WorldWideScience

Sample records for total fungal biomass

  1. Fungal biomass production from coffee pulp juice

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, R.; Calzada, F.; Herrera, R.; Rolz, C.

    1980-01-01

    Coffee pulp or skin represents about 40% of the weight of the fresh coffee fruit. It is currently a waste and its improper handling creates serious pollution problems for coffee producing countries. Mechanical pressing of the pulp will produce two fractions: coffee pulp juice (CPJ) and pressed pulp. Aspergillus oryzae, Trichoderma harzianum, Penicillium crustosum and Gliocladium deliquescens grew well in supplemented CPJ. At shake flask level the optimum initial C/N ratio was found to be in the range of 8 to 14. At this scale, biomass values of up to 50 g/l were obtained in 24 hours. Biomass production and total sugar consumption were not significantly different to all fungal species tested at the bench-scale level, even when the initial C/N ratio was varied. Best nitrogen consumption values were obtained when the initial C/N ratio was 12. Maximum specific growth rates occurred between 4-12 hours for all fungal species tested. (Refs. 8).

  2. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing.

    Science.gov (United States)

    Ahmed, Sibtain; Mustafa, Ghulam; Arshad, Muhammad; Rajoka, Muhammad Ibrahim

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.

  3. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.

    Science.gov (United States)

    van Kuijk, S J A; Sonnenberg, A S M; Baars, J J P; Hendriks, W H; Cone, J W

    2015-01-01

    In ruminant nutrition, there is an increasing interest for ingredients that do not compete with human nutrition. Ruminants are specialists in digesting carbohydrates in plant cell walls; therefore lignocellulosic biomass has potential in ruminant nutrition. The presence of lignin in biomass, however, limits the effective utilization of cellulose and hemicellulose. Currently, most often chemical and/or physical treatments are used to degrade lignin. White rot fungi are selective lignin degraders and can be a potential alternative to current methods which involve potentially toxic chemicals and expensive equipment. This review provides an overview of research conducted to date on fungal pretreatment of lignocellulosic biomass for ruminant feeds. White rot fungi colonize lignocellulosic biomass, and during colonization produce enzymes, radicals and other small compounds to breakdown lignin. The mechanisms on how these fungi degrade lignin are not fully understood, but fungal strain, the origin of lignocellulose and culture conditions have a major effect on the process. Ceriporiopsis subvermispora and Pleurotus eryngii are the most effective fungi to improve the nutritional value of biomass for ruminant nutrition. However, conclusions on the effectiveness of fungal delignification are difficult to draw due to a lack of standardized culture conditions and information on fungal strains used. Methods of analysis between studies are not uniform for both chemical analysis and in vitro degradation measurements. In vivo studies are limited in number and mostly describing digestibility after mushroom production, when the fungus has degraded cellulose to derive energy for fruit body development. Optimization of fungal pretreatment is required to shorten the process of delignification and make it more selective for lignin. In this respect, future research should focus on optimization of culture conditions and gene expression to obtain a better understanding of the mechanisms

  4. Soil fungal and bacterial biomass determined by epifluorescence microscopy and mycorrhizal spore density in different sugarcane managements

    Directory of Open Access Journals (Sweden)

    Adriana Pereira Aleixo

    2014-04-01

    Full Text Available Crop productivity and sustainability have often been related to soil organic matter and soil microbial biomass, especially because of their role in soil nutrient cycling. This study aimed at measuring fungal and bacterial biomass by epifluorescence microscopy and arbuscular mycorrhizal fungal (AMF spore density in sugarcane (Saccharum officinarum L. fields under different managements. We collected soil samples of sugarcane fields managed with or without burning, with or without mechanized harvest, with or without application of vinasse and from nearby riparian native forest. The soil samples were collected at 10cm depth and storage at 4°C until analysis. Fungal biomass varied from 25 to 37µg C g-1 dry soil and bacterial from 178 to 263µg C g-1 dry soil. The average fungal/bacterial ratio of fields was 0.14. The AMF spore density varied from 9 to 13 spores g-1 dry soil. The different sugarcane managements did not affect AMF spore density. In general, there were no significant changes of microbial biomass with crop management and riparian forest. However, the sum of fungal and bacterial biomass measured by epifluorescence microscopy (i.e. 208-301µg C g-1 dry soil was very close to values of total soil microbial biomass observed in other studies with traditional techniques (e.g. fumigation-extraction. Therefore, determination of fungal/bacterial ratios by epifluorescence microscopy, associated with other parameters, appears to be a promising methodology to understand microbial functionality and nutrient cycling under different soil and crop managements.

  5. Production of fungal biomass protein using microfungi from winery wastewater treatment.

    Science.gov (United States)

    Zhang, Zhan Ying; Jin, Bo; Bai, Zhi Hui; Wang, Xiao Yi

    2008-06-01

    This study was carried out to investigate the production of fungal biomass protein (FBP) in treatment of winery wastewater using microfungi. Three fungal strains, Trichoderma viride WEBL0702, Aspergillus niger WEBL0901 and Aspergillus oryzae WEBL0401, were selected in terms of microbial capability for FBP production and COD reduction. T. viride appeared to be the best strain for FBP production due to high productivity and less nitrogen requirement. More than 5 g/L of fungal biomass was produced in shake fermentation using T. viride without nitrogen addition, and by A. oryzae and A. niger with addition of 0.5-1.0 g/L (NH4)2SO4. The FBP production process corresponded to 84-90% COD reduction of winery wastewater. Fungal biomass contained approximately 36% protein produced by two Aspergillus strains, while biomass produced by T. viride consisted of 19.8% protein. Kinetic study indicated that maximum fungal cell growth could be achieved in 24h for T. viride and 48 h for A. oryzae and A. niger. Current results indicated that it could be feasible to develop a biotechnological treatment process integrated with FBP production from the winery waste streams.

  6. [Fungal biomass estimation in soils from southwestern Buenos Aires province (Argentina) using calcofluor white stain].

    Science.gov (United States)

    Vázquez, María B; Amodeo, Martín R; Bianchinotti, María V

    Soil microorganisms are vital for ecosystem functioning because of the role they play in soil nutrient cycling. Agricultural practices and the intensification of land use have a negative effect on microbial activities and fungal biomass has been widely used as an indicator of soil health. The aim of this study was to analyze fungal biomass in soils from southwestern Buenos Aires province using direct fluorescent staining and to contribute to its use as an indicator of environmental changes in the ecosystem as well as to define its sensitivity to weather conditions. Soil samples were collected during two consecutive years. Soil smears were prepared and stained with two different concentrations of calcofluor, and the fungal biomass was estimated under an epifluorescence microscope. Soil fungal biomass varied between 2.23 and 26.89μg fungal C/g soil, being these values in the range expected for the studied soil type. The fungal biomass was positively related to temperature and precipitations. The methodology used was reliable, standardized and sensitive to weather conditions. The results of this study contribute information to evaluate fungal biomass in different soil types and support its use as an indicator of soil health for analyzing the impact of different agricultural practices. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Thermokinetic comparison of trypan blue decolorization by free laccase and fungal biomass.

    Science.gov (United States)

    Razak, N N A; Annuar, M S M

    2014-03-01

    Free laccase and fungal biomass from white-rot fungi were compared in the thermokinetics study of the laccase-catalyzed decolorization of an azo dye, i.e., Trypan Blue. The decolorization in both systems followed a first-order kinetics. The apparent first-order rate constant, k1', value increases with temperature. Apparent activation energy of decolorization was similar for both systems at ∼ 22 kJ mol(-1), while energy for laccase inactivation was 18 kJ mol(-1). Although both systems were endothermic, fungal biomass showed higher enthalpy, entropy, and Gibbs free energy changes for the decolorization compared to free laccase. On the other hand, free laccase showed reaction spontaneity over a wider range of temperature (ΔT = 40 K) as opposed to fungal biomass (ΔT = 15 K). Comparison of entropy change (ΔS) values indicated metabolism of the dye by the biomass.

  8. Fungal biomass in pastures increases with age and reduced N input.

    NARCIS (Netherlands)

    Vries, de F.T.; Bloem, J.; Eekeren, van N.J.M.; Brussaard, L.; Hoffland, E.

    2007-01-01

    Previous studies have shown that soil fungal biomass increases towards more natural, mature systems. Shifts to a fungal-based soil food web have previously been observed with abandonment of agricultural fields and extensification of agriculture. In a previous field experiment we found increased

  9. Exploring the natural fungal biodiversity of tropical and temperate forests toward improvement of biomass conversion.

    Science.gov (United States)

    Berrin, Jean-Guy; Navarro, David; Couturier, Marie; Olivé, Caroline; Grisel, Sacha; Haon, Mireille; Taussac, Sabine; Lechat, Christian; Courtecuisse, Régis; Favel, Anne; Coutinho, Pedro M; Lesage-Meessen, Laurence

    2012-09-01

    In this study, natural fungal diversity in wood-decaying species was explored for biomass deconstruction. In 2007 and 2008, fungal isolates were collected in temperate forests mainly from metropolitan France and in tropical forests mainly from French Guiana. We recovered and identified 74 monomorph cultures using morphological and molecular identification tools. Following production of fungal secretomes under inductive conditions, we evaluated the capacity of these fungal strains to potentiate a commercial Trichoderma reesei cellulase cocktail for the release of soluble sugars from biomass. The secretome of 19 isolates led to an improvement in biomass conversion of at least 23%. Of the isolates, the Trametes gibbosa BRFM 952 (Banque de Ressources Fongiques de Marseille) secretome performed best, with 60% improved conversion, a feature that was not universal to the Trametes and related genera. Enzymatic characterization of the T. gibbosa BRFM 952 secretome revealed an unexpected high activity on crystalline cellulose, higher than that of the T. reesei cellulase cocktail. This report highlights the interest in a systematic high-throughput assessment of collected fungal biodiversity to improve the enzymatic conversion of lignocellulosic biomass. It enabled the unbiased identification of new fungal strains issued from biodiversity with high biotechnological potential.

  10. High turnover of fungal hyphae in incubation experiments.

    Science.gov (United States)

    de Vries, Franciska T; Bååth, Erland; Kuyper, Thom W; Bloem, Jaap

    2009-03-01

    Soil biological studies are often conducted on sieved soils without the presence of plants. However, soil fungi build delicate mycelial networks, often symbiotically associated with plant roots (mycorrhizal fungi). We hypothesized that as a result of sieving and incubating without plants, the total fungal biomass decreases. To test this, we conducted three incubation experiments. We expected total and arbuscular mycorrhizal (AM) fungal biomass to be higher in less fertilized soils than in fertilized soils, and thus to decrease more during incubation. Indeed, we found that fungal biomass decreased rapidly in the less fertilized soils. A shift towards thicker hyphae occurred, and the fraction of septate hyphae increased. However, analyses of phospholipid fatty acids (PLFAs) and neutral lipid fatty acids could not clarify which fungal groups were decreasing. We propose that in our soils, there was a fraction of fungal biomass that was sensitive to fertilization and disturbance (sieving, followed by incubation without plants) with a very high turnover (possibly composed of fine hyphae of AM and saprotrophic fungi), and a fraction that was much less vulnerable with a low turnover (composed of saprotrophic fungi and runner hyphae of AMF). Furthermore, PLFAs might not be as sensitive in detecting changes in fungal biomass as previously thought.

  11. Evaluation of total aboveground biomass and total merchantable biomass in Missouri

    Science.gov (United States)

    Michael E. Goerndt; David R. Larsen; Charles D. Keating

    2014-01-01

    In recent years, the state of Missouri has been converting to biomass weight rather than volume as the standard measurement of wood for buying and selling sawtimber. Therefore, there is a need to identify accurate and precise methods of estimating whole tree biomass and merchantable biomass of harvested trees as well as total standing biomass of live timber for...

  12. Phototrophic biofilms of restored fields in the Rhenish lignite mining area: development of soil algal, bacterial, and fungal biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Jahnke, K.; Priefer, U.B. [Rhein Westfal TH Aachen, Aachen (Germany)

    2002-07-01

    The formation of phototrophic biofilms in three fields under restoration of a lignite-mining area was recorded over 3 years of lucerne cultivation in terms of biomass carbon from algae, bacteria and fungi. The primary phase of biofilm development on the humus- and nitrogen deficient uppermost soil surfaces was dominated by algae. The ratio of algal carbon to heterotrophic bacterial and fungal carbon ranged from 1:0.4 to 1:2. Only during this initial developmental stage did the total microfloral carbon exceed 10% of the overall organic carbon content. With time, the ratios between algal and heterotrophic microbial carbon increased to 1:10 which was mainly due to decomposed plant residues and humus accumulation supporting the growth of bacteria and fungi. At this later stage of field development the calculated amount of bacterial and fungal carbon associated with the algae was still at least 8% of total heterotrophic microbial carbon and could even reach 20%. Bacterial and fungal biomasses were primarily governed by the organic carbon content (r = 0.81), but fluctuations-up to 50% and occurring mostly simultaneously for the three microfloral members-were observed in response to temperature and moisture conditions. The calculated in situ doubling times were 8 days (algae), 9 days (bacteria) and 14 days (fungi), respectively. Insight is given into the dynamics of phototrophic biofilm development and the abiotic factors affecting them during early phases of arable soil restoration. The results indicate that biomass changes expressed as the respective ratios between their microfloral members are a useful tool to characterise the different developmental stages of terrestrial biofilms.

