WorldWideScience

Sample records for total heat generation

  1. STEAM GENERATOR TUBE INTEGRITY ANALYSIS OF A TOTAL LOSS OF ALL HEAT SINKS ACCIDENT FOR WOLSONG NPP UNIT 1

    Directory of Open Access Journals (Sweden)

    HEOK-SOON LIM

    2014-02-01

    Full Text Available A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS and the steam generator (SG secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  2. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo [Korea Htydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Kim, Seoungrae [Nuclear Engineering Service and Solution, Daejeon (Korea, Republic of)

    2014-02-15

    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  3. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    International Nuclear Information System (INIS)

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo; Kim, Seoungrae

    2014-01-01

    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident

  4. Study of entropy generation in a slab with non-uniform internal heat generation

    Directory of Open Access Journals (Sweden)

    El Haj Assad Mamdouh

    2013-01-01

    Full Text Available Analysis of entropy generation in a rectangular slab with a nonuniform internal heat generation is presented. Dimensionless local and total entropy generation during steady state heat conduction through the slab are obtained. Two different boundary conditions have been considered in the analysis, the first with asymmetric convection and the second with constant slab surface temperature. Temperature distribution within the slab is obtained analytically. The study investigates the effect of some relevant dimensionless heat transfer parameters on entropy generation. The results show that there exists a minimum local entropy generation but there does not exist a minimum total entropy generation for certain combinations of the heat transfer parameters. The results of calculations are presented graphically.

  5. A Modified Entropy Generation Number for Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    This paper demonstrates the difference between the entropy generation number method proposed by Bejian and the method of entropy generation per unit amount of heat transferred in analyzing the ther-modynamic performance of heat exchangers,points out the reason for leading to the above difference.A modified entropy generation number for evaluating the irreversibility of heat exchangers is proposed which is in consistent with the entropy generation per unit amount of heat transferred in entropy generation analysis.The entropy generated by friction is also investigated.Results show that when the entropy generated by friction in heat exchangers in taken into account,there is a minimum total entropy generation number while the NTU and the ratio of heat capacity rates vary.The existence of this minimum is the prerequisite of heat exchanger optimization.

  6. The optimization of longitudinal convective fins with internal heat generation

    International Nuclear Information System (INIS)

    Razelos, P.

    1979-01-01

    The solution of the optimization problem for longitudinal convective fins of constant thickness, triangular or parabolic profile, and uniform internal heat generation, is presented. The cases considered are those of a given heat generation density, total heat generation and heat generation per unit width of the fin, when either the heat dissipation or the width of the fin is prescribed. The results are set forth in a nondimensional form, which are presented graphically. The effect of the fin's thermal conductivity upon the optimum dimensions is discussed, and limiting values for the heat generation and the heat dissipation, which may be imposed on the fin for a feasible optimization, are also obtained. (Auth.)

  7. Effective thermal conductivity of a heat generating rod bundle dissipating heat by natural convection and radiation

    International Nuclear Information System (INIS)

    Senve, Vinay; Narasimham, G.S.V.L.

    2011-01-01

    Highlights: → Transport processes in isothermal hexagonal sheath with 19 heat generating rods is studied. → Correlation is given to predict the maximum temperature considering all transport processes. → Effective thermal conductivity of rod bundle can be obtained using max temperature. → Data on the critical Rayleigh numbers for p/d ratios of 1.1-2.0 is presented. → Radiative heat transfer contributes to heat dissipation of 38-65% of total heat. - Abstract: A numerical study of conjugate natural convection and surface radiation in a horizontal hexagonal sheath housing 19 solid heat generating rods with cladding and argon as the fill gas, is performed. The natural convection in the sheath is driven by the volumetric heat generation in the solid rods. The problem is solved using the FLUENT CFD code. A correlation is obtained to predict the maximum temperature in the rod bundle for different pitch-to-diameter ratios and heat generating rates. The effective thermal conductivity is related to the heat generation rate, maximum temperature and the sheath temperature. Results are presented for the dimensionless maximum temperature, Rayleigh number and the contribution of radiation with changing emissivity, total wattage and the pitch-to-diameter ratio. In the simulation of a larger system that contains a rod bundle, the effective thermal conductivity facilitates simplified modelling of the rod bundle by treating it as a solid of effective thermal conductivity. The parametric studies revealed that the contribution of radiation can be 38-65% of the total heat generation, for the parameter ranges chosen. Data for critical Rayleigh number above which natural convection comes into effect is also presented.

  8. Heat Transfer and Entropy Generation Analysis of an Intermediate Heat Exchanger in ADS

    Science.gov (United States)

    Wang, Yongwei; Huai, Xiulan

    2018-04-01

    The intermediate heat exchanger for enhancement heat transfer is the important equipment in the usage of nuclear energy. In the present work, heat transfer and entropy generation of an intermediate heat exchanger (IHX) in the accelerator driven subcritical system (ADS) are investigated experimentally. The variation of entropy generation number with performance parameters of the IHX is analyzed, and effects of inlet conditions of the IHX on entropy generation number and heat transfer are discussed. Compared with the results at two working conditions of the constant mass flow rates of liquid lead-bismuth eutectic (LBE) and helium gas, the total pumping power all tends to reduce with the decreasing entropy generation number, but the variations of the effectiveness, number of transfer units and thermal capacity rate ratio are inconsistent, and need to analyze respectively. With the increasing inlet mass flow rate or LBE inlet temperature, the entropy generation number increases and the heat transfer is enhanced, while the opposite trend occurs with the increasing helium gas inlet temperature. The further study is necessary for obtaining the optimized operation parameters of the IHX to minimize entropy generation and enhance heat transfer.

  9. Total decay heat estimates in a proto-type fast reactor

    International Nuclear Information System (INIS)

    Sridharan, M.S.

    2003-01-01

    Full text: In this paper, total decay heat values generated in a proto-type fast reactor are estimated. These values are compared with those of certain fast reactors. Simple analytical fits are also obtained for these values which can serve as a handy and convenient tool in engineering design studies. These decay heat values taken as their ratio to the nominal operating power are, in general, applicable to any typical plutonium based fast reactor and are useful inputs to the design of decay-heat removal systems

  10. Micro thrust and heat generator

    Science.gov (United States)

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  11. Heat transfer enhancement for fin-tube heat exchanger using vortex generators

    International Nuclear Information System (INIS)

    Yoo, Seong Yeon; Park, Dong Seong; Chung, Min Ho; Lee, Sang Yun

    2002-01-01

    Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin-circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of fin-flat tube heat exchanger without vortex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger. At the same time, pressure losses for four types of heat exchanger is measured and compared

  12. Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system

    International Nuclear Information System (INIS)

    Remeli, Muhammad Fairuz; Tan, Lippong; Date, Abhijit; Singh, Baljit; Akbarzadeh, Aliakbar

    2015-01-01

    Highlights: • A new passive power cogeneration system using industrial waste heat was introduced. • Heat pipes and thermoelectrics were used for recovering waste heat and electricity. • Theoretical model predicted the 2 kW test rig could recover 1.345 kW thermal power. • 10.39 W electrical power was produced equivalent to 0.77% conversion efficiency. - Abstract: This research explores a new method of recovering waste heat and electricity using a combination of heat pipes and thermoelectric generators (HP-TEG). The HP-TEG system consists of Bismuth Telluride (Bi 2 Te 3 ) based thermoelectric generators (TEGs), which are sandwiched between two finned heat pipes to achieve a temperature gradient across the TEG for thermoelectricity generation. A theoretical model was developed to predict the waste heat recovery and electricity conversion performances of the HP-TEG system under different parametric conditions. The modelling results show that the HP-TEG system has the capability of recovering 1.345 kW of waste heat and generating 10.39 W of electrical power using 8 installed TEGs. An experimental test bench for the HP-TEG system is under development and will be discussed in this paper

  13. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  14. Entropy generation of nanofluid flow in a microchannel heat sink

    Science.gov (United States)

    Manay, Eyuphan; Akyürek, Eda Feyza; Sahin, Bayram

    2018-06-01

    Present study aims to investigate the effects of the presence of nano sized TiO2 particles in the base fluid on entropy generation rate in a microchannel heat sink. Pure water was chosen as base fluid, and TiO2 particles were suspended into the pure water in five different particle volume fractions of 0.25%, 0.5%, 1.0%, 1.5% and 2.0%. Under laminar, steady state flow and constant heat flux boundary conditions, thermal, frictional, total entropy generation rates and entropy generation number ratios of nanofluids were experimentally analyzed in microchannel flow for different channel heights of 200 μm, 300 μm, 400 μm and 500 μm. It was observed that frictional and total entropy generation rates increased as thermal entropy generation rate were decreasing with an increase in particle volume fraction. In microchannel flows, thermal entropy generation could be neglected due to its too low rate smaller than 1.10e-07 in total entropy generation. Higher channel heights caused higher thermal entropy generation rates, and increasing channel height yielded an increase from 30% to 52% in thermal entropy generation. When channel height decreased, an increase of 66%-98% in frictional entropy generation was obtained. Adding TiO2 nanoparticles into the base fluid caused thermal entropy generation to decrease about 1.8%-32.4%, frictional entropy generation to increase about 3.3%-21.6%.

  15. French nuclear power plants for heat generation

    International Nuclear Information System (INIS)

    Girard, Y.

    1984-01-01

    The considerable importance that France attributes to nuclear energy is well known even though as a result of the economic crisis and the energy savings it is possible to observe a certain downward trend in the rate at which new power plants are being started up. In July 1983, a symbolic turning-point was reached - at more than 10 thousand million kW.h nuclear power accounted, for the first time, for more than 50% of the total amount of electricity generated, or approx. 80% of the total electricity output of thermal origin. On the other hand, the direct contribution - excluding the use of electricity - of nuclear energy to the heat market in France remains virtually nil. The first part of this paper discusses the prospects and realities of the application, at low and intermediate temperatures, of nuclear heat in France, while the second part describes the French nuclear projects best suited to the heat market (excluding high temperatures). (author)

  16. Distributed heat generation in a district heating system

    OpenAIRE

    Lennermo, Gunnar; Lauenberg, Patrick

    2016-01-01

    District heating (OH) systems need to be improved  regarding integration  of decentralised  heat generation. Micro production, prosumers and smart grids are terms becoming more and more common  in  connection  to  the  power  grid.  Concerning district  heating,  the  development  is slower, although improving. Today there are a number of such decentralised units for heat generation,  mainly  solar,  that have been partly evaluated.  Previous  studies  have shown  that there is a need to deve...

  17. Heat and electricity generating methods

    International Nuclear Information System (INIS)

    Buter, J.

    1977-01-01

    A short synopsis on the actual methods of heating of lodgings and of industrial heat generation is given. Electricity can be generated in steam cycles heated by burning of fossil fuels or by nuclear energy. A valuable contribution to the electricity economy is produced in the hydroelectric power plants. Besides these classical methods, also the different procedures of direct electricity generation are treated: thermoelectric, thermionic, magnetohydrodynamic power sources, solar and fuel cells. (orig.) [de

  18. Heat transfer enhancement in cross-flow heat exchanger using vortex generator

    International Nuclear Information System (INIS)

    Yoo, S. Y.; Kwon, H. K.; Kim, B. C.; Park, D. S.; Lee, S. S.

    2003-01-01

    Fouling is very serious problem in heat exchanger because it rapidly deteriorates the performance of heat exchanger. Cross-flow heat exchanger with vortex generators is developed, which enhance heat transfer and reduce fouling. In the present heat exchanger, shell and baffle are removed from the conventional shell-and-tube heat exchanger. The naphthalene sublimation technique is employed to measure the local heat transfer coefficients. The experiments are performed for single circular tube, staggered array tube bank and in-line array tube bank with and without vortex generators. Local and average Nusselt numbers of single tube and tube bank with vortex generator are investigated and compared to those of without vortex generator

  19. Heat transfer and thermodynamic performance of convective–radiative cooling double layer walls with temperature-dependent thermal conductivity and internal heat generation

    International Nuclear Information System (INIS)

    Torabi, Mohsen; Zhang, Kaili

    2015-01-01

    Highlights: • First and second laws of thermodynamics have been investigated in a composite wall. • Convective–radiative heat transfer is assumed on both surfaces. • Optimum interface location is calculated to minimize the total entropy generation rate. • Thermal conductivities ratio has great effects on the temperature and entropy generation. - Abstract: Composite geometries have numerous applications in industry and scientific researches. This work investigates the temperature distribution, and local and total entropy generation rates within two-layer composite walls using conjugate convection and radiation boundary conditions. Thermal conductivities of the materials of walls are assumed temperature-dependent. Temperature-dependent internal heat generations are also incorporated into the modeling. The differential transformation method (DTM) is used as an analytical technique to tackle the highly nonlinear system of ordinary differential equations. Thereafter, the local and total entropy generation rates are calculated using the DTM formulated temperature distribution. An exact analytical solution, for the temperature-independent model without radiation effect, is also derived. The correctness and accuracy of the DTM solution are checked against the exact solution. After verification, effects of thermophysical parameters such as location of the interface, convection–conduction parameters, radiation–conduction parameters, and internal heat generations, on the temperature distribution, and both local and total entropy generation rates are examined. To deliver the minimum total entropy generation rate, optimum values for some parameters are also found. Since composite walls are widely used in many fields, the abovementioned investigation is a beneficial tool for many engineering industries and scientific fields to minimize the entropy generation, which is the exergy destruction, of the system

  20. Heat generated by knee prostheses.

    Science.gov (United States)

    Pritchett, James W

    2006-01-01

    Temperature sensors were placed in 50 knees in 25 patients who had one or both joints replaced. Temperature recordings were made before walking, after walking, and after cycling. The heat generated in healthy, arthritic, and replaced knees was measured. The knee replacements were done using eight different prostheses. A rotating hinge knee prosthesis generated a temperature increase of 7 degrees C in 20 minutes and 9 degrees C in 40 minutes. An unconstrained ceramic femoral prosthesis articulating with a polyethylene tibial prosthesis generated a temperature increase of 4 degrees C compared with a healthy resting knee. The other designs using a cobalt-chrome alloy and high-density polyethylene had temperature increases of 5 degrees-7 degrees C with exercise. Frictional heat generated in a prosthetic knee is not immediately dissipated and may result in wear, creep, and other degenerative processes in the high-density polyethylene. Extended periods of elevated temperature in joints may inhibit cell growth and perhaps contribute to adverse performance via bone resorption or component loosening. Prosthetic knees generate more heat with activity than healthy or arthritic knees. More-constrained knee prostheses generate more heat than less-constrained prostheses. A knee with a ceramic femoral component generates less heat than a knee with the same design using a cobalt-chromium alloy.

  1. Heat generation and temperature-rise in ordinary concrete due to capture of thermal neutrons

    International Nuclear Information System (INIS)

    Abdo, E.A.; Amin, E.

    1997-01-01

    The aim of this work is the evaluation of the heat generation and temperature-rise in local ordinary concrete as a biological shield due to capture of total thermal and reactor thermal neutrons. The total thermal neutron fluxes were measured and calculated. The channel number 2 of the ETRR-1 reactor was used in the measurements as a neutron source. Computer code ANISN (VAX version) and neutron multigroup cross-section library EURLiB-4 was used in the calculations. The heat generation and temperature-rise in local ordinary concrete were evaluated and calculated. The results were displayed in curves to show the distribution of thermal neutron fluxes and heat generation as well as temperature-rise with the shield thickness. The results showed that, the heat generation as well as the temperature-rise have their maximum values in the first layers of the shield thickness. 4 figs., 12 refs

  2. Residual heat use generated by a 12 kW fuel cell in an electric vehicle heating system

    International Nuclear Information System (INIS)

    Colmenar-Santos, Antonio; Alberdi-Jiménez, Lucía; Nasarre-Cortés, Lorenzo; Mora-Larramona, Joaquín

    2014-01-01

    A diesel or gasoline vehicle heating is produced by the heat of the engine coolant liquid. Nevertheless, electric vehicles, due to the fact that electric motor transform directly electricity into mechanical energy through electromagnetic interactions, do not generate this heat so other method of providing it has to be developed. This study introduces the system developed in a fuel cell electric vehicle (lithium-ion battery – fuel cell) with residual heat use. The fuel cell electric vehicle is driven by a 12 kW PEM (proton exchange membrane) fuel cell. This fuel cell has an operating temperature around 50 °C. The residual heat generated was originally wasted by interaction with the environment. The new developed heating system designed integrates the heat generated by the fuel cell into the heating system of the vehicle, reducing the global energy consumption and improving the global efficiency as well. - Highlights: • Modification of heating system was done by introducing the residual heat from fuel cell. • Maximum heat achieved by the heating radiator of 9.27 kW. • Reduction of the heat dissipation by the fuel cell cooling system 1.5 kW. • Total efficiency improvement of 20% with an autonomy increase of 21 km

  3. Heat generated by dental implant drills during osteotomy-a review: heat generated by dental implant drills.

    Science.gov (United States)

    Mishra, Sunil Kumar; Chowdhary, Ramesh

    2014-06-01

    Osseointegration is the more stable situation and results in a high success rate of dental implants. Heat generation during rotary cutting is one of the important factors influencing the development of osseointegration. To assess the various factors related to implant drills responsible for heat generation during osteotomy. To identify suitable literature, an electronic search was performed using Medline and Pubmed database. Articles published in between 1960 to February 2013 were searched. The search is focused on heat generated by dental implant drills during osteotomy. Various factors related to implant drill such effect of number of blades; drill design, drill fatigue, drill speed and force applied during osteotomies which were responsible for heat generation were reviewed. Titles and abstracts were screened, and literature that fulfilled the inclusion criteria was selected for a full-text reading. The initial literature search resulted in 299 articles out of which only 70 articles fulfils the inclusion criteria and were included in this systematic review. Many factors related to implant drill responsible for heat generation were found. Successful preparation of an implant cavity with minimal damage to the surrounding bone depends on the avoidance of excessive temperature generation during surgical drilling. The relationship between heat generated and implant drilling osteotomy is multifactorial in nature and its complexity has not been fully studied. Lack of scientific knowledge regarding this issue still exists. Further studies should be conducted to determine the various factors which generate less heat while osteotomy such as ideal ratio of force and speed in vivo, exact time to replace a drill, ideal drill design, irrigation system, drill-bone contact area.

  4. Natural convection in heat-generating fluids

    International Nuclear Information System (INIS)

    Bol'shov, Leonid A; Kondratenko, Petr S; Strizhov, Valerii F

    2001-01-01

    Experimental and theoretical studies of convective heat transfer from a heat-generating fluid confined to a closed volume are reviewed. Theoretical results are inferred from analytical estimates based on the relevant conservation laws and the current understanding of the convective heat-transfer processes. Four basic and one asymptotic regime of heat transfer are identified depending on the heat generation rate. Limiting heat-transfer distribution patterns are found for the lower boundary. Heat transfer in a quasi-two-dimensional geometry is analyzed. Quasi-steady-state heat transfer from a cooling-down fluid without internal heat sources is studied separately. Experimental results and theoretical predictions are compared. (reviews of topical problems)

  5. Power performance of the general-purpose heat source radioisotope thermoelectric generator

    International Nuclear Information System (INIS)

    Bennett, G.L.; Lombardo, J.J.; Rock, B.J.

    1986-01-01

    The General-Purpose Heat Source Radioisotope Thermoelectric Generator (GRHS-RTG) has been developed under the sponsorship of the Department of Energy (DOE) to provide electrical power for the National Aeronautics and Space Administration (NASA) Galileo mission to Jupiter and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun. A total of five nuclear-heated generators and one electrically heated generator have been built and tested, proving out the design concept and meeting the specification requirements. The GPHS-RTG design is built upon the successful-technology used in the RTGs flown on the two NASA Voyager spacecraft and two US Air Force communications satellites. THe GPHS-RTG converts about 4400 W(t) from the nuclear heat source into at least 285 W(e) at beginning of mission (BOM). The GPHS-RTG consists of two major components: the General-Purpose Heat Source (GPHS) and the Converter. A conceptual drawing of the GPHs-RTG is presented and its design and performance are described

  6. Calculation of radiation heat generation on a graphite reflector side of IAN-R1 Reactor

    International Nuclear Information System (INIS)

    Duque O, J.; Velez A, L.H.

    1987-01-01

    Calculation methods for radiation heat generation in nuclear reactor, based on the point kernel approach are revisited and applied to the graphite reflector of IAN-R1 reactor. A Fortran computer program was written for the determination of total heat generation in the reflector, taking 1155 point in it

  7. Multi-boiling Heat Transfer Analysis of a Convective Straight Fin with Temperature-Dependent Thermal Properties and Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    Gbeminiyi Sobamowo

    2017-10-01

    Full Text Available In this study, by using the finite volume method, the heat transfer in a convective straight fin with temperature-dependent thermal properties and an internal heat generation under multi-boiling heat transfer modes are analyzed. In this regard, the local heat transfer coefficient is considered to vary within a power-law function of temperature. In the present study, the coexistence of all the boiling modes is taken into consideration. The developed heat transfer models and the corresponding numerical solutions are used to investigate the effects of various thermo-geometric parameters on the thermal performance of the longitudinal rectangular fin. The results shows that the fin temperature distribution, the total heat transfer, and the fin efficiency are significantly affected by the thermo-geometric parameters of the fin and the internal heat generation within the fin. The obtained results can provide a platform for improvements in the design of the fin in the heat transfer equipment.

  8. Heat flow and heat generation in greenstone belts

    Science.gov (United States)

    Drury, M. J.

    1986-01-01

    Heat flow has been measured in Precambrian shields in both greenstone belts and crystalline terrains. Values are generally low, reflecting the great age and tectonic stability of the shields; they range typically between 30 and 50 mW/sq m, although extreme values of 18 and 79 mW/sq m have been reported. For large areas of the Earth's surface that are assumed to have been subjected to a common thermotectonic event, plots of heat flow against heat generation appear to be linear, although there may be considerable scatter in the data. The relationship is expressed as: Q = Q sub o + D A sub o in which Q is the observed heat flow, A sub o is the measured heat generation at the surface, Q sub o is the reduced heat flow from the lower crust and mantle, and D, which has the dimension of length, represents a scale depth for the distribution of radiogenic elements. Most authors have not used data from greenstone belts in attempting to define the relationship within shields, considering them unrepresentative and preferring to use data from relatively homogeneous crystalline rocks. A discussion follows.

  9. Entropy Generation Analysis and Performance Evaluation of Turbulent Forced Convective Heat Transfer to Nanofluids

    Directory of Open Access Journals (Sweden)

    Yu Ji

    2017-03-01

    Full Text Available The entropy generation analysis of fully turbulent convective heat transfer to nanofluids in a circular tube is investigated numerically using the Reynolds Averaged Navier–Stokes (RANS model. The nanofluids with particle concentration of 0%, 1%, 2%, 4% and 6% are treated as single phases of effective properties. The uniform heat flux is enforced at the tube wall. To confirm the validity of the numerical approach, the results have been compared with empirical correlations and analytical formula. The self-similarity profiles of local entropy generation are also studied, in which the peak values of entropy generation by direct dissipation, turbulent dissipation, mean temperature gradients and fluctuating temperature gradients for different Reynolds number as well as different particle concentration are observed. In addition, the effects of Reynolds number, volume fraction of nanoparticles and heat flux on total entropy generation and Bejan number are discussed. In the results, the intersection points of total entropy generation for water and four nanofluids are observed, when the entropy generation decrease before the intersection and increase after the intersection as the particle concentration increases. Finally, by definition of Ep, which combines the first law and second law of thermodynamics and attributed to evaluate the real performance of heat transfer processes, the optimal Reynolds number Reop corresponding to the best performance and the advisable Reynolds number Read providing the appropriate Reynolds number range for nanofluids in convective heat transfer can be determined.

  10. Heat generation and heating limits for the IRUS LLRW disposal facility

    International Nuclear Information System (INIS)

    Donders, R.E.; Caron, F.

    1995-10-01

    Heat generation from radioactive decay and chemical degradation must be considered when implementing low-level radioactive waste (LLRW) disposal. This is particularly important when considering the management of spent radioisotope sources. Heating considerations and temperature calculations for the proposed IRUS (Intrusion Resistant Underground Structure) near-surface disposal facility are presented. Heat transfer calculations were performed using a finite element code with realistic but somewhat conservative heat transfer parameters and environmental boundary conditions. The softening-temperature of the bitumen waste-form (38 deg C) was found to be the factor that limits the heat generation rate in the facility. This limits the IRUS heat rate, assuming a uniform source term, to 0.34 W/m 3 . If a reduced general heat-limit is considered, then some higher-heat packages can be accepted with restrictions placed on their location within the facility. For most LLRW, heat generation from radioactive decay and degradation are a small fraction of the IRUS heating limits. However, heating restrictions will impact on the disposal of higher-activity radioactive sources. High activity 60 Co sources will require decay-storage periods of about 70 years, and some 137 Cs will need to bed disposed of in facilities designed for higher-heat waste. (author). 21 refs., 8 tabs., 2 figs

  11. Nonlinear radiative heat flux and heat source/sink on entropy generation minimization rate

    Science.gov (United States)

    Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Alsaedi, A.

    2018-06-01

    Entropy generation minimization in nonlinear radiative mixed convective flow towards a variable thicked surface is addressed. Entropy generation for momentum and temperature is carried out. The source for this flow analysis is stretching velocity of sheet. Transformations are used to reduce system of partial differential equations into ordinary ones. Total entropy generation rate is determined. Series solutions for the zeroth and mth order deformation systems are computed. Domain of convergence for obtained solutions is identified. Velocity, temperature and concentration fields are plotted and interpreted. Entropy equation is studied through nonlinear mixed convection and radiative heat flux. Velocity and temperature gradients are discussed through graphs. Meaningful results are concluded in the final remarks.

  12. Glas generator for the steam gasification of coal with nuclear generated heat

    International Nuclear Information System (INIS)

    Buchner, G.

    1980-01-01

    The use of heat from a High Temperature Reactor (HTR) for the steam gasification of coal saves coal, which otherwise is burnt to generate the necessary reaction heat. The gas generator for this process, a horizontal pressure vessel, contains a fluidized bed of coal and steam. An ''immersion-heater'' type of heat exchanger introduces the nuclear generated heat to the process. Some special design problems of this gasifier are presented. Reference is made to the present state of development of the steam gasification process with heat from high temperature reactors. (author)

  13. Heat generation during plunge stage in friction stir welding

    Directory of Open Access Journals (Sweden)

    Veljić Darko M.

    2013-01-01

    Full Text Available This paper deals with the heat generation in the Al alloy Al2024-T3 plate under different rotating speeds and plunge speeds during the plunge stage of friction stir welding (FSW. A three-dimensional finite element model (FEM is developed in the commercial code ABAQUS/Explicit using the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and Coulomb’s Law of friction. The heat generation in FSW can be divided into two parts: frictional heat generated by the tool and heat generated by material deformation near the pin and the tool shoulder region. Numerical results obtained in this work indicate a more prominent influence from the friction-generated heat. The slip rate of the tool relative to the workpiece material is related to this portion of heat. The material velocity, on the other hand, is related to the heat generated by plastic deformation. Increasing the plunging speed of the tool decreases the friction-generated heat and increases the amount of deformation-generated heat, while increasing the tool rotating speed has the opposite influence on both heat portions. Numerical results are compared with the experimental ones, in order to validate the numerical model, and a good agreement is obtained.

  14. Heat transfer enhancement in heat exchangers by longitudinal vortex generators

    International Nuclear Information System (INIS)

    Guntermann, T.; Fiebig, M.; Mitra, N.K.

    1990-01-01

    In this paper heat transfer enhancement and flow losses are computed for the interaction of a laminar channel flow with a pair of counterrotating longitudinal vortices generated by a pair of delta-winglets punched out of the channel wall. The geometry simulates an element of a fin-plate or fin-tube heat exchanger. The structure of the vortex flow and temperature distribution, the local heat transfer coefficients and the local flow losses are discussed for a sample case. For a Reynolds number of Re d = 1000 and a vortex generator angle of attack of β = 25 degrees heat transfer is enhanced locally by more than 300% and in the mean by 50%. These values increase further with Re and β

  15. Mechanical design of a sodium heated steam generator

    International Nuclear Information System (INIS)

    Chetal, S.C.

    1975-01-01

    FBTR steam generator is a once through type unit consisting of four 12.5 MW thermal modules generating a total of 74 tons per hour of steam at 125 bar and 480 0 C. This paper outlines the mechanical design of such type of steam generator with emphasis on special design problems associated with this type of sodium to water steam heat exchanger, namely, thermal cycling of transition zone where nucleate boiling changes over to film boiling, application of pressure vessel design criteria for transient pressures, thermal stress evaluation resulting from differential expansion between shell and tube in this typical configuration, sodium headers support design, thermal sleeve, design, thermal shock analysis in thick tubes, thermal stress resulting from stratification and stability of expansion bends against vibration. Some of the possible design changes for the future large size steam generator are outlined. (author)

  16. Analysis of Heat Generation Mechanism in Ultrasound Infrared Thermography

    International Nuclear Information System (INIS)

    Choi, Man Yong; Lee, Seung Seok; Park, Jeong Hak; Kang, Ki Soo; Kim, Won Tae

    2009-01-01

    Heat generation mechanism of ultrasound infrared thermography is still not well understood, yet and there are two reliable assumptions of heat generation, friction and thermo-mechanical effect. This paper investigates the principal cause of heat generation at fatigue crack with experimental and numerical approach. Our results show most of heat generation is contributed by friction between crack interface and thermo-mechanical effect is a negligible quantity

  17. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    Science.gov (United States)

    Phillips, B.A.; Zawacki, T.S.

    1998-07-21

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration. 5 figs.

  18. Exergetic life cycle assessment of cement production process with waste heat power generation

    International Nuclear Information System (INIS)

    Sui, Xiuwen; Zhang, Yun; Shao, Shuai; Zhang, Shushen

    2014-01-01

    Highlights: • Exergetic life cycle assessment was performed for the cement production process. • Each system’s efficiency before and after waste heat power generation was analyzed. • The waste heat power generation improved the efficiency of each production system. • It provided technical support for the implementation of energy-saving schemes. - Abstract: The cement industry is an industry that consumes a considerable quantity of resources and energy and has a very large influence on the efficient use of global resources and energy. In this study, exergetic life cycle assessment is performed for the cement production process, and the energy efficiency and exergy efficiency of each system before and after waste heat power generation is investigated. The study indicates that, before carrying out a waste heat power generation project, the objective energy efficiencies of the raw material preparation system, pulverized coal preparation system and rotary kiln system are 39.4%, 10.8% and 50.2%, respectively, and the objective exergy efficiencies are 4.5%, 1.4% and 33.7%, respectively; after carrying out a waste heat power generation project, the objective energy efficiencies are 45.8%, 15.5% and 55.1%, respectively, and the objective exergy efficiencies are 7.8%, 2.8% and 38.1%, respectively. The waste heat power generation project can recover 3.7% of the total input exergy of a rotary kiln system and improve the objective exergy efficiencies of the above three systems. The study can identify degree of resource and energy utilization and the energy-saving effect of a waste heat power generation project on each system, and provide technical support for managers in the implementation of energy-saving schemes

  19. Heat transfer of liquid-metal magnetohydrodynamic flow with internal heat generation

    International Nuclear Information System (INIS)

    Kumamaru, Hiroshige; Kurita, Kazuhisa; Kodama, Satoshi

    2000-01-01

    Numerical calculations on heat transfer of a magnetohydrodynamic (MHD) flow with internal heat generation in a rectangular channel have been performed for the cases of very-large Hartmann numbers, finite wall conductivities and small aspect ratio (i.e. small length ratios of the channel side perpendicular to the applied magnetic field and the side parallel to the field), simulating typical conditions for a fusion-reactor blanket. The Nusselt numbers of the MHD flow in rectangular channels with aspect ratios of 1/10 to 1/40 for Hartmann numbers of ∼5 x 10 5 become ∼10 times higher than those for the corresponding flow under no magnetic field. The Nusselt number becomes higher as the internal heat generation rate increases as far as the heat generation rates in a fusion reactor blanket are considered. (author)

  20. Passive flow heat exchanger simulation for power generation from solar pond using thermoelectric generators

    Science.gov (United States)

    Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep

    2017-04-01

    In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.

  1. The development of a thermoelectric power generator dedicated to stove-fireplaces with heat accumulation systems

    International Nuclear Information System (INIS)

    Sornek, Krzysztof; Filipowicz, Mariusz; Rzepka, Kamila

    2016-01-01

    Highlights: • Application of thermoelectric generators in the stove-fireplace with accumulation. • Construction of the thermoelectric generator is limited by the heat accumulation. • Variants of the heat exchanger’s construction are discussed. • The control method is related on velocity of flue gas and water cooling. • The power limit of 30 W for self-sufficient operation is sufficient. - Abstract: A significant part of the world’s population (about 40%) cooks their meals and provides heating for their homes using wood-burning heating devices. Due to the relatively low cost of fuel and their aesthetic design, solid fuel stoves capable of heat accumulation are convenient and common. The use of dedicated small-scale power generators provides also additional benefits. This paper presents the results of a study conducted to verify the possibility of generating power using stove-fireplaces with heat accumulation systems. In such units, the temperature of the flue gas should be kept at a certain level for the purposes of storing heat, which results from certain limitations of the thermoelectric generators. To verify the possibility of applying thermoelectric modules in such heating devices, a dedicated system with thermoelectric generators was selected from among various microcogeneration systems and implemented. Three types of heat exchangers were studied and the most efficient unit was selected for further testing. Two types of generators, with maximum operating temperatures of 320 and 175 °C, were compared. Subsequently, the characteristics of the latter were determined. The conducted tests allowed to determine the performance and the total efficiency of the generators that were used. It has been demonstrated that the maximum power of the generator would not exceed ca. 30 W e and that there is no economic justification for such a device. However, providing a self-powered and self-sufficient operation of stove-fireplaces with heat accumulation systems

  2. Experiments and simulations on heat exchangers in thermoelectric generator for automotive application

    International Nuclear Information System (INIS)

    Liu, X.; Deng, Y.D.; Zhang, K.; Xu, M.; Xu, Y.; Su, C.Q.

    2014-01-01

    In this work, an energy-harvesting system which extracts heat from an automotive exhaust pipe and turns the heat into electricity by using thermoelectric power generators (TEGs) was built. Experiments show that the temperature difference in automotive system is not constant, especially the heat exchanger, which cannot provide the thermoelectric modules (TMs) large amount of heat. The thermal performance of different heat exchangers in exhaust-based TEGs is studied in this work, and the thermal characteristics of heat exchangers with different internal structures and thickness are discussed, to obtain higher interface temperature and thermal uniformity. Following computational fluid dynamics simulations, infrared experiments and output power testing system are carried out on a high-performance production engine with a dynamometer. Results show that a plate-shaped heat exchanger with chaos-shaped internal structure and thickness of 5 mm achieves a relatively ideal thermal performance, which is practically useful to enhance the thermal performance of the TEG, and larger total output power can be thus obtained. - Graphical abstract: The thermal and electrical characteristics of different heat exchangers of automotive exhaust-based thermoelectric generator are discussed, to obtain higher interface temperature and thermal uniformity. - Highlights: • Different internal structures and thickness of heat exchangers were proposed. • Power output testing system of the two heat exchangers was characterized. • Chaos-shaped heat exchanger (5 mm thickness) shows better performance

  3. Safety provision during heating of coal downcast shafts with gas heat generators using degassed methane

    Directory of Open Access Journals (Sweden)

    В. Р. Алабьев

    2017-06-01

    Together with heat generators of mixed type the article also describes a working principle of heat generator of indirect action type, which to the fullest extent possible meets requirements of Russian Federation legislation and regulation for application of this heat generators in coal mines conditions. The article has a principal working scheme of heat unit layout using this type of generator. It is shown that after development of corresponding normative documents regulating processes of design, construction and operation of heating units using heaters of indirect action, their application in Russian coal mines will be possible without breaking Safety standards and rules.

  4. Heat generation and hemolysis at the shaft seal in centrifugal blood pumps.

    Science.gov (United States)

    Araki, K; Taenaka, Y; Wakisaka, Y; Masuzawa, T; Tatsumi, E; Nakatani, T; Baba, Y; Yagura, A; Eya, K; Toda, K

    1995-01-01

    The heat and hemolysis around a shaft seal were investigated. Materials were original pumps (Nikkiso HMS-15:N-original, and 3M Delphin:D-original), vane-removed pumps (Nvane(-), Dvane(-)), and a small chamber with a shaft coiled by nichrome wire (mock pump). The original pumps were driven at 500 mmHg and 5 L/min, and vane-removed pumps were driven at the same rotation number. An electrical powers of 0, 0.5, 2, and 10 W was supplied to the mock pumps. In vitro hemolytic testing showed that hemolytic indices were 0.027 g/100 L in N-original, 0.013 in Nvane(-), 0.061 in D-original, and 0.012 in Dvane(-). Measurement of heat with a thermally insulated water chamber showed total heat within the pump of 8.62 and 10.85 W, and heat at the shaft seal of 0.87 and 0.62 W in the Nikkiso and Delphin pumps, respectively. Hemolysis and heat generation of mock pumps remained low. The results indicate that the heat generated around the shaft seal was minimal. Hemolysis at the shaft-seal was considerable but not major. Local heat did not affect hemolysis. It was concluded that the shaft-seal affected hemolysis, not by local heat but friction itself.

  5. 4th Generation District Heating (4GDH)

    DEFF Research Database (Denmark)

    Lund, Henrik; Werner, Sven; Wiltshire, Robin

    2014-01-01

    This paper defines the concept of 4th Generation District Heating (4GDH) including the relations to District Cooling and the concepts of smart energy and smart thermal grids. The motive is to identify the future challenges of reaching a future renewable non-fossil heat supply as part...... of the implementation of overall sustainable energy systems. The basic assumption is that district heating and cooling has an important role to play in future sustainable energy systems – including 100 percent renewable energy systems – but the present generation of district heating and cooling technologies will have...

  6. Heat operated cryogenic electrical generator

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Wang, T.C.; Saffren, M.M.; Elleman, D.D.

    1975-01-01

    An electrical generator useful for providing electrical power in deep space, is disclosed. The subject electrical generator utilizes the unusual hydrodynamic property exhibited by liquid helium as it is converted to and from a superfluid state to cause opposite directions of rotary motion for a rotor cell thereof. The physical motion of said rotor cell is employed to move a magnetic field provided by a charged superconductive coil mounted on the exterior of said cell. An electrical conductor is placed in surrounding proximity to said cell to interact with the moving magnetic field provided by the superconductive coil and thereby generate electrical energy. A heat control arrangement is provided for the purpose of causing the liquid helium to be partially converted to and from a superfluid state by being cooled and heated, respectively. (U.S.)

  7. Entropy and heat generation of lithium cells/batteries

    International Nuclear Information System (INIS)

    Wang Songrui

    2016-01-01

    The methods and techniques commonly used in investigating the change of entropy and heat generation in Li cells/batteries are introduced, as are the measurements, calculations and purposes. The changes of entropy and heat generation are concomitant with the use of Li cells/batteries. In order to improve the management and the application of Li cells/batteries, especially for large scale power batteries, the quantitative investigations of the change of entropy and heat generating are necessary. (topical review)

  8. Total Site Heat Integration Considering Pressure Drops

    Directory of Open Access Journals (Sweden)

    Kew Hong Chew

    2015-02-01

    Full Text Available Pressure drop is an important consideration in Total Site Heat Integration (TSHI. This is due to the typically large distances between the different plants and the flow across plant elevations and equipment, including heat exchangers. Failure to consider pressure drop during utility targeting and heat exchanger network (HEN synthesis may, at best, lead to optimistic energy targets, and at worst, an inoperable system if the pumps or compressors cannot overcome the actual pressure drop. Most studies have addressed the pressure drop factor in terms of pumping cost, forbidden matches or allowable pressure drop constraints in the optimisation of HEN. This study looks at the implication of pressure drop in the context of a Total Site. The graphical Pinch-based TSHI methodology is extended to consider the pressure drop factor during the minimum energy requirement (MER targeting stage. The improved methodology provides a more realistic estimation of the MER targets and valuable insights for the implementation of the TSHI design. In the case study, when pressure drop in the steam distribution networks is considered, the heating and cooling duties increase by 14.5% and 4.5%.

  9. Potential for increased wind-generated electricity utilization using heat pumps in urban areas

    International Nuclear Information System (INIS)

    Waite, Michael; Modi, Vijay

    2014-01-01

    Highlights: • Large-scale wind power and increased electric heat pumps were evaluated. • A deterministic model of wind power and electricity demand was developed. • Sub-models for space heating and domestic hot water demand were developed. • Increased use of heat pumps can improve the viability of large-scale wind power. • Larger wind power capacity can meet a target utilization rate with more heat pumps. - Abstract: The U.S. has substantial wind power potential, but given wind’s intermittent availability and misalignment with electricity demand profiles, large-scale deployment of wind turbines could result in high electricity costs due to energy storage requirements or low utilization rates. While fuel switching and heat pumps have been proposed as greenhouse gas (GHG) emissions and energy reduction strategies at the building scale, this paper shows that heat pump adoption could have additional system-wide benefits by increasing the utilization of wind-generated electricity. A model was developed to evaluate the effects of coupling large-scale wind power installations in New York State with increased use of electric heat pumps to meet a portion of space heating and domestic hot water (DHW) demands in New York City. The analysis showed significant increases in wind-generated electricity utilization with increased use of heat pumps, allowing for higher installed capacity of wind power. One scenario indicates that 78.5% annual wind-generated electricity utilization can be achieved with 3 GW of installed wind power capacity generated electricity equal to 20% of existing NYC annual electricity demand; if 20% of space heating and DHW demands are provided by heat pumps, the 78.5% utilization rate can be achieved with an increase of total wind power capacity to 5 GW. Therefore, this integrated supply–demand approach could provide additional system-wide emissions reductions

  10. District heating and co-generation in Slovenia

    International Nuclear Information System (INIS)

    Hrovatin, Franc; Pecaric, Marko; Perovic, Olgica

    2000-01-01

    Recent development of district heating systems, gasification and co-generation processes in local communities in Slovenia as well as current status, potentials, possibilities and plans for further development in this sphere are presented. The current status presents energy production, distribution and use in district heating systems and in local gas distribution networks. An analysis of the energy and power generated and distributed in district power systems, made with regard to the size of the system, fuel used, type of consumers and the way of production, is given. Growth in different areas of local power systems in the period of last years is included. Potentials in the sphere of electrical energy and heat co-generation were assessed. Some possibilities and experience in heat energy storage are given and trends and plans for further development are introduced. (Authors)

  11. Heat Generation by Irradiated Complex Composite Nanostructures

    DEFF Research Database (Denmark)

    Ma, Haiyan; Tian, Pengfei; Pello, Josselin

    2014-01-01

    Heating of irradiated metallic e-beam generated nanostructures was quantified through direct measurements paralleled by novel model-based numerical calculations. By comparing discs, triangles, and stars we showed how particle shape and composition determines the heating. Importantly, our results...... revealed that substantial heat is generated in the titanium adhesive layer between gold and glass. Even when the Ti layer is as thin as 2 nm it absorbs as much as a 30 nm Au layer and hence should not be ignored....

  12. Power generation and heating performances of integrated system of ammonia–water Kalina–Rankine cycle

    International Nuclear Information System (INIS)

    Zhang, Zhi; Guo, Zhanwei; Chen, Yaping; Wu, Jiafeng; Hua, Junye

    2015-01-01

    Highlights: • Integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) is investigated. • Ammonia–water Rankine cycle is operated for cogenerating room heating-water in winter. • Kalina cycle with higher efficiency is operated for power generation in other seasons. • Power recovery efficiency accounts thermal efficiency and waste heat absorbing ratio. • Heating water with 70 °C and capacity of 55% total reclaimed heat load is cogenerated. - Abstract: An integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) for power generation and heating is introduced. The Kalina cycle has large temperature difference during evaporation and small one during condensation therefore with high thermal efficiency for power generation, while the ammonia–water Rankine cycle has large temperature difference during condensation as well as evaporation, thus it can be adopted to generate heating-water as a by-product in winter. The integrated system is based on the Kalina cycle and converted to the Rankine cycle with a set of valves. The performances of the AWKRC system in different seasons with corresponding cycle loops were studied and analyzed. When the temperatures of waste heat and cooling water are 300 °C and 25 °C respectively, the thermal efficiency and power recovery efficiency of Kalina cycle are 20.9% and 17.4% respectively in the non-heating seasons, while these efficiencies of the ammonia–water Rankine cycle are 17.1% and 13.1% respectively with additional 55.3% heating recovery ratio or with comprehensive efficiency 23.7% higher than that of the Kalina cycle in heating season

  13. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  14. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J I; Rodriques, R Jr [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1997-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  15. Nuclear heat generating plants - technical concepts and market potentials. Chapter 8

    International Nuclear Information System (INIS)

    Thoene, E.

    1988-01-01

    To determine the advantages and disadvantages of different heat generating systems, a comparison is made between nuclear heat generating plants and competing heat generating systems. Nuclear heat generating plant concepts in practice have to compete with a wide range of existing and new fossil heat generating technologies of the most different capacities, ranging from combined heat and power generation to individual heating in one-family houses. Heat generation costs are calculated by means of a dynamic annuity method from an economic point of view. The development of real prices of fossil energy sources is based on two scenarios characterized as follows: scenario I - insignificant price increase by the year 2000, then stagnant; scenario II - moderate price increase by the year 2010, then stagnant. As a result of that systems comparison it can be stated that the considered nuclear heat generating plants may be an interesting competitive heat generation option, provided the assumptions on which the study is based can be implemented. This applies especially to investment costs. At the same time those plants contribute to a diversification of energy source options on the heat market. Their use leads to a reduction of fossil fuel imports, increasing at the same time short- and long-term supply guarantees. If nuclear heat generating plants substitute fossil heat generating plants, or render the construction of new ones superfluous, they contribute to avoiding chemical air pollutants. (orig./UA) [de

  16. Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs

    International Nuclear Information System (INIS)

    Zvingilaite, Erika; Klinge Jacobsen, Henrik

    2015-01-01

    The trade-off between investing in energy savings and investing in individual heating technologies with high investment and low variable costs in single family houses is modelled for a number of building and consumer categories in Denmark. For each group the private economic cost of providing heating comfort is minimised. The private solution may deviate from the socio-economical optimal solution and we suggest changes to policy to incentivise the individuals to make choices more in line with the socio-economic optimal mix of energy savings and technologies. The households can combine their primary heating source with secondary heating e.g. a woodstove. This choice results in increased indoor air pollution with fine particles causing health effects. We integrate health cost due to use of woodstoves into household optimisation of heating expenditures. The results show that due to a combination of low costs of primary fuel and low environmental performance of woodstoves today, included health costs lead to decreased use of secondary heating. Overall the interdependence of heat generation technology- and heat saving-choice is significant. The total optimal level of heat savings for private consumers decrease by 66% when all have the option to shift to the technology with lowest variable costs. - Highlights: • Heat saving investment and heat technology choice are interdependent. • Health damage costs should be included in private heating choice optimisation. • Flexibility in heating technology choice reduce the optimal level of saving investments. • Models of private and socioeconomic optimal heating produce different technology mix. • Rebound effects are moderate but varies greatly among consumer categories

  17. High-performance nanostructured thermoelectric generators for micro combined heat and power systems

    International Nuclear Information System (INIS)

    Zhang, Yanliang; Wang, Xiaowei; Cleary, Martin; Schoensee, Luke; Kempf, Nicholas; Richardson, Joseph

    2016-01-01

    Highlights: • A TEG is fabricated using high-efficiency nanostructured thermoelectric materials. • The TEG produces high power density of 2.1 W/cm"2 with 5.3% electrical efficiency. • A micro-CHP system is demonstrated by integrating the TEG into a gas-fired boiler. - Graphical Abstract: - Abstract: Micro combined heat and power (micro-CHP) systems are promising pathways to increase power generation efficiencies. Here a new class of micro-CHP system without moving parts is experimentally demonstrated by integrating high-temperature thermoelectric generators (TEGs) and residential gas-fired boilers, thus enabling wide applications. The TEGs fabricated using high-efficiency nanostructured bulk half-Heusler alloys generate ultrahigh power density of 2.1 W/cm"2 with 5.3% electrical efficiency under 500 °C temperature differences between the hot and cold sides. The TEG system harnesses the untapped exergy between the combustion gas and water, and converts thermal energy into electric power with 4% heat-to-electricity efficiency based on the total heat input into the TEGs. The high-performance TEGs open lots of opportunities to transform power generation technologies and improve energy efficiency.

  18. Characteristics of entropy generation and heat transfer in double-layered micro heat sinks with complex structure

    International Nuclear Information System (INIS)

    Zhai, Y.L.; Xia, G.D.; Liu, X.F.; Wang, J.

    2015-01-01

    Highlights: • A novel DL-MCHS with complex structure is presented. • A model of entropy generation rate of DL-MCHSs is derived from the first and second laws of thermodynamics. • DL-MCHSs show better thermodynamic advantage and thermal performance under large volumetric flow rate. - Abstract: A new type of double-layered micro heat sink (DL-MCHS) with complex structure is designed and investigated numerically. Moreover, a model of entropy generation rate of DL-MCHSs is also derived from the first and second laws of thermodynamics. Results for the relationship of entropy generation rate between the first and second layer of DL-MCHSs, total entropy generation rate, the average temperature on the bottom wall, thermal resistance and pressure drop are investigated in detail, respectively. The results indicate that the effect of entropy generation rate of the first layer on total entropy generation rate is dominant. The thermal characteristic of DL-MCHSs with complex structure is better than that of all DL-MCHSs and single-layered micro heat sinks (SL-MCHSs) with simple structure under the same volumetric flow rate. However, DL-MCHSs only show better thermodynamic advantage and thermal performance than SL-MCHSs with complex structure when the volumetric flow rate larger than a certain value. It is not reasonable to use DL-MCHSs for cooling microelectronic equipments under small volumetric flow rate due to the larger irreversibility. Finally, the pressure drop of DL-MHCSs can be reduced by properly changing the channel height under various volumetric flow rates. Due to the less irreversibility and more uniform temperature distribution on the bottom wall, DL-MCHSs can effectively eliminate the internal thermal stresses in microelectronic equipments. Therefore, DL-MCHSs are an alternative method for the electronic cooling. Moreover, the thermodynamic analysis provides references for the actual application design

  19. Control system for fluid heated steam generator

    Science.gov (United States)

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  20. Human local and total heat losses in different temperature.

    Science.gov (United States)

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles

    International Nuclear Information System (INIS)

    Li, Bo; Huang, Kuo; Yan, Yuying; Li, Yong; Twaha, Ssennoga; Zhu, Jie

    2017-01-01

    Highlights: •Shape-adapted thermoelectric module for highly compact heat recovery exchanger assembly. •Heat pipe-assisted heat transfer enhancement method for better power output. •Highest power output ratio to the total volume of heat recovery exchanger. •Cascaded thermoelectric system can be scaled and extended for various power output. •Self-clamping design of thermoelectric module can solve the thermomechanical imbalances. -- Abstract: Transport represents over a quarter of Europe's greenhouse gas emissions and is the leading cause of air pollution in cities. It has not seen the same gradual decline in emissions as other sectors. Recently, the thermoelectric power generation (TEG) technology emerges as an alternative solution to the emission reduction challenge in this area. In this paper, we present an innovative pathway to an improved heat supply into the concentric shape-adapted TEG modules, integrating the heat pipe technologies. It relies on a phase changing approach which enhances the heat flux through the TEG surface. In order to improve the heat transfer for higher efficiency, in our work, the heat pipes are configured in the radial direction of the exhaust streams. The analysis shows that the power output is adequate for the limited space under the chassis of the passenger car. Much effort can also be applied to obtain enhanced convective heat transfer by adjusting the heat pipes at the dual sides of the concentric TEG modules. Heat enhancement at the hot side of the TEG has an effective impact on the total power out of the TEG modules. However, such improvements can be offset by the adjustment made from the coolant side. Predictably, the whole temperature profile of TEG system is subject to the durability and operational limitations of each component. Furthermore, the results highlight the importance of heat transfer versus the TEG power generation under two possible configurations in the passenger car. The highest power output per

  2. Classical entropy generation analysis in cooled homogenous and functionally graded material slabs with variation of internal heat generation with temperature, and convective–radiative boundary conditions

    International Nuclear Information System (INIS)

    Torabi, Mohsen; Zhang, Kaili

    2014-01-01

    This article investigates the classical entropy generation in cooled slabs. Two types of materials are assumed for the slab: homogeneous material and FGM (functionally graded material). For the homogeneous material, the thermal conductivity is assumed to be a linear function of temperature, while for the FGM slab the thermal conductivity is modeled to vary in accordance with the rule of mixtures. The boundary conditions are assumed to be convective and radiative concurrently, and the internal heat generation of the slab is a linear function of temperature. Using the DTM (differential transformation method) and resultant temperature fields from the DTM, the local and total entropy generation rates within slabs are derived. The effects of physically applicable parameters such as the thermal conductivity parameter for the homogenous slab, β, the thermal conductivity parameter for the FGM slab, γ, gradient index, j, internal heat generation parameter, Q, Biot number at the right side, Nc 2 , conduction–radiation parameter, Nr 2 , dimensionless convection sink temperature, δ, and dimensionless radiation sink temperature, η, on the local and total entropy generation rates are illustrated and explained. The results demonstrate that considering temperature- or coordinate-dependent thermal conductivity and radiation heat transfer at both sides of the slab have great effects on the entropy generation. - Highlights: • The paper investigates entropy generation in a slab due to heat generation and convective–radiative boundary conditions. • Both homogeneous material and FGM (functionally graded material) were considered. • The calculations are carried out using the differential transformation method which is a well-tested analytical technique

  3. The effect of turbulence-radiation interaction on radiative entropy generation and heat transfer

    International Nuclear Information System (INIS)

    Caldas, Miguel; Semiao, Viriato

    2007-01-01

    The analysis under the second law of thermodynamics is the gateway for optimisation in thermal equipments and systems. Through entropy minimisation techniques it is possible to increase the efficiency and overall performance of all kinds of thermal systems. Radiation, being the dominant mechanism of heat transfer in high-temperature systems, plays a determinant role in entropy generation within such equipments. Turbulence is also known to be a major player in the phenomenon of entropy generation. Therefore, turbulence-radiation interaction is expected to have a determinant effect on entropy generation. However, this is a subject that has not been dealt with so far, at least to the extent of the authors' knowledge. The present work attempts to fill that void, by studying the effect of turbulence-radiation interaction on entropy generation. All calculations are approached in such a way as to make them totally compatible with standard engineering methods for radiative heat transfer, namely the discrete ordinates method. It was found that turbulence-radiation interaction does not significantly change the spatial pattern of entropy generation, or heat transfer, but does change significantly their magnitude, in a way approximately proportional to the square of the intensity of turbulence

  4. Heat-Pipe-Associated Localized Thermoelectric Power Generation System

    Science.gov (United States)

    Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo

    2014-06-01

    The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.

  5. RESEARCH OF HYDRODYNAMICS OF HEAT GENERATORS FOR MECHANICAL SYSTEMS AUTONOMOUS HEATING

    Directory of Open Access Journals (Sweden)

    E. M. Derbasova

    2014-01-01

    Full Text Available A design of mechanical heat source, allows direct conversion of mechanical energy of the wind flow into thermal energy due to friction forces in a highly viscous fluid. Obtained theoretical dependence for calculating the heat generated by converting mechanical energy into heat. For laminar flow of a highly viscous, fluid in the gap between the stationary and rotating disk heat source. Based on experimental studies to determine the average thickness of the boundary layer between the rotating and fixed disks. The dependences to identify key structural dimensions of mechanical heat sources for heating systems. 

  6. Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery

    Science.gov (United States)

    Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun

    2015-06-01

    Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.

  7. Optimization of the Heat Exchangers of a Thermoelectric Generation System

    Science.gov (United States)

    Martínez, A.; Vián, J. G.; Astrain, D.; Rodríguez, A.; Berrio, I.

    2010-09-01

    The thermal resistances of the heat exchangers have a strong influence on the electric power produced by a thermoelectric generator. In this work, the heat exchangers of a thermoelectric generator have been optimized in order to maximize the electric power generated. This thermoelectric generator harnesses heat from the exhaust gas of a domestic gas boiler. Statistical design of experiments was used to assess the influence of five factors on both the electric power generated and the pressure drop in the chimney: height of the generator, number of modules per meter of generator height, length of the fins of the hot-side heat exchanger (HSHE), length of the gap between fins of the HSHE, and base thickness of the HSHE. The electric power has been calculated using a computational model, whereas Fluent computational fluid dynamics (CFD) has been used to obtain the thermal resistances of the heat exchangers and the pressure drop. Finally, the thermoelectric generator has been optimized, taking into account the restrictions on the pressure drop.

  8. Sorption heat engines: simple inanimate negative entropy generators

    OpenAIRE

    Muller, Anthonie W. J.; Schulze-Makuch, Dirk

    2005-01-01

    The name 'sorption heat engines' is proposed for simple negative entropy generators that are driven by thermal cycling and work on alternating adsorption and desorption. These generators are in general not explicitly recognized as heat engines. Their mechanism is applicable to the fields of engineering, physics, chemistry, geology, and biology, in particular the origin of life. Four kinds of sorption heat engines are distinguished depending on the occurrence of changes in the adsorbent or ads...

  9. Thermal resistance of a convectively cooled plate with applied heat flux and variable internal heat generation

    International Nuclear Information System (INIS)

    Venkataraman, N.S.; Cardoso, H.P.; Oliveira Filho, O.B. de

    1981-01-01

    The conductive heat transfer in a rectangular plate with nonuniform internal heat generation, with one end convectively cooled and a part of the opposite end subjected to external heat flux is considered. The remaining part of this end as well as the other two sides are thermally insulated. The governing differential equation is solved by a finite difference scheme. The variation of the thermal resistance with Biot modulus, the plate geometry, the internal heat generation parameter and the type of profile of internal heat generation is discussed. (author) [pt

  10. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  11. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  12. Composite electric generator equipped with steam generator for heating reactor coolant

    International Nuclear Information System (INIS)

    Watabe, Masaharu; Soman, Yoshindo; Kawanishi, Kohei; Ota, Masato.

    1997-01-01

    The present invention concerns a composite electric generator having coolants, as a heating source, of a PWR type reactor or a thermonuclear reactor. An electric generator driving gas turbine is disposed, and a superheater using a high temperature exhaust gas of the gas turbine as a heating source is disposed, and main steams are superheated by the superheater to elevate the temperature at the inlet of the turbine. This can increase the electric generation capacity as well as increase the electric generation efficiency. In addition, since the humidity in the vicinity of the exit of the steam turbine is reduced, occurrence of loss and erosion can be suppressed. When cooling water of the thermonuclear reactor is used, the electric power generated by the electric generator driven by the gas turbine can be used upon start of the thermonuclear reactor, and it is not necessary to dispose a large scaled special power source in the vicinity, which is efficient. (N.H.)

  13. Thermodynamic analysis of waste heat power generation system

    International Nuclear Information System (INIS)

    Guo, Jiangfeng; Xu, Mingtian; Cheng, Lin

    2010-01-01

    In the present work, a waste heat power generation system is analyzed based on the criteria with and without considering the heat/exergy loss to the environment. For the criteria without considering the heat/exergy loss to the environment, the first- and second-law efficiencies display different tendencies with the variations of some system parameters. When the heat/exergy loss to the environment is taken into consideration, the first and second law efficiencies display the same tendency. Thus, choosing the appropriate expressions for the performance criteria is crucial for the optimization design of the waste heat power generation system. It is found that there are two approaches to improving the system performance: one is to improve the heat/exergy input; the other is to enhance the heat-work conversion ability of the system. The former would deteriorate the environment if the heat-work conversion ability of the system remains unchanged; the latter could reduce the environmental impact but it's restricted by the heat/exergy input. Therefore, the optimal operation condition should be achieved at the trade-off between the heat/exergy input and the heat-work conversion ability of the system.

  14. Experimental Evaluation of a Total Heat Recovery Unit with Polymer Membrane Foils

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Nie, Jinzhe

    2014-01-01

    A laboratory experimental study was conducted to investigate the energy performance of a total heat recovery unit using a polymer membranes heat exchanger. The study was conducted in twin climate chambers. One of the chambers simulated outdoor climate conditions and the other simulated the climate...... condition indoors. The airflows taken from the two chambers were connected into the total heat recovery unit and exchange heat in a polymer membrane foil heat exchanger installed inside the unit. The temperature and humidity of the air upstream and downstream of the heat exchanger were measured. Based...... on the measured temperature and humidity values, the temperature, humidity, and enthalpy efficiencies of the total heat recovery unit were calculated. The experiment was conducted in different combinations of outdoor climate conditions simulating warm and humid outdoor climates and air-conditioned indoor climate...

  15. Magnetoresistance effect of heat generation in a single-molecular spin-valve

    International Nuclear Information System (INIS)

    Jiang, Feng; Yan, Yonghong; Wang, Shikuan; Yan, Yijing

    2016-01-01

    Based on non-equilibrium Green's functions' theory and small polaron transformation's technology, we study the heat generation by current through a single-molecular spin-valve. Numerical results indicate that the variation of spin polarization degree can change heat generation effectively, the spin-valve effect happens not only in electrical current but also in heat generation when Coulomb repulsion in quantum dot is smaller than phonon frequency and interestingly, when Coulomb repulsion is larger than phonon frequency, the inverse spin-valve effect appears by sweeping gate voltage and is enlarged with bias increasing. The inverse spin-valve effect will induce the unique heat magnetoresistance effect, which can be modulated from heat-resistance to heat-gain by gate voltage easily. - Highlights: • Spin-valve effect of heat generation happens when Coulomb repulsion in quantum dot is less than phonon frequency. • When Coulomb repulsion is larger than phonon frequency, inverse spin-valve effect appears and is enlarged with bias increasing. • The variation of spin polarization degree can change heat generation effectively. • The heat magnetoresistance can be modulated from heat-resistance to heat-gain by gate voltage easily.

