liquid film sensor with high spatial resolution

    International Nuclear Information System (INIS)

    Damsohn, M.; Prasser, H.-M.

    2011-01-01

    Highlights: → Development of a sensor for time- and space-resolved droplet deposition in annular flow. → Experimental measurement of droplet deposition in horizontal annular flow to compare readings of the sensor with images of a high-speed camera when droplets are depositing unto the liquid film. → Self-adaptive signal filter based on autoregression to separate droplet impacts in the sensor signal from waves of liquid films. - Abstract: A sensor based on the electrical conductance method is presented for the measurement of dynamic liquid films in two-phase flow. The so called liquid film sensor consists of a matrix with 64 x 16 measuring points, a spatial resolution of 3.12 mm and a time resolution of 10 kHz. Experiments in a horizontal co-current air-water film flow were conducted to test the capability of the sensor to detect droplet deposition from the gas core onto the liquid film. The experimental setup is equipped with the liquid film sensor and a high speed camera (HSC) recording the droplet deposition with a sampling rate of 10 kHz simultaneously. In some experiments the recognition of droplet deposition on the sensor is enhanced by marking the droplets with higher electrical conductivity. The comparison between the HSC and the sensor shows, that the sensor captures the droplet deposition above a certain droplet diameter. The impacts of droplet deposition can be filtered from the wavy structures respectively conductivity changes of the liquid film using a filter algorithm based on autoregression. The results will be used to locally measure droplet deposition e.g. in the proximity of spacers in a subchannel geometry.

  8. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... monorail systems operating primarily on dedicated rail (i.e., not used by freight trains) or guideway, in...

  9. New Architecture of Optical Interconnect for High-Speed Optical Computerized Data Networks (Nonlinear Response

    Directory of Open Access Journals (Sweden)

    El-Sayed A. El-Badawy

    2008-02-01

    Full Text Available Although research into the use of optics in computers has increased in the last and current decades, the fact remains that electronics is still superior to optics in almost every way. Research into the use of optics at this stage mirrors the research into electronics after the 2nd World War. The advantages of using fiber optics over wiring are the same as the argument for using optics over electronics in computers. Even through totally optical computers are now a reality, computers that combine both electronics and optics, electro-optic hybrids, have been in use for some time. In the present paper, architecture of optical interconnect is built up on the bases of four Vertical-Cavity Surface- Emitting Laser Diodes (VCSELD and two optical links where thermal effects of both the diodes and the links are included. Nonlinear relations are correlated to investigate the power-current and the voltage-current dependences of the four devices. The good performance (high speed of the interconnect is deeply and parametrically investigated under wide ranges of the affecting parameters. The high speed performance is processed through three different effects, namely the device 3-dB bandwidth, the link dispersion characteristics, and the transmitted bit rate (soliton. Eight combinations are investigated; each possesses its own characteristics. The best architecture is the one composed of VCSELD that operates at 850 nm and the silica fiber whatever the operating set of causes. This combination possesses the largest device 3-dB bandwidth, the largest link bandwidth and the largest soliton transmitted bit rate. The increase of the ambient temperature reduces the high-speed performance of the interconnect

  10. High speed friction microscopy and nanoscale friction coefficient mapping

    International Nuclear Information System (INIS)

    Bosse, James L; Lee, Sungjun; Huey, Bryan D; Andersen, Andreas Sø; Sutherland, Duncan S

    2014-01-01

    As mechanical devices in the nano/micro length scale are increasingly employed, it is crucial to understand nanoscale friction and wear especially at technically relevant sliding velocities. Accordingly, a novel technique has been developed for friction coefficient mapping (FCM), leveraging recent advances in high speed AFM. The technique efficiently acquires friction versus force curves based on a sequence of images at a single location, each with incrementally lower loads. As a result, true maps of the coefficient of friction can be uniquely calculated for heterogeneous surfaces. These parameters are determined at a scan velocity as fast as 2 mm s −1 for microfabricated SiO 2 mesas and Au coated pits, yielding results that are identical to traditional speed measurements despite being ∼1000 times faster. To demonstrate the upper limit of sliding velocity for the custom setup, the friction properties of mica are reported from 200 µm s −1 up to 2 cm s −1 . While FCM is applicable to any AFM and scanning speed, quantitative nanotribology investigations of heterogeneous sliding or rolling components are therefore uniquely possible, even at realistic velocities for devices such as MEMS, biological implants, or data storage systems. (paper)

  11. An approach to high speed ship ride quality simulation

    Science.gov (United States)

    Malone, W. L.; Vickery, J. M.

    1975-01-01

    The high speeds attained by certain advanced surface ships result in a spectrum of motion which is higher in frequency than that of conventional ships. This fact along with the inclusion of advanced ride control features in the design of these ships resulted in an increased awareness of the need for ride criteria. Such criteria can be developed using data from actual ship operations in varied sea states or from clinical laboratory experiments. A third approach is to simulate ship conditions using measured or calculated ship motion data. Recent simulations have used data derived from a math model of Surface Effect Ship (SES) motion. The model in turn is based on equations of motion which have been refined with data from scale models and SES of up to 101 600-kg (100-ton) displacement. Employment of broad band motion emphasizes the use of the simulators as a design tool to evaluate a given ship configuration in several operational situations and also serves to provide data as to the overall effect of a given motion on crew performance and physiological status.

  12. Radio Wave Propagation Scene Partitioning for High-Speed Rails

    Directory of Open Access Journals (Sweden)

    Bo Ai

    2012-01-01

    Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.

  13. High-speed noise-free optical quantum memory

    Science.gov (United States)

    Kaczmarek, K. T.; Ledingham, P. M.; Brecht, B.; Thomas, S. E.; Thekkadath, G. S.; Lazo-Arjona, O.; Munns, J. H. D.; Poem, E.; Feizpour, A.; Saunders, D. J.; Nunn, J.; Walmsley, I. A.

    2018-04-01

    Optical quantum memories are devices that store and recall quantum light and are vital to the realization of future photonic quantum networks. To date, much effort has been put into improving storage times and efficiencies of such devices to enable long-distance communications. However, less attention has been devoted to building quantum memories which add zero noise to the output. Even small additional noise can render the memory classical by destroying the fragile quantum signatures of the stored light. Therefore, noise performance is a critical parameter for all quantum memories. Here we introduce an intrinsically noise-free quantum memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We demonstrate successful storage of GHz-bandwidth heralded single photons in a warm atomic vapor with no added noise, confirmed by the unaltered photon-number statistics upon recall. Our ORCA memory meets the stringent noise requirements for quantum memories while combining high-speed and room-temperature operation with technical simplicity, and therefore is immediately applicable to low-latency quantum networks.

  14. Highball: A high speed, reserved-access, wide area network

    Science.gov (United States)

    Mills, David L.; Boncelet, Charles G.; Elias, John G.; Schragger, Paul A.; Jackson, Alden W.

    1990-01-01

    A network architecture called Highball and a preliminary design for a prototype, wide-area data network designed to operate at speeds of 1 Gbps and beyond are described. It is intended for applications requiring high speed burst transmissions where some latency between requesting a transmission and granting the request can be anticipated and tolerated. Examples include real-time video and disk-disk transfers, national filestore access, remote sensing, and similar applications. The network nodes include an intelligent crossbar switch, but have no buffering capabilities; thus, data must be queued at the end nodes. There are no restrictions on the network topology, link speeds, or end-end protocols. The end system, nodes, and links can operate at any speed up to the limits imposed by the physical facilities. An overview of an initial design approach is presented and is intended as a benchmark upon which a detailed design can be developed. It describes the network architecture and proposed access protocols, as well as functional descriptions of the hardware and software components that could be used in a prototype implementation. It concludes with a discussion of additional issues to be resolved in continuing stages of this project.

  15. Thermographic measurements of high-speed metal cutting

    Science.gov (United States)

    Mueller, Bernhard; Renz, Ulrich

    2002-03-01

    Thermographic measurements of a high-speed cutting process have been performed with an infrared camera. To realize images without motion blur the integration times were reduced to a few microseconds. Since the high tool wear influences the measured temperatures a set-up has been realized which enables small cutting lengths. Only single images have been recorded because the process is too fast to acquire a sequence of images even with the frame rate of the very fast infrared camera which has been used. To expose the camera when the rotating tool is in the middle of the camera image an experimental set-up with a light barrier and a digital delay generator with a time resolution of 1 ns has been realized. This enables a very exact triggering of the camera at the desired position of the tool in the image. Since the cutting depth is between 0.1 and 0.2 mm a high spatial resolution was also necessary which was obtained by a special close-up lens allowing a resolution of app. 45 microns. The experimental set-up will be described and infrared images and evaluated temperatures of a titanium alloy and a carbon steel will be presented for cutting speeds up to 42 m/s.

  16. High speed non-latching squid binary ripple counter

    International Nuclear Information System (INIS)

    Silver, A.H.; Phillips, R.R.; Sandell, R.D.

    1985-01-01

    High speed, single flux quantum (SFQ) binary scalers are important components in superconducting analog-to-digital converters (ADC). This paper reviews the concept for a SQUID ADC and the design of an SFQ binary ripple counter, and reports the simulation of key components, and fabrication and performance of non-latching SQUID scalers and SFQ binary ripple counters. The SQUIDs were fabricated with Nb/Nb 2 O 5 /PbIn junctions and interconnected by monolithic superconducting transmission lines and isolation resistors. Each SQUID functioned as a bistable flip-flop with the input connected to the center of the device and the output across one junction. All junctions were critically damped to optimize the pulse response. Operation was verified by observing the dc I-V curves of successive SQUIDs driven by a cw pulse train generated on the same chip. Each SQUID exhibited constant-voltage current steps at 1/2 the voltage of the preceding device as expected from the Josephson voltage-to-frequency relation. Steps were observed only for the same voltage polarity of successive devices and for proper phase bias of the SQUID. Binary frequency division was recorded up to 40GHz for devices designed to operate to 28GHz

  17. Super high-speed magnetically levitated system approaches practical use

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Shoji; Nakao, Hiroyuki; Takemasa, Hisashi

    1988-10-01

    The JR-MAGLEV, a super high-speed magnetically levitated system, has been under development since the inauguration with the manufacturing of a succession of trial vehicles. In 1987, the trial vehicle recorded a speed of 400 km/hr as a 2-car formation with passengers. As a participant in the Maglev project, Toshiba has been contributing to the development of superconducting magnets, the main element of the system, as well as auxiliary power sources and the cycloconverter to be used in the substations. A prototype vehicle for commercial service, MLU 002, was manufactured in March 1988 and is now under testing with the aim of achieving a target speed of 420km/hr. The main parameters of superconducting magnet are as follows; magnetomotive force of 700 kA and number of coils of 3 poles/2 trains/ 2 cars, and the magnets are light weight which is almost the limits with the weight ratio to rolling stock of 0.25. As measures to protect vaporization loss of helium for coil-cooling, a relicfaction process of the helium vapor by use of Claude cycle refrigerator was adopted. A circulating current cycloconverter with 16 MVA was developed for the travel motion. The cycloconverter enabled to receive power directly from an electric power company, the output current becomes complete sine wave, and the problems on traveling control were solved. 6 references, 8 figures, 3 tables.

  18. FASTBUS Readout Controller card for high speed data acquisition

    International Nuclear Information System (INIS)

    Zimmermann, S.

    1991-10-01

    This article describes a FASTBUS Readout Controller (FRC) for high speed data acquisition in FASTBUS based systems. The controller has two main interfaces: to FASTBUS and to a Readout Port. The FASTBUS interface performs FASTBUS master and slave operations at a maximum transfer rate exceeding 40 MBytes/s. The Readout Port can be adapted for a variety of protocols. Currently, it will be interfaced to a VME bus based processor with a VSB port. The on-board LR33000 embedded processor controls the readout, executing a list of operations download into its memory. It scans the FASTBUS modules and stores the data in a triple port DRAM (TPDRAM), through one of the Serial Access Memory (SAM) ports of the (TPDRAM). Later, it transfers this data to the readout port using the other SAM. The FRC also supports serial communication via RS232 and Ethernet interfaces. This device is intended for use in the data acquisition system at the Collider Detector at Fermilab. 5 refs., 3 figs

  19. High speed digital interfacing for a neural data acquisition system

    Directory of Open Access Journals (Sweden)

    Bahr Andreas

    2016-09-01

    Full Text Available Diseases like schizophrenia and genetic epilepsy are supposed to be caused by disorders in the early development of the brain. For the further investigation of these relationships a custom designed application specific integrated circuit (ASIC was developed that is optimized for the recording from neonatal mice [Bahr A, Abu-Saleh L, Schroeder D, Krautschneider W. 16 Channel Neural Recording Integrated Circuit with SPI Interface and Error Correction Coding. Proc. 9th BIOSTEC 2016. Biodevices: Rome, Italy, 2016; 1: 263; Bahr A, Abu-Saleh L, Schroeder D, Krautschneider W. Development of a neural recording mixed signal integrated circuit for biomedical signal acquisition. Biomed Eng Biomed Tech Abstracts 2015; 60(S1: 298–299; Bahr A, Abu-Saleh L, Schroeder D, Krautschneider WH. 16 Channel Neural Recording Mixed Signal ASIC. CDNLive EMEA 2015 Conference Proceedings, 2015.]. To enable the live display of the neural signals a multichannel neural data acquisition system with live display functionality is presented. It implements a high speed data transmission from the ASIC to a computer with a live display functionality. The system has been successfully implemented and was used in a neural recording of a head-fixed mouse.

  20. High speed micromachining with high power UV laser

    Science.gov (United States)

    Patel, Rajesh S.; Bovatsek, James M.

    2013-03-01

    Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.

  1. Stability control for high speed tracked unmanned vehicles

    Science.gov (United States)

    Pape, Olivier; Morillon, Joel G.; Houbloup, Philippe; Leveque, Stephane; Fialaire, Cecile; Gauthier, Thierry; Ropars, Patrice

    2005-05-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational add-on value". The paper details the "automatic speed adjustment" behavior (named SYR4), developed by Giat Industries Company, which main goal is to secure the teleoperated mobility of high speed tracked vehicles on rough grounds; more precisely, the validated low level behavior continuously adjusts the vehicle speed taking into account the teleperator wish AND the maximum speed that the vehicle can manage safely according to the commanded radius of curvature. The algorithm is based on a realistic physical model of the ground-tracks relation, taking into account many vehicle and ground parameters (such as ground adherence and dynamic specificities of tracked vehicles). It also deals with the teleoperator-machine interface, providing a balanced strategy between both extreme behaviors: a) maximum speed reduction before initiating the commanded curve; b) executing the minimum possible radius without decreasing the commanded speed. The paper presents the results got from the military acceptance tests performed on tracked SYRANO vehicle (French Operational Demonstrator).

  2. Hardware demonstration of high-speed networks for satellite applications.

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, Jonathon W.; Lee, David S.

    2008-09-01

    This report documents the implementation results of a hardware demonstration utilizing the Serial RapidIO{trademark} and SpaceWire protocols that was funded by Sandia National Laboratories (SNL's) Laboratory Directed Research and Development (LDRD) office. This demonstration was one of the activities in the Modeling and Design of High-Speed Networks for Satellite Applications LDRD. This effort has demonstrated the transport of application layer packets across both RapidIO and SpaceWire networks to a common downlink destination using small topologies comprised of commercial-off-the-shelf and custom devices. The RapidFET and NEX-SRIO debug and verification tools were instrumental in the successful implementation of the RapidIO hardware demonstration. The SpaceWire hardware demonstration successfully demonstrated the transfer and routing of application data packets between multiple nodes and also was able reprogram remote nodes using configuration bitfiles transmitted over the network, a key feature proposed in node-based architectures (NBAs). Although a much larger network (at least 18 to 27 nodes) would be required to fully verify the design for use in a real-world application, this demonstration has shown that both RapidIO and SpaceWire are capable of routing application packets across a network to a common downlink node, illustrating their potential use in real-world NBAs.

  3. High-speed civil transport issues and technology program

    Science.gov (United States)

    Hewett, Marle D.

    1992-01-01

    A strawman program plan is presented, consisting of technology developments and demonstrations required to support the construction of a high-speed civil transport. The plan includes a compilation of technology issues related to the development of a transport. The issues represent technical areas in which research and development are required to allow airframe manufacturers to pursue an HSCT development. The vast majority of technical issues presented require flight demonstrated and validated solutions before a transport development will be undertaken by the industry. The author believes that NASA is the agency best suited to address flight demonstration issues in a concentrated effort. The new Integrated Test Facility at NASA Dryden Flight Research Facility is considered ideally suited to the task of supporting ground validations of proof-of-concept and prototype system demonstrations before night demonstrations. An elaborate ground hardware-in-the-loop (iron bird) simulation supported in this facility provides a viable alternative to developing an expensive fill-scale prototype transport technology demonstrator. Drygen's SR-71 assets, modified appropriately, are a suitable test-bed for supporting flight demonstrations and validations of certain transport technology solutions. A subscale, manned or unmanned flight demonstrator is suitable for flight validation of transport technology solutions, if appropriate structural similarity relationships can be established. The author contends that developing a full-scale prototype transport technology demonstrator is the best alternative to ensuring that a positive decision to develop a transport is reached by the United States aerospace industry.

  4. Dynamics of High-Speed Precision Geared Rotor Systems

    Directory of Open Access Journals (Sweden)

    Lim Teik C.

    2014-07-01

    Full Text Available Gears are one of the most widely applied precision machine elements in power transmission systems employed in automotive, aerospace, marine, rail and industrial applications because of their reliability, precision, efficiency and versatility. Fundamentally, gears provide a very practical mechanism to transmit motion and mechanical power between two rotating shafts. However, their performance and accuracy are often hampered by tooth failure, vibrations and whine noise. This is most acute in high-speed, high power density geared rotor systems, which is the primary scope of this paper. The present study focuses on the development of a gear pair mathematical model for use to analyze the dynamics of power transmission systems. The theory includes the gear mesh representation derived from results of the quasi-static tooth contact analysis. This proposed gear mesh theory comprising of transmission error, mesh point, mesh stiffness and line-of-action nonlinear, time-varying parameters can be easily incorporated into a variety of transmission system models ranging from the lumped parameter type to detailed finite element representation. The gear dynamic analysis performed led to the discovery of the out-of-phase gear pair torsion modes that are responsible for much of the mechanical problems seen in gearing applications. The paper concludes with a discussion on effectual design approaches to minimize the influence of gear dynamics and to mitigate gear failure in practical power transmission systems.