  13. Removal of Cr(VI) from aqueous solution by fungal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, Sarabjeet Singh [Department of Biotechnology, General Shivdev Singh Diwan Gurbachan Singh Khalsa College, Patiala, Punjab (India); Goyal, Dinesh [Department of Biotechnology and Environmental Sciences, Thapar University, Patiala, Punjab (India)

    2010-10-15

    Chromium compounds are released by industrial processes including leather production, mining, petroleum refining, in textile industry and dyeing. They are a significant threat to the environment and public health because of their toxicity. Removal of hexavalent chromium by living biomass of different fungi was effective in the order of Aspergillus terricola>Aspergillus niger>Acremonium strictum>Aureobasidium pullulans>Paecilomyces variotii>Aspergillus foetidus>Cladosporium resinae>Phanerochaete chrysosporium. Non-living dried fungal biomass showed higher potential for metal removal than living cells. Among all fungi dead biomass of P. chrysosporium, C. resinae and P. variotii had the maximum specific chromium uptake capacity, which was 11.02, 10.69 and 10.35 mg/g of dry biomass respectively at pH 4.0-5.0 in batch sorption. Removal of Cr(VI) by P. chrysosporium from multi-metallic synthetic solution as well as chrome effluent was significant by bringing down the residual concentration to 0.1 mg/L in the effluent, which falls within the permissible range and its removal was not affected by the presence of other metal ions such as Fe, Zn and Ni. Fourier transform infrared spectral analysis revealed the presence of carboxylate (C=O) and amine (-NH{sup +}{sub 3}-NH{sup +}{sub 2}) functional groups commonly present on the cell surface of all fungi, with possible involvement in chromium binding. The result indicates that non-living fungal biomass either obtained as a by-product of fermentation industry or mass produced using inexpensive culture media can be used for bioremediation of Cr(VI) from chrome effluent on large scale. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Factors affecting the immobilization of fungal biomass on CNT as a biosorbent for textile dyes removal

    Science.gov (United States)

    Adebayo Bello, Ibrahim; Kabbashi, Nassereldeen A.; Zahangir Alam, Md; Alkhatib, Ma'an F.; Nabilah Murad, Fatin

    2017-07-01

    Effluents from dye and textile industries are highly contaminated and toxic to the environment. High concentration of non-biodegradable compounds contributes to increased biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of the wastewater bodies. Dyes found in wastewater from textile industries are carcinogenic, mutagenic or teratogenic. Biological processes involving certain bacteria, fungi and activated carbon have been employed in treating wastewater. These methods are either inefficient or ineffective. These complexities necessitates search for new approaches that will offset all the shortcomings of the present solutions to the challenges faced with textile wastewater management. This study produced a new biosorbent by the immobilization of fungal biomass on carbon nanotubes. The new biosorbent is called “carbon nanotubes immobilized biomass (CNTIB)” which was produced by immobilization technique. A potential fungal strain, Aspergillus niger was selected on the basis of biomass production. It was found out in this studies that fungal biomass were better produced in acidic medium. Aspergillus niger was immobilized on carbon nanotubes. One-factor-at-a time (OFAT) was employed to determine the effect of different factors on the immobilization of fungal biomass on carbon nanotubes and optimum levels at which the three selected parameters (pH, culture time and agitation rate) would perform. Findings from OFAT showed that the optimum conditions for immobilization are a pH of 5, agitation rate of 150rpm and a culture time of 5 days.

  15. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mireille eHaon

    2015-09-01

    Full Text Available Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes. This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in Pichia pastoris. We first used three fungal glycoside hydrolases that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (glycoside hydrolases, carbohydrate esterases and auxiliary activity enzyme families out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users’ community.

  16. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    Science.gov (United States)

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production

  17. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments

    Science.gov (United States)

    Matthew D. Wallenstein; Steven McNulty; Ivan J. Fernandez; Johnny Boggs; William H. Schlesinger

    2006-01-01

    We examined the effects of N fertilization on forest soil fungal and bacterial biomass at three long-term experiments in New England (Harvard Forest, MA; Mt. Ascutney, VT; Bear Brook, ME). At Harvard Forest, chronic N fertilization has decreased organic soil microbial biomass C (MBC) by an average of 54% and substrate induced respiration (SIR) was decreased by an...

  18. Fungal mycelia in soils - a new method for quantification of their biomass

    Science.gov (United States)

    Drabløs Eldhuset, Toril; Lange, Holger; Svetlik, Jan; Børja, Isabella

    2013-04-01

    All plant-bearing soils are interwoven with fungal hyphae. Their structure and function are affected by environmental factors like drought, which might be a stress factor of increasing importance in many world regions due to climate change. The fungal mycelium in soil is important both for mycorrhizal symbiosis with plant roots and for litter decomposition, and thereby also for carbon turnover in soils. However, the mycelium biomass has been difficult to assess. Here we describe a simple and feasible method to quantify the biomass of fungal mycelium. We report on a manipulation study in the field where drought stress has been induced. The experiment was performed in a Norway spruce (Picea abies) 20 years old stand planted on former agricultural land, with a control plot and a roofed plot where precipitation was excluded. To investigate the fungal mycelium, nylon nets (mesh size 1 mm, width 7 cm and length 25 cm), were inserted vertically into the soil down to 20 cm depth. The nets were left in the soil from October to June, removed and replaced by new nets that were left in the soil from June to October. After removal, by cutting a block of soil around each net, the nets were cleaned from residual soil and scanned using the image scanner CanoScan 9000F. The resulting images were analyzed using the image processing software ImageJ. The image analysis was based on the distribution of grey values in the individual pixels which characterize the different components in the image (voids, hyphae, the nylon net, and soil). Based on the repeated visual evaluation of hyphal coverage in the net segments, we obtained an exponential equation allowing us to determine automatically the coverage of net windows by hyphae in percentage for each net scanned. In this way we can compare the hyphal coverage in the control and the drought-exposed plots. Based on the hyphal coverage scans together with hyphal dry weight on clean nets, we account for the soil particles adhering to the nets

  19. Microbial biomass in compost during colonization of Agaricus bisporus

    NARCIS (Netherlands)

    Vos, Aurin M.; Heijboer, Amber; Boschker, Henricus T.S.; Bonnet, Barbara; Lugones, Luis G.; Wösten, Han A.B.

    2017-01-01

    Agaricus bisporus mushrooms are commercially produced on a microbe rich compost. Here, fungal and bacterial biomass was quantified in compost with and without colonization by A. bisporus. Chitin content, indicative of total fungal biomass, increased during a 26-day period from 576 to 779 nmol

  20. Fungal treatment of lignocellulosic biomass: Importance of fungal species, colonization and time on chemical composition and in vitro rumen degradability

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2015-01-01

    The aim of this study is to evaluate fungal treatments to improve in vitro rumen degradability of lignocellulosic biomass. In this study four selective lignin degrading fungi, Ganoderma lucidum, Lentinula edodes, Pleurotus eryngii and Pleurotus ostreatus, were used to pre-treat lignocellulosic

  1. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Couturier Marie

    2012-02-01

    Full Text Available Abstract Background Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemicellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. Results In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. Conclusion This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process.

  2. Effect of redox conditions on bacterial and fungal biomass and carbon dioxide production in Louisiana coastal swamp forest sediment

    International Nuclear Information System (INIS)

    Seo, Dong Cheol; DeLaune, Ronald D.

    2010-01-01

    Fungal and bacterial carbon dioxide (CO 2 ) production/emission was determined under a range of redox conditions in sediment from a Louisiana swamp forest used for wastewater treatment. Sediment was incubated in microcosms at 6 Eh levels (-200, -100, 0, + 100, + 250 and + 400 mV) covering the anaerobic range found in wetland soil and sediment. Carbon dioxide production was determined by the substrate-induced respiration (SIR) inhibition method. Cycloheximide (C 15 H 23 NO 4 ) was used as the fungal inhibitor and streptomycin (C 21 H 39 N 7 O 12 ) as the bacterial inhibitor. Under moderately reducing conditions (Eh > + 250 mV), fungi contributed more than bacteria to the CO 2 production. Under highly reducing conditions (Eh ≤ 0 mV), bacteria contributed more than fungi to the total CO 2 production. The fungi/bacteria (F/B) ratios varied between 0.71-1.16 for microbial biomass C, and 0.54-0.94 for microbial biomass N. Under moderately reducing conditions (Eh ≥ + 100 mV), the F/B ratios for microbial biomass C and N were higher than that for highly reducing conditions (Eh ≤ 0 mV). In moderately reducing conditions (Eh ≥ + 100 mV), the C/N microbial biomass ratio for fungi (C/N: 13.54-14.26) was slightly higher than for bacteria (C/N: 9.61-12.07). Under highly reducing redox conditions (Eh ≤ 0 mV), the C/N microbial biomass ratio for fungi (C/N: 10.79-12.41) was higher than for bacteria (C/N: 8.21-9.14). For bacteria and fungi, the C/N microbial biomass ratios under moderately reducing conditions were higher than that in highly reducing conditions. Fungal CO 2 production from swamp forest could be of greater ecological significance under moderately reducing sediment conditions contributing to the greenhouse effect (GHE) and the global warming potential (GWP). However, increases in coastal submergence associated with global sea level rise and resultant decrease in sediment redox potential from increased flooding would likely shift CO 2 production to bacteria

  3. Co-Production of Fungal Biomass Derived Constituents and Ethanol from Citrus Wastes Free Sugars without Auxiliary Nutrients in Airlift Bioreactor.

    Science.gov (United States)

    Satari, Behzad; Karimi, Keikhosro; Taherzadeh, Mohammad J; Zamani, Akram

    2016-02-26

    The potential of two zygomycetes fungi, Mucor indicus and Rhizopus oryzae, in assimilating citrus waste free sugars (CWFS) and producing fungal chitosan, oil, and protein as well as ethanol was investigated. Extraction of free sugars from citrus waste can reduce its environmental impact by decreasing the possibility of wild microorganisms growth and formation of bad odors, a typical problem facing the citrus industries. A total sugar concentration of 25.1 g/L was obtained by water extraction of citrus waste at room temperature, used for fungal cultivation in shake flasks and airlift bioreactor with no additional nutrients. In shake flasks cultivations, the fungi were only able to assimilate glucose, while fructose remained almost intact. In contrast, the cultivation of M. indicus and R. oryzae in the four-liter airlift bioreactor resulted in the consumption of almost all sugars and production of 250 and 280 g fungal biomass per kg of consumed sugar, respectively. These biomasses correspondingly contained 40% and 51% protein and 9.8% and 4.4% oil. Furthermore, the fungal cell walls, obtained after removing the alkali soluble fraction of the fungi, contained 0.61 and 0.69 g chitin and chitosan per g of cell wall for M. indicus and R. oryzae, respectively. Moreover, the maximum ethanol yield of 36% and 18% was obtained from M. indicus and R. oryzae, respectively. Furthermore, that M. indicus grew as clump mycelia in the airlift bioreactor, while R. oryzae formed spherical suspended pellets, is a promising feature towards industrialization of the process.

  4. Co-Production of Fungal Biomass Derived Constituents and Ethanol from Citrus Wastes Free Sugars without Auxiliary Nutrients in Airlift Bioreactor

    Directory of Open Access Journals (Sweden)

    Behzad Satari

    2016-02-01

    Full Text Available The potential of two zygomycetes fungi, Mucor indicus and Rhizopus oryzae, in assimilating citrus waste free sugars (CWFS and producing fungal chitosan, oil, and protein as well as ethanol was investigated. Extraction of free sugars from citrus waste can reduce its environmental impact by decreasing the possibility of wild microorganisms growth and formation of bad odors, a typical problem facing the citrus industries. A total sugar concentration of 25.1 g/L was obtained by water extraction of citrus waste at room temperature, used for fungal cultivation in shake flasks and airlift bioreactor with no additional nutrients. In shake flasks cultivations, the fungi were only able to assimilate glucose, while fructose remained almost intact. In contrast, the cultivation of M. indicus and R. oryzae in the four-liter airlift bioreactor resulted in the consumption of almost all sugars and production of 250 and 280 g fungal biomass per kg of consumed sugar, respectively. These biomasses correspondingly contained 40% and 51% protein and 9.8% and 4.4% oil. Furthermore, the fungal cell walls, obtained after removing the alkali soluble fraction of the fungi, contained 0.61 and 0.69 g chitin and chitosan per g of cell wall for M. indicus and R. oryzae, respectively. Moreover, the maximum ethanol yield of 36% and 18% was obtained from M. indicus and R. oryzae, respectively. Furthermore, that M. indicus grew as clump mycelia in the airlift bioreactor, while R. oryzae formed spherical suspended pellets, is a promising feature towards industrialization of the process.

  5. Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment.

    Science.gov (United States)

    Yu, Yanqing; Zeng, Yelin; Zuo, Jiane; Ma, Fuying; Yang, Xuewei; Zhang, Xiaoyu; Wang, Yujue

    2013-04-01

    This study investigated the effect of white-rot fungal pretreatment on corn stover conversion in catalytic fast pyrolysis (CFP). Corn stover pretreated by white-rot fungus Irpex lacteus CD2 was fast pyrolyzed alone (non-CFP) and with ZSM-5 zeolite (CFP) in a semi-batch pyroprobe reactor. The fungal pretreatment considerably increased the volatile product yields (predominantly oxygenated compounds) in non-CFP, indicating that fungal pretreatment enhances the corn stover conversion in fast pyrolysis. In the presence of ZSM-5 zeolite, these oxygenated volatiles were further catalytically converted to aromatic hydrocarbons, whose yield increased from 10.03 wt.% for the untreated corn stover to 11.49 wt.% for the pretreated sample. In contrast, the coke yield decreased from 14.29 to 11.93 wt.% in CFP following the fungal pretreatment. These results indicate that fungal pretreatment can enhance the production of valuable aromatics and decrease the amount of undesired coke, and thus has a beneficial effect on biomass conversion in CFP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Relationships between Fungal Biomass and Nitrous Oxide Emission in Upland Rice Soils under No Tillage and Cover Cropping Systems.

    Science.gov (United States)

    Zhaorigetu; Komatsuzaki, Masakazu; Sato, Yoshinori; Ohta, Hiroyuki

    2008-01-01

    The relationships between soil microbial properties and nitrous oxide emission were examined in upland soil under different tillage systems [no tillage (NT), rotary and plow tillage] and cover crop systems (fallow, cereal rye, and hairy vetch) in 2004 and 2005. Microbiological analyses included the determination of soil ergosterol as an indicator of fungal biomass, bacterial plate counting, and MPN estimations of ammonia oxidizers and denitrifiers. The combined practice of NT with rye-cover crop treatment increased fungal biomass but not bacterial populations in 0-10 cm deep soils. Such increase in fungal biomass was not found in 10-20 cm and 20-30 cm deep cover-cropped NT soil. The combined practice of NT with rye-cover cropping resulted in higher in situ N(2)O emission rates compared with rotary- and plow-till treatments. N(2)O flux was positively correlated with soil ergosterol content but not with denitrifier MPN and other soil chemical properties. These results suggested a significant contribution of fungi to N(2)O emission in cover-cropped NT soils.