  16. Heat Recovery From Tail Gas Incineration To Generate Power

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Tarek

    2010-09-15

    Many industrial processes result in tail gas wastes that must be flared or incinerated to abide with environmental guidelines. Tail gas incineration occurs in several chemical processes resulting in high-temperature exhaust gas that simply go to the stack, thus wasting all that valuable heat! This paper discusses useful heat recovery and electric power generation utilizing available heat in exhaust gas from tail gas incinerators. This heat will be recovered in a waste-heat recovery boiler that will produce superheated steam to expand in a steam turbine to generate power. A detailed cost estimate is presented.

  17. A thermoelectric generator using loop heat pipe and design match for maximum-power generation

    KAUST Repository

    Huang, Bin-Juine

    2015-09-05

    The present study focuses on the thermoelectric generator (TEG) using loop heat pipe (LHP) and design match for maximum-power generation. The TEG uses loop heat pipe, a passive cooling device, to dissipate heat without consuming power and free of noise. The experiments for a TEG with 4W rated power show that the LHP performs very well with overall thermal resistance 0.35 K W-1, from the cold side of TEG module to the ambient. The LHP is able to dissipate heat up to 110W and is maintenance free. The TEG design match for maximum-power generation, called “near maximum-power point operation (nMPPO)”, is studied to eliminate the MPPT (maximum-power point tracking controller). nMPPO is simply a system design which properly matches the output voltage of TEG with the battery. It is experimentally shown that TEG using design match for maximum-power generation (nMPPO) performs better than TEG with MPPT.

  18. Self-disposal option for heat-generating waste - 59182

    International Nuclear Information System (INIS)

    Ojovan, Michael I.; Poluektov, Pavel P.; Kascheev, Vladimir A.

    2012-01-01

    Self-descending heat generating capsules can be used for disposal of dangerous radioactive wastes in extremely deep layers of the Earth preventing any release of radionuclides into the biosphere. Self-disposal option for heat-generating radioactive waste such as spent fuel, high level reprocessing waste or spent sealed radioactive sources, known also as rock melting concept, was considered in the 70's as a viable alternative disposal option by both Department of Energy in the USA and Atomic Industry Ministry in the USSR. Self-disposal is currently reconsidered as a potential alternative route to existing options for solving the nuclear waste problem and is associated with the renaissance of nuclear industry. Self- disposal option utilises the heat generated by decaying radionuclides of radioactive waste inside a heavy and durable capsule to melt the rock on its way down. As the heat from radionuclides within the capsule partly melts the enclosing rock, the relatively low viscosity and density of the silicate melt allow the capsule to be displaced upwards past the heavier capsule as it sinks. Eventually the melt cools and solidifies (e.g. vitrifies or crystallizes), sealing the route along which the capsule passed. Descending or self-disposal continues until enough heat is generated by radionuclides to provide partial melting of surrounding rock. Estimates show that extreme depths of several tens and up to hundred km can be reached by capsules which could never be achieved by other techniques. Self- disposal does not require complex and expensive disposal facilities and provides a minimal footprint used only at operational stage. It has also an extremely high non- proliferation character and degree of safety. Utilisation of heat generated by relatively short-lived radionuclides diminishes the environmental uncertainties of self-disposal and increases the safety of this concept. Self-sinking heat-generating capsules could be launched from the bottom of the sea as

  19. Socio-economic effects and benefits of biofuels in power and heat generation

    International Nuclear Information System (INIS)

    Turkki, J.

    1999-10-01

    This report studies the socioeconomic effects and benefits of domestic fuels - peat and wood and agricultural energy plants also - in power and heat generation. For evaluation of the employment and income effects, it compares the costs of domestic as well as imported fuels as regards to production, transportation and power stations by looking especially at the direct labour input and inputs in terms of intermediate products and investment. Their indirect employment effects and allocation to domestic factor income and imports are introduced by means of an input-output model. The net changes in the disposable incomes of local households, firms and municipalities, the government and other are derived from factor incomes by means of income redistribution. If in heat generation 15 MW oil heating plant is replaced by a peat heating plant, the annual local employment increases by 8 man years. If the fuel used is wood, employment increases by 9 man-years. The disposable income of the local economy rises annually about FIM 0,8 million with the peat alternative and FIM 0,9 million with the wood alternative. Although with the domestic fuel alternatives the income tax revenue grows and the unemployment security payments decrease, the loss of the high fuel taxes collected on oil means however, that the government is netloser by FIM 0,8-1,4 million annually. The total annual import bill decreases both with peat and wood by FIM 2,5 million respectively. Calculated by a small-sized 3/9 MW cogeneration station, which in heat generation replaces oil heating plants and in power generation replaces coal condensation power, the annual local employment effect is 11 man-years with peat and 12 with food fuel. The local economy gain an annual net income of FIM 0,8-0,9 million. The net increase of the government is FIM 0,1 million annually. With the wood alternative the government is a net looser by FIM 0,2 million. The annual import bill decreases by FIM 2,3-2,5 million. (orig.)

  20. Cogeneration using a nuclear reactor to generate process heat

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Ramirez, Ramon

    2009-01-01

    Some of the new nuclear reactor technologies (Generation III+) are claiming the production of process heat as an additional value to electricity generation. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product. The current study assess the likeliness of generate process heat from a Pebble Bed Modular Reactor to be used for a refinery showing different plant balance and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor and also the challenges that this option has. (author)

  1. Sustainability assessment of renewable power and heat generation technologies

    International Nuclear Information System (INIS)

    Dombi, Mihály; Kuti, István; Balogh, Péter

    2014-01-01

    Rationalisation of consumption, more efficient energy usage and a new energy structure are needed to be achieved in order to shift the structure of energy system towards sustainability. The required energy system is among others characterised by intensive utilisation of renewable energy sources (RES). RES technologies have their own advantages and disadvantages. Nevertheless, for the strategic planning there is a great demand for the comparison of RES technologies. Furthermore, there are additional functions of RES utilisation expected beyond climate change mitigation, e.g. increment of employment, economic growth and rural development. The aim of the study was to reveal the most beneficial RES technologies with special respect to sustainability. Ten technologies of power generation and seven technologies of heat supply were examined in a multi-criteria sustainability assessment frame of seven attributes which were evaluated based on a choice experiment (CE) survey. According to experts the most important characteristics of RES utilisation technologies are land demand and social impacts i.e. increase in employment and local income generation. Concentrated solar power (CSP), hydropower and geothermal power plants are favourable technologies for power generation, while geothermal district heating, pellet-based non-grid heating and solar thermal heating can offer significant advantages in case of heat supply. - highlights: • We used choice experiment to estimate the weights of criteria for the sustainability assessment of RES technologies. • The most important attributes of RES technologies according to experts are land demand and social impacts. • Concentrated solar power (CSP), hydropower and geothermal power plants are advantageous technologies for power generation. • Geothermal district heating, pellet-based non-grid heating and solar thermal heating are favourable in case of heat supply

  2. Performance evaluation of a biomass boiler on the basis of heat loss method and total heat values of steam

    International Nuclear Information System (INIS)

    Munir, A.; Alvi, J.Z.; Ashfaq, S.; Ghafoor, A.

    2014-01-01

    Pakistan being an agricultural country has large resources of biomass in the form of crop residues like wood, wheat straw, rice husk, cotton sticks and bagasse. Power generation using biomass offers an excellent opportunity to overcome current scenario of energy crises. Of the all biomass resources, bagasse is one of the potential energy sources which can be successfully utilized for power generation. During the last decade, bagasse fired boilers attained major importance due to increasing prices of primary energy (e.g. fossil fuels). Performance of a bagasse fired boiler was evaluated at Shakarganj Sugar Mill, Bhone-Jhang having steam generation capacity of 80 tons h/sup -1/at 25 bar working pressure. The unit was forced circulation and bi-drum type water tube boiler which was equipped with all accessories like air heater, economizer and super-heater. Flue gas analyzer and thermocouples were used to record percent composition and temperature of flue gases respectively. Physical analysis of bagasse showed gross calorific value of bagasse as 2326 kCal kg/sup -1/. Ultimate analysis of bagasse was performed and the actual air supplied to the boiler was calculated to be 4.05 kg per kg of bagasse under the available resources of the plant. Performance evaluation of the boiler was carried out and a complete heat balance sheet was prepared to investigate the different sources of heat losses. The efficiency of the boiler was evaluated on the basis of heat losses through boiler and was found to be 56.08%. It was also determined that 2 kg of steam produced from 1 kg of bagasse under existing condition of the boiler. The performance evaluation of the boiler was also done on the basis of total heat values of steam and found to be 55.98%. The results obtained from both the methods were found almost similar. Effects of excess air, stack and ambient temperature on the efficiency of boiler have also been evaluated and presented in the manuscript. (author)

  3. Local total and radiative heat-transfer coefficients during the heat treatment of a workpiece in a fluidised bed

    International Nuclear Information System (INIS)

    Gao, W.M.; Kong, L.X.; Hodgson, P.D.

    2006-01-01

    The heat-transfer coefficients around a workpiece immersed in an electrically heated heat treatment fluidised bed were studied. A suspension probe designed to simulate a workpiece of complex geometry was developed to measure local total and radiative heat-transfer coefficients at a high bed temperature. The probe consisted of an energy-storage region separated by insulation from the fluidised bed, except for the measuring surface, and a multi-thermocouple measurement system. Experiments in the fluidised bed were performed for a fluidising medium of 120-mesh alumina, a wide temperature range of 110-1050 deg. C and a fluidising number range of 1.18-4.24. It was found that the workpiece surface temperature has a more significant effect on heat transfer than the bed temperature. The total heat-transfer coefficient at the upper surface of the workpiece sharply decreased at the start of heating, and then steadily increased as heating progressed, while a sharp decrease became a rapid increase and then a slow increase for the radiative heat-transfer coefficient. A great difference in the heat-transfer coefficients around the workpiece was observed

  4. Transient thermal stresses in circular cylinder under intermittently sudden heat generation

    International Nuclear Information System (INIS)

    Sugano, Y.; Saito, K.; Takeuti, Y.

    1975-01-01

    The thermal stresses associated with the transient temperature distribution arising in a circular cylinder under intermittently changing sudden heat generation over a finite band and with heat loss to a surrounding medium on the remainder of the cylinder surface are exactly analysed. For the first time the temperature field in a circular cylinder under sudden heat generation over a finite band of the cylinder surface is determined by combined use of Fourier cosine, Laplace transforms in axial position and time, respectively. Secondly it is assumed that the temperature fields in a circular cylinder subjected to heat generation Qsub(i) (i=0, 1, 2, ...) independently over a finite band are given by T 0 (r,z,t), T 1 (r,z,t), T 2 (r,z,t),... respectively. Tsub(i)(r,z,t) indicates the temperature field before the i-th heat generation Qsub(i). The thermal stresses associated with the temperature field described above are analysed by using the Hoyle stress functions. Numerical calculations are carried out for the extensive case of the ratio of the heat-generating length to the diameter of cylinder. It is found that the time in which the maximum stresses occur on the cylinder surface does not depend on the heat-generating length-to-diameter ratio

  5. Heat Generation Effects on U-Mo/Al through ABAQUS FEM Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Taewon; Jeong, Gwan Yoon; Lee, Cheol Min; Sohn Dongseong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    U-Mo/Al dispersion fuels have been considered a most promising candidate for a replacement of Highly Enriched Uranium (HEU) fuel in many research reactors. Coulson developed a FEM model which show the fuel meat realistically and compared the thermal conductivity results of two and three dimensional model. Williams also developed a FEM model which are different from the former in that it use regularly meshed unit cells. He showed a heat generation effects through FEM simulation and the effective thermal conductivity of the fuel with heat generated in the fuel particles is a little lower than that of the fuel with no heat generated. In the current work, the heat generation effects are analyzed and discussed in a wider range of volume fraction with more realistic models by using ABAQUS finite element package. The FEM model is used to determine the effective thermal conductivity of U-Mo/Al and to simulate the heat generation effects in the study. This model reflected the microscopic morphology of the fuel very well by making random distribution particles although the particle shape is considered as sphere. All simulation results show the heat generation effects although the effects are small when the volume fraction of fuels are high. When the particles are surrounded with interaction layers, the heat transfer from the particle to matrix is disturbed by interaction layers due to the low thermal conductivity of interaction layers. However this effects decreases when the sum of the volume fraction of fuels and interaction layers exceeds 40-50 vol% because a great portion of the heat must pass through fuels and interaction layers although the heat is applied on the surface. Therefore particle size and initial particle volume fractions will be the important factors for the heat generation effects when interaction layers grow during irradiations.

  6. Heat generation caused by ablation of dental hard tissues with an ultrashort pulse laser (USPL) system.

    Science.gov (United States)

    Braun, Andreas; Krillke, Raphael Franz; Frentzen, Matthias; Bourauel, Christoph; Stark, Helmut; Schelle, Florian

    2015-02-01

    Heat generation during the removal of dental hard tissues may lead to a temperature increase and cause painful sensations or damage dental tissues. The aim of this study was to assess heat generation in dental hard tissues following laser ablation using an ultrashort pulse laser (USPL) system. A total of 85 specimens of dental hard tissues were used, comprising 45 specimens of human dentine evaluating a thickness of 1, 2, and 3 mm (15 samples each) and 40 specimens of human enamel with a thickness of 1 and 2 mm (20 samples each). Ablation was performed with an Nd:YVO4 laser at 1,064 nm, a pulse duration of 9 ps, and a repetition rate of 500 kHz with an average output power of 6 W. Specimens were irradiated for 0.8 s. Employing a scanner system, rectangular cavities of 1-mm edge length were generated. A temperature sensor was placed at the back of the specimens, recording the temperature during the ablation process. All measurements were made employing a heat-conductive paste without any additional cooling or spray. Heat generation during laser ablation depended on the dental hard tissue (enamel or dentine) and the thickness of the respective tissue (p dental hard tissues, heat generation has to be considered. Especially during laser ablation next to pulpal tissues, painful sensations and potential thermal injury of pulp tissue might occur.

  7. Current generation by minority-species heating

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1981-01-01

    It is proposed that electric currents be generated from the preferential heating of ions travelling in one direction but with no net momentum injected into the system. This can be accomplished with, for example, travelling waves in a two-ion-species plasma. The current can be generated efficiently enough for the scheme to be of interest in maintaining steady-state toroidal currents in a reactor. (author)

  8. Current generation by minority species heating

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1980-07-01

    It is proposed that electric currents be generated from the preferential heating of ions traveling in one direction but with no net momentum injected into the system. This can be accomplished with, for example, traveling waves in a two-ion-species plasma. The current can be generated efficiently enough for the scheme to be of interest in maintaining steady-state toroidal currents in a reactor

  9. Smart energy systems and 4th generation district heating

    DEFF Research Database (Denmark)

    Lund, Henrik; Duic, Neven; Østergaard, Poul Alberg

    2016-01-01

    scientific understanding on how we can design and implement a suitable and least-cost transformation into a sustainable energy future. The concept of Smart Energy Systems emphasizes the importance of being coherent and cross-sectoral when the best solutions are to be found and how this also calls......This editorial gives an introduction to the important relationship between Smart Energy Systems and 4th Generation District Heating and presents a number of selected papers from the 1st International Conference on the topic. All of the papers elaborate on or otherwise contribute to the theoretical...... for the active inclusion of the heating and cooling sectors. The concept of 4th Generation District Heating emphasizes that district heating and cooling are both important elements but also technologies that have to be developed further into a 4th generation version to be able to fulfil their roles in future...

  10. Power generation from residual industrial heat

    International Nuclear Information System (INIS)

    Nguyen, T.Q.; Slawnwhite, J.D.; Boulama, K.Goni

    2010-01-01

    Industrial plants continuously reject large amounts of thermal energy through warm liquid or gaseous effluents during normal operation. These energy losses contribute to an inflation of production costs and also threaten the environment. This paper investigates methods of recovering the residual low grade thermal energy and converting it into higher quality mechanical energy using the thermodynamic Rankine cycle principle. For the temperature range of the available thermal energy, water was shown to be a poor working fluid for the conversion system, thus several potential working fluids, including ammonia, synthetic refrigerants, and organic compounds have been considered as alternatives. A comparative analysis led to the identification of different performance evaluation criteria. For example, the water-based Rankine cycle and, to a lesser extent, the ammonia-based Rankine cycle proved to be interesting when the power generation potential per unit working fluid mass flow rate was considered. On the other hand, Rankine-like cycles using dry hydrocarbon working fluids proved much more interesting in terms of energy conversion efficiency, as well as in terms of the net mechanical power generation potential for a given heat source. All performance indicators were low at low temperatures, and improved as the primary heat source was available at higher temperatures. This paper also discusses the influence of various external and internal operating parameters, such as heat source and heat sink temperatures, turbine and pump isentropic efficiencies and the addition of an internal heat exchanger on the overall performance of the energy recovery and conversion system.

  11. Effect of heat- and steam-generating sheet on daily activities of living in patients with osteoarthritis of the knee: randomized prospective study.

    Science.gov (United States)

    Seto, Hiroaki; Ikeda, Hiroshi; Hisaoka, Hidehiko; Kurosawa, Hisashi

    2008-05-01

    Thermotherapy is widely known to be effective for osteoarthritis of the knee (knee OA), but most treatment methods make use of dry heat. We developed a sheet that generates heat and steam simultaneously. In this prospective randomized study, we evaluated the effectiveness of this sheet. Of 41 female patients with knee OA randomized to use the heat/steam-generating sheet or the dry heat-generating sheet, 37 patients (20 using the heat/steam-generating sheet and 17 using the dry heat-generating sheet) who used the sheets continuously for 4 weeks were studied. Outcome measures included the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Japan Orthopaedic Association (JOA) scores, which were applied at baseline and after 2 and 4 weeks of use. Significant improvement of the total WOMAC score was observed at 2 and 4 weeks (compared to baseline) in the heat/steam-generating sheet group, but no significant change was observed in the dry heat-generating sheet group. Among the JOA scores, the gait ability score was also improved significantly only in the heat/steam-generating sheet group. The effects were still seen 6 weeks after completion of treatment. The present study provided evidence that the heat/steam-generating sheet that we developed is effective for alleviating pain and is especially superior in regard to improving stiffness and gait impairment in patients with knee OA. Furthermore, the effect persists for at least 6 weeks after application.

  12. Effect of heat generation from bone cement on bone tissue in total knee arthroplasty; Jinko kansetsu okikaeji no one cement no hatsunetsu ga seitai soshiki ni oyobosu eikyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M.; Uchida, T. [Kobe University, Kobe (Japan); Iwatsubo, T. [Kobe University, Kobe (Japan). Faculty of Engineering; Kurosawa, M.; Hashimoto, Y. [Kobe University, Kobe (Japan). Faculty of Medicine; Fukushima, H.

    1998-01-25

    Bone cement is often applied to fix the components in a surgical operation, such as TKA (total knee arthroplasty). In this paper, we consider the effect of heat generation from bone cement on bone tissue in TKA by using numerical simulation. First, we applied an axisymmetric model of tibia to finite element method and analyzed heat generation of bone cement. To confirm the results of analysis by experiment, we measured the temperature determined by 6 points i.e., 2 points each in component-cement interface, cement and bone-cement interface. As a result, the temperature determined by analysis agrees with that determined by experiment. Next, we proposed the evaluation formula of the bone necrosis. We constructed a bone necrosis map from the simulation. From the map, we found that the bone necrosis region was about 2 mm from the bone-cement interface. In addition, the bone necrosis is severe at the base of the tibial component. 7 refs., 15 figs., 3 tabs.

  13. Waste heat of HTR power stations for district heating

    International Nuclear Information System (INIS)

    Bonnenberg, H.; Schlenker, H.V.

    1975-01-01

    The market situation, the applied techniques, and the transport, for district heating in combination with HTR plants are considered. Analysis of the heat market indicates a high demand for heat at temperatures between 100 and 150 0 C in household and industry. This market for district heating can be supplied by heat generated in HTR plants using two methods: (1) the combined heat and power generation in steam cycle plants by extracting steam from the turbine, and (2) the use of waste heat of a closed gas turbine cycle. The heat generation costs of (2) are negligible. The cost for transportation of heat over the average distance between existing plant sites and consumer regions (25 km) are between 10 and 20% of the total heat price, considering the high heat output of nuclear power stations. Comparing the price of heat gained by use of waste heat in HTR plants with that of conventional methods, considerable advantages are indicated for the combined heat and power generation in HTR plants. (author)

  14. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    The objective of this study was to predict tensile stress levels in thin-walled titanium alloy and thick-walled carbon steel containers designed for the ocean disposal of heat-generating radioactive wastes. Results showed that tensile stresses would be produced in both designs by the expansion of the lead filter, for a temperature rise of 200 0 C. Tensile stress could be reduced if the waste heat output at disposal was reduced. Initial stresses for the titanium-alloy containers could be relieved by heat treatment. (UK)

  15. Development of low grade waste heat thermoelectric power generator

    Directory of Open Access Journals (Sweden)

    Suvit Punnachaiya

    2010-07-01

    Full Text Available This research aimed to develop a 50 watt thermoelectric power generator using low grade waste heat as a heat source,in order to recover and utilize the excess heat in cooling systems of industrial processes and high activity radioisotope sources. Electricity generation was based on the reverse operation of a thermoelectric cooling (TEC device. The TEC devices weremodified and assembled into a set of thermal cell modules operating at a temperature less than 100°C. The developed powergenerator consisted of 4 modules, each generating 15 watts. Two cascade modules were connected in parallel. Each modulecomprised of 96 TEC devices, which were connected in series. The hot side of each module was mounted on an aluminumheat transfer pipe with dimensions 12.212.250 cm. Heat sinks were installed on the cold side with cooling fans to provideforced air cooling.To test electricity generation in the experiment, water steam was used as a heat source instead of low grade waste heat.The open-circuit direct current (DC of 250 V and the short-circuit current of 1.2 A was achieved with the following operatingconditions: a hot side temperature of 96°C and a temperature difference between the hot and cold sides of 25°C. The DC poweroutput was inverted to an AC power source of 220 V with 50 Hz frequency, which can continuously supply more than 50 wattsof power to a resistive load as long as the heat source was applied to the system. The system achieved an electrical conversionefficiency of about 0.47 percent with the capital cost of 70 US$/W.

  16. National need for utilizing nuclear energy for process heat generation

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1984-01-01

    Nuclear reactors are potential sources for generating process heat, and their applications for such use economically competitive. They help satisfy national needs by helping conserve and extend oil and natural gas resources, thus reducing energy imports and easing future international energy concerns. Several reactor types can be utilized for generating nuclear process heat; those considered here are light water reactors (LWRs), heavy water reactors (HWRs), gas-cooled reactors (GCRs), and liquid metal reactors (LMRs). LWRs and HWRs can generate process heat up to 280 0 C, LMRs up to 540 0 C, and GCRs up to 950 0 C. Based on the studies considered here, the estimated process heat markets and the associated energy markets which would be supplied by the various reactor types are summarized

  17. Investigation of Counter-Flow in a Heat Pipe-Thermoelectric Generator (HPTEG)

    Science.gov (United States)

    Remeli, Muhammad Fairuz; Singh, Baljit; Affandi, Nor Dalila Nor; Ding, Lai Chet; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-05-01

    This study explores a method of generating electricity while recovering waste heat through the integration of heat pipes and thermoelectric generators (i.e. HPTEG system). The simultaneous waste heat recovery and power generation processes are achieved without the use of any moving parts. The HPTEG system consists of bismuth telluride thermoelectric generators (TEG), which are sandwiched between two finned pipes to achieve a temperature gradient across the TEG for electricity generation. A counter-flow heat exchanger was built using two separate air ducts. The air ducts were thermally coupled using the HPTEG modules. The evaporator section of the heat pipe absorbed the waste heat in a hot air duct. The heat was then transferred across the TEG surfaces. The condenser section of the HPTEG collected the excess heat from the TEG cold side before releasing it to the cold air duct. A 2-kW electrical heater was installed in the hot air duct to simulate the exhaust gas. An air blower was installed at the inlet of each duct to direct the flow of air into the ducts. A theoretical model was developed for predicting the performance of the HPTEG system using the effectiveness-number of transfer units method. The developed model was able to predict the thermal and electrical output of the HPTEG, along with the rate of heat transfer. The results showed that by increasing the cold air velocity, the effectiveness of the heat exchanger was able to be increased from approximately 52% to 58%. As a consequence of the improved heat transfer, maximum power output of 4.3 W was obtained.

  18. Generation of heat on fuel rod in cosine pattern by using induction heating

    International Nuclear Information System (INIS)

    Keettikkal, Felix; Sajeesh, Divya; Rao, Poornima; Hande, Shashank; Dakave, Ganesh; Kute, Tushar; Mahajan, Akshay; Kulkarni, R.D.

    2017-01-01

    Fuel rods are used in a nuclear reactor for fission process. When these rods are cooled by water during the heat transfer, the temperature stress causes undesirable defects in the fuel rod. Studying these defects occurring in the fuel rod in the nuclear cluster during nuclear reaction is a difficult task because fission reaction makes it difficult to analyse the changes in the rod. Hence there is a need to use a replica of the rod with similar thermal stress to study and analyse the rod for the defects. Normally the heat generated on the fuel rod follows a cosine pattern which is an inherent characteristic inside a nuclear reactor. In view of this, in this paper induction heating method is used on a rod to create an exact replica of the cosine pattern of heat by varying the pitch of the coil. First, a MATLAB simulation is done using simulink. Then a prototype of the model has been developed comprising of carbon steel pipe, with length and outside diameter of 1 meter and 48.2 mm, respectively. Instead of using water as coolant, rod is simulated in air. Therefore, the heat generated is lost by normal convection and radiation. Non-nuclear testing can be a valuable tool in the development or in some kind of experiment using nuclear reactor. Induction heating becomes an alternative to classical heating technologies because of its advantages such as efficiency, quickness, safety, clean heating and accurate power control. (author)

  19. Thermoelectric as recovery and harvesting of waste heat from portable generator

    Science.gov (United States)

    Mustafa, S. N.; Kamarrudin, N. S.; Hashim, M. S. M.; Bakar, S. A.; Razlan, Z. M.; Harun, A.; Ibrahim, I.; Faizi, M. K.; Saad, M. A. M.; Zunaidi, I.; Wan, W. K.; Desa, H.

    2017-10-01

    Generation of waste heat was ineluctable especially during energy producing process. Waste heat falls into low temperature grade make it complicated to utilize. Thermoelectric generator (TEG) offers opportunity to harvest any temperature grade heat into useful electricity. This project is covered about recovery and utilizing waste heat from portable electric generator by using a TEG which placed at exhaust surface. Temperature difference at both surfaces of TEG was enhanced with supplying cold air from a wind blower. It is found that, even at low air speed, the TEG was successfully produced electricity with aid from DC-DC booster. Results shows possibility to harvest low temperature grade heat and still exist areas for continual improvement.

  20. Flow visualization in heat-generating porous media

    International Nuclear Information System (INIS)

    Lee, D.O.; Nilson, R.H.

    1977-11-01

    The work reported is in support of the Sandia Post-Accident Heat Removal Program, in which simulated LMFBR beds will be subjected to in-pile heating in the ACPR (Annular Core Pulsed Reactor). Flow visualization experiments were performed to gain some insight into the flow patterns and temperature distributions in a fluid-saturated heat-generating porous medium. Although much of the information presented is of a qualitative nature, it is useful in the recognition of the controlling transport process and in the formulation of analytic and numerical models

  1. Power generation using sugar cane bagasse: A heat recovery analysis

    Science.gov (United States)

    Seguro, Jean Vittorio

    The sugar industry is facing the need to improve its performance by increasing efficiency and developing profitable by-products. An important possibility is the production of electrical power for sale. Co-generation has been practiced in the sugar industry for a long time in a very inefficient way with the main purpose of getting rid of the bagasse. The goal of this research was to develop a software tool that could be used to improve the way that bagasse is used to generate power. Special focus was given to the heat recovery components of the co-generation plant (economizer, air pre-heater and bagasse dryer) to determine if one, or a combination, of them led to a more efficient co-generation cycle. An extensive review of the state of the art of power generation in the sugar industry was conducted and is summarized in this dissertation. Based on this models were developed. After testing the models and comparing the results with the data collected from the literature, a software application that integrated all these models was developed to simulate the complete co-generation plant. Seven different cycles, three different pressures, and sixty-eight distributions of the flue gas through the heat recovery components can be simulated. The software includes an economic analysis tool that can help the designer determine the economic feasibility of different options. Results from running the simulation are presented that demonstrate its effectiveness in evaluating and comparing the different heat recovery components and power generation cycles. These results indicate that the economizer is the most beneficial option for heat recovery and that the use of waste heat in a bagasse dryer is the least desirable option. Quantitative comparisons of several possible cycle options with the widely-used traditional back-pressure turbine cycle are given. These indicate that a double extraction condensing cycle is best for co-generation purposes. Power generation gains between 40 and

  2. Heating unit of Berovo by co-generation (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin; Tashevski, Done

    1999-01-01

    A plant for combined heat and electric power production, for central heating of the town Berovo (Macedonia) is proposed. The common reason to use a co-generation unit is the energy efficiency and a significant reduction of environmental pollution. The heat consumption of town Berovo is analyzed and determined. Based on the energy consumption of a whole power plant, e. i. the plant for combined and simultaneous production of power is proposed. The quantity of annually heat and electrical production and annually coal consumption are estimated. (Author)

  3. Heat savings in energy systems with substantial distributed generation

    DEFF Research Database (Denmark)

    Østergaard, PA

    2003-01-01

    In Denmark, the integration of wind power is affected by a large amount of cogeneration of heat and power. With ancillary services supplied by large-scale condensation and combined heat and power (CHP) plants, a certain degree of large-scale generation is required regardless of momentary wind input......, if a certain production is required regardless of whether over-all electricity generation is sufficient. This article analyses this and although heat savings do have a negative impact on the amount of wind power the system may integrate a given moment in certain cases, associated fuel savings are notable...

  4. Efficient thermo-mechanical generation of electricity from the heat of radioisotopes

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.; Yeats, F.W.

    1975-01-01

    The thermomechanical generator uses a thermomechanical oscillator to convert heat efficiently into a mechanical oscillation which in turn excites a suitable transducer to generate alternating electricity. The thermomechanical oscillator used is based on the Stirling cycle, but avoids the need for rotary motion and for sliding pistons by having a mechanically-resonant, spring-suspended displacer, and by using an oscillating metal diaphragm to provide the mechanical output. The diaphragm drives an alternator consisting of a spring-suspended permanent magnet oscillating between fixed pole pieces which carry the electrical power output windings. Because a thermomechanical generator is much more efficient than a thermo-electric generator at comparable temperatures, it is particularly suitable for use with a radioisotope heat source. The amounts of radioisotope and of shielding required are both greatly reduced. A machine heated by radioisotopes and delivering 10.7W ac at 80Hz began operating in October, 1974. Operating experience with this machine is reported, and these results, together with those obtained with higher-powered machines heated by other means, are used to calculate characteristics and performance of thermo-mechanical radioisotope generators capable of using heat sources such as the waste-management 90 Sr radioisotope sources becoming available from the US nuclear waste management programme. A design to use one of these heat sources in a 52-W underwater generator is described

  5. Thermodynamic analysis of heat recovery steam generator in combined cycle power plant

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Naradasu

    2007-01-01

    Full Text Available Combined cycle power plants play an important role in the present energy sector. The main challenge in designing a combined cycle power plant is proper utilization of gas turbine exhaust heat in the steam cycle in order to achieve optimum steam turbine output. Most of the combined cycle developers focused on the gas turbine output and neglected the role of the heat recovery steam generator which strongly affects the overall performance of the combined cycle power plant. The present paper is aimed at optimal utilization of the flue gas recovery heat with different heat recovery steam generator configurations of single pressure and dual pressure. The combined cycle efficiency with different heat recovery steam generator configurations have been analyzed parametrically by using first law and second law of thermodynamics. It is observed that in the dual cycle high pressure steam turbine pressure must be high and low pressure steam turbine pressure must be low for better heat recovery from heat recovery steam generator.

  6. Total generating costs: coal and nuclear plants

    International Nuclear Information System (INIS)

    1979-02-01

    The study was confined to single and multi-unit coal- and nuclear-fueled electric-generating stations. The stations are composed of 1200-MWe PWRs; 1200-MWe BWRs; 800-and 1200-MWe High-Sulfur Coal units, and 800- and 1200-MWe Low-Sulfur Coal units. The total generating cost estimates were developed for commercial operation dates of 1985 and 1990; for 5 and 8% escalation rates, for 10 and 12% discount rates; and, for capacity factors of 50, 60, 70, and 80%. The report describes the methodology for obtaining annualized capital costs, levelized coal and nuclear fuel costs, levelized operation and maintenance costs, and the resulting total generating costs for each type of station. The costs are applicable to a hypothetical Middletwon site in the Northeastern United States. Plant descriptions with general design parameters are included. The report also reprints for convenience, summaries of capital cost by account type developed in the previous commercial electric-power cost studies. Appropriate references are given for additional detailed information. Sufficient detail is given to allow the reader to develop total generating costs for other cases or conditions

  7. Heat cascading regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  8. Dryout in sodium-heated helically-coiled steam generator tubes

    International Nuclear Information System (INIS)

    Tomita, Y.; Kosugi, T.; Kubota, J.; Nakajima, K.; Tsuchiya, T.

    1984-01-01

    Experimental research on the dryout phenomenon in sodium heated, helically coiled steam generator tubes was carried out. The fluctuation of the tube wall temperature caused by dryout was measured with thermocouples installed in the center of the tube wall. Empirical correlations of dryout quality were developed as functions of critical heat flux, water mass velocity and saturation pressure. These correlations confirmed that the design criterion of the MONJU steam generator was reasonable. (author)

  9. The effect of heat generation in inclined slats on the natural convective heat transfer from an isothermal heated vertical plate

    International Nuclear Information System (INIS)

    Oosthuizen, P.H.; Sun, L.; Naylor, D.

    2003-01-01

    Natural convective heat transfer from a wide heated vertical isothermal plate with adiabatic surfaces above and below the heated surface has been considered. There are a series of equally spaced vertical thin, flat surfaces (termed 'slats') near the heated surface, these surfaces being, in general, inclined to the heated surface. There is, in general, a uniform heat generation in the slats. The slats are pivoted about their centre-point and thus as their angle is changed, the distance of the tip of the slat from the plate changes. The situation considered is an approximate model of a window with a vertical blind, the particular case where the window is hotter than the room air being considered. The heat generation in the slats in this situation is the result of solar radiation passing through the window and falling on and being absorbed by the slats of the blind. The flow has been assumed to be laminar and steady. Fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces. The governing equations have been written in dimensionless form and the resulting dimensionless equations have been solved using a commercial finite-element package. The solution has the following parameters: (1) the Rayleigh number (2) the Prandtl number (3) the dimensionless heat generation rate in the slats per unit frontal area (4) the dimensionless distance of the slat center point (the pivot point) from the surface (5) the dimensionless slat size (6) the dimensionless slat spacing (7) the angle of inclination of the slats. Because of the application that motivated the study, results have only been obtained for a Prandtl number of 0.7. The effect of the other dimensionless variables on the mean dimensionless heat transfer rate from the heated vertical surface has been examined. (author)

  10. Fuel cell - An alternative for power and heat generating

    International Nuclear Information System (INIS)

    Zubcu, Victor; Ursescu, Gabriel; Zubcu, Dorina Silvia; Miler, Mihai Cristian

    2004-01-01

    One of the most promising energy generating technologies is the fuel cell (FC) because of its high efficiency and low emissions. There are even zero chemical emissions FC and cogeneration plants based on FC generate low heat emissions too. FC was invented 160 years ago but it was usually used only since 1960 in space missions. A FC farm tractor was tested 40 years ago. FC was again taken into account by power engineering since 1990 and it is now considered a credible alternative to power and heat generating. The thermal power engineers (and not only they) have two problems of cardinal importance for mankind to solve: - Energy saving (by increasing of energy generating efficiency) and - Environmental protection (by reducing chemical and heat emissions). The possibilities to use FC to generate power and heat are practically endless: on the earth, in the air and outer space, by and under water, in numberless areas of human activities. FC are now powering buses, cars, trains, boats, plains, scooters, highway road signs etc. There are already miniature FC for portable electronics. Homes, schools, hospitals, institutes, banks, police stations, etc are using FC to generate power and heat for their facilities. The methane gas produced by wastewater treatment plants and landfills is converted into electricity by using FC. Being less expensive than nuclear and solar source of energy, FC is now generally used in the space missions (in addition FC generates water). In this work an analysis of the possibilities to use FC especially for combined power and heat generating is presented. FC is favourite as energy source in space missions because it is less expensive than nuclear or solar sources. All major automobile companies have FC powered automobiles in testing stage. Mini FC for phone, laptop, and electronics are already on market. FC will be use to pagers, video recorders, small portable tools, miniature robots, special devices as hearing aid various devices, smoke detectors

  11. Heat generation: prices have only a minor influence

    International Nuclear Information System (INIS)

    Stadelmann, M.

    2006-01-01

    This article takes a look at long-term trends in the heat generation market. Here, heat-pumps, gas heaters and wood-fired systems, together with their combination with solar collectors, are gaining ground, whereas heating oil is loosing its share of the market. The various influences on the market and, in particular, price increases for oil are discussed. The influence of revised energy legislation is discussed, which calls for 20% of the standardised energy requirements of housing to be met by renewables or increased thermal insulation. Increased sales in the solar sector are discussed, as are future trends in the heating market

  12. Natural convection in porous media with heat generation

    International Nuclear Information System (INIS)

    Hardee, H.C. Jr.; Nilson, R.H.

    1976-12-01

    Heat transfer characteristics of a fluid saturated porous media are investigated for the case of uniform internal heat generation with cooling from above. Analytical models of conduction and single phase cellular convection show good agreement with previous Rayleigh number correlations and with experimental data obtained by Joule heating of salt water in a sand bed. An approximate dryout criterion is also derived for two phase boiling heat transfer in a fixed bed which is neither channeled nor fluidized. Correlation of dryout data using this criterion is encouraging, especially considering the analytical rather than correlational basis of the criterion

  13. From Modules to a Generator: An Integrated Heat Exchanger Concept for Car Applications of a Thermoelectric Generator

    Science.gov (United States)

    Bosch, Henry

    2016-03-01

    A heat exchanger concept for a thermoelectric generator with integrated planar modules for passenger car applications is introduced. The module housings, made of deep drawn stainless steel sheet metal, are brazed onto the exhaust gas channel to achieve an optimal heat transfer on the hot side of the modules. The cooling side consists of winding fluid channels, which are mounted directly onto the cold side of the modules. Only a thin foil separates the cooling media from the modules for an almost direct heat contact on the cooling side. Thermoelectric generators with up to 20 modules made of PbTe and Bi2Te3, respectively, are manufactured and tested on a hot gas generator to investigate electrical power output and performance of the thermoelectric generator. The proof of concept of the light weight heat exchanger design made of sheet metal with integrated modules is positively accomplished.

  14. Dry out of a fluidized particle bed with internal heat generation

    International Nuclear Information System (INIS)

    Keowen, R.S.; Catton, I.

    1975-03-01

    An apparatus was designed to adequately simulate the characteristics of a particle bed formed by nuclear reactor fuel after the reactor has been operable for some length of time at high power. This was accomplished by using a 10 KW, 453 Kc induction heater, coupled through a multi-turn work coil to particle beds of cast steel shot and lead shot in water. The temperature response and dryout condition was determined for various bed levels, particle diameters, and heat fluxes. Analysis of the data retrieved from the bed was used to generate a family of curves to predict the necessary conditions for dryout to occur within a fluidized particle bed with internal heat generation. The results presented here, with internal heat generation, show that previous results with bottom heating and volume heating are conservative. (U.S.)

  15. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    International Nuclear Information System (INIS)

    Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun

    2016-01-01

    Highlights: • A large-scale HTS generator module has been suggested to avoid issues such as a huge vacuum vessel and higher reliability. • The challenging heat loss analysis of a large-scale HTS generator has successfully been performed, enabling the design of an optimal support structure having a total heat loss of 43 W/400 kW. • The results prove the potential of a large-scale superconducting wind-power generator to operate efficiently, and support further development of the concept. - Abstract: The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  16. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Hae-Jin, E-mail: haejin0216@gmail.com [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Go, Byeong-Soo [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Jiang, Zhenan [Robinson Research Institute, Victoria University of Wellington, PO Box 33436 (New Zealand); Park, Minwon [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of)

    2016-11-15

    Highlights: • A large-scale HTS generator module has been suggested to avoid issues such as a huge vacuum vessel and higher reliability. • The challenging heat loss analysis of a large-scale HTS generator has successfully been performed, enabling the design of an optimal support structure having a total heat loss of 43 W/400 kW. • The results prove the potential of a large-scale superconducting wind-power generator to operate efficiently, and support further development of the concept. - Abstract: The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  17. Modelling of steam condensation in the primary flow channel of a gas-heated steam generator

    International Nuclear Information System (INIS)

    Kawamura, H.; Meister, G.

    1982-10-01

    A new simulation code has been developed for the analysis of steam ingress accidents in high temperatures reactors which evaluates the heat transfer in a steam generator headed by a mixture of helium and water steam. Special emphasis is laid on the analysis of steam condensation in the primary circuit of the steam generator. The code takes wall and bulk condensation into account. A new method is proposed to describe the entrainment of water droplets in the primary gas flow. Some typical results are given. Steam condensation in the primary channel may have a significant effect on temperature distributions. The effect on the heat transferred by the steam generator, however, is found to be not so prominent as might be expected. The reason is discussed. A simplified code will also be described, which gives results with reasonable accuracy within much shorter execution times. This code may be used as a program module in a program simulating the total primary circuit of a high temperature reactor. (orig.) [de

  18. Experimental studies of parameters affecting the heat generation in friction stir welding process

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav M.

    2012-01-01

    Full Text Available Heat generation is a complex process of transformation of a specific type of energy into heat. During friction stir welding, one part of mechanical energy delivered to the welding tool is consumed in the welding process, another is used for deformational processes etc., and the rest of the energy is transformed into heat. The analytical procedure for the estimation of heat generated during friction stir welding is very complex because it includes a significant number of variables and parameters, and many of them cannot be fully mathematically explained. Because of that, the analytical model for the estimation of heat generated during friction stir welding defines variables and parameters that dominantly affect heat generation. These parameters are numerous and some of them, e. g. loads, friction coefficient, torque, temperature, are estimated experimentally. Due to the complex geometry of the friction stir welding process and requirements of the measuring equipment, adequate measuring configurations and specific constructional solutions that provide adequate measuring positions are necessary. This paper gives an overview of the process of heat generation during friction stir welding, the most influencing parameters on heat generation, constructional solutions for the measuring equipment needed for these experimental researches and examples of measured values.

  19. Heat transfer characteristics of horizontal steam generators under natural circulation conditions

    International Nuclear Information System (INIS)

    Hyvaerinen, J.

    1996-01-01

    This paper deals with the heat transfer characteristics of horizontal steam generators, particularly under natural circulation (decay heat removal) conditions on the primary side. Special emphasis is on the inherent features of horizontal steam generator behaviour. A mathematical model of the horizontal steam generator primary side is developed and qualitative results are obtained analytically. A computer code, called HSG, is developed to solve the model numerically, and its predictions are compared with experimental data. The code is employed to obtain for VVER 440 steam generators quantitative results concerning the dependence of primary-to-secondary heat transfer efficiency on the primary side flow rate, temperature and secondary level. It turns out that the depletion of the secondary inventory leads to an inherent limitation of the decay energy removal in VVER steam generators. The limitation arises as a consequence of the steam generator tube bundle geometry. As an example, it is shown that the grace period associated with pressurizer safety valve opening during a station black-out is 2 1/2-3 hours instead of the 5-6 hours reported in several earlier studies. (However, the change in core heat-up timing is much less-about 1 h at most.) The heat transfer limitation explains the fact that, in the Greifswald VVER 440 station black-out accident in 1975, the steam generators never boiled dry. In addition, the stability of single-phase natural circulation is discussed and insights on the modelling of horizontal steam generators with general-purpose thermal-hydraulic system codes are also presented. (orig.)

  20. Numerical investigation of conjugate heat transfer and flow performance of a fin and tube heat exchanger with vortex generators

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim

    2017-01-01

    Vortex generator is considered as an effective device for augmentation of the thermal-hydraulic performance of a heat exchanger. The aim of present study is to examine the influence of vortex generators on a double fin and tube heat exchanger performance. Vortex generator of rectangular winglet...

  1. Analysis of a sandwich-type generator with self-heating thermoelectric elements

    International Nuclear Information System (INIS)

    Kim, Mikyung; Yang, Hyein; Wee, Daehyun

    2014-01-01

    Highlights: • A novel and unique type of thermoelectric generators is proposed. • Heat source is combined in thermoelectric elements, reducing heat transfer problems. • Embedding radioactive isotopes is proposed as a way to implement the new design. • Conversion efficiency and power density are estimated for the proposed design. - Abstract: A novel and unique design of thermoelectric generators, in which a heat source is combined with thermoelectric elements, is proposed. By placing heat-generating radioactive isotopes inside the thermoelectric elements, the heat transfer limitation between the generator and the heat source can be eliminated, ensuring simplicity. The inner electrode is sandwiched between identical thermoelectric elements, which naturally allows the inner core to act as the hot side. Analysis shows that conversion efficiency and power density increase as the heat density inside the thermoelectric elements increases and as the thermoelectric performance of the material improves. The theoretical maximum efficiency is shown to be 50%. However, realistic performance under practical constraint is much worse. In realistic cases, the efficiency would be about 3% at best. The power density of the proposed design exhibits a much more reasonable value as high as 3000 W/m 2 . Although the efficiency is low, the simplicity of the proposed design combined with its reasonable power density may result in some, albeit limited, potential applications. Further investigation must be performed in order to realize such potential

  2. An analytical model for the heat generation in friction stir welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper; Wert, John

    2004-01-01

    The objective of this work is to establish an analytical model for heat generation by friction stir welding (FSW), based on different assumptions of the contact condition between the rotating tool surface and the weld piece. The material flow and heat generation are characterized by the contact...

  3. Dynamic study of steam generation from low-grade waste heat in a zeolite–water adsorption heat pump

    International Nuclear Information System (INIS)

    Xue, Bing; Meng, Xiangrui; Wei, Xinli; Nakaso, Koichi; Fukai, Jun

    2015-01-01

    A novel zeolite–water adsorption heat pump system based on a direct-contact heat exchange method to generate steam from low-grade waste gas and water has been proposed and examined experimentally. Superheated steam (200 °C, 0.1 MPa) is generated from hot water (70–80 °C) and dry air (100–130 °C). A dynamic model for steam generation process is developed to describe local mass and heat transfer. This model features a three-phase calculation and a moving water–gas interface. The calculations are carried out in the zeolite–water and zeolite–gas regions. Model outputs are compared with experimental results for validation. The thermal response inside the reactor and mass of steam generated is well predicted. Numerical results show that preheat process with low-temperature steam is an effective method to achieve local equilibrium quickly, thus generation process is enhanced by prolonging the time and increasing mass of the generated steam. Besides, high-pressure steam generation up to 0.5 MPa is possible from the validated dynamic model. Future work could be emphasized on enhancing high-pressure steam generation with preheat process or mass recovery operation

  4. THE EFFECTS OF SWIRL GENERATOR HAVING WINGS WITH HOLES ON HEAT TRANSFER AND PRESSURE DROP IN TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Zeki ARGUNHAN

    2006-02-01

    Full Text Available This paper examines the effect of turbulance creators on heat transfer and pressure drop used in concentric heat exchanger experimentaly. Heat exchanger has an inlet tube with 60 mm in diameter. The angle of swirl generators wings is 55º with each wing which has single, double, three and four holes. Swirl generators is designed to easily set to heat exchanger entrance. Air is passing through inner tube of heat exhanger as hot fluid and water is passing outer of inner tube as cool fluid.

  5. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  6. Estimation of shutdown heat generation rates in GHARR-1 due to ...

    African Journals Online (AJOL)

    Fission products decay power and residual fission power generated after shutdown of Ghana Research Reactor-1 (GHARR-1) by reactivity insertion accident were estimated by solution of the decay and residual heat equations. A Matlab program code was developed to simulate the heat generation rates by fission product ...

  7. Solar heat storages in district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This report gives information on the work carried out and the results obtained in Denmark on storages for large solar heating plants in district heating networks. Especially in Denmark the share of district heating has increased to a large percentage. In 1981 around 33% of all dwellings in DK were connected to a district heating network, while the percentage in 2006 was about 60% (in total 1.5 mio. dwellings). In the report storage types for short term storage and long term storages are described. Short term storages are done as steel tanks and is well established technology widely used in district heating networks. Long term storages are experimental and used in connection with solar heating. A number of solar heating plants have been established with either short term or long term storages showing economy competitive with normal energy sources. Since, in the majority of the Danish district heating networks the heat is produced in co-generation plants, i.e. plants producing both electricity and heat for the network, special attention has been put on the use of solar energy in combination with co-generation. Part of this report describes that in the liberalized electricity market central solar heating plants can also be advantageous in combination with co-generation plants. (au)

  8. Heat Balance Study on Integrated Cycles for Hydrogen and Electricity Generation in VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Il; Yoo, Yeon Jae [Hyundai Engineering Company Ltd., Seoul (Korea, Republic of); Heo, Gyunyoung; Park, Soyoung; Kang, Yeon Kwan [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    A gas cooled reactor has the advantage of being able to create a higher temperature coolant than a water cooled reactor. We can take advantage of supplying electricity as well as process heat. Recently, taking the export opportunity of a commercial nuclear power plants in UAE, Middle East area where politically stable and resource-rich seems promising for further nuclear business. Even if construction cost is more expensive than water cooled reactors, a high temperature gas cooled reactor is an attractive option from the viewpoint of safety. It can reduce the domestic use of fossil fuels and secure power and water, which is the most important part of people's daily life. All- Electrical Mode (AEM) operates only for the purpose of electricity generation. Rated Cogeneration Mode (RCM) uses approximately 60% of the total flow as process heat. We use a part flow exiting the high pressure turbine of end portion to the process heat, and the flow channel to a heat exchanger and a deaerator is changed at this time. Turbine Bypass Mode (TBM) will be used to supply the process heat by blocking all flow to the turbines.

  9. Heat Balance Study on Integrated Cycles for Hydrogen and Electricity Generation in VHTR

    International Nuclear Information System (INIS)

    Lee, Sang Il; Yoo, Yeon Jae; Heo, Gyunyoung; Park, Soyoung; Kang, Yeon Kwan

    2015-01-01

    A gas cooled reactor has the advantage of being able to create a higher temperature coolant than a water cooled reactor. We can take advantage of supplying electricity as well as process heat. Recently, taking the export opportunity of a commercial nuclear power plants in UAE, Middle East area where politically stable and resource-rich seems promising for further nuclear business. Even if construction cost is more expensive than water cooled reactors, a high temperature gas cooled reactor is an attractive option from the viewpoint of safety. It can reduce the domestic use of fossil fuels and secure power and water, which is the most important part of people's daily life. All- Electrical Mode (AEM) operates only for the purpose of electricity generation. Rated Cogeneration Mode (RCM) uses approximately 60% of the total flow as process heat. We use a part flow exiting the high pressure turbine of end portion to the process heat, and the flow channel to a heat exchanger and a deaerator is changed at this time. Turbine Bypass Mode (TBM) will be used to supply the process heat by blocking all flow to the turbines

  10. Steady-state heat transfer in an inverted U-tube steam generator

    International Nuclear Information System (INIS)

    Boucher, T.J.

    1987-01-01

    Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during stead-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K steam generator inlet plenum fluid temperatures, 6.2 MPa secondary pressure). The Semiscale (MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations

  11. Impact of Next Generation District Heating Systems on Distribution Network Heat Losses: A Case Study Approach

    Science.gov (United States)

    Li, Yu; Rezgui, Yacine

    2018-01-01

    District heating (DH) is a promising energy pathway to alleviate environmental negative impacts induced by fossil fuels. Improving the performance of DH systems is one of the major challenges facing its wide adoption. This paper discusses the heat losses of the next generation DH based on the constructed Simulink model. Results show that lower distribution temperature and advanced insulation technology greatly reduce network heat losses. Also, the network heat loss can be further minimized by a reduction of heat demand in buildings.

  12. Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.

    Science.gov (United States)

    Gingerich, Daniel B; Mauter, Meagan S

    2015-07-21

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.

  13. Radioactive wastes with negligible heat generation suitable for disposal

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.; Warnecke, E.

    1987-01-01

    It is planned to dispose of radioactive wastes with negligible heat generation in the Konrad repository. Preliminary waste acceptance requirements are derived taking the results of site-specific safety assessments as a basis. These requirements must be fulfilled by the waste packages on delivery. The waste amounts which are currently stored and those anticipated up to the year 2000 are discussed. The disposability of these waste packages in the Konrad repository was evaluated. This examination reveals that basically almost all radioactive wastes with negligible heat generation can be accepted. (orig.) [de

  14. Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling

    Science.gov (United States)

    Li, Huanan; Agarwalla, Bijay Kumar; Wang, Jian-Sheng

    2012-10-01

    Based on a two-time observation protocol, we consider heat transfer in a given time interval tM in a lead-junction-lead system taking coupling between the leads into account. In view of the two-time observation, consistency conditions are carefully verified in our specific family of quantum histories. Furthermore, its implication is briefly explored. Then using the nonequilibrium Green's function method, we obtain an exact formula for the cumulant generating function for heat transfer between the two leads, valid in both transient and steady-state regimes. Also, a compact formula for the cumulant generating function in the long-time limit is derived, for which the Gallavotti-Cohen fluctuation symmetry is explicitly verified. In addition, we briefly discuss Di Ventra's repartitioning trick regarding whether the repartitioning procedure of the total Hamiltonian affects the nonequilibrium steady-state current fluctuation. All kinds of properties of nonequilibrium current fluctuations, such as the fluctuation theorem in different time regimes, could be readily given according to these exact formulas.

  15. Underground disposal of UK heat-generating wastes: repository design considerations

    International Nuclear Information System (INIS)

    Steadman, J.A.

    1993-12-01

    The report discusses the likely differences in design between a deep repository for disposal of UK heat-generating radioactive wastes and that of the planned Nirex ILW/LLW repository at Sellafield, based on a review of international published information. The main differences arise from the greater heat and radiation outputs of the waste, and in the case of intact PWR spent fuel elements, the greater length and weight of the disposal packages. Published cost estimates for other OECD countries for disposal of heat-generating wastes are considerably lower than that for the UK, partly because in most cases they are for co-disposal with a larger quantity of ILW. (author)

  16. Development of thermoelectric power generation system utilizing heat of combustible solid waste

    International Nuclear Information System (INIS)

    Kajikawa, T.; Ito, M.; Katsube, I.; Shibuya, E.

    1994-01-01

    The paper presents the development of thermoelectric power generation system utilizing heat of municipal solid waste. The systematic classification and design guideline are proposed in consideration of the characteristics of solid waste processing system. The conceptual design of thermoelectric power generation system is carried out for a typical middle scale incinerator system (200 ton/day) by the local model. Totally the recovered electricity is 926.5 kWe by 445 units (569,600 couples). In order to achieve detailed design, one dimensional steady state model taking account of temperature dependency of the heat transfer performance and thermoelectric properties is developed. Moreover, small scale on-site experiment on 60 W class module installed in the real incinerator is carried out to extract various levels of technological problems. In parallel with the system development, high temperature thermoelectric elements such as Mn-Si and so on are developed aiming the optimization of ternary compound and high performance due to controlled fine-grain boundary effect. The manganese silicide made by shrinking-rate controlled sintering method performs 5 (μW/cm K2) in power factor at 800 K. copyright 1995 American Institute of Physics

  17. Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery

    Science.gov (United States)

    Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.

    2010-09-01

    Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.

  18. MHTGR steam generator on-line heat balance, instrumentation and function

    International Nuclear Information System (INIS)

    Klapka, R.E.; Howard, W.W.; Etzel, K.T.; Basol, M.; Karim, N.U.

    1991-09-01

    Instrumentation is used to measure the Modular High Temperature Gas-Cooled Reactor (MHTGR) steam generator dissimilar metal weld temperature during start-up testing. Additional instrumentation is used to determine an on-line heat balance which is maintained during the 40 year module life. In the process of calibrating the on-line heat balance, the helium flow is adjusted to yield the optimum boiling level in the steam generator relative to the dissimilar metal weld. After calibration is complete the weld temperature measurement is non longer required. The reduced boiling level range results in less restrictive steam generator design constraints

  19. An evaluation of analytical heat transfer area with various boiling heat transfer correlations in steam generator thermal sizing

    International Nuclear Information System (INIS)

    Jung, B. R.; Park, H. S.; Chung, D. M.; Baik, S. J.

    1999-01-01

    The computer program SAFE has been used to size and analyze the performance of a steam generator which has two types of heat transfer regions in Korean Standard Nuclear Power Plants (KSNP) and Korean Next Generation Reactor (KNGR) design. The SAFE code calculates the analytical boiling heat transfer area using the modified form of the saturated nucleate pool boiling correlation suggested by Rohsenow. The predicted heat transfer area in the boiling region is multiplied by a constant to obtain a final analytical heat transfer area. The inclusion of the multiplier in the analytical calculation has some disadvantage of loss of complete correlation by the governing heat transfer equation. Several comparative analyses have been performed quantitatively to evaluate the possibility of removing the multiplier in the analytical calculation in the SAFE code. The evaluation shows that the boiling correlation and multiplier used in predicting the boiling region heat transfer area can be replaced with other correlations predicting nearly the same heat transfer area. The removal of multiplier included in the analytical calculation will facilitate a direct use of a set of concerned analytical sizing values that can be exactly correlated by the governing heat transfer equation. In addition this will provide more reasonable basis for the steam generator thermal sizing calculation and enhance the code usability without loss of any validity of the current sizing procedure. (author)

  20. Improvement to the gas cycle energy generating installations with heat recuperation

    International Nuclear Information System (INIS)

    Tilliette, Zephyr.

    1977-01-01

    Improvement to the gas cycle energy generating installations with heat recuperation, comprising a heat source, supplying a fluid at high temperature and pressure, an expansion turbine, at least one recuperator fitted to the turbine outlet, a cooler and compressor in series, the compressor returning the high pressure fluid to the source after heat exchange in the recuperator with the low pressure fluid from the turbine. It is characterised in that at least one steam generator is connected to the low pressure end of the recuperator [fr

  1. Thermal analysis and entropy generation of pulsating heat pipes using nanofluids

    International Nuclear Information System (INIS)

    Jafarmadar, Samad; Azizinia, Nazli; Razmara, Nayyer; Mobadersani, Farrokh

    2016-01-01

    Highlights: • Performance of PHP containing 0.5% Al_2O_3, CuO and silver nanofluids is reported. • The rate of entropy generation of PHP is investigated for different nanofluids. • The effects of particle volume concentration on the entropy generation of PHP are studied. • The appropriate volume concentration for the best thermal efficiency is 0.5–1%. • Al_2O_3 and CuO nanofluids show approximately same rate of entropy generation. - Abstract: Demanding of high-performance cooling systems is one of the most challenging and virtual issues in the industry and pulsating heat pipes (PHPs) are effective solutions for this concern. Nanofluids also have attracted attentions, due to its superior heat transfer properties in recent years. In the present study, the flow, heat transfer and entropy generation based on the second law of thermodynamics have been investigated and compared with the flow of Al_2O_3, CuO, Ag nanofluid and pure water through PHPs. The results show that, silver nanofluid provides the highest entropy generation. Also, the effects of different particle volume concentrations on the heat and flow characteristics of Al_2O_3 nanofluid have been studied. It is indicated that the optimal volume concentration of nanoparticles is about 0.5–1% to minimize the entropy generation and appropriate thermal operation.

  2. evaluation of total annual costs of heat exchanger networks using

    African Journals Online (AJOL)

    user

    after solving the first problem using RPA based heat integration gave a minimum total annual cost (TAC) of $237, ... mathematical programming and non-RPA based Hint software. ... The concept of pinch analysis evolved over the years.

  3. Power generation efficiency of an SOFC-PEFC combined system with time shift utilization of SOFC exhaust heat

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Shin' ya [Power Engineering Lab., Department of Electrical and Electronic Engineering, Kitami Institute of Technology, 165 Kouen-cho, Kitami, Hokkaido 0908507 (Japan)

    2010-01-15

    A microgrid, with little environmental impact, is developed by introducing a combined SOFC (solid oxide fuel cell) and PEFC (proton exchange membrane fuel cell) system. Although the SOFC requires a higher operation temperature compared to the PEFC, the power generation efficiency of the SOFC is higher. However, if high temperature exhaust heat may be used effectively, a system with higher total power generation efficiency can be built. Therefore, this paper investigates the operation of a SOFC-PEFC combined system, with time shift operation of reformed gas, into a microgrid with 30 houses in Sapporo, Japan. The SOFC is designed to correspond to base load operation, and the exhaust heat of the SOFC is used for production of reformed gas. This reformed gas is used for the production of electricity for the PEFC, corresponding to fluctuation load of the next day. Accordingly, the reformed gas is used with a time shift operation. In this paper, the relation between operation method, power generation efficiency, and amount of heat storage of the SOFC-PEFC combined system to the difference in power load pattern was investigated. The average power generation efficiency of the system can be maintained at nearly 48% on a representative day in February (winter season) and August (summer season). (author)

  4. Economic aspects of electricity and industrial heat generating reactors

    International Nuclear Information System (INIS)

    Gaussens, J.; Moulle, N.; Dutheil, F.