  5. Numerical Simulation of Oil Jet Lubrication for High Speed Gears

    Directory of Open Access Journals (Sweden)

    Tommaso Fondelli

    2015-01-01

    Full Text Available The Geared Turbofan technology is one of the most promising engine configurations to significantly reduce the specific fuel consumption. In this architecture, a power epicyclical gearbox is interposed between the fan and the low pressure spool. Thanks to the gearbox, fan and low pressure spool can turn at different speed, leading to higher engine bypass ratio. Therefore the gearbox efficiency becomes a key parameter for such technology. Further improvement of efficiency can be achieved developing a physical understanding of fluid dynamic losses within the transmission system. These losses are mainly related to viscous effects and they are directly connected to the lubrication method. In this work, the oil injection losses have been studied by means of CFD simulations. A numerical study of a single oil jet impinging on a single high speed gear has been carried out using the VOF method. The aim of this analysis is to evaluate the resistant torque due to the oil jet lubrication, correlating the torque data with the oil-gear interaction phases. URANS calculations have been performed using an adaptive meshing approach, as a way of significantly reducing the simulation costs. A global sensitivity analysis of adopted models has been carried out and a numerical setup has been defined.

  6. Dust mobilization by high-speed vapor flow under LOVA

    International Nuclear Information System (INIS)

    Matsuki, K.; Suzuki, S.; Ebara, S.; Yokomine, T.; Shimizu, A.

    2006-01-01

    In the safety analysis on the International Thermonuclear Experimental Reactor (ITER), the ingress of coolant (ICE) event and the loss of vacuum (LOVA) event are considered as one of the most serious accident. On the assumption of LOVA occurring after ICE, it is inferable that activated dusts are under the wet condition. Transport behavior of in-vessel activated dusts under the wet condition is not well understood in comparison with the dry case. In this study, we experimentally investigated the entrainment behavior of dust under LOVA after ICE. We measured dust entrainment by high-speed humid airflow with phase change. Graphite dusts and glass beads are used as substitutions for mobile inventory. The relations among the relative humidity, the entrainment of particles in the exhaust gas flow and the adhesion rate of dust particles on the pipe wall have been made clear, as has the distribution profile of dust deposition on the pipe wall. The entrainment ratio decreased as the relative humidity increased and increased as the initial pressure difference increased

  7. Plastic straw: future of high-speed signaling

    Science.gov (United States)

    Song, Ha Il; Jin, Huxian; Bae, Hyeon-Min

    2015-11-01

    The ever-increasing demand for bandwidth triggered by mobile and video Internet traffic requires advanced interconnect solutions satisfying functional and economic constraints. A new interconnect called E-TUBE is proposed as a cost-and-power-effective all-electrical-domain wideband waveguide solution for high-speed high-volume short-reach communication links. The E-TUBE achieves an unprecedented level of performance in terms of bandwidth-per-carrier frequency, power, and density without requiring a precision manufacturing process unlike conventional optical/waveguide solutions. The E-TUBE exhibits a frequency-independent loss-profile of 4 dB/m and has nearly 20-GHz bandwidth over the V band. A single-sideband signal transmission enabled by the inherent frequency response of the E-TUBE renders two-times data throughput without any physical overhead compared to conventional radio frequency communication technologies. This new interconnect scheme would be attractive to parties interested in high throughput links, including but not limited to, 100/400 Gbps chip-to-chip communications.

  8. Hydrodynamic characteristics of high speed settling clarifiers by radiotracer method

    International Nuclear Information System (INIS)

    Griffith Martinez, Jose; Damera Martinez, A.; Ramos Espinosa, K.

    2003-01-01

    Results achieved in the evaluation of two high-speed settling cane juice Clarifiers, one denominated ICINAZ The Express and the other one a modified SRI, both located at the sugar factory Orlando Gonzalez employing the well established radiotracer method (Tc-99m) are presented Several trials performed simultaneously at the two Clarifiers demonstrated that the modified SRI was capable to assimilate the whole flow capacity of the factory with adequate characteristic of the pattern flux and residence time in the environment of 1 hour. In the other side, ICINAZ The Express Clarifier could only work at relative low flow capacity of the factory with residence time closely to the two hours and achieving occasionally a pattern flux seriously affected by fluctuations in the milling process. The non-availability of a flow meter did not allow to extract more information related to some pattern flux anomalies, nevertheless, the radiotracer method was able to detect certain differences between the two clear juice outlet of the modified SRI Clarifier, probably due some problems in the construction of this equipment. This fact so as other goals achieved in this work, show once more the potentiality of the radiotracer method for this type of study related to the hydrodynamic characteristics of industrial facilities. (Author)

  9. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    Science.gov (United States)

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  10. High-Speed Operation of Interband Cascade Lasers

    Science.gov (United States)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.

    2010-01-01

    Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links

  11. An Early Evaluation of Italian High Speed Rail Projects

    Directory of Open Access Journals (Sweden)

    Paolo Beria

    2011-10-01

    Full Text Available Italy has undergone, in the last 15 years, an exceptional public financial effort to build approximately 1,000 km of high speed rail lines. Further extensions are under construction or planned, especially in the most important international relations. This network is widely considered as fundamental to comply the European vision of a continental-wide transport system.The paper analyses the past and the future of such network, where possible from a quantitative point of view. The first part of the article reviews the history of the Alta Velocità scheme, particularly focusing on the issues related to the economic regulation of the investments and the financial troubles at first and then on the present issues related to the regulation of rail services.The analysis of the supply, the time gains, the demand and the costs allows to build a simple but independent evaluation of the past projects from an ex-post perspective, pointing out the successes, but also important critical issues.The second part of the paper analyses the future expansion plans looking at the costs, the existing and expected demand and derives some policy indications and cost reduction strategies capable both to control public expenditure in a period of crisis and not to abandon the idea of a modern and effective rail network.

  12. A DSP Based POD Implementation for High Speed Multimedia Communications

    Directory of Open Access Journals (Sweden)

    Chang Nian Zhang

    2002-09-01

    Full Text Available In the cable network services, the audio/video entertainment contents should be protected from unauthorized copying, intercepting, and tampering. Point-of-deployment (POD security module, proposed by OpenCableTM, allows viewers to receive secure cable services such as premium subscription channels, impulse pay-per-view, video-on-demand as well as other interactive services. In this paper, we present a digital signal processor (DSP (TMS320C6211 based POD implementation for the real-time applications which include elliptic curve digital signature algorithm (ECDSA, elliptic curve Diffie Hellman (ECDH key exchange, elliptic curve key derivation function (ECKDF, cellular automata (CA cryptography, communication processes between POD and Host, and Host authentication. In order to get different security levels and different rates of encryption/decryption, a CA based symmetric key cryptography algorithm is used whose encryption/decryption rate can be up to 75 Mbps. The experiment results indicate that the DSP based POD implementation provides high speed and flexibility, and satisfies the requirements of real-time video data transmission.

  13. High speed fluorescence imaging with compressed ultrafast photography

    Science.gov (United States)

    Thompson, J. V.; Mason, J. D.; Beier, H. T.; Bixler, J. N.

    2017-02-01

    Fluorescent lifetime imaging is an optical technique that facilitates imaging molecular interactions and cellular functions. Because the excited lifetime of a fluorophore is sensitive to its local microenvironment,1, 2 measurement of fluorescent lifetimes can be used to accurately detect regional changes in temperature, pH, and ion concentration. However, typical state of the art fluorescent lifetime methods are severely limited when it comes to acquisition time (on the order of seconds to minutes) and video rate imaging. Here we show that compressed ultrafast photography (CUP) can be used in conjunction with fluorescent lifetime imaging to overcome these acquisition rate limitations. Frame rates up to one hundred billion frames per second have been demonstrated with compressed ultrafast photography using a streak camera.3 These rates are achieved by encoding time in the spatial direction with a pseudo-random binary pattern. The time domain information is then reconstructed using a compressed sensing algorithm, resulting in a cube of data (x,y,t) for each readout image. Thus, application of compressed ultrafast photography will allow us to acquire an entire fluorescent lifetime image with a single laser pulse. Using a streak camera with a high-speed CMOS camera, acquisition rates of 100 frames per second can be achieved, which will significantly enhance our ability to quantitatively measure complex biological events with high spatial and temporal resolution. In particular, we will demonstrate the ability of this technique to do single-shot fluorescent lifetime imaging of cells and microspheres.

  14. An ultra-high speed whole slide image viewing system.

    Science.gov (United States)

    Yagi, Yukako; Yoshioka, Shigeatsu; Kyusojin, Hiroshi; Onozato, Maristela; Mizutani, Yoichi; Osato, Kiyoshi; Yada, Hiroaki; Mark, Eugene J; Frosch, Matthew P; Louis, David N

    2012-01-01

    One of the goals for a Whole Slide Imaging (WSI) system is implementation in the clinical practice of pathology. One of the unresolved problems in accomplishing this goal is the speed of the entire process, i.e., from viewing the slides through making the final diagnosis. Most users are not satisfied with the correct viewing speeds of available systems. We have evaluated a new WSI viewing station and tool that focuses on speed. A prototype WSI viewer based on PlayStation®3 with wireless controllers was evaluated at the Department of Pathology at MGH for the following reasons: 1. For the simulation of signing-out cases; 2. Enabling discussion at a consensus conference; and 3. Use at slide seminars during a Continuing Medical Education course. Pathologists were being able to use the system comfortably after 0-15 min training. There were no complaints regarding speed. Most pathologists were satisfied with the functionality, usability and speed of the system. The most difficult situation was simulating diagnostic sign-out. The preliminary results of adapting the Sony PlayStation®3 (PS3®) as an ultra-high speed WSI viewing system were promising. The achieved speed is consistent with what would be needed to use WSI in daily practice.

  15. High speed laser cutting machine. Kosoku reza kakoki

    Energy Technology Data Exchange (ETDEWEB)

    Shinno, N. (Matsushita Electric Industrial Co. Ltd., Kadoma, Osaka (Japan))

    1993-11-01

    The carbon dioxide gas laser cutting machine is being used widely for from cutting soft steel and stainless steel, etc. to intermetallic welding and in the field of cutting in particular, concerning sheet cutting, it has been changing the existing monopoly of the turret punch press, and as for medium and thick plate cutting, that of the gas plasma fusing device. This article is the general description of high speed laser cutting machine. Concerning the laser cutting (sheet cutting in particular), as the essential items for securing severe cutting accuracy and, at the same time, improving the cutting speed, the following matters are picked up for respective explanation; improvement of stationary machine accuracy, improvement of dynamic machine accuracy, improvement of quality of laser beam as well as optimization of cutting conditions, and shortening of piercing time. Also explanation is given to the respective items, namely speeding-up of medium and thick plate cutting, and reduction of load onto the operator by improved operation. Finally, feeding and removing of a sheet only, and feeding and removing with a pallet are mentioned as the efforts for automation and energy saving. 3 figs., 1 tab.

  16. High-speed autoverifying technology for printed wiring boards

    Science.gov (United States)

    Ando, Moritoshi; Oka, Hiroshi; Okada, Hideo; Sakashita, Yorihiro; Shibutani, Nobumi

    1996-10-01

    We have developed an automated pattern verification technique. The output of an automated optical inspection system contains many false alarms. Verification is needed to distinguish between minor irregularities and serious defects. In the past, this verification was usually done manually, which led to unsatisfactory product quality. The goal of our new automated verification system is to detect pattern features on surface mount technology boards. In our system, we employ a new illumination method, which uses multiple colors and multiple direction illumination. Images are captured with a CCD camera. We have developed a new algorithm that uses CAD data for both pattern matching and pattern structure determination. This helps to search for patterns around a defect and to examine defect definition rules. These are processed with a high speed workstation and a hard-wired circuits. The system can verify a defect within 1.5 seconds. The verification system was tested in a factory. It verified 1,500 defective samples and detected all significant defects with only a 0.1 percent of error rate (false alarm).

  17. NbN nanowire optical detectors for high speed applications

    International Nuclear Information System (INIS)

    Quaranta, O; Pagano, S; Ejrnaes, M; Nappi, C; Pessina, E; Fontana, F

    2008-01-01

    We have developed a novel geometry for single photon optical detectors (SSPD) based on NbN nanowires. Traditionally the SSPD are realized in a meander structure in order to realize a reasonable (few square microns) collecting area. This has the disadvantage of generating a large detector inductance, mostly of kinetic origin, that strongly limits the detector operation in high speed applications, such as telecommunication. Moreover the extreme aspect ratio of the detector (a nanowire a fraction of mm long and 100 nm wide) puts strong requirements on the nanofabrication processes, with negative effects on the production yield. Our novel proposed geometry is based on a parallel stripes configuration designed in such a way that the light induced switching of a single stripe generates the switching of all the other through a cascade mechanism. The net result is an SSPD device that has a much lower intrinsic inductance, and consequently a much wider bandwidth (up to 10 GHz range). Moreover the signal amplitude generated is much larger than that of traditional SSPD, due to the contribution of all the parallel stripe. We present here the design and results of numerical simulation of the response of this novel type of SSPD. In particular we discuss of the design solutions that allow the cascade operation of the detector, by realizing a very fast and synchronous switching of all the parallel lines. Key issues, such as the optimal number of parallel lines, with respect to fabrication and operation constraints of the detectors are also discussed

  18. Measurements of granular flow dynamics with high speed digital images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingeol [Univ. of Florida, Gainesville, FL (United States)

    1994-01-01

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  19. Improvement of Vocal Pathologies Diagnosis Using High-Speed Videolaryngoscopy

    Science.gov (United States)

    Tsuji, Domingos Hiroshi; Hachiya, Adriana; Dajer, Maria Eugenia; Ishikawa, Camila Cristina; Takahashi, Marystella Tomoe; Montagnoli, Arlindo Neto

    2014-01-01

    Introduction The study of the dynamic properties of vocal fold vibration is important for understanding the vocal production mechanism and the impact of organic and functional changes. The advent of high-speed videolaryngoscopy (HSV) has provided the possibility of seeing the real cycle of vocal fold vibration in detail through high sampling rate of successive frames and adequate spatial resolution. Objective To describe the technique, advantages, and limitations of using HSV and digital videokymography in the diagnosis of vocal pathologies. Methods We used HSV and digital videokymography to evaluate one normophonic individual and four patients with vocal fold pathologies (nodules, unilateral paralysis of the left vocal fold, intracordal cyst, and adductor spasmodic dysphonia). The vocal fold vibration parameters (glottic closure, vibrational symmetry, periodicity, mucosal wave, amplitude, and glottal cycle phases) were assessed. Results Differences in the vocal vibration parameters were observed and correlated with the pathophysiology. Conclusion HSV is the latest diagnostic tool in visual examination of vocal behavior and has considerable potential to refine our knowledge regarding the vocal fold vibration and voice production, as well as regarding the impact of pathologic conditions have on the mechanism of phonation. PMID:25992109

  20. Improvement of Vocal Pathologies Diagnosis Using High-Speed Videolaryngoscopy

    Directory of Open Access Journals (Sweden)

    Tsuji, Domingos Hiroshi

    2014-04-01

    Full Text Available Introduction The study of the dynamic properties of vocal fold vibration is important for understanding the vocal production mechanism and the impact of organic and functional changes. The advent of high-speed videolaryngoscopy (HSV has provided the possibility of seeing the real cycle of vocal fold vibration in detail through high sampling rate of successive frames and adequate spatial resolution. Objective To describe the technique, advantages, and limitations of using HSV and digital videokymography in the diagnosis of vocal pathologies. Methods We used HSV and digital videokymography to evaluate one normophonic individual and four patients with vocal fold pathologies (nodules, unilateral paralysis of the left vocal fold, intracordal cyst, and adductor spasmodic dysphonia. The vocal fold vibration parameters (glottic closure, vibrational symmetry, periodicity, mucosal wave, amplitude, and glottal cycle phases were assessed. Results Differences in the vocal vibration parameters were observed and correlated with the pathophysiology. Conclusion HSV is the latest diagnostic tool in visual examination of vocal behavior and has considerable potential to refine our knowledge regarding the vocal fold vibration and voice production, as well as regarding the impact of pathologic conditions have on the mechanism of phonation.

  1. Prototype of a high speed pellet launcher for JET

    International Nuclear Information System (INIS)

    Sonnenberg, K.; Kupschus, P.; Helm, J.; Flory, D.; Zacchia, F.

    1989-01-01

    JET is planning to build a high speed prototype pellet injector cap0able of delivering single D 2 -ice pellets, one per plasma pulse, with a velocity of up to 5 kms -1 . The prototype will be based on a 2-stage gun system which is presently being developed at JET using a test stand. One gun of the teststand will be transformed into the prototype used at the torus. Earlier tests have shown that D 2 -ice pellets can only sustain peak accelerations of 5x10 6 ms -2 without breaking and that they suffer from an erosion effect in the barrel limiting the pellet velocity to about 2.7 kms -1 . Results are presented proving that these problems can be overcome by accelerating the ice in a protective sabot (cartridge). With this method velocities of up to 3.8 kms -1 have been obtained. The sabot technique, however, requires a separation of the sabot from the pellet before this is injected into the plasma. Three possible separation methods are described and experimental results of one of them are presented. Also improvements of the gun are discussed which allow to operate the gun by remote control. (author). 5 refs.; 5 figs

  2. Application of high speed machining technology in aviation

    Science.gov (United States)

    Bałon, Paweł; Szostak, Janusz; Kiełbasa, Bartłomiej; Rejman, Edward; Smusz, Robert

    2018-05-01

    Aircraft structures are exposed to many loads during their working lifespan. Every particular action made during a flight is composed of a series of air movements which generate various aircraft loads. The most rigorous requirement which modern aircraft structures must fulfill is to maintain their high durability and reliability. This requirement involves taking many restrictions into account during the aircraft design process. The most important factor is the structure's overall mass, which has a crucial impact on both utility properties and cost-effectiveness. This makes aircraft one of the most complex results of modern technology. Additionally, there is currently an increasing utilization of high strength aluminum alloys, which requires the implementation of new manufacturing processes. High Speed Machining technology (HSM) is currently one of the most important machining technologies used in the aviation industry, especially in the machining of aluminium alloys. The primary difference between HSM and other milling techniques is the ability to select cutting parameters - depth of the cut layer, feed rate, and cutting speed in order to simultaneously ensure high quality, precision of the machined surface, and high machining efficiency, all of which shorten the manufacturing process of the integral components. In this paper, the authors explain the implementation of the HSM method in integral aircraft constructions. It presents the method of the airframe manufacturing method, and the final results. The HSM method is compared to the previous method where all subcomponents were manufactured by bending and forming processes, and then, they were joined by riveting.