  7. REMOVAL OF ARSENIC FROM AN AQUEOUS SOLUTION BY PRETREATED WASTE TEA FUNGAL BIOMASS

    Directory of Open Access Journals (Sweden)

    S. Mamisahebei , Gh. R. Jahed Khaniki, A. Torabian, S. Nasseri, K. Naddafi

    2007-04-01

    Full Text Available Arsenic contamination in water poses a serious threat on human health. The tea fungus known as Kombucha is a waste produced during black tea fermentation. The objective of this study was to examine the main aspect of a possible strategy for the removal of arsenates employing tea fungal biomass. The pretreatment of biomass with FeCl3 was found to improve the biosorption efficiency. Arsenics uptake was found to be rapid for all concentrations and reached to 79% of equilibrium capacity of biosorption in 20 min and reached equilibrium in 90 min. The pseudo second-order and first-order models described the biosorption kinetics of As (V with good correlation coefficient (R2>0.93 and better than the other equations. The data obtained from the experiment of biosorption isotherm were analyzed using the Freundlich and Langmuir isotherm models. The equation described the isotherm of As (V biosorption with relatively high correlation coefficient (R2>0.93. According to the Langmuir model, the maximum uptake capacities (qm of tea fungal biomass for As (V were obtained 3.9810-3 mmol/gr. The effect of Na+, K+, Mg+2 and Ca+2 on equilibrium capacities of As was not significant. The variation of sorption efficiency with pH showed that optimum biosorption takes place in the pH ranges of 6 to 8. Promising results were obtained in laboratory experiments and effective As (V removals were observed.

  8. A novel approach of utilization of the fungal conidia biomass to remove heavy metals from the aqueous solution through immobilization

    Science.gov (United States)

    Cai, Chun-Xiang; Xu, Jian; Deng, Nian-Fang; Dong, Xue-Wei; Tang, Hao; Liang, Yu; Fan, Xian-Wei; Li, You-Zhi

    2016-11-01

    The biomass of filamentous fungi is an important cost-effective biomass for heavy metal biosorption. However, use of free fungal cells can cause difficulties in the separation of biomass from the effluent. In this study, we immobilized the living conidia of the heavy metal-resistant Penicillium janthinillum strain GXCR by polyvinyl alcohol (PVA)-sodium alginate (SA) beads to remove heavy metals from an aqueous solution containing a low concentration (70 mg/L) of Cu, Pb, and Cd. The PVA-SA-conidia beads showed perfect characters of appropriate mechanical strength suitable for metal removal from the dynamic wastewater environment, an ideal settleability, easy separation from the solution, and a high metal biosorption and removal rate even after four cycles of successive sorption-desorption of the beads, overcoming disadvantages when fungal biomasses alone are used for heavy metal removal from wastewater. We also discuss the major biosorption-affecting factors, biosorption models, and biosorption mechanisms.

  9. Fungal Waste-Biomasses as Potential Low-Cost Biosorbents for Decolorization of Textile Wastewaters

    Directory of Open Access Journals (Sweden)

    Antonella Anastasi

    2012-10-01

    Full Text Available The biosorption potential of three fungal waste-biomasses (Acremonium strictum, Acremonium sp. and Penicillium sp. from pharmaceutical companies was compared with that of a selected biomass (Cunninghamella elegans, already proven to be very effective in dye biosorption. Among the waste-biomasses, A. strictum was the most efficient (decolorization percentage up to 90% within 30 min with regard to three simulated dye baths; nevertheless it was less active than C. elegans which was able to produce a quick and substantial decolorization of all the simulated dye baths (up to 97% within 30 min. The biomasses of A. strictum and C. elegans were then tested for the treatment of nine real exhausted dye baths. A. strictum was effective at acidic or neutral pH, whereas C. elegans confirmed its high efficiency and versatility towards exhausted dye baths characterised by different classes of dyes (acid, disperse, vat, reactive and variation in pH and ionic strength. Finally, the effect of pH on the biosorption process was evaluated to provide a realistic estimation of the validity of the laboratory results in an industrial setting. The C. elegans biomass was highly effective from pH 3 to pH 11 (for amounts of adsorbed dye up to 1054 and 667 mg of dye g−1 biomass dry weight, respectively; thus, this biomass can be considered an excellent and exceptionally versatile biosorbent material.

  10. Radiocesium storage in soil microbial biomass of undisturbed alpine meadow soils and its relation to 137Cs soil-plant transfer

    International Nuclear Information System (INIS)

    Stemmer, Michael; Hromatka, Angelika; Lettner, Herbert; Strebl, Friederike

    2005-01-01

    This study focuses on radiocesium storage in soil microbial biomass of undisturbed alpine meadow sites and its relation to the soil-to-plant transfer. Soil and plant samples were taken in August 1999 from an altitude transect (800-1600 m.a.s.l.) at Gastein valley, Austria. Soil samples were subdivided into 3-cm layers for analyses of total, K 2 SO 4 -extractable and microbially stored 137 Cs. Microbial biomass was measured by the fumigation extraction method, and fungal biomass was quantified using ergosterol as biomarker molecule. In general, the quantity of 137 Cs stored in the living soil microbial biomass was relatively small. At the high-altitude meadows, showing high amounts of fungal biomass, microbially stored 137 Cs amounted to 0.64 ± 0.14 kBq m -2 which corresponds to about 1.2-2.7% of the total 137 Cs soil inventory. At lower altitudes, microbial 137 Cs content was distinctly smaller and in most cases not measurable at all using the fumigation extraction method. However, a positive correlation between the observed soil-to-plant aggregated transfer factor, microbially stored 137 Cs and fungal biomass was found, which indicates a possible role of fungal biomass in the storage and turnover of 137 Cs in soils and in the 137 Cs uptake by plants

  11. Winery biomass waste degradation by sequential sonication and mixed fungal enzyme treatments.

    Science.gov (United States)

    Karpe, Avinash V; Dhamale, Vijay V; Morrison, Paul D; Beale, David J; Harding, Ian H; Palombo, Enzo A

    2017-05-01

    To increase the efficiency of winery-derived biomass biodegradation, grape pomace was ultrasonicated for 20min in the presence of 0.25M, 0.5Mand1.0MKOH and 1.0MNaOH. This was followed by treatment with a 1:1 (v/v) mix of crude enzyme preparation derived from Phanerochaete chrysosporium and Trametes versicolor for 18h and a further 18h treatment with a 60:14:4:2 percent ratio combination of enzymes derived from Aspergillus niger: Penicillium chrysogenum: Trichoderma harzianum: P. citrinum, repsectively. Process efficiency was evaluated by its comparison to biological only mixed fungal degradation over 16days. Ultrasonication treatment with 0.5MKOH followed by mixed enzyme treatment yielded the highest lignin degradation of about 13%. Cellulase, β-glucosidase, xylanase, laccase and lignin peroxidase activities of 77.9, 476, 5,390.5, 66.7 and 29,230.7U/mL, respectively, were observed during biomass degradation. Gas chromatography-mass spectrometry (GC-MS) analysis of the degraded material identified commercially important compounds such as gallic acid, lithocholic acid, glycolic acid and lactic acid which were generated in considerable quantities. Thus, the combination of sonication pre-treatment and enzymatic degradation has the potential to considerably improve the breakdown of agricultural biomass and produce commercially useful compounds in markedly less time (<40h) with respect to biological only degradation (16days). Copyright © 2016 Elsevier Inc. All rights reserved.

  12. PNNL Fungal Biotechnology Core DOE-OBP Project

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Scott E.; Bruno, Kenneth S.; Butcher, Mark G.; Collett, James R.; Culley, David E.; Dai, Ziyu; Magnuson, Jon K.; Panisko, Ellen A.

    2009-11-30

    In 2009, we continued to address barriers to fungal fermentation in the primary areas of morphology control, genomics, proteomics, fungal hyperproductivity, biomass-to-products via fungal based consolidated bioprocesses, and filamentous fungal ethanol. “Alternative renewable fuels from fungi” was added as a new subtask. Plans were also made to launch a new advanced strain development subtask in FY2010.

  13. Whole-cell fungal transformation of precursors into dyes

    Directory of Open Access Journals (Sweden)

    Jarosz-Wilkołazka Anna

    2010-07-01

    Full Text Available Abstract Background Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. Results An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25. Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. Conclusions This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other

  14. Biomass measurement by flow cytometry during solid-state fermentation of basidiomycetes.

    Science.gov (United States)

    Steudler, Susanne; Böhmer, Ulrike; Weber, Jost; Bley, Thomas

    2015-02-01

    Solid-state fermentation (SSF) is a robust process that is well suited to the on-site cultivation of basidiomycetes that produce enzymes for the treatment of lignocellulosics. Reliable methods for biomass quantification are essential for the analysis of fungal growth kinetics. However, direct biomass determination is not possible during SSF because the fungi grow into the substrate and use it as a nutrient source. This necessitates the use of indirect methods that are either very laborious and time consuming or can only provide biomass measurements during certain growth periods. Here, we describe the development and optimization of a new rapid method for fungal biomass determination during SSF that is based on counting fungal nuclei by flow cytometry. Fungal biomass was grown on an organic substrate and its concentration was measured by isolating the nuclei from the fungal hyphae after cell disruption, staining them with SYTOX(®) Green, and then counting them using a flow cytometer. A calibration curve relating the dry biomass of the samples to their concentrations of nuclei was established. Multiple buffers and disruption methods were tested. The results obtained were compared with values determined using the method of ergosterol determination, a classical technique for fungal biomass measurement during SSF. Our new approach can be used to measure fungal biomass on a range of different scales, from 15 mL cultures to a laboratory reactor with a working volume of 10 L (developed by the Research Center for Medical Technology and Biotechnology (fzmb GmbH)). © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  15. Microbial biomass in faeces of dairy cows affected by a nitrogen deficient diet.

    Science.gov (United States)

    Jost, Daphne Isabel; Aschemann, Martina; Lebzien, Peter; Joergensen, Rainer Georg; Sundrum, Albert

    2013-04-01

    Since more than half of the faecal nitrogen (N) originates from microbial N, the objective of the study was to develop a method for quantitatively detecting microbial biomass and portion of living microorganisms in dairy cattle faeces, including bacteria, fungi and archaea. Three techniques were tested: (1) the chloroform fumigation extraction (CFE) method, (2) detection of the fungal cell-membrane component ergosterol and (3) analysis of the cell wall components fungal glucosamine and bacterial muramic acid. In a second step, an N deficient (ND) and an N balanced (NB) diets were compared with respect to the impacts on faecal C and N fractions, microbial indices and digestibility. The mean values of microbial biomass C and N concentrations averaged around 37 and 4.9 mg g(-1) DM, respectively. Ergosterol, together with fungal glucosamine and bacterial muramic acid, revealed a 25% fungal C in relation to the total microbial C content in dairy cattle faeces. Changes in ruminal N supply showed significant effects on faecal composition. Faecal concentrations of NDF, hemicelluloses and undigested dietary N and the total C/N ratio were significantly higher in ND treatment compared to the NB treatment. N deficiency was reflected also by a higher microbial biomass C/N ratio. It was concluded that the assessment of microbial indices provides valuable information with respect to diet effects on faecal composition and the successive decomposition. Further studies should be conducted to explore the potentials for minimising nutrient losses from faeces.

  16. Radiocaesium in the fungal compartment of forest ecosystems

    International Nuclear Information System (INIS)

    Vinichuk, Mykhaylo

    2003-01-01

    Fungi in forest ecosystems are major contributors to accumulation and cycling of radionuclides, especially radiocaesium. However, relatively little is known about uptake and retention of 137 Cs by fungal mycelia. This thesis comprises quantitative estimates of manually prepared mycelia of mainly ectomycorrhizal fungi and their possible role in the retention, turnover and accumulation of radiocaesium in contaminated forest ecosystems. The studies were conducted in two forests during 1996-1998 and 2000-2003. One was in Ovruch district, Zhytomyr region of Ukraine (51 deg 30 min N, 28 deg 95 min E), and the other at two Swedish forest sites: the first situated about 35 km northwest of Uppsala (60 deg 05 min N, 17 deg 25 min E) and the second at Hille in the vicinity of Gaevle (60 deg 85 min N, 17 deg 15 min E). The 137 Cs activity concentration was measured in prepared mycelia and corresponding soil layers. Various extraction procedures were used to study the retention and binding of 137 Cs in Of/Oh and Ah/B horizons of forest soil. 137 Cs was also extracted from the fruit bodies and mycelia of fungi. The fungal mycelium biomass was estimated and the percentage of the total inventory of 137 Cs bound in mycelia in the Ukrainian and Swedish forests was calculated. The estimated fungal biomass in Ukrainian forests varied from 0.07 to 70.4 mg/g soil, in Swedish forests between 3.6 and 19. 4 mg/g soil. Between 0.5 to 50 % of the total 137 Cs activity in the 0-10 cm soil profile was retained in the fungal mycelia. The 137 Cs activity concentration in mycelia was thus higher than that found in soil, and 137 Cs activity concentrations in the fruit bodies was higher than that in the mycelium. The survey study revealed that a major part, around 50 % of the plant-available 137 Cs in forest soil, was retained in the fungal mycelium. The most probable sources of 137 Cs for fungal mycelia and fruit bodies of fungi were found to be water soluble substances, humic matter

  17. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms.