    1964-01-01

    The economic advantage of electricity-generating nuclear stations decreases when their size decreases. However, when a counter-pressure turbine is joined on to a reactor and the residual heat can be properly used, it can be shown that fairly low capacity nuclear equipment may compete with conventional equipment under certain realistic enough conditions. The aim of this paper is to define these special conditions under which nuclear energy can be profitable. They are connected with the location and the general economic environment of the station, the pattern of the electricity and heat demands it must meet, the level of fuel and specific capital costs, nuclear and conventional. These conditions entail certain technical and economic specifications for the reactors used in this way otherwise they are unlikely to be competitive. In addition, these results are referred to the potential steam and electricity market, which leads us to examine certain uses for the heat generated by double purpose power stations; for example, to supply combined industrial plants, various types of town heating and for removal of salt from sea water. (authors) [fr

  5. Numerical investigation of passive heat removal system via steam generator in VVER 1200

    International Nuclear Information System (INIS)

    Dinh Anh Tuan; Duong Thanh Tung; Tran Chi Thanh; Nguyen Van Thai

    2015-01-01

    Passive heat removal system (PHRS) via Steam Generator is an important part in VVER design. In case of Design Basic Accidents such as blackout, failure of feed water supply to steam generator or coolant leakage with failure of emergency core cooling at high pressure. PHRS is designed to remove the residual heat from reactor core through steam generator to heat exchanger which is placed outside reactor vessel. In order to evaluate the passive system, a numerical investigation using a CFD code is performed. However, PHRS has complex geometry for using CFD simulation. Thus, RELAP5 is applied to provide the wall heat flux of tube in the heat exchanger tank. The natural convection in the heat exchanger tank is investigated in this report. Numerical results show temperature and velocity distribution in the heat exchanger tank are calculated with different wall heat flux corresponding to various transient conditions. The calculated results contribute to the capacity analysis of passive heat removal system and giving valuable information for safe operation of VVER 1200. (author)

  6. Heat shrink formation of a corrugated thin film thermoelectric generator

    International Nuclear Information System (INIS)

    Sun, Tianlei; Peavey, Jennifer L.; David Shelby, M.; Ferguson, Scott; O’Connor, Brendan T.

    2015-01-01

    Highlights: • Demonstrate and characterize a thermoelectric generator with a corrugated geometry. • Employ a novel heat shrink fabrication approach compatible with low-cost processing. • Use thermal impedance modeling to explore design potential. • Corrugated design shown to be advantageous for low heat-flux density applications. - Abstract: A thin film thermoelectric (TE) generator with a corrugated architecture is demonstrated formed using a heat-shrink fabrication approach. Fabrication of the corrugated TE structure consists of depositing thin film thermoelectric elements onto a planar non-shrink polyimide substrate that is then sandwiched between two uniaxial stretch-oriented co-polyester (PET) films. The heat shrink PET films are adhered to the polyimide in select locations, such that when the structure is placed in a high temperature environment, the outer films shrink resulting in a corrugated core film and thermoelectric elements spanning between the outer PET films. The module has a cross-plane heat transfer architecture similar to a conventional bulk TE module, but with heat transfer in the plane of the thin film thermoelectric elements, which assists in maintaining a significant temperature difference across the thermoelectric junctions. In this demonstration, Ag and Ni films are used as the thermoelectric elements and a Seebeck coefficient of 14 μV K −1 is measured with a maximum power output of 0.22 nW per couple at a temperature difference of 7.0 K. We then theoretically consider the performance of this device architecture with high performance thermoelectric materials in the heat sink limited regime. The results show that the heat-shrink approach is a simple fabrication method that may be advantageous in large-area, low power density applications. The fabrication method is also compatible with simple geometric modification to achieve various form factors and power densities to customize the TE generator for a range of applications

  7. Modelling and verification of once-through subcritical heat recovery steam generator

    International Nuclear Information System (INIS)

    Lee, Chae Soo; Choi, Young Jun; Kim, Hyun Gee; Yang, Ok Chul; Chong Chae Hon

    2004-01-01

    The once-through heat recovery steam generator is ideally matched to very high temperature and pressure, well into the supercritical range. Moreover this type of boiler is structurally simpler than drum type boiler. In drum type boiler, each tube play a well-defined role: water preheating, vaporization, superheating. Empirical equations are available to predict the average heat transfer coefficient for each regime. For once-through heat recovery steam generator, this is no more the case and mathematical models have to be adapted to account for the disappearance of drum type economizer, boiler, superheater. General equations have to be used for each tube of boiler, and actual heat transfer condition in each tube has to be identified

  8. Testing for cross-subsidisation in the combined heat and power generation sector

    DEFF Research Database (Denmark)

    Amundsen, Eirik S; Andersen, Per; Jensen, Frank

    2011-01-01

    In this paper we examine cross-subsidisation among combined heat and power producers in Denmark.Information on stand-alone costs for heat generation allows us to empirically compare the Faulhaber tests,tests with an upper bound on stand-alone costs (the Palmer tests) and the fully distributed cos...... test (FDC). All tests indicate a substantial amount of cross-subsidisation from heat generation to power generation. It is shown that the FDC test is closer to that of the Faulhaber tests in its results than the Palmer tests. Thus as the Faulhaber tests are considered in the literature...

  9. Large-Scale Combined Heat and Power (CHP) Generation at Loviisa Nuclear Power Plant Unit 3

    International Nuclear Information System (INIS)

    Bergroth, N.

    2010-01-01

    Fortum has applied for a Decision in Principle concerning the construction of a new nuclear power plant unit (Loviisa 3) ranging from 2800-4600 MWth at its site located at the southern coast of Finland. An attractive alternative investigated is a co-generation plant designed for large-scale district heat generation for the Helsinki metropolitan area that is located approximately 75 km west of the site. The starting point is that the district heat generation capacity of 3 unit would be around 1 000 MWth.The possibility of generating district heat for the metropolitan area by Loviisa's two existing nuclear power plant units was investigated back in the 1980s, but it proved unpractical at the time. With the growing concern of the climate change and the subsequent requirements on heat and power generation, the idea is much more attractive today, when recognising its potential to decrease Finland's carbon dioxide emissions significantly. Currently the district heat generation in metropolitan area is based on coal and natural gas, producing some five to seven million tonnes of carbon dioxide emissions annually. Large-scale combined heat and power (CHP) generation at the 3 unit could cut this figure by up to four million tonnes. This would decrease carbon dioxide emissions by as much as six percent. In addition, large-scale CHP generation would increase the overall efficiency of the new unit significantly and hence, reduce the environmental impact on the local marine environment by cutting heat discharges into the Gulf of Nuclear energy has been used for district heating in several countries both in dedicated nuclear heating plants and in CHP generation plants. However, the heat generation capacity is usually rather limited, maximum being around 250 MWth per unit. Set against this, the 3 CHP concept is much more ambitious, not only because of the much larger heat generation output envisaged, but also because the district heating water would have to be transported over a

  10. Modes of heat removal from a heat-generating debris bed

    International Nuclear Information System (INIS)

    Squarer, D.; Hochreiter, L.E.; Piecznski, A.T.

    1984-01-01

    In the worst hypothetical accident in a light water reactor, when all protection systems fail, the core could be converted into a deep particulate bed either in-vessel or ex-vessel. The containment of such an accident depends on the coolability of a heat-generating debris bed. Some recent experimental and analytical studies that are concerned with heat removal from such a particulate bed are reviewed. Studies have indicated that bed dryout flux and, therefore, the heat removal rate from the particulate bed increases with the particle diameter (i.e., the permeability) for pool boiling conditions and can exceed the critical heat flux of a flat plate. Bed dryout in a large particle bed (i.e., a few millimetres) was found to be closely related to the ''flooding'' limit of the bed. Dryout under forced flow conditions was found to be affected by both forced and natural convection for mass flow rate smaller than m /SUB cr/ , whereas above this mass flow rate, bed dryout is proportional to the mass flow rate. Recent analyses were found to be in agreement with experimental data; however, additional research is needed to assess factors not accounted for in previous studies (e.g., effect of pressure, multidimensionality, stratification, etc.). Based on the expected pressure and particle sizes in a postulated severe accident sequence, a debris bed should be coolable, given a sufficient water supply

  11. Evaluation of piping heat transfer, piping flow regimes, and steam generator heat transfer for the Semiscale Mod-1 isothermal tests

    International Nuclear Information System (INIS)

    French, R.T.

    1975-08-01

    Selected experimental data pertinent to piping heat transfer, transient fluid flow regimes, and steam generator heat transfer obtained during the Semiscale Mod-1 isothermal blowdown test series (Test Series 1) are analyzed. The tests in this first test series were designed to provide counterparts to the LOFT nonnuclear experiments. The data from the Semiscale Mod-1 intact and broken loop piping are evaluated to determine the surface heat flux and average heat transfer coefficients effective during the blowdown transient and compared with well known heat transfer correlations used in the RELAP4 computer program. Flow regimes in horizontal pipe sections are calculated and compared with data obtained from horizontal and vertical densitometers and with an existing steady state flow map. Effects of steam generator heat transfer are evaluated quantitatively and qualitatively. The Semiscale Mod-1 data and the analysis presented in this report are valuable for evaluating the adequacy and improving the predictive capability of analytical models developed to predict system response to piping heat transfer, piping flow regimes, and steam generator heat transfer during a postulated loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). 16 references. (auth)

  12. Potential ability of zeolite to generate high-temperature vapor using waste heat

    Science.gov (United States)

    Fukai, Jun; Wijayanta, Agung Tri

    2018-02-01

    In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.

  13. Heat generation and cooling of SSC magnets at high ramp rates

    International Nuclear Information System (INIS)

    Snitchler, G.; Capone, D.; Kovachev, V.; Schermer, R.

    1992-01-01

    This presentation will address a summary of AC loss calculations (SSCL), experimental results on cable samples (Westinghouse STC), short model magnets test results (FNAL, KEK-Japan), and recent full length magnets test data on AC losses and quench current ramp rate sensitivity (FNAL, BNL). Possible sources of the observed enhanced heat generation and quench sensitivity for some magnets will be discussed. A model for cooling conditions of magnet coils considering heat generation distribution and specific anisotropy of the heat transfer will be presented. The crossover contact resistance in cables and curing procedure influence on resistivity, currently under study, will be briefly discussed. (author)

  14. Local entropy generation analysis of a rotary magnetic heat pump regenerator

    International Nuclear Information System (INIS)

    Drost, M.K.; White, M.D.

    1990-01-01

    The rotary magnetic heat pump has attractive thermodynamic performance but it is strongly influenced by the effectiveness of the regenerator. This paper uses local entropy generation analysis to evaluate the regenerator design and to suggest design improvements. The results show that performance of the proposed design is dominated by heat transfer related entropy generation. This suggests that enhancement concepts that improve heat transfer should be considered, even if the enhancement causes a significant increase in viscous losses (pressure drop). One enhancement technique, the use of flow disruptors, was evaluated and the results showed that flow disruptors can significantly reduce thermodynamic losses

  15. Heat exchanger, particularly liquid sodium heated steam generator

    International Nuclear Information System (INIS)

    Robin, Marcel; Tillequin, Jean.

    1977-01-01

    This invention relates to a liquid sodium heated steam generator the characteristic of which is an annular distribution chamber fed by two independent and diametrically opposed manifolds on a common horizontal axis, issuing respectively into two adjacent compartments made in the chambers on both sides of a vertical transversal partition containing the axis of the casing and extending perpendicularly to the manifolds, each compartment being itself divided into a number of adjacent sectors marked by folded metal sheets fixed to the distributor and shaped so as to present in pairs and with the chamber opposite the manifold issuing into a compartment two independent ducts for distributing the sodium flow [fr

  16. Creeping Viscous Flow around a Heat-Generating Solid Sphere

    DEFF Research Database (Denmark)

    Krenk, Steen

    1981-01-01

    The velocity field for creeping viscous flow around a solid sphere due to a spherically symmetric thermal field is determined and a simple thermal generalization of Stokes' formula is obtained. The velocity field due to an instantaneous heat source at the center of the sphere is obtained in closed...... form and an application to the storage of heat-generating nuclear waste is discussed....

  17. Layout of an internally heated gas generator for the steam gasification of coal

    International Nuclear Information System (INIS)

    Feistel, P.P.; Duerrfeld, R.; Heck, K.H. van; Juentgen, H.

    1975-01-01

    Industrial-scale steam gasification of coal using heat from high temperature reactors requires research and development on allothermal gas generators. Bergbau-Forschung GmbH, Essen, does theoretical and experimental work in this field. The experiments deal with reaction kinetics, heat transfer and material tests. Their significance for the layout of a full-scale gas generator is shown. Including material specifications, the feasibility of a gasifier, characterized by a fluid bed volume of 318 m 3 and a heat transferring area of 4000 m 2 , results. The data, now available, are used to determine the gasification throughput from the heat balance, i.e. the equality of heat consumed and heat transferred. Throughputs of about 50 t/hr of coal are possible for a single gas generator, the helium outlet temperature of the HTR being 950 0 C/ Bergbau-Forschung has commissioned a medium-scale pilot plant (200 kg/hr). (Auth.)

  18. Concentrating PV/T Hybrid System for Simultaneous Electricity and Usable Heat Generation: A Review

    Directory of Open Access Journals (Sweden)

    Longzhou Zhang

    2012-01-01

    Full Text Available Photovoltaic (PV power generation is one of the attractive choices for efficient utilization of solar energy. Considering that the efficiency and cost of PV cells cannot be significantly improved in near future, a relatively cheap concentrator to replace part of the expensive solar cells could be used. The photovoltaic thermal hybrid system (PV/T, combining active cooling with thermal electricity and providing both electricity and usable heat, can enhance the total efficiency of the system with reduced cell area. The effect of nonuniform light distribution and the heat dissipation on the performance of concentrating PV/T was discussed. Total utilization of solar light by spectral beam splitting technology was also introduced. In the last part, we proposed an integrated compound parabolic collector (CPC plate with low precision solar tracking, ensuring effective collection of solar light with a significantly lowered cost. With the combination of beam splitting of solar spectrum, use of film solar cell, and active liquid cooling, efficient and full spectrum conversion of solar light to electricity and heat, in a low cost way, might be realized. The paper may offer a general guide to those who are interested in the development of low cost concentrating PV/T hybrid system.

  19. Radiation heat transfer within an open-cycle MHD generator channel

    Science.gov (United States)

    Delil, A. A. M.

    1983-05-01

    Radiation heat transfer in an MHD generator was modeled using the Sparrow and Cess model for radiation in an emitting, absorbing and scattering medium. The resulting general equations can be considerably reduced by introducing simplifying approximations for the channel and MHD gas properties. The simplifications lead to an engineering model, which is very useful for one-dimensional channel flow approximation. The model can estimate thermo-optical MHD gas properties, which can be substituted in the energy equation. The model considers the contribution of solid particles in the MHD gas to radiation heat transfer, considerable in coal-fired closed cycle MHD generators. The modeling is applicable also for other types of flow at elevated temperatures, where radiation heat transfer is an important quantity.

  20. Numerical research on natural convection in molten salt reactor with non-uniformly distributed volumetric heat generation

    International Nuclear Information System (INIS)

    Qian Libo; Qiu Suizheng; Zhang Dalin; Su Guanghui; Tian Wenxi

    2010-01-01

    Molten salt reactor is one of the six Generation IV systems capable of breeding and transmutation of actinides and long-lived fission products, which uses the liquid molten salt as the fuel solvent, coolant and heat generation simultaneously. The present work presents a numerical investigation on natural convection with non-uniform heat generation through which the heat generated by the fluid fuel is removed out of the core region when the reactor is under post-accident condition or zero-power condition. The two-group neutron diffusion equation is applied to calculated neutron flux distribution, which leads to non-uniform heat generation. The SIMPLER algorithm is used to calculate natural convective heat transfer rate with isothermal or adiabatic rigid walls. These two models are coupled through the temperature field and heat sources. The peculiarities of natural convection with non-uniform heat generation are investigated in a range of Ra numbers (10 3 ∼ 10 7 ) for the laminar regime of fluid motion. In addition, the numerical results are also compared with those containing uniform heat generation.

  1. Heat transfer and pressure drop characteristics of the tube bank fin heat exchanger with fin punched with flow redistributors and curved triangular vortex generators

    Science.gov (United States)

    Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi

    2017-10-01

    The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.

  2. Critical heat flux and transition boiling characteristics for a sodium-heated steam generator tube for LMFBR applications

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, S.; Holmes, D.H.

    1977-04-01

    An experimental program was conducted to characterize critical heat flux (CHF) in a sodium-heated steam generator tube model at a proposed PLBR steam generator design pressure of 7.2 MPa. Water was circulated vertically upward in the tube and the heating sodium was flowing counter-current downward. The experimental ranges were: mass flux, 110 to 1490 kg/s.m/sup 2/ (0.08 to 1.10 10/sup 6/ lbm/h.ft/sup 2/); critical heat flux, 0.16 to 1.86 MW/m/sup 2/ (0.05 to 0.59 10/sup 6/ Btu/h.ft/sup 2/); and critical quality, 0.48 to 1.0. The CHF phenomenon for the experimental conditions is determined to be dryout as opposed to departure from nucleate boiling (DNB). The data are divided into high- and low-mass flux regions.

  3. An experimental study of the enhanced heating capacity of an electric heat pump (EHP) using the heat recovered from a gas engine generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Min; Chang, Se Dong [HAC R and D Laboratory, LG Electronics, 327-23 Gasan-Dong, Geumcheon-gu, Seoul 153-802 (Korea); Lee, Jaekeun; Hwang, Yujin [School of Mechanical Engineering, Pusan National University, San 30, Changjeon-Dong, Keumjeong-Ku, Busan 609-735 (Korea)

    2009-11-15

    This paper is concerned with the effect of recovered heat on the heating capacity of an Electric Heat Pump (EHP), which is supplied with electric power and recovered heat from a gas engine generator system. Two methods of supplying recovery heat are examined: (i) to the refrigerant with the discharge line heat exchanger (HEX), and (ii) to the refrigerant of the evaporator with the sub-evaporator. Heating capacity, input power and coefficient of performance (COP) were investigated and compared for each heat recovery method. Conclusively, we found that the second method was most reasonable to recover wasted heat and increased system COP by 215%. (author)

  4. Impact of the total absorption gamma-ray spectroscopy on FP decay heat calculations

    International Nuclear Information System (INIS)

    Yoshida, Tadashi; Tachibana, Takahiro; Katakura, Jun-ichi

    2004-01-01

    We calculated the average β- and γ-ray energies, E β and E γ , for 44 short-lived isotopes of Rb, Sr, Y, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm and Eu from the data by Greenwood et al, who measured the β-feed in the decay of these nuclides using the total absorption γ-ray spectrometer. These E β and E γ were incorporated into the decay files from JENDL, JEF2.2 and ENDF-B/VI, and the decay heats were calculated. The results were compared with the integral measurements by the University of Tokyo, ORNL and Lowell. In the case of JENDL, where the correction for the so-called Pandemonium effect is applied on the basis of the gross theory, the very good agreement is no longer maintained. The γ-ray component is overestimated in the cooling time range from 3 to 300 seconds, suggesting a kind of an over-correction as for the Pandemonium effect. We have to evaluate both the applicability of the TAGS results and the correction method itself in order to generate a more consistent data basis for decay heat summation calculations. (author)

  5. Effect of heat transfer tube leak on dynamic characteristic of steam generator

    International Nuclear Information System (INIS)

    Sun Baozhi; Shi Jianxin; Li Na; Zheng Lusong; Liu Shanghua; Lei Yu

    2015-01-01

    Taking the steam generator of Daya Bay Nuclear Power Station as the research object, one-dimensional dynamic model of the steam generator based on drift flux theory and leak model of heat transfer tube were established. Steady simulation of steam generator under different conditions was carried out. Based on verifying the drift flux model and leak model of heat transfer tube, the effect of leak location and flow rate under different conditions on steam generator's key parameters was studied. The results show that the drift flux model and leak model can reflect the law of key parameter change accurately such as vapor mass fraction and steam pressure under different leak cases. The variation of the parameters is most apparent when the leak is at the entrance of boiling section and vapor mass fraction varies from 0.261 to 0.163 when leakage accounts for 5% of coolant flow rate. The successful prediction of the effect of heat transfer tube leak on dynamic characteristics of the steam generator based on drift flux theory supplies some references for monitoring and taking precautionary measures to prevent heat transfer tube leak accident. (authors)

  6. Condition monitoring of steam generator by estimating the overall heat transfer coefficient

    International Nuclear Information System (INIS)

    Furusawa, Hiroaki; Gofuku, Akio

    2013-01-01

    This study develops a technique for monitoring in on-line the state of the steam generator of the fast-breeder reactor (FBR) “Monju”. Because the FBR uses liquid sodium as coolant, it is necessary to handle liquid sodium with caution due to its chemical characteristics. The steam generator generates steam by the heat of secondary sodium coolant. The sodium-water reaction may happen if a pinhole or crack occurs at the thin metal tube wall that separates the secondary sodium coolant and water/steam. Therefore, it is very important to detect an anomaly of the wall of heat transfer tubes at an early stage. This study aims at developing an on-line condition monitoring technique of the steam generator by estimating overall heat transfer coefficient from process signals. This paper describes simplified mathematical models of superheater and evaporator to estimate the overall heat transfer coefficient and a technique to diagnose the state of the steam generator. The applicability of the technique is confirmed by several estimations using simulated process signals with artificial noises. The results of the estimations show that the developed technique can detect the occurrence of an anomaly. (author)

  7. Regional trends in radiogenic heat generation in the Precambrian basement of the Western Canadian Basin

    Science.gov (United States)

    Jones, F. W.; Majorowicz, J. A.

    Radiogenic heat generation values for 381 basement samples from 229 sites in the western Canadian basin exhibit a lognormal frequency distribution. The mean value = 2.06 (S.D. = 1.22) µWm-3 is larger than the radiogenic heat generation values reported for the shield in the Superior (ca. 1.2 µWm-3, Jessop and Lewis, 1978) and Churchill (ca. 0.7 µWm-3, Drury, 1985) provinces. When equal Log A contour intervals are used to map the basement heat generation, three large zones of relatively high heat generation are found. One coincides with the Peace River Arch basement structure and one with the Athabasca axis (Darnley, 1981). There is no apparent indication of increased heat flow through the Paleozoic formations associated with these two zones. The third zone, in southwestern Saskatchewan, coincides with a high heat flow zone in the Swift Current area. The lack of correlation between heat flow and heat generation in Alberta may be due to the disturbance to the heat flow in the Paleozoic formations by water motion, or may indicate that the heat is from uranium, thorium and potassium isotope enrichment near the basement surface rather than enrichment throughout the entire upper crust.

  8. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    Science.gov (United States)

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  9. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    Energy Technology Data Exchange (ETDEWEB)

    Huang Kejin [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: huangkj@mail.buct.edu.cn; Shan Lan; Zhu Qunxiong [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Qian Jixin [School of Information Science and Technology, Zhejiang University, Zhejiang 300027 (China)

    2008-06-15

    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC.

  10. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    International Nuclear Information System (INIS)

    Huang Kejin; Shan Lan; Zhu Qunxiong; Qian Jixin

    2008-01-01

    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC

  11. The effect of coating on heat generation properties of Iron oxide nanoparticles

    Science.gov (United States)

    Yuan, Yuan

    Magnetic nanoparticles have attracted more and more attention for their potential application as heating agents in cancer hyperthermia. The effectiveness of cancer hyperthermia can be increased by using particles that have a higher heat generation rate, quantified by specific absorption rate (SAR), at a smaller applied field. In order to optimize the functionality of nanoparticles as heating agents, it is essential to have a comprehensive understanding of factors that may influence SAR including coating and aggregation. In all biomedical applications, the magnetic particles are coated with surfactants and polymers to enhance biocompatibility, prevent agglomeration and add functionality. Coatings may profoundly influence particles' clustering behavior and magnetic properties. Yet its effect on the heat generation rate of the nanoparticles has been scarcely investigated. In this context, a systematic investigation was carried out in this dissertation in order to understand the impact of the surface coating of magnetic nanoparticles on their heat generation rate. The study also includes investigation of normal nerve cell viability in presence of biofunctionalized magnetic nanoparticles with and without exposure to magnetic heating. Commercially available suspensions of iron oxide nanoparticles with a diameter of approximately 10 nm and different coatings relevant to biomedical applications such as aminosilane, carboxymethyl-dextran, protein A, biotin were extensively characterized. First of all, magnetic phase reduction of magnetite nanoparticles was examined by studying the discrepancy between the volume fraction of magnetic phase calculated from magnetization curve and the magnetic core concentration obtained from Tiron chelation test. The findings indicated that coatings might interact with the surface atoms of the magnetic core and form a magnetically disordered layer reducing the total amount of the magnetic phase. Secondly, the impact of coating and aggregation

  12. Efficient heat generation in large-area graphene films by electromagnetic wave absorption

    Science.gov (United States)

    Kang, Sangmin; Choi, Haehyun; Lee, Soo Bin; Park, Seong Chae; Park, Jong Bo; Lee, Sangkyu; Kim, Youngsoo; Hong, Byung Hee

    2017-06-01

    Graphene has been intensively studied due to its outstanding electrical and thermal properties. Recently, it was found that the heat generation by Joule heating of graphene is limited by the conductivity of graphene. Here we suggest an alternative method to generate heat on a large-area graphene film more efficiently by utilizing the unique electromagnetic (EM) wave absorption property of graphene. The EM wave induces an oscillating magnetic moment generated by the orbital motion of moving electrons, which efficiently absorbs the EM energy and dissipate it as a thermal energy. In this case, the mobility of electron is more important than the conductivity, because the EM-induced diamagnetic moment is directly proportional to the speed of electron in an orbital motion. To control the charge carrier mobility of graphene we functionalized substrates with self-assembled monolayers (SAM). As the result, we find that the graphene showing the Dirac voltage close to zero can be more efficiently heated by EM waves. In addition, the temperature gradient also depends on the number of graphene. We expect that the efficient and fast heating of graphene films by EM waves can be utilized for smart heating windows and defogging windshields.

  13. Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field

    International Nuclear Information System (INIS)

    Lima, E Jr; De Biasi, E; Mansilla, M Vasquez; Saleta, M E; Granada, M; Troiani, H E; Zysler, R D; Effenberger, F B; Rossi, L M; Rechenberg, H R

    2013-01-01

    The role of agglomeration and magnetic interparticle interactions in heat generation of magnetic ferrofluids in an ac magnetic field is still unclear, with apparent discrepancy between the results presented in the literature. In this work, we measured the heat generating capability of agglomerated ferrite nanoparticles in a non-invasive ac magnetic field with f = 100 kHz and H 0 = 13 kA m -1 . The nanoparticles were morphologically and magnetically characterized, and the specific absorption rate (SAR) for our ac magnetic field presents a clear dependence on the diameter of the nanoparticles, with a maximum SAR = 48 W g -1 for 15 nm. Our agglomerated nanoparticles have large hydrodynamic diameters, thus the mechanical relaxation can be neglected as a heat generation mechanism. Therefore, we present a model that simulates the SAR dependence of the agglomerated samples on the diameter of the nanoparticles based on the hysteresis losses that is valid for the non-linear region (with H 0 comparable to the anisotropy field). Our model takes into account the magnetic interactions among the nanoparticles in the agglomerate. For comparison, we also measured the SAR of non-agglomerated nanoparticles in a similar diameter range, in which Néel and Brown relaxations dominate the heat generation.

  14. Isothermal calorimeter for measurements of time-dependent heat generation rate in individual supercapacitor electrodes

    Science.gov (United States)

    Munteshari, Obaidallah; Lau, Jonathan; Krishnan, Atindra; Dunn, Bruce; Pilon, Laurent

    2018-01-01

    Heat generation in electric double layer capacitors (EDLCs) may lead to temperature rise and reduce their lifetime and performance. This study aims to measure the time-dependent heat generation rate in individual carbon electrode of EDLCs under various charging conditions. First, the design, fabrication, and validation of an isothermal calorimeter are presented. The calorimeter consisted of two thermoelectric heat flux sensors connected to a data acquisition system, two identical and cold plates fed with a circulating coolant, and an electrochemical test section connected to a potentiostat/galvanostat system. The EDLC cells consisted of two identical activated carbon electrodes and a separator immersed in an electrolyte. Measurements were performed on three cells with different electrolytes under galvanostatic cycling for different current density and polarity. The measured time-averaged irreversible heat generation rate was in excellent agreement with predictions for Joule heating. The reversible heat generation rate in the positive electrode was exothermic during charging and endothermic during discharging. By contrast, the negative electrode featured both exothermic and endothermic heat generation during both charging and discharging. The results of this study can be used to validate existing thermal models, to develop thermal management strategies, and to gain insight into physicochemical phenomena taking place during operation.

  15. Generating a heated fluid using an electromagnetic radiation-absorbing complex

    Science.gov (United States)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2018-01-09

    A vessel including a concentrator configured to concentrate electromagnetic (EM) radiation received from an EM radiation source and a complex configured to absorb EM radiation to generate heat. The vessel is configured to receive a cool fluid from the cool fluid source, concentrate the EM radiation using the concentrator, apply the EM radiation to the complex, and transform, using the heat generated by the complex, the cool fluid to the heated fluid. The complex is at least one of consisting of copper nanoparticles, copper oxide nanoparticles, nanoshells, nanorods, carbon moieties, encapsulated nanoshells, encapsulated nanoparticles, and branched nanostructures. Further, the EM radiation is at least one of EM radiation in an ultraviolet region of an electromagnetic spectrum, in a visible region of the electromagnetic spectrum, and in an infrared region of the electromagnetic spectrum.

  16. Thermoelectric Power Generation Utilizing the Waste Heat from a Biomass Boiler

    Science.gov (United States)

    Brazdil, Marian; Pospisil, Jiri

    2013-07-01

    The objective of the presented work is to test the possibility of using thermoelectric power to convert flue gas waste heat from a small-scale domestic pellet boiler, and to assess the influence of a thermoelectric generator on its function. A prototype of the generator, able to be connected to an existing device, was designed, constructed, and tested. The performance of the generator as well as the impact of the generator on the operation of the boiler was investigated under various operating conditions. The boiler gained auxiliary power and could become a combined heat and power unit allowing self-sufficient operation. The created unit represents an independent source of electricity with effective use of fuel.

  17. Solar hot-water generation and heating - Kombi-Kompakt+

    International Nuclear Information System (INIS)

    Haller, M.; Vogelsanger, P.

    2005-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes new testing facilities at the Institute for Solar Technology in Rapperswil, Switzerland, that allow the testing of solar systems the whole year through. The systems tested feature the combined generation of heat for hot water storage vessels and heat for space heating. The test method used, the Concise Cycle Test (CCT) is described. The results of tests made on a large number of systems demonstrate that it is especially important to have a test system that allows the solar market to be protected from unsatisfactory systems. Good co-operation with manufactures is noted. As the test method includes tests with secondary energy sources such as oil or gas, certain problems in this area were discovered and corrected. Further tests are to be made with systems using biomass as a secondary source of heat

  18. Analyses of pebble-bed reactors for the generation of heat for heating purposes

    International Nuclear Information System (INIS)

    Muehlensiep, J.; Fricke, U.; Inhester, K.H.; Kugeler, K.; Phlippen, P.W.; Schmidtlein, P.; Swatoch, R.; Wagner, U.

    1986-10-01

    Marginal conditions are described for the use of a nuclear power reactor for long-distance heat supply in densely populated areas. For the design of the high-temperature heat generating reactor, plant components and possible arrangements are analyzed with consideration to safety and costs. System sizes are reasonably chosen on the basis of analyzed parameters, the paramount design goal being to adequately retain the fission products in the coated particles of the fuel elements, in anticipation of probable accidents. With the help of the data record obtained, a system is designed with a cuboid-shaped core as its characteristic feature; the advantage of the core consists in the fact that it quickly discharges the after-heat outwards even in case of a hypothetical accident. Due to the core shape, it is possible to install heat-exchanging components near the core, and to place the safety rods where they can be very effective in reflector borings. (orig./HP) [de

  19. Entropy Generation of Shell and Double Concentric Tubes Heat Exchanger

    Directory of Open Access Journals (Sweden)

    basma abbas abdulmajeed

    2016-06-01

    Full Text Available Entropy generation was studied for new type of heat exchanger (shell and double concentric tubes heat exchanger. Parameters of hot oil flow rate, temperature of inlet hot oil and pressure drop were investigated with the concept of entropy generation. The results showed that the value of entropy generation increased with increasing the flow rate of hot oil and when cold water flow rate was doubled from 20 to 40 l/min, these values were larger. On the other hand, entropy generation increased with increasing the hot oil inlet temperature at a certain flow rate of hot oil. Furthermore, at a certain hot oil inlet temperature, the entropy generation increased with the pressure drop at different hot oil inlet flow rates. Finally, in order to keep up with modern technology, infrared thermography camera was used in order to measure the temperatures. The entropy generation was determined with lower values when infrared thermography camera was used to measure the temperatures, compared with the values obtained by using thermocouples.

  20. Feasibility of deep ocean disposal of heat generating waste. V.1

    International Nuclear Information System (INIS)

    Hemming, C.R.

    1988-06-01

    This report summarises the research performed in the UK during the period 1977 to 1987 as part of the international programme investigating the feasibility of ocean disposal of heat generating radioactive waste. This study has involved: (i) the definition of the disposal operations needed to meet the minimum requirements for safely emplacing waste on or under the floor of the deep ocean; (ii) the identification and characterisation of areas of the deep ocean that might be suitable for containing heat generating waste; (iii) a study of the processes by which radionuclides might migrate through the multiple barriers that isolate the waste from man's environment; and (iv) a calculation of the radiological impact of the conceptual deep ocean repository. It is concluded that, from a technical and scientific viewpoint, disposal of heat generating waste in the deep ocean could provide a safe, economic and feasible alternative to deep disposal on land. (author)

  1. evaluation of total annual costs of heat exchanger networks using

    African Journals Online (AJOL)

    This study presents pinch analysis of some heat exchanger networks (HENs) problems using Hint integration (HINT) software. Three examples reported to have been solved using different approaches by various researchers to obtain the least possible total annual cost (TAC) were solved using the Hint software. In this work ...

  2. Study on heat pipe assisted thermoelectric power generation system from exhaust gas

    Science.gov (United States)

    Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock

    2017-11-01

    Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.

  3. Determination of thermal characteristics of combustion products of fire-tube heat generator with flow turbulator

    Directory of Open Access Journals (Sweden)

    Lukjanov Alexander V.

    2014-12-01

    Full Text Available Boiler construction is one of the major industries of any state. The aim is to determine the effect of the turbulator on the intensity of heat transfer in the convective part of the fire-tube heat generator of domestic production. The improvement of convective heating surfaces is one of the ways to increase the energy efficiency of the fire-tube heat generator. Since model of the process of heat transfer of gas flow in the convective tubes is multifactorial and does not have clear analytical solution at present, the study of process above is carried out using the experimental method. The results of applying the flow turbulator as a broken tape in the fire-tube heat generator of KV-GM type are presented. On their basis it can be concluded about increasing of heat transfer in convective part of the unit. The use of efficient, reliable, easy to manufacture, relatively inexpensive turbulator in domestic fire-tube heat generators will allow to increase their energy conversion efficiency and reduce fuel consumption, which will have a positive economic effect.

  4. Entropy Generation Analysis of Natural Convection in Square Enclosures with Two Isoflux Heat Sources

    Directory of Open Access Journals (Sweden)

    S. Z. Nejad

    2017-04-01

    Full Text Available This study investigates entropy generation resulting from natural convective heat transfer in square enclosures with local heating of the bottom and symmetrical cooling of the sidewalls. This analysis tends to optimize heat transfer of two pieces of semiconductor in a square electronic package. In this simulation, heaters are modeled as isoflux heat sources and sidewalls of the enclosure are isothermal heat sinks. The top wall and the non-heated portions of the bottom wall are adiabatic. Flow and temperature fields are obtained by numerical simulation of conservation equations of mass, momentum and energy in laminar, steady and two dimensional flows. With constant heat energy into the cavity, effect of Rayleigh number, heater length, heater strength ratios and heater position is evaluated on flow and temperature fields and local entropy generation. The results show that a minimum entropy generation rate is obtained under the same condition in which a minimum peak heater temperature is obtained.

  5. Effects of Heat Input and Bead Generation Methods on Finite Element Analysis of Multi-Pass Welding Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Dong; Kim, Ji Hoon; Bahn, Chi Bum [Pusan National University, Busan (Korea, Republic of)

    2016-10-15

    Welding residual stresses are determined by various factors such as heat input, initial temperature of molten bead, heating time, cooling time, cooling conditions, and boundary conditions. In this study, a sensitivity analysis was performed to find the major factors and reasonable assumptions for simulation. Two-dimensional axisymmetric simulation was conducted by using commercial finite element analysis program ABAQUS, for multi-pass Alloy 82 welds in a 304 Stainless Steel and SA-105 Carbon Steel. The major object is to evaluate effects of the heat input methods and weld bead generation methods on the welding residual stress distribution. Totally four kinds of methods were compared. From the previous results, we could make the following conclusions. 1. Although there are non-negligible differences in HAZ depending on heat input method, welding residual stress distributions have roughly similar trends. However, it is needed to perform the more exact analysis to apply heat energy more carefully into the individual bead. 2. Residual stress distribution were similar for the two weld bead generation technique. However, overlapping was happened when element birth technique was applied. Effects of overlapping could not ignore as deformation increases. However, overlapping problem was avoided when quiet element technique was used. 3. Since existence of inactive bead elements, inaccurate weld residual stresses could be occurred in boundaries of previous and next weld elements in case of quiet element technique.

  6. A thermoelectric power generating heat exchanger: Part I – Experimental realization

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Sarhadi, Ali; Pryds, Nini

    2016-01-01

    An experimental realization of a heat exchanger with commercial thermoelectric generators (TEGs) is presented. The power producing capabilities as a function of flow rate and temperature span are characterized for two different commercial heat transfer fluids and for three different thermal...

  7. ULF Generation by Modulated Ionospheric Heating

    Science.gov (United States)

    Chang, C.; Labenski, J.; Wallace, T.; Papadopoulos, K.

    2013-12-01

    Modulated ionospheric heating experiments designed to generate ULF waves using the HAARP heater have been conducted since 2007. Artificial ULF waves in the Pc1 frequency range were observed from space and by ground induction magnetometers located in the vicinity of the heater as well as at long distances. Two distinct generation mechanisms of artificial ULF waves were identified. The first was electroject modulation under geomagnetically disturbed conditions. The second was pressure modulation in the E and F regions of the ionosphere under quiet conditions. Ground detections of ULF waves near the heater included both Shear Alfven waves and Magnetosonic waves generated by electrojet and/or pressure modulations. Distant ULF detections involved Magnetosonic wave propagation in the Alfvenic duct with pressure modulation as the most likely source. Summary of our observations and theoretical interpretations will be presented at the meeting. We would like to acknowledge the support provided by the staff at the HAARP facility during our ULF experiments.

  8. Forecast of power generation and heat production from renewable energy sources

    Directory of Open Access Journals (Sweden)

    Pydych Tadeusz

    2017-01-01

    Full Text Available The share of renewable energy sources (RES in the end use of energy in the UE will increase from the present level of about 25% to 50 % in 2030 according to the assumptions of the European Commission. In Poland the RES Act was passed in 2015. The act defines mechanisms and instruments for supporting the production of electricity and heat from renewable energy sources. Statistics (2003–2014 of electricity generation and heat production from RES in Poland were used in the research. Because of amendments to regulations connected with promoting RES and the emissions trading system (ETS as well as the uncertainty associated with further directions of the energy and environmental policy, generation of electricity and heat based on the use of RES must be modelled while taking risk into account. A number of dynamic processes incorporating random events may be modelled by stochastic equations using Ito calculus. By applying Euler’s method to solve stochastic differential equations (SDE, it is possible to simulate the development of the use of renewable energy carriers in electricity generation and heat production in the future.

  9. Nanophotonic-Engineered Photothermal Harnessing for Waste Heat Management and Pyroelectric Generation.

    Science.gov (United States)

    Wang, Xiao-Qiao; Tan, Chuan Fu; Chan, Kwok Hoe; Xu, Kaichen; Hong, Minghui; Kim, Sang-Woo; Ho, Ghim Wei

    2017-10-24

    At present, there are various limitations to harvesting ambient waste heat which include the lack of economically viable material and innovative design features that can efficiently recover low grade heat for useful energy conversion. In this work, a thermal nanophotonic-pyroelectric (TNPh-pyro) scheme consisting of a metamaterial multilayer and pyroelectric material, which performs synergistic waste heat rejection and photothermal heat-to-electricity conversion, is presented. Unlike any other pyroelectric configuration, this conceptual design deviates from the conventional by deliberately employing back-reflecting NIR to enable waste heat reutilization/recuperation to enhance pyroelectric generation, avoiding excessive solar heat uptake and also retaining high visual transparency of the device. Passive solar reflective cooling up to 4.1 °C is demonstrated. Meanwhile, the photothermal pyroelectric performance capitalizing on the back-reflecting effect shows an open circuit voltage (V oc ) and short circuit current (I sc ) enhancement of 152 and 146%, respectively. In addition, the designed photoactive component (TiO 2 /Cu) within the metamaterial multilayer provides the TNPh-pyro system with an effective air pollutant photodegradation functionality. Finally, proof-of-concept for concurrent photothermal management and enhanced solar pyroelectric generation under a real outdoor environment is demonstrated.

  10. Development of a water boil-off spent-fuel calorimeter system. [To measure decay heat generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Creer, J.M.; Shupe, J.W. Jr.

    1981-05-01

    A calorimeter system was developed to measure decay heat generation rates of unmodified spent fuel assemblies from commercial nuclear reactors. The system was designed, fabricated, and successfully tested using the following specifications: capacity of one BWR or PWR spent fuel assembly; decay heat generation range 0.1 to 2.5 kW; measurement time of < 12 h; and an accuracy of +-10% or better. The system was acceptance tested using a dc reference heater to simulate spent fuel assembly heat generation rates. Results of these tests indicated that the system could be used to measure heat generation rates between 0.5 and 2.5 kW within +- 5%. Measurements of heat generation rates of approx. 0.1 kW were obtained within +- 15%. The calorimeter system has the potential to permit measurements of heat generation rates of spent fuel assemblies and other devices in the 12- to 14-kW range. Results of calorimetry of a Turkey Point spent fuel assembly indicated that the assembly was generating approx. 1.55 kW.

  11. District heating and combined heat and power generation from biomass

    International Nuclear Information System (INIS)

    Veski, Rein

    1999-01-01

    An Altener programme seminar District Heating and Combined Heat and Power Generation from Biomass. Minitraining seminar and study tours and also Business forum, Exhibition and Short company presentations were held in Tallinn on March 21-23, 1999. The Seminar was organised by the VTT Energy, the Estonian Bioenergy Association and the Estonian Heat and Power Association in co-operation with the AFB-net. The Agricultural and Forestry Biomass Network (AFB-net) is part of the ALTENER programme. The Network aims at promoting and stimulating the implementation and commercial utilisation of energy from biomass and waste, through the initiation of business opportunities. This includes national and international co-operation and the exchange of the personnel. The Seminar was attended by consulting companies, scientists, municipal authorities and representatives of co-ordinating bodies engaged in renewable energy management as well as DH and CHP plant managers, equipment manufacturers and local energy planners from Finland, Estonia, Latvia, Lithuania, Sweden, Denmark, Belgium, Slovenia and Slovak Republic. At the Seminar minitraining issues were dealt with: the current situation and future trends in biomass DH in the Baltic Sea countries, and biomass DH and CHP in Eastern and Central Europe, planning and construction of biomass-based DH plants, biomass fuel procurement and handling technology, combustion technology, DH networks, financing of biomass projects and evaluating of projects, and case projects in Eastern and Central European countries. The following were presented: boilers with a capacity of 100 kW or more, stoker burners, wood and straw handling equipment, wood fuel harvesters, choppers, pelletisers, district heating pipelines and networks. (author)

  12. Development of Thermoelectric Power Generators for high temperature Waste Heat Recovery

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    By converting heat directly into electricity, thermoclectric generators (TEGs) provide a very promising solution for emerging energy saving and environmental issues. These devices could be incorporated in a variety of applications, in particular those making use of waste heat recovery. To expand...

  13. Thermal mechanical analysis of applications with internal heat generation

    Science.gov (United States)

    Govindarajan, Srisharan Garg

    The radioactive tracer Technetium-99m is widely used in medical imaging and is derived from its parent isotope Molybedenum-99 (Mo-99) by radioactive decay. The majority of Molybdenum-99 (Mo-99) produced internationally is extracted from high enriched uranium (HEU) dispersion targets that have been irradiated. To alleviate proliferation risks associated with HEU-based targets, the use of non-HEU sources is being mandated. However, the conversion of HEU to LEU based dispersion targets affects the Mo-99 available for chemical extraction. A possible approach to increase the uranium density, to recover the loss in Mo-99 production-per-target, is to use an LEU metal foil placed within an aluminum cladding to form a composite structure. The target is expected to contain the fission products and to dissipate the generated heat to the reactor coolant. In the event of interfacial separation, an increase in the thermal resistance could lead to an unacceptable rise in the LEU temperature and stresses in the target. The target can be deemed structurally safe as long as the thermally induced stresses are within the yield strength of the cladding and welds. As with the thermal and structural safety of the annular target, the thermally induced deflection of the BORALRTM-based control blades, used by the University of Missouri Research Reactor (MURRRTM ), during reactor operation has been analyzed. The boron, which is the neutron absorber in BORAL, and aluminum mixture (BORAL meat) and the aluminum cladding are bonded together through powder metallurgy to establish an adherent bonded plate. As the BORAL absorbs both neutron particles and gamma rays, there is volumetric heat generation and a corresponding rise in temperature. Since the BORAL meat and aluminum cladding materials have different thermal expansion coefficients, the blade may have a tendency to deform as the blade temperature changes and the materials expand at different rates. In addition to the composite nature of the

  14. Entropy Generation of Desalination Powered by Variable Temperature Waste Heat

    Directory of Open Access Journals (Sweden)

    David M. Warsinger

    2015-10-01

    Full Text Available Powering desalination by waste heat is often proposed to mitigate energy consumption and environmental impact; however, thorough technology comparisons are lacking in the literature. This work numerically models the efficiency of six representative desalination technologies powered by waste heat at 50, 70, 90, and 120 °C, where applicable. Entropy generation and Second Law efficiency analysis are applied for the systems and their components. The technologies considered are thermal desalination by multistage flash (MSF, multiple effect distillation (MED, multistage vacuum membrane distillation (MSVMD, humidification-dehumidification (HDH, and organic Rankine cycles (ORCs paired with mechanical technologies of reverse osmosis (RO and mechanical vapor compression (MVC. The most efficient technology was RO, followed by MED. Performances among MSF, MSVMD, and MVC were similar but the relative performance varied with waste heat temperature or system size. Entropy generation in thermal technologies increases at lower waste heat temperatures largely in the feed or brine portions of the various heat exchangers used. This occurs largely because lower temperatures reduce recovery, increasing the relative flow rates of feed and brine. However, HDH (without extractions had the reverse trend, only being competitive at lower temperatures. For the mechanical technologies, the energy efficiency only varies with temperature because of the significant losses from the ORC.

  15. Heat transfer study on convective–radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods

    International Nuclear Information System (INIS)

    Atouei, S.A.; Hosseinzadeh, Kh.; Hatami, M.; Ghasemi, Seiyed E.; Sahebi, S.A.R.; Ganji, D.D.

    2015-01-01

    In this study, heat transfer and temperature distribution equations for semi-spherical convective–radiative porous fins are presented. Temperature-dependent heat generation, convection and radiation effects are considered and after deriving the governing equation, Least Square Method (LSM), Collocation Method (CM) and fourth order Runge-Kutta method (NUM) are applied for predicting the temperature distribution in the described fins. Results reveal that LSM has excellent agreement with numerical method, so can be suitable analytical method for solving the problem. Also, the effect of some physical parameters which are appeared in the mathematical formulation on fin surface temperature is investigated to show the effect of radiation and heat generation in a solid fin temperature. - Highlights: • Thermal analysis of a semi-spherical fin is investigated. • Collocation and Least Square Methods are applied on the problem. • Convection, radiation and heat generation is considered. • Physical results are compared to numerical outcomes.

  16. Random generation of bubble sizes on the heated wall during subcooled boiling

    International Nuclear Information System (INIS)

    Koncar, B.; Mavko, B.

    2003-01-01

    In subcooled flow boiling, a locally averaged bubble diameter significantly varies in the transverse direction to the flow. From the experimental data of Bartel, a bent crosssectional profile of local bubble diameter with the maximum value shifted away from the heated wall may be observed. In the present paper, the increasing part of the profile (near the heated wall) is explained by a random generation of bubble sizes on the heated wall. The hypothesis was supported by a statistical analysis of different CFD simulations, varying by the size of the generated bubble (normal distribution) and the number of generated bubbles per unit surface. Local averaging of calculated void fraction distributions over different bubble classes was performed. The increasing curve of the locally averaged bubble diameter in the near-wall region was successfully predicted. (author)

  17. Effects of the generator and evaporator temperature differences on a double absorption heat transformer—Different control strategies on utilizing heat sources

    International Nuclear Information System (INIS)

    Wang, Hanzhi; Li, Huashan; Bu, Xianbiao; Wang, Lingbao

    2017-01-01

    Highlights: • Effects of the GETD on the DAHT system performance are analyzed. • Three different configurations are compared in detail. • Suggestions on the heat source control strategies are given. - Abstract: The combination of the absorption heat transformer with renewable energy systems, like solar thermal systems, is raising more and more concern. In those combined systems the strategies on utilizing heat sources can affect system thermodynamic performance significantly. Therefore, this study presents a detailed analysis on the effect of the heat source temperature and different heat source flow patterns on the performance of a double absorption heat transformer (DAHT). A detailed comparative study is carried out to clarify the impact of the generator and evaporator temperature differences (GETD) on the coefficient of performance (COP), exergy efficient (ECOP), exergy destruction rates in the individual components and heat transfer areas needed for each component. The results show that the generator, condenser and absorber-evaporator are responsible for most of the exergy destruction rate in the DAHT system; the parallel-flow configuration (the generator temperature is equal to the evaporator temperature) performs better under the high gross temperature lift conditions; in the case of the counter-flow configuration (the generator temperature is relatively higher), better performance can be obtained in both the COP and ECOP under the proper heat source temperature (85 and 95 °C); the fair-flow configuration (higher temperature in the evaporator) is not recommended in this paper due to no advantages found in either thermodynamic performance or system size.

  18. Proceedings of the third international steam generator and heat exchanger conference

    International Nuclear Information System (INIS)

    1998-01-01

    The Third International Steam Generator and Heat Exchanger conference had the objective to present the state of knowledge of steam generator performance and life management, and also heat exchanger technology. As this conference followed on from the previous conferences held in Toronto in 1990 and 1994, the emphasis was on recent developments, particularly those of the last 4 years. The conference provided an opportunity to operators, designers and researchers in the field of steam generation associated with electricity generation by nuclear energy to present their findings and exchange ideas. The conference endeavoured to do this over the widest possible range of subject areas, including: general operating experience, life management and fitness for service strategies, maintenance and inspection, thermalhydraulics, vibration, fretting and fatigue, materials, chemistry and corrosion and the regulatory issues

  19. Proceedings of the third international steam generator and heat exchanger conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Third International Steam Generator and Heat Exchanger conference had the objective to present the state of knowledge of steam generator performance and life management, and also heat exchanger technology. As this conference followed on from the previous conferences held in Toronto in 1990 and 1994, the emphasis was on recent developments, particularly those of the last 4 years. The conference provided an opportunity to operators, designers and researchers in the field of steam generation associated with electricity generation by nuclear energy to present their findings and exchange ideas. The conference endeavoured to do this over the widest possible range of subject areas,including: general operating experience, life management and fitness for service strategies, maintenance and inspection, thermalhydraulics, vibration, fretting and fatigue, materials, chemistry and corrosion and the regulatory issues.

  20. Fast plasma shutdown by killer pellet injection in JT-60U with reduced heat flux on the divertor plate and avoiding runaway electron generation

    International Nuclear Information System (INIS)

    Yoshino, R.; Kondoh, T.; Neyatani, Y.; Itami, K.; Kawano, Y.; Isei, N.

    1997-01-01

    A killer pellet is an impurity pellet that is injected into a tokamak plasma in order to terminate a discharge without causing serious damage to the tokamak machine. In JT-60U neon ice pellets have been injected into OH and NB heated plasmas and fast plasma shutdowns have been demonstrated without large vertical displacement. The heat pulse on the divertor plate has been greatly reduced by killer pellet injections (KPI), but a low-power heat flux tail with a long time duration is observed. The total energy on the divertor plate increases with longer heat flux tail, so it has been reduced by shortening the tail. Runaway electron (RE) generation has been observed just after KPI and/or in the later phase of the plasma current quench. However, RE generation has been avoided when large magnetic perturbations are excited. These experimental results clearly show that KPI is a credible fast shutdown method avoiding large vertical displacement, reducing heat flux on the divertor plate, and avoiding (or minimizing) RE generation. (Author)

  1. CFD analysis of fin tube heat exchanger with a pair of delta winglet vortex generators

    International Nuclear Information System (INIS)

    Hwang, Seong Won; Kim, Dong Hwan; Min, June Kee; Jeong, Ji Hwan

    2012-01-01

    Among tubular heat exchangers, fin tube types are the most widely used in refrigeration and air-conditioning equipment. Efforts to enhance the performance of these heat exchangers included variations in the fin shape from a plain fin to a slit and louver type. In the context of heat transfer augmentation, the performance of vortex generators has also been investigated. Delta winglet vortex generators have recently attracted research interest, partly due to experimental data showing that their addition to fin-tube heat exchangers considerably reduces pressure loss at heat transfer capacity of nearly the same level. The efficiency of the delta winglet vortex generators widely varies depending on their size and shape, as well as the locations where they are implemented. In this paper, the flow field around delta winglet vortex generators in a common flow up arrangement was analyzed in terms of flow characteristics and heat transfer using computational fluid dynamics methods. Flow mixing due to vortices and delayed separation due to acceleration influence the overall fin performance. The fin with delta winglet vortex generators exhibited a pressure loss lower than that of a plain fin, and the heat transfer performance was enhanced at high air velocity or Reynolds number

  2. CFD analysis of fin tube heat exchanger with a pair of delta winglet vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seong Won; Kim, Dong Hwan; Min, June Kee; Jeong, Ji Hwan [Pusan National Univ., Busan (Korea, Republic of)

    2012-09-15

    Among tubular heat exchangers, fin tube types are the most widely used in refrigeration and air-conditioning equipment. Efforts to enhance the performance of these heat exchangers included variations in the fin shape from a plain fin to a slit and louver type. In the context of heat transfer augmentation, the performance of vortex generators has also been investigated. Delta winglet vortex generators have recently attracted research interest, partly due to experimental data showing that their addition to fin-tube heat exchangers considerably reduces pressure loss at heat transfer capacity of nearly the same level. The efficiency of the delta winglet vortex generators widely varies depending on their size and shape, as well as the locations where they are implemented. In this paper, the flow field around delta winglet vortex generators in a common flow up arrangement was analyzed in terms of flow characteristics and heat transfer using computational fluid dynamics methods. Flow mixing due to vortices and delayed separation due to acceleration influence the overall fin performance. The fin with delta winglet vortex generators exhibited a pressure loss lower than that of a plain fin, and the heat transfer performance was enhanced at high air velocity or Reynolds number.

  3. Trans-generational effects of mild heat stress on the life history traits of an aphid parasitoid.

    Science.gov (United States)

    Ismaeil, Ibrahim; Doury, Géraldine; Desouhant, Emmanuel; Dubois, Françoise; Prevost, Geneviève; Couty, Aude

    2013-01-01

    Temperature changes are common in nature and insects are particularly exposed and sensitive to such variations which can be potential stresses, ultimately affecting life history traits and overall fitness. Braconids have been widely used to study the effects of temperature on host-parasitoid interactions and the present work focused on the solitary endoparasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae Aphidiidae), an efficient biological control agent commercially used against aphids such as the potato aphid Macrosiphum euphorbiae Thomas (Sternorrhyncha: Aphididae). Contrary to previous studies using heat shocks at extreme temperatures, we evaluated the effects of mild heat stresses by transferring young parasitoid adults from the constant temperature of 20°C to either a warm (25°C) or hot (28°C) temperature, for either 1 h or 48 h. Such treatments are consistent with situations commonly experienced by parasitoids when moved from their rearing conditions to greenhouses or field conditions. The effects were evaluated both on the heat stressed A. ervi adults (G0) (immediate effects) and on their first generation (G1) progeny (trans-generational effects). G0 wasps' mortality was significantly affected by the temperature in interaction with the duration of the stress. Longevity of G0 wasps surviving the heat stress was negatively affected by the temperature and females lived longer than males. Heat stress applied to A. ervi parents also had consequences on their G1 progeny whose developmental time, rates of mummification and percentage of parasitoid completing total development were negatively affected. Surprisingly, the egg load at emergence of the G1 female progeny was increased when their mothers had been submitted to a mild heat stress of 25°C or 28°C. These results clearly demonstrate trans-generational phenotypic plasticity, showing that adaptation to thermal stresses may be achieved via maternal effects. This study also sheds light on the complexity

  4. Trans-generational effects of mild heat stress on the life history traits of an aphid parasitoid.

    Directory of Open Access Journals (Sweden)

    Ibrahim Ismaeil

    Full Text Available Temperature changes are common in nature and insects are particularly exposed and sensitive to such variations which can be potential stresses, ultimately affecting life history traits and overall fitness. Braconids have been widely used to study the effects of temperature on host-parasitoid interactions and the present work focused on the solitary endoparasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae Aphidiidae, an efficient biological control agent commercially used against aphids such as the potato aphid Macrosiphum euphorbiae Thomas (Sternorrhyncha: Aphididae. Contrary to previous studies using heat shocks at extreme temperatures, we evaluated the effects of mild heat stresses by transferring young parasitoid adults from the constant temperature of 20°C to either a warm (25°C or hot (28°C temperature, for either 1 h or 48 h. Such treatments are consistent with situations commonly experienced by parasitoids when moved from their rearing conditions to greenhouses or field conditions. The effects were evaluated both on the heat stressed A. ervi adults (G0 (immediate effects and on their first generation (G1 progeny (trans-generational effects. G0 wasps' mortality was significantly affected by the temperature in interaction with the duration of the stress. Longevity of G0 wasps surviving the heat stress was negatively affected by the temperature and females lived longer than males. Heat stress applied to A. ervi parents also had consequences on their G1 progeny whose developmental time, rates of mummification and percentage of parasitoid completing total development were negatively affected. Surprisingly, the egg load at emergence of the G1 female progeny was increased when their mothers had been submitted to a mild heat stress of 25°C or 28°C. These results clearly demonstrate trans-generational phenotypic plasticity, showing that adaptation to thermal stresses may be achieved via maternal effects. This study also sheds light on

  5. Milliwatt-generator heat source. Progress report, January-June 1983

    International Nuclear Information System (INIS)

    Mershad, E.A.

    1983-01-01

    Progress is reported in the following: heat source shipments, reimbursable orders, hardware shipments, raw material qualification/procurement, DOE audit and milliwatt generator process review, surveillance capsule evaluations, pressure burst testing, and hardware fabrication and quality

  6. Steam generator concept of a small HTR for reheating and for removal of the residual heat

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J; Barnert, H; Hohn, H; Mondry, M [Institut fuer Reaktorenentwicklung, Kernforschungsanlage Juelich GmbH, Juelich (Germany)

    1988-07-01

    The steam generator of a small HTR is arranged above the core in an in line design of the primary loop, thereby helium flows upwards. Water flows downwards in the steam generator to realize cross flow. To achieve stable evaporation conditions during part load operation it is desired to realize upward evaporation in the steam generator. Moreover if the steam generator is also used as a heat sink for removal of residual heat, this desire of upwards evaporation becomes more imperative. It is possible to realize the design of steam generator with upwards evaporation by arranging a hot gas duct in its central region, so that hot helium can flow upwards through it. Therefore helium enters the steam generator from the top and flows downwards and water upwards. In the presented design, a heat exchanger is arranged in the central region of the steam generator instead of a hot gas duct. Hot helium of 750 deg. C flows upwards in this heat exchanger and thereby cools down to the temperature of about 700 deg. C before it enters the bundle of the steam generator at the top. Through an intermediate loop this heat is transferred outside the primary loop, where in an extra heat exchanger live steam is reheated to improve the thermal efficiency of the plant. This intermediate loop works on the basis of forced convection and transfer about 25 MW for reheating. During the shutdown operation of the reactor, this heat exchanger in the central region of the steam generator serves as a heat sink for removal of the residual heat through natural convection in the primary loop. At the same time it is further possible, that intermediate loop also works on the basis of natural convection, because during shutdown operation only a very small amount of heat has to be removed and moreover the outside heat exchanger can be arranged much higher above the central heat exchanger to get favourable conditions for the natural convection. Some of the highlights of the central heat exchanger are: coaxial

  7. Effects of tissue impedance on heat generation during RF delivery with the Thermage system

    Science.gov (United States)

    Tomkoria, Sara; Pope, Karl

    2005-04-01

    The Thermage ThermaCool TC system is a non-ablative RF device designed to promote tissue tightening and contouring. The system delivers RF energy to a target area under the skin, with volumetric tissue heating in that area. While the amount of energy delivered to a patient can be controlled by ThermaCool system settings, the distribution of energy to the treatment area and underlying layers is variable from individual to individual due to differences in body composition. The present study investigated how local tissue impedance affects the amount of discomfort experienced by patients during RF energy delivery. Discomfort results from heat generation in the treatment area. By using features of the ThermaCool TC System, local impedance (impedance of the treatment area), bulk impedance (impedance of the underlying tissue layers), and total impedance (the sum of local and bulk impedance) were measured for 35 patients. For each patient, impedance measurements were compared to discomfort levels expressed during treatment. Analysis of whole body, local, and bulk impedance values indicate that the percent of total body impedance in the local treatment area contributes to discomfort levels expressed by patients during treatment.