  3. High-speed image converter x-ray studies

    International Nuclear Information System (INIS)

    Bryukhnevitch, G.I.; Kas'yanov, Yu.S.; Korobkin, V.V.; Prokhorov, A.M.; Stepanov, B.M.; Chevokin, V.K.; Schelev, M.Ya.

    1975-01-01

    Two X-ray high-speed image-converter cameras (ICC) have been developed. In the first one a soft X-ray radiation is converted into visible light with the aid of a 0.5ns response time, plastic scintillator. The second camera incorporates a photocathode which is sensitive to visible and X-ray radiation. Its calculated temporal resolution approaches 5 to 7ps. Both developed cameras were employed for studies of X-ray radiation emitted by laser plasma. For the smooth nanosecond excited laser pulses, a noticeable amplitude modulation was recorded in all laser pulses reflected by plasma as well as in each third pulse of X-ray plasma radiation. It was also observed that the duration of X-ray plasma radiation is 20 to 40% shorter than that of the incident nanosecond laser pulses and this duration being 3 to 6 times longer than that of the picosecond irradiating pulses. The half-width of the recorded X-ray plasma pulses was 30 to 60ps. (author)

  4. High speed subfractional HP-motor with permanent magnets

    International Nuclear Information System (INIS)

    Hanitsch, R.; Frenzel, B.

    1998-01-01

    During the last years an increasing demand for small permanent magnet motors can be detected, especially in the fields of medical applications. For heart assist devices there is the request to have small high speed devices operating at low voltage supply with almost no overtemperature. The design of a special hollow shaft motor for the speed range of 15000..25000 rpm and a torque of 4 to 8 mNm will be outlined. The low noise requirements and the high efficiency request lead to a design with an airgap winding. A thermal analysis is also done in order to meet the conditions given by the medical specialists. The features of the prototype will be presented and also the sensorless control strategy will be outlined. Measured and calculated data show good agreement. Focus will be on the magnetic circuit and the thermal behaviour and not on the control aspects of the motor. Specific parameters demonstrate the good quality of the drive system. (orig.)

  5. Dynamics of face seals for high speed turbomachinery

    Science.gov (United States)

    Leefe, Simon

    1993-10-01

    Face seals in rocket engine fuel and oxidizer turbopumps have been the subject of intense investigation for over 25 years. While advances have been made in the understanding of thin film lubrication between seal faces, valuable data has been produced on the friction and wear of material pairs in cryogenic environments; pioneering work has been done on the effect of lubricant phase change in seals, and many improvements have been made in mechanical seal design. Relatively superficial attention has been given to the vibrational dynamics of face seals in high-speed turbomachinery. BHR Group Ltd. (formerly BHRA) has recently completed the first stage of a study, commissioned by the European Space Agency, to investigate this area. This has involved the development of a two-dimensional adiabatic, turbulent lubrication model for thick gas film applications, the production of an integrated mathematical model of gas seal vibrational dynamics for thin film applications, implementation in software, the undertaking of an experimental program to validate software against variations in operating conditions and design variables, and suggestions for improved seal design.

  6. High-speed single-photon signaling for daytime QKD

    Science.gov (United States)

    Bienfang, Joshua; Restelli, Alessandro; Clark, Charles

    2011-03-01

    The distribution of quantum-generated cryptographic key at high throughputs can be critically limited by the performance of the systems' single-photon detectors. While noise and afterpulsing are considerations for all single-photon QKD systems, high-transmission rate systems also have critical detector timing-resolution and recovery time requirements. We present experimental results exploiting the high timing resolution and count-rate stability of modified single-photon avalanche diodes (SPADs) in our GHz QKD system operating over a 1.5 km free-space link that demonstrate the ability to apply extremely short temporal gates, enabling daytime free-space QKD with a 4% QBER. We also discuss recent advances in gating techniques for InGaAs SPADs that are suitable for high-speed fiber-based QKD. We present afterpulse-probability measurements that demonstrate the ability to support single-photon count rates above 100 MHz with low afterpulse probability. These results will benefit the design and characterization of free-space and fiber QKD systems. A. Restelli, J.C. Bienfang A. Mink, and C.W. Clark, IEEE J. Sel. Topics in Quant. Electron 16, 1084 (2010).

  7. Submonolayer Quantum Dots for High Speed Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Zakharov ND

    2007-01-01

    Full Text Available AbstractWe report on progress in growth and applications of submonolayer (SML quantum dots (QDs in high-speed vertical-cavity surface-emitting lasers (VCSELs. SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer layers. Vertically correlated, tilted or anticorrelated arrangements of the SML islands are realized and allow QD strain and wavefunction engineering. Respectively, both TE and TM polarizations of the luminescence can be achieved in the edge-emission using the same constituting materials. SML QDs provide ultrahigh modal gain, reduced temperature depletion and gain saturation effects when used in active media in laser diodes. Temperature robustness up to 100 °C for 0.98 μm range vertical-cavity surface-emitting lasers (VCSELs is realized in the continuous wave regime. An open eye 20 Gb/s operation with bit error rates better than 10−12has been achieved in a temperature range 25–85 °Cwithout current adjustment. Relaxation oscillations up to ∼30 GHz have been realized indicating feasibility of 40 Gb/s signal transmission.

  8. High-speed cinematography of gas-metal atomization

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Jason [ALCOA Specialty Metals Division, 100 Technical Drive, Alcoa Center, PA 15069 (United States)]. E-mail: jason.ting@alcoa.com; Connor, Jeffery [Material Science Engineering Department, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Ridder, Stephen [Metallurgical Processing Group, NIST, 100 Bureau Dr. Stop 8556, Gaithersburg, MD 20899 (United States)

    2005-01-15

    A high-speed cinematographic footage of a 304L stainless steel gas atomization, recorded at the National Institute of Standard and Technology (NIST), was analyzed using a discrete Fourier transform (DFT) algorithm. The analysis showed the gas atomization process possesses two prominent frequency ranges of melt oscillation (pulsation). A low-frequency oscillation in the melt flow occurring between 5.41 and 123 Hz, with a dominant frequency at 9.93 Hz, was seen in the recirculation zone adjacent to the melt orifice. A high-frequency melt oscillation range was observed above 123 Hz, and was more prominent one melt-tip-diameter downstream in the melt atomization image than upstream near the melt tip. This high-frequency range may reflect the melt atomization frequency used to produce finely atomized powder. This range also included a prominent high frequency at 1273 Hz, which dominated in the image further away downstream from the melt tip. This discrete high-frequency oscillation is most probably caused by the aeroacoustic ''screech'' phenomenon, intrasound (<20 kHz), a result of the atomizing gas jets undergoing flow resonance. It is hypothesized that this discrete intrinsic aeroacoustic tone may enhance melt breakup in the atomization process with evidence of this fact in the melt images.

  9. High-speed cinematography of gas-metal atomization

    International Nuclear Information System (INIS)

    Ting, Jason; Connor, Jeffery; Ridder, Stephen

    2005-01-01

    A high-speed cinematographic footage of a 304L stainless steel gas atomization, recorded at the National Institute of Standard and Technology (NIST), was analyzed using a discrete Fourier transform (DFT) algorithm. The analysis showed the gas atomization process possesses two prominent frequency ranges of melt oscillation (pulsation). A low-frequency oscillation in the melt flow occurring between 5.41 and 123 Hz, with a dominant frequency at 9.93 Hz, was seen in the recirculation zone adjacent to the melt orifice. A high-frequency melt oscillation range was observed above 123 Hz, and was more prominent one melt-tip-diameter downstream in the melt atomization image than upstream near the melt tip. This high-frequency range may reflect the melt atomization frequency used to produce finely atomized powder. This range also included a prominent high frequency at 1273 Hz, which dominated in the image further away downstream from the melt tip. This discrete high-frequency oscillation is most probably caused by the aeroacoustic ''screech'' phenomenon, intrasound (<20 kHz), a result of the atomizing gas jets undergoing flow resonance. It is hypothesized that this discrete intrinsic aeroacoustic tone may enhance melt breakup in the atomization process with evidence of this fact in the melt images

  10. Ride performance of a high speed rail vehicle using controlled semi active suspension system

    Science.gov (United States)

    Sharma, Sunil Kumar; Kumar, Anil

    2017-05-01

    The rail-wheel interaction in a rail vehicle running at high speed results in large amplitude vibration of carbody that deteriorates the ride comfort of travellers. The role of suspension system is crucial to provide an acceptable level of ride performance. In this context, an existing rail vehicle is modelled in vertical, pitch and roll motions of carbody and bogies. Additionally, nonlinear stiffness and damping parameters of passive suspension system are defined based on experimental data. In the secondary vertical suspension system, a magneto-rheological (MR) damper is included to improve the ride quality and comfort. The parameters of MR damper depend on the current, amplitude and frequency of excitations. At different running speeds, three semi-active suspension strategies with MR damper are analysed for periodic track irregularity and the resulting performance indices are juxtaposed with the nonlinear passive suspension system. The disturbance rejection and force tracking damper controller algorithms are applied to control the desired force of MR damper. This study reveals that the vertical vibrations of a vehicle can be reduced significantly by using the proposed semi-active suspension strategies. Moreover, it naturally results in improved ride quality and passenger’s comfort in comparison to the existing passive system.

  11. Reactive Burn Model Calibration for PETN Using Ultra-High-Speed Phase Contrast Imaging

    Science.gov (United States)

    Johnson, Carl; Ramos, Kyle; Bolme, Cindy; Sanchez, Nathaniel; Barber, John; Montgomery, David

    2017-06-01

    A 1D reactive burn model (RBM) calibration for a plastic bonded high explosive (HE) requires run-to-detonation data. In PETN (pentaerythritol tetranitrate, 1.65 g/cc) the shock to detonation transition (SDT) is on the order of a few millimeters. This rapid SDT imposes experimental length scales that preclude application of traditional calibration methods such as embedded electromagnetic gauge methods (EEGM) which are very effective when used to study 10 - 20 mm thick HE specimens. In recent work at Argonne National Laboratory's Advanced Photon Source we have obtained run-to-detonation data in PETN using ultra-high-speed dynamic phase contrast imaging (PCI). A reactive burn model calibration valid for 1D shock waves is obtained using density profiles spanning the transition to detonation as opposed to particle velocity profiles from EEGM. Particle swarm optimization (PSO) methods were used to operate the LANL hydrocode FLAG iteratively to refine SURF RBM parameters until a suitable parameter set attained. These methods will be presented along with model validation simulations. The novel method described is generally applicable to `sensitive' energetic materials particularly those with areal densities amenable to radiography.

  12. Performance of LTE in High Speed Railway Scenarios

    DEFF Research Database (Denmark)

    Sniady, Aleksander; Soler, José

    2013-01-01

    GSM-Railways (GSM-R) is an obsolete mobile technology with a number of shortcomings in terms of capacity and capability. These shortcomings become a major issue for railways as GSM-R may limit the number of running trains in some areas and it cannot support advanced data services. Hence...

  13. Rat muscle blood flows during high-speed locomotion

    International Nuclear Information System (INIS)

    Armstrong, R.B.; Laughlin, M.H.

    1985-01-01

    We previously studied blood flow distribution within and among rat muscles as a function of speed from walking (15 m/min) through galloping (75 m/min) on a motor-driven treadmill. The results showed that muscle blood flows continued to increase as a function of speed through 75 m/min. The purpose of the present study was to have rats run up to maximal treadmill speeds to determine if blood flows in the muscles reach a plateau as a function of running speed over the animals normal range of locomotory speeds. Muscle blood flows were measured with radiolabeled microspheres at 1 min of running at 75, 90, and 105 m/min in male Sprague-Dawley rats. The data indicate that even at these relatively high treadmill speeds there was still no clear evidence of a plateau in blood flow in most of the hindlimb muscles. Flows in most muscles continued to increase as a function of speed. These observed patterns of blood flow vs. running speed may have resulted from the rigorous selection of rats that were capable of performing the high-intensity exercise and thus only be representative of a highly specific population of animals. On the other hand, the data could be interpreted to indicate that the cardiovascular potential during exercise is considerably higher in laboratory rats than has normally been assumed and that inadequate blood flow delivery to the muscles does not serve as a major limitation to their locomotory performance

  14. High speed in Portugal - metamorphosis from planning construction measures to a national railway concept; Hochgeschwindigkeit in Portugal - von der Bauplanung zu einem nationalen Eisenbahnkonzept

    Energy Technology Data Exchange (ETDEWEB)

    Stohler, Werner [Beratungfirma SMA und Partner AG, Zuerich (Switzerland)

    2010-03-15

    Portugal is planning the construction of two high-speed railway lines (using the UIC gauge of 1435 mm) between Lisbon and Madrid and between Lisbon and Porto. Integration with the country's existing Iberian-gauge network will be achieved in some places by laying three-rail tracks and in other places by running trains with adjustable wheel gauges. The adaptations to the legacy network triggered by the plants for the high-speed lines include, inter alia, a rearrangement of the networks of the regional-express services in and around Lisbon and Porto. (orig.)

  15. Evaluating the risk of eye injuries: intraocular pressure during high speed projectile impacts.

    Science.gov (United States)

    Duma, Stefan M; Bisplinghoff, Jill A; Senge, Danielle M; McNally, Craig; Alphonse, Vanessa D

    2012-01-01

    To evaluate the risk of eye injuries by determining intraocular pressure during high speed projectile impacts. A pneumatic cannon was used to impact eyes with a variety of projectiles at multiple velocities. Intraocular pressure was measured with a small pressure sensor inserted through the optic nerve. A total of 36 tests were performed on 12 porcine eyes with a range of velocities between 6.2 m/s and 66.5 m/s. Projectiles selected for the test series included a 6.35  mm diameter metal ball, a 9.25  mm diameter aluminum rod, and an 11.16  mm diameter aluminum rod. Experiments were designed with velocities in the range of projectile consumer products such as toy guns. A range of intraocular pressures ranged between 2017 mmHg to 26,426 mmHg (39 psi-511 psi). Four of the 36 impacts resulted in globe rupture. Intraocular pressures dramatically above normal physiological pressure were observed for high speed projectile impacts. These pressure data provide critical insight to chronic ocular injuries and long-term complications such as glaucoma and cataracts.

  16. A methodology for analysing lateral coupled behavior of high speed railway vehicles and structures

    International Nuclear Information System (INIS)

    AntolIn, P; Goicolea, J M; Astiz, M A; Alonso, A

    2010-01-01

    Continuous increment of the speed of high speed trains entails the increment of kinetic energy of the trains. The main goal of this article is to study the coupled lateral behavior of vehicle-structure systems for high speed trains. Non linear finite element methods are used for structures whereas multibody dynamics methods are employed for vehicles. Special attention must be paid when dealing with contact rolling constraints for coupling bridge decks and train wheels. The dynamic models must include mixed variables (displacements and creepages). Additionally special attention must be paid to the contact algorithms adequate to wheel-rail contact. The coupled vehicle-structure system is studied in a implicit dynamic framework. Due to the presence of very different systems (trains and bridges), different frequencies are involved in the problem leading to stiff systems. Regarding to contact methods, a main branch is studied in normal contact between train wheels and bridge decks: penalty method. According to tangential contact FastSim algorithm solves the tangential contact at each time step solving a differential equation involving relative displacements and creepage variables. Integration for computing the total forces in the contact ellipse domain is performed for each train wheel and each solver iteration. Coupling between trains and bridges requires a special treatment according to the kinetic constraints imposed in the wheel-rail pair and the load transmission. A numerical example is performed.

  17. Laryngeal High-Speed Videoendoscopy: Sensitivity of Objective Parameters towards Recording Frame Rate

    Directory of Open Access Journals (Sweden)

    Anne Schützenberger

    2016-01-01

    Full Text Available The current use of laryngeal high-speed videoendoscopy in clinic settings involves subjective visual assessment of vocal fold vibratory characteristics. However, objective quantification of vocal fold vibrations for evidence-based diagnosis and therapy is desired, and objective parameters assessing laryngeal dynamics have therefore been suggested. This study investigated the sensitivity of the objective parameters and their dependence on recording frame rate. A total of 300 endoscopic high-speed videos with recording frame rates between 1000 and 15 000 fps were analyzed for a vocally healthy female subject during sustained phonation. Twenty parameters, representing laryngeal dynamics, were computed. Four different parameter characteristics were found: parameters showing no change with increasing frame rate; parameters changing up to a certain frame rate, but then remaining constant; parameters remaining constant within a particular range of recording frame rates; and parameters changing with nearly every frame rate. The results suggest that (1 parameter values are influenced by recording frame rates and different parameters have varying sensitivities to recording frame rate; (2 normative values should be determined based on recording frame rates; and (3 the typically used recording frame rate of 4000 fps seems to be too low to distinguish accurately certain characteristics of the human phonation process in detail.

  18. Internal plasma state of the high speed solar wind at 1 AU

    International Nuclear Information System (INIS)

    Feldman, W.C.; Abraham--Shrauner, B.; Asbridge, J.R.; Bame, S.J.