    Science.gov (United States)

    Deng, Shubo; Ting, Yen Peng

    2005-11-01

    Heavy metal pollution in the aqueous environment is a problem of global concern. Biosorption has been considered as a promising technology for the removal of low levels of toxic metals from industrial effluents and natural waters. A modified fungal biomass of Penicillium chrysogenum with positive surface charges was prepared by grafting polyethylenimine (PEI) onto the biomass surface in a two-step reaction. The presence of PEI on the biomass surface was verified by FTIR and X-ray photoelectron spectroscopy (XPS) analyses. Due to the high density of amine groups in the long chains of PEI molecules on the surface, the modified biomass was found to possess positive zeta potential at pH below 10.4 as well as high sorption capacity for anionic Cr(VI). Using the Langmuir adsorption isotherm, the maximum sorption capacity for Cr(VI) at a pH range of 4.3-5.5 was 5.37 mmol/g of biomass dry weight, the highest sorption capacity for Cr(VI) compared to other sorbents reported in the literature. Scanning electronic microscopy (SEM) provided evidence of chromium aggregates formed on the biomass surface. XPS results verified the presence of Cr(III) on the biomass surface in the pH range 2.5-10.5, suggesting that some Cr(VI) anions were reduced to Cr(III) during the sorption. The sorption kinetics indicated that redox reaction occurred on the biomass surface, and whether the converted Cr(III) ions were released to solution or adsorbed on the biomass depended on the solution pH. Sorption mechanisms including electrostatic interaction, chelation, and precipitation were found to be involved in the complex sorption of chromium on the PEI-modified biomass.

  18. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes

    Science.gov (United States)

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-03-01

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.

  19. Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics.

    Science.gov (United States)

    Gupta, Rishi; Mehta, Girija; Khasa, Yogender Pal; Kuhad, Ramesh Chander

    2011-07-01

    The biological delignification of lignocellulosic feedstocks, Prosopis juliflora and Lantana camara was carried out with Pycnoporus cinnabarinus, a white rot fungus, at different scales under solid-state fermentation (SSF) and the fungal treated substrates were evaluated for their acid and enzymatic saccharification. The fungal fermentation at 10.0 g substrate level optimally delignified the P. juliflora by 11.89% and L. camara by 8.36%, and enriched their holocellulose content by 3.32 and 4.87%, respectively, after 15 days. The fungal delignification when scaled up from 10.0 g to 75.0, 200.0 and 500.0 g substrate level, the fungus degraded about 7.69-10.08% lignin in P. juliflora and 6.89-7.31% in L. camara, and eventually enhanced the holocellulose content by 2.90-3.97 and 4.25-4.61%, respectively. Furthermore, when the fungal fermented L. camara and P. juliflora was hydrolysed with dilute sulphuric acid, the sugar release was increased by 21.4-42.4% and the phenolics content in hydrolysate was decreased by 18.46 and 19.88%, as compared to the unfermented substrate acid hydrolysis, respectively. The reduction of phenolics in acid hydrolysates of fungal treated substrates decreased the amount of detoxifying material (activated charcoal) by 25.0-33.0% as compared to the amount required to reduce almost the same level of phenolics from unfermented substrate hydrolysates. Moreover, an increment of 21.1-25.1% sugar release was obtained when fungal treated substrates were enzymatically hydrolysed as compared to the hydrolysis of unfermented substrates. This study clearly shows that fungal delignification holds potential in utilizing plant residues for the production of sugars and biofuels.

  20. Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils.

    Science.gov (United States)

    Ali, M A; Louche, J; Legname, E; Duchemin, M; Plassard, C

    2009-12-01

    Young seedlings of maritime pine (Pinus pinaster Soland in Aït.) were grown in rhizoboxes using intact spodosol soil samples from the southwest of France, in Landes of Gascogne, presenting a large variation of phosphorus (P) availability. Soils were collected from a 93-year-old unfertilized stand and a 13-year-old P. pinaster stand with regular annual fertilization of either only P or P and nitrogen (N). After 6 months of culture in controlled conditions, different morphotypes of ectomycorrhiza (ECM) were used for the measurements of acid phosphatase activity and molecular identification of fungal species using amplification of the ITS region. Total biomass, N and P contents were measured in roots and shoots of plants. Bicarbonate- and NaOH-available inorganic P (Pi), organic P (Po) and ergosterol concentrations were measured in bulk and rhizosphere soil. The results showed that bulk soil from the 93-year-old forest stand presented the highest Po levels, but relatively higher bicarbonate-extractable Pi levels compared to 13-year-old unfertilized stand. Fertilizers significantly increased the concentrations of inorganic P fractions in bulk soil. Ergosterol contents in rhizosphere soil were increased by fertilizer application. The dominant fungal species was Rhizopogon luteolus forming 66.6% of analysed ECM tips. Acid phosphatase activity was highly variable and varied inversely with bicarbonate-extractable Pi levels in the rhizosphere soil. Total P or total N in plants was linearly correlated with total plant biomass, but the slope was steep only between total P and biomass in fertilized soil samples. In spite of high phosphatase activity in ECM tips, P availability remained a limiting nutrient in soil samples from unfertilized stands. Nevertheless young P. pinaster seedlings showed a high plasticity for biomass production at low P availability in soils.

  1. Community Structure and Succession Regulation of Fungal Consortia in the Lignocellulose-Degrading Process on Natural Biomass

    Directory of Open Access Journals (Sweden)

    Baoyu Tian

    2014-01-01

    Full Text Available The study aims to investigate fungal community structures and dynamic changes in forest soil lignocellulose-degrading process. rRNA gene clone libraries for the samples collected in different stages of lignocellulose degradation process were constructed and analyzed. A total of 26 representative RFLP types were obtained from original soil clone library, including Mucoromycotina (29.5%, unclassified Zygomycetes (33.5%, Ascomycota (32.4%, and Basidiomycota (4.6%. When soil accumulated with natural lignocellulose, 16 RFLP types were identified from 8-day clone library, including Basidiomycota (62.5%, Ascomycota (36.1%, and Fungi incertae sedis (1.4%. After enrichment for 15 days, identified 11 RFLP types were placed in 3 fungal groups: Basidiomycota (86.9%, Ascomycota (11.5%, and Fungi incertae sedis (1.6%. The results showed richer, more diversity and abundance fungal groups in original forest soil. With the degradation of lignocellulose, fungal groups Mucoromycotina and Ascomycota decreased gradually, and wood-rotting fungi Basidiomycota increased and replaced the opportunist fungi to become predominant group. Most of the fungal clones identified in sample were related to the reported lignocellulose-decomposing strains. Understanding of the microbial community structure and dynamic change during natural lignocellulose-degrading process will provide us with an idea and a basis to construct available commercial lignocellulosic enzymes or microbial complex.

  2. Community structure and succession regulation of fungal consortia in the lignocellulose-degrading process on natural biomass.

    Science.gov (United States)

    Tian, Baoyu; Wang, Chunxiang; Lv, Ruirui; Zhou, Junxiong; Li, Xin; Zheng, Yi; Jin, Xiangyu; Wang, Mengli; Ye, Yongxia; Huang, Xinyi; Liu, Ping

    2014-01-01

    The study aims to investigate fungal community structures and dynamic changes in forest soil lignocellulose-degrading process. rRNA gene clone libraries for the samples collected in different stages of lignocellulose degradation process were constructed and analyzed. A total of 26 representative RFLP types were obtained from original soil clone library, including Mucoromycotina (29.5%), unclassified Zygomycetes (33.5%), Ascomycota (32.4%), and Basidiomycota (4.6%). When soil accumulated with natural lignocellulose, 16 RFLP types were identified from 8-day clone library, including Basidiomycota (62.5%), Ascomycota (36.1%), and Fungi incertae sedis (1.4%). After enrichment for 15 days, identified 11 RFLP types were placed in 3 fungal groups: Basidiomycota (86.9%), Ascomycota (11.5%), and Fungi incertae sedis (1.6%). The results showed richer, more diversity and abundance fungal groups in original forest soil. With the degradation of lignocellulose, fungal groups Mucoromycotina and Ascomycota decreased gradually, and wood-rotting fungi Basidiomycota increased and replaced the opportunist fungi to become predominant group. Most of the fungal clones identified in sample were related to the reported lignocellulose-decomposing strains. Understanding of the microbial community structure and dynamic change during natural lignocellulose-degrading process will provide us with an idea and a basis to construct available commercial lignocellulosic enzymes or microbial complex.

  3. Uranium uptake by the filamentous fungal biomass, Aspergillus fumigatus and mechanism of biosorption

    International Nuclear Information System (INIS)

    Bhainsa, Kuber C.; D'Souza, S.F.

    2010-01-01

    Uptake of uranium by Aspergillus fumigatus was investigated in a batch study. Previously, we had reported good uranium uptake capacity, i.e., 423 mg U/g by this fungal biomass. The objective of the present study was to investigate the uranium uptake and mechanism of biosorption by Aspergillus fumigatus. The metal uptake was rapid and 80% of metal ion could be removed within 4 minutes of contact time. Kinetic modeling indicated that the uptake of uranium followed Lagergren's pseudo-second order reaction indicating the process to be mediated through chemisorption mechanism. Further studies on isotherm modeling were carried out using D-R isotherm to confirm the same. The energy of biosorption obtained from D-R isotherm was found to be 14.4 kJ/mol. This energy corresponds to the energy of chemisorption (ion-exchange) which varies between 8-16 kJ/mol. All these results suggest that uranium uptake by Aspergillus fumigatus is mediated through chemisorptions mechanism. (author)

  4. Effects of dispersal on total biomass in a patchy, heterogeneous system: analysis and experiment.

    Science.gov (United States)

    Zhang, Bo; Liu, Xin; DeAngelis, Donald L.; Ni, Wei-Ming; Wang, G Geoff

    2015-01-01

    An intriguing recent result from mathematics is that a population diffusing at an intermediate rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. We extended the current mathematical theory to apply to logistic growth and also showed that the result applies to patchy systems with dispersal among patches, both for continuous and discrete time. This allowed us to make specific predictions, through simulations, concerning the biomass dynamics, which were verified by a laboratory experiment. The experiment was a study of biomass growth of duckweed (Lemna minor Linn.), where the resources (nutrients added to water) were distributed homogeneously among a discrete series of water-filled containers in one treatment, and distributed heterogeneously in another treatment. The experimental results showed that total biomass peaked at an intermediate, relatively low, diffusion rate, higher than the total carrying capacity of the system and agreeing with the simulation model. The implications of the experiment to dynamics of source, sink, and pseudo-sink dynamics are discussed.

  5. Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data

    Directory of Open Access Journals (Sweden)

    Belachew Gizachew

    2016-06-01

    Full Text Available Abstract Background A functional forest carbon measuring, reporting and verification (MRV system to support climate change mitigation policies, such as REDD+, requires estimates of forest biomass carbon, as an input to estimate emissions. A combination of field inventory and remote sensing is expected to provide those data. By linking Landsat 8 and forest inventory data, we (1 developed linear mixed effects models for total living biomass (TLB estimation as a function of spectral variables, (2 developed a 30 m resolution map of the total living carbon (TLC, and (3 estimated the total TLB stock of the study area. Inventory data consisted of tree measurements from 500 plots in 63 clusters in a 15,700 km2 study area, in miombo woodlands of Tanzania. The Landsat 8 data comprised two climate data record images covering the inventory area. Results We found a linear relationship between TLB and Landsat 8 derived spectral variables, and there was no clear evidence of spectral data saturation at higher biomass values. The root-mean-square error of the values predicted by the linear model linking the TLB and the normalized difference vegetation index (NDVI is equal to 44 t/ha (49 % of the mean value. The estimated TLB for the study area was 140 Mt, with a mean TLB density of 81 t/ha, and a 95 % confidence interval of 74–88 t/ha. We mapped the distribution of TLC of the study area using the TLB model, where TLC was estimated at 47 % of TLB. Conclusion The low biomass in the miombo woodlands, and the absence of a spectral data saturation problem suggested that Landsat 8 derived NDVI is suitable auxiliary information for carbon monitoring in the context of REDD+, for low-biomass, open-canopy woodlands.

  6. Application of four novel fungal strains to remove arsenic from contaminated water in batch and column modes.

    Science.gov (United States)

    Jaiswal, Virendra; Saxena, Sangeeta; Kaur, Ispreet; Dubey, Priya; Nand, Sampurna; Naseem, Mariya; Singh, Suman B; Srivastava, Pankaj Kumar; Barik, Saroj Kanta

    2018-08-15

    Immobilized biomass of novel indigenous fungal strains FNBR_3, FNBR_6, FNBR_13, and FNBR_19 were evaluated for arsenic (As) removal from aqueous solution. Alginate beads containing 0.1 g biomass were used in a batch experiment (200 mg l -1 As; pH 6). Biosorption equilibrium established in first 2 h with As adsorption (mg g -1 ) as 70, 68, 113 and 90 by FNBR_3, FNBR_6, FNBR_13 and FNBR_19, respectively. The equilibrium was fitted to the Langmuir model (r 2  = 0. 90-0.97). The absorption kinetic followed the pseudo second order. Changes in the surface of fungal cells and intracellular As-uptake by fungal biomass were also confirmed by scanning electron microscopy combined with X-ray energy dispersive spectrometer. The presence of different functional groups on fungal cells capable of As-binding was investigated by FTIR. The As-removal by immobilized fungal beads tested in the packed columns also. The As-adsorption by biomass (qe as mg g -1 ) were recorded as 59.5 (FNBR_3 and FNBR_6), 74.8 (FNBR_13), and 66.3 (FNBR_19) in the column and validated by Thomas model. This is the first report concerning the arsenic removal by immobilized biomass of these novel fungal strains from aqueous solution both in batch and column studies with a prospect of their further industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Twenty-Seventh Fungal Genetics Conference, Asilomar, CA, March 12-17, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Walton, Jonathan

    2013-03-17

    This meeting brings together ~900 international scientists to discuss the latest research on fungal genetics. Sessions of particular relevance to DOE include lignocellulose degradation, cellulose conversion to fermentable sugars, fermentation of sugars to fuel molecules. Other sessions cover fungal diseases of biomass crops (miscanthus, corn, switchgrass, etc.).

  8. Coupled Metagenomic and Chemical Analyses of Degrading Fungal Necromass and Implications for Fungal contributions to Stable Soil Organic Carbon

    Science.gov (United States)

    Egerton-Warburton, L. M.; Schreiner, K. M.; Morgan, B. S. T.; Schultz, J.; Blair, N. E.