  8. Effect of thermal radiation and suction on convective heat transfer of nanofluid along a wedge in the presence of heat generation/absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kasmani, Ruhaila Md; Bhuvaneswari, M. [Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Sivasankaran, S.; Siri, Zailan [Institute of Mathematical Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-10-22

    An analysis is presented to find the effects of thermal radiation and heat generation/absorption on convection heat transfer of nanofluid past a wedge in the presence of wall suction. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity transformation. The resulting system is solved numerically using a fourth-order Runge–Kutta method with shooting technique. Numerical computations are carried out for different values of dimensionless parameters to predict the effects of wedge angle, thermophoresis, Brownian motion, heat generation/absorption, thermal radiation and suction. It is found that the temperature increases significantly when the value of the heat generation/absorption parameter increases. But the opposite observation is found for the effect of thermal radiation.

  9. Steam generators and waste heat boilers for process and plant engineers

    CERN Document Server

    Ganapathy, V

    2014-01-01

    Incorporates Worked-Out Real-World ProblemsSteam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel idea

  10. Appropriate heat load ratio of generator for different types of air cooled lithium bromide–water double effect absorption chiller

    International Nuclear Information System (INIS)

    Li, Zeyu; Liu, Jinping

    2015-01-01

    Highlights: • Effect of heat load ratio of generator on the performance was analyzed. • The performance is sensitive to heat load ratio of generator. • The appropriate heat load ratio of generator for four systems was obtained. • The change of appropriate heat load ratio of generator for four systems was studied. - Abstract: The lower coefficient of performance and higher risk of crystallization in the higher surrounding temperature is the primary disadvantage of air cooled lithium bromide–water double effect absorption chiller. Since the coefficient of performance and risk of crystallization strongly depend on the heat load ratio of generator, the appropriate heat load ratio of generator can improve the performance as the surrounding temperature is higher. The paper mainly deals with the appropriate heat load ratio of generator of air cooled lithium bromide–water double effect absorption chiller. Four type systems named series, pre-parallel, rear parallel and reverse parallel flow configuration were considered. The corresponding parametric model was developed to analyze the comprehensive effect of heat load ratio of generator on the coefficient of performance and risk of crystallization. It was found that the coefficient of performance goes up linearly with the decrease of heat load ratio of generator. Simultaneously, the risk of crystallization also rises slowly at first but increases fast finally. Consequently, the appropriate heat load ratio of generator for the series and pre-parallel flow type systems is suggested to be 0.02 greater than the minimum heat load ratio of generator and that for the rear parallel and reverse parallel flow chillers should be 0.01 higher than the minimum heat load ratio of generator. Besides, the changes of minimum heat load ratio of generator for different type systems with the working condition were analyzed and compared. It was found that the minimum heat load ratio of generator goes up with the increase of

  11. Determination of thermal characteristics of combustion products of fire-tube heat generator with flow turbulator

    OpenAIRE

    Lukjanov Alexander V.; Ostapenko Dmitry V.; Basist Dmitry V.

    2014-01-01

    Boiler construction is one of the major industries of any state. The aim is to determine the effect of the turbulator on the intensity of heat transfer in the convective part of the fire-tube heat generator of domestic production. The improvement of convective heating surfaces is one of the ways to increase the energy efficiency of the fire-tube heat generator. Since model of the process of heat transfer of gas flow in the convective tubes is multifactorial and does not have clear analytical ...

  12. Experimental and computational study on thermoelectric generators using thermosyphons with phase change as heat exchangers

    International Nuclear Information System (INIS)

    Araiz, M.; Martínez, A.; Astrain, D.; Aranguren, P.

    2017-01-01

    Highlights: • Thermosyphon with phase change heat exchanger computational model. • Construction and experimentation of a prototype. • ±9% of maximum deviation from experimental values of the main outputs. • Influence of the auxiliary equipment on the net power generation. - Abstract: An important issue in thermoelectric generators is the thermal design of the heat exchangers since it can improve their performance by increasing the heat absorbed or dissipated by the thermoelectric modules. Due to its several advantages, compared to conventional dissipation systems, a thermosyphon heat exchanger with phase change is proposed to be placed on the cold side of thermoelectric generators. Some of these advantages are: high heat-transfer rates; absence of moving parts and lack of auxiliary consumption (because fans or pumps are not required); and the fact that these systems are wickless. A computational model is developed to design and predict the behaviour of this heat exchangers. Furthermore, a prototype has been built and tested in order to demonstrate its performance and validate the computational model. The model predicts the thermal resistance of the heat exchanger with a relative error in the interval [−8.09; 7.83] in the 95% of the cases. Finally, the use of thermosyphons with phase change in thermoelectric generators has been studied in a waste-heat recovery application, stating that including them on the cold side of the generators improves the net thermoelectric production by 36% compared to that obtained with finned dissipators under forced convection.

  13. Analysis and Modeling of Heat Generation in Overcharged Li-Ion Battery with Passive Cooling

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2013-01-01

    This paper presents a dynamic model for simulating the heat generation in Lithium batteries and an investigation of the heat transfer as well as the capacity of Phase Change Materials (PCM’s) to store energy inside a battery cell module when the battery is overcharged. The study is performed...... by coupling a one-dimensional model of the electrochemical processes with a two-dimensional model for the heat transfer in a cross section of a battery pack. The heat generation and subsequent temperature rise is analyzed for different charging currents for the two cases where the cell is air......-cooled and passively cooled using a PCM, respectively. As expected, the results show that for high currents, the heat generation and implicitly the temperature increases. However, using a PCM the temperature increase is found to be limited allowing the battery to be overcharged to a certain degree. It is found...

  14. Possible generation of heat from nuclear fusion in Earth's inner core.

    Science.gov (United States)

    Fukuhara, Mikio

    2016-11-23

    The cause and source of the heat released from Earth's interior have not yet been determined. Some research groups have proposed that the heat is supplied by radioactive decay or by a nuclear georeactor. Here we postulate that the generation of heat is the result of three-body nuclear fusion of deuterons confined in hexagonal FeDx core-centre crystals; the reaction rate is enhanced by the combined attraction effects of high-pressure (~364 GPa) and high-temperature (~5700 K) and by the physical catalysis of neutral pions: 2 D +  2 D +  2 D → 2 1 H +  4 He + 2  + 20.85 MeV. The possible heat generation rate can be calculated as 8.12 × 10 12  J/m 3 , based on the assumption that Earth's primitive heat supply has already been exhausted. The H and He atoms produced and the anti-neutrino are incorporated as Fe-H based alloys in the H-rich portion of inner core, are released from Earth's interior to the universe, and pass through Earth, respectively.

  15. Fitness-related differences in the rate of whole-body total heat loss in exercising young healthy women are heat-load dependent.

    Science.gov (United States)

    Lamarche, Dallon T; Notley, Sean R; Poirier, Martin P; Kenny, Glen P

    2018-03-01

    What is the central question of this study? Aerobic fitness modulates heat loss, albeit the heat load at which fitness-related differences occur in young healthy women remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that fitness modulates heat loss in a heat-load dependent manner, with differences occurring between young women of low and high fitness and matched physical characteristics when the metabolic heat load is at least 400 W in hot, dry conditions. Although fitness has been known for some time to modulate heat loss, our findings define the metabolic heat load at which fitness-related differences occur. Aerobic fitness has recently been shown to alter heat loss capacity in a heat-load dependent manner in young men. However, given that sex-related differences in heat loss capacity exist, it is unclear whether this response is consistent in women. We therefore assessed whole-body total heat loss in young (21 ± 3 years old) healthy women matched for physical characteristics, but with low (low-fit; 35.8 ± 4.5 ml O 2  kg -1  min -1 ) or high aerobic fitness (high-fit; 53.1 ± 5.1 ml O 2  kg -1  min -1 ; both n = 8; indexed by peak oxygen consumption), during three 30 min bouts of cycling performed at increasing rates of metabolic heat production of 250 (Ex1), 325 (Ex2) and 400 W (Ex3), each separated by a 15 min recovery, in hot, dry conditions (40°C, 11% relative humidity). Whole-body total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat content was measured as the temporal summation of heat production and loss. Total heat loss did not differ during Ex1 (low-fit, 215 ± 16 W; high-fit, 231 ± 20 W; P > 0.05) and Ex2 (low-fit, 278 ± 15 W; high-fit, 301 ± 20 W; P > 0.05), but was lower in the low-fit (316 ± 21 W) compared with the high-fit women (359 ± 32

  16. Heat transfer characteristics and entropy generation for wing-shaped-tubes with longitudinal external fins in cross-flow

    International Nuclear Information System (INIS)

    Ahmed, Sayed Ahmed E. Sayed; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2016-01-01

    A numerical study is conducted to clarify heat transfer characteristics, effectiveness and entropy generation for a bundle of wingshaped-tubes attached to Longitudinal fins (LF) at downstream side. The air-side Re a ranged from 1.8 x 10 3 to 9.7 x 10 3 . The fin height (h f ) and fin thickness (δ) have been changed as: (2 mm <= hf <= 12 mm) and (1.5 mm <= δ <= 3.5 mm). The analysis of entropy generation is based on the principle of minimizing the rate of total entropy generation that includes the generation of entropy due to heat transfer and friction losses. The temperature field around the wing-shaped-tubes with (LF) is predicted using commercial CFD FLUENT 6.3.26 software package. Correlations of Nu a , St a , and Bejan number (Be), as well as the irreversibility distribution ratio (Φ) in terms of Re a and design parameters for the studied bundle are presented. Results indicated that, installing fins with heights from 2 to 12 mm results in an increase in Nu a from 11 to 36% comparing with that of wing-shaped tubes without fins (NOF). The highest and lowest values of effectiveness(ε) at every value of the considered Re a range are occurred at hf = 6 mm and (NOF), espectively. The wing-shaped-tubes heat exchanger with hf = 6 mm has the highest values of (ε), efficiency index (η) and area goodness factor (G a ) and also the lowest values of Φ and hence the best performance comparing with other arrangements. The minimum values of Φ are occurred at hf = 6 mm. (Be) decreases with increasing Re a for all studied hf. The heat transfer irreversibility predominates for (1800 <= Re a <= 4200) while the opposite is true for (6950 < Re a <= 9700). δ has negligible effect on Nu a and heat transfer irreversibility. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

  17. Research highlights : study of the noise generated by heat pumps in residential areas

    International Nuclear Information System (INIS)

    Rousseau, J.

    2000-01-01

    Rising energy costs and aggressive marketing played a major role in the substantial increase in the number of domestic heat pumps installed. As a rule, heat pumps are connected to the heating and ventilation systems on the outside of the house. Whether the heat pump is equipped with an integrated compressor or not, it creates noise. The noise is generated by the powerful fan designed to cool all the coils, and also by the compressor itself and the circulation of the refrigerant gas. Some municipalities received so many complaints on this topic that they are considering adopting noise bylaws. The first objective of the research undertaken by Canada Mortgage and Housing Corporation on heat pumps in residential areas was to analyze the noise pollution mode of commonly used heat pumps. A study of a simple noise reduction device was performed, and the extent to which it should be used. Finally, there had to be no reduction of the thermal capacities of the pumps. Phase 1 of the study took place between May and August 1990, in the area of Quebec City. A total of 125 heat pumps were identified. The four major manufacturers were Trane, Carrier, York, and Lennox. Initial sound pressure levels measurements were made at one metre from the unit, for 80 such units, respecting the ratio by brands in the sample of 125. A detailed global noise measurement determined the sound power of each pump. A detailed muffler feasibility study was then conducted, using a Trane heat pump. The results of the study indicated that heat pumps were a major source of continuous noise in low and mid-density areas. It was discovered that a noise attenuation device could always be built around heat pumps, which needed to be installed as close as possible to the casing of the heat pump. It is not possible to design a device to fit each and every heat pump, the design is specific to the dimensions and characteristics of each model of heat pump. The thermal performance of the pumps will not be affected by

  18. A methodology for the geometric design of heat recovery steam generators applying genetic algorithms

    International Nuclear Information System (INIS)

    Durán, M. Dolores; Valdés, Manuel; Rovira, Antonio; Rincón, E.

    2013-01-01

    This paper shows how the geometric design of heat recovery steam generators (HRSG) can be achieved. The method calculates the product of the overall heat transfer coefficient (U) by the area of the heat exchange surface (A) as a function of certain thermodynamic design parameters of the HRSG. A genetic algorithm is then applied to determine the best set of geometric parameters which comply with the desired UA product and, at the same time, result in a small heat exchange area and low pressure losses in the HRSG. In order to test this method, the design was applied to the HRSG of an existing plant and the results obtained were compared with the real exchange area of the steam generator. The findings show that the methodology is sound and offers reliable results even for complex HRSG designs. -- Highlights: ► The paper shows a methodology for the geometric design of heat recovery steam generators. ► Calculates product of the overall heat transfer coefficient by heat exchange area as a function of certain HRSG thermodynamic design parameters. ► It is a complement for the thermoeconomic optimization method. ► Genetic algorithms are used for solving the optimization problem

  19. Natural convection in a horizontal channel provided with heat generating blocks: Discussion of the isothermal blocks validity

    International Nuclear Information System (INIS)

    Mouhtadi, D.; Amahmid, A.; Hasnaoui, M.; Bennacer, R.

    2012-01-01

    Highlights: ► We examine the validity of isothermal model for blocks with internal heat generation. ► Criteria based on comparison of total and local quantities are adopted. ► Thermal conductivity and Biot number required for the validity of the isothermal model are dependent on the Rayleigh number. ► The validity conditions are also affected by the multiplicity of solutions. - Abstract: This work presents a numerical study of air natural convection in a horizontal channel provided with heating blocks periodically distributed on its lower adiabatic surface. The blocks are submitted to a uniform heat generation and the channel upper surface is maintained at a cold constant temperature. The main objective of this study is to examine the validity of the model with isothermal blocks for the system under consideration. Then the calculations are performed using two different models. In the first (denoted Model 1 or M1) the calculations are performed by imposing a uniform volumetric heat generation inside the blocks. In the second model (denoted Model 2 or M2), the blocks are maintained isothermal at the average blocks surface temperature deduced from the Model 1. The controlling parameters of the present problem are the thermal conductivity ratio of the solid block and the fluid (0.1 ⩽ k* = k s /k a ⩽ 200) and the Rayleigh number (10 4 ⩽ Ra ⩽ 10 7 ). The validity of the isothermal model is examined for various Ra by using criteria based on local and mean heat transfer characteristics. It is found that some solutions of the isothermal model do not reproduce correctly the results of the first model even for very large conductivity ratios. The Biot number below which the Model 2 is valid depends strongly on the Rayleigh number and the type of solution.

  20. Anomaly transform methods based on total energy and ocean heat content norms for generating ocean dynamic disturbances for ensemble climate forecasts

    Science.gov (United States)

    Romanova, Vanya; Hense, Andreas

    2017-08-01

    In our study we use the anomaly transform, a special case of ensemble transform method, in which a selected set of initial oceanic anomalies in space, time and variables are defined and orthogonalized. The resulting orthogonal perturbation patterns are designed such that they pick up typical balanced anomaly structures in space and time and between variables. The metric used to set up the eigen problem is taken either as the weighted total energy with its zonal, meridional kinetic and available potential energy terms having equal contributions, or the weighted ocean heat content in which a disturbance is applied only to the initial temperature fields. The choices of a reference state for defining the initial anomalies are such that either perturbations on seasonal timescales and or on interannual timescales are constructed. These project a-priori only the slow modes of the ocean physical processes, such that the disturbances grow mainly in the Western Boundary Currents, in the Antarctic Circumpolar Current and the El Nino Southern Oscillation regions. An additional set of initial conditions is designed to fit in a least square sense data from global ocean reanalysis. Applying the AT produced sets of disturbances to oceanic initial conditions initialized by observations of the MPIOM-ESM coupled model on T63L47/GR15 resolution, four ensemble and one hind-cast experiments were performed. The weighted total energy norm is used to monitor the amplitudes and rates of the fastest growing error modes. The results showed minor dependence of the instabilities or error growth on the selected metric but considerable change due to the magnitude of the scaling amplitudes of the perturbation patterns. In contrast to similar atmospheric applications, we find an energy conversion from kinetic to available potential energy, which suggests a different source of uncertainty generation in the ocean than in the atmosphere mainly associated with changes in the density field.

  1. Effect of constant and uniform heat generation on the thermal behaviour of porous solids with asymmetric boundary conditions

    International Nuclear Information System (INIS)

    Heggs, P.J.; Dare, J.

    2007-01-01

    The generation of heat due to chemical reaction will have a significant effect on the temperature profile and heat transfer within a porous body. Most forms of analysis only consider the symmetric situation or else make use of various assumptions that greatly simplify the analysis, for example: the Semenov or the Frak-kamenetskii models. The objective of this paper is to develop an improved understanding of the thermal behaviour of a porous body with uniform internal heat generation, which is in contact with two fluids at different temperatures and with different heat transfer coefficients. The mathematical representation is a one dimensional Poisson equation with asymmetric boundary conditions. The analytical solution reveals four regimes for heat flow: (a) purely conduction at zero heat generation, (b) a combination of heat flow by conduction through the body between the hot and cold fluids and all heat generated passing to the colder fluid, (c) no heat flow by conduction between the two fluids and all heat generated passing the cold flow - the so-called critical heat generation, and (d) the heat generated passes to both the cold and hot fluids and there is a maximum temperature within the body greater than that of the hot fluid, the so-called supercritical region. Expressions are developed to allow predictions of the conditions pertaining to each regime. This new representation covers the Semenov and Frank-Kamenetskii models and all possible solutions intermediate of the them. (authors)

  2. Heat Generation in Axial and Centrifugal Flow Left Ventricular Assist Devices.

    Science.gov (United States)

    Yost, Gardner; Joseph, Christine Rachel; Royston, Thomas; Tatooles, Antone; Bhat, Geetha

    Despite increasing use of left ventricular assist devices (LVADs) as a surgical treatment for advanced heart failure in an era of improved outcomes with LVAD support, the mechanical interactions between these pumps and the cardiovascular system are not completely understood. We utilized an in vitro mock circulatory loop to analyze the heat production incurred by operation of an axial flow and centrifugal flow LVAD. A HeartMate II and a HeartWare HVAD were connected to an abbreviated flow loop and were implanted in a viscoelastic gel. Temperature was measured at the surface of each LVAD. Device speed and fluid viscosity were altered and, in the HeartMate II, as artificial thrombi were attached to the inflow stator, impeller, and outflow stator. The surface temperatures of both LVADs increased in all trials and reached a plateau within 80 minutes of flow initiation. Rate of heat generation and maximum system temperature were greater when speed was increased, when viscosity was increased, and when artificial thrombi were attached to the HeartMate II impeller. Normal operation of these two widely utilized LVADs results in appreciable heat generation in vitro. Increased pump loading resulted in more rapid heat generation, which was particularly severe when a large thrombus was attached to the impeller of the HeartMate II. While heat accumulation in vivo is likely minimized by greater dissipation in the blood and soft tissues, focal temperature gains with the pump housing of these two devices during long-term operation may have negative hematological consequences.

  3. Next-generation heat pump systems in residential buildings and commercial premises; Naesta generations vaermepumpssystem i bostaeder och lokaler

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Lindahl, Markus; Alsbjer, Markus; Nordman, Roger; Rolfsman, Lennart; Axell, Monica

    2009-07-01

    Summarising, the following conclusions can be drawn from this work. - Installation of a heat pump system is a very efficient way of reducing a building's energy demand without making any greater changes to the building's climate screen, and can therefore assist Sweden's achievement of its energy efficiency improvement targets. - A new generation of cost-effective smaller heat pumps is needed for installation in new detached houses or those being renovated and upgraded. - There also seems to be an excellent market potential for heat pumps that are larger than has previously been common: there should be good prospects for selling them for use in apartment buildings and in commercial or similar premises. - Heat pump installations are particularly competitive in applications where there are simultaneous heating and cooling demands in the property, and also in those cases where heating is required for most of the year and cooling for some other part of the year. If these suggested system arrangements are to be fully realised, there will be a need for further research in certain cases. Particularly, there is a need for research and development of more efficient pumps, fans and speed-controlled compressors in order to get such products on to the market. Performance measurements and follow-up of real systems are needed in order to obtain a clear picture of the efficiency of both present-day and proposed systems. This knowledge is essential for further development of systems, not only for residential buildings but also, even more importantly, for commercial and similar premises. Actual heating and cooling requirements in different types of non-residential premises need to be known more accurately in order to decide how systems should be controlled in order to minimise total energy use. Much indicates that future detached houses will be more energy-efficient, which could have the undesirable result of greater use of direct electric heating, as the investment

  4. Radionuclide inventory and heat generation analysis in disposal of radioactive waste

    International Nuclear Information System (INIS)

    Suryanto

    1997-01-01

    Radionuclide inventory and heat generation analysis on spent nuclear fuel were done in order to study the potential radionuclides contributing radiological impact to human being caused by spent fuel disposal. The study was carried out using the Bateman equation of radionuclide decay chains for fission products and actinides. the results showed that Cs-137, Sr-90 and Pu-239 dominated inventory of spent fuel, in which Pu-238 and Pu-240 dominated heat generation during disposal. Accordingly, the above radionuclides could be considered as the reference radionuclides for safety analysis of spent nuclear fuel disposal (author)

  5. Structural steels for power generating equipment and heat and chemical heat treatments

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1979-01-01

    Development of structural steels for power generating equipment and for reactor engineering, in particular, is elucidated. Noted is utilization of the 15Kh2NMFA steels for the WWER-1000 reactor vessels, the 10GN2MFA steels for steam generators, pressurizers, vessels of the automatic emergency shut down and safety system; the 00Kh12N3DL steel for cast pump vessels and main locking bars. The recommendations on heat treatment of big forgings, for instance, ensuring the necessary complex of mechanical properties are given. Diffusion chromizing with subsequent nitriding of austenitic steels which increase durability of the components in BN reactors more than 4 times, is practised on a large scale

  6. Cost of electricity from small scale co-generation of electricity and heat

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, Bjoern

    2012-07-15

    There is an increasing interest in Sweden for using also small heat loads for cogeneration of electricity and heat. Increased use of small CHP-plants with heat supply capacities from a few 100 kW(h) up to 10 MW(h) cannot change the structure of the electricity supply system significantly, but could give an important contribution of 2 - 6 TWh(e) annually. The objective of this study was to clarify under what conditions electricity can be generated in small wood fired CHP-plants in Sweden at costs that can compete with those for plants using fossil fuels or nuclear energy. The capacity range studied was 2 - 10 MW(h). The results should facilitate decisions about the meaningfulness of considering CHP as an option when new heat supply systems for small communities or sawmills are planned. At the price for green certificates in Sweden, 250 - 300 SEK/MWh(e), generation costs in small wood fired CHP-plants should be below about 775 SEK/MWh(e) to compete with new nuclear power plants and below about 925 SEK/MWh(e) to compete with generation using fossil fuels.

  7. Thermodynamic optimization of ground heat exchangers with single U-tube by entropy generation minimization method

    International Nuclear Information System (INIS)

    Li Min; Lai, Alvin C.K.

    2013-01-01

    Highlights: ► A second-law-based analysis is performed for single U-tube ground heat exchangers. ► Two expressions for the optimal length and flow velocity are developed for GHEs. ► Empirical velocities of GHEs are large compared to thermodynamic optimum values. - Abstract: This paper investigates thermodynamic performance of borehole ground heat exchangers with a single U-tube by the entropy generation minimization method which requires information of heat transfer and fluid mechanics, in addition to thermodynamics analysis. This study first derives an expression for dimensionless entropy generation number, a function that consists of five dimensionless variables, including Reynolds number, dimensionless borehole length, scale factor of pressures, and two duty parameters of ground heat exchangers. The derivation combines a heat transfer model and a hydraulics model for borehole ground heat exchangers with the first law and the second law of thermodynamics. Next, the entropy generation number is minimized to produce two analytical expressions for the optimal length and the optimal flow velocity of ground heat exchangers. Then, this paper discusses and analyzes implications and applications of these optimization formulas with two case studies. An important finding from the case studies is that widely used empirical velocities of circulating fluid are too large to operate ground-coupled heat pump systems in a thermodynamic optimization way. This paper demonstrates that thermodynamic optimal parameters of ground heat exchangers can probably be determined by using the entropy generation minimization method.

  8. Thermoelectric cooling of microelectronic circuits and waste heat electrical power generation in a desktop personal computer

    International Nuclear Information System (INIS)

    Gould, C.A.; Shammas, N.Y.A.; Grainger, S.; Taylor, I.

    2011-01-01

    Thermoelectric cooling and micro-power generation from waste heat within a standard desktop computer has been demonstrated. A thermoelectric test system has been designed and constructed, with typical test results presented for thermoelectric cooling and micro-power generation when the computer is executing a number of different applications. A thermoelectric module, operating as a heat pump, can lower the operating temperature of the computer's microprocessor and graphics processor to temperatures below ambient conditions. A small amount of electrical power, typically in the micro-watt or milli-watt range, can be generated by a thermoelectric module attached to the outside of the computer's standard heat sink assembly, when a secondary heat sink is attached to the other side of the thermoelectric module. Maximum electrical power can be generated by the thermoelectric module when a water cooled heat sink is used as the secondary heat sink, as this produces the greatest temperature difference between both sides of the module.

  9. Power plant project success through total productive generation

    Energy Technology Data Exchange (ETDEWEB)

    Kaivola, R.; Tamminen, L.

    1996-11-01

    The Total Productive Generation concept (TPG) defines the lines of action adopted by IVO Generation Services Ltd (IGS) for the operation and maintenance of power plants. The TPG concept is based on procedures tested in practice. The main idea of TPG is continuous development of quality, which is a joint effort of the entire staff. Its objective is to benefit IGS`s own staff and, in particular, the company`s customers. (orig.)

  10. Steady-state heat transfer in an inverted U-tube steam generator

    International Nuclear Information System (INIS)

    Boucher, T.J.

    1986-01-01

    Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during steady-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K hot-leg fluid temperatures, 6.2 MPa secondary pressure). The MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations

  11. Calculation of wastage by small water leaks in sodium heated steam generators

    International Nuclear Information System (INIS)

    Tregonning, K.

    1976-01-01

    On the basis of mechanistic arguments it is suggested that the temperature of the wasting surface would provide a single physically meaningful parameter with which to correlate wastage data. A lumped parameter model is developed which predicts reaction temperature as a function of the major variables in the small water leak situation (Leak rate, tube spacing, sodium temperature). The calculated temperatures explain much of the observed behaviour of wastage rate with these variables and compare well with the limited temperature data available. Wastage rates are correlated with predicted temperature on a total activation energy basis. The results are encouraging and a first conservative method for the calculation of wastage by small water leaks in sodium-heated steam generators is produced

  12. Heat wave generates questions about Ontario's generation capacity

    International Nuclear Information System (INIS)

    Horne, D.

    2005-01-01

    Concerns regarding Ontario's power generation capacity were raised following a major blackout which occurred in August 2003. Power demand reached 26,170 MW during the weeks leading to the blackout, forcing the Independent Electricity System Operator (IESO) to ask residents to reduce electricity use during the day. The grid operator had also issued a forecast that Toronto could face rolling blackouts during times of heavy power demand. Ontario power consumption records were set in June and July of 2003 due to a heat wave, with hourly demand exceeding 25,000 MW on 53 occasions. Ontario was forced to import up to 3,400 MW (13 per cent of its power needs) from neighbouring provinces and the United States. During that period, the price of power had risen sharply to over 30 cents a kilowatt hour, although household consumers were still charged in the 5 to 10 cent range per kilowatt hour. However, it was noted that taxpayers will eventually bear the cost of importing power. The IESO noted that importing electricity is cheaper than the generation available in Ontario and that it is more economical to import, based on the market clearing price of all generators. In 2004, the IESO purchased 6 per cent of their electricity from the United States. That figure is expected to increase for 2005. Ontario generators produced 26.9 million MWh more in the summer of 2005 than during the same period in 2004 to meet electricity demand levels. It was noted that although importing power presently meets peak demand, the IESO agrees there is a need for new generation within Ontario. In addition to restarting Ontario's Pickering and Bruce nuclear facilities, more than 3,300 MW of new gas-fired generation is under construction or approved, and more than 9,000 MW are in various stages of approval. This paper discussed the effect of high energy costs on industry and Ontario's ability to meet future electricity demand in comparison to neighbouring jurisdictions. Issues regarding grid maintenance

  13. IAEA Technical Meeting on Innovative Heat Exchanger and Steam Generator Designs for Fast Reactors. Working Material

    International Nuclear Information System (INIS)

    2011-01-01

    The IAEA, within the framework of its Nuclear Energy Department’s Technical Working Group on Fast Reactors (TWG-FR), assists Member States activities in fast reactors technology development areas by providing an umbrella for information exchange [topical Technical Meetings (TMs), Workshops and large Conferences] and collaborative R&D [Coordinated Research Projects (CRPs)]. The Technical meeting on “Innovative Heat Exchanger and Steam Generator Designs for Fast Reactors” was held from 21 – 22 December 2011 in Vienna, addressing Member States’ expressed needs of information exchange in the field of advanced fast reactor design features, with particular attention to innovative heat exchangers and steam generators. The Objective of the TM is to provide a global forum for in-depth information exchange and discussion on the most advanced concepts of heat exchangers and steam generators for fast reactors. More specifically, the objectives are: · Review of the status of advanced fast reactor development activities with special emphasis on design and performance of heat exchangers and steam generators; · Discuss requirements for innovative heat exchangers and steam generators; · Present results of studies and conceptual designs for innovative heat exchangers and steam generators; · Provide recommendations for international collaboration under the IAEA aegis. The meeting agenda of the meeting is in Annex I

  14. Analysis of Decay Heat Removal by Natural Convection in LMR with a Combined Steam Generator

    International Nuclear Information System (INIS)

    Kim, Eui Kwang; Eoh, Jae Hyuk; Han, Ji Woong; Lee, Tae Ho

    2011-01-01

    Liquid metal reactors (LMRs) conventionally employ an intermediate heat transport system (IHTS) to protect the nuclear core during a sodium-water reaction (SWR) event. However these SWR-related components increase plant construction costs. In order to eliminate the need for an IHTS, a combined steam generator, which is an integrated heat exchanger of a steam generator and intermediate heat exchanger (IHX), was proposed by the Korea Atomic Energy Research Institute (KAERI). The objective of this work is to analyze the natural circulation heat removal capability of the rector system using a combined steam generator. As a means of decay heat removal, a normal heat transport path is composed of a primary sodium system, intermediate lead-bismuth circuit combined with SG and steam/water system. This paper presents the results of the possible temperature and natural circulation flows in all circuits during a steady state for a given reactor power level varied as a function of time

  15. From heat integration targets toward implementation – A TSA (total site analysis)-based design approach for heat recovery systems in industrial clusters

    International Nuclear Information System (INIS)

    Hackl, Roman; Harvey, Simon

    2015-01-01

    The European process industry is facing major challenges to decrease production costs. One strategy to achieve this is by increasing energy efficiency. Single chemical processes are often well-integrated and the tools to target and design such measures are well developed. Site-wide heat integration based on total site analysis tools can be used to identify opportunities to further increase energy efficiency. However, the methodology has to be developed further in order to enable identification of practical heat integration measures in a systematic way. Designing site-wide heat recovery systems across an industrial cluster is complex and involves aspects apart from thermal process and utility flows. This work presents a method for designing a roadmap of heat integration investments based on total site analysis. The method is applied to a chemical cluster in Sweden. The results of the case study show that application of the proposed method can achieve up to 42% of the previously targeted hot utility savings of 129 MW. A roadmap of heat integration systems is suggested, ranging from less complex systems that achieve a minor share of the heat recovery potential to sophisticated, strongly interdependent systems demanding large investments and a high level of collaboration. - Highlights: • Methodology focused on the practical implementation of site-wide heat recovery. • Algorithm to determine a roadmap of heat integration investments. • Case study: 42% hot utility savings potential at a pay-back period of 3.9y.

  16. Thermal effect of a thermoelectric generator on parallel microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    Thermoelectric generators (TEG) convert heat energy to electrical power by means of semiconductor charge carriers serving as working fluid. In this work, a TEG is applied to a parallel microchannel heat sink. The effect of the inlet plenum arrangement on the laminar flow distribution...... in the channels is considered at a wide range of the pressure drop along the heat sink. The particular focus of this study is geometrical effect of the TEG on the heat transfer characteristics in the micro-heat sink. The hydraulic diameter of the microchannels is 270 μm, and three heat fluxes are applied...... on the hot surface of the TEG. By considering the maximum temperature limitation for Bi_2 Te_3 material and using the microchannel heat sink for cooling down the TEG system, an optimum pumping power is achieved. The results are in a good agreement with the previous experimental and theoretical studies....

  17. Meeting residential space heating demand with wind-generated electricity

    International Nuclear Information System (INIS)

    Hughes, Larry

    2010-01-01

    Worldwide, many electricity suppliers are faced with the challenge of trying to integrate intermittent renewables, notably wind, into their energy mix to meet the needs of those services that require a continuous supply of electricity. Solutions to intermittency include the use of rapid-response backup generation and chemical or mechanical storage of electricity. Meanwhile, in many jurisdictions with lengthy heating seasons, finding secure and preferably environmentally benign supplies of energy for space heating is also becoming a significant challenge because of volatile energy markets. Most, if not all, electricity suppliers treat these twin challenges as separate issues: supply (integrating intermittent renewables) and demand (electric space heating). However, if space heating demand can be met from an intermittent supply of electricity, then both of these issues can be addressed simultaneously. One such approach is to use off-the-shelf electric thermal storage systems. This paper examines the potential of this approach by applying the output from a 5.15 MW wind farm to the residential heating demands of detached households in the Canadian province of Prince Edward Island. The paper shows that for the heating season considered, up to 500 households could have over 95 percent of their space heating demand met from the wind farm in question. The benefits as well as the limitations of the approach are discussed in detail. (author)

  18. Application of Carbon Nanotube Assemblies for Sound Generation and Heat Dissipation

    Science.gov (United States)

    Kozlov, Mikhail; Haines, Carter; Oh, Jiyoung; Lima, Marcio; Fang, Shaoli

    2011-03-01

    Nanotech approaches were explored for the efficient transformation of an electrical signal into sound, heat, cooling action, and mechanical strain. The studies are based on the aligned arrays of multi-walled carbon nanotubes (MWNT forests) that can be grown on various substrates using a conventional CVD technique. They form a three-dimensional conductive network that possesses uncommon electrical, thermal, acoustic and mechanical properties. When heated with an alternating current or a near-IR laser modulated in 0.01--20 kHz range, the nanotube forests produce loud, audible sound. High generated sound pressure and broad frequency response (beyond 20 kHz) show that the forests act as efficient thermo-acoustic (TA) transducers. They can generate intense third and fourth TA harmonics that reveal peculiar interference-like patterns from ac-dc voltage scans. A strong dependence of the patterns on forest height can be used for characterization of carbon nanotube assemblies and for evaluation of properties of thermal interfaces. Because of good coupling with surrounding air, the forests provide excellent dissipation of heat produced by IC chips. Thermoacoustic converters based on forests can be used for thermo- and photo-acoustic sound generation, amplification and noise cancellation.

  19. Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling and general nonlinear systems

    Science.gov (United States)

    Li, Huanan

    2013-03-01

    Based on a two-time observation protocol, we consider heat transfer in a given time interval tM in a lead-junction-lead system taking coupling between the leads into account. In view of the two-time observation, consistency conditions are carefully verified in our specific family of quantum histories. Furthermore, its implication is briefly explored. Then using the nonequilibrium Green's function method, we obtain an exact formula for the cumulant generating function for heat transfer between the two leads, valid in both transient and steady-state regimes. Also, a compact formula for the cumulant generating function in the long-time limit is derived, for which the Gallavotti-Cohen fluctuation symmetry is explicitly verified. In addition, we briefly discuss Di Ventra's repartitioning trick regarding whether the repartitioning procedure of the total Hamiltonian affects the nonequilibrium steady-state current fluctuation. All kinds of properties of nonequilibrium current fluctuations, such as the fluctuation theorem in different time regimes, could be readily given according to these exact formulas. Finally a practical formalism dealing with cumulants of heat transfer across general nonlinear quantum systems is established based on field theoretical/algebraic method.

  20. Design and optimization of geothermal power generation, heating, and cooling

    Science.gov (United States)

    Kanoglu, Mehmet

    Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the

  1. Anisotropic frictional heating and defect generation in cyclotrimethylene-trinitramine molecular crystals

    Science.gov (United States)

    Rajak, Pankaj; Mishra, Ankit; Sheng, Chunyang; Tiwari, Subodh; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2018-05-01

    Anisotropic frictional response and corresponding heating in cyclotrimethylene-trinitramine molecular crystals are studied using molecular dynamics simulations. The nature of damage and temperature rise due to frictional forces is monitored along different sliding directions on the primary slip plane, (010), and on non-slip planes, (100) and (001). Correlations between the friction coefficient, deformation, and frictional heating are established. We find that the friction coefficients on slip planes are smaller than those on non-slip planes. In response to sliding on a slip plane, the crystal deforms easily via dislocation generation and shows less heating. On non-slip planes, due to the inability of the crystal to deform via dislocation generation, a large damage zone is formed just below the contact area, accompanied by the change in the molecular ring conformation from chair to boat/half-boat. This in turn leads to a large temperature rise below the contact area.

  2. Numerical investigation of heat pipe-based photovoltaic–thermoelectric generator (HP-PV/TEG) hybrid system

    International Nuclear Information System (INIS)

    Makki, Adham; Omer, Siddig; Su, Yuehong; Sabir, Hisham

    2016-01-01

    Highlights: • Integration of TE generators with a heat pipe-based PV module as a hybrid system is proposed. • Numerical transient modeling based on the energy balance equations of the system was performed. • Integration of TE generators with PV module aid operating the solar cells at a steady level in harsh conditions. - Abstract: Photovoltaic (PV) cells are able to absorb about 80% of the solar spectral irradiance, however, certain percentage accounts for electricity conversion depending on the cell technology employed. The remainder energy however, can elevate the silicon junction temperature in the PV encapsulation perilously, resulting in deteriorated performance. Temperature rise at the PV cell level is addressed as one of the most critical issues that can seriously degrade and shortens the life-time of the PV cells, hence thermal management of the PV module during operation is considered essential. Hybrid PV designs which are able to simultaneously generate electrical energy and utilize the waste heat have been proven to be the most promising solution. In this study, theoretical investigation of a hybrid system comprising of thermoelectric generator integration with a heat pipe-based Photovoltaic/Thermal (PV/T) absorber is proposed and evaluated. The system presented incorporates a PV panel for direct electricity generation, a heat pipe for excessive heat absorption from the PV cells and a thermoelectric generator (TEG) performing direct heat-to-electricity conversion. A mathematical model based on the energy balance within the system is developed to evaluate the performance of the hybrid integration and the improvements associated with the thermal management of PV cells. Results are presented in terms of the overall system efficiency compared to a conventional PV panel under identical operating conditions. The integration of TEG modules with PV cells in such way aid improving the performance of the PV cells in addition to utilizing the waste-heat

  3. Modeling of heat transfer in a horizontal heat-generating layer by an effective diffusivity approach

    International Nuclear Information System (INIS)

    Cheung, F.B.; Shiah, S.W.

    1994-01-01

    The concept of effective diffusivity is employed to model various processes of heat transfer in a volumetrically heated fluid layer subjected to different initial and boundary conditions. The approach, which involves the solution of only heat diffusion equations, is found to give rather accurate predictions of the transient response of an initially stagnant fluid layer to a step input of power as well as the developing and decaying nature of the flow following a step change in the internal Rayleigh number from one state of steady convection to another. The approach is also found to be applicable to various flow regions of a heat-generating fluid layer, and is not limited to the case in which the entire layer is in turbulent motion. The simplicity and accuracy of the method are clearly illustrated in the analysis. Validity of the effective diffusivity approach is demonstrated by comparing the predicted results with corresponding experimental data

  4. Analysis and modeling of localized heat generation by tumor-targeted nanoparticles (Monte Carlo methods)

    Science.gov (United States)

    Sanattalab, Ehsan; SalmanOgli, Ahmad; Piskin, Erhan

    2016-04-01

    We investigated the tumor-targeted nanoparticles that influence heat generation. We suppose that all nanoparticles are fully functionalized and can find the target using active targeting methods. Unlike the commonly used methods, such as chemotherapy and radiotherapy, the treatment procedure proposed in this study is purely noninvasive, which is considered to be a significant merit. It is found that the localized heat generation due to targeted nanoparticles is significantly higher than other areas. By engineering the optical properties of nanoparticles, including scattering, absorption coefficients, and asymmetry factor (cosine scattering angle), the heat generated in the tumor's area reaches to such critical state that can burn the targeted tumor. The amount of heat generated by inserting smart agents, due to the surface Plasmon resonance, will be remarkably high. The light-matter interactions and trajectory of incident photon upon targeted tissues are simulated by MIE theory and Monte Carlo method, respectively. Monte Carlo method is a statistical one by which we can accurately probe the photon trajectories into a simulation area.

  5. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    International Nuclear Information System (INIS)

    Mani, S.; Sokhansanj, S.; Tagore, S.; Turhollow, A.F.

    2010-01-01

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam 3 ). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  6. Heat priming induces trans-generational tolerance to high temperature stress in wheat

    Directory of Open Access Journals (Sweden)

    Xiao eWang

    2016-04-01

    Full Text Available Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH, the progeny of heat-primed plants (PH possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1 which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.

  7. Dense strongly non-ideal plasma generation by laser isobaric heating

    International Nuclear Information System (INIS)

    Kulik, P.P.; Rozanov, E.K.; Riabii, V.A.; Titov, M.A.

    1975-01-01

    A method of generation of a dense strongly non-ideal plasma by slow isobaric heating of a small target in a high inert gas medium is discussed. The characteristic life-time of dense plasma is 10 -3 sec. Estimations show that such a plasma is homogeneous. Conditions are found for temperature uniformity. The experimental results of the isobaric heating of a thin potassium foil target by a ruby laser beam at 500 atm are described. (Auth.)

  8. Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat.

    Science.gov (United States)

    Shaulsky, Evyatar; Boo, Chanhee; Lin, Shihong; Elimelech, Menachem

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl-methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl-water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher OHE energy efficiency with the LiCl-methanol draw solution compared to that with the LiCl-water draw solution under practical operating conditions (i.e., heat recovery<90%). We discuss the implications of the results for converting low-grade heat to power.

  9. Membrane-Based Osmotic Heat Engine with Organic Solvent for Enhanced Power Generation from Low-Grade Heat

    Energy Technology Data Exchange (ETDEWEB)

    Shaulsky, E; Boo, C; Lin, SH; Elimelech, M

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher ORE energy efficiency with the LiCl methanol draw solution compared to that with the LiCl water draw solution under practical operating conditions (i.e., heat recovery <90%). We discuss the implications of the results for converting low-grade heat to power.

  10. Experimental observation of current generation by asymmetrical heating of ions in a tokamak plasma

    International Nuclear Information System (INIS)

    Gahl, J.; Ishihara, O.; Wong, K.L.; Kristiansen, M.; Hagler, M.

    1986-01-01

    The first experimental observation of current generation by asymmetrical heating of ions is reported. Ions were asymmetrically heated by a unidirectional fast Alfven wave launched by a slow wave antenna inside a tokamak. Current generation was detected by measuring the asymmetry of the toroidal plasma current with probes at the top and bottom of the toroidal plasma column

  11. Non-parametric method for separating domestic hot water heating spikes and space heating

    DEFF Research Database (Denmark)

    Bacher, Peder; de Saint-Aubain, Philip Anton; Christiansen, Lasse Engbo

    2016-01-01

    In this paper a method for separating spikes from a noisy data series, where the data change and evolve over time, is presented. The method is applied on measurements of the total heat load for a single family house. It relies on the fact that the domestic hot water heating is a process generating...

  12. Development of a High-Performance Fin-and-Tube Heat Exchanger with Vortex Generators for a Vending Machine

    Science.gov (United States)

    Iwasaki, Masamichi; Saito, Hiroshi; Mochizuki, Sadanari; Murata, Akira

    The effect of delta-wing-vortex generators (combination of a delta wing and a delta winglet pair) on the heat transfer performance of fin-and-tube heat exchangers for vending machines has been investegated. Flow visualizations, numerical simulations and heat transfer experiments were conducted to find an optimum geometrical shape and arrangement of the vortex generators. Maximum heat transfer enhancement was achieved by the combination of (a) the delta wing with the apex angle of 86 degrees and (b) the delta winglet pair with the inline angle of 45 degrees. In relatively low Reynolds number range, about 40 % increase in heat transfer coefficient was attained with the above mentioned combination of the vortex generators compared to the ordinary heat exchangers with plain fins. It was revealed that the heat transfer enhancement was attributed to (1) the longitudinal vortexes generated by the delta wing and (2) the reduction of wake area behind the tube. It was also found that an increase in the apex angle of the delta wing brought about heat transfer enhancement, and the scale as well as the streggth of the induced longitudinal vortices played an important role in the heat transfer performance.

  13. High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery

    International Nuclear Information System (INIS)

    Zhang, Yanliang; Cleary, Martin; Wang, Xiaowei; Kempf, Nicholas; Schoensee, Luke; Yang, Jian; Joshi, Giri; Meda, Lakshmikanth

    2015-01-01

    Highlights: • A thermoelectric generator (TEG) is fabricated using nanostructured half-Heusler materials. • The TE unicouple devices produce superior power density above 5 W/cm"2. • A TEG system with over 1 kW power output is demonstrated by recovering automotive waste heat. - Abstract: Given increasing energy use as well as decreasing fossil fuel sources worldwide, it is no surprise that interest in promoting energy efficiency through waste heat recovery is also increasing. Thermoelectric generators (TEGs) are one of the most promising pathways for waste heat recovery. Despite recent thermoelectric efficiency improvement in nanostructured materials, a variety of challenges have nevertheless resulted in few demonstrations of these materials for large-scale waste heat recovery. Here we demonstrate a high-performance TEG by combining high-efficiency nanostructured bulk materials with a novel direct metal brazing process to increase the device operating temperature. A unicouple device generates a high power density of 5.26 W cm"−"2 with a 500 °C temperature difference between hot and cold sides. A 1 kW TEG system is experimentally demonstrated by recovering the exhaust waste heat from an automotive diesel engine. The TEG system operated with a 2.1% heat-to-electricity efficiency under the average temperature difference of 339 °C between the TEG hot- and cold-side surfaces at a 550 °C exhaust temperature. The high-performance TEG reported here open up opportunities to use TEGs for energy harvesting and power generation applications.

  14. Specification of steam generator, condenser and regenerative heat exchanger materials for nuclear applications

    International Nuclear Information System (INIS)

    Jovasevic, J.V.; Stefanovic, V.M.; Spasic, Z.LJ.

    1977-01-01

    The basic standards specifications of materials for nuclear applications are selected. Seamless Ni-Cr-Fe alloy Tubes (Inconel-600) for steam generators, condensers and other heat exchangers can be employed instead of austenitic stainless steal or copper alloys tubes; supplementary requirements for these materials are given. Specifications of Ni-Cr-Fe alloy plate, sheet and strip for steam generator lower sub-assembly, U-bend seamless copper-alloy tubes for heat exchanger and condensers are also presented. At the end, steam generator channel head material is proposed in the specification for carbon-steel castings suitable for welding

  15. Temperature condition in decreasing heat transfer zone for NPP steam generators

    International Nuclear Information System (INIS)

    Kudryavtsev, I.S.; Paskar', B.L.; Sudakov, A.V.

    1985-01-01

    An experimental set-up is described and the results of temperature pulsation investigation are presented for coil steam generating channel surfaces of the NPP helium and sodium cooled HTGR. The investigations are carried out at the heat flux density of 350-900 kW/m 3 , the mass rate of 350-2000 kg/(m 2 Xs), the pressUre of 15 MPa. Temperature pulsations occur due to instability of heat transfer in the near-wall region. The results show that the critical region of burnout has a local character. Pulsation dependences on operating conditions are given. The required resource for the steam generating channel may be provided by chosing the ratio of heat flux to the mass rate, the ratio being equal to 0.5 kJ/kg for the channel with the internal diameter of 19 mm, made of the 12Kh2M steel, the wall thickness of 3 mm. In this case the maximum span of temperature pulsations doesn't exceed 25-30 K

  16. Co-optimized design of microchannel heat exchangers and thermoelectric generators

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Yazawa, K.; Rosendahl, Lasse

    2013-01-01

    Designs of heat exchangers have mostly been disconnected to the performance of thermoelectric generator (TEG) systems. The development work, mostly focused on thermoelectric materials, required a significant amount of engineering parametric analysis. In this work, a micro plate-fin heat exchanger...... applied to a TEG is investigated and optimized to maximize the output power and the cost performance of generic TEG systems. The cost per performance is counted by a measure of price per power output ($/W). The channel width, channel height, fin thickness of heat exchanger, and fill factor of TEG...... are theoretically optimized for a wide range of pumping power. In conjunction with effective numeric tests, the model discusses the optimum size of the system components’ dimensions at two area sizes of the substrate plate of heat exchanger. Results show that at every pumping power, there are particular values...

  17. Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery

    Science.gov (United States)

    Bandhauer, Todd M.; Garimella, Srinivas; Fuller, Thomas F.

    2014-02-01

    Lithium-ion batteries suffer from inherent thermal limitations (i.e., capacity fade and thermal runaway); thus, it is critical to understand heat generation experienced in the batteries under normal operation. In the current study, reversible and irreversible electrochemical heat generation rates were measured experimentally on a small commercially available C/LiFePO4 lithium-ion battery designed for high-rate applications. The battery was tested over a wide range of temperatures (10-60 °C) and discharge and charge rates (∼C/4-5C) to elucidate their effects. Two samples were tested in a specially designed wind tunnel to maintain constant battery surface temperature within a maximum variation of ±0.88 °C. A data normalization technique was employed to account for the observed capacity fade, which was largest at the highest rates. The heat rate was shown to increase with both increasing rate and decreasing temperature, and the reversible heat rate was shown to be significant even at the highest rate and temperature (7.4% at 5C and 55 °C). Results from cycling the battery using a dynamic power profile also showed that constant-current data predict the dynamic performance data well. In addition, the reversible heat rate in the dynamic simulation was shown to be significant, especially for charge-depleting HEV applications.

  18. Heat transfer characteristics and entropy generation for wing-shaped-tubes with longitudinal external fins in cross-flow

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sayed Ahmed E. Sayed; Mesalhy, Osama M.; Abdelatief, Mohamed A. [Zagazig University, Zagazig (Egypt)

    2016-06-15

    A numerical study is conducted to clarify heat transfer characteristics, effectiveness and entropy generation for a bundle of wingshaped-tubes attached to Longitudinal fins (LF) at downstream side. The air-side Re{sub a} ranged from 1.8 x 10{sup 3} to 9.7 x 10{sup 3} . The fin height (h{sub f}) and fin thickness (δ) have been changed as: (2 mm <= hf <= 12 mm) and (1.5 mm <= δ <= 3.5 mm). The analysis of entropy generation is based on the principle of minimizing the rate of total entropy generation that includes the generation of entropy due to heat transfer and friction losses. The temperature field around the wing-shaped-tubes with (LF) is predicted using commercial CFD FLUENT 6.3.26 software package. Correlations of Nu{sub a}, St{sub a}, and Bejan number (Be), as well as the irreversibility distribution ratio (Φ) in terms of Re{sub a} and design parameters for the studied bundle are presented. Results indicated that, installing fins with heights from 2 to 12 mm results in an increase in Nu{sub a} from 11 to 36% comparing with that of wing-shaped tubes without fins (NOF). The highest and lowest values of effectiveness(ε) at every value of the considered Re{sub a} range are occurred at hf = 6 mm and (NOF), espectively. The wing-shaped-tubes heat exchanger with hf = 6 mm has the highest values of (ε), efficiency index (η) and area goodness factor (G{sub a}) and also the lowest values of Φ and hence the best performance comparing with other arrangements. The minimum values of Φ are occurred at hf = 6 mm. (Be) decreases with increasing Re{sub a} for all studied hf. The heat transfer irreversibility predominates for (1800 <= Re{sub a} <= 4200) while the opposite is true for (6950 < Re{sub a} <= 9700). δ has negligible effect on Nu{sub a} and heat transfer irreversibility. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

  19. Entropy generation in natural convection in a symmetrically and uniformly heated vertical channel

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, Assunta [Dipartimento di Energetica, Termofluidodinamica applicata e Condizionamenti ambientali, Universita degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Auletta, Antonio [CIRA - Centro Italiano Ricerche Aerospaziali, Via Maiorise 1, 81043 Capua (CE) (Italy); Manca, Oronzio [Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Universita degli Studi di Napoli, Real Casa dell' Annunziata, Via Roma 29, 81031 Aversa (CE) (Italy)

    2006-08-15

    In this study numerical predictions of local and global entropy generation rates in natural convection in air in a vertical channel symmetrically heated at uniform heat flux are reported. Results of entropy generation analysis are obtained by solving the entropy generation equation based on the velocity and temperature data. The analyzed regime is two-dimensional, laminar and steady state. The numerical procedure expands an existing computer code on natural convection in vertical channels. Results in terms of fields and profiles of local entropy generation, for various Rayleigh number, Ra, and aspect ratio values, L/b, are given. The distributions of local values show different behaviours for the different Ra values. A correlation between global entropy generation rates, Rayleigh number and aspect ratio is proposed in the ranges 10{sup 3}=

  20. Increased Heat Generation in Postcardiac Arrest Patients During Targeted Temperature Management Is Associated With Better Outcomes.

    Science.gov (United States)

    Uber, Amy J; Perman, Sarah M; Cocchi, Michael N; Patel, Parth V; Ganley, Sarah E; Portmann, Jocelyn M; Donnino, Michael W; Grossestreuer, Anne V

    2018-04-03

    Assess if amount of heat generated by postcardiac arrest patients to reach target temperature (Ttarget) during targeted temperature management is associated with outcomes by serving as a proxy for thermoregulatory ability, and whether it modifies the relationship between time to Ttarget and outcomes. Retrospective cohort study. Urban tertiary-care hospital. Successfully resuscitated targeted temperature management-treated adult postarrest patients between 2008 and 2015 with serial temperature data and Ttarget less than or equal to 34°C. None. Time to Ttarget was defined as time from targeted temperature management initiation to first recorded patient temperature less than or equal to 34°C. Patient heat generation ("heat units") was calculated as inverse of average water temperature × hours between initiation and Ttarget × 100. Primary outcome was neurologic status measured by Cerebral Performance Category score; secondary outcome was survival, both at hospital discharge. Univariate analyses were performed using Wilcoxon rank-sum tests; multivariate analyses used logistic regression. Of 203 patients included, those with Cerebral Performance Category score 3-5 generated less heat before reaching Ttarget (median, 8.1 heat units [interquartile range, 3.6-21.6 heat units] vs median, 20.0 heat units [interquartile range, 9.0-33.5 heat units]; p = 0.001) and reached Ttarget quicker (median, 2.3 hr [interquartile range, 1.5-4.0 hr] vs median, 3.6 hr [interquartile range, 2.0-5.0 hr]; p = 0.01) than patients with Cerebral Performance Category score 1-2. Nonsurvivors generated less heat than survivors (median, 8.1 heat units [interquartile range, 3.6-20.8 heat units] vs median, 19.0 heat units [interquartile range, 6.5-33.5 heat units]; p = 0.001) and reached Ttarget quicker (median, 2.2 hr [interquartile range, 1.5-3.8 hr] vs median, 3.6 hr [interquartile range, 2.0-5.0 hr]; p = 0.01). Controlling for average water temperature between initiation and Ttarget, the

  1. Analysis and Modeling of Heat Generation in Overcharged Li-Ion Battery with Passive Cooling

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2013-01-01

    This paper presents a dynamic model for simulating the heat generation in Lithium batteries and an investigation of the heat transfer as well as the capacity of Phase Change Materials (PCM’s) to store energy inside a battery cell module when the battery is overcharged. The study is performed......-cooled and passively cooled using a PCM, respectively. As expected, the results show that for high currents, the heat generation and implicitly the temperature increases. However, using a PCM the temperature increase is found to be limited allowing the battery to be overcharged to a certain degree. It is found...

  2. Design option of heat exchanger for the next generation nuclear plant - HTR2008-58175

    International Nuclear Information System (INIS)

    Oh, C. H.; Kim, E. S.

    2008-01-01

    The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTR) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale, producing a few hundred megawatts of power in the form of electricity and hydrogen. The power conversion unit (PCU) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTRs to provide higher efficiencies than can be achieved with the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. As part of the system integration of the VHTRs and the hydrogen production plant, the intermediate heat exchanger is used to transfer the process heat from VHTRs to the hydrogen plant. Therefore, the design and configuration of the intermediate heat exchanger is very important. This paper will include analysis of one stage versus two stage heat exchanger design configurations and simple stress analyses of a printed circuit heat exchanger (PCHE), helical coil heat exchanger, and shell/tube heat exchanger. (authors)

  3. Themoeconomic optimization of triple pressure heat recovery steam generator operating parameters for combined cycle plants

    Directory of Open Access Journals (Sweden)

    Mohammd Mohammed S.

    2015-01-01

    Full Text Available The aim of this work is to develop a method for optimization of operating parameters of a triple pressure heat recovery steam generator. Two types of optimization: (a thermodynamic and (b thermoeconomic were preformed. The purpose of the thermodynamic optimization is to maximize the efficiency of the plant. The selected objective for this purpose is minimization of the exergy destruction in the heat recovery steam generator (HRSG. The purpose of the thermoeconomic optimization is to decrease the production cost of electricity. Here, the total annual cost of HRSG, defined as a sum of annual values of the capital costs and the cost of the exergy destruction, is selected as the objective function. The optimal values of the most influencing variables are obtained by minimizing the objective function while satisfying a group of constraints. The optimization algorithm is developed and tested on a case of CCGT plant with complex configuration. Six operating parameters were subject of optimization: pressures and pinch point temperatures of every three (high, intermediate and low pressure steam stream in the HRSG. The influence of these variables on the objective function and production cost are investigated in detail. The differences between results of thermodynamic and the thermoeconomic optimization are discussed.

  4. The thermoelectric generators use for waste heat utilization from cement plant

    Directory of Open Access Journals (Sweden)

    Sztekler Karol

    2017-01-01

    Production often entails the formation of by-product which is waste heat. One of the equipment processing heat into electricity is a thermoelectric generator. Its operation is based on the principle of thermoelectric phenomenon, which is known as a Seebeck phenomenon. The simplicity of thermoelectric phenomena allows its use in various industries, in which the main waste product is in the form of heat with the temperature of several hundred degrees. The study analyses the possibility of the thermoelectric systems use for the waste heat utilization resulting in the cement production at the cement plant. The location and design of the thermoelectric system that could be implemented in cement plant is chosen. The analysis has been prepared in the IPSEpro software.

  5. Racetrack coil instability resulting from friction-heat generation at fixtures

    International Nuclear Information System (INIS)

    Yazawa, T.; Urata, M.; Chandratilleke, G.R.; Maeda, H.

    1993-01-01

    This paper describes racetrack coil instability resulting from friction-heat generation at fixtures and a preventive measure against it using a thermal barrier. Epoxy impregnated racetrack coils sometimes experience premature quenches due to frictional heat produced by coil slides at fixtures that are essential for the coil straight part to withstand the electromagnetic force. Experimentally, we confirmed for a small-sized racetrack coil that coil slides were actually occurring. The coil movements coupled with acoustic emissions were observed several times when the coil was energized. Each of them was about 10 μm, an equivalent of 20 mJ in frictional heat. This frictional heat was almost comparable with the analytical and experimental coil stability margins when an insulation layer was thin. One of the effective measures against the frictional heat is the thermal barrier, which is a thick insulation layer at the interface between the coil and the fixtures. By thickening the insulation layer from 0.36 to 1.00 mm, the coil stability margin increased from 100 to 200 mJ. (orig.)