    1976-01-01

    The character of particle velocity distributions in the high speed solar wind is presented. It is found that electron distribution shapes differ from simple bi-Maxwellians in that a hot, strongly beamed, high energy electron component is always present and is observed to move relative to a distinct low energy electron component along the magnetic field direction, B, away from the sun. The velocity difference between hot and cold electron components appears, at times, to be strongly correlated with the local Alfven speed. This correlation suggests that the solar wind heat flux is being limited some of the time in the neighborhood of 1 AU. Proton velocity distributions are also best described in terms of two relatively convecting, unresolved components. The velocity of the lower density proton beam component is generally larger than that of the main component and the temperature of the main component perpendicular to B is typically 2 to 3 times larger than its parallel temperature. Alpha particles as a whole generally move faster than the protons along B and have a temperature which is, on the average, 6 times higher than the temperature of the total proton population. Evidence is presented which supports the idea that the two-component proton structure observed in high speed regions is intimately related to fine scale velocity variations at 1 AU, and hence by inference, to prominent spatial and/or temporal structures present throughout that part of the corona from which the solar wind evolves

  19. A methodology for analysing lateral coupled behavior of high speed railway vehicles and structures

    Science.gov (United States)

    Antolín, P.; Goicolea, J. M.; Astiz, M. A.; Alonso, A.

    2010-06-01

    Continuous increment of the speed of high speed trains entails the increment of kinetic energy of the trains. The main goal of this article is to study the coupled lateral behavior of vehicle-structure systems for high speed trains. Non linear finite element methods are used for structures whereas multibody dynamics methods are employed for vehicles. Special attention must be paid when dealing with contact rolling constraints for coupling bridge decks and train wheels. The dynamic models must include mixed variables (displacements and creepages). Additionally special attention must be paid to the contact algorithms adequate to wheel-rail contact. The coupled vehicle-structure system is studied in a implicit dynamic framework. Due to the presence of very different systems (trains and bridges), different frequencies are involved in the problem leading to stiff systems. Regarding to contact methods, a main branch is studied in normal contact between train wheels and bridge decks: penalty method. According to tangential contact FastSim algorithm solves the tangential contact at each time step solving a differential equation involving relative displacements and creepage variables. Integration for computing the total forces in the contact ellipse domain is performed for each train wheel and each solver iteration. Coupling between trains and bridges requires a special treatment according to the kinetic constraints imposed in the wheel-rail pair and the load transmission. A numerical example is performed.

  20. HIGH-SPEED IMAGING AND WAVEFRONT SENSING WITH AN INFRARED AVALANCHE PHOTODIODE ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Baranec, Christoph; Atkinson, Dani; Hall, Donald; Jacobson, Shane; Chun, Mark [Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700 (United States); Riddle, Reed [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Law, Nicholas M., E-mail: baranec@hawaii.edu [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States)

    2015-08-10

    Infrared avalanche photodiode (APD) arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed, and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared APD array that achieves a correlated double sampling read noise of 0.73 e{sup −} in the lab, and a total noise of 2.52 e{sup −} on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics (AO) system at the Palomar Observatory 1.5 m telescope. Here we report on the improved image quality simultaneously achieved at visible and infrared wavelengths by using the array as part of an image stabilization control loop with AO-sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity, as well as future uses of this technology in other AO and high-contrast imaging applications.

  1. High speed machining of aluminium gear box without temperature stabilization

    Directory of Open Access Journals (Sweden)

    Abilio P. SILVA

    2010-01-01

    Full Text Available At the present time both clutch and mechanism housings, which are the main components from automotive gear boxes, are made of special aluminium alloys. These alloys are extremely light when compared with steel, making them a perfect choice to mitigate the cars weight and machining costs. Nonetheless they possess a high thermal expansion coefficient, which can be considered a major disadvantage since it makes necessary to pay extraordinary attention to dimensional variations during the production cycle due to temperature deviations. High speed machining of precision components made of aluminium requests thus their temperature to become previously stable. This procedure is the only way to force dimensions to stay inside its tolerance intervals. The main purpose of the present work was to assess the possibility to avoid the use of special ovens to make the clutch housing temperature become stable prior to machining. The dimensional stabilization of 40 sample parts, pre-heated at three temperature levels, was accomplished through the use of this system. The achieved results were made possible by analysing the part’s temperature at the machine’s entrance, the machine’s interior temperature, 35 measured dimensions and their tolerance intervals as well as the average temperature deviations of each of the five considered batches. By analysing the obtained results in detail it was possible to determine which dimensions show high sensitiveness to temperature (high correlation between dimension’s variation and temperature. Among these dimensions we can point out the ones related with depth, since they display the highest deviations due to temperature. Being a work with practical application it was possible to confirm the benefit of using this methodology by achieving significant enhancements on production efficiency, energy savings and reduction on maintenance costs, through the application of small adjustments to the machining sequence and by

  2. High speed, locally controlled data acquisition system for TFTR

    International Nuclear Information System (INIS)

    Feng, H.K.; Bradish, G.J.

    1983-01-01

    A high speed, locally controlled, data acquisition and transmission system has been developed by the CICADA (Central Instrumentation Control and Data Acquisition) Group for extracting certain timecritical data during a TFTR pulse and passing it to the control room, 1000 feet distant, to satisfy realtime requirements of frequently sampled variables. The system is designed to utilize any or all of the standard CAMAC (Computer Automated Measurement and Control) modules now employed on the CAMAC links for retrieval of the main body of data, but to operate them in a much faster manner than in a standard CAMAC system. To do this, a pre-programmable ROM sequencer is employed as a controller to transmit commands to the modules at intervals down to one microsecond, replacing the usual CAMAC dedicated computer, and increasing the command rate by an order of magnitude over what could be sent down a Branch Highway. Data coming from any number of channels originating within a single CAMAC ''crate'' is then time-multiplexed and transmitted over a single conductor pair in bi-phase at a 2.5 MHz bit rate using Manchester coding techniques. Benefits gained from this approach include: Reduction in the number of conductors required, elimination of line-to-line skew found in parallel transmission systems, and the capability of being transformer coupled or transmitted over a fiber optic cable to avoid safety hazards and ground loops. The main application for this system so far has been as the feedback path in this closed loop control of currents through the Tokamak's field coils. The paper will treat the system's various applications

  3. Compression cracking of plastic spheres: a high speed photography study

    International Nuclear Information System (INIS)

    Majzoub, R.; Chaudhri, M.M.

    1999-01-01

    Failure of brittle spheres under compressive loading, both quasi static and dynamic, is a technologically important problem. However, so far, neither the stress state in a loaded nor the failure process in understood clearly. In fact, because the process of the failure of a loaded sphere is very rapid, it has not been possible to follow it when making static observations. We have, therefore, carried out a high-speed photographic study using framing rates of up to 200,000 frames per second to follow the sequence of events when polished 12.7 mm diameter spheres of acrylic resin are fragmented using a low-velocity impact apparatus. The latter consist of a 5.7 kg hammer, which is allowed to drop on to the test sphere from a height of 1.3 m and the entire event of impact and ensuing fracture is photographed with a rotating mirror camera (C-4). Form numerous impact experiments it has been found that as the impact load increases gradually, plastic flow and flattering of the sphere occurs at the contact region. The size of the flattened region continuous to grow with increasing impact load and when this region becomes sufficiently large, usually one or two cracks initiate at the periphery of the contact rather than in the bulk of the sphere. The surface cracks then grow into the bulk of the sphere at velocities in the range of 600-800 m s/sup -1/. It is interesting to note these crack velocities are the maximum observed velocities in this material, but these are only approx. 0.8 of the Rayleigh wave velocity, which is the theoretically predicted maximum crack velocity in brittle materials. It is argued that in order to cause the catastrophic failure of a solid sphere, it is necessary to cause plasticity in it which then leads to the generation of tensile hoop stresses at the circle of contact between the sphere and platen. (author)

  4. A longitudinal bunch monitoring system using LabVIEW reg-sign and high-speed oscilloscopes

    International Nuclear Information System (INIS)

    Barsotti, E.L.

    1994-10-01

    A new longitudinal bunch monitoring system has been installed at Fermilab for the Tevatron and Main Ring. For each machine, a signal from a broadband wall current monitor is sampled and digitized by a high-speed oscilloscope. A Macintosh computer, running LabVIEW-based software, controls the scopes and CAMAC timing modules and analyzes the acquired data. The resulting bunch parameters are used for a variety of purposes, including Tevatron collider luminosity calculation and injection analysis. This paper examines the system in detail

  5. Horizontal vibration suppression method suitable for super-high-speed elevators; Chokosoku elevator ni tekishita kago yokoshindo yokusei hoshiki

    Energy Technology Data Exchange (ETDEWEB)

    Muto, N. [Hitachi, Ltd., Tokyo (Japan); Kagomiya, K.; Kurosawa, T.; Konya, M> ; Ando, T. [Hitachi Building System Co. Ltd., Tokyo (Japan)

    1998-03-01

    Horizontal vibrations of elevator cars mainly occur because a car swings as roller guides installed at corners of a car frame move on a winding guide rail at high speeds. Rider comfort in high speed elevators is worsened by these vibrations. Conventional active dampers suppressing horizontal vibrations using ac servo motors make cars heavier so driving power becomes larger, and they are not easily applied to existing elevators. An active damping control method suited to super-high-speed elevators is which can solve these problems. The method suppresses vibrations by generating only enough magnetic force needed to suppress them only when vibrations of the car franc are produced. The vibrations are detected using acceleration detectors and magnets installed on left and right sides of the car frame. A computer simulator was made to analyze phenomena of car vibrations and to verify effects of the proposed magnetic damping controller. It was found that the vibrations generated on the cabin floor were remarkably large when left and right sides at the upper and lower parts of the car frame were swung by sine waves with the same phase. The vibrations bad two resonant modes. Results obtained with the computer simulator and a full scale running simulator showed that the acceleration on the cabin floor, even at the resonant frequencies, could be reduced by the magnetic damping control to around 0.1m/s{sup 2} which would provide a comfortable ride. 10 refs., 14 figs.

  6. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  7. High speed serial link for UA1 microprocessor network

    CERN Document Server

    Cittolin, S; Zurfluh, E

    1981-01-01

    The UA1 data acquisition system consists of a set of distributed microprocessor units. An interprocessor link, independent of the CAMAC data readout, has been developed in order to have continuous remote control and run-time data handling, e.g. transmission of calibration programs/parameters, equipment test/status and histogram accumulation. The data transmission system is designed to be used in a loop configuration equipped with transceivers for twisted pair cables (RS-422). As an economical system, it is running as an ancillary serial loop-link between microprocessors, like Data Acquisition Crate Controllers and systems with distributed intelligence. The software driver consists of a loop-controller package, which may run in a BAMBI Computer Language environment and a fully interrupt controlled program for all other secondary stations. A special single-character mode provides a handy link for remote debugging in a pseudo-full-duplex mode. The format is based on the HDLC protocol without sequence numbering. ...

  8. High speed serial link for UA1 microprocessor network

    International Nuclear Information System (INIS)

    Cittolin, S.; Loefstedt, B.; Zurfluh, E.

    1981-01-01

    The UA1 data acquisition system consists of a set of distributed microprocessor units. An interprocessor link, independent of the CAMAC data readout, has been developed in order to have continuous remote control and run-time data handling, e.g. transmission of calibration programs/parameters, equipment rest/status and histogram accumulation. The data transmission system is designed to be used in a loop configuration equipped with transceivers for twisted pair cables (RS-422). As an economical system it is running as an ancillary serial loop-link between microprocessors Like Data Acquisition Crate Controllers and systems with distributed intelligence. The software driver consists of a loop-controller package, which may run in a BAMBI Computer Language environment and a fully interrupt controlled program for all other secondary stations. A special single-character mode provides a handy link for remote debugging in a pseudo-full-duplex mode. The format is based on the HDLC protocol without sequence numbering. The Chip MC-6854 from Motorola, Inc. enables an implementation with few components. (orig.)

  9. High speed serial link for UA1 microprocessor network

    CERN Document Server

    Cittolin, Sergio; Zurfluh, E

    1981-01-01

    The UA1 data acquisition system consists of a set of distributed microprocessor units. An interprocessor link, independent of the CAMAC data readout, has been developed in order to have continuous remote control and run-time data handling, e.g. transmission of calibration programs/parameters, equipment test/status and histogram accumulation. The data transmission system is designed to be used in a loop configuration equipped with transceivers for twisted pair cables (RS-422). As an economical system, it is running as an ancillary serial loop-link between microprocessors, like data acquisition crate controllers and systems with distributed intelligence. The software driver consists of a loop-controller package, which may run in a BAMBI computer language environment and a fully interrupt controlled program for all other secondary stations. A special single-character mode provides a handy link for remote debugging in a pseudo-full-duplex mode. The format is based on the HDLC protocol without sequence numbering. ...

  10. A new high-speed X-ray beam chopper

    International Nuclear Information System (INIS)

    McPherson, A.; Wang, J.; Lee, P. L.; Mills, D. M.

    1999-01-01

    A new high-speed x-ray beam chopper using laser scanner technology has been developed and tested on the SRI-CAT sector 1 beamline at the Advanced Photon Source (APS) storage ring (1). As illustrated in figure 1, it is compact in size and has two sets of transmission windows: BK-7 glass for visible light transmission and 0.23-mm-thick Be for the transmission of x-rays. The rotor is made of aluminum and has a diameter of 50.8 mm. A 0.5-mm-wide and 2.29-mm-tall slit is cut through the center of the rotor. The circumference of the rotor has a coating of 1-mm-thick Ni, which gives an attenuation of 10 8 at 30 keV. Turning at nearly 80000 RPM, this beam chopper has an opening time window of 2450 ns, corresponding to 67% of the revolution time of the APS storage ring. The primary feature in selecting laser scanner technology to develop into an x-ray beam chopper was the high level of rotational speed control of the rotor that makes up the beam chopper element (2). By using an optical feedback circuit to sample the rotational speed four times each revolution, the jitter in the position of the transmission open time window is only 3 ns at the 3 standard deviation level. The APS storage ring orbital frequency, supplied by the control room, is divided down to provide the appropriate drive frequency for the beam chopper motor controller. By this means, both the storage ring and the beam chopper are operating off the same master clock. After a turn-on time of about 15 to 20 seconds, the rotational precision of the motor results in immediate phase locking to the temporal structure of the APS storage ring. By inserting a Stanford delay generator between the frequency divider and the beam chopper motor controller, the phase between the storage ring temporal structure and the beam chopper rotation can be adjusted to position the transmission time window of the beam chopper on any desired part of the storage ring fill pattern. If an asymmetric fill pattern is used in the APS storage

  11. Verifying cell loss requirements in high-speed communication networks

    Directory of Open Access Journals (Sweden)

    Kerry W. Fendick

    1998-01-01

    Full Text Available In high-speed communication networks it is common to have requirements of very small cell loss probabilities due to buffer overflow. Losses are measured to verify that the cell loss requirements are being met, but it is not clear how to interpret such measurements. We propose methods for determining whether or not cell loss requirements are being met. A key idea is to look at the stream of losses as successive clusters of losses. Often clusters of losses, rather than individual losses, should be regarded as the important “loss events”. Thus we propose modeling the cell loss process by a batch Poisson stochastic process. Successive clusters of losses are assumed to arrive according to a Poisson process. Within each cluster, cell losses do not occur at a single time, but the distance between losses within a cluster should be negligible compared to the distance between clusters. Thus, for the purpose of estimating the cell loss probability, we ignore the spaces between successive cell losses in a cluster of losses. Asymptotic theory suggests that the counting process of losses initiating clusters often should be approximately a Poisson process even though the cell arrival process is not nearly Poisson. The batch Poisson model is relatively easy to test statistically and fit; e.g., the batch-size distribution and the batch arrival rate can readily be estimated from cell loss data. Since batch (cluster sizes may be highly variable, it may be useful to focus on the number of batches instead of the number of cells in a measurement interval. We also propose a method for approximately determining the parameters of a special batch Poisson cell loss with geometric batch-size distribution from a queueing model of the buffer content. For this step, we use a reflected Brownian motion (RBM approximation of a G/D/1/C queueing model. We also use the RBM model to estimate the input burstiness given the cell loss rate. In addition, we use the RBM model to

  12. Preparative isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. using supercritical fluid extraction combined with consecutive high-speed countercurrent chromatography.

    Science.gov (United States)

    Yan, Rongwei; Shen, Jie; Liu, Xiaojing; Zou, Yong; Xu, Xinjun

    2018-05-01

    The objective of this study was to develop a consecutive preparation method for the isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. The process involved supercritical fluid extraction with CO 2 , solvent extraction, and two-step high-speed countercurrent chromatography. Pressure, temperature, and the volume of entrainer were optimized as 27 MPa, 52°C, and 60 mL by response surface methodology in supercritical fluid extraction with CO 2 , and the yield of the crude extracts was 7.91 g from 100 g of leaves. Subsequently, 80% methanol/water was used to extract and condense the three compounds from the crude extracts, and 4.23 g of methanol/water extracts was obtained. Then, a two-step high-speed countercurrent chromatography procedure was developed for the isolation of the three target compounds from methanol/water extracts, including conventional high-speed countercurrent chromatography for further enrichment and consecutive high-speed countercurrent chromatography for purification. The yield of concentrates from high-speed countercurrent chromatography was 2.50 g from 4.23 g of methanol/water extracts. Finally, the consecutive high-speed countercurrent chromatography produced 103.2 mg of hainanmurpanin, 244.7 mg of meranzin, and 255.4 mg of phebalosin with purities up to 97.66, 99.36, and 98.64%, respectively, from 900 mg of high-speed countercurrent chromatography concentrates in one run of three consecutive sample loadings without exchanging a solvent system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of the delay of the second foot on the total impulse in a vertical jump with run Efecto del retraso del segundo apoyo sobre el impulso en la batida del salto vertical

    Directory of Open Access Journals (Sweden)

    J. Campos

    2010-09-01

    Full Text Available

    This paper aims to identify the influence that the delay of the second foot in a vertical jump with run up approach, has on the total impulse, impulse absorption, impulse acceleration, and on the percentage participation of each foot during the takeoff phase. Twenty three physical education undergraduates students participated in the study recruited among university basketball and volleyball players (mean height: 179 ± 6.1 cm; mean mass: 70.96 ± 8.82 kg. Two force platforms were used, one for each foot support (Dinascan – IBV at 250 Hz frequency and time-synchronized to one another and to a high speed video camera (Redlake Motion Space 1000 S. Results showed that the lower the time between the first and second contact foot, the lesser the takeoff time (p<0.001, although this reduction is only attributed to the negative period. The impulse of acceleration was not affected by the delay of the second foot, so that there would not be advantages regarding jump height. There is a bigger reduction of the horizontal velocity when the time between the first and the second contact foot is increased (p<0.01.