    2016-12-01

    Fungi comprise a significant portion of total soil biomass, the turnover of which must represent a dominant flux within the soil carbon cycle. Fungal organic carbon (OC) can turn over on time scales of days to months, but this process is poorly understood. Here, we examined temporal changes in the chemical and microbial community composition of fungal necromass during a 2-month decomposition experiment in which Fusarium avenaceum (a common saprophyte) was exposed to a natural soil microbial community. Over the course of the experiment, residual fungal necromass was harvested and analyzed using FTIR and thermochemolysis-GCMS to examine chemical changes in the tissue. In addition, genomic DNA was extracted from tissues, amplified with barcoded ITS primers, and sequenced using the high-throughput Illumina platform to examine changes in microbial community composition. Up to 80% of the fungal necromass turned over in the first week. This rapid degradation phase corresponded to colonization of the necromass by known chitinolytic soil fungi including Mortierella species. Members of the Zygomycota and Ascomycota were among the dominant fungal groups involved in degradation with very small contributions from Basidiomycota. At the end of the 2-month degradation, only 15% of the original necromass remained. The residual material was rich in amide and C-O moieties which is consistent with previous work predicting that peptidoglycans are the main residual product from microbial tissue degradation. Straight-chain fatty acids exhibited varying degradation profiles, with some fatty acids (e.g. C16, C18:1) degrading more rapidly than bulk tissue while others maintained steady concentrations relative to bulk OC (C18) or increased in concentration throughout the degradation sequence (C24). These results indicate that the turnover of fungal necromass has the potential to rapidly and significantly influence a variety of soil OC properties including C/N ratios, lipid biomarker

  9. ENDOGENOUS CYTOKININS IN MEDICINAL BASIDIOMYCETES MYCELIAL BIOMASS

    Directory of Open Access Journals (Sweden)

    N. P.

    2016-02-01

    Full Text Available The aim of the research was to study the cytokinins production by medicinal basidial mushrooms. Cytokinins were for the first time identified and quantified in mycelial biomass of six species (Ganoderma lucidum, Trametes versicolor, Fomitopsis officinalis, Pleurotus nebrodensis, Grifola frondosa, Sparassis crispa using HPLC. Trans- and cis-zeatin, zeatin riboside, zeatin-O-glucoside, isopentenyladenosine, isopentenyladenine were found but only one species (G. lucidum, strain 1900 contained all these substances. The greatest total cytokinin quantity was detected in F. officinalis, strain 5004. S. crispa, strain 314, and F. officinalis, strain 5004, mycelial biomass was revealed to have the highest level of cytokinin riboside forms (zeatin riboside and isopentenyladenosine. The possible connection between medicinal properties of investigated basidiomycetes and of cytokinins is discussed. S. crispa, strain 314, and F. officinalis, strain 5004, are regarded as promising species for developing biotechnological techniques to produce biologically active drugs from their mycelial biomass. As one of the potential technological approaches there is proposed fungal material drying.

  10. Comparison of methods to evaluate the fungal biomass in heating, ventilation, and air-conditioning (HVAC) dust.

    Science.gov (United States)

    Biyeyeme Bi Mve, Marie-Jeanne; Cloutier, Yves; Lacombe, Nancy; Lavoie, Jacques; Debia, Maximilien; Marchand, Geneviève

    2016-12-01

    Heating, ventilation, and air-conditioning (HVAC) systems contain dust that can be contaminated with fungal spores (molds), which may have harmful effects on the respiratory health of the occupants of a building. HVAC cleaning is often based on visual inspection of the quantity of dust, without taking the mold content into account. The purpose of this study is to propose a method to estimate fungal contamination of dust in HVAC systems. Comparisons of different analytical methods were carried out on dust deposited in a controlled-atmosphere exposure chamber. Sixty samples were analyzed using four methods: culture, direct microscopic spore count (DMSC), β-N-acetylhexosaminidase (NAHA) dosing and qPCR. For each method, the limit of detection, replicability, and repeatability were assessed. The Pearson correlation coefficients between the methods were also evaluated. Depending on the analytical method, mean spore concentrations per 100 cm 2 of dust ranged from 10,000 to 682,000. Limits of detection varied from 120 to 217,000 spores/100 cm 2 . Replicability and repeatability were between 1 and 15%. Pearson correlation coefficients varied from -0.217 to 0.83. The 18S qPCR showed the best sensitivity and precision, as well as the best correlation with the culture method. PCR targets only molds, and a total count of fungal DNA is obtained. Among the methods, mold DNA amplification by qPCR is the method suggested for estimating the fungal content found in dust of HVAC systems.

  11. Fungal inoculation and elevated CO2 mediate growth of Lolium mutiforum and Phytolacca americana, metal uptake, and metal bioavailability in metal-contaminated soil: evidence from DGT measurement.

    Science.gov (United States)

    Song, Ningning; Wang, Fangli; Zhang, Changbo; Tang, Shirong; Guo, Junkang; Ju, Xuehai; Smith, Donald L

    2013-01-01

    Fungal inoculation and elevated CO2 may mediate plant growth and uptake of heavy metals, but little evidence from Diffusive Gradients in Thin-films (DGT) measurement has been obtained to characterize the process. Lolium mutiforum and Phytolacca americana were grown at ambient and elevated CO2 on naturally Cd and Pb contaminated soils inoculated with and without Trichoderma asperellum strain C3 or Penicillium chrysogenum strain D4, to investigate plant growth, metal uptake, and metal bioavailability responses. Fungal inoculation increased plant biomass and shoot/root Cd and Pb concentrations. Elevated CO2 significantly increased plants biomass, but decreased Cd and Pb concentrations in shoot/root to various extents, leading to a metal dilution phenomenon. Total Cd and Pb uptake by plants, and DGT-measured Cd and Pb concentrations in rhizosphere soils, were higher in all fungal inoculation and elevated CO2 treatments than control treatments, with the combined treatments having more influence than either treatment alone. Metal dilution phenomenon occurred because the increase in DGT-measured bioavailable metal pools in plant rhizosphere due to elevated CO2 was unable to match the increase in requirement for plant uptake of metals due to plant biomass increase.

  12. Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter.

    Directory of Open Access Journals (Sweden)

    Johanna B Boberg

    Full Text Available Boreal forests are characterized by spatially heterogeneous soils with low N availability. The decomposition of coniferous litter in these systems is primarily performed by basidiomycete fungi, which often form large mycelia with a well-developed capacity to reallocate resources spatially- an advantageous trait in heterogeneous environments. In axenic microcosm systems we tested whether fungi increase their biomass production by reallocating N between Pinus sylvestris (Scots pine needles at different stages of decomposition. We estimated fungal biomass production by analysing the accumulation of the fungal cell wall compound chitin. Monospecific systems were compared with systems with interspecific interactions. We found that the fungi reallocated assimilated N and mycelial growth away from well-degraded litter towards fresh litter components. This redistribution was accompanied by reduced decomposition of older litter. Interconnection of substrates increased over-all fungal C use efficiency (i.e. the allocation of assimilated C to biomass rather than respiration, presumably by enabling fungal translocation of growth-limiting N to litter with higher C quality. Fungal connection between different substrates also restricted N-mineralization and production of dissolved organic N, suggesting that litter saprotrophs in boreal forest ecosystems primarily act to redistribute rather than release N. This spatial integration of different resource qualities was hindered by interspecific interactions, in which litters of contrasting quality were colonised by two different basidiomycete species. The experiments provide a detailed picture of how resource reallocation in two decomposer fungi leads to a more efficient utilisation of spatially separated resources under N-limitation. From an ecosystem point of view, such economic fungal behaviour could potentially contribute to organic matter accumulation in the litter layers of boreal forests.

  13. Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter.

    Science.gov (United States)

    Boberg, Johanna B; Finlay, Roger D; Stenlid, Jan; Ekblad, Alf; Lindahl, Björn D

    2014-01-01

    Boreal forests are characterized by spatially heterogeneous soils with low N availability. The decomposition of coniferous litter in these systems is primarily performed by basidiomycete fungi, which often form large mycelia with a well-developed capacity to reallocate resources spatially- an advantageous trait in heterogeneous environments. In axenic microcosm systems we tested whether fungi increase their biomass production by reallocating N between Pinus sylvestris (Scots pine) needles at different stages of decomposition. We estimated fungal biomass production by analysing the accumulation of the fungal cell wall compound chitin. Monospecific systems were compared with systems with interspecific interactions. We found that the fungi reallocated assimilated N and mycelial growth away from well-degraded litter towards fresh litter components. This redistribution was accompanied by reduced decomposition of older litter. Interconnection of substrates increased over-all fungal C use efficiency (i.e. the allocation of assimilated C to biomass rather than respiration), presumably by enabling fungal translocation of growth-limiting N to litter with higher C quality. Fungal connection between different substrates also restricted N-mineralization and production of dissolved organic N, suggesting that litter saprotrophs in boreal forest ecosystems primarily act to redistribute rather than release N. This spatial integration of different resource qualities was hindered by interspecific interactions, in which litters of contrasting quality were colonised by two different basidiomycete species. The experiments provide a detailed picture of how resource reallocation in two decomposer fungi leads to a more efficient utilisation of spatially separated resources under N-limitation. From an ecosystem point of view, such economic fungal behaviour could potentially contribute to organic matter accumulation in the litter layers of boreal forests.

  14. Cellulolytic potential of thermophilic species from four fungal orders

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Lange, Lene

    2013-01-01

    and in characterization of their industrially useful enzymes. In the present study we investigated the cellulolytic potential of 16 thermophilic fungi from the three ascomycete orders Sordariales, Eurotiales and Onygenales and from the zygomycete order Mucorales thus covering all fungal orders that include thermophiles....... Thermophilic fungi are the only described eukaryotes that can grow at temperatures above 45 ºC. All 16 fungi were able to grow on crystalline cellulose but their secreted enzymes showed widely different cellulolytic activities, pH optima and thermostabilities. Interestingly, in contrast to previous reports, we......Elucidation of fungal biomass degradation is important for understanding the turnover of biological materials in nature and has important implications for industrial biomass conversion. In recent years there has been an increasing interest in elucidating the biological role of thermophilic fungi...

  15. Microbial biomass and biological activity of soils and soil-like bodies in coastal oases of Antarctica

    Science.gov (United States)

    Nikitin, D. A.; Marfenina, O. E.; Kudinova, A. G.; Lysak, L. V.; Mergelov, N. S.; Dolgikh, A. V.; Lupachev, A. V.

    2017-09-01

    The method of luminescent microscopy has been applied to study the structure of the microbial biomass of soils and soil-like bodies in East (the Thala Hills and Larsemann Hills oases) and West (Cape Burks, Hobbs coast) Antarctica. According to Soil Taxonomy, the studied soils mainly belong to the subgroups of Aquic Haploturbels, Typic Haploturbels, Typic Haplorthels, and Lithic Haplorthels. The major contribution to their microbial biomass belongs to fungi. The highest fungal biomass (up to 790 μg C/g soil) has been found in the soils with surface organic horizons in the form of thin moss/lichen litters, in which the development of fungal mycelium is most active. A larger part of fungal biomass (70-98%) is represented by spores. For the soils without vegetation cover, the accumulation of bacterial and fungal biomass takes place in the horizons under surface desert pavements. In the upper parts of the soils without vegetation cover and in the organic soil horizons, the major part (>60%) of fungal mycelium contains protective melanin pigments. Among bacteria, the high portion (up to 50%) of small filtering forms is observed. A considerable increase (up to 290.2 ± 27 μg C/g soil) in the fungal biomass owing to the development of yeasts has been shown for gley soils (gleyzems) developing from sapropel sediments under subaquatic conditions and for the algal-bacterial mat on the bottom of the lake (920.7 ± 46 μg C/g soil). The production of carbon dioxide by the soils varies from 0.47 to 2.34 μg C-CO2/(g day). The intensity of nitrogen fixation in the studied samples is generally low: from 0.08 to 55.85 ng C2H4/(g day). The intensity of denitrification varies from 0.09 to 19.28 μg N-N2O/(g day).

  16. Mycoalgae biofilm: development of a novel platform technology using algae and fungal cultures.

    Science.gov (United States)

    Rajendran, Aravindan; Hu, Bo

    2016-01-01

    Microalgae is considered a promising source for biofuel and bioenergy production, bio-remediation and production of high-value bioactive compounds, but harvesting microalgae is a major bottleneck in the algae based processes. The objective of this research is to mimic the growth of natural lichen and develop a novel biofilm platform technology using filamentous fungi and microalgae to form a lichen type of biofilm "mycoalgae" in a supporting polymer matrix. The possibility of co-existence of Chlorella vulgaris with various fungal cultures was tested to identify the best strain combination for high algae harvest efficiency. The effect of different matrices for cell attachment and biofilm formation, cell surface characterization of mycoalgae biofilm, kinetics of the process with respect to the algae-fungi cell distribution and total biomass production was studied. Mycoalgae biofilm with algae attachment efficiency of 99.0 % and above was achieved in a polymer-cotton composite matrix with glucose concentration of 2 g/L in the growth medium and agitation intensity of 150 rpm at 27 °C. The total biomass in the co-culture with the selected strain combination (Mucor sp. and Chlorella sp.) was higher than the axenic cultures of fungi and algae at the conditions tested. The results show that algae can be grown with complete attachment to a bio-augmenting fungal surface and can be harvested readily as a biofilm for product extraction from biomass. Even though, interaction between heterotrophic fungi and phototrophic algae was investigated in solid media after prolonged contact in a report, this research is the first of its kind in developing an artificial lichen type biofilm called "mycoalgae" biofilm completely attached on a matrix in liquid cultures. The mycoalgae biofilm based processes, propounds the scope for exploring new avenues in the bio-production industry and bioremediation.

  17. Production of xylitol from biomass using an inhibitor-tolerant fungal strain

    Science.gov (United States)

    Inhibitory compounds arising from physical–chemical pretreatment of biomass feedstock can interfere with fermentation of biomass sugars to product. A fungus, Coniochaeta ligniaria NRRL30616 improves fermentability of biomass sugars by metabolizing a variety of microbial inhibitors including furan al...

  18. Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling

    Science.gov (United States)

    Allison, S. D.; Treseder, K. K.