  6. Inquiry on the valorisation of heat produced by methanization with co-generation in France. Energy and territory: Valorisation of heat produced by methanization

    International Nuclear Information System (INIS)

    Bazin, Florian; David, Laura; Heuraux, Thalie; Jeziorny, Thibaud; Massazza, Michael; Mosse, Noemie; Nguyen Dai, Kim Yen; Pruvost, Paul; Regimbart, Amelie; Rogee, Pierre-Emmanuel; Roy, Samuel; Segret, Emilien

    2014-01-01

    A leaflet first proposes graphs which illustrate the valorisation of heat produced by methanization with co-generation in France: material and methods, farm characterisation, plant sources, valorisation modes. The second document proposes detailed and discussed presentations of the various involved processes. Contributions address methanization as a whole, valorisation of heat produced by co-generation through heating of agricultural and domestic buildings or through digestate dehydration, digestate hygienisation, and other types of valorisation such as fodder drying, cereal drying, wood drying, compost drying, fabrication of rape seed, greenhouse crops, cultures of micro algae, and mushroom farming

  7. Finite element calculation of stress induced heating of superconductors

    International Nuclear Information System (INIS)

    Akin, J.E.; Moazed, A.

    1976-01-01

    This research is concerned with the calculation of the amount of heat generated due to the development of mechanical stresses in superconducting composites. An emperical equation is used to define the amount of stress-induced heat generation per unit volume. The equation relates the maximum applied stress and the experimental measured hysteresis loop of the composite stress-strain diagram. It is utilized in a finite element program to calculate the total stress-induced heat generation for the superconductor. An example analysis of a solenoid indicates that the stress-induced heating can be of the same order of magnitude as eddy current effects

  8. Combined generation of heat and power in central heating systems. Design rules for fitting in; Warmte/kracht in cv-systemen. Ontwerpregels voor inpassing

    Energy Technology Data Exchange (ETDEWEB)

    Wammes, J.A. [Emicon, Veenendaal (Netherlands); Tijs, J.C. [Tijs Energy Systems, Wijk bij Duurstede (Netherlands); Rulkens, L.J.W. [FD-Bouwzaken/LNV, Wageningen (Netherlands)

    1997-03-01

    Carefully thought-out integration, a technical and financial feasibility analysis and telemetry are the key concepts in the successful incorporation of total energy (combined heat and power) units into new or existing heating systems. Based on extensive experience with total energy plants, a number of consultants, engineers and suppliers operating in this broad field, on the initiative of the Central Netherlands Gas Company (Gasbedrijf Centraal Nederland) in Utrecht and the Gasunie energy company in Groningen, both in the Netherlands have published a manual entitled `Design rules for incorporating total energy units into central heating systems`. 2 figs., 3 ills., 5 refs. 3 figs., 4 ills., 1 tab.

  9. Heat flow, heat generation and crustal thermal structure of the northern block of the South Indian Craton

    Science.gov (United States)

    Gupta, Mohan L.; Sharma, S. R.; Sundar, A.

    Heat flow values and heat generation data calculated from the concentration of heat producing radioactive elements, U, Th and K in surface rocks were analyzed. The South Indian Craton according to Drury et al., can be divided into various blocks, separated by late Proterozoic shear belts. The northern block comprises Eastern and Western Dharwar Cratons of Rogers (1986), Naqvi and Rogers (1987) and a part of the South Indian granulite terrain up to a shear system occupying the Palghat-Cauvery low lands. The geothermal data analysis clearly demonstrates that the present thermal characteristics of the above two Archaean terrains of the Indian and Australian Shields are quite similar. Their crustal thermal structures are likely to be similar also.

  10. Heat flow, heat generation and crustal thermal structure of the northern block of the South Indian Craton

    Science.gov (United States)

    Gupta, Mohan L.; Sharma, S. R.; Sundar, A.

    1988-01-01

    Heat flow values and heat generation data calculated from the concentration of heat producing radioactive elements, U, Th and K in surface rocks were analyzed. The South Indian Craton according to Drury et al., can be divided into various blocks, separated by late Proterozoic shear belts. The northern block comprises Eastern and Western Dharwar Cratons of Rogers (1986), Naqvi and Rogers (1987) and a part of the South Indian granulite terrain up to a shear system occupying the Palghat-Cauvery low lands. The geothermal data analysis clearly demonstrates that the present thermal characteristics of the above two Archaean terrains of the Indian and Australian Shields are quite similar. Their crustal thermal structures are likely to be similar also.

  11. Entropy generation in turbulent mixed convection heat transfer to highly variable property pipe flow of supercritical fluids

    International Nuclear Information System (INIS)

    Mohseni, Mahdi; Bazargan, Majid

    2014-01-01

    Highlights: • The entropy generation in supercritical fluid flows has been numerically investigated. • The mechanisms of entropy generation are different near and away from the walls. • In the near wall region, the energy dissipation is the deciding parameter. • Away from the wall, the heat transfer is the effective factor in entropy generation. • The bulk Be number is greater in the liquid-like region than in vapor-like region. - Abstract: In this study, a two dimensional CFD code has been developed to investigate entropy generation in turbulent mixed convection heat transfer flow of supercritical fluids. Since the fluid properties vary significantly under supercritical conditions, the changes of entropy generation are large. The contribution of each of the mechanisms of entropy production (heat transfer and energy dissipation) is compared in different regions of the flow. The results show that the mechanisms of entropy generation act differently in the near wall region within the viscous sub-layer and in the region away from the wall. The effects of the wall heat flux on the entropy generation are also investigated

  12. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Directory of Open Access Journals (Sweden)

    Porta A.

    2016-01-01

    Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  13. A heat transfer study for vertical straight-tube steam generators heated by liquid metal

    International Nuclear Information System (INIS)

    Valette, M.

    1984-04-01

    A single-tube mockup of a vertical straight-tube steam generator heated by sodium-potassium alloy NaK was submitted to thermal and hydraulic testing in conditions representative of fast breeder reactor operation. The mockup consisted of a 10mm I.D. ferritic steel heat exchange tube centered inside a cylindrical stainless steel shell. The complete assembly was 20.9 meters long. Water flowed upward inside the exchange tube, and NaK flowed downward in the annular gap between the tube and the shell. The steam outlet pressure ranged from 90 to 195 bars, while the liquid metal temperature at the mockup inlet was between 480 and 580 0 C. The water flowrate in the tube ranged from 153 to 2460 kg.m -2 .s -1 . During the tests the fluid inlet and outlet temperatures, flowrate and pressures were measured, as was the NaK temperature profile over the full length of the device. The test results were subsequently compared with heat exchange and pressure drop values calculated using the standard formulas for straight-tube heat exchangers. The heat exchange coefficients predicted by these correlations in the boiling zone were found to be largely overestimated, while the calculated pressure drop values proved satisfactory. A set of modified correlations is proposed to account for the observed phenomena, and for use in designing commercial units, provided the sodium flow in the tube bundle is adequately distributed

  14. Prediction of heat generation in rubber or rubber-metal springs

    Directory of Open Access Journals (Sweden)

    Banić Milan S.

    2012-01-01

    Full Text Available The temperature of rubber or rubber-metal springs increases under cyclic loading, due to hysteresis losses and low rubber thermal conductivity. Hysteresis losses correspond to energy dissipation from the rubber, which is primarily converted into heat. This well-known phenomenon, called heat build-up, is the primary reason for rubber aging. Increase in temperature within the rubber compound leads to degradation of its physical and chemical properties, increase in stiffness and loss of damping capability. This paper presents a novel procedure of heat generation prediction in rubber or rubber-metal springs. The procedure encompasses the prediction of hysteresis loss, i. e. dissipated energy within the rubber, by finite element analysis and application of a modern visco-plastic rubber constitutive model. The obtained dissipated energy was used as an input for transient thermal analysis. Verification of the proposed procedure was performed by comparison of simulation results with experimentally obtained data during the dynamic loading of the rubber specimen. The proposed procedure is highly computationally efficient and it enables time integration, which can be problematic in coupled mechanical thermal analysis. [Projekat Ministarstva nauke Republike Srbije, br. TR35005: Research and Development of New Generation of Wind Turbines of High Energy Efficiency

  15. How can the heat transfer correlations for finned-tubes influence the numerical simulation of the dynamic behavior of a heat recovery steam generator?

    International Nuclear Information System (INIS)

    Walter, H.; Hofmann, R.

    2011-01-01

    This paper presents the results of a theoretical investigation on the influence of different heat transfer correlations for finned-tubes to the dynamic behavior of a heat recovery steam generator (HRSG). The investigation was done for a vertical type natural circulation HRSG with 3 pressure stages under hot start-up and shutdown conditions. For the calculation of the flue gas-side heat transfer coefficient the well known correlations for segmented finned-tubes according to Schmidt, VDI and ESCOA TM (traditional and revised) as well as a new correlation, which was developed at the Institute for Energy Systems and Thermodynamics, are used. The simulation results show a good agreement in the overall behavior of the boiler between the different correlations. But there are still some important differences found in the detail analysis of the boiler behavior. - Research highlights: → Numerical simulation is performed to explore the influence of different heat transfer correlations for finned-tubes to the dynamic behavior of a heat recovery steam generator. → Differences in the steam generator behavior are found. → In the worst case the boiler can lead to unfavorable operation conditions, e.g. reverse flow.

  16. Nuclear heat generating plants - technical concepts and market potentials. Chapter 11

    International Nuclear Information System (INIS)

    Hasenkopf, O.; Erhard, W.D.; Nonnenmacher, A.; Hanselmann, M.

    1988-01-01

    Within the framework of a case study under the Federal Ministry of Research and Technology project 'Nuclear heat generating plants - technological concepts and market potentials', the possible applications of such plants were studied giving the district heat supply network of the Technische Werke der Stadt Stuttgart AG (Technical Works of the City of Stuttgart, Inc.) as an example. The use of district heating systems concentrated specifically on areas identified for economical supply because of their topographical position, existing heat density, distance from power plants, and a reasonable delimination from the available gas network. Based on the results of optimization calculations made by the Stuttgart Institute for Nuclear Technology and Energy Conversion, the required investment capital can be estimated as a function of the amount of fuel savings under the Stuttgart case study. (orig./UA) [de

  17. Efficiency potentials of heat pumps with combined heat and power. For maximum reduction of CO2 emissions and for electricity generation from fossil fuels with CO2 reduction in Switzerland

    International Nuclear Information System (INIS)

    Rognon, F.

    2005-06-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at how the efficiency potential of heat pumps together with combined heat and power systems can help provide a maximum reduction of CO 2 emissions and provide electricity generation from fossil fuel in Switzerland together with reductions in CO 2 emissions. In Switzerland, approximately 80% of the low-temperature heat required for space-heating and for the heating-up of hot water is produced by burning combustibles. Around a million gas and oil boilers were in use in Switzerland in 2000, and these accounted for approximately half the country's 41.1 million tonnes of CO 2 emissions. The authors state that there is a more efficient solution with lower CO 2 emissions: the heat pump. With the enormous potential of our environment it would be possible to replace half the total number of boilers in use today with heat pumps. This would be equivalent to 90 PJ p.a. of useful heat, or 500,000 systems. The power source for heat pumps should come from the substitution of electric heating systems (electric resistor-based systems) and from the replacement of boilers. This should be done by using combined heat and power systems with full heat utilisation. This means, according to the authors, that the entire required power source can be provided without the need to construct new electricity production plants. The paper examines and discusses the theoretical, technical, market and realisable potentials

  18. Heating and generation of suprathermal particles at collisionless shocks

    International Nuclear Information System (INIS)

    Thomsen, M.F.

    1985-01-01

    Collisionless plasma shocks are different from ordinary collisional fluid shocks in several important respects. They do not in general heat the electrons and ions equally, nor do they produce Maxwellian velocity distributions downstream. Furthermore, they commonly generate suprathermal particles which propagate into the upstream region, giving advance warning of the presence of the shock and providing a ''seed'' population for further acceleration to high energies. Recent space observations and theory have revealed a great deal about the heating mechanisms which occur in collisionless shocks and about the origin of the various suprathermal particle populations which are found in association with them. An overview of the present understanding of these subjects is presented herein. 83 refs., 8 figs

  19. Power generation from low-temperature heat source

    Energy Technology Data Exchange (ETDEWEB)

    Lakew, Amlaku Abie

    2012-07-01

    transcritical power cycle is operating at lower pump efficiency, the effect of a decrease in pump efficiency is equivalent to a decrease in turbine efficiency. The thermodynamic analysis is coupled with a 1D mean line turbine design. Both axial and radial turbines are considered. The Ainely and Mathieson loss model is used in the 1D axial turbine designs. It is observed that the blade height is generally small; the reason being high operating pressure and low flow rate. A novel approach to enhance the performance of low-temperature CO{sub 2} transcritical power cycles is investigated. From the thermodynamic analysis, it is observed that the pump work is significant and reduction of pump work will be translated to a gain in net power output. The mechanical driven pump is suggested to be replaced by a thermally driven pump. The working principle of thermally driven pump is by exploiting the phenomena in which the pressure of a closed vessel filled full with saturated liquid will rise when heated. A cascade of vessels is used to make the pressurizing process continuous. The time taken to pressurize is an important parameter for the performance of thermally driven pump. Pressurizing time depends on isochoric specific heat capacity of the working fluid, heat transfer coefficient, inlet conditions of heat source, tube diameter, and initial mass of the working fluid. When the pressurizing time is longer, more vessels are required to make the process continuous. It is shown that it possible to increase power output using a thermal driven pump, but additional equipments are required. An example of a possible application is a low-temperature CO{sub 2} power cycle integrated with a post-combustion carbon dioxide capture plant. The heat rejected by low temperature streams in the capture plant is used as a heat sources for power generation. It is found that utilization of heat of the capture plant improves the performance of the overall process. It shows that low-temperature transcritical

  20. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  1. Nuclear power generation and global heating

    International Nuclear Information System (INIS)

    Taboada, Horacio

    1999-01-01

    The Professionals Association and Nuclear Activity of National Atomic Energy Commission (CNEA) are following with great interest the worldwide discussions on global heating and the role that nuclear power is going to play. The Association has an active presence, as part of the WONUC (recognized by the United Nations as a Non-Governmental Organization) in the COP4, which was held in Buenos Aires in November 1998. The environmental problems are closely related to human development, the way of power production, the techniques for industrial production and exploitation fields. CO 2 is the most important gas with hothouse effects, responsible of progressive climatic changes, as floods, desertification, increase of average global temperature, thermal expansion in seas and even polar casks melting and ice falls. The consequences that global heating will have on the life and economy of human society cannot be sufficiently emphasized, great economical impact, destruction of ecosystems, loss of great coast areas and complete disappearance of islands owing to water level rise. The increase of power retained in the atmosphere generates more violent hurricanes and storms. In this work, the topics presented in the former AATN Meeting is analyzed in detail and different technological options and perspectives to mitigate CO 2 emission, as well as economical-financial aspects, are explored. (author)

  2. Ocean disposal of heat generating waste

    International Nuclear Information System (INIS)

    1985-06-01

    A number of options for the disposal of vitrified heat generating waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the engineering and operational aspects of the Penetrator Option for ocean disposal to enable technical comparisons with other options to be made. In the Penetrator Option concept, waste would be loaded into carefully designed containers which would be launched at a suitable deep ocean site where they would fall freely through the water and would embed themselves completely within the seabed sediments. Radiological protection would be provided by a multi-barrier system including the vitrified waste form, the penetrator containment, the covering sediment and the ocean. Calculations and demonstration have shown that penetrators could easily achieve embedment depths in excess of 30m and preliminary radiological assessments indicate that 30m of intact sediment would be an effective barrier for radionuclide isolation. The study concludes that a 75mm thickness of low carbon steel appears to be sufficient to provide a containment life of 500 to 1000 years during which time the waste heat output would have decayed to an insignificant level. Disposal costs have been assessed. (author)

  3. The effects of heat generation and wall interaction on freezing and melting in a finite slab

    International Nuclear Information System (INIS)

    Cheung, F.B.; Chawla, T.C.; Pedersen, D.R.

    1984-01-01

    The processes of freezing and melting occurring in a heat-generating slab bounded by two semi-infinite cold walls is studied numerically. The method of collocation is employed to solve the various sets of governing equations describing the unsteady behavior of the system during different periods of time. Depending on the rate of internal heat generation and the thermal properties of the wall and the slab, several changes may take place in the system. These changes, as indicated by the transient locations of the solid-liquid interface, include transitions from freezing directly to melting, from freezing to cooling with phase change, from cooling to heating without phase change, and from heating to melting. Numerical predictions of the occurrence of these transitions, the rates of freezing and melting, and the duration of the transients are obtained as functions of several controlling dimensionless parameters of the system. Comparison is made with the case of a heat-generating sphere to further explore the effect of system geometry. (author)

  4. Performance analysis of a waste heat recovery thermoelectric generation system for automotive application

    International Nuclear Information System (INIS)

    Liu, X.; Deng, Y.D.; Li, Z.; Su, C.Q.

    2015-01-01

    Graphical abstract: A new automotive exhaust-based thermoelectric generator and its “four-TEGs” system are constructed, and the performance characteristics of system are discussed through road test and revolving drum test. - Highlights: • The automotive thermoelectric generator system was constructed and studied. • Road test and revolving drum test were used to measure the output power. • A performance of 201.7 V (open circuit voltage)/944 W obtained. - Abstract: Thermoelectric power generators are one of the promising green energy sources. In this case study, an energy-harvesting system which extracts heat from an automotive exhaust pipe and turns the heat into electricity by using thermoelectric power generators (TEGs) has been constructed. The test bench is developed to analysis the performance of TEG system characteristics, which are undertaken to assess the feasibility of automotive applications. Based on the test bench, a new system called “four-TEGs” system is designed and assembled into prototype vehicle called “Warrior”, through the road test and revolving drum test table, characteristics of the system such as hot-side temperature, cold-side temperature, open circuit voltage and power output are studied, and a maximum power of 944 W was obtained, which completely meets the automotive application. The present study shows the promising potential of using this kind of thermoelectric generator for low-temperature waste heat recovery vehicle

  5. Waste heat recovery from the exhaust of a diesel generator using Rankine Cycle

    International Nuclear Information System (INIS)

    Hossain, Shekh Nisar; Bari, Saiful

    2013-01-01

    Highlights: • Diesel engine exhaust contains 40% energy which can be used to produce extra power. • Extra 11% power gained with optimized heat exchangers using water as working fluid. • As a result brake specific fuel consumption improved by 12%. • Parallel arrangement of heat exchangers showed better performance than series. • Optimum working fluid pressure varies with the engine power. - Abstract: Exhaust heat from diesel engines can be an important heat source to provide additional power using a separate Rankine Cycle (RC). In this research, experiments were conducted to measure the available exhaust heat from a 40 kW diesel generator using two ‘off-the-shelf’ heat exchangers. The effectiveness of the heat exchangers using water as the working fluid was found to be 0.44 which seems to be lower than a standard one. This lower performance of the existing heat exchangers indicates the necessity of optimization of the design of the heat exchangers for this particular application. With the available experimental data, computer simulations were carried out to optimize the design of the heat exchangers. Two heat exchangers were used to generate super-heated steam to expand in the turbine using two orientations: series and parallel. The optimized heat exchangers were then used to estimate additional power considering actual turbine isentropic efficiency. The proposed heat exchanger was able to produce 11% additional power using water as the working fluid at a pressure of 15 bar at rated engine load. This additional power resulted into 12% improvement in brake-specific fuel consumption (bsfc). The effects of the working fluid pressure were also investigated to maximize the additional power production. The pressure was limited to 15 bar which was constrained by the exhaust gas temperature. However, higher pressure is possible for higher exhaust gas temperatures from higher capacity engines. This would yield more additional power with further improvements in

  6. A concept of passive safety pressurized water reactor system with inherent matching nature of core heat generation and heat removal

    International Nuclear Information System (INIS)

    Murao, Yoshio; Araya, Fumimasa; Iwamura, Takamichi; Okumura, Keisuke

    1995-01-01

    The reduction of manpower in operation and maintenance by simplification of the system are essential to improve the safety and the economy of future light water reactors. At the Japan Atomic Energy Research Institute (JAERI), a concept of a simplified passive safety reactor system JPSR was developed for this purpose and in the concept minimization of developing work and conservation of scale-up capability in design were considered. The inherent matching nature of core heat generation and heat removal rate is introduced by the core with high reactivity coefficient for moderator density and low reactivity coefficient for fuel temperature (Doppler effect) and once-through steam generators (SGs). This nature makes the nuclear steam supply system physically-slave for the steam and energy conversion system by controlling feed water mass flow rate. The nature can be obtained by eliminating chemical shim and adopting in-vessel control rod drive mechanism (CRDM) units and a low power density core. In order to simplify the system, a large pressurizer, canned pumps, passive residual heat removal systems with air coolers as a final heat sink and passive coolant injection system are adopted and the functions of volume and boron concentration control and seal water supply are eliminated from the chemical and volume control system (CVCS). The emergency diesel generators and auxiliary component cooling system of 'safety class' for transferring heat to sea water as a final heat sink in emergency are also eliminated. All of systems are built in the containment except for the air coolers of the passive residual heat removal system. The analysis of the system revealed that the primary coolant expansion in 100% load reduction in 60 s can be mitigated in the pressurizer without actuating the pressure relief valves and the pressure in 50% load change in 30 s does not exceed the maximum allowable pressure in accidental conditions in regardless of pressure regulation. (author)

  7. High temperature technological heat exchangers and steam generators with helical coil assembly tube bundle

    International Nuclear Information System (INIS)

    Korotaev, O.J.; Mizonov, N.V.; Nikolaevsky, V.B.; Nazarov, E.K.

    1990-01-01

    Analysis of thermal hydraulics characteristics of nuclear steam generators with different tube bundle arrangements and waste heat boilers for ammonia production units was performed on the basis of operating experience results and research and development data. The present report involves the obtained information. The estimations of steam generator performances and repair-ability are given. The significant temperature profile of the primary and secondary coolant flows are attributed to all steam generator designs. The intermediate mixing is found to be an effective means of temperature profile overcoming. At present the only means to provide an effective mixing in heat exchangers of the following types: straight tubes, field tubes, platen tubes and multibank helical coil tubes (with complicated bend distribution along their length) are section arrangements in series in conjunction with forced and natural mixing in connecting lines. Development of the unificated system from mini helical coil assemblies allows to design and manufacture heat exchangers and steam generators within the wide range of operating conditions without additional expenses on the research and development work

  8. Numerical investigation of heat transfer and entropy generation of laminar flow in helical tubes with various cross sections

    International Nuclear Information System (INIS)

    Kurnia, Jundika C.; Sasmito, Agus P.; Shamim, Tariq; Mujumdar, Arun S.

    2016-01-01

    Highlights: • Heat transfers of helical coiled tube with several cross section profiles are evaluated. • Helical tubes offer higher heat transfer and lower entropy generation. • Square cross-section generates the highest entropy, followed by ellipse and circular. • Study could serve as a guideline in designing an efficient helical tube heat exchanger. - Abstract: This study evaluates heat transfer performance and entropy generation of laminar flow in coiled tubes with various cross-sections geometries i.e. circular, ellipse and square, relatives to the straight tubes of similar cross-sections. A computational fluid dynamics model is developed and validated against empirical correlations. Good agreement is obtained within range of Reynolds and Dean numbers considered. Effect of geometry, wall temperature, Reynolds number and heating/cooling mode were examined. To evaluate the heat transfer performance of the coiled tube configurations, a parameter referred as Figure of Merit (FoM) is defined as the ratio heat transfer rate to the required pumping power. In addition, exergy analysis is carried out to examine the inefficiency of the coiled tube configurations. The results indicate that coiled tubes provide higher heat transfer rate. In addition, it was found to be more efficient as reflected by lower entropy generation as compared to straight tubes. Among the studied cross-section, square cross-section generates the highest entropy, followed by ellipse and circular counterpart. Entropy production from heat transfer contribution is two order-of-magnitude higher than that of entropy contribution from viscous dissipation. Cooling case produces slightly higher entropy than heating counterpart. Finally, this study can provide practical guideline to design more efficient coiled heat exchanger.

  9. The thermo-mechanical behaviour of a salt dome with a heat-generating waste repository

    International Nuclear Information System (INIS)

    Janssen, L.G.J.; Prij, J.; Kevenaar, J.W.A.M.; Jong, C.J.T.; Klok, J.; Beemsterboer, C.

    1984-01-01

    This report reviews the analytical work on the disposal of radioactive waste in salt domes performed at ECN in the period 1 January 1980 to 31 December 1982. Chapter 4 in the main report covers the global temperature and deformation analyses of the salt dome and the surrounding rocks. The attached three topical reports cover self-contained parts of the study. The computer program TASTE developed to analyse, at acceptable cost and with, for engineering purposes, sufficient accuracies, the temperature rises in the salt dome due to the stored heat-generating waste is described in Annex 1. Annex 2 gives a description of the extended finite element program GOLIA. The program has been extended to make it suitable for the creep analysis of salt domes with repositories of heat-generating waste. The study on the closing and sealing of boreholes wit heat-generating waste is reported in Annex 3

  10. Fiscal 1999 basic research on promotion of joint implementation. Comprehensive feasibility study on efficiency improvement project for heat generation facilities and heat supply networks for district heating at districts in Moscow region, the Russian Federation (2 model districts within the region)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of conserving energy and reducing greenhouse gas, a survey is conducted for district heating facilities of the Khimki district and Voskresensk district in Moscow and for their heat supply networks. Four boilers existing at the Khimki district are all to be replaced by natural gas turbine centralized cogeneration plants, and four boilers existing at the Voskresensk district are all to be replaced by natural gas turbine cogeneration facilities. These projects are designated as Case 1 and Case 2, different from each other in terms of power generation capability and heat supply scale. As for investment, a total of 267-million dollars will be necessary for Case 1, and 208-million dollars for Case 2. As for energy conservation, energy will be saved by approximately 2.8-million tons in total in terms of oil in Case 1, and approximately 2-million tons in terms of oil in Case 2. As for greenhouse gas reduction, there will be a reduction of approximately 6.8-million tons in terms of CO2 in Case 1, and a reduction of approximately 4.9-million tons in terms of CO2 in Case 2. (NEDO)

  11. 3D-nuclear heat generation in PCC-charcoal filter in TAPP-3 and 4

    International Nuclear Information System (INIS)

    Kaushal, Manish; Pradhan, A.S.; Kumar, A.N.

    2006-01-01

    This paper deals with the calculations of 3D nuclear heat generation profile in the charcoal filter and subsequently the commencement time of Primary Containment Cleanup (PCC) system of 540MWe Pressurized Heavy Water Reactor (PHWR). Fuel failure is predicted due to overheating of the fuel under loss of Coolant Accident (LOCA) without Emergency Core Cooling System (LOCA without ECCS). Subsequently fission product gasses along with water vapours are released to Reactor Building (RB) atmosphere. Plate-out and water trapping mechanism stabilizes the concentration of significant fission products i.e. radioiodines in about 4 hours before being circulated through charcoal filters of Containment Cleanup system. After cleaning up the RB atmosphere, it is discharged to outside atmosphere through stack. The isotopes of radioiodine emit beta and gamma radiations. Gamma radiations are partly stopped within the charcoal and heat is generated. The part of gamma radiations escaping the bed produce heat in the adjacent beds also. PCC system can be operated, after 4 hours of LOCA, based on radioiodine concentration in RB atmosphere. During iodine removal, the iodine concentration in the charcoal filter goes through a peak value. Maximum heat is generated in the filter if PCC fans stops eventually when iodine concentration in the filter is maximum. Analysis done by TRAFIC code indicates that the system can be commenced after 7 hrs of LOCA so that desorption temperature of charcoal is not reached. Accuracy in estimating heat generation rates in charcoal helps in deciding commencement of the system after LOCA

  12. Device for starting a steam generator by heating sodium in a reactor

    International Nuclear Information System (INIS)

    Nakano, Hisao.

    1975-01-01

    Object: To enhance cooperation between ventilation and steam conditions of turbine and ventilation condition relative to a superheater at the time of starting a plant using a fast breeder, and to enhance safety with respect to failure of heat transmission tubes at the time of start. Structure: In a device in which steam generated in an evaporator is fed to a high pressure turbine through a super-heater and an outlet steam of high pressure turbine is reheated by means of a re-heater and fed into a turbine on the side of low pressure to drive the turbine for power generation, opening and closing valves are mounted on outlet and inlet pipes, respectively, of the heat transmission pipe in the super heater, said outlet and inlet pipes being connected by a bypass pipe. Upstream side of the opening and closing valve on the inlet pipe and the downstream side of the opening and closing valve on the outlet pipe and connected by a bypass pipe in the re-heater and said bypass pipe in the re-heater is provided with a steam heat exchanger to be heated by steam in the outlet of the superheater, and a steam line in an auxiliary boiler is connected to the side of re-heater from the opening and closing valve on the heat transmission pipe in the re-heater. (Hanada, M.)

  13. Thermodynamic performance analysis and algorithm model of multi-pressure heat recovery steam generators (HRSG) based on heat exchangers layout

    International Nuclear Information System (INIS)

    Feng, Hongcui; Zhong, Wei; Wu, Yanling; Tong, Shuiguang

    2014-01-01

    Highlights: • A general model of multi-pressure HRSG based on heat exchangers layout is built. • The minimum temperature difference is introduced to replace pinch point analysis. • Effects of layout on dual pressure HRSG thermodynamic performances are analyzed. - Abstract: Changes of heat exchangers layout in heat recovery steam generator (HRSG) will modify the amount of waste heat recovered from flue gas; this brings forward a desire for the optimization of the design of HRSG. In this paper the model of multi-pressure HRSG is built, and an instance of a dual pressure HRSG under three different layouts of Taihu Boiler Co., Ltd. is discussed, with specified values of inlet temperature, mass flow rate, composition of flue gas and water/steam parameters as temperature, pressure etc., steam mass flow rate and heat efficiency of different heat exchangers layout of HRSG are analyzed. This analysis is based on the laws of thermodynamics and incorporated into the energy balance equations for the heat exchangers. In the conclusion, the results of the steam mass flow rate, heat efficiency obtained for three heat exchangers layout of HRSGs are compared. The results show that the optimization of heat exchangers layout of HRSGs has a great significance for waste heat recovery and energy conservation

  14. Heat generation above break-even from laser-induced fusion in ultra-dense deuterium

    Directory of Open Access Journals (Sweden)

    Leif Holmlid

    2015-08-01

    Full Text Available Previous results from laser-induced processes in ultra-dense deuterium D(0 give conclusive evidence for ejection of neutral massive particles with energy >10 MeV u−1. Such particles can only be formed from nuclear processes like nuclear fusion at the low laser intensity used. Heat generation is of interest for future fusion energy applications and has now been measured by a small copper (Cu cylinder surrounding the laser target. The temperature rise of the Cu cylinder is measured with an NTC resistor during around 5000 laser shots per measured point. No heating in the apparatus or the gas feed is normally used. The fusion process is suboptimal relative to previously published studies by a factor of around 10. The small neutral particles HN(0 of ultra-dense hydrogen (size of a few pm escape with a substantial fraction of the energy. Heat loss to the D2 gas (at <1 mbar pressure is measured and compensated for under various conditions. Heat release of a few W is observed, at up to 50% higher energy than the total laser input thus a gain of 1.5. This is uniquely high for the use of deuterium as fusion fuel. With a slightly different setup, a thermal gain of 2 is reached, thus clearly above break-even for all neutronicity values possible. Also including the large kinetic energy which is directly measured for MeV particles leaving through a small opening gives a gain of 2.3. Taking into account the lower efficiency now due to the suboptimal fusion process, previous studies indicate a gain of at least 20 during long periods.

  15. Application of EoEP principle with variable heat transfer coefficient in minimizing entropy production in heat exchangers

    International Nuclear Information System (INIS)

    Balkan, F.

    2005-01-01

    A more realistic application of the entropy minimization principle EoEP is presented. This principle dictates uniform local entropy generations along the heat exchanger in order to minimize the total entropy generation rate due only to heat transfer. For a certain heat duty and area of an existing exchanger, this is done by changing the temperatures of one fluid while the temperatures of the other fluid are held constant. Since the heat duty is fixed, the change in the temperatures of the fluid after the change, however, may sometimes cause a drastic change in its flow rate. This may cause considerable changes in the overall heat transfer coefficient (U) and, consequently, in the entropy generation rate. Depending on the choice of the fluid for changing, the new entropy generation rates may be higher or lower than those based on constant U as is the case in papers recently published. So, the classical application of the EoEP principle needs to be modified to achieve more realistic entropy generation rates. In this study, the principle of EoEP with variable U is applied to some cases of heat exchange, and a simple method is presented as a criterion for the proper choice of the fluid to be changed

  16. Flow-induced vibration analysis of heat exchanger and steam generator designs

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Sylvestre, Y.; Campagna, A.O.

    1977-08-01

    Tube and shell heat exchange components such as steam generators, heat exchangers and condensers are essential parts of CANDU nuclear power stations. Excessive flow-induced vibration may cause tube failures by fatigue or more likely by fretting-wear. Such failures may lead to station shutdowns that are very undesirable in terms of lost production. Hence good performance and reliability dictate a thorough flow-induced vibration analysis at the design stage. This paper presents our approach and techniques in this respect. (author)

  17. Applicability of the minimum entropy generation method for optimizing thermodynamic cycles

    Institute of Scientific and Technical Information of China (English)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Entropy generation is often used as a figure of merit in thermodynamic cycle optimizations.In this paper,it is shown that the applicability of the minimum entropy generation method to optimizing output power is conditional.The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power when the total heat into the system of interest is not prescribed.For the cycles whose working medium is heated or cooled by streams with prescribed inlet temperatures and prescribed heat capacity flow rates,it is theoretically proved that both the minimum entropy generation rate and the minimum entropy generation number correspond to the maximum output power when the virtual entropy generation induced by dumping the used streams into the environment is considered.However,the minimum principle of entropy generation is not tenable in the case that the virtual entropy generation is not included,because the total heat into the system of interest is not fixed.An irreversible Carnot cycle and an irreversible Brayton cycle are analysed.The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power if the heat into the system of interest is not prescribed.

  18. Applicability of the minimum entropy generation method for optimizing thermodynamic cycles

    International Nuclear Information System (INIS)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Entropy generation is often used as a figure of merit in thermodynamic cycle optimizations. In this paper, it is shown that the applicability of the minimum entropy generation method to optimizing output power is conditional. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power when the total heat into the system of interest is not prescribed. For the cycles whose working medium is heated or cooled by streams with prescribed inlet temperatures and prescribed heat capacity flow rates, it is theoretically proved that both the minimum entropy generation rate and the minimum entropy generation number correspond to the maximum output power when the virtual entropy generation induced by dumping the used streams into the environment is considered. However, the minimum principle of entropy generation is not tenable in the case that the virtual entropy generation is not included, because the total heat into the system of interest is not fixed. An irreversible Carnot cycle and an irreversible Brayton cycle are analysed. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power if the heat into the system of interest is not prescribed. (general)

  19. Fission yield covariance generation and uncertainty propagation through fission pulse decay heat calculation

    International Nuclear Information System (INIS)

    Fiorito, L.; Diez, C.J.; Cabellos, O.; Stankovskiy, A.; Van den Eynde, G.; Labeau, P.E.

    2014-01-01

    Highlights: • Fission yield data and uncertainty comparison between major nuclear data libraries. • Fission yield covariance generation through Bayesian technique. • Study of the effect of fission yield correlations on decay heat calculations. • Covariance information contribute to reduce fission pulse decay heat uncertainty. - Abstract: Fission product yields are fundamental parameters in burnup/activation calculations and the impact of their uncertainties was widely studied in the past. Evaluations of these uncertainties were released, still without covariance data. Therefore, the nuclear community expressed the need of full fission yield covariance matrices to be able to produce inventory calculation results that take into account the complete uncertainty data. State-of-the-art fission yield data and methodologies for fission yield covariance generation were researched in this work. Covariance matrices were generated and compared to the original data stored in the library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235 U. Calculations were carried out using different libraries and codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the libraries. The uncertainty quantification was performed first with Monte Carlo sampling and then compared with linear perturbation. Indeed, correlations between fission yields strongly affect the uncertainty of decay heat. Eventually, a sensitivity analysis of fission product yields to fission pulse decay heat was performed in order to provide a full set of the most sensitive nuclides for such a calculation

  20. CHP in Switzerland from 1990 to 1998. Thermal power generation including combined heat and power

    International Nuclear Information System (INIS)

    Kaufmann, U.

    1999-01-01

    The results of a study on thermal power generation in Switzerland show that combined heat and power (CHP) systems have grown rapidly. Statistics are presented on the development of CHP-based power and also on thermal power stations without waste heat usage. Figures are given for gas and steam turbine installations, combined gas and steam turbine stations and motor-driven CHP units. Power production is categorised, separating small and large (over 1 Megawatt electrical) power generation facilities. On-site, distributed power generation at consumers' premises and the geographical distribution of plant is described

  1. Heat generation in lithium-thionyl chloride and lithium-SO2 cells

    Science.gov (United States)

    Cohen, R.; Melman, A.; Livne, N.; Peled, E.

    1992-09-01

    The effects of current density, temperature, depth of discharge (DOD), and storage on the heat generation rate and faradaic efficiency of Li/Tc and Li/SO2 cells have been determined. Several C-size commercial cells from different manufacturers have been tested. The faradaic efficiency for both systems was found to be very high, typically 96-100 percent even at high current density and high temperatures (55 C). It does not change much with DOD and decreases only slightly with the increase of current density and high temperature (tested up to 4.5 mA/sq cm at 50 percent DOD and 55 C). A performance degradation problem was found for some Li/TC cells. The heat factor, the ratio between the useful electric power and the thermal power generated by the cell, is about the same for fresh Li/TC cells and Li/SO2 cells. However, some Li/TC cells stored for 3 years showed a poor heat factor. It was confirmed that the maximum thermoneutral voltage for the Li/TC and Li/SO2 cells is 3.80 and 3.22 V, respectively.

  2. Decreasing of energy consumption for space heating in existing residential buildings; Combined geothermal and gas district heating systems

    International Nuclear Information System (INIS)

    Rosca, Marcel

    2000-01-01

    The City of Oradea, Romania, has a population of about 230 000 inhabitants. Almost 70% of the total heat demand, including industrial, is supplied by a classical East European type district heating system. The heat is supplied by two low grade coal fired co-generation power plants. The oldest distribution networks and substitutions, as well as one power plant, are 35 years old and require renovation or even reconstruction. The geothermal reservoir located under the city supplies at present 2,2% of the total heat demand. By generalizing the reinjection, the production can be increased to supply about 8% of the total heat demand, without any significant reservoir pressure or temperature decline over 25 years. Another potential energy source is natural gas, a main transport pipeline running close to the city. Two possible scenarios are envisaged to replace the low grade coal by natural gas and geothermal energy as heat sources for Oradea. In one scenario, the geothermal energy supplies the heat for tap water heating and the base load for space heating in a limited number of substations, with peak load being produced by natural gas fired boilers. In the other scenario, the geothermal energy is only used for tap water heating. In both scenarios, all substations are converted into heat plants, natural gas being the main energy source. The technical, economic, and environmental assessment of the two proposed scenarios are compared with each other, as well as with the existing district heating system. Two other possible options, namely to renovate and convert the existing co-generation power plants to natural gas fired boilers or to gas turbines, are only briefly discussed, being considered unrealistic, at least for the short and medium term future. (Author)

  3. Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China.

    Science.gov (United States)

    Chen, Jian; Liu, Guijian; Kang, Yu; Wu, Bin; Sun, Ruoyu; Zhou, Chuncai; Wu, Dun

    2013-02-01

    Coal is one of the major energy resources in China, with nearly half of produced Chinese coal used for power and heat generation. The large use of coal for power and heat generation in China may result in significant atmospheric emissions of toxic volatile trace elements (i.e. F, As, Se, Hg, and Sb). For the purpose of estimating the atmospheric emissions from coal-fired power and heat generation in China, a simple method based on coal consumption, concentration and emission factor of trace element was adopted to calculate the gaseous emissions of elements F, As, Se, Hg, and Sb. Results indicate that about 162161, 236, 637, 172, and 33 t F, As, Se, Hg, and Sb, respectively, were introduced into atmosphere from coal combustion by power and heat generation in China in 2009. The atmospheric emissions of F, As, Se, Hg, and Sb by power and heat generation increased from 2005 to 2009 with increasing coal consumptions. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  4. Conjugate transient natural convection in a cylindrical enclosure with internal volumetric heat generation

    International Nuclear Information System (INIS)

    Sharma, Anil Kumar; Velusamy, K.; Balaji, C.

    2008-01-01

    This paper reports the results of a numerical investigation of transient turbulent natural convection heat transfer from a volumetric energy generating source placed inside a cylindrical enclosure filled with low Prandtl number fluid (liquid sodium, Pr = 0.005). Two-dimensional conservation equations of mass, momentum and energy, coupled with the Boussinesq approximation, are solved using a finite volume based discretisation method employing the SIMPLE algorithm for the pressure velocity coupling. Turbulence is modeled using the k-ε model with physical boundary conditions. The study presents the transient features of confined turbulent natural convection, due to time varying generation of heat in the volumetric source. The intensity of heat source exponentially decays with time and the source is placed over circular plates with a central opening. Results obtained from the numerical model compare favorably with those reported in the literature for steady state natural convection. Numerical simulations are carried out to display the sequential evolution of flow and thermal fields and the maximum temperature reached in the source. The advantages of distributing the heat source on multi trays have been quantified

  5. Effect of Heat Generation of Ultrasound Transducer on Ultrasonic Power Measured by Calorimetric Method

    Science.gov (United States)

    Uchida, Takeyoshi; Kikuchi, Tsuneo

    2013-07-01

    Ultrasonic power is one of the key quantities closely related to the safety of medical ultrasonic equipment. An ultrasonic power standard is required for establishment of safety. Generally, an ultrasonic power standard below approximately 20 W is established by the radiation force balance (RFB) method as the most accurate measurement method. However, RFB is not suitable for high ultrasonic power because of thermal damage to the absorbing target. Consequently, an alternative method to RFB is required. We have been developing a measurement technique for high ultrasonic power by the calorimetric method. In this study, we examined the effect of heat generation of an ultrasound transducer on ultrasonic power measured by the calorimetric method. As a result, an excessively high ultrasonic power was measured owing to the effect of heat generation from internal loss in the transducer. A reference ultrasound transducer with low heat generation is required for a high ultrasonic power standard established by the calorimetric method.

  6. Infrared signal generation from AC induction field heating of graphite foam

    Science.gov (United States)

    Klett, James W.; Rios, Orlando

    2018-02-27

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam to produce light. An energy conversion device utilizes light energy from the heated graphite foam to perform a light energy consuming function. A device for producing light and a method of converting energy are also disclosed.

  7. A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity

    International Nuclear Information System (INIS)

    Aziz, A.; Bouaziz, M.N.

    2011-01-01

    Highlights: → Analytical solutions for a rectangular fin with temperature dependent heat generation and thermal conductivity. → Graphs give temperature distributions and fin efficiency. → Comparison of analytical and numerical solutions. → Method of least squares used for the analytical solutions. - Abstract: Approximate but highly accurate solutions for the temperature distribution, fin efficiency, and optimum fin parameter for a constant area longitudinal fin with temperature dependent internal heat generation and thermal conductivity are derived analytically. The method of least squares recently used by the authors is applied to treat the two nonlinearities, one associated with the temperature dependent internal heat generation and the other due to temperature dependent thermal conductivity. The solution is built from the classical solution for a fin with uniform internal heat generation and constant thermal conductivity. The results are presented graphically and compared with the direct numerical solutions. The analytical solutions retain their accuracy (within 1% of the numerical solution) even when there is a 60% increase in thermal conductivity and internal heat generation at the base temperature from their corresponding values at the sink temperature. The present solution is simple (involves hyperbolic functions only) compared with the fairly complex approximate solutions based on the homotopy perturbation method, variational iteration method, and the double series regular perturbation method and offers high accuracy. The simple analytical expressions for the temperature distribution, the fin efficiency and the optimum fin parameter are convenient for use by engineers dealing with the design and analysis of heat generating fins operating with a large temperature difference between the base and the environment.

  8. Collisional effects on metastable atom population in vapour generated by electron beam heating

    International Nuclear Information System (INIS)

    Dikshit, B; Majumder, A; Bhatia, M S; Mago, V K

    2008-01-01

    The metastable atom population distribution in a free expanding uranium vapour generated by electron beam (e-beam) heating is expected to depart from its original value near the source due to atom-atom collisions and interaction with electrons of the e-beam generated plasma co-expanding with the vapour. To investigate the dynamics of the electron-atom and atom-atom interactions at different e-beam powers (or source temperatures), probing of the atomic population in ground (0 cm -1 ) and 620 cm -1 metastable states of uranium was carried out by the absorption technique using a hollow cathode discharge lamp. The excitation temperature of vapour at a distance ∼30 cm from the source was calculated on the basis of the measured ratio of populations in 620 to 0 cm -1 states and it was found to be much lower than both the source temperature and estimated translational temperature of the vapour that is cooled by adiabatic free expansion. This indicated relaxation of the metastable atoms by collisions with low energy plasma electrons was so significant that it brings the excitation temperature below the translational temperature of the vapour. So, with increase in e-beam power and hence atom density, frequent atom-atom collisions are expected to establish equilibrium between the excitation and translational temperatures, resulting in an increase in the excitation temperature (i.e. heating of vapour). This has been confirmed by analysing the experimentally observed growth pattern of the curve for excitation temperature with e-beam power. From the observed excitation temperature at low e-beam power when atom-atom collisions can be neglected, the total de-excitation cross section for relaxation of the 620 cm -1 state by interaction with low energy electrons was estimated and was found to be ∼10 -14 cm 2 . Finally using this value of cross section, the extent of excitational cooling and heating by electron-atom and atom-atom collisions are described at higher e-beam powers

  9. Encouragement of Enzyme Reaction Utilizing Heat Generation from Ferromagnetic Particles Subjected to an AC Magnetic Field.

    Science.gov (United States)

    Suzuki, Masashi; Aki, Atsushi; Mizuki, Toru; Maekawa, Toru; Usami, Ron; Morimoto, Hisao

    2015-01-01

    We propose a method of activating an enzyme utilizing heat generation from ferromagnetic particles under an ac magnetic field. We immobilize α-amylase on the surface of ferromagnetic particles and analyze its activity. We find that when α-amylase/ferromagnetic particle hybrids, that is, ferromagnetic particles, on which α-amylase molecules are immobilized, are subjected to an ac magnetic field, the particles generate heat and as a result, α-amylase on the particles is heated up and activated. We next prepare a solution, in which α-amylase/ferromagnetic particle hybrids and free, nonimmobilized chitinase are dispersed, and analyze their activities. We find that when the solution is subjected to an ac magnetic field, the activity of α-amylase immobilized on the particles increases, whereas that of free chitinase hardly changes; in other words, only α-amylase immobilized on the particles is selectively activated due to heat generation from the particles.

  10. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    Science.gov (United States)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2015-01-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery thermoelectric generator with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric treatment of the exhaust waste heat recovery thermoelectric generator yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/W it is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but Preferred TE Design Regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously-identified low cost design regimes. This work shows that the optimum fill factor Fopt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have

  11. Transient thermal stresses in composite hollow circular cylinder due to partial heat generation

    International Nuclear Information System (INIS)

    Goshima, Takahito; Miyao, Kaju

    1979-01-01

    Clad materials are adopted for the machines and structures used in contact with high temperature, corrosive atmosphere in view of their strength and economy. Large thermal stress sometimes arises in clad cylinders due to uneaven temperature field and the difference in linear thermal expansion. Vessels are often heated uneavenly, and shearing stress occurs, which is not observed in uniform heating. In this study, infinitely long, concentric cylinders of two layers were analyzed, when the internal heat changing in stepped state is generated in cylindrical form. The unsteady thermal stress occurred was determined, using thermo-elastic potential and stress functions, and assuming the thermal properties and elastic modulus of materials as constant regardless of the temperature. Laplace transformation was used, and the basic equations for thermo-elastic displacement were employed as the basis of calculation. The analysis of the temperature distribution and stress is explained. Numerical calculation was carried out on the example of an internal cylinder of SUS 304 stainless steel and an external cylinder of mild steel. The maximum shearing stress occurred in the direction of 40 deg from the heat source, and was affected largely by the position of heat generation. The effect became remarkable as time elapsed. (Kako, I.)

  12. Steam generator design for solar towers using solar salt as heat transfer fluid

    Science.gov (United States)

    González-Gómez, Pedro Ángel; Petrakopoulou, Fontina; Briongos, Javier Villa; Santana, Domingo

    2017-06-01

    Since the operation of a concentrating solar power plant depends on the intermittent character of solar energy, the steam generator is subject to daily start-ups, stops and load variations. Faster start-up and load changes increase the plant flexibility and the daily energy production. However, it involves high thermal stresses on thick-walled components. Continuous operational conditions may eventually lead to a material failure. For these reasons, it is important to evaluate the transient behavior of the proposed designs in order to assure the reliability. The aim of this work is to analyze different steam generator designs for solar power tower plants using molten salt as heat transfer fluid. A conceptual steam generator design is proposed and associated heat transfer areas and steam drum size are calculated. Then, dynamic models for the main parts of the steam generator are developed to represent its transient performance. A temperature change rate that ensures safe hot start-up conditions is studied for the molten salt. The thermal stress evolution on the steam drum is calculated as key component of the steam generator.

  13. Simulation and Optimization of the Heat Exchanger for Automotive Exhaust-Based Thermoelectric Generators

    Science.gov (United States)

    Su, C. Q.; Huang, C.; Deng, Y. D.; Wang, Y. P.; Chu, P. Q.; Zheng, S. J.

    2016-03-01

    In order to enhance the exhaust waste heat recovery efficiency of the automotive exhaust-based thermoelectric generator (TEG) system, a three-segment heat exchanger with folded-shaped internal structure for the TEG system is investigated in this study. As the major effect factors of the performance for the TEG system, surface temperature, and thermal uniformity of the heat exchanger are analyzed in this research, pressure drop along the heat exchanger is also considered. Based on computational fluid dynamics simulations and temperature distribution, the pressure drop along the heat exchanger is obtained. By considering variable length and thickness of folded plates in each segment of the heat exchanger, response surface methodology and optimization by a multi-objective genetic algorithm is applied for surface temperature, thermal uniformity, and pressure drop for the folded-shaped heat exchanger. An optimum design based on the optimization is proposed to improve the overall performance of the TEG system. The performance of the optimized heat exchanger in different engine conditions is discussed.

  14. Fission yields data generation and benchmarks of decay heat estimation of a nuclear fuel

    Science.gov (United States)

    Gil, Choong-Sup; Kim, Do Heon; Yoo, Jae Kwon; Lee, Jounghwa

    2017-09-01

    Fission yields data with the ENDF-6 format of 235U, 239Pu, and several actinides dependent on incident neutron energies have been generated using the GEF code. In addition, fission yields data libraries of ORIGEN-S, -ARP modules in the SCALE code, have been generated with the new data. The decay heats by ORIGEN-S using the new fission yields data have been calculated and compared with the measured data for validation in this study. The fission yields data ORIGEN-S libraries based on ENDF/B-VII.1, JEFF-3.1.1, and JENDL/FPY-2011 have also been generated, and decay heats were calculated using the ORIGEN-S libraries for analyses and comparisons.

  15. Numerical analysis on a four-stage looped thermoacoustic Stirling power generator for low temperature waste heat

    International Nuclear Information System (INIS)

    Wang, Kai; Qiu, Limin

    2017-01-01

    Highlights: • Four-stage looped thermoacoustic power generator for waste heat is studied. • Coupling position is found to have remarkable effects on performance. • Better efficiency is available when coupled near the cold ends of the cores. • The influence of the regenerator position on the efficiency is weak. • Matching between the acoustic impedances of engine and alternator is important. - Abstract: Recent developments in thermoacoustic technologies have demonstrated that multi-stage looped thermoacoustic Stirling engine would be a promising option for harvesting waste heat. Previous studies on multi-stage looped thermoacoustic systems were mainly focused on heat-driven refrigeration or heat pumping, while much fewer work were done on power generations, especially those for recovering low temperature heat. In this work, a four-stage looped thermoacoustic Stirling power generator for generating electricity from low temperature waste heat at 300 °C is systematically studied. A numerical model is built and then validated on an experimental four-stage looped thermoacoustic Stirling engine. On the basis of the validated model, the effects of the coupling position for the linear alternators and the regenerator position on the acoustic characteristics and performances of the power generation system are numerically investigated. The distributions of the acoustic fields along the loop, including the pressure amplitude, volume flow rate, phase angle, specific acoustic impedance and acoustic power, are presented and analysed for three representative coupling modes. Superior efficiency is achieved when the linear alternators are coupled near the cold ends of the thermoacoustic cores on the resonators, while more electric power is generated at the hot ends. The worst performance is expected when the linear alternators are connected at the middle of the resonators. The underling mechanisms are further explained detailedly by analysing the characteristics of the

  16. Heat transfer analysis of frictional heat dissipation during articulation of femoral implants.

    Science.gov (United States)

    Davidson, J A; Gir, S; Paul, J P

    1988-12-01

    Previous studies have shown the tendency for frictional heating to occur during articulation of total hip systems in vitro under simulated hip loading conditions. The magnitude of this heating is sufficient to accelerate wear, creep, and oxidation degradation of the UHMWPE bearing surface. It was shown that ceramic articulating systems generate less frictional heating than polished cobalt alloy against UHMWPE. This frictional heating is expected to occur primarily for younger, heavier, and more active patients. Thus, long-term performance of the articulating hip system in these patients may not be that predicted from current, body-temperature wear, creep, and degradation studies. Although the tendency to generate frictional heat has been observed only during in vitro simulated hip loading, a heat transfer analysis of this phenomenon is presented to evaluate the ability of the hip joint to dissipate such heating in vivo. Additional experiments were performed using controlled resistance heaters inside a cobalt femoral head to verify the calculated levels of frictional heat and to assess the heat dissipation under simulated in vivo conditions. The effect of blood perfusion on the effective thermal conductivity of the joint capsule is also discussed. The present study describes and analyzes the various heat dissipation mechanisms present both in vitro and in vivo during articulation of metal and ceramic hip systems. From these tests and analyses, it is concluded that frictional heating in the reconstructed hip cannot be effectively removed, and that degredative elevated temperature processes can be expected to occur in vivo to both the UHMWPE and adjacent tissue under extended periods of excessive patient activity. This is particularly true for metal cobalt alloy femoral heads articulating on UHMWPE versus ceramic heads which generate significantly lower levels of heat.

  17. Selection of values of design peak heat flux to reduce the risk of waterside corrosion in F.R. steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Bolt, P R; Garnsey, R

    1975-07-01

    Attention is drawn to the high levels of peak heat Flux that can exist in sodium heated steam generators. The strength of the relationship between heat, flux and both deposition rate and the concentration of salts is discussed. Relevant steam generator operational experience obtained on the C.E.G.B. system is described and tentative proposals are made for limits to he to the peak heat flux values used in F.R. steam generator design. (author)

  18. Selection of values of design peak heat flux to reduce the risk of waterside corrosion in F.R. steam generators

    International Nuclear Information System (INIS)

    Bolt, P.R.; Garnsey, R.

    1975-01-01

    Attention is drawn to the high levels of peak heat Flux that can exist in sodium heated steam generators. The strength of the relationship between heat, flux and both deposition rate and the concentration of salts is discussed. Relevant steam generator operational experience obtained on the C.E.G.B. system is described and tentative proposals are made for limits to he to the peak heat flux values used in F.R. steam generator design. (author)

  19. Origin of excess heat generated during loading Pd-impregnated alumina powder with deuterium and hydrogen

    International Nuclear Information System (INIS)

    Dmitriyeva, O.; Cantwell, R.; McConnell, M.; Moddel, G.

    2012-01-01

    Highlights: ► We studied heat produced by hydrogen and deuterium in Pd-impregnated alumina powder. ► Samples were fabricated using light and heavy water isotopes and varied the gas used for loading. ► Incorporation of hydrogen and deuterium influenced the amount of heat released or consumed. ► Pd nanoparticles appear to catalyze hydrogen/deuterium (H/D) exchange chemical reactions. ► Anomalous heating can be accounted for by chemical rather than nuclear reactions. - Abstract: We studied heat production in Pd-impregnated alumina powder in the presence of hydrogen and deuterium gases, investigating claims of anomalous heat generated as a result of nuclear fusion, usually referred to as a low energy nuclear reaction (LENR). By selecting the water isotope used to fabricate the material and then varying the gas used for loading, we were able to influence the amount of heat released or consumed. We suggest that Pd in its nanoparticle form catalyzes hydrogen/deuterium (H/D) exchange reactions in the material. This hypothesis is supported by heat measurements, residual gas analysis (RGA) data, and calculations of energy available from H/D exchange reactions. Based on the results we conclude that the origin of the anomalous heat generated during deuterium loading of Pd-enriched alumina powder is chemical rather than nuclear.

  20. Thermal analysis of a heat generating waste repository on the seabed

    International Nuclear Information System (INIS)

    Maynard, M.J.; Butler, T.P.; Firmin, G.H.

    1987-02-01

    The time dependent thermal behaviour of a repository containing heat generating waste has been investigated during loading, transport, and subsequent emplacement on the seabed. Variations of less than 1 0 C in the sealed repository water temperature were calculated to be sufficient to create adequate water circulation. Conservative 1-D analyses were used to estimate a maximum repository water temperature of 256 0 C, occuring about 3 years after emplacement. The temperature distributions within the heat generating waste canisters and grouted titanium tubes have been calculated using 2-D axisymmetric finite element models. Peak temperatures at the waste centre-line were found to be approx. 40 0 C above the repository water temperature. The sensitivity of the results to assumed thermal parameters and to the effect of sediment accumulation have been considered. The possibility and consequences of steam formation within a vented repository have been discussed. (author)

  1. Heat transfer characteristics in a sudden expansion pipe equipped with swirl generators

    International Nuclear Information System (INIS)

    Zohir, A.E.; Abdel Aziz, A.A.; Habib, M.A.

    2011-01-01

    This investigation is aimed at studying the heat transfer characteristics and pressure drop for turbulent airflow in a sudden expansion pipe equipped with propeller type swirl generator or spiral spring with several pitch ratios. The investigation is performed for the Reynolds number ranging from 7500 to 18,500 under a uniform heat flux condition. The experiments are also undertaken for three locations for the propeller fan (N = 15 blades and blade angle of 65 o ) and three pitch ratios for the spiral spring (P/D = 10, 15 and 20). The influences of using the propeller rotating freely and inserted spiral spring on heat transfer enhancement and pressure drop are reported. In the experiments, the swirl generator and spiral spring are used to create a swirl in the tube flow. Mean and relative mean Nusselt numbers are determined and compared with those obtained from other similar cases. The experimental results indicate that the tube with the propeller inserts provides considerable improvement of the heat transfer rate over the plain tube around 1.69 times for X/H = 5. While for the tube with the spiral spring inserts, an improvement of the heat transfer rate over the plain tube around 1.37 times for P/d = 20. Thus, because of strong swirl or rotating flow, the propeller location and the spiral spring pitch become influential on the heat transfer enhancement. The increase in pressure drop using the propeller is found to be three times and for spiral spring 1.5 times over the plain tube. Correlations for mean Nusselt number, fan location and spiral spring pitch are provided.

  2. Numerical Investigation for Strengthening Heat Transfer Mechanism of the Tube-Row Heat Exchanger in a Compact Thermoelectric Generator

    Science.gov (United States)

    Zhang, Zheng; Chen, Zijian; Liu, Hongwu; Yue, Hao; Chen, Dongbo; Qin, Delei

    2018-06-01

    According to the basic principle of heat transfer enhancement, a 1-kW compact thermoelectric generator (TEG) is proposed that is suitable for use at high temperatures and high flow speeds. The associated heat exchanger has a tube-row structure with a guide-plate to control the thermal current. The heat exchanger has a volume of 7 L, and the TEG has a mass of 8 kg (excluding the thermoelectric modules (TEMs)). In this paper, the heat transfer process of the tube-row exchanger is modeled and analyzed numerically; and the influences of its structure on the heat transfer and temperature status of the TEMs are investigated. The results show that use of the thin - wall pipes and increase of surface roughness inside the pipes are effective ways to improve the heat transfer efficiency, obtain the rated surface temperature, and make the TEG compact and lightweight. Furthermore, under the same conditions, the calculated results are compared with the data of a fin heat exchanger. The comparison results show that the volume and mass of the tube-row heat exchanger are 19% and 33% lower than those of the fin type unit, and that the pressure drop is reduced by 16%. In addition, the average temperature in the tube-row heat exchanger is increased by 15°C and the average temperature difference is increased by 19°C; the tube-row TEG has a more compact volume and better temperature characteristics.