     

    El propósito de este trabajo ha sido determinar la importancia que tiene el retraso del segundo apoyo en la batida del salto vertical cuando se realiza una carrera previa, sobre las componentes del impulso total, impulso de frenado e impulso de aceleración, así como su relación con el porcentaje de participación ejercido por cada apoyo durante las fases que determinan la batida. Han participado 23 estudiantes de educación física, especialistas en voleibol y baloncesto (talla media: 179 ± 6.1 cm.; masa media: 70.96 ± 8.82 kg. Para el registro de los datos se han utilizado dos plataformas de fuerza, (Dinascan – IBV, una para cada apoyo, a una frecuencia de 250 Hz y sincronizadas temporalmente a una cámara de v

  14. High Speed Mobility Through On-Demand Aviation

    Science.gov (United States)

    Moore, Mark D.; Goodrich, Ken; Viken, Jeff; Smith, Jeremy; Fredericks, Bill; Trani, Toni; Barraclough, Jonathan; German, Brian; Patterson, Michael

    2013-01-01

    automobiles. ?? Community Noise: Hub and smaller GA airports are facing increasing noise restrictions, and while commercial airliners have dramatically decreased their community noise footprint over the past 30 years, GA aircraft noise has essentially remained same, and moreover, is located in closer proximity to neighborhoods and businesses. ?? Operating Costs: GA operating costs have risen dramatically due to average fuel costs of over $6 per gallon, which has constrained the market over the past decade and resulted in more than 50% lower sales and 35% less yearly operations. Infusion of autonomy and electric propulsion technologies can accomplish not only a transformation of the GA market, but also provide a technology enablement bridge for both larger aircraft and the emerging civil Unmanned Aerial Systems (UAS) markets. The NASA Advanced General Aviation Transport Experiments (AGATE) project successfully used a similar approach to enable the introduction of primary composite structures and flat panel displays in the 1990s, establishing both the technology and certification standardization to permit quick adoption through partnerships with industry, academia, and the Federal Aviation Administration (FAA). Regional and airliner markets are experiencing constant pressure to achieve decreasing levels of community emissions and noise, while lowering operating costs and improving safety. But to what degree can these new technology frontiers impact aircraft safety, the environment, operations, cost, and performance? Are the benefits transformational enough to fundamentally alter aircraft competiveness and productivity to permit much greater aviation use for high speed and On-Demand Mobility (ODM)? These questions were asked in a Zip aviation system study named after the Zip Car, an emerging car-sharing business model. Zip Aviation investigates the potential to enable new emergent markets for aviation that offer "more flexibility than the existing transportation solutions

  15. Distributed Large Data-Object Environments: End-to-End Performance Analysis of High Speed Distributed Storage Systems in Wide Area ATM Networks

    Science.gov (United States)

    Johnston, William; Tierney, Brian; Lee, Jason; Hoo, Gary; Thompson, Mary

    1996-01-01

    We have developed and deployed a distributed-parallel storage system (DPSS) in several high speed asynchronous transfer mode (ATM) wide area networks (WAN) testbeds to support several different types of data-intensive applications. Architecturally, the DPSS is a network striped disk array, but is fairly unique in that its implementation allows applications complete freedom to determine optimal data layout, replication and/or coding redundancy strategy, security policy, and dynamic reconfiguration. In conjunction with the DPSS, we have developed a 'top-to-bottom, end-to-end' performance monitoring and analysis methodology that has allowed us to characterize all aspects of the DPSS operating in high speed ATM networks. In particular, we have run a variety of performance monitoring experiments involving the DPSS in the MAGIC testbed, which is a large scale, high speed, ATM network and we describe our experience using the monitoring methodology to identify and correct problems that limit the performance of high speed distributed applications. Finally, the DPSS is part of an overall architecture for using high speed, WAN's for enabling the routine, location independent use of large data-objects. Since this is part of the motivation for a distributed storage system, we describe this architecture.

  16. Post-assembly magnetization of a 100 kW high speed permanent magnet rotor.

    Science.gov (United States)

    Lv, Yiliang; Wang, Guobin; Li, Liang

    2015-03-01

    A post-assembly magnetizing fixture has been designed and successfully used to magnetize the rotor of a 100 kW high speed permanent magnet synchronous motor. The rotor is a solid cylinder with outer diameter of 80 mm and total length of 515 mm. The permanent magnet material is samarium-cobalt (Sm2Co17) with saturation magnetizing field of 6 T. The mechanical stability of the magnetizing fixture has been studied as well as the general design methodology. The magnetizing coil is subdivided in order to reduce the electromagnetic force, and the coils are separately reinforced in different ways. The electromagnetic and structural optimization is performed by finite element analysis and verified by experiments.

  17. Post-assembly magnetization of a 100 kW high speed permanent magnet rotor

    International Nuclear Information System (INIS)

    Lv, Yiliang; Wang, Guobin; Li, Liang

    2015-01-01

    A post-assembly magnetizing fixture has been designed and successfully used to magnetize the rotor of a 100 kW high speed permanent magnet synchronous motor. The rotor is a solid cylinder with outer diameter of 80 mm and total length of 515 mm. The permanent magnet material is samarium-cobalt (Sm 2 Co 17 ) with saturation magnetizing field of 6 T. The mechanical stability of the magnetizing fixture has been studied as well as the general design methodology. The magnetizing coil is subdivided in order to reduce the electromagnetic force, and the coils are separately reinforced in different ways. The electromagnetic and structural optimization is performed by finite element analysis and verified by experiments

  18. Post-assembly magnetization of a 100 kW high speed permanent magnet rotor

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yiliang; Wang, Guobin [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan (China); Li, Liang [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan (China); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan (China)

    2015-03-15

    A post-assembly magnetizing fixture has been designed and successfully used to magnetize the rotor of a 100 kW high speed permanent magnet synchronous motor. The rotor is a solid cylinder with outer diameter of 80 mm and total length of 515 mm. The permanent magnet material is samarium-cobalt (Sm{sub 2}Co{sub 17}) with saturation magnetizing field of 6 T. The mechanical stability of the magnetizing fixture has been studied as well as the general design methodology. The magnetizing coil is subdivided in order to reduce the electromagnetic force, and the coils are separately reinforced in different ways. The electromagnetic and structural optimization is performed by finite element analysis and verified by experiments.

  19. The clinical potential of ultra-high-speed echo-planar imaging

    International Nuclear Information System (INIS)

    Worthington, B.S.; Firth, J.L.; Morris, G.K.; Johnson, I.R.; Coxon, R.; Blamire, A.M.; Gibbs, P.; Mansfield, P.

    1990-01-01

    Ultra-high-speed echo-planar imaging (EPI) allows acquisition of a complete two-dimensional image in 64 to 128 ms devoid of movement artefact and without sacrifice of contrast due to relaxation time effects. In conventional whole-body MRI, however, obtrusive movement artefact and extended imaging time, resulting from the need to apply multiple sequences to facilitate lesion detection and pathological characterization, remain limitations. Reduced total examination time increases patient tolerance and throughput; furthermore optimization of contrast to achieve maximal conspicuity of particular features in liver or brain pathology is achieved simply and interactively by real time adjustment of the imaging parameters. The method provides the opportunity to study in real time dynamic events such as flow phenomena in the vascular and cerebrospinal fluid compartments of the brain as well as the kinetics of administered contrast agents. EPI is the only means of capturing the irregular motion of aperiodic cardiac events and bowel peristalsis. (author)

  20. Fault Tolerant and Optimal Control of Wind Turbines with Distributed High-Speed Generators

    Directory of Open Access Journals (Sweden)

    Urs Giger

    2017-01-01

    Full Text Available In this paper, the control scheme of a distributed high-speed generator system with a total amount of 12 generators and nominal generator speed of 7000 min − 1 is studied. Specifically, a fault tolerant control (FTC scheme is proposed to keep the turbine in operation in the presence of up to four simultaneous generator faults. The proposed controller structure consists of two layers: The upper layer is the baseline controller, which is separated into a partial load region with the generator torque as an actuating signal and the full-load operation region with the collective pitch angle as the other actuating signal. In addition, the lower layer is responsible for the fault diagnosis and FTC characteristics of the distributed generator drive train. The fault reconstruction and fault tolerant control strategy are tested in simulations with several actuator faults of different types.

  1. An ultra-high-speed direct digital frequency synthesizer implemented in GaAs HBT technology

    International Nuclear Information System (INIS)

    Chen Gaopeng; Wu Danyu; Jin Zhi; Liu Xinyu

    2010-01-01

    This paper presents a 10-GHz 8-bit direct digital synthesizer (DDS) microwave monolithic integrated circuit implemented in 1 μm GaAs HBT technology. The DDS takes a double-edge-trigger (DET) 8-stage pipeline accumulator with sine-weighted DAC-based ROM-less architecture, which can maximize the utilization ratio of the GaAs HBT's high-speed potential. With an output frequency up to 5 GHz, the DDS gives an average spurious free dynamic range of 23.24 dBc through the first Nyquist band, and consumes 2.4 W of DC power from a single -4.6 V DC supply. Using 1651 GaAs HBT transistors, the total area of the DDS chip is 2.4 x 2.0 mm 2 . (semiconductor integrated circuits)

  2. A Serializer ASIC for High Speed Data Transmission in Cryogenic and HiRel Environment

    CERN Document Server

    Liu, T; The ATLAS collaboration

    2010-01-01

    A high speed 16:1 serializer ASIC has been developed using a commercial 0.25 μm silicon-on-sapphire CMOS technology. At room temperature the ASIC operates from 4.0 to 5.7 Gbps with power consumption of 463 mW. The total jitter is 62 ps at the bit error rate of 10-12 at 5 Gbps. A 200-MeV proton beam test indicates that the ASIC is suitable for high energy physics applications. A liquid nitrogen temperature test indicates that the ASIC may be used at cryogenic temperature applications. The reliability of the serializer at liquid nitrogen temperature is to be studied. A 6-lane serializer array with 10 Gbps/lane with redundancy capability is under development.

  3. Energy efficiency high speed drives with magnetic bearings; Energieeffizienz durch schnell drehende, magnetgelagerte Antriebe

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Matthias [LEViTEC GmbH, Lahnau (Germany)

    2011-07-01

    In modern purification plans the contamination of the wastewater are biologically removed by supplying oxygen. The clarifier is ventilated by compressors around the clock and approximately 60% of the total energy consumption is used for that. It enables a great opportunity for saving energy. This contribution shows that the use of magnetic centrifugal compressors with high-speed drives leads to significant reduction of energy consumption. In addition, the drive is, due to contact free the magnetic bearings, practically wear- and maintenance-free. By the use of integrated sensors in the magnetic bearings a continuous monitoring of the compressor is implemented. Consequently this drive concept provides not only more efficiency and less energy consumption, but also leads to a higher plant availability. (orig.)

  4. Energy-efficient two-hop LTE resource allocation in high speed trains with moving relays

    KAUST Repository

    Alsharoa, Ahmad M.

    2014-05-01

    High-speed railway system equipped with moving relay stations placed on the middle of the ceiling of each train wagon is investigated. The users inside the train are served in two hops via the 3GPP Long Term Evolution (LTE) technology. The objective of this work is to maximize the number of served users by respecting a specific quality-of-service constraint while minimizing the total power consumption of the eNodeB and the moving relays. We propose an efficient algorithm based on the Hungarian method to find the optimal resource allocation over the LTE resource blocks in order to serve the maximum number of users with the minimum power consumption. Moreover, we derive a closed-form expression for the power allocation problem. Our simulation results illustrate the performance of the proposed scheme and compare it with various previously developed algorithms as well as with the direct transmission scenario. © 2014 IFIP.

  5. On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles

    Science.gov (United States)

    2006-02-17

    On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles Report Title ABSTRACT In this work we proposed two semi-analytic...298-102 Enclosure 1 On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles by...Specifically, the following problems will be addressed during this project: 2.1 Challenges The problem of trajectory planning for high-speed autonomous vehicles is

  6. Field Test Data for Detecting Vibrations of a Building Using High-Speed Video Cameras

    Science.gov (United States)

    2017-10-01

    ARL-TR-8185 ● OCT 2017 US Army Research Laboratory Field Test Data for Detecting Vibrations of a Building Using High-Speed Video...Field Test Data for Detecting Vibrations of a Building Using High-Speed Video Cameras by Caitlin P Conn and Geoffrey H Goldman Sensors and...June 2016 – October 2017 4. TITLE AND SUBTITLE Field Test Data for Detecting Vibrations of a Building Using High-Speed Video Cameras 5a. CONTRACT

  7. Technical report of electronics shop characteristics of high speed electronics component, (1)

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi; Shiino, Kazuo.

    1975-01-01

    We must develop electronics circuits for high speed signals. The electronics components of the circuits make use of the special components. This report treats a pulse response of the electronics components (i.e. coaxial cable, connector, resistor, capacitor, diode, transistor) for high speed electronics. The results of this report was already applied constructions of high speed electronics circuits and experimental equipments of the High Energy Physics Division. (auth.)

  8. Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-18

    This paper extends a model-to-test validation effort to examine the effect of different constant rotor torque and moment conditions and intentional generator misalignment on the gearbox motion and high-speed-shaft loads. Fully validating gearbox motion and high-speed-shaft loads across a range of test conditions is a critical precursor to examining the bearing loads, as the gearbox motion and high-speed-shaft loads are the drivers of these bearing loads.

  9. High-speed thermal cycling system and method of use

    Science.gov (United States)

    Hansen, A.D.A.; Jaklevic, J.M.

    1996-04-16

    A thermal cycling system and method of use are described. The thermal cycling system is based on the circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 microliters of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded. 13 figs.

  10. Revolutionize Propulsion Test Facility High-Speed Video Imaging with Disruptive Computational Photography Enabling Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced rocket propulsion testing requires high-speed video recording that can capture essential information for NASA during rocket engine flight certification...

  11. Comparison of high-speed transportation systems in special consideration of investment costs

    Directory of Open Access Journals (Sweden)

    R. Schach

    2007-10-01

    Full Text Available In this paper a substantial comparison of different high-speed transportation systems and an approach to stochastic cost estimations are provided. Starting from the developments in Europe, the high-speed traffic technical characteristics of high-speed railways and Maglev systems are compared. But for a comprehensive comparison more criterions must be included and led to a wider consideration and the development of a multi-criteria comparison of high-speed transportation systems. In the second part a stochastic approach to cost estimations of infrastructure projects is encouraged. Its advantages in comparison with the traditional proceeding are presented and exemplify the practical implementation.

  12. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high speed civil aircraft will require breakthrough developments in propulsion design, including novel techniques to optimize inlet...

  13. Analysis and topology optimization design of high-speed driving spindle

    Science.gov (United States)

    Wang, Zhilin; Yang, Hai

    2018-04-01

    The three-dimensional model of high-speed driving spindle is established by using SOLIDWORKS. The model is imported through the interface of ABAQUS, A finite element analysis model of high-speed driving spindle was established by using spring element to simulate bearing boundary condition. High-speed driving spindle for the static analysis, the spindle of the stress, strain and displacement nephogram, and on the basis of the results of the analysis on spindle for topology optimization, completed the lightweight design of high-speed driving spindle. The design scheme provides guidance for the design of axial parts of similar structures.

  14. Advanced Ultra-High Speed Motor for Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at

  15. Combined effect of noise and vibration produced by high-speed trains on annoyance in buildings.

    Science.gov (United States)

    Lee, Pyoung Jik; Griffin, Michael J

    2013-04-01

    The effects of noise and vibration on annoyance in buildings during the passage of a nearby high-speed train have been investigated in a laboratory experiment with recorded train noise and 20 Hz vibration. The noises included the effects of two types of façade: windows-open and windows-closed. Subjects were exposed to six levels of noise and six magnitudes of vibration, and asked to rate annoyance using an 11-point numerical scale. The experiment consisted of four sessions: (1) evaluation of noise annoyance in the absence of vibration, (2) evaluation of total annoyance from simultaneous noise and vibration, (3) evaluation of noise annoyance in the presence of vibration, and (4) evaluation of vibration annoyance in the absence of noise. The results show that vibration did not influence ratings of noise annoyance, but that total annoyance caused by combined noise and vibration was considerably greater than the annoyance caused by noise alone. The noise annoyance and the total annoyance caused by combined noise and vibration were associated with subject self-ratings of noise sensitivity. Two classical models of total annoyance due to combined noise sources (maximum of the single source annoyance or the integration of individual annoyance ratings) provided useful predictions of the total annoyance caused by simultaneous noise and vibration.