    2005-12-01

    One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in

  19. Biodecolorization of Textile Dye Effluent by Biosorption on Fungal Biomass Materials

    Science.gov (United States)

    Kabbout, Rana; Taha, Samir

    Colored industrial effluents have become a vital source of water pollution, and because water is the most important natural source; its treatment is a responsibility. Usually colored wastewater is treated by physical and chemical processes. But these technologies are ineffective in removing dyes, expensive and not adaptable to a wide range of colored water. Biosorption was identified as the preferred technique for bleaching colored wastewater by giving the best results. This treatment was based on the use of dead fungal biomass as new material for treating industrial colored effluents by biosorption. We studied the ability of biosorption of methylene blue (MB) by Aspergillus fumigatus and optimize the conditions for better absorption. Biosorption reaches 68% at 120 min. Similarly, the biosorbed amount increases up to 65% with pH from 4 to 6, and it's similar and around 90% for pH from 7 to 13. At ambient temperature 20-22 °C, the percentage of biosorption of methylene blue was optimal. The kinetic of biosorption is directly related to the surface of biosorbent when the particle size is also an important factor affecting the ability of biosorption. Also the biosorption of methylene blue increases with the dose of biosorbent due to an augmentation of the adsorption surface. In this study, for an initial concentration of 12 mg/L of MB (biosorbent/solution ratio=2g/L) buffered to alkaline pH, and a contact time of 120 min, biosorption takes place at an ambient temperature and reaches 93.5% under these conditions.

  20. Anaerobic fungal populations

    International Nuclear Information System (INIS)

    Brookman, J.L.; Nicholson, M.J.

    2005-01-01

    The development of molecular techniques has greatly broadened our view of microbial diversity and enabled a more complete detection and description of microbial communities. The application of these techniques provides a simple means of following community changes, for example, Ishii et al. described transient and more stable inhabitants in another dynamic microbial system, compost. Our present knowledge of anaerobic gut fungal population diversity within the gastrointestinal tract is based upon isolation, cultivation and observations in vivo. It is likely that there are many species yet to be described, some of which may be non-culturable. We have observed a distinct difference in the ease of cultivation between the different genera, for example, Caecomyes isolates are especially difficult to isolate and maintain in vitro, a feature that is likely to result in the under representation of this genera in culture-based enumerations. The anaerobic gut fungi are the only known obligately anaerobic fungi. For the majority of their life cycles, they are found tightly associated with solid digesta in the rumen and/or hindgut. They produce potent fibrolytic enzymes and grow invasively on and into the plant material they are digesting making them important contributors to fibre digestion. This close association with intestinal digesta has made it difficult to accurately determine the amount of fungal biomass present in the rumen, with Orpin suggesting 8% contribution to the total microbial biomass, whereas Rezaeian et al. more recently gave a value of approximately 20%. It is clear that the rumen microbial complement is affected by dietary changes, and that the fungi are more important in digestion in the rumens of animals fed with high-fibre diets. It seems likely that the gut fungi play an important role within the rumen as primary colonizers of plant fibre, and so we are particularly interested in being able to measure the appearance and diversity of fungi on the plant

  1. Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Van Wychen, Stefanie; Laurens, Lieve M. L.

    2016-01-13

    This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575 deg. C is covered for ash content.

  2. Fungal treated lignocellulosic biomass as ruminant feed ingredient: A review

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2015-01-01

    In ruminant nutrition, there is an increasing interest for ingredients that do not compete with human nutrition. Ruminants are specialists in digesting carbohydrates in plant cell walls; therefore lignocellulosic biomass has potential in ruminant nutrition. The presence of lignin in biomass,

  3. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen.

    Science.gov (United States)

    Denman, Stuart E; McSweeney, Christopher S

    2006-12-01

    Traditional methods for enumerating and identifying microbial populations within the rumen can be time consuming and cumbersome. Methods that involve culturing and microscopy can also be inconclusive, particularly when studying anaerobic rumen fungi. A real-time PCR SYBR Green assay, using PCR primers to target total rumen fungi and the cellulolytic bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes, is described, including design and validation. The DNA and crude protein contents with respect to the fungal biomass of both polycentric and monocentric fungal isolates were investigated across the fungal growth stages to aid in standard curve generation. The primer sets used were found to be target specific with no detectable cross-reactivity. Subsequently, the real-time PCR assay was employed in a study to detect these populations within cattle rumen. The anaerobic fungal target was observed to increase 3.6-fold from 0 to 12 h after feeding. The results also indicated a 5.4-fold increase in F. succinogenes target between 0 and 12 h after feeding, whereas R. flavefaciens was observed to maintain more or less consistent levels. This is the first report of a real-time PCR assay to estimate the rumen anaerobic fungal population.

  4. Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes.

    Science.gov (United States)

    Bazghaleh, Navid; Hamel, Chantal; Gan, Yantai; Tar'an, Bunyamin; Knight, Joan Diane

    2018-04-01

    Plant roots host symbiotic arbuscular mycorrhizal (AM) fungi and other fungal endophytes that can impact plant growth and health. The impact of microbial interactions in roots may depend on the genetic properties of the host plant and its interactions with root-associated fungi. We conducted a controlled condition experiment to investigate the effect of several chickpea (Cicer arietinum L.) genotypes on the efficiency of the symbiosis with AM fungi and non-AM fungal endophytes. Whereas the AM symbiosis increased the biomass of most of the chickpea cultivars, inoculation with non-AM fungal endophytes had a neutral effect. The chickpea cultivars responded differently to co-inoculation with AM fungi and non-AM fungal endophytes. Co-inoculation had additive effects on the biomass of some cultivars (CDC Corrine, CDC Anna, and CDC Cory), but non-AM fungal endophytes reduced the positive effect of AM fungi on Amit and CDC Vanguard. This study demonstrated that the response of plant genotypes to an AM symbiosis can be modified by the simultaneous colonization of the roots by non-AM fungal endophytes. Intraspecific variations in the response of chickpea to AM fungi and non-AM fungal endophytes indicate that the selection of suitable genotypes may improve the ability of crop plants to take advantage of soil ecosystem services.

  5. The fungal consortium of Andromeda polifolia in bog habitats

    Directory of Open Access Journals (Sweden)

    N.V. Filippova

    2015-09-01

    Full Text Available (1 Andromeda polifolia (bog rosemary is a common plant species in northern circumboreal peatlands. While not a major peat-forming species in most peatlands, it is characterised by a substantial woody below-ground biomass component that contributes directly to the accumulation of organic matter below the moss surface, as well as sclerophyllous leaf litter that contributes to the accumulation of organic matter above the moss surface. Rather little is known about the fungal communities associated with this plant species. Hence, we investigated the fungal consortium of A. polifolia in three distinct vegetation communities of ombrotrophic bogs near Khanty-Mansiysk, West Siberia, Russia, in 2012 and 2013. These vegetation communities were forested bog (Tr = treed, Sphagnum-dominated lawn (Ln, and Eriophorum-Sphagnum-dominated hummock (Er. (2 In total, 37 fungal taxa, belonging to five classes and 16 families, were identified and described morphologically. Seven fungal species were previously known from Andromeda as host. Others are reported for the first time, thus considerably expanding the fungal consortium of this dwarf shrub. Most taxa were saprobic on fallen leaves of A. polifolia found amongst Sphagnum in the bog. Two taxa were parasitic on living plant tissues and one taxon was saprobic on dead twigs. Three taxa, recorded only on A. polifolia leaves and on no other plant species or materials, may be host-specific to this dwarf shrub. (3 A quantitative analysis of the frequency of occurrence of all taxa showed that one taxon (Coccomyces duplicarioides was very abundant, 64 % of the taxa occurred frequently, and 32 % of the taxa occurred infrequently. The mean Shannon diversity index of the community was 2.4. (4 There were no statistical differences in the fungal community composition of A. polifolia in the three vegetation communities investigated in this study. Redundancy analysis suggested that some fungal taxa were positively, and others

  6. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment.

    Science.gov (United States)

    Wrede, Digby; Taha, Mohamed; Miranda, Ana F; Kadali, Krishna; Stevenson, Trevor; Ball, Andrew S; Mouradov, Aidyn

    2014-01-01

    The challenges which the large scale microalgal industry is facing are associated with the high cost of key operations such as harvesting, nutrient supply and oil extraction. The high-energy input for harvesting makes current commercial microalgal biodiesel production economically unfeasible and can account for up to 50% of the total cost of biofuel production. Co-cultivation of fungal and microalgal cells is getting increasing attention because of high efficiency of bio-flocculation of microalgal cells with no requirement for added chemicals and low energy inputs. Moreover, some fungal and microalgal strains are well known for their exceptional ability to purify wastewater, generating biomass that represents a renewable and sustainable feedstock for biofuel production. We have screened the flocculation efficiency of the filamentous fungus A. fumigatus against 11 microalgae representing freshwater, marine, small (5 µm), large (over 300 µm), heterotrophic, photoautotrophic, motile and non-motile strains. Some of the strains are commercially used for biofuel production. Lipid production and composition were analysed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources contained in wheat straw and swine wastewater, respectively. Co-cultivation of algae and A. fumigatus cells showed additive and synergistic effects on biomass production, lipid yield and wastewater bioremediation efficiency. Analysis of fungal-algal pellet's fatty acids composition suggested that it can be tailored and optimised through co-cultivating different algae and fungi without the need for genetic modification.

  7. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment.

    Directory of Open Access Journals (Sweden)

    Digby Wrede

    Full Text Available The challenges which the large scale microalgal industry is facing are associated with the high cost of key operations such as harvesting, nutrient supply and oil extraction. The high-energy input for harvesting makes current commercial microalgal biodiesel production economically unfeasible and can account for up to 50% of the total cost of biofuel production. Co-cultivation of fungal and microalgal cells is getting increasing attention because of high efficiency of bio-flocculation of microalgal cells with no requirement for added chemicals and low energy inputs. Moreover, some fungal and microalgal strains are well known for their exceptional ability to purify wastewater, generating biomass that represents a renewable and sustainable feedstock for biofuel production. We have screened the flocculation efficiency of the filamentous fungus A. fumigatus against 11 microalgae representing freshwater, marine, small (5 µm, large (over 300 µm, heterotrophic, photoautotrophic, motile and non-motile strains. Some of the strains are commercially used for biofuel production. Lipid production and composition were analysed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources contained in wheat straw and swine wastewater, respectively. Co-cultivation of algae and A. fumigatus cells showed additive and synergistic effects on biomass production, lipid yield and wastewater bioremediation efficiency. Analysis of fungal-algal pellet's fatty acids composition suggested that it can be tailored and optimised through co-cultivating different algae and fungi without the need for genetic modification.

  8. Transfer of radio-cesium from forest soil to woodchips using fungal activities

    Science.gov (United States)

    Kaneko, Nobuhiro; Huang, Yao; Tanaka, Yoichiro; Fujiwara, Yoshihiro; Sasaki, Michiko; Toda, Hiroto; Takahashi, Terumasa; Kobayashi, Tatsuaki; Harada, Naoki; Nonaka, Masahiro

    2014-05-01

    Raido-cesium released to terrestrial ecosystems by nuclear accidents is know to accumulate forest soil and organic layer on the soil. Forests in Japan are not exceptions. Practically it is impossible to decontaminate large area of forests. However, there is a strong demand from local people, who has been using secondary forests (Satoyama) around croplands in hilly areas, to decontaminate radio-cesium, because those people used to collect wild mushrooms and edible plants, and there are active cultures of mushrooms using logs and sawdusts. These natural resource uses consist substantial part of their economical activities, Therefore it is needed to decontaminate some selected part of forests in Japan to local economy. Clear cutting and scraping surface soil and organic matter are common methods of decontamination. However the efficiency of decontamination is up to 30% reduction of aerial radiation, and the cost to preserve contaminated debris is not affordable. In this study we used wood chips as a growth media for saprotrophic fungi which are known to accumulate redio-cesium. There are many studies indicated that mushrooms accumulated redio-cesium from forest soil and organic layer. It is not practical to collect mushrooms to decontaminate redio-cesium, because biomass of mushrooms are not enough to collect total contaminants. Mushrooms are only minor part of saprotrophic fungi. Fungal biomass in forest soil is about 1% of dead organic matter on forest floor. Our previous study to observe Cs accumulation to decomposing leaf litter indicated 18% absorption of total soil radio-Cs to litter during one year field incubation (Kaneko et al., 2013), and Cs concentration was proportional to fungal biomass on litter. This result indicated that fungi transferred radio-cesium around newly supplied leaf litter free of contamination. Therefore effective decontamination will be possible if we can provide large amount of growth media for saprotrophic fungi, and the media can be

  9. The specific role of fungal community structure on soil aggregation and carbon sequestration: results from long-term field study in a paddy soil

    Science.gov (United States)

    Murugan, Rajasekaran; Kumar, Sanjay

    2015-04-01

    Soil aggregate stability is a crucial soil property that affects soil biota, biogeochemical processes and C sequestration. The relationship between soil aggregate stability and soil C cycling is well known but the influence of specific fungal community structure on this relationship is largely unknown in paddy soils. The aim of the present study was to evaluate the long-term fertilisation (mineral fertiliser-MIN; farmyard manure-FYM; groundnut oil cake-GOC) effects on soil fungal community shifts associated with soil aggregates under rice-monoculture (RRR) and rice-legume-rice (RLR) systems. Fungal and bacterial communities were characterized using phospholipid fatty acids, and glucosamine and muramic acid were used as biomarkers for fungal and bacterial residues, respectively. Microbial biomass C and N, fungal biomass and residues were significantly higher in the organic fertiliser treatments than in the MIN treatment, for all aggregate sizes under both crop rotation systems. In general, fungal/bacterial biomass ratio and fungal residue C/bacterial residue C ratio were significantly higher in macroaggregate fractions (> 2000 and 250-2000 μm) than in microaggregate fractions (53-250 and crop rotation systems, the long-term application of FYM and GOC led to increased accumulation of saprotrophic fungi (SF) in aggregate fractions > 2000 μm. In contrast, we found that arbuscular mycorrhizal fungi (AMF) was surprisingly higher in aggregate fractions > 2000 μm than in aggregate fraction 250-2000 μm under MIN treatment. The RLR system showed significantly higher AMF biomass and fungal residue C/ bacterial residue C ratio in both macroaggregate fractions compared to the RRR system. The strong relationships between SF, AMF and water stable aggregates shows the specific contribution of fungi community on soil aggregate stability. Our results highlight the fact that changes within fungal community structure play an important role in shaping the soil aggregate stability

  10. Assessment of Cu applications in two contrasting soils-effects on soil microbial activity and the fungal community structure.