  3. Numerical Investigation for Strengthening Heat Transfer Mechanism of the Tube-Row Heat Exchanger in a Compact Thermoelectric Generator

    Science.gov (United States)

    Zhang, Zheng; Chen, Zijian; Liu, Hongwu; Yue, Hao; Chen, Dongbo; Qin, Delei

    2018-04-01

    According to the basic principle of heat transfer enhancement, a 1-kW compact thermoelectric generator (TEG) is proposed that is suitable for use at high temperatures and high flow speeds. The associated heat exchanger has a tube-row structure with a guide-plate to control the thermal current. The heat exchanger has a volume of 7 L, and the TEG has a mass of 8 kg (excluding the thermoelectric modules (TEMs)). In this paper, the heat transfer process of the tube-row exchanger is modeled and analyzed numerically; and the influences of its structure on the heat transfer and temperature status of the TEMs are investigated. The results show that use of the thin - wall pipes and increase of surface roughness inside the pipes are effective ways to improve the heat transfer efficiency, obtain the rated surface temperature, and make the TEG compact and lightweight. Furthermore, under the same conditions, the calculated results are compared with the data of a fin heat exchanger. The comparison results show that the volume and mass of the tube-row heat exchanger are 19% and 33% lower than those of the fin type unit, and that the pressure drop is reduced by 16%. In addition, the average temperature in the tube-row heat exchanger is increased by 15°C and the average temperature difference is increased by 19°C; the tube-row TEG has a more compact volume and better temperature characteristics.

  4. Optimization of a waste heat recovery system with thermoelectric generators by three-dimensional thermal resistance analysis

    International Nuclear Information System (INIS)

    Huang, Gia-Yeh; Hsu, Cheng-Ting; Fang, Chun-Jen; Yao, Da-Jeng

    2016-01-01

    Highlights: • The waste heat recovery system is modeled by three-dimensional thermal resistance. • This is a time-saving and efficient method to estimate power generation from TEGs. • Relations between power generation and varied factors can be rapidly revealed. • TEGs positions and uniformity of velocity profile should be considered together. • Power generation is more sensitive to either internal or external flow velocity. - Abstract: Three-dimensional (3D) thermal resistance analysis provides a rapid and simple method to estimate the power generated from a waste heat recovery system with thermoelectric generators (TEGs), and facilitates an optimization of the system. Such a system comprises three parts – a waste heat recovery chamber, TEG modules and a cooling system. A fin-structured duct serves as a waste heat recovery chamber, which is attached to the hot sides of the TEGs; the cold sides of the TEGs are attached to a cooling system. The waste heat recovery chamber harvests energy from exhaust heat that the TEGs convert into electricity. The estimation of generated power is an important part of the system design. Methods of Computational Fluid Dynamics (CFD) assist the analysis and improve the performance with great accuracy but great computational duration. The use of this method saves much time relative to such CFD methods. In 3D thermal resistance analysis, a node of unknown temperature is located at the centroid of each cell into which the system is divided. The relations of unknown temperatures at the cells are based on the energy conservation and the definition of thermal resistance. The temperatures of inlet waste hot gas and ambient fluid are known. With these boundary conditions, the unknown temperatures in the system are solved, enabling estimation of the power generated with TEGs. A 3D model of the system was simulated with FloTHERM; its numerical solution matched the solution of the 3D thermal resistance analysis within 6%. The power

  5. Encouragement of Enzyme Reaction Utilizing Heat Generation from Ferromagnetic Particles Subjected to an AC Magnetic Field.

    Directory of Open Access Journals (Sweden)

    Masashi Suzuki

    Full Text Available We propose a method of activating an enzyme utilizing heat generation from ferromagnetic particles under an ac magnetic field. We immobilize α-amylase on the surface of ferromagnetic particles and analyze its activity. We find that when α-amylase/ferromagnetic particle hybrids, that is, ferromagnetic particles, on which α-amylase molecules are immobilized, are subjected to an ac magnetic field, the particles generate heat and as a result, α-amylase on the particles is heated up and activated. We next prepare a solution, in which α-amylase/ferromagnetic particle hybrids and free, nonimmobilized chitinase are dispersed, and analyze their activities. We find that when the solution is subjected to an ac magnetic field, the activity of α-amylase immobilized on the particles increases, whereas that of free chitinase hardly changes; in other words, only α-amylase immobilized on the particles is selectively activated due to heat generation from the particles.

  6. A thermoelectric power generating heat exchanger: Part II – Numerical modeling and optimization

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Bjørk, Rasmus; Lindeburg, N.

    2016-01-01

    In Part I of this study, the performance of an experimental integrated thermoelectric generator (TEG)-heat exchanger was presented. In the current study, Part II, the obtained experimental results are compared with those predicted by a finite element (FE) model. In the simulation of the integrated...... TEG-heat exchanger, the thermal contact resistance between the TEG and the heat exchanger is modeled assuming either an ideal thermal contact or using a combined Cooper–Mikic–Yovanovich (CMY) and parallel plate gap formulation, which takes into account the contact pressure, roughness and hardness...

  7. Heat savings in energy systems with substantial distributed generation

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2004-01-01

    The integration of flutuating wind power is an important issue for the future development of sustainable energy systems. In Denmark, the integration is affected by a large amount of cogeneration of heat and power. This gives possibilities as well as sets restraints. The paper shows that with anci...... that with ancillary services supplied by large-scale condensation and CHP-plants, a certain degree of large-scale generation is required regardless of momentary wind input....

  8. Stress analysis of HTR-10 steam generator heat exchanging tubes

    International Nuclear Information System (INIS)

    Dong Jianling; Zhang Xiaohang; Yin Dejian; Fu Jiyang

    2001-01-01

    Steam Generator (SG) heat exchanging tubes of 10 MW High Temperature Gas Cooled Reactor (HTR-10) are protective screens between the primary loop of helium with radioactivity and the secondary loop of feeding water and steam without radioactivity. Water and steam will enter into the primary loop when rupture of the heat exchanging tubes occurs, which lead to increase of the primary loop pressure and discharge of radioactive materials. Therefore it is important to guarantee the integrity of the tubes. The tube structure is spiral tube with small bending radius, which make it impossible to test with volumetric in-service detection. For such kind of spiral tube, using LBB concept to guarantee the integrity of the tubes is an important option. The author conducts stress analysis and calculation of HTR-10 SG heat exchanging tubes using the FEM code of piping stress analysis, PIPESTRESS. The maximum stress and the dangerous positions are obtained

  9. Network Simulation solution of free convective flow from a vertical cone with combined effect of non- uniform surface heat flux and heat generation or absorption

    Science.gov (United States)

    Immanuel, Y.; Pullepu, Bapuji; Sambath, P.

    2018-04-01

    A two dimensional mathematical model is formulated for the transitive laminar free convective, incompressible viscous fluid flow over vertical cone with variable surface heat flux combined with the effects of heat generation and absorption is considered . using a powerful computational method based on thermoelectric analogy called Network Simulation Method (NSM0, the solutions of governing nondimensionl coupled, unsteady and nonlinear partial differential conservation equations of the flow that are obtained. The numerical technique is always stable and convergent which establish high efficiency and accuracy by employing network simulator computer code Pspice. The effects of velocity and temperature profiles have been analyzed for various factors, namely Prandtl number Pr, heat flux power law exponent n and heat generation/absorption parameter Δ are analyzed graphically.

  10. A quasi-transient model of a transcritical carbon dioxide direct-expansion ground source heat pump for space and water heating

    International Nuclear Information System (INIS)

    Eslami-Nejad, Parham; Ouzzane, Mohamed; Aidoun, Zine

    2015-01-01

    In this study, a theoretical quasi-transient model is developed for detailed simulations of a carbon dioxide (CO_2) direct-expansion ground source heat pump (DX-GSHP). This model combines a transient analytical model for the ground, steady-state numerical models for the borehole and the gas cooler, as well as several thermodynamic models for the remaining components of a conventional heat pump, organized in interacting subroutines to form a powerful simulation tool. Extensive validation combining experimental data and CFD-generated results was performed for the borehole before the tool was used to simulate a practical application case. Performance is investigated for a system satisfying both space heating and domestic hot water requirements of a typical single family detached home in a cold climate region. The variation of different system parameters is also evaluated in this study. It is shown that CO_2 DX-GSHPs can offer relatively efficient and stable performance for integrated water and space heating applications. Furthermore, the importance of an accurate geothermal borehole sizing is highlighted for the DX-CO_2 heat pump systems. It is shown that, due to changes in the system working conditions, the total borehole length is not linearly correlated with the heat pump energy consumption and other parameters such as heat pump coefficient of performance and pressure drop in ground heat exchangers. Results showed that increasing the total borehole length of an optimum design (reference case study) by 25% decreases the total annual energy consumption by only 6%. However, reducing total borehole length of the reference case by 25% increases the total annual energy consumption by 10%. - Highlights: • A quasi-transient model for CO_2 direct-exchange ground-source heat pump is developed. • Validation combining experimental data and CFD-generated results was performed. • The effect of the borehole size on the design parameters is evaluated. • Results show that

  11. The General-Purpose Heat Source Radioisotope Thermoelectric Generator: Power for the Galileo and Ulysses missions

    International Nuclear Information System (INIS)

    Bennett, G.L.; Lombardo, J.J.; Hemler, R.J.; Peterson, J.R.

    1986-01-01

    Electrical power for NASA's Galileo mission to Jupiter and ESA's Ulysses mission to explore the polar regions of the Sun will be provided by General-Purpose Heat Source Radioisotope Thermo-electric Generators (GPHS-RTGs). Building upon the successful RTG technology used in the Voyager program, each GPHS-RTG will provide at least 285 W(e) at beginning-of-mission. The design concept has been proven through extensive tests of an electrically heated Engineering Unit and a nuclear-heated Qualification Unit. Four flight generators have been successfully assembled and tested for use on the Galileo and Ulysses spacecraft. All indications are that the GPHS-RTGs will meet or exceed the power requirement of the missions

  12. Measuring the linear heat generation rate of a nuclear reactor fuel pin

    International Nuclear Information System (INIS)

    Smith, R.D.

    1981-01-01

    A miniature gamma thermometer is described which is capable of travelling through bores distributed in an array through a nuclear reactor core and measure the linear heat generation rate of the fuel pins. (U.K.)

  13. Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review

    International Nuclear Information System (INIS)

    Persson, Urban; Münster, Marie

    2016-01-01

    Municipal solid waste has seen increasing annual volumes for many decades in contemporary Europe and constitutes, if not properly managed, an environmental problem due to local pollution and greenhouse gas emissions. From an energy perspective, waste is also an alternative fuel for power and heat generation; energy recovery from waste represents an effective measure to reduce landfilling and avoid disposal emissions while simultaneously reducing the equivalent demand for primary energy supply. A key factor for obtaining the full synergetic benefits of this energy recovery is the presence of local heat distribution infrastructures, without which no large-scale recovery and utilisation of excess heat is possible. In this paper, which aims to estimate municipal solid waste volumes available for heat recovery in European district heating systems in 2030, a literature and data review is performed to establish and assess current and future EU (European Union) waste generation and management. Main conclusions are that more heat can be recovered from current Waste-to-Energy facilities operating at low average heat recovery efficiencies, that efficient incineration capacity is geographically concentrated, and that waste available for heat recovery in 2030 is equally determined by total generation volumes by this year as by future EU deployment levels of district heating. - Highlights: • European municipal solid waste time series data analysed from 1995 to 2012. • Review of modelling approaches to assess future European waste generation. • Weather corrected district heat data for EU Member States in 1995 and 2012. • Low average heat recovery efficiency in current European waste incineration. • Future heat recovery efficiencies as determinant as future generation volumes.

  14. Discussion on the applicability of entropy generation minimization and entransy theory to the evaluation of thermodynamic performance for heat pump systems

    International Nuclear Information System (INIS)

    Cheng, XueTao; Liang, XinGang

    2014-01-01

    Highlights: • Seven parameters are applied to the analyses of heat pump systems. • Applicability of entropy generation minimization and entransy theory is discussed. • All concepts except for entransy increase rate (EI) decreases with increasing COP. • Only EI increases with increasing heat flow into the high temperature heat sink. • Applicability of both theories is conditional, depending on the objectives. - Abstract: Based on the entropy generation minimization and entransy theory, we discuss the applicability of the concepts of entropy generation rate, entropy generation number, revised entropy generation number, exergy efficiency, entransy increase rate, entransy increase coefficient and entransy efficiency to the analyses of heat pump systems in this paper. The theoretical analyses show that all the concepts except for the entransy increase rate decrease monotonically with increasing COP, while only the entransy increase rate increases monotonically with increasing heat flow pumped into the high temperature heat sink. It is shown that the entransy increase rate is not as convenient as the other concepts for the COP analyses, while it is suitable for the analyses of the heat flow into the high temperature heat sources. Some numerical examples are also presented, and the results have verified the theoretical analyses. Therefore, the applicability of entropy generation minimization and entransy theory to the analyses of heat pump systems is conditional, depending on the design objectives

  15. Hydrous mineral dehydration around heat-generating nuclear waste in bedded salt formations.

    Science.gov (United States)

    Jordan, Amy B; Boukhalfa, Hakim; Caporuscio, Florie A; Robinson, Bruce A; Stauffer, Philip H

    2015-06-02

    Heat-generating nuclear waste disposal in bedded salt during the first two years after waste emplacement is explored using numerical simulations tied to experiments of hydrous mineral dehydration. Heating impure salt samples to temperatures of 265 °C can release over 20% by mass of hydrous minerals as water. Three steps in a series of dehydration reactions are measured (65, 110, and 265 °C), and water loss associated with each step is averaged from experimental data into a water source model. Simulations using this dehydration model are used to predict temperature, moisture, and porosity after heating by 750-W waste canisters, assuming hydrous mineral mass fractions from 0 to 10%. The formation of a three-phase heat pipe (with counter-circulation of vapor and brine) occurs as water vapor is driven away from the heat source, condenses, and flows back toward the heat source, leading to changes in porosity, permeability, temperature, saturation, and thermal conductivity of the backfill salt surrounding the waste canisters. Heat pipe formation depends on temperature, moisture availability, and mobility. In certain cases, dehydration of hydrous minerals provides sufficient extra moisture to push the system into a sustained heat pipe, where simulations neglecting this process do not.

  16. Numerical and experimental analysis for exhaust heat exchangers in automobile thermoelectric generators

    Directory of Open Access Journals (Sweden)

    Shengqiang Bai

    2014-11-01

    Full Text Available Ideal heat exchangers recover as much heat as possible from an engine exhaust at the cost of an acceptable pressure drop. They provide primary heat for a thermoelectric generator (TEG, and their capacity and efficiency is dependent on the material, shape, and type of the heat exchanger. Six different exhaust heat exchangers were designed within the same shell, and their computational fluid dynamics (CFD models were developed to compare heat transfer and pressure drop in typical driving cycles for a vehicle with a 1.2 L gasoline engine. The result showed that the serial plate structure enhanced heat transfer by 7 baffles and transferred the maximum heat of 1737 W. It also produced a maximum pressure drop of 9.7 kPa in a suburban driving cycle. The numerical results for the pipe structure and an empty cavity were verified by experiments. Under the maximum power output condition, only the inclined plate and empty cavity structure undergoes a pressure drop less than 80 kPa, and the largest pressure drop exceeds 190 kPa. In this case, a mechanism with a differential pressure switch is essential to bypass part of the exhaust.

  17. First- and second-generation total synthesis of ciguatoxin CTX3C.

    Science.gov (United States)

    Inoue, Masayuki; Miyazaki, Keisuke; Uehara, Hisatoshi; Maruyama, Megumi; Hirama, Masahiro

    2004-08-17

    More than 20,000 people suffer annually from ciguatera seafood poisoning in subtropical and tropical regions. The extremely low content of the causative neurotoxins, designated as ciguatoxins, in fish has hampered isolation, detailed biological studies, and preparation of anti-ciguatoxin antibodies for detecting these toxins. Furthermore, the large (3 nm in length) and complex molecular structure of ciguatoxins has impeded chemists from completing their total synthesis. In this article, the full details of studies leading to the total synthesis of ciguatoxin CTX3C are provided. The key elements of the first-generation approach include O,O-acetal formation from the right and left wing fragments, conversion from O,O-acetal to O,S-acetal, a radical reaction to cyclize the G ring, a ring-closing metathesis reaction to close the F ring, and final removal of the 2-naphtylmethyl protective groups. Subsequent studies provided a second-generation total synthesis, which is more concise and results in a higher yield. Second-generation synthesis was accomplished by using a direct method of constructing the key intermediate O,S-acetal from alpha-chlorosulfide and a secondary alcohol. These syntheses ensure a practical supply of ciguatoxin for biological applications.

  18. Origin of excess heat generated during loading Pd-impregnated alumina powder with deuterium and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriyeva, O., E-mail: olga.dmitriyeva@colorado.edu [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 (United States); Coolescence LLC, 2450 Central Ave Ste F, Boulder, CO 80301 (United States); Cantwell, R.; McConnell, M. [Coolescence LLC, 2450 Central Ave Ste F, Boulder, CO 80301 (United States); Moddel, G. [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 (United States)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer We studied heat produced by hydrogen and deuterium in Pd-impregnated alumina powder. Black-Right-Pointing-Pointer Samples were fabricated using light and heavy water isotopes and varied the gas used for loading. Black-Right-Pointing-Pointer Incorporation of hydrogen and deuterium influenced the amount of heat released or consumed. Black-Right-Pointing-Pointer Pd nanoparticles appear to catalyze hydrogen/deuterium (H/D) exchange chemical reactions. Black-Right-Pointing-Pointer Anomalous heating can be accounted for by chemical rather than nuclear reactions. - Abstract: We studied heat production in Pd-impregnated alumina powder in the presence of hydrogen and deuterium gases, investigating claims of anomalous heat generated as a result of nuclear fusion, usually referred to as a low energy nuclear reaction (LENR). By selecting the water isotope used to fabricate the material and then varying the gas used for loading, we were able to influence the amount of heat released or consumed. We suggest that Pd in its nanoparticle form catalyzes hydrogen/deuterium (H/D) exchange reactions in the material. This hypothesis is supported by heat measurements, residual gas analysis (RGA) data, and calculations of energy available from H/D exchange reactions. Based on the results we conclude that the origin of the anomalous heat generated during deuterium loading of Pd-enriched alumina powder is chemical rather than nuclear.

  19. A study on heat transfer enhancement using flow channel inserts for thermoelectric power generation

    International Nuclear Information System (INIS)

    Lesage, Frédéric J.; Sempels, Éric V.; Lalande-Bertrand, Nathaniel

    2013-01-01

    Highlights: • Thermal enhancement in a thermoelectric liquid generator is tested. • Thermal enhancement is brought upon by flow impeding inserts. • CFD simulations attribute thermal enhancement to velocity field alterations. • Thermoelectric power enhancement is measured and discussed. • Power enhancement relative to adverse pressure drop is investigated. - Abstract: Thermoelectric power production has many potential applications that range from microelectronics heat management to large scale industrial waste-heat recovery. A low thermoelectric conversion efficiency of the current state of the art prevents wide spread use of thermoelectric modules. The difficulties lie in material conversion efficiency, module design, and thermal system management. The present study investigates thermoelectric power improvement due to heat transfer enhancement at the channel walls of a liquid-to-liquid thermoelectric generator brought upon by flow turbulating inserts. Care is taken to measure the adverse pressure drop due to the presence of flow impeding obstacles in order to measure the net thermoelectric power enhancement relative to an absence of inserts. The results illustrate the power enhancement performance of three different geometric forms fitted into the channels of a thermoelectric generator. Spiral inserts are shown to offer a minimal improvement in thermoelectric power production whereas inserts with protruding panels are shown to be the most effective. Measurements of the thermal enhancement factor which represents the ratio of heat flux into heat flux out of a channel and numerical simulations of the internal flow velocity field attribute the thermal enhancement resulting in the thermoelectric power improvement to thermal and velocity field synergy

  20. Parametric numerical investigaion of natural convection in a heat-generating fluid with phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Aksenova, A.E.; Chudanov, V.V.; Strizhov, V.F.; Vabishchevich, P.N. [Institute of Nuclear Safety Russian Academy Science, Moscow (Russian Federation)

    1995-09-01

    Unsteady natural convection of a heat-generating fluid with phase transitions in the enclosures of a square section with isothermal rigid walls is investigated numerically for a wide range of dimensionless parameters. The quasisteady state solutions of conjugate heat and mass transfer problem are compared with available experimental results. Correlation relations for heat flux distributions at the domain boundaries depending on Rayleigh and Ostrogradskii numbers are obtained. It is shown that generally heat transfer is governed both by natural circulation and crust formation phenomena. Results of this paper may be used for analysis of experiments with prototypic core materials.

  1. Combined generation of electric and heating energy in future development of Yugoslav energy sector until 2000

    International Nuclear Information System (INIS)

    Djajic, Nenad; Zivanovic, Vladimir

    2000-01-01

    Development of the district heating system in the FR Yugoslavia, beside the combined generation of electric and heating energy presents a necessity for energy, economic and ecological reasons. Although the structure of energy reserves is rather unfavourable considering that the lignite is being predominantly used, available reserves of energy raw material are able to ensure the long-term development of Yugoslav energy sector, and to offer real possibilities for considerable substitution of foreign good quality fuels, especially in district heating systems. Their further development will depend, among other things: on the implementation of new technological solutions for the exploitation of local energy resources; need of reconstruction, revitalisation and transformation of old condensing thermal power plants into the cogeneration plants; installation of remote controlled transmission of heating energy as well as on development of heating plants and smaller co-generation plants based on local energy resources. (Authors)

  2. Test and evaluation of Alco/BLH prototype sodium-heated steam generator. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, C.J.; Auge, L.J.; Cho, S.M.; Hanna, R.W.; Prevost, J.R.; Steger, N.A.; Wagner, R.K.

    1971-01-31

    A 30-Mwt prototype sodium-to-sodium intermediate heat exchanger and a 30-Mwt prototype sodium-heated steam generator were tested in combined operation in its Sodium Components Test Installation. This report contains the results of test and evaluation of the steam generator. During plant performance tests, performance degradation was observed, which resulted in the initiation of a diagnostic test series. This test series revealed that under certain operating conditions, the thermohydraulic characteristic of the steam generator changed either suddenly or gradually, resulting in overall performance degradation. A structural failure, requiring retirement of the unit, occurred before the diagnostic test series and analytical support effort were completed. This report describes the thermohydraulic and structural performance, including the structural failures, and related evaluation analyses of the Alco/BLH prototype steam generator performed prior to termination of the test and evaluation program. In addition, the report presents a post-test examination plan to obtain data that could possibly explain the cause of performance anomalies and structural failures experienced during testing.

  3. Phenotypic effects of salt and heat stress over three generations in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Léonie Suter

    Full Text Available Current and predicted environmental change will force many organisms to adapt to novel conditions, especially sessile organisms such as plants. It is therefore important to better understand how plants react to environmental stress and to what extent genotypes differ in such responses. It has been proposed that adaptation to novel conditions could be facilitated by heritable epigenetic changes induced by environmental stress, independent of genetic variation. Here we assessed phenotypic effects of heat and salt stress within and across three generations using four highly inbred Arabidopsis thaliana genotypes (Col, Cvi, Ler and Sha. Salt stress generally decreased fitness, but genotypes were differently affected, suggesting that susceptibility of A. thaliana to salt stress varies among genotypes. Heat stress at an early rosette stage had less detrimental effects but accelerated flowering in three out of four accessions. Additionally, we found three different modes of transgenerational effects on phenotypes, all harboring the potential of being adaptive: heat stress in previous generations induced faster rosette growth in Sha, both under heat and control conditions, resembling a tracking response, while in Cvi, the phenotypic variance of several traits increased, resembling diversified bet-hedging. Salt stress experienced in earlier generations altered plant architecture of Sha under salt but not control conditions, similar to transgenerational phenotypic plasticity. However, transgenerational phenotypic effects depended on the type of stress as well as on genotype, suggesting that such effects may not be a general response leading to adaptation to novel environmental conditions in A. thaliana.

  4. Evaluation Metrics for Intermediate Heat Exchangers for Next Generation Nuclear Reactors

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Kim, Eung Soo; Anderson, Nolan

    2011-01-01

    The Department of Energy (DOE) is working with industry to develop a next generation, high-temperature gas-cooled reactor (HTGR) as a part of the effort to supply the United States with abundant, clean, and secure energy as initiated by the Energy Policy Act of 2005 (EPAct; Public Law 109-58,2005). The NGNP Project, led by the Idaho National Laboratory (INL), will demonstrate the ability of the HTGR to generate hydrogen, electricity, and/or high-quality process heat for a wide range of industrial applications.

  5. Numerical simulation of dryout and post-dryout heat transfer in a straight-pipe once-through steam generator

    International Nuclear Information System (INIS)

    Shi, Jianxin; Sun, Baozhi; Han, Wenjing; Zhang, Guolei; Li, Yanjun; Yang, Longbin

    2016-01-01

    Highlights: • Two-fluid three-flow-field model is developed to predict dryout in steam generator. • The empirical correlation is used to correct dryout criterion. • The interactions between three-flow-fields and the wall are considered. • Dryout and post-dryout heat transfer mechanisms are discussed through the results. - Abstract: Accurately predicting dryout and post-dryout heat transfer characteristics is critical for proper design of once-through steam generators. This paper provides a reasonable and simple method for this prediction by introducing a two-fluid, three-flow-field mathematical model and improving the dryout criterion-critical quality, and conducts a numerical simulation of dryout and post-dryout heat transfer in a once-through steam generator to prove the model’s performance. The results show that the critical quality in a once-through steam generator is about 0.82, with the heat transfer capacity significantly reducing and the wall temperature sharply increasing in a non-linear form by approximately 30 K when dryout occurs. Part of the steam is superheated in the post-dryout region, resulting in a deviation from thermodynamic equilibrium between the vapor and liquid phases. Dryout and post-dryout heat transfer in the once-through steam generator operate between complete deviation from thermodynamic equilibrium and complete thermodynamic equilibrium. Therefore, the presence of droplets has a significant influence on the mass, momentum and energy transfer between the film and vapor phases.

  6. Scale model test results for an inverted U-tube steam generator with comparisons to heat transfer correlations

    International Nuclear Information System (INIS)

    Boucher, T.J.

    1987-01-01

    To provide data for assessment and development of thermal-hydraulic computer codes, bottom main feedwater-line-break transient simulations were performed in a scale model (Semiscale Mod-2C) of a pressurized water reactor (PWR) with conditions typical of a PWR (15.0 MPa primary pressure, 600 K steam generator inlet plenum fluid temperatures, 6.2 MPa secondary pressure). The state-of-the-art measurements in the scale model (Type III) steam generator allow for the determination of U-tube steam generator allow for the determination of U-tube steam generator secondary component interactions, tube bundle local radial heat transfer, and tube bundle and riser vapor void fractions for steady state and transient operations. To enhance the understanding of the observed phenomena, the component interactions, local heat fluxes, local secondary convective heat transfer coefficients and local vapor void fractions are discussed for steady state, full-power and transient operations. Comparisons between the measurement-derived secondary convective heat transfer coefficients and those predicted by a number of correlations, including the Chen correlation currently used in thermal-hydraulic computer codes, show that none of the correlations adequately predict the data and points out the need for the formulation of a new correlation based on this experimental data. The unique information presented herein should be of the interest to anyone involved in modeling inverted U-tube steam generator thermal-hydraulics for forced convection boiling/vaporization heat transfer. 5 refs., 13 figs., 1 tab

  7. Framing the performance of heat absorption/generation and thermal radiation in chemically reactive Darcy-Forchheimer flow

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available The present work aims to report the consequences of heterogeneous-homogeneous reactions in Darcy-Forchheimer flow of Casson material bounded by a nonlinear stretching sheet of variable thickness. Nonlinear stretched surface with variable thickness is the main agent for MHD Darcy-Forchheimer flow. Impact of thermal radiation and non-uniform heat absorption/generation are also considered. Flow in porous space is characterized by Darcy-Forchheimer flow. It is assumed that the homogeneous process in ambient fluid is governed by first order kinetics and the heterogeneous process on the wall surface is given by isothermal cubic autocatalator kinetics. The governing nonlinear ordinary differential equations are solved numerically. Effects of physical variables such as thickness, Hartman number, inertia and porous, radiation, Casson, heat absorption/generation and homogeneous-heterogeneous reactions are investigated. The variations of drag force (skin friction and heat transfer rate (Nusselt numberfor different interesting variables are plotted and discussed. Keywords: Casson fluid, Variable sheet thickness, Darcy-Forchheimer flow, Homogeneous-heterogeneous reactions, Heat generation/absorption, Thermal radiation

  8. Resistive vs. total power depositions by Alfven modes in pre-heated low aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Cuperman, S.; Bruma, C.; Komoshvili, K.

    2004-01-01

    The power deposition of fast waves launched by a LFS located antenna in a pre-heated, strongly non-uniform low aspect ratio tokamak (START) is investigated. The rigorous computational results indicate a total power deposition by far larger than that predicted for Alfven continuum eigenmodes in cylindrical plasmas. For toroidal wave numbers |N| > 1, the resistive and total power depositions are almost equal. (author)

  9. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  10. Experimental investigations on waterside corrosion problems of sodium-heated steam generators

    International Nuclear Information System (INIS)

    Buescher, E.; Haubold, W.; Jansing, W.; Vinzens, K.

    1975-01-01

    Based on experimental results, it is shown that the formation of a protective magnetite layer in sodium-heated steam generators - operated with neutral demineralized water - proceeds very fast. The stability of the magnetite layer is excellent even at sudden load changes and at the start-up or shut-down operation. (author)

  11. Experimental investigations on waterside corrosion problems of sodium-heated steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Buescher, E; Haubold, W; Jansing, W; Vinzens, K

    1975-07-01

    Based on experimental results, it is shown that the formation of a protective magnetite layer in sodium-heated steam generators - operated with neutral demineralized water - proceeds very fast. The stability of the magnetite layer is excellent even at sudden load changes and at the start-up or shut-down operation. (author)

  12. Modelling hot electron generation in short pulse target heating experiments

    Directory of Open Access Journals (Sweden)

    Sircombe N.J.

    2013-11-01

    Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  13. District heating system of Belgrade supplied from the co-generation plant 'Obrenovac' (Yugoslavia)

    International Nuclear Information System (INIS)

    Tomic, P.; Dobric, Z.; Studovic, M.

    2000-01-01

    The paper presents most relevant technical and economic features of the Project called 'System for supplying Belgrade with heat' (SDGB) from the thermal power plant 'Obrenovac', based on domestic coal and reconstruction of condensing power plant for combined generation of electricity and heat for the needs of municipal energy consumption. The system is designed for transport thermal energy, with capacity of 730 MJ/s from the Thermal Power Plant 'Nikola Tesla' / A to the existing heat plant 'Novi Beograd' based on the natural gas. The paper also gives the comparison of most important technical and economic features of 'SDGB' Project with the similar Project of District Heating System for supplying Prague with the thermal energy from Thermal Power Plant Melnik. (Author)

  14. Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems

    International Nuclear Information System (INIS)

    Pearce, J.M.

    2009-01-01

    The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five. (author)

  15. Numerical and experimental investigation of melting with internal heat generation within cylindrical enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Amber Shrivastava; Brian Williams; Ali S. Siahpush; Bruce Savage; John Crepeau

    2014-06-01

    There have been significant efforts by the heat transfer community to investigate the melting phenomenon of materials. These efforts have included the analytical development of equations to represent melting, numerical development of computer codes to assist in modeling the phenomena, and collection of experimental data. The understanding of the melting phenomenon has application in several areas of interest, for example, the melting of a Phase Change Material (PCM) used as a thermal storage medium as well as the melting of the fuel bundle in a nuclear power plant during an accident scenario. The objective of this research is two-fold. First a numerical investigation, using computational fluid dynamics (CFD), of melting with internal heat generation for a vertical cylindrical geometry is presented. Second, to the best of authors knowledge, there are very limited number of engineering experimental results available for the case of melting with Internal Heat Generation (IHG). An experiment was performed to produce such data using resistive, or Joule, heating as the IHG mechanism. The numerical results are compared against the experimental results and showed favorable correlation. Uncertainties in the numerical and experimental analysis are discussed. Based on the numerical and experimental analysis, recommendations are made for future work.

  16. Industrial implementation issues of Total Site Heat Integration

    International Nuclear Information System (INIS)

    Chew, Kew Hong; Klemeš, Jiří Jaromír; Wan Alwi, Sharifah Rafidah; Abdul Manan, Zainuddin

    2013-01-01

    Heat Integration has been a well-established energy conservation strategy in the industry. Total Site Heat Integration (TSHI) has received growing interest since its inception in the 90s. The methodology has been used with certain simplifications to solve TSHI problems. This paper investigates the main issues that can influence the practical implementation of TSHI in the industry. The main aim is to provide an assessment and possible guidance for future development and extension of the TSHI methodology from the industrial perspective. Several key issues have been identified as being of vital importance for the industries: design, operation, reliability/availability/maintenance, regulatory/policy and economics. Design issues to consider include plant layout, pressure drop, etc. For operation, issues such as startup and shutdown need to be considered. Reliability, availability and maintenance (RAM) are important as they directly affect the production. Relevant government policy and incentives are also important when considering the options for TSHI. Finally, a TSHI system needs to be economically viable. This paper highlights the key issues to be considered for a successful implementation of TSHI. The impacts of these issues on TS integration are summarised in a matrix, which forms a basis for an improved and closer-to-real-life implementation of the TSHI methodology. Highlights: ► Current TSHI methodology has been used for solving models with certain simplifications. ► Several issues that can influence practical implementation of TSHI are identified. ► Impacts of these issues on safety, environment and economics are evaluated. ► The findings form a basis for an improved and practical implementation of TSHI

  17. Study of the heat flux generated by accelerated electrons on the components near the plasma

    International Nuclear Information System (INIS)

    Laugier, J.

    2003-01-01

    Experimental data have shown that a heat flux appears on components situated near the wave guide of the lower hybrid antenna of Tore-Supra. This heat flux is due to the energy release during collisions that occur between the component surface and the electrons accelerated by the high frequency field generated by the antenna. Simulations show that the electrons may reach an energy of 2-3 keV and that the heat flux generated in the shield may reach 10 MW/m 2 . In this work a correlation has been established between the local heat flux due to electron impact and the mean electrical field near the antenna: Φ (W/m 2 ) = 4.10 -4 x E -6 (10 5 V/m). It is also shown that the ratio of electrons that reach the shield is roughly not dependent on the value of the mean electrical field. In the hypothesis of a Gaussian distribution of electron initial velocities this ratio is 10%. (A.C.)

  18. Unsteady Flow of Reactive Viscous, Heat Generating/Absorbing Fluid with Soret and Variable Thermal Conductivity

    Directory of Open Access Journals (Sweden)

    I. J. Uwanta

    2014-01-01

    Full Text Available This study investigates the unsteady natural convection and mass transfer flow of viscous reactive, heat generating/absorbing fluid in a vertical channel formed by two infinite parallel porous plates having temperature dependent thermal conductivity. The motion of the fluid is induced due to natural convection caused by the reactive property as well as the heat generating/absorbing nature of the fluid. The solutions for unsteady state temperature, concentration, and velocity fields are obtained using semi-implicit finite difference schemes. Perturbation techniques are used to get steady state expressions of velocity, concentration, temperature, skin friction, Nusselt number, and Sherwood number. The effects of various flow parameters such as suction/injection (γ, heat source/sinks (S, Soret number (Sr, variable thermal conductivity δ, Frank-Kamenetskii parameter λ, Prandtl number (Pr, and nondimensional time t on the dynamics are analyzed. The skin friction, heat transfer coefficients, and Sherwood number are graphically presented for a range of values of the said parameters.

  19. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Søren Juhl; Chen, Min

    2012-01-01

    on a finite-element approach. On each discretized segment, fluid properties, heat transfer process and TEG performance are locally calculated for higher model precision. To benefit both the system design and fabrication, the way to model TEG modules is herein reconsidered; a database of commercialized compact......This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based...... plate-fin heat exchangers is adopted. Then the model is validated against experimental data and the main variables are identified by means of a sensitivity analysis. Finally, the system configuration is optimized for recovering heat from the exhaust gas. The results exhibit the crucial importance...

  20. Heat-pipe assisted thermoelectric generators for exhaust gas applications

    OpenAIRE

    Gonçalves, L. M.; Martins, Jorge; Antunes, Joaquim; Rocha, Romeu; Brito, F. P.

    2012-01-01

    Millions of hybrid cars are already running on our roads with the purpose of reducing fossil fuel dependence. One of their main advantages is the recovery of wasted energy, namely by brake recovery. However, there are other sources of wasted energy in a car powered by an internal combustion engine, such as the heat lost through the cooling system, lubrication system (oil coolers) and in the exhaust system. These energies can be recuperated by the use of thermoelectric generators (TEG) based o...

  1. A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance

    International Nuclear Information System (INIS)

    Elghool, Ali; Basrawi, Firdaus; Ibrahim, Thamir Khalil; Habib, Khairul; Ibrahim, Hassan; Idris, Daing Mohamad Nafiz Daing

    2017-01-01

    Highlights: • Coupling a thermoelectric power generation (TEG) to a heat sink is presented. • Review the classifications and parameters affecting performance of the TEG with heat sink. • Discuss different mathematical models of the heat sinks. • The passive heat sinks are most appropriate because of the inherent efficiency of TEG. • Medium temperature range below 300 °C is found to be most suitable for HPHS. - Abstract: In recent years, there have been growing interests in key areas related to global warming resulting from environmental emissions, and the diminishing sources of fossil fuel. The increased interest has led to significant research efforts towards finding novel technologies in clean energy production. Consequently, the merits of a thermo-electric generator (TEG) have promised a revival of alternative means of producing green energy. It is, however, impractical to account for the cost of thermal energy input to the TEG which is in the form of final waste heat. This is because the technology presents critical limitations in determining its cost efficiency nor its economic disadvantages. This paper reviews the principles of thermo-electric power production, as well the materials use, performance achieved, and application areas. The paper also takes a particular deliberation on TEG heat sinks geometries and categories. The review emphasizes more on the TEG performance while considering a number of heat sink parameters related to its performance.

  2. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-12-01

    The feasibility of safe ocean disposal options for heat-generating radioactive waste relies on the existence of suitable disposal sites. This review considers the status of the development of site selection criteria and the results of the study area investigations carried out under various national and international research programmes. In particular, the usefulness of the results obtained is related to the data needed for environmental and emplacement modelling. Preliminary investigations have identified fifteen potential deep ocean study areas in the North Atlantic. From these Great Meteor East (GME), Southern Nares Abyssal Plan (SNAP) and Kings Trough Flank (KTF) were selected for further investigation. The review includes appraisals of regional geology, geophysical studies, sedimentology, geotechnical studies, geochemical studies and oceanography. (author)

  3. Process heat supply requirements on HTGRs

    International Nuclear Information System (INIS)

    Schad, M.K.

    1989-01-01

    Since it has been claimed that the MHTGR is competitive with coal in producing electricity, the MHTGR must be competitive in producing process heat. There is a huge process heat market and there are quite a number of processes where the industrial MHTGR = HTRI could supply the necessary process heat and energy. However, to enhance its introduction on the market and to conquer a reasonable share of the market, the HTRI should fulfill the following major requirements: Unlimited constant and flexible heat supply, no secondary heat transport system at higher temperatures and low radioactive contamination level of the primary helium. Unlimited constant and flexible heat supply could be achieved with smaller HTRIs having heat generation capacities below 100 MW-th. The process heat generated by smaller HTRIs need not be more expensive since the installed necessary heat supply redundancy is smaller and the excess power density lower. The process heat at elevated temperatures generated by a HTRI with a secondary heat transfer system is much more expensive due to the additional investment and operating cost as well as the reduced helium temperature span available. For some processes, the HTRI is not able to cover the total process heat requirement while other processes can consume only part of the heat offered. These limitations could be reduced by using higher core outlet and inlet temperatures or both. Due to the considerably lower heat transfer rates and the resulting larger heat transfer areas in process plants, the diffusion of nuclear activity at elevated temperatures may increase so that a more efficient helium cleaning system may be required. (author). 5 figs, 3 tabs

  4. Heat-transfer aspects of Stirling power generation using incinerator waste energy

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.T.; Lin, F.Y.; Chiou, J.S. [National Cheng Kung University, Tainan, Taiwan (China). Department of Mechanical Engineering

    2003-01-01

    The integration of a free-piston Stirling engine with linear alternator and an incinerator is able to effectively recover the waste energy and generate electrical power. In this study, a cycle-averaged heat transfer model is employed to investigate the performance of a free-piston Stirling engine installed on an incinerator. With the input of source and sink temperatures and other realistic heat transfer coefficients, the efficiency and the optimal power output are estimated, and the effect induced by internal and external irreversibilities is also evaluated. The proposed approach and modeling results presented in this study provide valuable information for engineers and designers to recover energy from small-scale incinerators. (author)

  5. PHOTOCHEMICAL HEATING OF DENSE MOLECULAR GAS

    Energy Technology Data Exchange (ETDEWEB)

    Glassgold, A. E. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Najita, J. R. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-09-10

    Photochemical heating is analyzed with an emphasis on the heating generated by chemical reactions initiated by the products of photodissociation and photoionization. The immediate products are slowed down by collisions with the ambient gas and then heat the gas. In addition to this direct process, heating is also produced by the subsequent chemical reactions initiated by these products. Some of this chemical heating comes from the kinetic energy of the reaction products and the rest from collisional de-excitation of the product atoms and molecules. In considering dense gas dominated by molecular hydrogen, we find that the chemical heating is sometimes as large, if not much larger than, the direct heating. In very dense gas, the total photochemical heating approaches 10 eV per photodissociation (or photoionization), competitive with other ways of heating molecular gas.

  6. Integration of Thermoelectric Generators and Wood Stove to Produce Heat, Hot Water, and Electrical Power

    Science.gov (United States)

    Goudarzi, A. M.; Mazandarani, P.; Panahi, R.; Behsaz, H.; Rezania, A.; Rosendahl, L. A.

    2013-07-01

    Traditional fire stoves are characterized by low efficiency. In this experimental study, the combustion chamber of the stove is augmented by two devices. An electric fan can increase the air-to-fuel ratio in order to increase the system's efficiency and decrease air pollution by providing complete combustion of wood. In addition, thermoelectric generators (TEGs) produce power that can be used to satisfy all basic needs. In this study, a water-based cooling system is designed to increase the efficiency of the TEGs and also produce hot water for residential use. Through a range of tests, an average of 7.9 W was achieved by a commercial TEG with substrate area of 56 mm × 56 mm, which can produce 14.7 W output power at the maximum matched load. The total power generated by the stove is 166 W. Also, in this study a reasonable ratio of fuel to time is described for residential use. The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water, and essential heat for warming the room and cooking.

  7. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Duarte, Fabio Andrei; Bizzi, Cezar Augusto; Goldschmidt Antes, Fabiane; Dressler, Valderi Luiz; Flores, Erico Marlon de Moraes

    2009-01-01

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L - 1 KBr in 6 mol L - 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L - 1 HCl and 2.5% m/v NaBH 4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 deg. C and the atomization temperature was set at 650 deg. C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g - 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  8. Unsteady temperature distribution in bars of arbitrary cross section with heat generation

    International Nuclear Information System (INIS)

    Laura, P.A.A.; Sanchez Sarmiento, G.

    1983-01-01

    In general, numerical schemes such as the finite-difference method, the Monte-Carlo approach or the finite element technique must be applied when solving boundary value problems of heat conduction theory in the case of complex geometries quite common in nuclear reactor technology. It is shown in the present paper that an alternative analytical approach based on conformal mapping techniques and a variational formulation is quite convenient for the complicated domains considered herewith and for a type of unsteady state thermal field situation when heat generation takes place. (orig.)

  9. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn

    2012-05-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts, which can be regenerated using low-temperature waste heat, can also produce sufficient voltage for hydrogen gas generation in an MREC. The maximum hydrogen production rate was 1.6 m3 H2/m3·d, with a hydrogen yield of 3.4 mol H2/mol acetate at a salinity ratio of infinite. Energy recovery was 10% based on total energy applied with an energy efficiency of 22% based on the consumed energy in the reactor. The cathode overpotential was dependent on the catholyte (sodium bicarbonate) concentration, but not the salinity ratio, indicating high catholyte conductivity was essential for maximizing hydrogen production rates. The direction of the HC and LC flows (co- or counter-current) did not affect performance in terms of hydrogen gas volume, production rates, or stack voltages. These results show that the MREC can be successfully operated using ammonium bicarbonate salts that can be regenerated using conventional distillation technologies and waste heat making the MREC a useful method for hydrogen gas production from wastes. © 2012 American Chemical Society.

  10. Numerical Study of Thermal and Flow Characteristics of Plate-Fin Heat Sink with Longitudinal Vortex Generator Installed on the Ground

    Directory of Open Access Journals (Sweden)

    Yen-Tso Chang

    2014-01-01

    Full Text Available This study applied the commercial software ANSYS CFD (FLUENT, for simulating the transient flow field and investigating the influence of each parameter of longitudinal vortex generators (LVGs on the thermal flux of a plate-fin heat sink. Vortex generator was set in front of plate-fin heat sink and under the channel, which was in common-flow-down (CFD and common-flow-up (CFU conditions, which have the result of vortex generator of delta winglet pair (DWP. In this study the parameters were varied, such as the minimum transverse distance between winglet pair, the attack angle of the vortex generator, fins number, the fin height, and the distance between the vortex generator and plate-fin. The coolant fluid flew into the fin-to-fin channel and pushed the vortex from different geometry toward the bottom. This phenomenon took off the heat from the plate to enhance the heat transfer. The numerical results indicated that the LVGs located close to the plate-fin heat sink are zero with the attack angle being 30°, presenting optimal overall conditions.

  11. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-11-01

    The detailed radiological assessment of any proposed operations for the disposal of heat-generating radioactive waste in deep ocean sediments would require data describing expected embedment depths and spacing of the waste. In this study a theoretical model which predicts penetrator trajectories from launch through to rest in the sediment has been produced and has been used to generate data for environmental models. The trajectory model has been used to study the effects of small imperfections and launch parameters on the motion of a reference penetrator through water and sediment. The model predicts that the horizontal displacements of the penetrators' final resting places in the sediment from their launch positions at the ocean surface could be limited to less than 15m by twisting their tail fins uniformly by just one degree to induce spinning. The reference penetrator is predicted to achieve satisfactory embedment depth for all the cases considered including allowance for the effect of curved penetration paths in the seabed. However, the ability of the model to represent highly non-linear sediment penetration paths is demonstrated. Distribution histograms of seabed impact points relative to specific release points are presented. The area of seabed required is calculated. (author)

  12. Experimental and numerical study of waste heat recovery characteristics of direct contact thermoelectric generator

    International Nuclear Information System (INIS)

    Kim, Tae Young; Negash, Assmelash; Cho, Gyubaek

    2017-01-01

    Highlights: • Energy harvesting performance of direct contact thermoelectric generator was studied. • Power-current and voltage-current curves were given for various operating conditions. • Output power prediction using numerical results and empirical correlation was verified. • A 1.0–2.0% conversion efficiency and 5.7–11.1% heat recovery efficiency were obtained. • A 0.25% increase in efficiency was found with a 10 K decrease in coolant temperature. - Abstract: In this study, waste heat recovery performance of a direct contact thermoelectric generator (DCTEG) is experimentally investigated on a diesel engine. In order to conduct an insightful analysis of the DCTEG characteristics, three experimental parameters—engine load, rotation speed, and coolant temperature—are chosen to vary over ranges during the experiments. Experimental results show that higher temperature differences across thermoelectric modules (TEM), larger engine loads, and rotation speeds lead to an improved energy conversion efficiency of the DCTEG, which lies in the range of approximately 1.0–2.0%, while the output power ranges approximately 12–45 W. The increase in the conversion efficiency for an increased engine load becomes more noticeable with a higher engine rotation speed. A 10 K decrease in the coolant temperature yields an approximately 0.25% increase in the conversion efficiency for the engine operating conditions tested. In addition, 3D numerical simulations were conducted to investigate the heat transfer and pressure characteristics of the DCTEG. Numerically obtained exhaust gas temperatures exiting the DCTEG were in good agreement with experimental results. It is also revealed that incorporation of the temperature fields from the numerical simulation and an empirical correlation for a temperature-power relationship provides a good predictor for output power from the DCTEG, especially at low engine load conditions, which deviates from experimental results as the

  13. Qualitative and Quantitative Analysis of Organic Impurities in Feedwater of a Heat-Recovery Steam Generator

    Science.gov (United States)

    Chichirov, A. A.; Chichirova, N. D.; Filimonova, A. A.; Gafiatullina, A. A.

    2018-03-01

    In recent years, combined-cycle units with heat-recovery steam generators have been constructed and commissioned extensively in the European part of Russia. By the example of the Kazan Cogeneration Power Station no. 3 (TETs-3), an affiliate of JSC TGK-16, the specific problems for most power stations with combined-cycle power units that stem from an elevated content of organic impurities in the feedwater of the heat-recovery steam generator (HRSG) are examined. The HRSG is fed with highly demineralized water in which the content of organic carbon is also standardized. It is assumed that the demineralized water coming from the chemical water treatment department of TETs-3 will be used. Natural water from the Volga River is treated to produce demineralized water. The results of a preliminary analysis of the feedwater demonstrate that certain quality indices, principally, the total organic carbon, are above the standard values. Hence, a comprehensive investigation of the feedwater for organic impurities was performed, which included determination of their structure using IR and UV spectroscopy techniques, potentiometric measurements, and element analysis; determination of physical and chemical properties of organic impurities; and prediction of their behavior in the HRSG. The estimation of the total organic carbon revealed that it exceeded the standard values in all sources of water comprising the feedwater for the HRSG. The extracted impurities were humic substances, namely, a mixture of humic and fulvic acids in a 20 : 80 ratio, respectively. In addition, an analysis was performed of water samples taken at all intermediate stages of water treatment to study the behavior of organic substances in different water treatment processes. An analysis of removal of the humus substances in sections of the water treatment plant yielded the concentration of organic substances on the HRSG condensate. This was from 100 to 150 μg/dm3. Organic impurities in boiler water can induce

  14. Toward 4th generation district heating

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend; Dalla Rosa, Alessandro

    2014-01-01

    In many countries, district heating (DH) has a key role in the national strategic energy planning. However, tighter legislation on new and future buildings requires much less heating demand which subsequently causes relative high network heat loss. This will make current DH system uneconomical co...

  15. Simulation of a heat pump system for total heat recovery from flue gas

    International Nuclear Information System (INIS)

    Wei, Maolin; Yuan, Weixing; Song, Zhijia; Fu, Lin; Zhang, Shigang

    2015-01-01

    This paper introduces an approach of using an open-cycle absorption heat pump (OAHP) for recovering waste heat from the flue gas of a gas boiler with a system model. And equivalent energy efficiency is used to evaluate two other heat recovery systems that integrate an electric compression heat pump (EHP) or an absorption heat pump (AHP) with a boiler. The key factors influencing the systems are evaluated. The OAHP system efficiency is improved by 11% compared to the base case. And the OAHP system is more efficient than the AHP or the EHP systems, especially when the solution mass flow rate is only a little less than the cold water mass flow rate. The energy efficiency comparison is supplemented with a simplified economic analysis. The results indicate that the OAHP system is the best choice for the current prices of electricity and natural gas in Beijing. - Highlights: • An OAHP system is analyzed to improve heat recovery from natural gas flue gas. • OAHP system models are presented and analyzed. • The key factors influencing the OAHP systems are analyzed. • The OAHP system is most efficient for most cases compared with other systems. • The OAHP system is more economic than other systems

  16. Assessment of the natural gas potential for heat and power generation in the County of Oestergoetland in Sweden

    International Nuclear Information System (INIS)

    Amiri, Shahnaz; Moshfegh, Bahram; Trygg, Louise

    2009-01-01

    The aim of this study is to investigate the potential use of natural gas for heat and power production for the municipality of Linkoeping, Norrkoeping and FinspAng in the County of Oestergoetland, Sweden. The results of the study revealed that these three municipalities with the present heating demand can convert 2030 GWh/year of the present fuel mixed to natural gas. The expansion of natural gas provides the possibility to increase the electricity generation with approximately 800 GWh annually in the County of Oestergoetland. The global emissions of CO 2 reduce also by approximately 490 ktonne/year by assuming the coal condensing power plant as the marginal power plant. The total system cost decreases by 76 Mkr/year with the present electricity price which varies between 432 and 173 SEK/MWh and with 248 Mkr/year if the present electricity price increases to 37% which is approximately corresponding to European electricity prices. Sensitivity analysis is done with respect to the different factors such as price of electricity, natural gas, etc. The findings show that increased price of electricity and increased district heating demand increases the profitability to convert to natural gas using CHP plant. (author)

  17. Efficiency of Gamma Radiation Alone or In Combination With Heat Stress on Metal Contents of Parents and First Generation of Males of The Cotton Leaf Worm Spodoptera Littoralis

    International Nuclear Information System (INIS)

    El-Degwi, M.S.; Alm El-Din, M.M.S.; Hazaa, M.A.M.

    2011-01-01

    The main objective of the present investigation was to determine the influence of gamma radiation either alone or in combination with heat on the contents and concentration of elements detected in the whole body tissue of male parents and F1 generation of Spodoptera littoralis treated as full grown pupae. The doses applied were 75, 100 and 150 Gy. The data revealed the presence of eight elements in parents and F1 generation exposed to different heat stress (27±2, 33 and 37 degree C and P and Mg were the major contents. The obtained data indicated also that there were no differences in the composition of individual elements between male parents and male F1 generation. There were differences in relative concentration which depends on irradiation dose. The combination treatments were effective on elements concentration. The total concentration of light elements of male parents and F1 generation was increased by increasing the radiation dose. In the contrary, the concentration of heavy element was decreased by increasing the radiation dose. It could be concluded that gamma radiation and/or heat was effective on elements concentrations in adult body of male parents and F1 generation of Spodoptera littoralis which served as biological indicator of normal metabolic pathways and/or biological activity.

  18. A Critical Heat Generation for Safe Nuclear Fuels after a LOCA

    Directory of Open Access Journals (Sweden)

    Jae-Yong Kim

    2014-01-01

    Full Text Available This study applies a thermo-elasto-plastic-creep finite element procedure to the analysis of an accidental behavior of nuclear fuel as well as normal behavior. The result will be used as basic data for the robust design of nuclear power plant and fuels. We extended the range of mechanical strain from small or medium to large adopting the Hencky logarithmic strain measure in addition to the Green-Lagrange strain and Almansi strain measures, for the possible large strain situation in accidental environments. We found that there is a critical heat generation after LOCA without ECCS (event category 5, under which the cladding of fuel sustains the internal pressure and temperature for the time being for the rescue of the power plant. With the heat generation above the critical value caused by malfunctioning of the control rods, the stiffness of cladding becomes zero due to the softening by high temperature. The weak position of cladding along the length continuously bulges radially to burst and to discharge radioactive substances. This kind of cases should be avoid by any means.

  19. Thermal Behavior and Heat Generation Modeling of Lithium Sulfur Batteries

    DEFF Research Database (Denmark)

    Stroe, Daniel-Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2017-01-01

    Lithium Sulfur batteries are receiving a lot of research interest because of their intrinsic characteristics, such as very high energy density and increased safety, which make them a suitable solution for zero-emission vehicles and space application. This paper analyses the influence of the tempe......Lithium Sulfur batteries are receiving a lot of research interest because of their intrinsic characteristics, such as very high energy density and increased safety, which make them a suitable solution for zero-emission vehicles and space application. This paper analyses the influence...... of the temperature on the performance parameters of a 3.4 Ah Lithium-Sulfur battery cell. Furthermore, the values of the internal resistance and entropic heat coefficient, which are necessary for the parametrization of a heat generation model, are determined experimentally....

  20. Micro scale CHP based on biomass intelligent heat transfer with thermoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Moser, W.; Aigenbauer, S.; Heckmann, M.; Friedl, G. (Austrian Bioenergy Centre GmbH, Wieselburg (Austria)); Hofbauer, H. (Institute of Chemical Engineering, Vienna University of Technology (Austria))

    2007-07-01

    Pellet burners need auxiliary electrical power to provide CO{sub 2} balanced heat in a comfortable and environment friendly way. The idea is to produce this and some extra electricity within the device in order to save resources and to gain operation reliability and independency. An option for micro scale CHP is the usage of thermoelectric generators (TEGs). They allow direct conversion of heat into electrical power. They have the advantage of a long maintenance free durability and noiseless operation without moving parts or any working fluid. The useful heat remains almost unaffected and can still be used for heating. TEGs are predestined for the use in micro scale CHP based on solid biomass. In this paper the first results from the fully integrated prototype are presented. The performance of the TEG was observed for different loads and operating conditions in order to realise an optimised micro scale CHP based on solid biomass. (orig.)

  1. Energy saving and emission reduction of China's urban district heating

    International Nuclear Information System (INIS)

    Chen, Xia; Wang, Li; Tong, Lige; Sun, Shufeng; Yue, Xianfang; Yin, Shaowu; Zheng, Lifang

    2013-01-01

    China's carbon dioxide (CO 2 ) emission ranks highest in the world. China is committed to reduce its CO 2 emission by 40% to 45% from the 2005 levels by 2020. To fulfill the target, China's CO 2 emission reduction must exceed 6995 million tons. Energy consumption and CO 2 emission of China's urban district heating (UDH) are increasing. The current policy implemented to improve UDH focuses on replacing coal with natural gas to reduce energy consumption and CO 2 emission to some extent. This paper proposes that heat pump heating (HPH) could serve as a replacement for UDH to help realize energy-saving and emission-reduction goals to a greater extent. The paper also analyzes the impact of this replacement on the heating and power generation sectors. The results show that replacing coal-based UDH with HPH decreases energy consumption and CO 2 emission by 43% in the heating sector. In the power generation sector, the efficiency of power generation at the valley electricity time increases by 0.512%, and the ratio of peak–valley difference decreases by 16.5%. The decreases in CO 2 emission from the heating and power generation sectors cumulatively account for 5.55% of China's total CO 2 emission reduction target in 2020. - Highlights: ► Replacing urban district heating with heat pump heating. ► Impact of heat pump heating on heating and power generation sectors. ► Potential of energy saving and emission reduction for heat pump heating. ► China should adjust current urban heating strategy

  2. Experimental investigation of reflux condensation heat transfer in PWR steam generator tubes in the presence of noncondensible gases

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen; Wu, Tiejun [Purdue Univ., West Lafayette (United States); Nagae, Takashi [Institute of Nuclear Safety System, Tokyo (Japan)

    2003-07-01

    Under certain circumstances in a Pressurized Water Reactor (PWR), the coolant system may be in a partially drained state and reflux condensation in the steam generator U-tubes can be the major heat removal mechanism. Noncondensable gases may be present and would degrade the heat transfer rate. If heat removal rates are insufficient, this situation could lead to core boil-off, fuel rod heatup, and eventually core damage. The Institute of Nuclear Safety System, Inc. (INSS) and the Nuclear Heat Transfer Systems Laboratory at Purdue University have begun a cooperative research program to investigate the effectiveness of reflux condensation in PWR steam generator U-tubes in the presence of noncondensable gases. The final objectives are to provide local heat transfer data for development of methods to analyze reflux condensation in PWR steam generator U-tubes and to investigate the potential for flooding. Key features of the experimental data reported herein are that they are local data under laminar steam/gas mixture and condensate film flow and they are taken from a test section with dimensions similar to an actual steam generator tube. Steady state data were obtained under various steam and air inlet flow rates and pressures. The data show the significant degrading effect of noncondensable gas on heat transfer coefficients. From the data, correlations for the reflux condensation local heat transfer coefficient and the local Nusselt number under laminar conditions were derived. These experiments are providing essential and unique fundamental data for development of methods to analyze reflux condensation.

  3. Radioactivity and decay heat generation in precambrian magmatic rocks (with the South Pamirs as an example)

    International Nuclear Information System (INIS)

    Batyrmurzaev, A.S.; Alibekov, G.I.; Bekieva, A.A.

    2003-01-01

    The evaluation of the heat generation share in the results of the long-living radioactive elements (RAE) decay in the Earth surface layers is accomplished on the basis of the data on the uranium and thorium concentration in the precambrian magmatic rocks of the South Pamirs. It was supposed by the calculations, that the value of the heat flux, generated by the rocks, is determined mainly by the RAE content in the Earth upper layer crust itself of 10-15 km. It is shown that the radioheat generation share is within the range of 5-10% from the measured values of the geothermal flows [ru

  4. Second Law Analysis in Convective Heat and Mass Transfer

    Directory of Open Access Journals (Sweden)

    A. Ben Brahim

    2006-02-01

    Full Text Available This paper reports the numerical determination of the entropy generation due to heat transfer, mass transfer and fluid friction in steady state for laminar double diffusive convection, in an inclined enclosure with heat and mass diffusive walls, by solving numerically the mass, momentum, species conservation and energy balance equations, using a Control Volume Finite-Element Method. The influences of the inclination angle, the thermal Grashof number and the buoyancy ratio on total entropy generation were investigated. The irreversibilities localization due to heat transfer, mass transfer and fluid friction is discussed for three inclination angles at a fixed thermal Grashof number.