  16. Purification of optical imaging ligand-Cybesin by high-speed counter-current chromatography

    Science.gov (United States)

    Ma, Zhiyong; Ma, Ying; Sun, Xilin; Ye, Yunpeng; Shen, Baozhong; Chen, Xiaoyuan; Ito, Yoichiro

    2010-01-01

    Fluorescent Cybesin (Cypate-Bombesin Peptide Analogue Conjugate) was synthesized from Indocyanine Green (ICG) and the bombesin receptor ligand as a contrast agent for detecting pancreas tumors. However, the LC–MS analysis indicated that the target compound was only a minor component in the reaction mixture. Since preparative HPLC can hardly separate such a small amount of the target compound directly from the original crude reaction mixture without a considerable adsorptive loss onto the solid support, high-speed counter-current chromatography (HSCCC) was used for purification since the method uses no solid support and promises high sample recovery. A suitable two-phase solvent system composed of hexane/ethyl acetate/methanol/methyl t.-butyl ether/acetonitrile/water) at a volume ratio of 1:1:1:4:4:7 was selected based on the partition coefficient of Cybesin (K ≈ 0.9) determined by LC–MS. The separation was performed in two steps using the same solvent system with lower aqueous mobile phase. From 400 mg of the crude reaction mixture the first separation yielded 7.7 mg of fractions containing the target compound at 12.8% purity, and in the second run 1 mg of Cybesin was obtained at purity of 94.0% with a sample recovery rate of over 95% based on the LC–MS Analysis. PMID:20933483

  17. Preparative separation of cacao bean procyanidins by high-speed counter-current chromatography.

    Science.gov (United States)

    Li, Lingxi; Zhang, Shuting; Cui, Yan; Li, Yuanyuan; Luo, Lanxin; Zhou, Peiyu; Sun, Baoshan

    2016-11-15

    In this work, an efficient method for preparative separation of procyanidins from raw cacao bean extract by high-speed counter-current chromatography (HSCCC) was developed. Under the optimized solvent system of n-hexane-ethyl acetate-water (1:50:50, v/v/v) with a combination of head-tail and tail-head elution modes, various procyanidins fractions with different polymerization degrees were successfully separated. UPLC, QTOF-MS and 1 H NMR analysis verified that these fractions contained monomer up to pentamer respectively. Dimeric procyanidin B2 (purity>86%) could be isolated by HSCCC in a single run. Other individual procyanidins in these fractions could be further isolated and purified by preparative HPLC. The developed HSCCC together with preparative HPLC techniques appeared to be a useful tool for large preparation of different procyanidins from cacao beans. Furthermore, by antioxidant activity assays, it was proved that both fractions and individual procyanidins possessed greater antioxidant activities compared to standard trolox. The antioxidant activities of procyanidins increase as the increase of their polymerization degree. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T. [Fermi National Accelerator Lab., Batavia, IL (United States); Lindgren, M. [Univ. of California, Los Angeles, CA (United States). Physics Dept.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time.

  19. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    International Nuclear Information System (INIS)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T.; Lindgren, M.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time

  20. Optimization of dynamic envelope measurement system for high speed train based on monocular vision

    Science.gov (United States)

    Wu, Bin; Liu, Changjie; Fu, Luhua; Wang, Zhong

    2018-01-01

    The definition of dynamic envelope curve is the maximum limit outline caused by various adverse effects during the running process of the train. It is an important base of making railway boundaries. At present, the measurement work of dynamic envelope curve of high-speed vehicle is mainly achieved by the way of binocular vision. There are some problems of the present measuring system like poor portability, complicated process and high cost. A new measurement system based on the monocular vision measurement theory and the analysis on the test environment is designed and the measurement system parameters, the calibration of camera with wide field of view, the calibration of the laser plane are designed and optimized in this paper. The accuracy has been verified to be up to 2mm by repeated tests and experimental data analysis. The feasibility and the adaptability of the measurement system is validated. There are some advantages of the system like lower cost, a simpler measurement and data processing process, more reliable data. And the system needs no matching algorithm.

  1. Cost-Benefit Analysis of High-Speed Rail Link between Hong Kong and Mainland China

    Directory of Open Access Journals (Sweden)

    R. Tao

    2011-07-01

    Full Text Available The Legislative Council in Hong Kong has approved a funding of USD$8.60 billion to build the high-speed rail (HSR line linking mainland China. HSR is a break-through technology that allows trains running at a speed over 250 km per hour. The most controversial part of the HSR investment is whether its cost could be compensated by the social benefits. In this study, a cost-benefit analysis of the Hong Kong to mainland HSR (HKM-HSR line is carried out. First, all the direct and indirect costs, and social benefits are defined; then, monetary equivalents are assigned to these elements; third, all the future values are discounted into present values and aggregated. The results show that the project has a positive net present value (NPV up to USD$2,068.49 million, which proves that the investment is worth. In addition, other transport alternatives, i.e. the existing roadway and conventional railway, are examined and compared with HKM-HSR, which unveils that HSR has the largest positive NPV among these three passenger transportation modes because of its excellent performance in ticket revenue, travel time savings and safety improvement.

  2. Preparative isolation and purification of theaflavins and catechins by high-speed countercurrent chromatography.

    Science.gov (United States)

    Wang, Kunbo; Liu, Zhonghua; Huang, Jian-an; Dong, Xinrong; Song, Lubing; Pan, Yu; liu, Fang

    2008-05-15

    High-speed countercurrent chromatography (HSCCC) has been applied for the separation of theaflavins and catechins. The HSCCC run was carried out with a two-phase solvent system composed of hexane-ethyl acetate-methanol-water-acetic acid (1:5:1:5:0.25, v/v) by eluting the lower aqueous phase at 2 ml/min at 700 rpm. The results indicated that pure theaflavin, theaflavins-3-gallate, theaflavins-3'-gallate and theaflavin-3,3'-digallate could be obtained from crude theaflavins sample and black tea. The structures of the isolated compounds were positively confirmed by (1)H NMR and (13)C NMR, MS analysis, HPLC data and TLC data. Meanwhile, catechins including epigallocatechin gallate, gallocatechin gallate, epicatechin gallate and epigallocatechin were isolated from the aqueous extract of green tea by using the same solvent system. This study developed a modified method combined with enrichment theaflavins method by using HSCCC for separation of four individual theaflavins, especially for better separation of theaflavins monogallates.

  3. Substructure method in high-speed monorail dynamic problems

    Science.gov (United States)

    Ivanchenko, I. I.

    2008-12-01

    The study of actions of high-speed moving loads on bridges and elevated tracks remains a topical problem for transport. In the present study, we propose a new method for moving load analysis of elevated tracks (monorail structures or bridges), which permits studying the interaction between two strained objects consisting of rod systems and rigid bodies with viscoelastic links; one of these objects is the moving load (monorail rolling stock), and the other is the carrying structure (monorail elevated track or bridge). The methods for moving load analysis of structures were developed in numerous papers [1-15]. At the first stage, when solving the problem about a beam under the action of the simplest moving load such as a moving weight, two fundamental methods can be used; the same methods are realized for other structures and loads. The first method is based on the use of a generalized coordinate in the expansion of the deflection in the natural shapes of the beam, and the problem is reduced to solving a system of ordinary differential equations with variable coefficients [1-3]. In the second method, after the "beam-weight" system is decomposed, just as in the problem with the weight impact on the beam [4], solving the problem is reduced to solving an integral equation for the dynamic weight reaction [6, 7]. In [1-3], an increase in the number of retained forms leads to an increase in the order of the system of equations; in [6, 7], difficulties arise when solving the integral equations related to the conditional stability of the step procedures. The method proposed in [9, 14] for beams and rod systems combines the above approaches and eliminates their drawbacks, because it permits retaining any necessary number of shapes in the deflection expansion and has a resolving system of equations with an unconditionally stable integration scheme and with a minimum number of unknowns, just as in the method of integral equations [6, 7]. This method is further developed for

  4. Design of high-speed turnouts and crossings

    Science.gov (United States)

    Raif, Lukáš; Puda, Bohuslav; Havlík, Jiří; Smolka, Marek

    2017-09-01

    Recently, the new ways to improve the railway switches and crossings have been sought, as the railway transport increases its operating speed. The expectation of these adjustments is to decrease the dynamic load, which usually increases together with velocity, and this influences the comfort of the vehicle passage, the wear of the structural parts and the cost of maintenance. These adjustments are primarily the turnout elements such as the optimized geometry of the turnout branch line by means of transition curves application, which minimizes the lateral acceleration during the vehicle passage through the track curve. The rail inclination is solved either by means of inclination in fastening system, or by machining of the rail head shape, because this ways of adjustment retain the wheel-rail interaction characteristics along the whole length of the turnout. Secondly, it is the crossing with movable part, which excludes the interruption of the running surface and optimization of the railway stiffness throughout the whole turnout length as well. We can see that the different stiffness along the turnout influences the dynamic load and it is necessary to optimize the discontinuities in the stiffness along the whole length of the turnout. For this purpose, the numeric modeling is carried out to seek the areas with the highest stiffness and subsequently, the system of stiffness optimization will be designed.

  5. High-Speed General Purpose Genetic Algorithm Processor.

    Science.gov (United States)

    Hoseini Alinodehi, Seyed Pourya; Moshfe, Sajjad; Saber Zaeimian, Masoumeh; Khoei, Abdollah; Hadidi, Khairollah

    2016-07-01

    In this paper, an ultrafast steady-state genetic algorithm processor (GAP) is presented. Due to the heavy computational load of genetic algorithms (GAs), they usually take a long time to find optimum solutions. Hardware implementation is a significant approach to overcome the problem by speeding up the GAs procedure. Hence, we designed a digital CMOS implementation of GA in [Formula: see text] process. The proposed processor is not bounded to a specific application. Indeed, it is a general-purpose processor, which is capable of performing optimization in any possible application. Utilizing speed-boosting techniques, such as pipeline scheme, parallel coarse-grained processing, parallel fitness computation, parallel selection of parents, dual-population scheme, and support for pipelined fitness computation, the proposed processor significantly reduces the processing time. Furthermore, by relying on a built-in discard operator the proposed hardware may be used in constrained problems that are very common in control applications. In the proposed design, a large search space is achievable through the bit string length extension of individuals in the genetic population by connecting the 32-bit GAPs. In addition, the proposed processor supports parallel processing, in which the GAs procedure can be run on several connected processors simultaneously.

  6. 75 FR 16552 - High-Speed Intercity Passenger Rail (HSIPR) Program

    Science.gov (United States)

    2010-04-01

    ...; Enhancing intercity travel options; Ensuring a state of good repair of key intercity passenger rail assets... DEPARTMENT OF TRANSPORTATION Federal Railroad Administration High-Speed Intercity Passenger Rail... selections for the High-Speed Intercity Passenger Rail (HSIPR) Program. This notice builds on the program...

  7. Concept study of 20 MW high-speed permanent magnet synchronous motor for marine propulsion

    NARCIS (Netherlands)

    Bogomolov, M.D.

    2013-01-01

    High-speed permanent magnet synchronous machines are of great interest in the applications where high utilization factor and efficiency are required. Depending on application, power requirements change from kilowatts to megawatts. To investigate power limits of high-speed machines, the present

  8. Environmental risks of high-speed railway in China: Public participation, perception and trust

    NARCIS (Netherlands)

    He, G.; Mol, A.P.J.; Zhang, L.; Lu, Y.

    2015-01-01

    Two decades ago China entered an era with rapid expansion of transport infrastructure. In an ambitious plan on high-speed railway development, China plans to have the longest high-speed railway network by 2020. Social concerns and anxiety with the adverse environmental and social risks and impacts

  9. Impact of high-speed railway accessibility on the location choices of office establishments

    NARCIS (Netherlands)

    Willigers, J.

    2006-01-01

    High-speed railways are becoming increasingly common in Europe. In the Netherlands soon the HSL-South will be opened. This high-speed railway line connects the Randstad to Brussels and Paris. A prominent aim of this new railway is to improve international competitiveness of the Netherlands. As a

  10. Clusters of PCS for high-speed computation for modelling of the climate

    International Nuclear Information System (INIS)

    Pabon C, Jose Daniel; Eslava R, Jesus Antonio; Montoya G, Gerardo de Jesus

    2001-01-01

    In order to create high speed computing capability, the Program of Post grade in Meteorology of the Department of Geosciences, National University of Colombia installed a cluster of 8 PCs for parallel processing. This high-speed processing machine was tested with the Climate Community Model (CCM3). In this paper, the results related to the performance of this machine are presented

  11. High speed cryogenic self-acting, shaft seals for liquid rocket turbopumps

    Science.gov (United States)

    Burcham, R. E.

    1983-01-01

    Three self acting lift pad liquid oxygen face seals and two self acting gaseous helium circumferential seals for high speed liquid oxygen turbopump were evaluated. The development of a technology for reliable, 10 hour life, multiple start seals for use in high speed liquid oxygen turbopumps is discussed.

  12. 78 FR 77611 - Special Conditions: Airbus, A350-900 Series Airplane; High Speed Protection System

    Science.gov (United States)

    2013-12-24

    ... initiated three seconds after operation of the high speed warning system by application of a load of 1.5g (0...-1001; Notice No. 25-13-35-SC] Special Conditions: Airbus, A350-900 Series Airplane; High Speed...-speed protection system. The applicable airworthiness regulations do not contain adequate or appropriate...

  13. Design and application on experimental platform for high-speed bearing with grease lubrication

    Directory of Open Access Journals (Sweden)

    He Qiang

    2015-12-01

    Full Text Available The experimental platform for high-speed grease is an important tool for research and development of high-speed motorized spindle with grease lubrication. In this article, the experimental platform for high-speed grease is designed and manufactured which consists of the drive system, the test portion, the loading system, the lubrication system, the control system, and so on. In the meantime, the high-speed angular contact ceramic ball bearings B7005C/HQ1P4 as the research object are tested and contrasted in the grease lubrication and oil mist lubrication. The experimental platform performance is validated by contrast experiment, and the high-speed lubricated bearing performance is also studied especially in the relationship among the rotating speed,load and temperature rise. The results show that the experimental platform works steadily, accurate, and reliable in the experimental testing. And the grease lubrication ceramic ball bearings B7005C/HQ1P4 can be used in high-speed motorized spindle in the circular water cooling conditions when the rotating speed is lower than 40,000 r/min or the DN value (the value of the bearing diameter times the rotating speed is lower than the 1.44 × 106 mm r/min. Grease lubrication instead of oil mist lubrication under high-speed rotating will simplify the structure design of the high-speed motorized spindle and reduce the pollution to the environment.

  14. A novel portable multi-channel analyzer based on high-speed microcontroller

    International Nuclear Information System (INIS)

    Lou Xinghua; Yi Hongchang; Wang Yuemin

    2005-01-01

    This paper introduces a novel portable multi-channel analyzer (MCA) based on high-speed microcontroller. The hardware implementation and the software scenario of the MCA are discussed. The MCA has features of high speed, small size and better performances. (authors)

  15. Automatic in-process chatter avoidance in the high-speed milling process

    NARCIS (Netherlands)

    Dijk, van N.J.M.; Doppenberg, E.J.J.; Faassen, R.P.H.; Wouw, van de N.; Oosterling, J.A.J.; Nijmeijer, H.

    2010-01-01

    High-speed milling is often used in industry to maximize productivity of the manufacturing of high-technology components, such as aeronautical components, mold, and dies. The occurrence of chatter highly limits the efficiency and accuracy of high-speed milling operations. In this paper, two control

  16. High-speed, multi-channel detector readout electronics for fast radiation detectors

    International Nuclear Information System (INIS)

    Hennig, Wolfgang

    2012-01-01

    In this project, we are developing a high speed digital spectrometer that a) captures detector waveforms at rates up to 500 MSPS b) has upgraded event data acquisition with additional data buffers for zero dead time operation c) moves energy calculations to the FPGA to increase spectrometer throughput in fast scintillator applications d) uses a streamlined architecture and high speed data interface for even faster readout to the host PC These features are in addition to the standard functions in our existing spectrometers such as digitization, programmable trigger and energy filters, pileup inspection, data acquisition with energy and time stamps, MCA histograms, and run statistics. In Phase I, we upgraded one of our existing spectrometer designs to demonstrate the key principle of fast waveform capture using a 500 MSPS, 12 bit ADC and a Xilinx Virtex-4 FPGA. This upgraded spectrometer, named P500, performed well in initial tests of energy resolution, pulse shape analysis, and timing measurements, thus achieving item (a) above. In Phase II, we are revising the P500 to build a commercial prototype with the improvements listed in items (b)-(d). As described in the previous report, two devices were built to pursue this goal, named the Pixie-500 and the Pixie-500 Express. The Pixie-500 has only minor improvements from the Phase I prototype and is intended as an early commercial product (its production and part of its development were funded outside the SBIR). It also allows testing of the ADC performance in real applications. The Pixie-500 Express (or Pixie-500e) includes all of the improvements (b)-(d). At the end of Phase II of the project, we have tested and debugged the hardware, firmware and software of the Pixie-500 Express prototype boards delivered 12/3/2010. This proved substantially more complex than anticipated. At the time of writing, all hardware bugs have been fixed, the PCI Express interface is working, the SDRAM has been successfully tested and the

  17. High-speed, multi-channel detector readout electronics for fast radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Wolfgang

    2012-06-22

    In this project, we are developing a high speed digital spectrometer that a) captures detector waveforms at rates up to 500 MSPS b) has upgraded event data acquisition with additional data buffers for zero dead time operation c) moves energy calculations to the FPGA to increase spectrometer throughput in fast scintillator applications d) uses a streamlined architecture and high speed data interface for even faster readout to the host PC These features are in addition to the standard functions in our existing spectrometers such as digitization, programmable trigger and energy filters, pileup inspection, data acquisition with energy and time stamps, MCA histograms, and run statistics. In Phase I, we upgraded one of our existing spectrometer designs to demonstrate the key principle of fast waveform capture using a 500 MSPS, 12 bit ADC and a Xilinx Virtex-4 FPGA. This upgraded spectrometer, named P500, performed well in initial tests of energy resolution, pulse shape analysis, and timing measurements, thus achieving item (a) above. In Phase II, we are revising the P500 to build a commercial prototype with the improvements listed in items (b)-(d). As described in the previous report, two devices were built to pursue this goal, named the Pixie-500 and the Pixie-500 Express. The Pixie-500 has only minor improvements from the Phase I prototype and is intended as an early commercial product (its production and part of its development were funded outside the SBIR). It also allows testing of the ADC performance in real applications.The Pixie-500 Express (or Pixie-500e) includes all of the improvements (b)-(d). At the end of Phase II of the project, we have tested and debugged the hardware, firmware and software of the Pixie-500 Express prototype boards delivered 12/3/2010. This proved substantially more complex than anticipated. At the time of writing, all hardware bugs have been fixed, the PCI Express interface is working, the SDRAM has been successfully tested and the SHARC