    Science.gov (United States)

    Keiblinger, Katharina M; Schneider, Martin; Gorfer, Markus; Paumann, Melanie; Deltedesco, Evi; Berger, Harald; Jöchlinger, Lisa; Mentler, Axel; Zechmeister-Boltenstern, Sophie; Soja, Gerhard; Zehetner, Franz

    2018-03-01

    Copper (Cu)-based fungicides have been used in viticulture to prevent downy mildew since the end of the 19th century, and are still used today to reduce fungal diseases. Consequently, Cu has built up in many vineyard soils, and it is still unclear how this affects soil functioning. The present study aimed to assess the short and medium-term effects of Cu contamination on the soil fungal community. Two contrasting agricultural soils, an acidic sandy loam and an alkaline silt loam, were used for an eco-toxicological greenhouse pot experiment. The soils were spiked with a Cu-based fungicide in seven concentrations (0-5000 mg Cu kg -1 soil) and alfalfa was grown in the pots for 3 months. Sampling was conducted at the beginning and at the end of the study period to test Cu toxicity effects on total microbial biomass, basal respiration and enzyme activities. Fungal abundance was analysed by ergosterol at both samplings, and for the second sampling, fungal community structure was evaluated via ITS amplicon sequences. Soil microbial biomass C as well as microbial respiration rate decreased with increasing Cu concentrations, with EC 50 ranging from 76 to 187 mg EDTA-extractable Cu kg -1 soil. Oxidative enzymes showed a trend of increasing activity at the first sampling, but a decline in peroxidase activity was observed for the second sampling. We found remarkable Cu-induced changes in fungal community abundance (EC 50 ranging from 9.2 to 94 mg EDTA-extractable Cu kg -1 soil) and composition, but not in diversity. A large number of diverse fungi were able to thrive under elevated Cu concentrations, though within the order of Hypocreales several species declined. A remarkable Cu-induced change in the community composition was found, which depended on the soil properties and, hence, on Cu availability.

  11. Modelling fungal solid-state fermentation: The role of inactivation kinetics

    NARCIS (Netherlands)

    Smits, J.P.; Sonsbeek, H.M. van; Knol, W.; Tramper, J.; Geelhoed, W.; Peeters, M.; Rinzema, A.

    1999-01-01

    The theoretical mathematical models described in this paper are used to evaluate the effects of fungal biomass inactivation kinetics on a non- isothermal tray solid-state fermentation (SSF). The inactivation kinetics, derived from previously reported experiments done under isothermal conditions and

  12. [Biosorption of heavy metals in fluoritum decoction by fungal mycelium].

    Science.gov (United States)

    Cui, Pei-wu; Hu, Wei; Hu, Ya-qiang; Tan, Zhao-yang

    2014-09-01

    To explore the biosorption technology of heavy metals in Fluoritum decoction by fungal mycelium. Four factors including fungal mycelium amount, adsorption time, pH value and temperature were employed to estimate the fungal biomass adsorption conditions for removing the heavy metals in Fluoritum decoction. Then an orthogonal experimental design was taken to optimize the biosorption process, and the removal efficiency was also evaluated. Under the optimized conditions of 1.0 g/50 mL Fluoritum decoction, 3 hours adsorption time, pH 5.0 and 40 degrees C, a result of 70.12% heavy metals removal rate was accomplished with 35.99% calcium ion loss. The study indicates that removing of heavy metals in Fluoritum decoction through fungal mycelium is feasible, and the experiment results can also provide a basis for further research on biosorption of heavy metals in traditional Chinese medicine

  13. Digging the New York City Skyline: soil fungal communities in green roofs and city parks.

    Science.gov (United States)

    McGuire, Krista L; Payne, Sara G; Palmer, Matthew I; Gillikin, Caitlyn M; Keefe, Dominique; Kim, Su Jin; Gedallovich, Seren M; Discenza, Julia; Rangamannar, Ramya; Koshner, Jennifer A; Massmann, Audrey L; Orazi, Giulia; Essene, Adam; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs.

  14. Digging the New York City Skyline: soil fungal communities in green roofs and city parks.

    Directory of Open Access Journals (Sweden)

    Krista L McGuire

    Full Text Available In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs.

  15. Complex effects of mammalian grazing on extramatrical mycelial biomass in the Scandes forest-tundra ecotone.

    Science.gov (United States)

    Vowles, Tage; Lindwall, Frida; Ekblad, Alf; Bahram, Mohammad; Furneaux, Brendan R; Ryberg, Martin; Björk, Robert G

    2018-01-01

    Mycorrhizal associations are widespread in high-latitude ecosystems and are potentially of great importance for global carbon dynamics. Although large herbivores play a key part in shaping subarctic plant communities, their impact on mycorrhizal dynamics is largely unknown. We measured extramatrical mycelial (EMM) biomass during one growing season in 16-year-old herbivore exclosures and unenclosed control plots (ambient), at three mountain birch forests and two shrub heath sites, in the Scandes forest-tundra ecotone. We also used high-throughput amplicon sequencing for taxonomic identification to investigate differences in fungal species composition. At the birch forest sites, EMM biomass was significantly higher in exclosures (1.36 ± 0.43 g C/m 2 ) than in ambient conditions (0.66 ± 0.17 g C/m 2 ) and was positively influenced by soil thawing degree-days. At the shrub heath sites, there was no significant effect on EMM biomass (exclosures: 0.72 ± 0.09 g C/m 2 ; ambient plots: 1.43 ± 0.94). However, EMM biomass was negatively related to Betula nana abundance, which was greater in exclosures, suggesting that grazing affected EMM biomass positively. We found no significant treatment effects on fungal diversity but the most abundant ectomycorrhizal lineage/cortinarius, showed a near-significant positive effect of herbivore exclusion ( p  = .08), indicating that herbivory also affects fungal community composition. These results suggest that herbivory can influence fungal biomass in highly context-dependent ways in subarctic ecosystems. Considering the importance of root-associated fungi for ecosystem carbon balance, these findings could have far-reaching implications.

  16. Direct Succinic Acid Production from Minimally Pretreated Biomass Using Sequential Solid-State and Slurry Fermentation with Mixed Fungal Cultures

    Directory of Open Access Journals (Sweden)

    Jerico Alcantara

    2017-06-01

    Full Text Available Conventional bio-based succinic acid production involves anaerobic bacterial fermentation of pure sugars. This study explored a new route for directly producing succinic acid from minimally-pretreated lignocellulosic biomass via a consolidated bioprocessing technology employing a mixed lignocellulolytic and acidogenic fungal co-culture. The process involved a solid-state pre-fermentation stage followed by a two-phase slurry fermentation stage. During the solid-state pre-fermentation stage, Aspergillus niger and Trichoderma reesei were co-cultured in a nitrogen-rich substrate (e.g., soybean hull to induce cellulolytic enzyme activity. The ligninolytic fungus Phanerochaete chrysosporium was grown separately on carbon-rich birch wood chips to induce ligninolytic enzymes, rendering the biomass more susceptible to cellulase attack. The solid-state pre-cultures were then combined in a slurry fermentation culture to achieve simultaneous enzymatic cellulolysis and succinic acid production. This approach generated succinic acid at maximum titers of 32.43 g/L after 72 h of batch slurry fermentation (~10 g/L production, and 61.12 g/L after 36 h of addition of fresh birch wood chips at the onset of the slurry fermentation stage (~26 g/L production. Based on this result, this approach is a promising alternative to current bacterial succinic acid production due to its minimal substrate pretreatment requirements, which could reduce production costs.

  17. UNTANGLING THE FUNGAL NICHE: A TRAIT-BASED APPROACH

    Directory of Open Access Journals (Sweden)

    Thomas W Crowther

    2014-10-01

    Full Text Available Fungi are prominent components of most terrestrial ecosystems, both in terms of biomass and ecosystem functioning, but the hyper-diverse nature of most communities has obscured the search for unifying principles governing community organization. In particular, unlike plants and animals, observational studies provide little evidence for the existence of niche processes in structuring fungal communities at broad spatial scales. This limits our capacity to predict how communities, and their functioning, vary across landscapes. We outline how a shift in focus, from taxonomy towards functional traits, might prove to be valuable in the search for general patterns in fungal ecology. We build on theoretical advances in plant and animal ecology to provide an empirical framework for a trait-based approach in fungal community ecology. Drawing upon specific characteristics of the fungal system, we highlight the significance of drought stress and combat in structuring free-living fungal communities. We propose a conceptual model to formalize how trade-offs between stress-tolerance and combative dominance are likely to organize communities across environmental gradients. Given that the survival of a fungus in a given environment is contingent on its ability to tolerate antagonistic competitors, measuring variation in combat trait expression along environmental gradients provides a means of elucidating realized, from fundamental niche spaces. We conclude that, using a trait-based understanding of how niche processes structure fungal communities across time and space, we can ultimately link communities with ecosystem functioning. Our trait-based framework highlights fundamental uncertainties that require testing in the fungal system, given their potential to uncover general mechanisms in fungal ecology.

  18. A novel model-based control strategy for aerobic filamentous fungal fed-batch fermentation processes

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albaek, Mads O.

    2017-01-01

    A novel model-based control strategy has been developed for filamentous fungal fed-batch fermentation processes. The system of interest is a pilot scale (550 L) filamentous fungus process operating at Novozymes A/S. In such processes, it is desirable to maximize the total product achieved...... is recursively updated using on-line measurements. The model was applied in order to predict the current system states, including the biomass concentration, and to simulate the expected future trajectory of the system until a specified end time. In this way, the desired feed rate is updated along the progress...

  19. The burden of serious fungal diseases in Russia.

    Science.gov (United States)

    Klimko, N; Kozlova, Y; Khostelidi, S; Shadrivova, O; Borzova, Y; Burygina, E; Vasilieva, N; Denning, D W

    2015-10-01

    The incidence and prevalence of fungal infections in Russia is unknown. We estimated the burden of fungal infections in Russia according to the methodology of the LIFE program (www.LIFE-worldwide.org). The total number of patients with serious and chronic mycoses in Russia in 2011 was three million. Most of these patients (2,607,494) had superficial fungal infections (recurrent vulvovaginal candidiasis, oral and oesophageal candidiasis with HIV infection and tinea capitis). Invasive and chronic fungal infections (invasive candidiasis, invasive and chronic aspergillosis, cryptococcal meningitis, mucormycosis and Pneumocystis pneumonia) affected 69,331 patients. The total number of adults with allergic bronchopulmonary aspergillosis and severe asthma with fungal sensitisation was 406,082. © 2015 Blackwell Verlag GmbH.

  20. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass

    NARCIS (Netherlands)

    Eisenhauer, Nico; Lanoue, Arnaud; Strecker, Tanja; Scheu, Stefan; Steinauer, Katja; Thakur, Madhav P.; Mommer, Liesje

    2017-01-01

    Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity

  1. Pretreatment of radiata pine using two white rot fungal strains Stereum hirsutum and Trametes versicolor

    International Nuclear Information System (INIS)

    Shirkavand, Ehsan; Baroutian, Saeid; Gapes, Daniel J.; Young, Brent R.

    2017-01-01

    Highlights: • Fungal pretreatment by two New Zealand native white rot fungi was proposed. • Trametes versicolor was more efficient in selective degradation of pine wood chips. • Both fungal strains significantly decreased crystallinity index of biomass only after week 7 of degradation. • Structural analysis showed that Trametes versicolor and Stereum hirsutum increased porous surface area of woody biomass. - Abstract: Stereum hirsutum and Trametes versicolor, were studied over a period of 3–7 weeks for pretreatment of radiata pine wood chips. Chemical analysis of pretreated biomass showed that the two studied strains were able to selectively degrade lignin. Selective lignin degradation was greater in week 3 of the pretreatment by Trametes versicolor compared to the other strain. Lengthening pretreatment time increased both lignin and cellulose losses which caused a reduction in selective lignin degradation for both strains. X-ray diffractometry showed that after seven weeks of pretreatment, the crystallinity of the woody biomass was decreased significantly. It decreased from 46% for untreated wood chips to 37% and 44% for Stereum hirsutum and Trametes versicolor treated biomass, respectively. The pretreatment with these two white rot fungi showed that 3-week pretreatment provided a cellulose rich biomass with the minimum cellulose loss compared to the other time of pretreatment.

  2. Specific antibiotics and nematode trophic groups agree in assessing fungal

    DEFF Research Database (Denmark)

    Christensen, Søren; Dam, Marie; Madsen, Mette Vestergård

    2012-01-01

    There are no methods at hand with a long and proven record for assessing the relative contribution of fungi and bacteria to decomposer activity in soil. Whereas a multitude of methods to determine fungal and bacterial biomass are available, activity assays traditionally relied on the substrate-in...

  3. Utilization of fruit peels as carbon source for white rot fungi biomass production under submerged state bioconversion

    Directory of Open Access Journals (Sweden)

    Olorunnisola Kola Saheed

    2016-04-01

    Full Text Available The present generation of nutrient rich waste streams within the food and hospitality industry is inevitable and remained a matter of concern to stakeholders. Three white rot fungal strains were cultivated under submerged state bioconversion (SmB. Fermentable sugar conversion efficiency, biomass production and substrate utilization constant were indicators used to measure the success of the process. The substrates – banana peel (Bp, pineapple peel (PAp and papaya peel (Pp were prepared in wet and dried forms as substrates. Phanerochaete chrysosporium (P. chrysosporium, Panus tigrinus M609RQY, and RO209RQY were cultivated on sole fruit wastes and their composites. All fungal strains produced profound biomass on dry sole wet substrates, but wet composite substrates gave improved results. P. tigrinus RO209RQY was the most efficient in sugar conversion (99.6% on sole substrates while P. tigrinus M609RQY was efficient on composite substrates. Elevated substrate utilization constant (Ku and biomass production heralded wet composite substrates. P. chrysosporium was the most performing fungal strain for biomass production, while PApBp was the best composite substrate.