  5. Numerical analysis of a heat-generating, truncated conical porous bed in a fluid-filled enclosure

    International Nuclear Information System (INIS)

    Chakravarty, Aranyak; Datta, Priyankan; Ghosh, Koushik; Sen, Swarnendu; Mukhopadhyay, Achintya

    2016-01-01

    Analysis of natural convection in enclosures containing heat generating porous medium has important applications related to geothermal, chemical, thermal and nuclear energy such as in-vessel cooling of debris beds in nuclear reactors, cooling of coal stockpiles etc. The objective of the present numerical study is to characterise the pattern of fluid flow and energy transfer during steady laminar natural convective flow in a cylindrical enclosure with a centrally placed heat generating porous bed. Flow through porous region is modelled using Darcy–Brinkmann–Forchheimer model and local thermal equilibrium is assumed for the porous region. Analysis is carried out for a wide range of Rayleigh number (Ra), Darcy number (Da) and thermal conductivity ratio, as well as for different bed geometries. It is observed that in addition to Ra and Da, the bed geometry also plays a very important role in determining flow field and temperature distribution within the enclosure. Interestingly, a significant change is observed in energy transfer mode from the porous bed corresponding to specific values of bed permeability and bed heat generation rate. This is characterised in terms of Ra and Da. Further, it is observed that this change in energy transfer mode is highly dependent on Ra. - Highlights: • Natural convection is analysed in an enclosure with a heat generating porous bed. • Effect of dimensionless parameters as well as bed geometry has been investigated. • Energy transfer mechanism from porous bed changes with dimensionless parameters. • Bed geometry significantly affects fluid flow and energy transfer in the enclosure.

  6. Combined Heat and Power Dispatch Considering Heat Storage of Both Buildings and Pipelines in District Heating System for Wind Power Integration

    Directory of Open Access Journals (Sweden)

    Ping Li

    2017-06-01

    Full Text Available The strong coupling between electric power and heat supply highly restricts the electric power generation range of combined heat and power (CHP units during heating seasons. This makes the system operational flexibility very low, which leads to heavy wind power curtailment, especially in the region with a high percentage of CHP units and abundant wind power energy such as northeastern China. The heat storage capacity of pipelines and buildings of the district heating system (DHS, which already exist in the urban infrastructures, can be exploited to realize the power and heat decoupling without any additional investment. We formulate a combined heat and power dispatch model considering both the pipelines’ dynamic thermal performance (PDTP and the buildings’ thermal inertia (BTI, abbreviated as the CPB-CHPD model, emphasizing the coordinating operation between the electric power and district heating systems to break the strong coupling without impacting end users’ heat supply quality. Simulation results demonstrate that the proposed CPB-CHPD model has much better synergic benefits than the model considering only PDTP or BTI on wind power integration and total operation cost savings.

  7. Biomass: towards more co-generation than gasification? Interview with Jean-Christophe Pouet; Figures for the heat fund; biomass in the Parisian heat network; gasification still at the promise stage; Engie bets on bio-methane of 2. generation; a new bidding for biomass co-generation

    International Nuclear Information System (INIS)

    Petitot, Pauline; De Santis, Audrey; Mary, Olivier; Signoret, Stephane

    2016-01-01

    After some brief presentations of some highlights in the biomass sector in France, Ukraine, UK and Brazil, a set of articles proposes an overview of recent developments and perspectives for the biomass-based energy and heat production in France. It presents and comments some emerging projects based on biomass gasification as technologies have evolved for a higher economic profitability. It discusses the action of the Heat Fund (Fonds chaleur) which supports investors in a context constrained by the hard competition with fossil energies, notably with gas as discussed in an interview with a member of the ADEME. Some tables and graphs give data about biomass installations supported by the Heat fund, about subsidies awarded by the ADEME, about the production of the various heat sources. An article comments the operation of a biomass-based plant near Paris which supplies the Parisian heat network. A project of methane production from dry biomass from local resources by Engie near Lyons (methane of second generation). The last article comments a new bidding process for co-generation projects which can be an opportunity for new projects, and not only big ones

  8. Analysis of a furnace for heat generation using polydisperse biomass

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Edney Alves; Silva, Juarez de Sousa e; Silva, Jadir Nogueira da; Oliveira Filho, Delly [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola; Donzeles, Sergio Mauricio Lopes [Empresa de Pesquisa Agropecuaria de Minas Gerais (EPAMIG), Vicosa, MG (Brazil)

    2008-07-01

    In many agro-industrial activities, the processing of raw material generates a substantial amount of fine materials. Examples include the production of soluble coffee, processing of rice, and wood processing, among others. In many regions, these by-products keep piling up on the courtyard of companies or become an environmental problem for land dumps. However, detailed tests of these byproducts indicate that they are excellent sources of energy. With this in mind, a furnace was developed to generate clean and hot air, using the alimentation system for pneumatic transport. Wood sawdust was used as fuel for analysis. The obtained results were considered satisfactory, proven by the small heat losses, primarily by the non-burned carbon monoxide (less than 0.2%) and the cooling of the furnace (less than 2.5%) whereas the losses by the exhaust gases were a little more than 23%. The thermal efficiency of the furnace was considered high when compared to others with an indirect heating system, obtaining an average value of 73%. The developed furnace, beyond being efficient, allows the use of the waste from the wood industry, which is important in the reduction of environmental impacts and minimizing production costs associated with the acquisition of conventional energy. (author)

  9. Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse; Andreasen, Søren Juhl

    2012-01-01

    The coolant heat sinks in thermoelectric generators (TEG) play an important role in order to power generation in the energy systems. This paper explores the effective pumping power required for the TEGs cooling at five temperature difference of the hot and cold sides of the TEG. In addition......, the temperature distribution and the pressure drop in sample microchannels are considered at four sample coolant flow rates. The heat sink contains twenty plate-fin microchannels with hydraulic diameter equal to 0.93 mm. The experimental results show that there is a unique flow rate that gives maximum net-power...

  10. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  11. Design of wearable hybrid generator for harvesting heat energy from human body depending on physiological activity

    Science.gov (United States)

    Kim, Myoung-Soo; Kim, Min-Ki; Kim, Kyongtae; Kim, Yong-Jun

    2017-09-01

    We developed a prototype of a wearable hybrid generator (WHG) that is used for harvesting the heat energy of the human body. This WHG is constructed by integrating a thermoelectric generator (TEG) in a circular mesh polyester knit fabric, circular-shaped pyroelectric generator (PEG), and quick sweat-pickup/dry-fabric. The fabric packaging enables the TEG part of the WHG to generate energy steadily while maintaining a temperature difference in extreme temperature environments. Moreover, when the body sweats, the evaporation heat of the sweat leads to thermal fluctuations in the WHG. This phenomenon further leads to an increase in the output power of the WHG. These characteristics of the WHG make it possible to produce electrical energy steadily without reduction in the conversion efficiency, as both TEG and PEG use the same energy source of the human skin and the ambient temperature. Under a temperature difference of ˜6.5 °C and temperature change rate of ˜0.62 °C s-1, the output power and output power density of the WHG, respectively, are ˜4.5 nW and ˜1.5 μW m-2. Our hybrid approach will provide a framework to enhance the output power of the wearable generators that harvest heat energy from human body in various environments.

  12. Heat generation ability in AC magnetic field of nano MgFe2O4-based ferrite powder prepared by bead milling

    International Nuclear Information System (INIS)

    Hirazawa, Hideyuki; Aono, Hiromichi; Naohara, Takashi; Maehara, Tsunehiro; Sato, Mitsunori; Watanabe, Yuji

    2011-01-01

    Nanosized MgFe 2 O 4 -based ferrite powder having heat generation ability in an AC magnetic field was prepared by bead milling and studied for thermal coagulation therapy applications. The crystal size and the particle size significantly decreased by bead milling. The heat generation ability in an AC magnetic field improved with the milling time, i.e. a decrease in crystal size. However, the heat generation ability decreased for excessively milled samples with crystal sizes of less than 5.5 nm. The highest heat ability (ΔT=34 o C) in the AC magnetic field (370 kHz, 1.77 kA/m) was obtained for fine MgFe 2 O 4 powder having a ca. 6 nm crystal size (the samples were milled for 6-8 h using 0.1 mm φ beads). The heat generation of the samples was closely related to hysteresis loss, a B-H magnetic property. The reason for the high heat generation properties of the samples milled for 6-8 h using 0.1 mm φ beads was ascribed to the increase in hysteresis loss by the formation of a single domain. Moreover, the improvement in heating ability was obtained by calcination of the bead-milled sample at low temperature. In this case, the maximum heat generation (ΔT=41 o C) ability was obtained for a ca. 11 nm crystal size sample was prepared by crystal growth during the sample calcination. On the other hand, the ΔT value for Mg 0.5 Ca 0.5 Fe 2 O 4 was synthesized using a reverse precipitation method decreased by bead milling. - Research Highlights: →The crystal and particle size for MgFe 2 O 4 based ferrite were decreased by bead milling. →The highest heat ability was obtained for MgFe 2 O 4 having a ca. 6 nm crystal size. →This high heat generation ability was ascribed to the increase in hysteresis loss. →Hysteresis loss was increased by the formation of a single domain.

  13. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material

    Directory of Open Access Journals (Sweden)

    Juan Camilo Solarte-Toro

    2018-05-01

    Full Text Available The use of nonrenewable energy sources to provide the worldwide energy needs has caused different problems such as global warming, water pollution, and smog production. In this sense, lignocellulosic biomass has been postulated as a renewable energy source able to produce energy carriers that can cover this energy demand. Biogas and syngas are two energy vectors that have been suggested to generate heat and power through their use in cogeneration systems. Therefore, the aim of this review is to develop a comparison between these energy vectors considering their main features based on literature reports. In addition, a techno-economic and energy assessment of the heat and power generation using these vectors as energy sources is performed. If lignocellulosic biomass is used as raw material, biogas is more commonly used for cogeneration purposes than syngas. However, syngas from biomass gasification has a great potential to be employed as a chemical platform in the production of value-added products. Moreover, the investment costs to generate heat and power from lignocellulosic materials using the anaerobic digestion technology are higher than those using the gasification technology. As a conclusion, it was evidenced that upgraded biogas has a higher potential to produce heat and power than syngas. Nevertheless, the implementation of both energy vectors into the energy market is important to cover the increasing worldwide energy demand.How to cite: Solarte-Toro JC, Chacón-Pérez Y, Cardona-Alzate CA. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron J Biotechnol 2018:33. https://doi.org/10.1016/j.ejbt.2018.03.005 Keywords: Anaerobic digestion, Biogas power generation, Biomass gasification, Biomethane, Energy sources, Energy vectors, Heat generation, Lignocellulosic energy production, Power generation, Renewable energy, Syngas production

  14. Heat transfer entropy resistance for the analyses of two-stream heat exchangers and two-stream heat exchanger networks

    International Nuclear Information System (INIS)

    Cheng, XueTao; Liang, XinGang

    2013-01-01

    The entropy generation minimization method is often used to analyze heat transfer processes from the thermodynamic viewpoint. In this paper, we analyze common heat transfer processes with the concept of entropy generation, and propose the concept of heat transfer entropy resistance. It is found that smaller heat transfer entropy resistance leads to smaller equivalent thermodynamic force difference with prescribed heat transfer rate and larger heat transfer rate with prescribed equivalent thermodynamic force difference. With the concept of heat transfer entropy resistance, the performance of two-stream heat exchangers (THEs) and two-stream heat exchanger networks (THENs) is analyzed. For the cases discussed in this paper, it is found that smaller heat transfer entropy resistance always leads to better heat transfer performance for THEs and THENs, while smaller values of the entropy generation, entropy generation numbers and revised entropy generation number do not always. -- Highlights: • The concept of entropy resistance is defined. • The minimum entropy resistance principle is developed. • Smaller entropy resistance leads to better heat transfer

  15. Prediction of postoperative pain by preoperative pain response to heat stimulation in total knee arthroplasty.

    Science.gov (United States)

    Lunn, Troels H; Gaarn-Larsen, Lissi; Kehlet, Henrik

    2013-09-01

    It has been estimated that up to 54% of the variance in postoperative pain experience may be predicted with preoperative pain responses to experimental stimuli, with suprathreshold heat pain as the most consistent test modality. This study aimed to explore whether 2 heat test paradigms could predict postoperative pain after total knee arthroplasty (TKA). Patients scheduled for elective, unilateral, primary TKA under spinal anesthesia were consecutively included in this prospective, observational study. Perioperative analgesia was standardized for all patients. Outcomes were postoperative pain during walk: from 6 to 24 hours (primary), from postoperative day (POD) 1 to 7 (secondary), and from POD 14 to 30 (tertiary). Two preoperative tonic heat stimuli with 47°C were used; short (5 seconds) and long (7 minutes) stimulation upon which patients rated their pain response on an electronic visual analog scale. Multivariate stepwise linear and logistic regressions analyses were carried out, including 8 potential preoperative explanatory variables (among these anxiety, depression, preoperative pain, and pain catastrophizing) to assess pain response to preoperative heat pain stimulation as an independent predictor for postoperative pain. A total of 100 patients were included, and 3 were later excluded. A weak correlation [rho (95% confidence interval); P value] was observed between pain from POD 1 to 7 and pain response to short [rho=0.25(0.04 to 0.44); P=.02] and to long [rho=0.27 (0.07 to 0.46); P=.01] heat pain stimulation. However, these positive correlations were not supported by the linear and logistic regression analyses, in which only anxiety, preoperative pain, and pain catastrophizing were significant explanatory variables (but with low R-squares; 0.05 to 0.08). Pain responses to 2 types of preoperative heat stimuli were not independent clinically relevant predictors for postoperative pain after TKA. Copyright © 2013 International Association for the Study of

  16. Experimental and thermodynamical analyses of the diesel exhaust vortex generator heat exchanger for optimizing its operating condition

    International Nuclear Information System (INIS)

    Hatami, M.; Ganji, D.D.; Gorji-Bandpy, M.

    2015-01-01

    In this research, a vortex generator heat exchanger is used to recover exergy from the exhaust of an OM314 diesel engine. Twenty vortex generators with 30° angle of attack are used to increase the heat recovery as well as the low back pressure in the exhaust. The experiments are prepared for five engine loads (0, 20, 40, 60 and 80% of full load), two exhaust gases amount (50 and 100%) and four water mass flow rates (50, 40, 30 and 20 g/s). After a thermodynamical analysis on the obtained data, an optimization study based on Central Composite Design (CCD) is performed due to complex effect of engine loads and water mass flow rates on exergy recovery and irreversibility to reach the best operating condition. - Highlights: • A vortex generator heat exchanger is used for diesel exhaust heat recovery. • A thermodynamic analysis is performed for experimental data. • Exergy recovery, irreversibility are calculated in different exhaust gases amount. • Optimization study is performed using response surface method

  17. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Terry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States)

    2006-11-01

    This report evaluates thermoelectric generator (TEG) systems with the intent to: 1) examine industrial processes in order to identify and quantify industrial waste heat sources that could potentially use TEGs; 2) describe the operating environment that a TEG would encounter in selected industrial processes and quantify the anticipated TEG system performance; 3) identify cost, design and/or engineering performance requirements that will be needed for TEGs to operate in the selected industrial processes; and 4) identify the research, development and deployment needed to overcome the limitations that discourage the development and use of TEGs for recovery of industrial waste heat.

  18. Numerical study on thermoelectric–hydraulic performance of a thermoelectric power generator with a plate-fin heat exchanger with longitudinal vortex generators

    International Nuclear Information System (INIS)

    Ma, Ting; Lu, Xing; Pandit, Jaideep; Ekkad, Srinath V.; Huxtable, Scott T.; Deshpande, Samruddhi; Wang, Qiu-wang

    2017-01-01

    Highlights: • LVGs are proposed to enhance thermal–electrical conversion performance of TEGs. • Open circuit voltage of TEGs with LVGs is increased by 41–75% in baseline cases. • Reynolds number and hot-side inlet temperature have significant effects on TEGs. • Cold-side temperature has a smaller effect on TEGs. - Abstract: In this paper, the effect of longitudinal vortex generators (LVGs) on the performance of a thermoelectric power generator (TEG) with a plate-fin heat exchanger is investigated. A fluid-thermal-electric multi-physics coupled model for the TEG is established on the COMSOL® platform, in which the Seebeck, Peltier, Thomson, and Joule heating effects are taken into account. The equivalent thermal–electrical properties of the thermoelectric (TE) module are used in the numerical simulation. The results indicate that the LVGs produce complex three-dimensional vortices in the cross section downstream from the LVGs, thus enhancing the heat transfer and electric performance compared to a TEG without LVGs. Under baseline operating conditions, the heat input and open circuit voltage of the TEG with LVGs are increased by 41–75% compared to a TEG with smooth channel. The simulations also show that the Reynolds number and hot-side inlet temperature have significant effects on the net power and thermal efficiency of the TEG, but the cold-side temperature has a smaller effect. Additionally, the performance of the TEG under a constant heat transfer coefficient boundary condition is almost the same as the performance under a constant temperature boundary condition. Overall, this work demonstrates that LVGs have great potential to enhance the performance of TEGs for waste heat recovery from vehicle exhaust.

  19. Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator Technology

    Science.gov (United States)

    2016-06-01

    block (expander) that allows gas expansion and converts the energy into rotational work, • an electric induction generator driven from the power block...is in the form of waste heat – thermal energy emitted via hot exhaust and heat removal systems associated with engine and other electric generator ...than 250 ºC), improves energy efficiency by reducing energy consumption associated with electrical generation and reduces greenhouse gas emissions

  20. Improving heat generation of magnetic nanoparticles by pre-orientation of particles in a static three tesla magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Mathias M., E-mail: Mathias.Beck@tum.de [Institute for Machine Tools and Industrial Management, Technical University of Munich, Boltzmannstr. 15, 85748 Garching (Germany); Lammel, Christian [Institute for Machine Tools and Industrial Management, Technical University of Munich, Boltzmannstr. 15, 85748 Garching (Germany); Gleich, Bernhard [Institute of Medical Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching (Germany)

    2017-04-01

    Inductive heating of electrically insulating materials like fiberglass reinforced thermoplastics (FRTP) without susceptors is not possible. However, due to their low thermal conductivity a volumetric heat generation method is advisable to reach short heating times to melt this material for reshaping. This can be done with magnetic nanoparticles as susceptors within the thermoplastic of the FRTP using Néel relaxation. During the heating process the particle's magnetic moment rotates with the field while the particle itself is fixed within the thermoplastic. Therefore the heat dissipation of each particle depends on its orientation within the field. To achieve the maximum heat generation of the particles we pre-oriented the particles within a plastic at the best angle to the applied AC field for induction. To do this, five mass percent nanoparticles were dispersed in an epoxy resin, which was then hardened at room temperature in a static three Tesla magnetic field. After its solidification the heating behavior of the sample was compared to a reference sample, which was hardened without a field. The oriented particles showed an increased heating rate when oriented parallel to the applied AC field. The absorption rate was 3.3 times as high as the undirected reference sample. When the alternating electromagnetic field was perpendicular to the oriented particles, the specific absorption rate was similar to that of the reference sample. We compare this result with theory and with calculations from literature, and conduct a numerical simulation. - Highlights: • Magnetic nanoparticles are aligned using a static three tesla magnetic field. • Inductive heating depends on the particles pre-orientation in a solid matrix. • Alignment increases the heat generation significantly.

  1. On the heat exchange tube failures in steam generators at NPPs with WWER reactors

    International Nuclear Information System (INIS)

    Titov, V.F.; Banyuk, G.F.; Brykov, S.I.

    1992-01-01

    Data on dynamics of failed heat exchanging tube closing in steam generators of NPPs with WWER type reactors for the whole period of their operation are presented. It is shown that the main cause of the tube failures consists in their corrosion cracking under stresses. The effect of chlorine ions on tubes is intensified by the presence of porous sediments on heat exchaning surfaces in quantities exceeding 150 g/m 2

  2. Natural convection heat transfer in a rectangular pool with volumetric heat sources

    International Nuclear Information System (INIS)

    Lee, Seung Dong; Lee, Kang Hee; Suh, Kune Y.

    2003-01-01

    Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. The heat transfer within the molten core material can be characterized by buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of the molten pool depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, natural convection involving internal heat generation is delineated in terms of the modified Rayleigh number, Ra', which quantifies the internal heat source and hence the strength of buoyancy. The test section is of rectangular cavity whose length, width, and height are 500 mm, 80 mm, and 250 mm, respectively. A total of twenty-four T-type thermocouples were installed in the test loop to measure temperature distribution. Four T-type thermocouples were utilized to measure temperatures on the boundary. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Rayleigh number, Ra, between 4.87x10 7 and 2.32x10 14 and Prandtl number, Pr, between 0.7 and 3.98. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained at a uniform temperature of 10degC. (author)

  3. The potential of high heat generating granites as EGS source to generate power and reduce CO2 emissions, western Arabian shield, Saudi Arabia

    Science.gov (United States)

    Chandrasekharam, D.; Lashin, A.; Al Arifi, N.; Al Bassam, A.; El Alfy, M.; Ranjith, P. G.; Varun, C.; Singh, H. K.

    2015-12-01

    Saudi Arabia's dependence on oil and gas to generate electricity and to desalinate sea water is widely perceived to be economically and politically unsustainable. A recent business as usual simulation concluded that the Kingdom would become an oil importer by 2038. There is an opportunity for the country to over come this problem by using its geothermal energy resources. The heat flow and heat generation values of the granites spread over a cumulative area of 161,467 sq. km and the regional stress regime over the western Saudi Arabian shield strongly suggest that this entire area is potential source of energy to support 1) electricity generation, 2) fresh water generation through desalination and 3) extensive agricultural activity for the next two decades. The country can adopt a policy to harness this vast untapped enhanced geothermal systems (EGS) to mitigate climate and fresh water related issues and increase the quantity of oil for export. The country has inherent expertise to develop this resource.

  4. Mixed convection and heat generation/absorption aspects in MHD flow of tangent-hyperbolic nanoliquid with Newtonian heat/mass transfer

    Science.gov (United States)

    Qayyum, Sajid; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2018-03-01

    This article concentrates on the magnetohydrodynamic (MHD) stagnation point flow of tangent hyperbolic nanofluid in the presence of buoyancy forces. Flow analysis caused due to stretching surface. Characteristics of heat transfer are examined under the influence of thermal radiation and heat generation/absorption. Newtonian conditions for heat and mass transfer are employed. Nanofluid model includes Brownian motion and thermophoresis. The governing nonlinear partial differential systems of the problem are transformed into a systems of nonlinear ordinary differential equations through appropriate variables. Impact of embedded parameters on the velocity, temperature and nanoparticle concentration fields are presented graphically. Numerical computations are made to obtain the values of skin friction coefficient, local Nusselt and Sherwood numbers. It is concluded that velocity field enhances in the frame of mixed convection parameter while reverse situation is observed due to power law index. Effect of Brownian motion parameter on the temperature and heat transfer rate is quite reverse. Moreover impact of solutal conjugate parameter on the concentration and local Sherwood number is quite similar.

  5. Thermodynamic analysis of a thermally operated cascade sorption heat pump for continuous cold generation

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumar, P.; Lakshmi, D.V.N. [Department of Mechanical Engineering, Indian Institute of Technology, Guwahati – 781039 (India)

    2013-07-01

    In this paper, the thermodynamic analysis of a cascade sorption system consists of a two-stage metal hydride heat pump as topping cycle and a single-stage lithium bromide water system as bottom cycle is presented. The effects of various operating temperatures such as driving heat, heat release and refrigeration temperatures, and design parameters such as ratio of metal hydride mass to reactor mass and sensible heat exchange factor on the combined coefficient of performance (COP) of the cascade cycle, and specific cooling power (SCP) and total cold output of the metal hydride heat pump cycle are presented. It is observed that the combined COP is found to increase with heat release and refrigeration temperatures and however, decreases with driving heat temperature. Increase of sensible heat exchange factor improves the system performances significantly. Reduction in mass ratio from 0.5 to 0.1 improves the combined COP of the cascade system by about 10 %. The maximum predicted combined COP of the system is about 1.66 at the driving heat, heat release and refrigeration temperatures of 270 deg C, 125 deg C and 12deg C, respectively.

  6. Low grade heat driven adsorption system for cooling and power generation using advanced adsorbent materials

    International Nuclear Information System (INIS)

    Al-Mousawi, Fadhel Noraldeen; Al-Dadah, Raya; Mahmoud, Saad

    2016-01-01

    Highlights: • Adsorption system based on water and advanced physical adsorbents has the potential of producing cooling and power. • Adding an expander to physisorption system enhances efficiency by up to 11%. • MIL101Cr MOF can produce 95 W/kg and 1357 W/kg of specific power and cooling. • AQSOA Z02 can produce 73 W/kg and 640 W/kg of specific power and cooling. - Abstract: Globally there is abundance of low grade heat sources (around 150 °C) from renewables like solar energy or from industrial waste heat. The exploitation of such low grade heat sources will reduce fossil fuel consumption and CO_2 emissions. Adsorption technology offers the potential of using such low grade heat to generate cooling and power. In this work, the effect of using advanced adsorbent materials like AQSOA-Z02 (SAPO-34) zeolite and MIL101Cr Metal Organic Framework (MOF) at various operating conditions on power and cooling performance compared to that of commonly used silica-gel was investigated using water as refrigerant. A mathematical model for a two bed adsorption cooling cycle has been developed with the cycle modified to produce power by incorporating an expander between the desorber and the condenser. Results show that it is possible to produce power and cooling at the same time without affecting the cooling output. Results also show that for all adsorbents used as the heat source temperature increases, the cooling effect and power generated increase. As for increasing the cold bed temperature, this will decrease the cooling effect and power output except for SAPO-34 which shows slightly increasing trend of cooling and power output. As the condenser cooling temperature increases, the cooling effect and power output will decrease while for the chilled water temperature, the cooling load and power generated increased as the temperature increased. The maximum values of average specific power generation (SP), specific cooling power (SCP) and cycle efficiency are 73 W

  7. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis

    Science.gov (United States)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-04-01

    A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.

  8. Effect of Darcy, fluid Rayleigh and heat generation parameters on natural convection in a porous square enclosure: A Brinkman-extended Darcy model

    International Nuclear Information System (INIS)

    Das, S.; Sahoo, R.K.

    1999-01-01

    Analysis of flow and convective heat transfer in volumetrically heated porous layer has become a separate topic for research in the last twenty five years in view of its importance in various engineering applications, such as heat removal from nuclear fuel debris, heat transfer associated with storage of nuclear waste, exothermic reaction in packed-bed reactors, heat recovery from geothermal systems and particularly in the field of large storage systems of agricultural products. Here, a pressure-velocity solution for natural convection for fluid saturated heat generating porous medium in a square enclosure is analyzed by finite element method. The numerical solutions obtained for wide range of fluid Rayleigh number, Ra f , Darcy number, Da, and heat generating number, Q d . The justification for taking these non-dimensional parameters independently is to establish the effect of individual parameters on flow patterns. It has been observed that peak temperature occurs at the top central part and weaker velocity prevails near the vertical walls of the enclosure due to the heat generation parameter alone. On comparison, the modified Rayleigh number used by the earlier investigators, can not explain explicitly the effect of heat generation parameter on natural convection within an enclosure having differentially heated vertical walls. At higher Darcy number, the peak temperature and peak velocity are comparatively more, resulting in better enhancement of heat transfer rate

  9. Modeling and Analysis of Entropy Generation in Light Heating of Nanoscaled Silicon and Germanium Thin Films

    Directory of Open Access Journals (Sweden)

    José Ernesto Nájera-Carpio

    2015-07-01

    Full Text Available In this work, the irreversible processes in light heating of Silicon (Si and Germanium (Ge thin films are examined. Each film is exposed to light irradiation with radiative and convective boundary conditions. Heat, electron and hole transport and generation-recombination processes of electron-hole pairs are studied in terms of a phenomenological model obtained from basic principles of irreversible thermodynamics. We present an analysis of the contributions to the entropy production in the stationary state due to the dissipative effects associated with electron and hole transport, generation-recombination of electron-hole pairs as well as heat transport. The most significant contribution to the entropy production comes from the interaction of light with the medium in both Si and Ge. This interaction includes two processes, namely, the generation of electron-hole pairs and the transferring of energy from the absorbed light to the lattice. In Si the following contribution in magnitude comes from the heat transport. In Ge all the remaining contributions to entropy production have nearly the same order of magnitude. The results are compared and explained addressing the differences in the magnitude of the thermodynamic forces, Onsager’s coefficients and transport properties of Si and Ge.

  10. Numerical Investigation of Heat Transfer Augmentation through Geometrical Optimization of Vortex Generators

    DEFF Research Database (Denmark)

    Gorji, Mofid; Mirgolbabaei, Hessam; Barari, Amin

    2010-01-01

    In this paper a two-dimensional numerical simulation of a steady incompressible and turbulent model has been carried out to study the effects of vortex generators in a compact heat exchanger in a curvilinear coordinate system. The mesh which is applied in this study is boundary fitted and has been...

  11. Process for adapting a heat source and a thermal machine by temporary heat storage

    International Nuclear Information System (INIS)

    Cahn, R.P.; Nicholson, E.W.

    1975-01-01

    The process described is intended to ensure the efficient use of the heat from a nuclear reactor or from a furnace burning fossil fuel at constant power, and of a boiler in a power station comprising a multi-stage steam turbine, the steam extracted from the turbine being used for pre-heating the boiler feed water. This process is most flexible with a varying load. It includes the high temperature storage of the excess heat energy in a low vapor pressure storage liquid (hydrocarbon oils, molten salts or liquid metals) at atmospheric pressure when the demand is low; then, when the energy demand is at its height, the reduction of steam extraction from the turbine with simultaneous utilisation of the hot heat storage liquid for the various maintenance heating functions of the power station by heat exchange, so that the heat can expand totally in the turbine with generation of energy [fr

  12. Total rewards strategy for a multi-generational workforce in a financial institution

    Directory of Open Access Journals (Sweden)

    Mark Bussin

    2014-11-01

    Research purpose: This study investigated whether perceptions of reward strategy differed across generations in a large financial institution in South Africa. This context was specifically chosen due to the significant competition to attract and retain staff that exists in the financial sector. To contribute to the practical challenges of reward implementation, the study investigated whether specific reward preferences associated with generation exist, and whether offering rewards based on these preferences would successfully attract and retain staff. Motivation for study: South African businesses are competing for skilled staff and rely heavily on a total reward strategy to compensate all generations of employees. Given the financial incentives to retain and attract the most effective staff, it is essential that reward strategies meet their objectives. All factors impacting the efficacy of reward strategies should be considered, including the impact of generational differences in preference. This is of relevance not only to the financial industry, but to all companies that employ staff across a variety of generations. Research design, approach and method: A quantitative survey design was used. A total of 6316 employees from a financial firm completed a survey investigating their experiences and perceptions of reward strategies. Statistically significant differences across different generations and reward preferences were considered. Main findings: Significant differences in reward preferences were found across generational cohorts. This supports international literature. Practical/managerial implications: The results indicate that there is an opportunity for businesses and managers to link components of the total reward strategy to specific generations in the workforce by offering a wider variety of reward options to employees. Employee perceptions indicate a willingness to have reward strategies tailored to their needs and to have a greater say in their reward

  13. A frame work for heat generation/absorption and modified homogeneous–heterogeneous reaction in flow based on non-Darcy–Forchheimer medium

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    2018-04-01

    Full Text Available The present work aims to report the consequences of Darcy–Forchheimer medium in flow of Cross fluid model toward a stretched surface. Flow in porous space is categorized by Darcy–Forchheimer medium. Further heat transfer characteristics are examined via thermal radiation and heat generation/absorption. Transformation procedure is used. The arising system of nonlinear ordinary differential equations is solved numerically by means of shooting method. The effects of different flow variables on velocity, temperature, concentration, skin friction, and heat transfer rate are discussed. The obtained outcomes show that velocity was enhanced with the increase in the Weissenberg number but decays with increase in the porosity parameter and Hartman number. Temperature field is boosted by thermal radiation and heat generation; however, it decays with the increase in the Prandtl number. Keywords: Cross Fluid, Heat Generation/Absorption, Homogeneous–Heterogeneous Reactions, Non-Darcy–Forchheimer Medium, Thermal Radiation

  14. Heat generation by eddy currents in a shell of superconducting bus-bars for SIS100 particle accelerator at FAIR

    Directory of Open Access Journals (Sweden)

    Tomków Łukasz

    2017-12-01

    Full Text Available Superconducting magnets in the SIS100 particle accelerator require the supply of liquid helium and electric current. Both are transported with by-pass lines designed at Wrocław University of Technology. Bus-bars used to transfer an electric current between the sections of the accelerator will be encased in a steel shell. Eddy currents are expected to appear in the shell during fast-ramp operation of magnets. Heat generation, which should be limited in any cryogenic system, will appear in the shell. In this work the amount of heat generated is assessed depending on the geometry of an assembly of the bus-bars and the shell. Numerical and analytical calculations are described. It was found that heat generation in the shell is relatively small when compared to other sources present in the accelerator and its value strongly depends on the geometry of the shell. The distribution of eddy currents and generated heat for different geometrical options are presented. Based on the results of the calculations the optimal design is proposed.

  15. Integral transform solution of natural convection in a square cavity with volumetric heat generation

    Directory of Open Access Journals (Sweden)

    C. An

    2013-12-01

    Full Text Available The generalized integral transform technique (GITT is employed to obtain a hybrid numerical-analytical solution of natural convection in a cavity with volumetric heat generation. The hybrid nature of this approach allows for the establishment of benchmark results in the solution of non-linear partial differential equation systems, including the coupled set of heat and fluid flow equations that govern the steady natural convection problem under consideration. Through performing the GITT, the resulting transformed ODE system is then numerically solved by making use of the subroutine DBVPFD from the IMSL Library. Therefore, numerical results under user prescribed accuracy are obtained for different values of Rayleigh numbers, and the convergence behavior of the proposed eigenfunction expansions is illustrated. Critical comparisons against solutions produced by ANSYS CFX 12.0 are then conducted, which demonstrate excellent agreement. Several sets of reference results for natural convection with volumetric heat generation in a bi-dimensional square cavity are also provided for future verification of numerical results obtained by other researchers.

  16. Physical aspects of heat generation/absorption in the second grade fluid flow due to Riga plate: Application of Cattaneo-Christov approach

    Science.gov (United States)

    Anjum, Aisha; Mir, N. A.; Farooq, M.; Javed, M.; Ahmad, S.; Malik, M. Y.; Alshomrani, A. S.

    2018-06-01

    The present article concentrates on thermal stratification in the flow of second grade fluid past a Riga plate with linear stretching towards a stagnation region. Heat transfer phenomenon is disclosed with heat generation/absorption. Riga plate is known as electromagnetic actuator which comprises of permanent magnets and alternating electrodes placed on a plane surface. Cattaneo-Christov heat flux model is implemented to analyze the features of heat transfer. This new heat flux model is the generalization of classical Fourier's law with the contribution of thermal relaxation time. For the first time heat generation/absorption effect is computed with non-Fourier's law of heat conduction (i.e., Cattaneo-Christov heat flux model). Transformations are used to obtain the governing non-linear ordinary differential equations. Approximate convergent solutions are developed for the non-dimensionalized governing problems. Physical features of velocity and temperature distributions are graphically analyzed corresponding to various parameters in 2D and 3D. It is noted that velocity field enhances with an increment of modified Hartman number while it reduces with increasing variable thickness parameter. Increment in modified heat generation parameter results in reduction of temperature field.

  17. Thermal hydraulic studies in steam generator test facility

    International Nuclear Information System (INIS)

    Vinod, V.; Suresh Kumar, V.A.; Noushad, I.B.; Ellappan, T.R.; Rajan, K.K.; Rajan, M.; Vaidyanathan, G.

    2005-01-01

    Full text of publication follows: A 500 MWe fast breeder reactor is being constructed at Kalpakkam, India. This is a sodium cooled reactor with two primary and two secondary sodium loops with total 8 steam generators. The typical advantage of fast breeder plants is the high operating temperature of steam cycles and the high plant efficiency. To produce this high pressure and high temperature steam, once through straight tube vertical sodium heated steam generators are used. The steam is generated from the heat produced in the reactor core and being transported through primary and secondary sodium circuits. The steam generator is a 25 m high middle supported steam generator with expansion bend and 23 m heat transfer length. Steam Generator Test Facility (SGTF) constructed at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam aims at performing various tests on a 5.5 MWt steam generator. This vertically simulated test article is similar in all respects to the proposed 157 MWt steam generator module for the Prototype Fast Breeder Reactor (PFBR), with reduced number of tubes. Heat transfer performance tests are done with this 19 tube steam generator at various load conditions. Sodium circuit for the SGTF is equipped with oil fired heater as heat source and centrifugal sodium pump, to pump sodium at 105 m 3 /hr flow rate. Other typical components like sodium to air heat exchanger, sodium purification system and hydrogen leak detection system is also present in the sodium circuit. High pressure steam produced in the steam generator is dumped in a condenser and recycled. Important tests planned in SGTF are the heat transfer performance test, stability test, endurance test and performance test of steam generator under various transients. The controlled operation of steam generator will be studied with possible control schemes. A steady state simulation of the steam generator is done with a mathematical model. This paper gives the details of heat transfer

  18. Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach

    Directory of Open Access Journals (Sweden)

    Konchada Pavan Kumar

    2016-06-01

    Full Text Available The presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3 nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA results show that the inlet temperature on shell side has more pronounced effect on entropy generation.

  19. Numerical simulations of the effect of an isotropic heat field on the entropy generation due to natural convection in a square cavity

    International Nuclear Information System (INIS)

    El-Maghlany, Wael M.; Saqr, Khalid M.; Teamah, Mohamed A.

    2014-01-01

    Highlights: • Entropy generation in laminar natural convection in square cavity numerically studied. • The cavity subjected to an isotropic heat field with different intensities. • Study ranges 10 3 ⩽ Ra ⩽ 10 5 , 0 ⩽ ϕ ⩽ 10 and Pr = 0.7. • Entropy generation drastically affected by the superposition of an isotropic heat field. • CFD based empirical were derived for entropy generation as a function of Ra and φ. - Abstract: Entropy generation associated with laminar natural convection in an infinite square cavity, subjected to an isotropic heat field with different intensities; was numerically investigated for different values of Rayleigh number. The numerical work was carried out using, an in-house CFD code written in FORTRAN, which discretizes non-dimensional forms of the governing equations using the finite volume method and solves the resulting system of equations using Gauss-Seidal method utilizing a TDMA algorithm. Proper code validation was undertaken in order to establish the entropy generation calculations. It was found that the increase in the isotropic heat field intensity resulted in a corresponding exponential increase of the entropy augmentation number, and promoted high values of Bejan number within the flow. The entropy generation due to heat transfer was approximately one order of magnitude higher than the entropy generation due to fluid friction. The spatial uniformity of the Bejan number was more sensitive to the change in Rayleigh number than to the heat field intensity. The thermodynamic penalty of the isotropic heat field is shown by means of global integrals of the entropy source terms over the entire flow domain

  20. Selenide isotope generator for the Galileo Mission. Axially-grooved heat pipe: accelerated life test results

    International Nuclear Information System (INIS)

    1979-08-01

    The results through SIG/Galileo contract close-out of accelerated life testing performed from June 1978 to June 1979 on axially-grooved, copper/water heat pipes are presented. The primary objective of the test was to determine the expected lifetime of axially-grooved copper/water heat pipes. The heat pipe failure rate, due to either a leak or a build-up of non-condensible gas, was determined. The secondary objective of the test was to determine the effects of time and temperature on the thermal performance parameters relevant to long-term (> 50,000 h) operation on a space power generator. The results showed that the gas generation rate appears to be constant with time after an initial sharp rise although there are indications that it drops to approximately zero beyond approx. 2000 h. During the life test, the following pipe-hours were accumulated: 159,000 at 125 0 C, 54,000 at 165 0 C, 48,000 at 185 0 C, and 8500 at 225 0 C. Heated hours per pipe ranged from 1000 to 7500 with an average of 4720. Applying calculated acceleration factors yields the equivalent of 930,000 pipe-h at 125 0 C. Including the accelerated hours on vendor tested pipes raises this number to 1,430,000 pipe-hours at 125 0 C. It was concluded that, for a heat pipe temperature of 125 0 C and a mission time of 50,000 h, the demonstrated heat pipe reliability is between 80% (based on 159,000 actual pipe-h at 125 0 C) and 98% (based on 1,430,000 accelerated pipe-h at 125 0 C). Measurements indicate some degradation of heat transfer with time, but no detectable degradation of heat transport

  1. Various bio-mechanical factors affecting heat generation during osteotomy preparation: A systematic review.

    Science.gov (United States)

    Chauhan, Chirag J; Shah, Darshana N; Sutaria, Foram B

    2018-01-01

    As implant site preparation and bone are critical precursors to primary healing, thermal and mechanical damage to the bone must be minimized during the preparation of the implant site. Moreover, excessively traumatic surgery can adversely affect the maturation of bone tissue at the bone/implant interface and consequently diminish the predictability of osseointegration. So, this study was carried out to evaluate the various biological and mechanical factors responsible for heat generation during osteotomy site preparation to reduce the same for successful osseointegration of dental implants. A broad search of the dental literature in PubMed added by manual search was performed for articles published between 1992 and December 2015. Various bio-mechanical factors related to dental implant osteotomy preparation such as dental implant drill designs/material/wear, drilling methods, type of irrigation, and bone quality were reviewed. Titles and abstracts were screened and articles which fulfilled the inclusion criteria were selected for a full-text reading. The initial database search yielded 123 titles, of which 59 titles were discarded after reading the titles and abstracts, 30 articles were again excluded based on inclusion and exclusion criteria, and finally 34 articles were selected for data extraction. Many biological and mechanical factors responsible for heat generation were found. Literatures of this review study have indicated that there are various bio-mechanical reasons, which affect the temperature rise during osteotomy and suggest that the amount of heat generation is a multifactorial in nature and it should be minimized for better primary healing of the implant site.

  2. Main results of assessing integrity of RNPP-3 steam generator heat exchange tubes in accident management

    International Nuclear Information System (INIS)

    Shugajlo, Al-j P.; Mustafin, M.A.; Shugajlo, Al-r P.; Ryzhov, D.I.; Zhabin, O.I.

    2017-01-01

    Tubes integrity evaluation under accident conditions considering drain of SG and current technical state of steam exchange tubes is an important question regarding SG long-term operation and improvement of accident management strategy.The main investigation results prepared for heat exchange surface of RNPP-3 steam generator are presented in this research aimed at assessing integrity of heat exchange tubes under accident conditions, which lead to full or partial drain of heat exchange surface, in particular during station blackout.

  3. Generation and Sustainment of Plasma Rotation by ICRF Heating

    Science.gov (United States)

    Perkins, F. W.

    2000-10-01

    When tokamak plasmas are heated by the fundamental minority ion-cyclotron process, they are observed to rotate toroidally, even though this heating process introduces negligable angular momentum. This work proposes and evaluates a physics mechanism which resolves this apparent conflict. The argument has two elements. First, it is assumed that angular momentum transport is governed by a diffusion equation with a v_tor = 0 boundary condition at the plasma surface and a torque-density source. When the source consists of separated regions of positive and negative torque density, a finite central rotation velocity results, even though the volume integrated torque density - the angular momentum input - vanishes. Secondly, ions energized by the ICRF process can generate separated regions of positive and negative torque density. Heating increases their banana widths which leads to radial energetic-particle transport that must be balanced by neutralizing radial currents and a j_rB_pR torque density in the bulk plasma. Additional, comparable torque density results from collisional transfer of mechanical angular momentum from energetic particles to the bulk plasma and particle loss through banana particles impacting the wall. Monte-Carlo calculations utilizing the ORBIT code evaluate all sources of torque density and rigorously assure that no net angular momentum is introduced. Two models of ICRF heating, diffusive and instantaneous, give similar results. When the resonance location is on the LFS, the calculated rotation has the magnitude, profile, and co-current sense of Alcator C-Mod observations. For HFS resonance locations, the model predicts counter-current rotation. Scans of rotational profiles vs. resonance location, initial energy, particle loss, pitch, and qm will be presented as will the location of the velocity shear layer its scaling to a reactor.

  4. Steam generation device with heat exchange between a liquid metal coolant and the feedwater

    International Nuclear Information System (INIS)

    Malaval, C.

    1983-01-01

    The invention is particularly applicable to a liquid metal fast breeder reactor plant, the liquid metal being sodium. The steam generation device is described in detail, it allows to get an upper liquid metal level without turbulence and an easier passage for the shock wave towards the steam generator up to the liquid metal level without being laterally reflected back to the intermediate heat exchangers [fr

  5. High heat generation ability in AC magnetic field for nano-sized magnetic Y3Fe5O12 powder prepared by bead milling

    International Nuclear Information System (INIS)

    Aono, Hiromichi; Ebara, Hiroki; Senba, Ryota; Naohara, Takashi; Maehara, Tsunehiro; Hirazawa, Hideyuki; Watanabe, Yuji

    2012-01-01

    Nano-sized magnetic Y 3 Fe 5 O 12 ferrite having a high heat generation ability in an AC magnetic field was prepared by bead milling. A commercial powder sample (non-milled sample) of ca. 2.9 μm in particle size did not show any temperature enhancement in the AC magnetic field. The heat generation ability in the AC magnetic field improved with a decrease in the average crystallite size for the bead-milled Y 3 Fe 5 O 12 ferrites. The highest heat ability in the AC magnetic field was for the fine Y 3 Fe 5 O 12 powder with a 15-nm crystallite size (the samples were milled for 4 h using 0.1 mmφ beads). The heat generation ability of the excessively milled Y 3 Fe 5 O 12 samples decreased. The main reason for the high heat generation property of the milled samples was ascribed to an increase in the Néel relaxation of the superparamagnetic material. The heat generation ability was not influenced by the concentration of the ferrite powder. For the samples milled for 4 h using 0.1 mmφ beads, the heat generation ability (W g −1 ) was estimated using a 3.58×10 −4 fH 2 frequency (f/kHz) and the magnetic field (H/kA m −1 ), which is the highest reported value of superparamagnetic materials. - Highlights: ► The nano-sized Y 3 Fe 5 O 12 powder prepared by bead-milling has the highest heat generation ability in an AC magnetic field. ► The heat generation properties are ascribed to an increase in the Néel relaxation of the superparamagnetic material. ► The heat ability (W g −1 ) can be estimated using 3.58×10 −4 fH 2 (f=kHz, H=kA m −1 ). ► This is an expectable material for use in a drug delivery system for the thermal coagulation therapy of cancer tumors.

  6. Numerical Analysis on Longitudinal Location Optimization of Vortex Generator in Compact Heat Exchangers

    DEFF Research Database (Denmark)

    Gorji, M.; Mirgolbababei, H.; Barari, Amin

    2011-01-01

    In this paper, numerical, curvilinear and turbulent model has been used to investigate the effect of vortex generator's longitudinal displacement on heat transfer and fluid flow in different Reynolds numbers ranging from 500 to 3000. The numerical model has been validated with experimental results...

  7. EFFECTS OF IMPLEMENTATION OF CO-GENERATION IN THE DISTRICT HEATING SYSTEM OF THE FACULTY OF MECHANICAL ENGINEERING IN NIŠ

    Directory of Open Access Journals (Sweden)

    Mladen M Stojiljković

    2010-01-01

    Full Text Available Implementation of co-generation of thermal and electrical energy in district heating systems often results with higher overall energy efficiency of the systems, primary energy savings and environmental benefits. Financial results depend on number of parameters, some of which are very difficult to predict. After introduction of feed-in tariffs for generation of electrical energy in Serbia, better conditions for implementation of co-generation are created, although in district heating systems barriers are still present. In this paper, possibilities and effects of implementation of natural gas fired co-generation engines are examined and presented for the boiler house that is a part of the district heating system owned and operated by the Faculty of Mechanical Engineering in Niš. At the moment, in this boiler house only thermal energy is produced. The boilers are natural gas fired and often operate in low part load regimes. The plant is working only during the heating season. For estimation of effects of implementation of co-generation, referent values are taken from literature or are based on the results of measurements performed on site. Results are presented in the form of primary energy savings and greenhouse gasses emission reduction potentials. Financial aspects are also considered and triangle of costs is shown.

  8. Maximising the recovery of low grade heat: An integrated heat integration framework incorporating heat pump intervention for simple and complex factories

    International Nuclear Information System (INIS)

    Miah, J.H.; Griffiths, A.; McNeill, R.; Poonaji, I.; Martin, R.; Leiser, A.; Morse, S.; Yang, A.; Sadhukhan, J.

    2015-01-01

    Highlights: • A new practical heat integration framework incorporating heat pump technology for simple and complex food factories. • A decision making procedure was proposed to select process or utility heat integration in complex and diverse factories. • New stream classifications proposed to identify and compare streams linked between process and utility, especially waste heat. • A range of ‘Heat Pump Thresholds’ to identify and compare heat pump configurations with steam generation combustion boiler. - Abstract: The recovery of heat has long been a key measure to improving energy efficiency and maximising the heat recovery of factories by Pinch analysis. However, a substantial amount of research has been dedicated to conventional heat integration where low grade heat is often ignored. Despite this, the sustainability challenges facing the process manufacturing community are turning interest on low grade energy recovery systems to further advance energy efficiency by technological interventions such as heat pumps. This paper presents a novel heat integration framework incorporating technological interventions for both simple and complex factories to evaluate all possible heat integration opportunities including low grade and waste heat. The key features of the framework include the role of heat pumps to upgrade heat which can significantly enhance energy efficiency; the selection process of heat pump designs which was aided by the development of ‘Heat Pump Thresholds’ to decide if heat pump designs are cost-competitive with steam generation combustion boiler; a decision making procedure to select process or utility heat integration in complex and diverse factories; and additional stream classifications to identify and separate streams that can be practically integrated. The application of the framework at a modified confectionery factory has yielded four options capable of delivering a total energy reduction of about 32% with an economic payback

  9. High-Temperature Reactor For Power Generation and District Heating

    International Nuclear Information System (INIS)

    Herzberger, Karlheinz

    1987-01-01

    The multinational BBC Brown Brave Group, which has its head-quarters in Baden/Switzerland, was founded in 1891. Its German company is Brown, Brave and CIEs AGM, Mannheim. The field of operation covers wide areas of electrical engineering: These includes mainly the manufacture of installations and equipment for the generation, conversion, distribution and utilization of electric power, with special emphasis on the capital goods sector. BBC erects turnkey power plants and manufactures electrical equipment for industrial plants and urban transport and main line trains. Also of major importance are standard electrical products such as motors, switches, cables, semiconductor devices as well as measuring and control equipment. In the field of nuclear power BBC is engaged in particular in the development and construction of high-temperature reactors for the generation of electric power and process heat. The following presentation gives a short view on the milestones of the HTR development achieved in 1987

  10. Thermometry, calorimetry, and mean body temperature during heat stress.

    Science.gov (United States)

    Kenny, Glen P; Jay, Ollie

    2013-10-01

    Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.

  11. Next Generation Nuclear Plant Intermediate Heat Exchanger Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, Ronald Eugene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C to 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium cooled, prismatic or pebble-bed reactor, and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. The purpose of this report is to address the acquisition strategy for the NGNP Intermediate Heat Exchanger (IHX).This component will be operated in flowing, impure helium on the primary and secondary side at temperatures up to 950°C. There are major high temperature design, materials availability, and fabrication issues that need to be addressed. The prospective materials are Alloys 617, 230, 800H and X, with Alloy 617 being the leading candidate for the use at 950°C. The material delivery schedule for these materials does not pose a problem for a 2018 start up as the vendors can quote reasonable delivery times at the moment. The product forms and amount needed must be finalized as soon as possible. An

  12. Solar heat collector-generator for cooling purposes

    Science.gov (United States)

    Abdullah, K.

    1982-01-01

    The performance of an experimental LiBr-H2O solar collector powered absorption cooling system is described. A numerical model was developed of the energy, mass, and momentum balances across the heat-exchange loop to obtain the refrigerant vapor generation rate. The mechanism works by the thermosiphon principle, which eliminates mechanical devices from the loop. All leaks were fixed before measurements began with a test apparatus comprising a pyrex tube 1.87 m long with a 2.7 i.d. The refrigerant flow rate was monitored, along with temperature changes in the fluid and across the tube. Bubble initiation was observed from the free surface extending downward in the tube. Reynolds numbers varied from 6-43 in the liquid phase and 81-204 in the vapor phase. A formulation was made for the low-velocity two-phase flow and good agreement was demonstrated with the simulation.

  13. Management of radioactive wastes with negligible heat generation

    International Nuclear Information System (INIS)

    Alter, U.

    1990-01-01

    In the Federal Republic of Germany only one company is responsible for the management of radioactive wastes with negligible heat generations. This is the Company for Nuclear Service (GNS mbH). It was the intention of the competent authorities of the FRG to intensify state control during conditioning, intermediate storage and transport of low- and medium level radioactive waste. A guideline provides that the responsibility of the waste producers and of those concerned with conditioning, storage and transport of radioactive waste is assigned in the individual case and that the qualitative and quantitative registration of all waste streams will be ensured. An overview of the radioactive waste management within the last two years in the FRG is presented. (orig./DG)

  14. Buoyancy and thermocapillary driven convection flow of electrically conducting fluid in an enclosure with heat generation

    International Nuclear Information System (INIS)

    Hossain, Md. Anwar; Rees, D.A.S.

    2002-05-01

    The effect of surface tension on unsteady laminar natural convection flow of a viscous incompressible fluid in a rectangle enclosure with internal heat generation and in presence of a uniform transverse magnetic field acting in the direction normal to the gravity has been investigated. The top horizontal surface of the rectangular cavity is assumed to be free and the bottom ones insulated; whereas the left vertical wall is cold and the right one is uniformly hot. The equations are non-dimensionalized and solved numerically by an upwind finite difference method together with a successive over-relaxation (SOR) technique. The effects of heat generation together with the combined effects of the magnetic field and the surface tension are presented graphically in terms of isotherms, streamlines and velocity vector plots. The effects of varying the physical parameters on the rate of heat transfer from the heated surface of the enclosure are also depicted. The fluid here has Prandtl number Pr=0.054 while the value of the Grashof number is 2x10 4 . (author)

  15. The second generation turbosteamer.Vehicle integration as a key for an effective utilization of waste heat; Der Turbosteamer der 2. Generation. Fahrzeugintegration als Schluessel zur effizienten Abwaermenutzung

    Energy Technology Data Exchange (ETDEWEB)

    Horst, Tilmann Abbe; Seifert, Marco; Schmidt, Christian [BMW Forschung und Technik GmbH, Muenchen (Germany); Zuck, Bernhard [BMW AG, Muenchen (Germany); Spliethoff, Hartmut [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Energiesysteme

    2012-11-01

    Waste heat recovery is a promising approach for achieving further reductions in fuel consumption and, as a result, exhaust emissions. In 2005, the potential of a system based on the Rankine cycle was demonstrated for the first time with the BMW Turbosteamer. For the second generation, the system design has been thoroughly simplified. In the current setup, heat is taken in from the exhaust gas of the engine and the heat from condensation is transferred to the existing cooling system. Steam expansion is accomplished by an impulse turbine with high power density. Integration of this system into the thermal management of the engine poses a great challenge. Interactions between the exhaust system, the cooling system and the waste heat recovery system have to be considered to enable efficient operation in a passenger car. For example, the operation range is limited by the exhaust gas backpressure that is generated in the evaporator. Another consideration is that additional heat rejection to the cooling system may not affect the thermal safety of the engine. In this paper, the second generation Turbosteamer and the latest findings regarding system design, development of the key components and vehicle integration are presented. Analysis of the interactions with the engine thermal management leads to a recommendation for the optimal operating range and strategy of the waste heat recovery system. The influence of the integration effects on the system efficiency are evaluated on this basis. (orig.)

  16. Performance analysis of hybrid district heating system

    DEFF Research Database (Denmark)

    Mikulandric, Robert; Krajačić, Goran; Khavin, Gennadii

    2013-01-01

    District heating system could contribute to more efficient heat generation through cogeneration power plants or waste heat utilization facilities and to increase of renewable energy sources share in total energy consumption. In the most developed EU countries, renewable energy sources have been...... as problems related to transportation, storage and environmental impacts of biomass and waste utilisation. Implementation of heat storages in district heating systems could contribute to integration of intermittent energy sources. Hybridisation of heat production facility combines two or more different energy...... more extensively used in district heating systems either separately or as a supplement to traditional fossil fuels in order to achieve national energy policy objectives. However, they are still facing problems such as high intermittences, high energy production costs and low load factors as well...

  17. Perturbation Solutions for Hagen-Poiseuille Flow and Heat Transfer of Third-Grade Fluid with Temperature-Dependent Viscosities and Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    B. Y. Ogunmola

    2016-01-01

    Full Text Available Regular perturbation technique is applied to analyze the fluid flow and heat transfer in a pipe containing third-grade fluid with temperature-dependent viscosities and heat generation under slip and no slip conditions. The obtained approximate solutions were used to investigate the effects of slip on the heat transfer characteristics of the laminar flow in a pipe under Reynolds’s and Vogel’s temperature-dependent viscosities. Also, the effects of parameters such as variable viscosity, non-Newtonian parameter, viscous dissipation, and pressure gradient at various values were established. The results of this work were compared with the numerical results found in literature and good agreements were established. The results can be used to advance the analysis and study of the behavior of third-grade fluid flow and steady state heat transfer processes such as those found in coal slurries, polymer solutions, textiles, ceramics, catalytic reactors, and oil recovery applications.

  18. Investigations of the gas-side heat transfer and flow characteristics of steam generators in AGR stations

    Energy Technology Data Exchange (ETDEWEB)

    Lis, J [Central Electricity Research Laboratories, Leatherhead, Surrey (United Kingdom)

    1984-07-01

    This paper describes the experimental and analytical investigations of the gas-side heat transfer and flow characteristics of steam generators in the AGR stations carried out by CERL. The majority of the experimental work on heat transfer and flow characteristics of close-packed tube arrangements in cross-flow of gases is carried out in a pressurised heat exchanger rig. The rig is operated on-line by a dedicated PDP 11/40 computer over the range of Reynolds number 10{sup 4} to 3x10{sup 5}. Atmospheric wind tunnels employing either small or large scale models of the specific sections of steam generators are used for a variety of supplementary and development studies. Various measurements techniques and, in particular, LDA and hot wire anemometry employed in these studies are described. The more important aspects of various investigations are illustrated by typical results. In order to ensure the efficient operation and integrity of steam generators under asymmetric boundary conditions a MIX suite of 2-dimensional codes has been developed. The codes calculate the gas and water/steam flow and temperature distributions in each channel of the steam generator taking into account thermal mixing in the gas as it passes through the generator. Application of the MIX codes to the solution of various operational problems is illustrated by typical examples and the continuing exercise of validating the codes against plant operational data is discussed. (author)

  19. Investigations of the gas-side heat transfer and flow characteristics of steam generators in AGR stations

    International Nuclear Information System (INIS)

    Lis, J.

    1984-01-01

    This paper describes the experimental and analytical investigations of the gas-side heat transfer and flow characteristics of steam generators in the AGR stations carried out by CERL. The majority of the experimental work on heat transfer and flow characteristics of close-packed tube arrangements in cross-flow of gases is carried out in a pressurised heat exchanger rig. The rig is operated on-line by a dedicated PDP 11/40 computer over the range of Reynolds number 10 4 to 3x10 5 . Atmospheric wind tunnels employing either small or large scale models of the specific sections of steam generators are used for a variety of supplementary and development studies. Various measurements techniques and, in particular, LDA and hot wire anemometry employed in these studies are described. The more important aspects of various investigations are illustrated by typical results. In order to ensure the efficient operation and integrity of steam generators under asymmetric boundary conditions a MIX suite of 2-dimensional codes has been developed. The codes calculate the gas and water/steam flow and temperature distributions in each channel of the steam generator taking into account thermal mixing in the gas as it passes through the generator. Application of the MIX codes to the solution of various operational problems is illustrated by typical examples and the continuing exercise of validating the codes against plant operational data is discussed. (author)

  20. International examples of steam generator replacement

    International Nuclear Information System (INIS)

    Wiechmann, K.

    1993-01-01

    Since 1979-1980 a total of twelve nuclear power plants world-wide have had their steam generators replaced. The replacement of the Combustion steam generators in the Millstone-2 plant in the United States was completed very recently. Steam generator replacement activities are going on at present in four plants. In North Anna, the steam generators have been under replacement since January 1990. In Japan, preparations have been started for Genkai-1. Since January 1992, the two projects in Beznau-1, Switzerland, and Doel-3, Belgium, have bee planned and executed in parallel. Why steam generator replacement? There are a number of defect mechanisms which give rise to the need for early steam generator replacement. One of the main reasons is the use of Inconel-600 as material for the heating tubes. Steam generator heating tubes made of Inconel-600 have been known to exhibit their first defects due to stress corrosion cracking after less than one year of operation. (orig.) [de

  1. Characterization of elevated temperature properties of heat exchanger and steam generator alloys

    International Nuclear Information System (INIS)

    Wright, J.K.; Carroll, L.J.; Cabet, C.; Lillo, T.M.; Benz, J.K.; Simpson, J.A.; Lloyd, W.R.; Chapman, J.A.; Wright, R.N.

    2012-01-01

    The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 °C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 °C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 °C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. High temperature tensile testing of Alloy 617 and Alloy 800H has been conducted over a range of temperatures. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. Creep, fatigue, and creep–fatigue properties of Alloy 617 have been measured as well, with the goal of determining the influence of the temperature, strain rate and atmosphere on the creep–fatigue life of Alloy 617. Elevated temperature properties and implications for codification of the alloys will be described.

  2. Entropy generation due to external fluid flow and heat transfer from a cylinder between parallel planes

    Directory of Open Access Journals (Sweden)

    Melhem Omar A.