  18. Combined application of FBG and PZT sensors for plantar pressure monitoring at low and high speed walking.

    Science.gov (United States)

    Suresh, R; Bhalla, S; Singh, C; Kaur, N; Hao, J; Anand, S

    2015-01-01

    Clinical monitoring of planar pressure is vital in several pathological conditions, such as diabetes, where excess pressure might have serious repercussions on health of the patient, even to the extent of amputation. The main objective of this paper is to experimentally evaluate the combined application of the Fibre Bragg Grating (FBG) and the lead zirconate titanate (PZT) piezoceramic sensors for plantar pressure monitoring during walk at low and high speeds. For fabrication of the pressure sensors, the FBGs are embedded within layers of carbon composite material and stacked in an arc shape. From this embedding technique, average pressure sensitivity of 1.3 pm/kPa and resolution of nearly 0.8 kPa is obtained. These sensors are found to be suitable for measuring the static and the low-speed walk generated foot pressure. Simultaneously, PZT patches of size 10 × 10 × 0.3 mm were used as sensors, utilizing the d_{33} (thickness) coupling mode. A sensitivity of 7.06 mV/kPa and a pressure resolution of 0.14 kPa is obtained from these sensors, which are found to be suitable for foot pressure measurement during high speed walking and running. Both types of sensors are attached to the underside of the sole of commercially available shoes. In the experiments, a healthy male subject walks/runs over the treadmill wearing the fabricated shoes at various speeds and the peak pressure is measured using both the sensors. Commercially available low-cost hardware is used for interrogation of the two sensor types. The test results clearly show the feasibility of the FBG and the PZT sensors for measurement of plantar pressure. The PZT sensors are more accurate for measurement of pressure during walking at high speeds. The FBG sensors, on the other hand, are found to be suitable for static and quasi-dynamic (slow walking) conditions. Typically, the measured pressure varied from 400 to 600 kPa below the forefoot and 100 to 1000 kPa below the heel as the walking speed varied from 1

  19. RUN COORDINATION

    CERN Multimedia

    G. Rakness.

    2013-01-01

    After three years of running, in February 2013 the era of sub-10-TeV LHC collisions drew to an end. Recall, the 2012 run had been extended by about three months to achieve the full complement of high-energy and heavy-ion physics goals prior to the start of Long Shutdown 1 (LS1), which is now underway. The LHC performance during these exciting years was excellent, delivering a total of 23.3 fb–1 of proton-proton collisions at a centre-of-mass energy of 8 TeV, 6.2 fb–1 at 7 TeV, and 5.5 pb–1 at 2.76 TeV. They also delivered 170 μb–1 lead-lead collisions at 2.76 TeV/nucleon and 32 nb–1 proton-lead collisions at 5 TeV/nucleon. During these years the CMS operations teams and shift crews made tremendous strides to commission the detector, repeatedly stepping up to meet the challenges at every increase of instantaneous luminosity and energy. Although it does not fully cover the achievements of the teams, a way to quantify their success is the fact that that...

  20. Accuracy Assessment for the Three-Dimensional Coordinates by High-Speed Videogrammetric Measurement

    Directory of Open Access Journals (Sweden)

    Xianglei Liu

    2018-01-01

    Full Text Available High-speed CMOS camera is a new kind of transducer to make the videogrammetric measurement for monitoring the displacement of high-speed shaking table structure. The purpose of this paper is to validate the three-dimensional coordinate accuracy of the shaking table structure acquired from the presented high-speed videogrammetric measuring system. In the paper, all of the key intermediate links are discussed, including the high-speed CMOS videogrammetric measurement system, the layout of the control network, the elliptical target detection, and the accuracy validation of final 3D spatial results. Through the accuracy analysis, the submillimeter accuracy can be made for the final the three-dimensional spatial coordinates which certify that the proposed high-speed videogrammetric technique is a better alternative technique which can replace the traditional transducer technique for monitoring the dynamic response for the shaking table structure.

  1. Design and applications of a pneumatic accelerator for high speed punching

    International Nuclear Information System (INIS)

    Yaldiz, Sueleyman; Saglam, Haci; Unsacar, Faruk; Isik, Hakan

    2007-01-01

    High speed forming is an important production method that requires specially designed HERF (high energy rate forming) machines. Most of the HERF machines are devices that consist of a system in which energy is stored and a differential piston mechanism is used to release the energy at high rate. In order to eliminate the usage of specially designed HERF machines and to obtain the high speed forming benefits, the accelerator which can be adapted easily onto conventional presses has been designed and manufactured in this study. The designed energy accelerator can be incorporated into mechanical press to convert the low speed operation into high-speed operation of a hammer. Expectations from this work are reduced distortion rates, increased surface quality and precise dimensions in metal forming operations. From the performance test, the accelerator is able to achieve high speed and energy which require for high speed blanking of thick sheet metals

  2. Preliminary tests of a high speed vertical axis windmill model

    Energy Technology Data Exchange (ETDEWEB)

    South, P; Rangi, R S

    1971-01-01

    This report discusses a fixed-pitch vertical axis windmill that combines the inherent simplicity of this type of machine with a high aerodynamic efficiency and a high relative velocity. A three-bladed rotor was selected as the basic design, having constant chord symmetric airfoil blades configured in a catenary curve such that the rotor diameter is equal to the rotor height. In wind tunnel tests using a 30 inch scale model, it was found that once this rotor was given a very low rotational speed, it picked up speed and ran at a rotor tip velocity/wind speed ratio greater than 1. The number of blades was varied in the testing. A maximum power coefficient of 0.67 was achieved at 17 ft/s wind speed at a tip speed/wind speed ratio of 7.25 for a 2-bladed rotor. Increasing the number of blades above 3 did not result in higher power. The rotor could operate in gusts which double the mean wind velocity. Examination of Reynolds number effects, and taking into account the scale of the model, it was concluded that a full-scale windmill could run at lower velocity ratios than those predicted by the model tests, and that it could self-start under no-load conditions if the cut-in rpm are at least half the rpm for maximum power at the prevailing wind speed. Preliminary estimates show that a 15 ft diameter windmill of this design, designed to operate with a safety factor of 2.5 up to a maximum wind speed of 60 ft/s, would weigh ca 150 lb and could be marketed for ca $60.00, excluding the driven unit, if sufficient quantities were produced to make tooling costs negligible. Similarly, a 30 ft windmill would weigh ca 1000 lb and cost ca $400.00. 2 refs., 6 figs.

  3. Reversible airfoils for stopped rotors in high speed flight

    International Nuclear Information System (INIS)

    Niemiec, Robert; Jacobellis, George; Gandhi, Farhan

    2014-01-01

    This study starts with the design of a reversible airfoil rib for stopped-rotor applications, where the sharp trailing-edge morphs into the rounded leading-edge, and vice-versa. A NACA0012 airfoil is approximated in a piecewise linear manner and straight, rigid outer profile links used to define the airfoil contour. The end points of the profile links connect to control links, each set on a central actuation rod via an offset. Chordwise motion of the actuation rod moves the control and the profile links and reverses the airfoil. The paper describes the design methodology and evolution of the final design, based on which two reversible airfoil ribs were fabricated and used to assemble a finite span reversible rotor/wing demonstrator. The profile links were connected by Aluminum strips running in the spanwise direction which provided stiffness as well as support for a pre-tensioned elastomeric skin. An inter-rib connector with a curved-front nose piece supports the leading-edge. The model functioned well and was able to reverse smoothly back-and-forth, on application and reversal of a voltage to the motor. Navier–Stokes CFD simulations (using the TURNS code) show that the drag coefficient of the reversible airfoil (which had a 13% maximum thickness due to the thickness of the profile links) was comparable to that of the NACA0013 airfoil. The drag of a 16% thick elliptical airfoil was, on average, about twice as large, while that of a NACA0012 in reverse flow was 4–5 times as large, even prior to stall. The maximum lift coefficient of the reversible airfoil was lower than the elliptical airfoil, but higher than the NACA0012 in reverse flow operation. (paper)

  4. Characterizing occipital condyle loads under high-speed head rotation.

    Science.gov (United States)

    Pintar, Frank A; Yoganandan, Narayan; Baisden, Jamie

    2005-11-01

    Because of the need to evaluate anthropomorphic test device (ATD) biofidelity under high-head angular accelerations, the purpose of the present investigation was to develop appropriate instrumentation for intact post mortem human subject (PMHS) testing, validate the instrumentation, and obtain information to characterize the response of the head-neck complex under this loading scenario. A series of rigid-arm pendulum, inertially loaded ATD tests was conducted. Head and neck ATD hydraulic piston chin pull tests were conducted. Subsequently, a series of PMHS tests was conducted to derive the response of the human head-neck under high-rate chin loading. Finally, Hybrid III and THOR-NT ATD head-neck systems were evaluated under the same scenario as the PMHS. A parametric analysis for center of gravity (CG) location and accelerometer orientation determined that even small errors (+/- 3 mm or 2 degrees), produced errors in the force and moment calculations by as much as 17 %. If the moment of inertia (MOI) term was varied by 5 %, resulting moment calculations were affected by as much as 8 %. If the 5 % error in MOI was used to compute occipital condyle moments, and results compared to upper load cell derived moments, peaks differed by as much as 24 %. The head CG and mass MOI should be directly measured for each preparation to obtain accurate results. The injury run on each specimen resulted in predominantly C1-C2 separations or partial separations. The 50(th) percentile probability of AIS=2+ neck injury using tensile force was about 2400 N; for AIS=3+ neck injury the 50(th) percentile risk was about 3180 N. When inserting extension moment as the criteria, the 50(th) percentile probability of an AIS=2+ injury was 51 Nm. The AIS=3+ extension moment at the 50(th) percentile probability was 75 Nm. The new THOR-NT ATD head-neck produced more biofidelic responses with an alternate head-neck junction design compared to the Hybrid III ATD.

  5. VLSI for High-Speed Digital Signal Processing

    Science.gov (United States)

    1994-09-30

    particular, the design, layout and fab - rication of integrated circuits. The primary project for this grant has been the design and implementation of a...targeted at 33.36 dB, and PSNR (dB) Rate ( bpp ) the FRSBC algorithm, targeted at 0.5 bits/pixel, respec- Filter FDSBC FRSBC FDSBC FRSBC tively. The filter...to mean square error d by as shown in Fig. 6, is used, yielding a total of 16 subbands. 255’ The rates, in bits per pixel ( bpp ), and the peak signal

  6. Effects of unbalance location on dynamic characteristics of high-speed gasoline engine turbocharger with floating ring bearings

    Science.gov (United States)

    Wang, Longkai; Bin, Guangfu; Li, Xuejun; Liu, Dingqu

    2016-03-01

    For the high-speed gasoline engine turbocharger rotor, due to the heterogeneity of multiple parts material, manufacturing and assembly errors, running wear in impeller and uneven carbon of turbine, the random unbalance usually can be developed which will induce excessive rotor vibration, and even lead to nonlinear vibration accidents. However, the investigation of unbalance location on the nonlinear high-speed turbocharger rotordynamic characteristics is less. In order to discuss the rotor unbalance location effects of turbocharger with nonlinear floating ring bearings(FRBs), the realistic turbocharger of gasoline engine is taken as a research object. The rotordynamic equations of motion under the condition of unbalance are derived by applied unbalance force and nonlinear oil film force of FRBs. The FE model of turbocharger rotor-bearing system is modeled which includes the unbalance excitation and nonlinear FRBs. Under the conditions of four different applied locations of unbalance, the nonlinear transient analyses are performed based on the rotor FEM. The differences of dynamic behavior are obvious to the turbocharger rotor systems for four conditions, and the bifurcation phenomena are different. From the results of waterfall and transient response analysis, the speed for the appearance of fractional frequency is not identical and the amplitude magnitude is different from the different unbalance locations, and the non-synchronous vibration does not occur in the turbocharger and the amplitude is relative stable and minimum under the condition 4. The turbocharger vibration and non-synchronous components could be reduced or suppressed by controlling the applied location of unbalance, which is helpful for the dynamic design, fault diagnosis and vibration control of the high-speed gasoline engine turbochargers.

  7. HIGH SPEED RAILWAY LINES – FUTURE PART OF CZECH RAILWAY NETWORK?

    Directory of Open Access Journals (Sweden)

    Lukáš Týfa

    2017-08-01

    Full Text Available The paper first describes high speed rail generally and explains the relationship between high speed and conventional railway networks (according to the vehicle types in operation on the network. The core of the paper is comprised of the methodology for choosing the best route for a railway line and its application to the high speed railway connection Praha – Brno. The Algorithm used assumes the existence of more route proposals, which could be different in terms of the operational conception, line routing or types of vehicles used. The optimal variant is the one with the lowest daily cost, which includes infrastructure and vehicle costs; investment and operational costs. The results from applying this model confirmed the assumption, that a dedicated high speed railway line, only for high speed trains, has the same or lower investment costs than a line for both high speed and conventional trains. Furthermore, a dedicated high line also has a lower cost for infrastructure maintenance but a higher cost for buying high speed multiple units.

  8. Assessment of left ventricular hemodynamics by Gd-DTPA enhanced high speed cine MRI

    International Nuclear Information System (INIS)

    Matsumura, Kentaro; Nakase, Emiko; Kawai, Ichiro

    1992-01-01

    To assess the validity of Gd-DTPA enhanced high speed cine MRI in left ventricular (LV) volumes and ejection fraction (EF), high speed cine MRI was compared with intra-venous digital subtraction left ventriculography (IV-DSA) in 14 patients. All patients underwent conventional cine MRI and Gd-DTPA enhanced high speed MRI, simultaneously. The pulse sequences of high speed MRI were TR 8 ms (TR 6 ms plus rewind pulse 2 ms), TE 3.2 ms, matrix 128, phase encode 8 or 6 and NEX 1. Comparison with LV-volume showed a high correlation (y = 0.854x + 1,699, r = 0.985) between high speed cine MRI and VI-DSA. To make left ventricular volume curve by area-length method in cine MRI, manual tracing of LV-cavity was more difficult in conventional cine MRI-method than enhanced high speed cine MRI-method. In conclusion, first pass-Gd-DTPA enhanced high speed cine MRI, using the horizontal long axis approach and the multiphase study, is a highly, accurate reproducible method of evaluating LV-volumetry. (author)

  9. Diagnostics of high-speed streams and coronal holes using geomagnetic pulsations

    International Nuclear Information System (INIS)

    Bol'shakova, O.V.; Troitskaya, V.A.

    1980-01-01

    In order to study the relations of high-speed solar wind streams and coronal holes analyzed are the parameters of geomagnetic pulsations of the Rs3 type and of high-speed streams at the decrease branch and in the minimum of solar activity. On the basis of the analysis of exciting pulsation regime determined are the differences in characteristics of high-speed stream properties. Presented are the graphical distributions of a number of occurrances of high-speed streams, coronal holes and pure regimes of Rs3R pulsations in several sections of 1973 in the Sun rotations of N1903-1919 and of the change of solar wind velocity while passing through the high-speed streams. It is found that Rs3R occurrance can serve an indicator of the high-speed flux connection with the large equatorial coronal hole. On the basis of the analysis of exciting pulsation properties determined are the differences in the stream characteristics. However the preliminary estimates permit to adopt neither the first nor the second of the existing hypotheses on the sourse of formation of high-speed streams

  10. The match-to-match variation of match-running in elite female soccer.

    Science.gov (United States)

    Trewin, Joshua; Meylan, César; Varley, Matthew C; Cronin, John

    2018-02-01

    The purpose of this study was to examine the match-to-match variation of match-running in elite female soccer players utilising GPS, using full-match and rolling period analyses. Longitudinal study. Elite female soccer players (n=45) from the same national team were observed during 55 international fixtures across 5 years (2012-2016). Data was analysed using a custom built MS Excel spreadsheet as full-matches and using a rolling 5-min analysis period, for all players who played 90-min matches (files=172). Variation was examined using co-efficient of variation and 90% confidence limits, calculated following log transformation. Total distance per minute exhibited the smallest variation when both the full-match and peak 5-min running periods were examined (CV=6.8-7.2%). Sprint-efforts were the most variable during a full-match (CV=53%), whilst high-speed running per minute exhibited the greatest variation in the post-peak 5-min period (CV=143%). Peak running periods were observed as slightly more variable than full-match analyses, with the post-peak period very-highly variable. Variability of accelerations (CV=17%) and Player Load (CV=14%) was lower than that of high-speed actions. Positional differences were also present, with centre backs exhibiting the greatest variation in high-speed movements (CV=41-65%). Practitioners and researchers should account for within player variability when examining match performances. Identification of peak running periods should be used to assist worst case scenarios. Whilst micro-sensor technology should be further examined as to its viable use within match-analyses. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. Molecular dynamic simulations of the high-speed copper nanoparticles collision with the aluminum surface

    Science.gov (United States)

    Pogorelko, V. V.; Mayer, A. E.

    2016-11-01

    With the use of the molecular dynamic simulations, we investigated the effect of the high-speed (500 m/s, 1000 m/s) copper nanoparticle impact on the mechanical properties of an aluminum surface. Dislocation analysis shows that a large number of dislocations are formed in the impact area; the total length of dislocations is determined not only by the speed and size of the incoming copper nanoparticle (kinetic energy of the nanoparticle), but by a temperature of the system as well. The dislocations occupy the whole area of the aluminum single crystal at high kinetic energy of the nanoparticle. With the decrease of the nanoparticle kinetic energy, the dislocation structures are formed in the near-surface layer; formation of the dislocation loops takes place. Temperature rise of the system (aluminum substrate + nanoparticle) reduces the total dislocation length in the single crystal of aluminum; there is deeper penetration of the copper atoms in the aluminum at high temperatures. Average energy of the nanoparticles and room temperature of the system are optimal for production of high-quality layers of copper on the aluminum surface.