    2017-01-01

    Full Text Available In the present study, second law analysis is introduced for circular cylinder confined between parallel planes. An analytical approach is adopted to study the effects of block age, Reynolds and Prandtl numbers on the entropy generation due to the laminar flow and heat transfer. Four different fluids are considered in the present analysis for comparison purposes. Heat transfer for the cylinder at an isothermal boundary condition is incorporated. In general, the entropy generation rate decreases as the blockage ratio decreases. In addition, the entropy generation rate increases with increasing Reynolds and Prandtl numbers. At a fixed Reynolds number, the effect of block age becomes more notice able for higher Prandtl number fluid. Similarly, for the same fluid, the effect of block age becomes more no tice able as the Reynolds number increases.

  3. Introducing a novel method to estimate the total heat transfer coefficient inside irregular-shape cavities utilizing thermoelectric modules; Special application in solar engineering

    DEFF Research Database (Denmark)

    Asadi, Amin; Rahbar, Nader; Rezaniakolaei, Alireza

    The main objective of the present study is to introduce a novel method to measure the total heat transfer coefficient inside irregular-shape cavities, used in solar applications, utilizing thermoelectric modules. Applying mathematical and thermodynamics modeling, the governing equations related...... to the total heat transfer coefficient between thermoelectric and glass cover as a function of ambient temperature, glass temperature, and output voltage has been derived. Investigating the accuracy of the proposed equation, an experimental case study has been performed. The experimental setup consists...... of three parts; a heat sink, a thermoelectric module, and a glass cover. All the experiments have been performed on the typical winter day and under the real climatic conditions of Semnan (35° 33′ N, 53° 23′ E), Iran. The results showed that the proposed method has the ability to measure the total heat...

  4. Assessment of NJOY generated neutron heating factors based on JEF/EFF-1

    International Nuclear Information System (INIS)

    Vontobel, P.

    1990-01-01

    Using the NJOY nuclear data processing system, a coupled neutron-photon multigroup MATXS-formatted nuclear data library was generated based on the files JEF/EFF-1. The neutron heating factors contained in this VITAMIN-J structured library are compared with those of MACLIB-IV. The main differences are due to the included decay heat of shortlived reaction products in MACKLIB-IV and/or due to too high/low photon production data of some JEF/EFF-1 isotopes. It is recommended to check carefully the energy balance of new evaluations containing photon production data. How this can be done with the help of the NJOY HEATR module is shown in an example. (author) 35 figs., 9 refs

  5. Blast-Wave Generation and Propagation in Rapidly Heated Laser-Irradiated Targets

    Science.gov (United States)

    Ivancic, S. T.; Stillman, C. R.; Nilson, P. M.; Solodov, A. A.; Froula, D. H.

    2017-10-01

    Time-resolved extreme ultraviolet (XUV) spectroscopy was used to study the creation and propagation of a >100-Mbar blast wave in a target irradiated by an intense (>1018WWcm2 cm2) laser pulse. Blast waves provide a platform to generate immense pressures in the laboratory. A temporal double flash of XUV radiation was observed when viewing the rear side of the target, which is attributed to the emergence of a blast wave following rapid heating by a fast-electron beam generated from the laser pulse. The time-history of XUV emission in the photon energy range of 50 to 200 eV was recorded with an x-ray streak camera with 7-ps temporal resolution. The heating and expansion of the target was simulated with an electron transport code coupled to 1-D radiation-hydrodynamics simulations. The temporal delay between the two flashes measured in a systematic study of target thickness and composition was found to evolve in good agreement with a Sedov-Taylor blast-wave solution. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and Department of Energy Office of Science Award Number DE-SC-0012317.

  6. Implications of small water leak reactions on sodium heated steam generator design

    Energy Technology Data Exchange (ETDEWEB)

    Smedley, J A

    1975-07-01

    Various types of sodium water reactions have been looked on as possibly causing hazard conditions in sodium heated steam generator units ranging from the very improbable boiler tube double ended guillotine fracture to the almost certain occurrence of micro-leaks. Within this range small water leaks reactions have attracted particular interest and the present paper looks at the principles of associating the reactions with detection and protection systems for Commercial Fast Reactors. A method is developed for assessing whether adequate protection has been provided against the effects of small water leak reactions in a steam generator unit. (author)

  7. Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview

    International Nuclear Information System (INIS)

    Aguilar-Reynosa, Alejandra; Romaní, Aloia; Rodríguez-Jasso, Rosa Ma.; Aguilar, Cristóbal N.; Garrote, Gil; Ruiz, Héctor A.

    2017-01-01

    Highlights: • Microwave heating pretreatment for lignocellulosic material. • Fundament of lignocellulosic material fractionation using microwave irradiation. • Energy consumption in microwave pretreatments and microwave reactors description. • Microwave heating as pretreatment in a biorefinery concept. - Abstract: The development of a feasible biorefinery is in need of alternative technologies to improve lignocellulosic biomass conversion by the suitable use of energy. Microwave heating processing (MHP) is emerging as promising unconventional pretreatment of lignocellulosic materials (LCMs). MHP applied as pretreatment induces LCMs breakdown through the molecular collision caused by the dielectric polarization. Polar particles movement generates a quick heating consequently the temperatures and times of process are lower. In this way, MHP has positioned as green technology in comparison with other types of heating. Microwave technology represents an excellent option to obtain susceptible substrates to enzymatic saccharification and subsequently in the production of bioethanol and high-added compounds. However, it is still necessary to study the dielectric properties of materials, and conduct economic studies to achieve development in pilot and industrial scale. This work aims to provide an overview of recent progress and alternative configurations for combining the application of microwave technology on the pretreatment of LCMs in terms of biorefinery.

  8. Totally Asymmetric Limit for Models of Heat Conduction

    Science.gov (United States)

    De Carlo, Leonardo; Gabrielli, Davide

    2017-08-01

    We consider one dimensional weakly asymmetric boundary driven models of heat conduction. In the cases of a constant diffusion coefficient and of a quadratic mobility we compute the quasi-potential that is a non local functional obtained by the solution of a variational problem. This is done using the dynamic variational approach of the macroscopic fluctuation theory (Bertini et al. in Rev Mod Phys 87:593, 2015). The case of a concave mobility corresponds essentially to the exclusion model that has been discussed in Bertini et al. (J Stat Mech L11001, 2010; Pure Appl Math 64(5):649-696, 2011; Commun Math Phys 289(1):311-334, 2009) and Enaud and Derrida (J Stat Phys 114:537-562, 2004). We consider here the convex case that includes for example the Kipnis-Marchioro-Presutti (KMP) model and its dual (KMPd) (Kipnis et al. in J Stat Phys 27:6574, 1982). This extends to the weakly asymmetric regime the computations in Bertini et al. (J Stat Phys 121(5/6):843-885, 2005). We consider then, both microscopically and macroscopically, the limit of large externalfields. Microscopically we discuss some possible totally asymmetric limits of the KMP model. In one case the totally asymmetric dynamics has a product invariant measure. Another possible limit dynamics has instead a non trivial invariant measure for which we give a duality representation. Macroscopically we show that the quasi-potentials of KMP and KMPd, which are non local for any value of the external field, become local in the limit. Moreover the dependence on one of the external reservoirs disappears. For models having strictly positive quadratic mobilities we obtain instead in the limit a non local functional having a structure similar to the one of the boundary driven asymmetric exclusion process.

  9. On the method of heat exchange calculation for critical and postcritical regimes in sodium-water steam generators

    International Nuclear Information System (INIS)

    Khudasko, V.V.; Kardash, D.Yu.; Grachev, N.S.

    1986-01-01

    Technique for calculating heat exchange in sodium-water steam generators with provisions for steam-water flow non-equilibrium character and moisture additional evaporation in pipes is suggested. Zone of heat exchange crisis representing the zone of transition from developed boiling to postcritical zone is considered. Comparison of estimated and experimental data performed for the following ranges of steame generator parameters: pressure p=7.8-14.0 MPa, coolant flow rate ρw=350-1000 kg/(m 2 xs), inlet sodium temperature T=590-825 K shows their good agreement

  10. Performance of double source boiler with coal-fired and solar power tower heat for supercritical power generating unit

    International Nuclear Information System (INIS)

    Zhang, Maolong; Du, Xiaoze; Pang, Liping; Xu, Chao; Yang, Lijun

    2016-01-01

    An approach of high-efficiency utilization of solar energy was proposed, by which the high concentrated heat received by the solar tower was integrated to the supercritical coal-fired boiler. Two schemes that solar energy was used to heat superheat steam or subcooled feed water were presented. The thermodynamic and heat transfer models were established. For a practical 660 MW supercritical power generating unit, the standard coal consumption of power generation could be decreased by more than 17 g/kWh by such double source boiler. The drawbacks of both schemes were found and then were amended by adding a flue gas bypass to the boiler. It also can be concluded that the maximum solar contribution of two schemes for the gross power generation are 6.11% and 4.90%, respectively. The solar power efficiency of the re-modified designs were demonstrated be superior to that of PS10. In terms of turbine efficiency, the comparisons with Solar Two plant having similar initial temperature found that the efficiency of Scheme I was 5.25% higher than that of Solar Two while the advantage of Scheme II was existing either. Additionally, in two schemes with flue bypass when the medium was extracted, the thermal efficiency of boiler could be improved as well. - Highlights: • High concentrated solar tower heat is integrated to the supercritical coal-fired boiler. • The double source boiler can use solar energy to heat superheat steam or subcooled feed water. • Power generating coal consumption can be reduced by more than 17 g/kWh by the double source boiler. • The solar contribution of double source boiler for the gross power generation can be as high as 6.11%.

  11. Variation and design criterion of heat load ratio of generator for air cooled lithium bromide–water double effect absorption chiller

    International Nuclear Information System (INIS)

    Li, Zeyu; Liu, Liming; Liu, Jinping

    2016-01-01

    Highlights: • Design criterion of heat load ratio of generator is vital to system performance. • Heat load ratio of generator changes with working condition. • Change of heat load ratio of generator for four systems was obtained and compared. • Design criterion of heat load ratio of generator was presented. - Abstract: The heat load ratio of generator (HLRG) is a special system parameter because it is not fixed at the design value but changes with the working condition. For the air cooled chiller, the deviation from the design working condition occurs easily due to the variation of the surrounding temperature. The system is likely to suffer from crystallization when the working condition is different from the designed one if the HLRG is designed improperly. Consequently, the design criterion of HLRG based on a broad range of working condition is essential and urgent to the development of air cooled lithium bromide–water double effect absorption chiller. This paper mainly deals with the variation of HLRG with the working condition as well as corresponding design criterion. Four types of double effect chillers named series, pre-parallel, rear parallel and reverse parallel flow system were considered. The parametric model was developed by the introduction of a new thermodynamic relationship of generator. The change of HLRG for different types of chillers with the working condition was analyzed and compared. The corresponding design criterion of HLRG was presented. This paper is helpful for further improvement of the performance and reliability of air cooled lithium bromide–water double effect absorption chiller.

  12. Evaluation of the performance of combined cooling, heating, and power systems with dual power generation units

    International Nuclear Information System (INIS)

    Knizley, Alta A.; Mago, Pedro J.; Smith, Amanda D.

    2014-01-01

    The benefits of using a combined cooling, heating, and power system with dual power generation units (D-CCHP) is examined in nine different U.S. locations. One power generation unit (PGU) is operated at base load while the other is operated following the electric load. The waste heat from both PGUs is used for heating and for cooling via an absorption chiller. The D-CCHP configuration is studied for a restaurant benchmark building, and its performance is quantified in terms of operational cost, primary energy consumption (PEC), and carbon dioxide emissions (CDE). Cost spark spread, PEC spark spread, and CDE spark spread are examined as performance indicators for the D-CCHP system. D-CCHP system performance correlates well with spark spreads, with higher spark spreads signifying greater savings through implementation of a D-CCHP system. A new parameter, thermal difference, is introduced to investigate the relative performance of a D-CCHP system compared to a dual PGU combined heat and power system (D-CHP). Thermal difference, together with spark spread, can explain the variation in savings of a D-CCHP system over a D-CHP system for each location. The effect of carbon credits on operational cost savings with respect to the reference case is shown for selected locations. - Highlights: • We investigate benefits from using combined cooling, heating, and power systems. • A dual power generation unit configuration is considered for CCHP and CHP. • Spark spreads for cost, energy, and emissions correlate with potential savings. • Thermal difference parameter helps to explain variations in potential savings. • Carbon credits may increase cost savings where emissions savings are possible

  13. Electricity and heat energy co-generation process modelling in Belarus

    Energy Technology Data Exchange (ETDEWEB)

    Chtcherbitch, A [Belarus Scientific Research Heat Power Inst., Minsk (Belarus); Iakoushev, A; Popov, B [Institute of Power Engineering Problems, Minsk (Belarus); Vorontsov, V [Institute of New Technics and Technology, Minsk (Belarus)

    1997-09-01

    This paper describes the experience gathered in the application of the ENPEP package to the conditions of Belarus energy system, focusing on the principal problems encountered in modelling a system having an important component of co-generation systems to satisfy the demands for electricity and heat. The approach used to solve this problem and some recommendations for future enhancements of the ENPEP program are discussed. The preliminary results obtained with the use of the model, as well as further analyses expected to be conducted in the near future are also described. (author). 6 figs.

  14. Non-Darcy flow of water-based carbon nanotubes with nonlinear radiation and heat generation/absorption

    Directory of Open Access Journals (Sweden)

    T. Hayat

    2018-03-01

    Full Text Available Here modeling and computations are presented to introduce the novel concept of Darcy-Forchheimer three-dimensional flow of water-based carbon nanotubes with nonlinear thermal radiation and heat generation/absorption. Bidirectional stretching surface induces the flow. Darcy’s law is commonly replace by Forchheimer relation. Xue model is implemented for nonliquid transport mechanism. Nonlinear formulation based upon conservation laws of mass, momentum and energy is first modeled and then solved by optimal homotopy analysis technique. Optimal estimations of auxiliary variables are obtained. Importance of influential variables on the velocity and thermal fields is interpreted graphically. Moreover velocity and temperature gradients are discussed and analyzed. Physical interpretation of influential variables is examined. Keywords: Porous medium, Heat generation/absorption, SWCNTs and MWCNTs, Nonlinear radiation

  15. Modeling and simulation of thermoelectric device working as a heat pump and an electric generator under Mediterranean climate

    International Nuclear Information System (INIS)

    Al-Nimr, Moh'd A.; Tashtoush, Bourhan M.; Jaradat, Ahmad A.

    2015-01-01

    This paper presents a study of a small thermoelectric device used primarily as a heat pump and secondarily as an electricity generator when space heating and cooling are not required and incident solar radiation is sufficient. As a power generator, the thermoelectric device is integrated with an evacuated solar collector to utilize solar power. Performance of the thermoelectric device as a heat pump and as an electric generator is simulated using MATLAB/SIMULINK. The purpose of this study is to estimate the energy savings from using the thermoelectric device in its electricity generation mode. The potential of energy saving because of this electricity generation mode function, has been examined in three different cases. These cases represent the operation of the dual mode thermoelectric system in typical home, school and office buildings in the Mediterranean region. In addition, the effects of different parameters, such as the solar radiation and ambient conditions, on the device performance were investigated for both modes as well as parameters related to the device itself. Furthermore, hours of operation were estimated and the economic feasibility of the device was evaluated. Results of this study include performance curves of the thermoelectric device in both modes as well as the estimation of the payback period for Mediterranean regions. - Highlights: • A thermoelectric device in dual mode integrated with an evacuated tube is studied. • The device is used as a heat pump and as an electricity generator. • Performance curves describing the behavior of the system have been resulted. • Energy saving by the system are calculated and presented for a period of one year. • Economic analysis of the system has been included.

  16. Economical photovoltaic power generation with heat recovery

    Science.gov (United States)

    Ascher, G.

    1977-01-01

    Three designs for conversion of solar radiation to electricity and thermal energy are analyzed. The objective of these converters is to increase the electric and thermal output for each photovoltaic array so as to lower the cell cost relative to the amount of energy delivered. An analysis of the economical aspects of conversion by photovoltaic cells with heat recovery is carried out in terms of hypothetical examples. Thus, it is shown that the original cost of say $40,000 per generated kilowat can be reduced to $572.00 per kilowatt by increasing the original electric output of 1 kW to 10 kW in electricity and 60 kW in thermal energy. The newly derived specific cost is only 1.4 percent of the original one. It is expected that a cost reduction of roughly 2% of the present specific cost per kilowatt will greatly stimulate public acceptance of photovoltaic terrestrial conversion to electricity.

  17. Feasibility study on rehabilitation and improvement of thermal power plants, district heating and heat supply system in Botosani City

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Discussions have been given on the improvement and modification project intended of saving energies and reducing greenhouse gas emission in the Botosani district heating and heat supplying facilities in Romania. Thirty years have elapsed since the building of the Botosani district heating and heat supplying facilities, whereas noticeable energy loss has occurred due to aged deterioration, such as thermal efficiency decrease, performance decrease, and hot water leakage due to piping corrosion. The present project is intended to improve the heat production and power generation facility efficiencies, and reduce the heat loss in heat transportation and distribution to less than 5%. The improvements will be implemented by replacing and rehabilitating the existing boilers, replacing the turbine generators, and replacing the transportation and distribution pipelines and heat exchangers. As a result of the discussions, the present project is estimated to result in annual fuel conservation of 35,820 tons of crude oil equivalent, and annual reduction of the greenhouse gas emission of 110,835 t-CO2. The total amount of the initial investment for the project would be 11.369 billion yen, and the payback period would be 12 years. The project will produce profit of 31.358 billion yen in 20 years, thus the project is financially feasible. (NEDO)

  18. Simulation of heat storages and associated heat budgets in the Pacific Ocean: 2. Interdecadal timescale

    Science.gov (United States)

    Auad, Guillermo; Miller, Arthur J.; White, Warren B.

    1998-11-01

    We use a primitive equation isopycnal model of the Pacific Ocean to simulate and diagnose the anomalous heat balance on interdecadal timescales associated with heat storage changes observed from 1970-1988 in the expendable bathythermograph (XBT) data set. Given the smallness of the interdecadal signals compared to the El Niño-Southern Oscillation (ENSO) signal, the agreement between model and observations is remarkably good. The total anomalous heat balance is made up of two parts, the diabatic part (from the model temperature equation) and the adiabatic part (from the model mass conservation equation) due to thermocline heave. We therefore describe our analysis of both the total and diabatic anomalous heat balances in four areas of the tropical and subtropical North Pacific Ocean in the upper 400 m. The interdecadal total (diabatic plus adiabatic) heat balance in the North Pacific Ocean is characterized by a complicated interplay of different physical processes, especially revealed in basin-scale averages of the heat budget components that have comparable amounts of variance. In smaller subregions, simpler balances hold. For example, in the western equatorial Pacific (area 1) the total heat content tendency term is nearly zero, so that a simple balance exists between surface heat flux, vertical heat transport, and horizontal mixing. In the western subtropical Pacific the total heat content tendency balances the three-dimensional divergence of the heat flux. We speculate that this complexity is indicative of multiple physical mechanisms involved in the generation of North Pacific interdecadal variability. The diabatic heat balance north of 24°N, a region of special interest to The World Ocean Circulation Experiment (WOCE), can be simplified to a balance between the tendency term, surface heat flux, and meridional advection, the last term dominated by anomalous advection of mean temperature gradients. For the western equatorial region the diabatic heat content

  19. Numerical analysis for thermal waves in gas generated by impulsive heating of a boundary surface

    International Nuclear Information System (INIS)

    Utsumi, Takayuki; Kunugi, Tomoaki

    1996-01-01

    Thermal wave in gas generated by an impulsive heating of a solid boundary was analyzed numerically by the Differential Algebraic CIP (Cubic Interpolated Propagation) scheme. Numerical results for the ordinary heat conduction equation were obtained with a high accuracy. As for the hyperbolic thermal fluid dynamics equation, the fundamental feature of the experimental results by Brown and Churchill with regard to thermoacoustic convection was qualitatively reproduced by the DA-CIP scheme. (author)

  20. Randomized controlled trial on postoperative pulmonary humidification after total laryngectomy: External humidifier versus heat and moisture exchanger

    NARCIS (Netherlands)

    Mérol, Jean-Claude; Charpiot, Anne; Langagne, Thibault; Hémar, Patrick; Ackerstaff, Annemieke H.; Hilgers, Frans J. M.

    2012-01-01

    Objectives/Hypothesis: Assessment of immediate postoperative airway humidification after total laryngectomy (TLE), comparing the use of an external humidifier (EH) with humidification through a heat and moisture exchanger (HME). Study Design: Randomized controlled trial (RCT). Methods: Fifty-three

  1. Randomized controlled trial on postoperative pulmonary humidification after total laryngectomy: external humidifier versus heat and moisture exchanger

    NARCIS (Netherlands)

    Mérol, J.-C.; Charpiot, A.; Langagne, T.; Hémar, P.; Ackerstaff, A.H.; Hilgers, F.J.M.

    2012-01-01

    Objectives/Hypothesis: Assessment of immediate postoperative airway humidification after total laryngectomy (TLE), comparing the use of an external humidifier (EH) with humidification through a heat and moisture exchanger (HME). Study Design: Randomized controlled trial (RCT). Methods: Fifty-three

  2. Demand modelling for central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    Most researchers in the field of heat demand estimation have focussed on explaning the load for a given plant based on rather few measurements. This approach is simply the only one adaptable with the very limited data material and limited computer power. This way of dealing with the subject is here called the top-down approach, due to the fact that one tries to explain the load from the overall data. The results of such efforts are discussed in the report, leading to inspiration for own work. Also the significance of the findings to the causes for given heat loads are discussed and summarised. Contrary to the top-down approach applied in literature, a here-called bottom-up approach is applied in this work, describing the causes of a given partial load in detail and combining them to explain the total load for the system. Three partial load 'components' are discussed: 1) Space heating. 2) Hot-Water Consumption. 3) Heat losses in pipe networks. The report is aimed at giving an introduction to these subjects, but at the same time at collecting the previous work done by the author. Space heating is shortly discussed and loads are generated by an advanced simulation model. A hot water consumption model is presented and heat loads, generated by this model, utilised in the overall work. Heat loads due to heat losses in district heating a given a high priority in the current work. Hence a detailed presentation and overview of the subject is given to solar heating experts normally not dealing with district heating. Based on the 'partial' loads generated by the above-mentioned method, an overall load model is built in the computer simulation environment TRNSYS. The final tool is then employed for the generation of time series for heat demand, representing a district heating area. The results are compared to alternative methods for the generation of heat demand profiles. Results form this comparison will be presented. Computerised modelling of systems

  3. The influence of inner topology of exhaust heat exchanger and thermoelectric module distribution on the performance of automotive thermoelectric generator

    International Nuclear Information System (INIS)

    Wang, Yiping; Li, Shuai; Zhang, Yifeng; Yang, Xue; Deng, Yadong; Su, Chuqi

    2016-01-01

    Highlights: • Cylindrical grooves to improve the performance of TEG were proposed. • Mainly thermal resistance in TEG was the heat convection in heat exchanger. • Proper height of heat exchanger can improve the TEG performance. • Keeping heat exchanger partly covered with TEM can make full use of each TEM. - Abstract: The waste heat of automotive exhaust gas would be directly transferred into electricity by thermoelectric modules (TEM) because of the temperature difference between heat exchanger and water tank. For the vehicle thermoelectric generator (TEG), the electrical power generation was deeply influenced by temperature difference, temperature uniformity and topological structure of TEG. In previous works, increasing the difference of temperature would significantly enhance the power generation of TEG and inserted fins were always applied to enhance heat transfer in heat exchanger. However the fins would result in a large unwanted back pressure which went against to the efficiency of the engine. In current studies, in order to enhance heat transfer rates and to avoid back pressure increase, a heat exchanger containing cylindrical grooves (the depth-to-width ratio is 0.25) on the interior surface of heat exchanger was proposed. The cylindrical grooves could increase the heat transfer area and enhance the turbulence intensity, meanwhile there was no additional inserts in the fluid to block the flow. The surface temperatures of water tank and heat exchanger with three internal structures, such as grooved surface, flat surface and inserted fins, were studied by numerical simulation at each row of thermoelectric modules. The results showed that comparing to other structures, heat exchanger with cylindrical grooves could improve the TEG efficiency at a low back pressure. The influence of the channel height on the TEG performance was investigated and the TEG with a channel height of 8 mm showed the best overall performance. It was also found that a portion

  4. Combined heat and power generation with a HCPV system at 2000 suns

    International Nuclear Information System (INIS)

    Paredes, Filippo; Montagnino, Fabio M.; Milone, Sergio; Salinari, Piero; Agnello, Simonpietro; Gelardi, Franco M.; Sciortino, Luisa; Cannas, Marco; Bonsignore, Gaetano; Barbera, Marco; Collura, Alfonso; Lo Cicero, Ugo

    2015-01-01

    This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connected to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%

  5. Combined heat and power generation with a HCPV system at 2000 suns

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Filippo; Montagnino, Fabio M.; Milone, Sergio [IDEA s.r.l., C.da Molara Z.I. III Fase, 90018 Termini Imerese (Italy); Salinari, Piero; Agnello, Simonpietro; Gelardi, Franco M.; Sciortino, Luisa; Cannas, Marco [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, 90123 Palermo (Italy); Bonsignore, Gaetano; Barbera, Marco [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, 90123 Palermo (Italy); INAF, Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo (Italy); Collura, Alfonso; Lo Cicero, Ugo [INAF, Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo (Italy)

    2015-09-28

    This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connected to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.

  6. Combined heat and power generation with a HCPV system at 2000 suns

    Science.gov (United States)

    Paredes, Filippo; Montagnino, Fabio M.; Salinari, Piero; Bonsignore, Gaetano; Milone, Sergio; Agnello, Simonpietro; Barbera, Marco; Gelardi, Franco M.; Sciortino, Luisa; Collura, Alfonso; Lo Cicero, Ugo; Cannas, Marco

    2015-09-01

    This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connected to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.

  7. Temperature anisotropy in a cyclotron resonance heated tokamak plasma and the generation of poloidal electric field

    International Nuclear Information System (INIS)

    Choe, W.; Ono, M.; Chang, C.S.

    1994-11-01

    The temperature anisotropy generated by cyclotron resonance heating of tokamak plasmas is calculated and the poloidal equilibrium electric field due to the anisotropy is studied. For the calculation of anisotropic temperatures, bounce-averaged Fokker-Planck equation with a bi-Maxwellian distribution function of heated particles is solved, assuming a moderate wave power and a constant quasilinear cyclotron resonance diffusion coefficient. The poloidal electrostatic potential variation is found to be proportional to the particle density and the degree of temperature anisotropy of warm species created by cyclotron resonance heating

  8. Heat transfer enhancement and entropy generation analysis of Al2O3-water nanofluid in an alternating oval cross-section tube using two-phase mixture model under turbulent flow

    Science.gov (United States)

    Najafi Khaboshan, Hasan; Nazif, Hamid Reza

    2018-04-01

    Heat transfer and turbulent flow of Al2O3-water nanofluid within alternating oval cross-section tube are numerically simulated using Eulerian-Eulerian two-phase mixture model. The primary goal of the present study is to investigate the effects of nanoparticles volume fraction, nanoparticles diameter and different inlet velocities on heat transfer, pressure drop and entropy generation characteristics of the alternating oval cross-section tube. For numerical simulation validation, the numerical results were compared with experimental data. Also, constant wall temperature boundary condition was considered on the tube wall. In addition, the comparison of thermal-hydraulic performance and the entropy generation characteristics between alternating oval cross-section tube and circular tube under same fluids were done. The results show that the heat transfer coefficient and pressure drop of alternating oval cross-section tube is more than base tube under same fluids. Also, these two parameters are increased when adding Al2O3 nanoparticle into water fluid, at any inlet velocity for both tubes. Furthermore, compared to the base fluid, the value of the heat transfer enhancement of nanofluid is higher than the increase of friction factor of nanofluid at the same given inlet boundary conditions. The results of entropy generation analysis illustrate that the total entropy generation increase with increasing the nanoparticles volume fraction and decreasing the nanoparticles diameter of nanofluid. The generation of thermal entropy is the main part of irreversibility, and Bejan number with an increase of the nanoparticles diameter slightly increases. Finally, at any given inlet velocity the frictional irreversibility is grown with an increase the nanoparticles volume fraction.

  9. Permanent magnet design for magnetic heat pumps using total cost minimization

    Science.gov (United States)

    Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Niknia, I.; Rowe, A.

    2017-11-01

    The active magnetic regenerator (AMR) is an attractive technology for efficient heat pumps and cooling systems. The costs associated with a permanent magnet for near room temperature applications are a central issue which must be solved for broad market implementation. To address this problem, we present a permanent magnet topology optimization to minimize the total cost of cooling using a thermoeconomic cost-rate balance coupled with an AMR model. A genetic algorithm identifies cost-minimizing magnet topologies. For a fixed temperature span of 15 K and 4.2 kg of gadolinium, the optimal magnet configuration provides 3.3 kW of cooling power with a second law efficiency (ηII) of 0.33 using 16.3 kg of permanent magnet material.

  10. Thermal-hydraulic performance analysis of a subchannel with square and triangle fuel rod arrangements using the entropy generation approach

    Institute of Scientific and Technical Information of China (English)

    S.Talebi; M.M.Valoujerdi

    2017-01-01

    The present paper discusses entropy generation in fully developed turbulent flows through a subchannel,arranged in square and triangle arrays.Entropy generation is due to contribution of both heat transfer and pressure drop.Our main objective is to study the effect of key parameters such as spacer grid,fuel rod power distribution,Reynolds number Re,dimensionless heat power ω,lengthto-fuel-diameter ratio λ,and pitch-to-diameter ratio ξ on subchannel entropy generation.The analysis explicitly shows the contribution of heat transfer and pressure drop to the total entropy generation.An analytical formulation is introduced to total entropy generation for situations with uniform and sinusoidal rod power distribution.It is concluded that power distribution affects entropy generation.A smoother power profile leads to less entropy generation.The entropy generation of square rod array bundles is more efficient than that of triangular rod arrays,and spacer grids generate more entropy.

  11. Design of reactor protection systems for HTR plants generating electric power and process heat problems and solutions

    International Nuclear Information System (INIS)

    Craemer, B.; Dahm, H.; Spillekothen, H.G.

    1982-06-01

    The design basis of the reactor protection system (RPS) for HTR plants generating process heat and electric power is briefly described and some particularities of process heat plants are indicated. Some particularly important or exacting technical measuring positions for the RPS of a process heat HTR with 500 MWsub(th) power (PNP 500) are described and current R + D work explained. It is demonstrated that a particularly simple RPS can be realized in an HTR with modular design. (author)

  12. Single-phase convection heat transfer characteristics of pebble-bed channels with internal heat generation

    International Nuclear Information System (INIS)

    Meng Xianke; Sun Zhongning; Xu Guangzhan

    2012-01-01

    Graphical abstract: The core of the water-cooled pebble bed reactor is the porous channels which stacked with spherical fuel elements. The gaps between the adjacent fuel elements are complex because they are stochastic and often shift. We adopt electromagnetic induction heating method to overall heat the pebble bed. By comparing and analyzing the experimental data, we get the rule of power distribution and the rule of heat transfer coefficient with particle diameter, heat flux density, inlet temperature and working fluid's Re number. Highlights: ► We adopt electromagnetic induction heating method to overall heat the pebble bed to be the internal heat source. ► The ball diameter is smaller, the effect of the heat transfer is better. ► With Re number increasing, heat transfer coefficient is also increasing and eventually tends to stabilize. ► The changing of heat power makes little effect on the heat transfer coefficient of pebble bed channels. - Abstract: The reactor core of a water-cooled pebble bed reactor includes porous channels that are formed by spherical fuel elements. This structure has notably improved heat transfer. Due to the variability and randomness of the interstices in pebble bed channels, heat transfer is complex, and there are few studies regarding this topic. To study the heat transfer characters of pebble bed channels with internal heat sources, oxidized stainless steel spheres with diameters of 3 and 8 mm and carbon steel spheres with 8 mm diameters are used in a stacked pebble bed. Distilled water is used as a refrigerant for the experiments, and the electromagnetic induction heating method is used to heat the pebble bed. By comparing and analyzing the experimental results, we obtain the governing rules for the power distribution and the heat transfer coefficient with respect to particle diameter, heat flux density, inlet temperature and working fluid Re number. From fitting of the experimental data, we obtain the dimensionless average

  13. Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.R.; Yamaguchi, H.; Uneno, D. [Department of Mechanical Engineering, Doshisha University, Kyoto 630-0321 (Japan); Fujima, K. [Mayekawa MFG Co., Ltd., 2000 Tatsuzawa Moriya-city, Ibaraki-Pref. 302-0118 (Japan); Enomoto, M. [Showa Denko K. K., 1-480, Inuzuka, Oyama-city, Tochigi 323-8679 (Japan); Sawada, N. [Showa Tansan Co., Ltd., 7-1, Ogimachi, Kawasaki-Ku, Kawasaki-city, Kanagawa 210-0867 (Japan)

    2006-10-15

    Theoretical analysis of a solar energy-powered Rankine thermodynamic cycle utilizing an innovative new concept, which uses supercritical carbon dioxide as a working fluid, is presented. In this system, a truly 'natural' working fluid, carbon dioxide, is utilized to generate firstly electricity power and secondly high-grade heat power and low-grade heat power. The uniqueness of the system is in the way in which both solar energy and carbon dioxide, available in abundant quantities in all parts of the world, are simultaneously used to build up a thermodynamic cycle and has the potential to reduce energy shortage and greatly reduce carbon dioxide emissions and global warming, offering environmental and personal safety simultaneously. The system consists of an evacuated solar collector system, a power-generating turbine, a high-grade heat recovery system, a low-grade heat recovery system and a feed pump. The performances of this CO{sub 2}-based Rankine cycle were theoretically investigated and the effects of various design conditions, namely, solar radiation, solar collector area and CO{sub 2} flow rate, were studied. Numerical simulations show that the proposed system may have electricity power efficiency and heat power efficiency as high as 11.4% and 36.2%, respectively. It is also found that the cycle performances strongly depend on climate conditions. Also the electricity power and heat power outputs increase with the collector area and CO{sub 2} flow rate. The estimated COP{sub power} and COP{sub heat} increase with the CO{sub 2} flow rate, but decrease with the collector area. The CO{sub 2}-based cycle can be optimized to provide maximum power, maximum heat recovery or a combination of both. The results suggest the potential of this new concept for applications to electricity power and heat power generation. (author)

  14. Characterization of Elevated Temperature Properties of Heat Exchanger and Steam Generator Alloys

    International Nuclear Information System (INIS)

    Wright, J.K.; Carroll, L.J.; Benz, J.K.; Simpson, J.A.; Wright, R.N.; Lloyd, W.R.; Chapman, J.A.

    2010-01-01

    The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. In general dynamic strain aging is observed to begin at higher temperatures and serrated flow persists to higher temperatures in Alloy 617 compared to Alloy 800H. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. The role of dynamic strain aging in the creep-fatigue behavior of Alloy 617 at temperatures of 800 C and above has also been examined in detail. Serrated flow is found to persist in cyclic stress-strain curves up to nearly the cycle to failure in some temperature and strain regimes. Results of those experiments and implications for creep-fatigue testing protocols will be described.

  15. Intermediate heat exchanger and steam generator designs for the HYLIFE-II fusion power plant using molten salts

    International Nuclear Information System (INIS)

    Lee, Y.T.; Hoffman, M.A.

    1992-01-01

    The HYLIFE-II fusion power plant employs the molten salt, Flibe, for the liquid jets which form the self-healing 'first wall' of the reactor. The molten salt, sodium fluoroborate then transports the heat from the IHX's to the steam generators. The design and optimization of the IHX's and the steam generators for use with molten salts has been done as part of the HYLIFE-II conceptual design study. The results of this study are described, and reference designs of these large heat exchangers are selected to minimize the cost of electricity while satisfying other important constraints

  16. Dynamic simulation of steam generator failures

    Energy Technology Data Exchange (ETDEWEB)

    Meister, G [Institut fuer Nukleare Sicherheitsforschung, Kernforschungsanlage Juelich GmbH, Juelich (Germany)

    1988-07-01

    A computer program will be described which is capable to simulate severe transients in a gas heated steam generator. Such transients may arise in the safety analysis of accidents resulting from failures in the heat removal system of an HTGR power plant. Important failure modes which have to be considered are ruptures of one or more steam generator tubes leading to water or steam ejection into the primary system or anomalous operating conditions which my cause damage due to excessive thermal stress. Examples are the complete dryout as a consequence of feedwater interrupt in connection with continuing gas heating and the reflooding of the secondary channel with cold feedwater after dryout. The steam generator program which is capable to simulate accidents of this type is written as a module which can be implemented into a program system fur the simulation of the total heat rejection system. It based on an advanced mathematical model for the two phase flow taking deviations from thermal equilibrium into account. Mass, energy and momentum balances for the primary and secondary fluid and the heat diffusion equations for the heat exchanging wall form a system of coupled differential equations which is solved numerically by an algorithm which is stiffly stable and suppresses effectively oscillations of numerical origin. Results of the simulation of transients of the type mentioned above will be presented and discussed. (author)

  17. Dynamic simulation of steam generator failures

    International Nuclear Information System (INIS)

    Meister, G.

    1988-01-01

    A computer program will be described which is capable to simulate severe transients in a gas heated steam generator. Such transients may arise in the safety analysis of accidents resulting from failures in the heat removal system of an HTGR power plant. Important failure modes which have to be considered are ruptures of one or more steam generator tubes leading to water or steam ejection into the primary system or anomalous operating conditions which my cause damage due to excessive thermal stress. Examples are the complete dryout as a consequence of feedwater interrupt in connection with continuing gas heating and the reflooding of the secondary channel with cold feedwater after dryout. The steam generator program which is capable to simulate accidents of this type is written as a module which can be implemented into a program system fur the simulation of the total heat rejection system. It based on an advanced mathematical model for the two phase flow taking deviations from thermal equilibrium into account. Mass, energy and momentum balances for the primary and secondary fluid and the heat diffusion equations for the heat exchanging wall form a system of coupled differential equations which is solved numerically by an algorithm which is stiffly stable and suppresses effectively oscillations of numerical origin. Results of the simulation of transients of the type mentioned above will be presented and discussed. (author)

  18. Performance Analysis of a Hybrid District Heating System

    DEFF Research Database (Denmark)

    Mikulandric, Robert; Krajačić, Goran; Duic, Neven

    2015-01-01

    Hybridisation of district heating systems can contribute to more efficient heat generation through cogeneration power plants or through the share increase of renewable energy sources in total energy consumption while reducing negative aspects of particular energy source utilisation. In this work......, the performance of a hybrid district energy system for a small town in Croatia has been analysed. Mathematical model for process analysis and optimisation algorithm for optimal system configuration has been developed and described. The main goal of the system optimisation is to reduce heat production costs....... Several energy sources for heat production have been considered in 8 different simulation cases. Simulation results show that the heat production costs could be reduced with introduction of different energy systems into an existing district heating system. Renewable energy based district heating systems...

  19. Combining several thermal indices to generate a unique heat comfort assessment methodology

    Directory of Open Access Journals (Sweden)

    Wissam EL Hachem

    2015-11-01

    Full Text Available Purpose: The proposed methodology hopes to provide a systematic multi-disciplinary approach to assess the thermal environment while minimizing unneeded efforts. Design/methodology/approach: Different factors affect the perception of the human thermal experience: metabolic rate (biology, surrounding temperatures (heat balance and environmental factors and cognitive treatment (physiology.This paper proposes a combination of different multidisciplinary variables to generate a unique heat comfort assessment methodology. The variables at stake are physiological, biological, and environmental. Our own heat analysis is thoroughly presented and all relevant equations are described. Findings: Most companies are oblivious about potential dangers of heat stress accidents and thus about methods to monitor and prevent them. This methodology enables the company or the concerned individual to conduct a preliminary assessment with minimal wasted resources and time in unnecessary steps whilst providing a guideline for a detailed study with minimal error rates if needed. More so, thermal comfort is an integral part of sound ergonomics practices, which in turn are decisive for the success of any lean six sigma initiative. Research limitations/implications: This methodology requires several full implementations to finalize its design. Originality/value: Most used heat comfort models are inherently uncertain and tiresome to apply. An extensive literature review confirms the need for a uniform assessment methodology that combines the different thermal comfort models such as the Fanger comfort model (PMV, PPD and WGBT since high error rates coupled with tiresome calculations often hinder the thermal assessment process.

  20. The Sydvaerme project: District heating from the Barsebeck nuclear power plant

    International Nuclear Information System (INIS)

    Josefsson, L.

    1977-01-01

    The paper presents a summary report of a study on district heating from Barsebeck Nuclear Power Plant in Sweden, prepared cooperatively by the cities of Malmoe, Lund, Helsingborg, Landskrona and the electric power company Sydkraft. A future number 3 generating set at the Barsebeck nuclear power station could be designed for combined production of heat and electric power. The generating set could be completed after 1983, and could then supply about 65% of total district heating requirements. The first stage of the investigation includes a proposal for a technically feasible solution, sufficiently detailed to permit both technical and economic evaluation of the project. (author)

  1. Automatic ID heat load generation in ANSYS code

    International Nuclear Information System (INIS)

    Wang, Zhibi.

    1992-01-01

    Detailed power density profiles are critical in the execution of a thermal analysis using a finite element (FE) code such as ANSYS. Unfortunately, as yet there is no easy way to directly input the precise power profiles into ANSYS. A straight-forward way to do this is to hand-calculate the power of each node or element and then type the data into the code. Every time a change is made to the FE model, the data must be recalculated and reentered. One way to solve this problem is to generate a set of discrete data, using another code such as PHOTON2, and curve-fit the data. Using curve-fitted formulae has several disadvantages. It is time consuming because of the need to run a second code for generation of the data, curve-fitting, and doing the data check, etc. Additionally, because there is no generality for different beamlines or different parameters, the above work must be repeated for each case. And, errors in the power profiles due to curve-fitting result in errors in the analysis. To solve the problem once and for all and with the capability to apply to any insertion device (ID), a program for ED power profile was written in ANSYS Parametric Design Language (APDL). This program is implemented as an ANSYS command with input parameters of peak magnetic field, deflection parameter, length of ID, and distance from the source. Once the command is issued, all the heat load will be automatically generated by the code

  2. Research results from a prototype for power generation from low temperature heat sources in small and medium sized sawmills

    Energy Technology Data Exchange (ETDEWEB)

    Tveit, Tor-Martin; Hoeeg, Arne; Asphjell, Trond-Atle; Horn, Henning

    2010-07-01

    In this paper we present research results from a low temperature power generation unit prototype, SPP 2-67A, installed at the timber company Moelven Eidsvold Vaerk in Norway. The power generation unit is a Stirling cycle reciprocating engine connected to a generator, which is designed to combine the mature technology for high temperature Stirling engines (as seen for instance as air independent propulsion (AIP) units in submarines) and recent academic work on low temperature Stirling engines. The power generation unit is installed in a boiler room at the Moelven Eidsvold Vaerk plant and uses steam at approximately 1.5 bar pressure as a heat source. The steam is generated in the 5.5 MW biomass-fuelled boiler, where bark of Norway spruce (Picea abies) is the main biofuel. The installation has been intended both to use hot water as a heat sink to demonstrate CHP operation, and cold water from the grid to demonstrate maximum power generation from surplus steam. The installation is part of a research project partly financed by the Research Council of Norway, with the goal of testing new technology to improve the use of bioenergy resources and conversion of heat from biofuels to power. (Author)

  3. Selenide isotope generator for the Galileo Mission: copper/water axially-grooved heat pipe topical report

    International Nuclear Information System (INIS)

    Strazza, N.P.

    1979-01-01

    This report presents a summary of the major accomplishments for the development, fabrication, and testing of axially-grooved copper/water heat pipes for Selenide Isotopic Generator (SIG) applications. The early development consisted of chemical, physical, and analytical studies to define an axially-grooved tube geometry that could be successfully fabricated and provide the desired long term (up to seven years) performance is presented. Heat pipe fabrication procedures, measured performance and accelerated life testing of heat pipes S/Ns AL-5 and LT-57 conducted at B and K Engineering are discussed. S/N AL-5 was the first axially-grooved copper/water heat pipe that was fabricated with the new internal coating process for cupric oxide (CuO) and the cleaning and water preparation methods developed by Battelle Columbus Laboratories. Heat pipe S/N LT-57 was fabricated along with sixty other axially-grooved heat pipes allocated for life testing at Teledyne Energy Systems. As of June 25, 1979, heat pipes S/Ns AL-5 and LT-57 have been accelerated life tested for 13,310 and 6,292 respectively, at a nominal operating temperature of 225 0 C without any signs of thermal performance degradation

  4. An artificial intelligence (AI) NOx/heat rate optimization system for Ontario Hydro`s fossil generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Luk, J.; Frank, A.; Bodach, P. [Ontario Hydro, Toronto, ON (Canada); Warriner, G. [Radian International, Tucker, GA (United States); Noblett, J. [Radian International, Austin, TX (United States); Slatsky, M. [Southern Company, Birmingham, AL (United States)

    1999-08-01

    Artificial intelligence (AI)-based software packages which can optimize power plant operations that improves heat rate and also reduces nitrogen oxide emissions are now commonly available for commercial use. This paper discusses the implementation of the AI-based NOx and Heat Rate Optimization System at Ontario Hydro`s generation stations, emphasizing the current AI Optimization Project at Units 5 and 6 of the Lakeview Generating Station. These demonstration programs are showing promising results in NOx reduction and plant performance improvement. The availability of the plant Digital Control System (DCS) in implementing AI optimization in a closed-loop system was shown to be an important criterion for success. Implementation of AI technology at other Ontario Hydro fossil generating units as part of the overall NOx emission reduction system is envisaged to coincide with the retrofit of the original plant control system with the latest DCS systems. 14 refs., 3 figs.

  5. District heating and heat storage using the solution heat of an ammonia/water system

    International Nuclear Information System (INIS)

    Taube, M.; Peier, W.; Mayor, J.C.

    1976-01-01

    The article describes a model for the optimum use of the heat energy generated in a nuclear power station for district heating and heat storage taking account of the electricity and heat demand varying with time. (HR/AK) [de

  6. Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating

    International Nuclear Information System (INIS)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Heat exchangers are widely used in industry, and analyses and optimizations of the performance of heat exchangers are important topics. In this paper, we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process. With this concept, a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed. It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger, while the minimizations of entropy generation rate, entropy generation numbers, and revised entropy generation number do not always. (general)

  7. Generating electricity and heat from lean gas. Dual fuel engine generates electricity and process heat from cupola furnace gas; Strom und Waerme aus Schwachgas gewinnen. Zuendstrahlmotor erzeugt Strom und Prozesswaerme aus Kupolofengas

    Energy Technology Data Exchange (ETDEWEB)

    Hirn, Gerhard

    2012-07-01

    White-hot molten iron flows into the launder. The blast of heat released provides visitors with an impressive demonstration of the amount of energy flowing in foundries. Large volumes of carbon (coke) are used for the melting process in the cupola furnace, whereby a combustible process gas is formed as a by-product. This so-called cupola furnace gas has a low heating value and has previously been completely combusted for generating the hot blast in the cupola furnace's recuperator. However, in this process only around 35 % of the contained energy is used thermally. Now it is possible to utilise the remaining 65 % of the chemically bound energy that was previously not used in most foundries: a modified biogas combined heat and power plant runs with cupola furnace gas (CFG) from the melting furnace. (orig.)

  8. A life-cycle comparison of the energy, environmental and economic impacts of coal versus wood pellets for generating heat in China

    International Nuclear Information System (INIS)

    Wang, Changbo; Chang, Yuan; Zhang, Lixiao; Pang, Mingyue; Hao, Yan

    2017-01-01

    In this study, we investigated whether wood pellets were more sustainable than coal for heating buildings in China by presenting a “fuel-to-heat” energy, environmental and economic comparison for both energy sources. Pellet and coal heating systems were modeled using a process-based life cycle inventory modeling approach, and the energy consumption and air pollutant emissions were calculated in Gigajoules (GJ). Wood pellets were also analyzed for their costs and market competitiveness against coal and other fossil fuel heating alternatives. The results showed that the energy saving potential from using pellets instead of coal was 1382 MJ for every 1-GJ of heat generated. Greenhouse gas emissions from pellets were 11.76 kg CO_2-eq GJ"−"1 heat, which were approximately 94% less than emissions from coal heating systems. Also, the wood pellet systems reduced SO_2, NO_x and PM emissions by 86%, 56% and 33%. However, the cost of pellets is significantly higher than the cost for coal, and is the primary impediment for the transition from coal to pellets in China. In addition, multiple consumers of wood residue, unstable heat values of pellet, limited supplies, and the lack of product and heating equipment standards also render the transition from coal to pellets impractical. - Highlights: • Process-based LCI modeling method was used for fuel-to-heat environmental assessment. • A coal-to-pellet shift for heat generation enables notable environmental benefits. • An average subsidy of 5.80 $ is needed for 1-GJ heat generation from the PTH system. • Low coal price and high feedstock cost hinder the wood pellet industry's development.

  9. Removal of contaminated asphalt layers by using heat generating powder metallic systems

    International Nuclear Information System (INIS)

    Barinov, A.S.; Karlina, O.K.; Ojovan, M.I.

    1996-01-01

    Heat generating systems on the base of powder metallic fuel were used for the removal of contaminated asphalt layers. Decontamination of spots which had complex geometric form was performed. Asphalt layers with deep contamination were removed essentially all radionuclides being retained in asphalt residue. Only a small part (1 - 2 %) of radionuclides could pass to combustion slag. No radionuclides were detected in aerosol-gas phase during decontamination process

  10. Regulation and Measurement of the Heat Generated by Automatic Tooth Preparation in a Confined Space.

    Science.gov (United States)

    Yuan, Fusong; Zheng, Jianqiao; Sun, Yuchun; Wang, Yong; Lyu, Peijun

    2017-06-01

    The aim of this study was to assess and regulate heat generation in the dental pulp cavity and circumambient temperature around a tooth during laser ablation with a femtosecond laser in a confined space. The automatic tooth preparing technique is one of the traditional oral clinical technology innovations. In this technique, a robot controlled an ultrashort pulse laser to automatically complete the three-dimensional teeth preparing in a confined space. The temperature control is the main measure for protecting the tooth nerve. Ten tooth specimens were irradiated with a femtosecond laser controlled by a robot in a confined space to generate 10 teeth preparation. During the process, four thermocouple sensors were used to record the pulp cavity and circumambient environment temperatures with or without air cooling. A statistical analysis of the temperatures was performed between the conditions with and without air cooling (p heat generated in the pulp cavity was lower than the threshold for dental pulp damage. These results indicate that femtosecond laser ablation with air cooling might be an appropriate method for automatic tooth preparing.

  11. Data for occupancy internal heat gain calculation in main building categories

    Directory of Open Access Journals (Sweden)

    Kaiser Ahmed

    2017-12-01

    Full Text Available Heat losses from occupant body by means of convection, radiation, vapor, and sweat are essential data for indoor climate and energy simulations. Heat losses depend on the metabolic activity and body surface area. Higher variations of body surface area of occupants are observed in day care centers, kinder gardens and schools compared to other building categories (Tables 2 and 3 and these variations need to be accounted, otherwise in these building categories heat gains, CO2 and humidity generation are overestimated. Indoor temperature, humidity level, air velocity, and clothing insulation have significant influences on dry and total heat losses from occupant body leading to typical values for summer and winter. The data presented in this article are related to the research article entitled Occupancy schedules for energy simulation in new prEN16798-1 and ISO/FDIS 17772-1 standards (Ahmed et al., 2017 [1]. Keywords: Body surface area, Metabolic rate, Dry heat loss, Total heat loss, Internal heat gain

  12. Long term performance of a solar floor and hot water heating house; Taiyonetsu yukadanbo kyuto jutaku no choki seino

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, M [Kogakuin University, Tokyo (Japan)

    1997-11-25

    Outlined herein are measured energy consumption followed for 12 years for a totally electrified solar house with a floor-heating and hot-water heating system. In the solar system, hot water generated by the solar collector is sent, via a surge tank, to a living room, dining room and study to heat their concrete floors, and recycled back to the collector after heating the heat-storage tank for hot water supply. The collector is of plate type, consisting of 6 units, each with a white glass sheet as the heat-collecting membrane for selectively absorbing heat. Its total heat-collecting area is 11.4m{sup 2}. Long-term performance of the solar system installed for floor and hot-water heating in a totally electrified solar house, is analyzed by the measured results collected for 12 years. The house consumes secondary energy of 11.7MWh/year on the average, which is approximately 20% lower that that required for a house of the equivalent size. The solar system has been operated smoothly, to supply 46 and 35% of the required heat for hot-water and floor heating. It is however estimated that annual heat loss reaches 34% in the hot-water heating system, including that in the electric hot-water generator, and prevention of heat loss is one of the major themes for the future system designs. 4 refs., 5 figs.

  13. Thermodynamics of premixed combustion in a heat recirculating micro combustor

    International Nuclear Information System (INIS)

    Rana, Uttam; Chakraborty, Suman; Som, S.K.

    2014-01-01

    A thermodynamic model has been developed to evaluate exergy transfer and its destruction in the process of premixed combustion in a heat recirculating micro combustor. Exergy destruction caused by process irreversibilities is characterized by entropy generation in the process. The entropy transport equation along with the solution of temperature and species concentration fields in the wake of flame sheet assumptions have been used to determine the different components of entropy generation. The role of thermal conductivity and thickness of combustor wall, and Peclet number on transfer and destruction rate of exergy is depicted in the process of flame stabilization via heat recirculation. The entropy generations due to gas phase heat conduction and chemical reaction are identified as the major sources of exergy destruction. The total irreversibility in pre-flame region is confined only within a small distance upstream of the flame. It has been observed that the local volumetric entropy generation is higher near the axis than that near the combustor wall. The second law efficiency is almost invariant with heat loss from the combustor, Peclet number, and thermal conductivity and thickness of combustor wall. - Highlights: • Irreversibility in the combustor is mainly due to conduction and chemical reaction. • Entropy generation near the axis is higher compared to that near the wall. • Heat recirculation and process irreversibility decrease with heat loss. • The second law efficiency is almost independent of Peclet number. • Second law efficiency is almost independent of wall thermal conductivity

  14. Performance improvement in a tubular heat exchanger by punched delta-winglet vortex generators

    Science.gov (United States)

    Khanoknaiyakarn, C.; Promvonge, P.; Thianpong, C.; Skullong, S.

    2018-01-01

    A novel tubular heat exchanger incorporated with punched delta-winglet vortex generators (called perforated delta-winglet vortex generator, P-DWVG) is proposed for improving its thermal performance and energy saving. The P-DWVG elements are punched out from a straight tape having its width nearly equal to the tube diameter before insertion. The main aim at employing the P-DWVG insert is to produce counter-rotating vortices along the tube to promote turbulence intensity inside as well as to transport the cold fluid at the central core to the near-wall regions. The experiment was performed to study thermal behaviors in a uniform heat-fluxed tube inserted with P-DWVGs. The P-DWVGs with the attack angle of 45° were mounted periodically with three different blockage ratios (BR = 0.1, 0.2 and 0.3) and two pitch ratios (PR = 2 and 3). Air as the test fluid was varied to obtain turbulent airflow for Reynolds number (Re) in a range of 4,150-25,500. The experimental results show that the P-DWVG provides a considerable increase in the rate of heat transfer around 3.1-4.01 times whereas friction factor increases around 11.44- 34.23 times higher than the plain tube. To assess the real benefits of P-DWVGs, thermal performance factor (TEF) is examined and in the range of 1.39-1.48 where its maximum is at BR = 0.1 and PR = 2.

  15. Fiscal 1976 Sunshine Project result report. R and D on solar heat power generation system (R and D on tower solar collection system); 1976 nendo taiyonetsu hatsuden system no kenkyu kaihatsu seika hokokusho. Tower shuko hoshiki system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-05-27

    This report describes the fiscal 1976 research result on tower solar collection system for solar heat power generation systems, and summarizes main specifications of the subsystem, equipment and control of the 1,000kW pilot plant. Based on daily and monthly long-time simulation, various programs were prepared for power generation, heat storage and operation rate of equipment, and real arrangements for total simulation were made. The output fluctuation rate less than 1%/min was obtained by studying a control system flexible for drastic fluctuation of solar radiation using the newly prepared dynamic characteristic equation for a steam loop. 10kW solar collection test was carried out using a pancake type heat absorber. Practical basic analysis was made on a heliostat driving system. A cavity type heat absorber was adopted in consideration of cost, operability and heat discharge. Based on thermal characteristics of a heat storage type heat exchanger using molten salt as heat medium, basic experiment was made on a compact latent heat type heat exchanger. Basic studies were also made on reflector, selective absorption surface and heat storage material. (NEDO)

  16. Optimal paths of piston motion of irreversible diesel cycle for minimum entropy generation

    Directory of Open Access Journals (Sweden)

    Ge Yanlin

    2011-01-01

    Full Text Available A Diesel cycle heat engine with internal and external irreversibility’s of heat transfer and friction, in which the finite rate of combustion is considered and the heat transfer between the working fluid and the environment obeys Newton’s heat transfer law [q≈ Δ(T], is studied in this paper. Optimal piston motion trajectories for minimizing entropy generation per cycle are derived for the fixed total cycle time and fuel consumed per cycle. Optimal control theory is applied to determine the optimal piston motion trajectories for the cases of with piston acceleration constraint on each stroke and the optimal distribution of the total cycle time among the strokes. The optimal piston motion with acceleration constraint for each stroke consists of three segments, including initial maximum acceleration and final maximum deceleration boundary segments, respectively. Numerical examples for optimal configurations are provided, and the results obtained are compared with those obtained when maximizing the work output with Newton’s heat transfer law. The results also show that optimizing the piston motion trajectories could reduce engine entropy generation by more than 20%. This is primarily due to the decrease in entropy generation caused by heat transfer loss on the initial portion of the power stroke.

  17. Geothermal electricity generation and desalination: an integrated process design to conserve latent heat with operational improvements

    KAUST Repository

    Missimer, Thomas M.; Ng, Kim Choon; Thuw, Kyaw; Wakil Shahzad, Muhammad

    2016-01-01

    A new process combination is proposed to link geothermal electricity generation with desalination. The concept involves maximizing the utilization of harvested latent heat by passing the turbine exhaust steam into a multiple effect distillation system and then into an adsorption desalination system. Processes are fully integrated to produce electricity, desalted water for consumer consumption, and make-up water for the geothermal extraction system. Further improvements in operational efficiency are achieved by adding a seawater reverse osmosis system to the site to utilize some of the generated electricity and using on-site aquifer storage and recovery to maximize water production with tailoring of seasonal capacity requirements and to meet facility maintenance requirements. The concept proposed conserves geothermally harvested latent heat and maximizes the economics of geothermal energy development. Development of a fully renewable energy electric generation-desalination-aquifer storage campus is introduced within the framework of geothermal energy development. © 2016 The Author(s). Published by Taylor & Francis

  18. Geothermal electricity generation and desalination: an integrated process design to conserve latent heat with operational improvements

    KAUST Repository

    Missimer, Thomas M.

    2016-02-05

    A new process combination is proposed to link geothermal electricity generation with desalination. The concept involves maximizing the utilization of harvested latent heat by passing the turbine exhaust steam into a multiple effect distillation system and then into an adsorption desalination system. Processes are fully integrated to produce electricity, desalted water for consumer consumption, and make-up water for the geothermal extraction system. Further improvements in operational efficiency are achieved by adding a seawater reverse osmosis system to the site to utilize some of the generated electricity and using on-site aquifer storage and recovery to maximize water production with tailoring of seasonal capacity requirements and to meet facility maintenance requirements. The concept proposed conserves geothermally harvested latent heat and maximizes the economics of geothermal energy development. Development of a fully renewable energy electric generation-desalination-aquifer storage campus is introduced within the framework of geothermal energy development. © 2016 The Author(s). Published by Taylor & Francis

  19. A renewable electric power and heat autonomous generator; Un generateur autonome d'electricite et de chaleur renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The society ENERGIESTRO developed an electric power and heat generator allowing the electricity and the renewable heat of a little building, without the electric network. The energy source comes from a thermal engine supplied by biofuels. The document presents the technical characteristics and the advantages of this innovation. (A.L.B.)

  20. Analysis of mechanical behavior and hysteresis heat generating mechanism of PDM motor

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changshuai; Zhu, Xiaohua; Tang, Liping [Southwest Petroleum University, Chengdu (China); Deng, Juan [Avic Chengdu Engine (Group) Co.,Ltd, Chengdu (China)

    2017-03-15

    Positive displacement motor (PDM), which is prone to high temperature fatigue failure, can be weakened in its application in deep and superdeep well. In order to study the forced state, deformation regularity and thermal hysteresis of PDM motor, the paper established the three-dimensional thermal-mechanical coupled Finite element model (FEM). Based on the theoretical research, experimental study and numerical simulation, the study found that the displacement of stator lining shows a sinusoidal variation under internal pressure, when adapting the general form of sine function to fitting inner contour line deformation function. Then the paper analyzed the hysteresis heat generating mechanism of the motor, learning that hysteresis thermogenous of stator lining occurs due to the viscoelastic of rubber material and cyclic loading of stator lining. A heartburn happens gradually in the center of the thickest part of the stator lining as temperature increases, which means work efficiency and service life of PDM will be decreased when used in deep or superdeep well. In this paper, we established a theory equation for the choice of interference fit and motor line type optimization design, showing hysteresis heat generating analyzing model and method are reasonable enough to significantly improve PDM’s structure and help better use PDM in deep and surdeep well.