  12. Investigating High-Speed Railways In Terms Of The Economy For Our Country and The Region

    OpenAIRE

    Şahin, Onur; Altan, Mehmet Fatih

    2018-01-01

    High-speed railways have a history of more than 40 years. Railways continued to be popular especially in variousparts of Eastern Europe and Asia until the end of the 1980s. As of today, we can talk about a high-speed railway thatcontinues to develop in the continents of Africa, Asia and the Americas around the world. At this point, one of themost significant factors in railways, in particular high-speed railways, is planning. Planning determines the effect ofthe railway on the economy, as wel...

  13. Real time data compactor (sparsifier) and 8 megabyte high speed FIFO for HEP

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.; Knickerbocker, K.L.; Wegner, C.R.; Baumbaugh, B.W.; Ruchti, R.

    1985-10-01

    A Video-Data-Acquisition-System (VDAS) has been developed to record image data from a scintillating glass fiber-optic target developed for High Energy Physics. The major components of the VDAS are a flash ADC, a ''real time'' high speed data compactor, and high speed 8 megabyte FIFO memory. The data rates through the system are in excess of 30 megabytes/second. The compactor is capable of reducing the amount of data needed to reconstruct typical images by as much as a factor of 20. The FIFO uses only standard NMOS DRAMS and TTL components to achieve its large size and high speed at relatively low power and cost

  14. High-speed cinematography of gas-tungsten arc welding: theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, L.D.; Key, J.F.

    1981-06-01

    High-speed photo-instrumentation theory and application are reviewed, with particular emphasis on high-speed cinematography, for the engineer who has not acquired an extensive background in scientific photography. Camera systems, optics, timing system, lighting, photometric equipment, filters, and camera mounts are covered. Manufacturers and other resource material are listed in the Appendices. The properties and processing of photosensitive materials suitable for high-speed photography are reviewed, and selected film data are presented. Methods are described for both qualitative and quantitative film analysis. This technology is applied to the problem of analyzing plasma dynamics in a gas-tungsten welding arc.

  15. High-Speed Non-Volatile Optical Memory: Achievements and Challenges

    Directory of Open Access Journals (Sweden)

    Vadym Zayets

    2017-01-01

    Full Text Available We have proposed, fabricated, and studied a new design of a high-speed optical non-volatile memory. The recoding mechanism of the proposed memory utilizes a magnetization reversal of a nanomagnet by a spin-polarized photocurrent. It was shown experimentally that the operational speed of this memory may be extremely fast above 1 TBit/s. The challenges to realize both a high-speed recording and a high-speed reading are discussed. The memory is compact, integratable, and compatible with present semiconductor technology. If realized, it will advance data processing and computing technology towards a faster operation speed.

  16. Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

    1989-04-01

    This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

  17. High speed galloping in the cheetah (Acinonyx jubatus) and the racing greyhound (Canis familiaris): spatio-temporal and kinetic characteristics.

    Science.gov (United States)

    Hudson, Penny E; Corr, Sandra A; Wilson, Alan M

    2012-07-15

    The cheetah and racing greyhound are of a similar size and gross morphology and yet the cheetah is able to achieve a far higher top speed. We compared the kinematics and kinetics of galloping in the cheetah and greyhound to investigate how the cheetah can attain such remarkable maximum speeds. This also presented an opportunity to investigate some of the potential limits to maximum running speed in quadrupeds, which remain poorly understood. By combining force plate and high speed video data of galloping cheetahs and greyhounds, we show how the cheetah uses a lower stride frequency/longer stride length than the greyhound at any given speed. In some trials, the cheetahs used swing times as low as those of the greyhounds (0.2 s) so the cheetah has scope to use higher stride frequencies (up to 4.0 Hz), which may contribute to it having a higher top speed that the greyhound. Weight distribution between the animal's limbs varied with increasing speed. At high speed, the hindlimbs support the majority of the animal's body weight, with the cheetah supporting 70% of its body weight on its hindlimbs at 18 m s(-1); however, the greyhound hindlimbs support just 62% of its body weight. Supporting a greater proportion of body weight on a particular limb is likely to reduce the risk of slipping during propulsive efforts. Our results demonstrate several features of galloping and highlight differences between the cheetah and greyhound that may account for the cheetah's faster maximum speeds.

  18. Scalable Active Optical Access Network Using Variable High-Speed PLZT Optical Switch/Splitter

    Science.gov (United States)

    Ashizawa, Kunitaka; Sato, Takehiro; Tokuhashi, Kazumasa; Ishii, Daisuke; Okamoto, Satoru; Yamanaka, Naoaki; Oki, Eiji

    This paper proposes a scalable active optical access network using high-speed Plumbum Lanthanum Zirconate Titanate (PLZT) optical switch/splitter. The Active Optical Network, called ActiON, using PLZT switching technology has been presented to increase the number of subscribers and the maximum transmission distance, compared to the Passive Optical Network (PON). ActiON supports the multicast slot allocation realized by running the PLZT switch elements in the splitter mode, which forces the switch to behave as an optical splitter. However, the previous ActiON creates a tradeoff between the network scalability and the power loss experienced by the optical signal to each user. It does not use the optical power efficiently because the optical power is simply divided into 0.5 to 0.5 without considering transmission distance from OLT to each ONU. The proposed network adopts PLZT switch elements in the variable splitter mode, which controls the split ratio of the optical power considering the transmission distance from OLT to each ONU, in addition to PLZT switch elements in existing two modes, the switching mode and the splitter mode. The proposed network introduces the flexible multicast slot allocation according to the transmission distance from OLT to each user and the number of required users using three modes, while keeping the advantages of ActiON, which are to support scalable and secure access services. Numerical results show that the proposed network dramatically reduces the required number of slots and supports high bandwidth efficiency services and extends the coverage of access network, compared to the previous ActiON, and the required computation time for selecting multicast users is less than 30msec, which is acceptable for on-demand broadcast services.

  19. Large-eddy simulation/Reynolds-averaged Navier-Stokes hybrid schemes for high speed flows

    Science.gov (United States)

    Xiao, Xudong

    Three LES/RANS hybrid schemes have been proposed for the prediction of high speed separated flows. Each method couples the k-zeta (Enstrophy) BANS model with an LES subgrid scale one-equation model by using a blending function that is coordinate system independent. Two of these functions are based on turbulence dissipation length scale and grid size, while the third one has no explicit dependence on the grid. To implement the LES/RANS hybrid schemes, a new rescaling-reintroducing method is used to generate time-dependent turbulent inflow conditions. The hybrid schemes have been tested on a Mach 2.88 flow over 25 degree compression-expansion ramp and a Mach 2.79 flow over 20 degree compression ramp. A special computation procedure has been designed to prevent the separation zone from expanding upstream to the recycle-plane. The code is parallelized using Message Passing Interface (MPI) and is optimized for running on IBM-SP3 parallel machine. The scheme was validated first for a flat plate. It was shown that the blending function has to be monotonic to prevent the RANS region from appearing in the LES region. In the 25 deg ramp case, the hybrid schemes provided better agreement with experiment in the recovery region. Grid refinement studies demonstrated the importance of using a grid independent blend function and further improvement with experiment in the recovery region. In the 20 deg ramp case, with a relatively finer grid, the hybrid scheme characterized by grid independent blending function well predicted the flow field in both the separation region and the recovery region. Therefore, with "appropriately" fine grid, current hybrid schemes are promising for the simulation of shock wave/boundary layer interaction problems.

  20. Mobile Measurements of Methane Using High-Speed Open-Path Technology

    Science.gov (United States)

    Burba, G. G.; Anderson, T.; Ediger, K.; von Fischer, J.; Gioli, B.; Ham, J. M.; Hupp, J. R.; Kohnert, K.; Levy, P. E.; Polidori, A.; Pikelnaya, O.; Price, E.; Sachs, T.; Serafimovich, A.; Zondlo, M. A.; Zulueta, R. C.

    2016-12-01

    Methane plays a critical role in the radiation balance, chemistry of the atmosphere, and air quality. The major anthropogenic sources of CH4 include oil and gas development sites, natural gas distribution networks, landfill emissions, and agricultural production. The majority of oil and gas and urban CH4 emission occurs via variable-rate point sources or diffused spots in topographically challenging terrains (e.g., street tunnels, elevated locations at water treatment plants, vents, etc.). Locating and measuring such CH4 emissions is challenging when using traditional micrometeorological techniques, and requires development of novel approaches. Landfill CH4 emissions traditionally assessed at monthly or longer time intervals are subject to large uncertainties because of the snapshot nature of the measurements and the barometric pumping phenomenon. The majority of agricultural and natural CH4 production occurs in areas with little infrastructure or easily available grid power (e.g., rice fields, arctic and boreal wetlands, tropical mangroves, etc.). A lightweight, high-speed, high-resolution, open-path technology was recently developed for eddy covariance measurements of CH4 flux, with power consumption 30-150 times below other available technologies. It was designed to run on solar panels or a small generator and be placed in the middle of the methane-producing ecosystem without a need for grid power. Lately, this instrumentation has been utilized increasingly more frequently outside of the traditional use on stationary flux towers. These novel approaches include measurements from various moving platforms, such as cars, aircraft, and ships. Projects included mapping of concentrations and vertical profiles, leak detection and quantification, mobile emission detection from natural gas-powered cars, soil CH4 flux surveys, etc. This presentation will describe key projects utilizing the novel lightweight low-power high-resolution open-path technology, and will highlight

  1. Mode Transition Variable Geometry for High Speed Inlets for Hypersonic Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hypersonic propulsion research has been a focus of the NASA aeronautics program for years. Previous high-speed cruise and space access programs have examined the...

  2. Advances on Propulsion Technology for High-Speed Aircraft. Volume 1

    National Research Council Canada - National Science Library

    2007-01-01

    .... The demand for supersonic vehicles is believed to boost in the incoming years. This VKI/RTO lecture series will review the current state of the art of high speed propulsion for both airplanes and space launchers...

  3. Advances on Propulsion Technology for High-Speed Aircraft. Volume 2

    National Research Council Canada - National Science Library

    2007-01-01

    .... The demand for supersonic vehicles is believed to boost in the incoming years. This VKI/RTO lecture series will review the current state of the art of high speed propulsion for both airplanes and space launchers...

  4. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high-speed civil aircraft will require breakthrough developments in propulsion systems, including novel techniques to optimize inlet...

  5. High Speed Vessels to Market : Comparative Case Studies in the Passenger Trade

    Science.gov (United States)

    2001-08-01

    The Volpe Center chose to study several existing catamarans and high speed monohulls in comparison to representative SWATH family craft, including the SLICE 400 (passenger) and SLICE 600 (passenger/90 car) variants, the former similar in size and per...

  6. High-Speed, Low-Power ADC for Digital Beam Forming (DBF) Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 1, Ridgetop Group designed a high-speed, yet low-power silicon germanium (SiGe)-based, analog-to-digital converter (ADC) to be a key element for digital...

  7. High-Speed, Low-Power ADC for Digital Beam Forming (DBF) Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop Group will design a high-speed, low-power silicon germanium (SiGe)-based, analog-to-digital converter (ADC) to be a key element for digital beam forming...

  8. Carbon Dioxide Mitigation Benefit of High-Speed Railway in Terms of Carbon Tax

    Directory of Open Access Journals (Sweden)

    Fu Yanbing

    2013-01-01

    Full Text Available This paper calculates the carbon dioxide mitigation benefit of high-speed railway based on the carbon dioxide tax policy. We define the carbon dioxide emission system boundary for high-speed railway in its whole life cycle and estimate the life cycle carbon dioxide inventories during its construction, application, and recovery stages. And then we establish a theoretical model to calculate the life cycle carbon dioxide mitigation quantity for high-speed railway when compared with road transport and then calculate its carbon dioxide mitigation benefit. The numerical example shows that the carbon dioxide mitigation benefit of high-speed railway is better than that of road transport from the whole life cycle perspective.

  9. Investigation of new vehicle detectors for high-speed signalized intersections.

    Science.gov (United States)

    2015-09-01

    Early indications from the use of the newest vehicle detectors for high-speed signalized intersections : suggested that they perform well as replacements for the Texas Department of Transportations : (TxDOTs) legacy systems, but this early conc...

  10. Multicamera High Dynamic Range High-Speed Video of Rocket Engine Tests and Launches

    Data.gov (United States)

    National Aeronautics and Space Administration — High-speed video recording of rocket engine tests has several challenges. The scenes that are imaged have both bright and dark regions associated with plume emission...

  11. Social exclusion and high speed rail: The case study of Spain

    Energy Technology Data Exchange (ETDEWEB)

    Pagliara, F.; Menicocci, F.; Vassallo, J.M.; Gomez, J.

    2016-07-01

    Very few contributions in the literature have dealt with the issue of social exclusion related to High Speed Rail systems. The objective of this manuscript is to understand what are the factors excluding users from choosing High Speed Rail services considering as case study Spain. For this purpose, a Revealed Preference survey was employed in November and December 2015. A questionnaire was submitted to users of the Spanish transport systems travelling for long distance-journeys. The aim was that of investigating their perception of High Speed Rail system and the factors inhibiting passengers or excluding them from its use. Data about their socioeconomic characteristics were collected as well. The main result of the survey has been that a relationship between social exclusion and High Speed Rail in Spain is present, especially in terms of geographical exclusion. (Author)

  12. High Speed Railway Environment Safety Evaluation Based on Measurement Attribute Recognition Model

    Directory of Open Access Journals (Sweden)

    Qizhou Hu

    2014-01-01

    Full Text Available In order to rationally evaluate the high speed railway operation safety level, the environmental safety evaluation index system of high speed railway should be well established by means of analyzing the impact mechanism of severe weather such as raining, thundering, lightning, earthquake, winding, and snowing. In addition to that, the attribute recognition will be identified to determine the similarity between samples and their corresponding attribute classes on the multidimensional space, which is on the basis of the Mahalanobis distance measurement function in terms of Mahalanobis distance with the characteristics of noncorrelation and nondimensionless influence. On top of the assumption, the high speed railway of China environment safety situation will be well elaborated by the suggested methods. The results from the detailed analysis show that the evaluation is basically matched up with the actual situation and could lay a scientific foundation for the high speed railway operation safety.

  13. Integrated High-Speed Torque Control System for a Robotic Joint

    Science.gov (United States)

    Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)

    2013-01-01

    A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).

  14. Development of ultra high speed photographic system using high repetition rate visible laser

    International Nuclear Information System (INIS)

    Lee, Jong Min; Cha, Byung Hun; Kim, Sung Ho; Kim, Jung Bog; Lim, Chang Hwan; Cha, Hyung Ki; Song, Kyu Seok; Lee, Byung Deok; Rhi, Jong Hoon; Baik, Dae Hyun; Han, Jae Min; Rho, Si Pyo; Lee, Byung Cheol; Jeong, Do Yung; Choi, An Seong; Jeong, Chan Ik; Park, Dae Ung; Jeong, Sung Min; Lee, Sang Kil; Kim, Heon Jun; Jang, Rae gak; Jo, Do Hun; Park, Min Young

    1992-12-01

    The goal of this project is to develop and commercialize a high speed photographic system equipped with a high repetition rate visible laser. The developed system provides the characteristics of high time resolution and large number of frames. The system consists of 10 W air cooled CVL or a 30 W water cooled CVL, a rotating drum-type high speed camera with the framing rate of 35,000 fps, and a automatic control device. The system has the performance of 10 nsec time resolution, 35,000 fps framing rate, and 250 picture frames. The high speed photographic systems are widely applied to the fields such as high-efficient engine development, high-speed vibration analysis, shock wave propagation study, flow visualization analysis, weapon development, etc. (Author)

  15. Turbulent Scalar Transport Model Validation for High Speed Propulsive Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort entails the validation of a RANS turbulent scalar transport model (SFM) for high speed propulsive flows, using new experimental data sets and...

  16. High-Speed Rail and Local Land Development : Case Studies in London and Las Vegas

    Science.gov (United States)

    2017-11-01

    The efficacy of a high-speed rail system depends, in part, upon locating rail stations close to urban centers and integrating them into broader transportation networks and the urban realm. In addition, through economies of agglomeration, successful h...

  17. Study on the machinability characteristics of superalloy Inconel 718 during high speed turning

    International Nuclear Information System (INIS)

    Thakur, D.G.; Ramamoorthy, B.; Vijayaraghavan, L.

    2009-01-01

    The present paper is an attempt of an experimental investigation on the machinability of superalloy, Inconel 718 during high speed turning using tungsten carbide insert (K20) tool. The effect of machining parameters on the cutting force, specific cutting pressure, cutting temperature, tool wear and surface finish criteria were investigated during the experimentation. The machining parameters have been optimized by measuring forces. The effect of machining parameters on the tool wear was examined through SEM micrographs. During high speed turning acoustic emission signal were collected and analyzed to understand the effect of cutting parameters during online. The research work findings will also provide useful economic machining solution by utilizing economical tungsten carbide tooling during high speed processing of Inconel 718, which is otherwise usually machined by costly PCD or CBN tools. The present approach and results will be helpful for understanding the machinability of Inconel 718 during high speed turning for the manufacturing engineers

  18. Optimal design of high-speed loading spindle based on ABAQUS

    Science.gov (United States)

    Yang, Xudong; Dong, Yu; Ge, Qingkuan; Yang, Hai

    2017-12-01

    The three-dimensional model of high-speed loading spindle is established by using ABAQUS’s modeling module. A finite element analysis model of high-speed loading spindle was established by using spring element to simulate bearing boundary condition. The static and dynamic performance of the spindle structure with different specifications of the rectangular spline and the different diameter neck of axle are studied in depth, and the influence of different spindle span on the static and dynamic performance of the high-speed loading spindle is studied. Finally, the optimal structure of the high-speed loading spindle is obtained. The results provide a theoretical basis for improving the overall performance of the test-bed

  19. An Analysis of an Ultra-High Speed Content-Addressable Database Retrieval System

    National Research Council Canada - National Science Library

    Costianes, Peter

    2001-01-01

    ...) and its implementation as a high speed optical chip. The paradigm uses polarization states to represent binary very words and EO modulators to represent database words to perform what is essentially XOR operations...

  20. High-Speed Fiber Optic Micromultiplexer for Space and Airborne Lidar, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA Earth Science Division need for high-speed fiber optic multiplexers for next generation lidar systems, Luminit proposes to develop a new Fiber...