  4. Effect of water stress on total biomass, tuber yield, harvest index and water use efficiency in Jerusalem artichoke

    Science.gov (United States)

    The objectives of this study were to determine the effect of drought on tuber yield, total biomass, harvest index, water use efficiency of tuber yield (WUEt) and water use efficiency of biomass (WUEb), and to evaluate the differential responses of Jerusalem artichoke (JA) varieties under drought str...

  5. Microalgae Harvest through Fungal Pelletization—Co-Culture of Chlorella vulgaris and Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Sarman Oktovianus Gultom

    2014-07-01

    Full Text Available Microalgae harvesting is a labor- and energy-intensive process and new approaches to harvesting microalgae need to be developed in order to decrease the costs. In this study; co-cultivatation of filamentous fungus (Aspergillus niger and microalgae (Chlorella vulgaris to form cell pellets was evaluated under different conditions, including organic carbon source (glucose; glycerol; and sodium acetate concentration; initial concentration of fungal spores and microalgal cells and light. Results showed that 2 g/L of glucose with a 1:300 ratio of fungi to microalgae provided the best culturing conditions for the process to reach >90% of cell harvest efficiency. The results also showed that an organic carbon source was required to sustain the growth of fungi and form the cell pellets. The microalgae/fungi co-cultures at mixotrophic conditions obtained much higher total biomass than pure cultures of each individual strains; indicating the symbiotic relationship between two strains. This can benefit the microbial biofuel production in terms of cell harvest and biomass production.

  6. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction

    NARCIS (Netherlands)

    Leveau, J.H.J.; Preston, G.M.

    2008-01-01

    This review analyses the phenomenon of bacterial mycophagy, which we define as a set of phenotypic behaviours that enable bacteria to obtain nutrients from living fungi and thus allow the conversion of fungal into bacterial biomass. We recognize three types of bacterial strategies to derive

  7. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation

    Science.gov (United States)

    Rohr, Annette C.; Campleman, Sharan L.; Long, Christopher M.; Peterson, Michael K.; Weatherstone, Susan; Quick, Will; Lewis, Ari

    2015-01-01

    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios—pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended. PMID:26206568

  8. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation

    Directory of Open Access Journals (Sweden)

    Annette C. Rohr

    2015-07-01

    Full Text Available Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios—pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended.

  9. Soil Bacterial and Fungal Community Structure Across a Range of Unimproved and Semi-Improved Upland Grasslands

    OpenAIRE

    Kennedy, Nabla; Edwards, Suzanne; Clipson, Nicholas

    2005-01-01

    Changes in soil microbial community structure due to improvement are often attributed to concurrent shifts in floristic community composition. The bacterial and fungal communities of unimproved and semi-improved (as determined by floristic classification) grassland soils were studied at five upland sites on similar geological substrata using both broad-scale (microbial activity and fungal biomass) and molecular [terminal restriction fragment length polymorphism (TRFLP)...

  10. Community ecology of fungal pathogens on Bromus tectorum [Chapter 7

    Science.gov (United States)

    Susan E. Meyer; Julie Beckstead; JanaLynn Pearce

    2016-01-01

    Bromus tectorum L. (cheatgrass or downy brome) presents a rich resource for soil microorganisms because of its abundant production of biomass, seeds, and surface litter. Many of these organisms are opportunistic saprophytes, but several fungal species regularly found in B. tectorum stands function as facultative or obligate pathogens. These organisms interact...

  11. Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass.

    Science.gov (United States)

    López-Mondéjar, Rubén; Antón, Anabel; Raidl, Stefan; Ros, Margarita; Pascual, José Antonio

    2010-04-01

    The species of the genus Trichoderma are used successfully as biocontrol agents against a wide range of phytopathogenic fungi. Among them, Trichoderma harzianum is especially effective. However, to develop more effective fungal biocontrol strategies in organic substrates and soil, tools for monitoring the control agents are required. Real-time PCR is potentially an effective tool for the quantification of fungi in environmental samples. The aim of this study consisted of the development and application of a real-time PCR-based method to the quantification of T. harzianum, and the extrapolation of these data to fungal biomass values. A set of primers and a TaqMan probe for the ITS region of the fungal genome were designed and tested, and amplification was correlated to biomass measurements obtained with optical microscopy and image analysis, of the hyphal length of the mycelium of the colony. A correlation of 0.76 between ITS copies and biomass was obtained. The extrapolation of the quantity of ITS copies, calculated based on real-time PCR data, into quantities of fungal biomass provides potentially a more accurate value of the quantity of soil fungi. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Hetero-azeotropic distillation: combining fungal dehydration and lipid extraction.

    Science.gov (United States)

    Tough, A J; Isabella, B L; Beattie, J E; Herbert, R A

    2000-01-01

    A low-cost single-stage laboratory process combining fungal dehydration and lipid extraction was compared with a traditional two-stage method employing freeze-drying and subsequent mechanical disruption in the presence of solvent. The ability of a number of organic solvents to form hetero-azeotropes with water was exploited. Chloroform, cyclohexane and hexane were assessed in their abilities to both dry and extract lipid from the oleaginous phycomycete Mortierella alpina (ATCC 32222). Drying rate and lipid extraction were maximised under conditions that prevented fungal agglomeration. The total processing time was limited by the rate of dehydration rather than by the rate of lipid extraction. In all cases azeotropic distillation facilitated a greater rate of dehydration than was possible with freeze-drying. A consequent reduction in overall processing time was observed. Uniquely, both the solvent used and the mode of mixing employed controlled the morphology of the aggregates formed during distillation. In combination with mild mixing chloroform discouraged agglomeration whereas cyclohexane and hexane promoted aggregation. Successful lipid extraction was dependent on the use of dry biomass rather than on the application of heat to effect distillation. Neither the application of heat nor the solvent employed had any significant effect on the lipid composition of the extracted oil.

  13. Land-use change and soil type are drivers of fungal and archaeal communities in the Pampa biome.

    Science.gov (United States)

    Lupatini, Manoeli; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Suleiman, Afnan Khalil Ahmad; Fulthorpe, Roberta R; Roesch, Luiz Fernando Würdig

    2013-02-01

    The current study aimed to test the hypothesis that both land-use change and soil type are responsible for the major changes in the fungal and archaeal community structure and functioning of the soil microbial community in Brazilian Pampa biome. Soil samples were collected at sites with different land-uses (native grassland, native forest, Eucalyptus and Acacia plantation, soybean and watermelon field) and in a typical toposequence in Pampa biome formed by Paleudult, Albaqualf and alluvial soils. The structure of soil microbial community (archaeal and fungal) was evaluated by ribosomal intergenic spacer analysis and soil functional capabilities were measured by microbial biomass carbon and metabolic quotient. We detected different patterns in microbial community driven by land-use change and soil type, showing that both factors are significant drivers of fungal and archaeal community structure and biomass and microbial activity. Fungal community structure was more affected by land-use and archaeal community was more affected by soil type. Irrespective of the land-use or soil type, a large percentage of operational taxonomic unit were shared among the soils. We accepted the hypothesis that both land-use change and soil type are drivers of archaeal and fungal community structure and soil functional capabilities. Moreover, we also suggest the existence of a soil microbial core.

  14. Fungal atopy in adult cystic fibrosis.

    LENUS (Irish Health Repository)

    Henry, M

    2012-02-03

    This study set out to estimate the prevalence of atopy to a variety of common ubiquitous fungi, including A. fumigatus, in cystic fibrosis (CF), and to evaluate the investigations by which the diagnosis was made. Particular attention was paid to the usefulness of skin testing and immunoassays in detecting which patients had simple fungal atopy, and which patients were at high risk of developing allergic bronchopulmonary mycoses. This cross-sectional study included 21 adult CF patients and 20 matched controls. Serum samples were taken for the measurement of total serum IgE and specific serum IgE to nine common fungi. Immediate hypersensitivity skin prick testing to each of the fungi was also performed. Simple fungal atopy was described in subjects fulfilling the following criteria: total serum IgE > 100 KU l(-1) with specific radioimmunoassay > or = grade 1 to at least one fungus and a positive skin prick test (SPT) > or = 3 mm to the same fungus. \\'High risk\\' for developing allergic bronchopulmonary mycosis (ABPM) was described in subjects fulfilling the following criteria: total serum IgE > 200 KU l(-1) with specific radioimmunoassay > or = grade 2 to at least one fungus and a positive skin prick test (SPT) > or = 6 mm to the same fungus. The adult CF group had a significantly higher total SPT score (P=0.005) and mean total serum IgE (P<0.05) than controls. Forty-three percent of CF patients fulfilled the criteria for fungal atopy to at least a single fungus. Over half this group had an atopic tendency to more than one fungus. Nineteen percent of the CF group were at least \\'high risk\\' of developing ABPM. Skin prick testing is a better marker of fungal atopy and a better predictor of those adult CF patients at higher risk of developing ABPM than specific radioimmunoassay serum testing. There is a high prevalence of fungal atopy in the adult CF population. Total serum IgE and skin prick testing are good predictors of fungal atopy and help predict those at

  15. Fungal cultivation on glass-beads

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, Henriette

    Transcription of various bioactive compounds and enzymes are dependent on fungal cultivation method. In this study we cultivate Fusarium graminearum and Fusarium solani on glass-beads with liquid media in petri dishes as an easy and inexpensive cultivation method, that resembles in secondary...... metabolite production to agar-cultivation but with an easier and more pure RNA-extraction of total fungal mycelia....

  16. MICROMICETES QUANTITY AND BIOMASS IN TECHNOGENIC AND NATURAL SOILS

    Directory of Open Access Journals (Sweden)

    O. N. Korinovskaya

    2014-08-01

    Full Text Available It is shown that in edaphotopes around of freight checkpoint of CJSC «Krivorozhskiy Surikovyy Zavod», ore-enrichment factory and fresh-inwashed pool of tailings dam of PJSC «Northern Iron Ore Enrichment Works» there is an increase of heavy metals mobile forms (which are the most dangerous for microorganisms, plants, animals and human: for iron in 310; for zinc - in 4,3-6,5; for lead - in 3.2-5.7; for cadmium - in 5,6-9,8; for copper – 6,8-66,5 and for nickel - in 9 times as compared to zonal soil. Whereas in soils of CJSC «Krivorozhskiy Surikovyy Zavod» sanitary protection zone number of copper, nickel, lead, cadmium and zinc mobile forms exceeded the control values in 2,4-6,6 times. For the first time the features of soil microscopic fungi seasonal dynamics of quantity in industrial disturbed soils of Kryvorizhzhya compared to zonal soil (chernozem usual were registered. Changes in fungal mycelium length and biomass, its spore’s amount and biomass in edaphotopes of ore-enrichment and chemical enterprises and of common chernozem are also presented. It is shown that in edaphotopes of heavy contamination areas of «Krivorozhskiy Surikovyy Zavod» and of «Northern Iron Ore Enrichment Works» in spring, summer, and autumn there was decrease of microscopic fungi quantity in 4-10 times, moreover in tehnozems of «Northern Iron Ore Enrichment Works» fresh-inwashed pool of tailings dam their amount reduces in more than 100 times, compared with common chernozem. In low contamination area of «Krivorozhskiy Surikovyy Zavod» their quantity decreases in 2 times. Also in heavy contamination areas of chemical and ore-enrichment enterprises there is strong decrease in the length of fungal mycelium in 2.7-4.2 times, its biomass in 2,6-4,5 times, the spores amount - in 4,5-7,7 times and their biomass - in 10,5-21 times compared to the natural soil, which could be explained by high contents of toxicants. While in the sanitary protection zone of the

  17. Metal accumulation by sunflower (Helianthus annuus L. and the efficacy of its biomass in enzymatic saccharification.

    Directory of Open Access Journals (Sweden)

    Saurabh Sudha Dhiman

    Full Text Available Accumulation of metal contaminants in soil as a result of various industrial and anthropogenic activities has reduced soil fertility significantly. Phytoextraction of metal contaminants can improve soil fertility and provide inexpensive feedstock for biorefineries. We investigated the hyperaccumulation capacity of sunflower (Helianthus annuus biomass by cultivating these plants in various concentrations of metal contaminants. Sunflowers were grown in soils contaminated with various levels of heavy metals (10-2,000 mg/kg dry soil. The degree of metal uptake by different parts of the biomass and the residual concentration in the soil were estimated through inductively coupled plasma mass spectrometry. An almost 2.5-fold hyperaccumulation of Zn2+ was observed in the leaf and flower biomass compared with the concentration in the soil. For the subsequent saccharification of biomass with hyperaccumulated contaminants, a fungal lignocellulosic consortium was used. The fungal consortium cocktail retained more than 95% filter paper activity with 100 mM Ni2+ ions even after 36 h. The highest saccharification yield (SY, 87.4% was observed with Ni2+ as the contaminant (10 mg/kg dry wt, whereas Pb2+ (251.9 mg/kg dry wt was the strongest inhibitor of biomass hydrolysis, resulting in only a 30% SY. Importantly, the enzyme cocktail produced by the fungal consortium resulted in almost the same SY (% as that obtained from a combination of commercial cellulase and β-glucosidase. Significant sugar conversion (61.7% from H. annuus biomass hydrolysate occurred, resulting in the production of 11.4 g/L of bioethanol. This is the first study to assess the suitability of phytoremediated sunflower biomass for bioethanol production.

  18. Metal accumulation by sunflower (Helianthus annuus L.) and the efficacy of its biomass in enzymatic saccharification.

    Science.gov (United States)

    Dhiman, Saurabh Sudha; Zhao, Xin; Li, Jinglin; Kim, Dongwook; Kalia, Vipin C; Kim, In-Won; Kim, Jae Young; Lee, Jung-Kul

    2017-01-01

    Accumulation of metal contaminants in soil as a result of various industrial and anthropogenic activities has reduced soil fertility significantly. Phytoextraction of metal contaminants can improve soil fertility and provide inexpensive feedstock for biorefineries. We investigated the hyperaccumulation capacity of sunflower (Helianthus annuus) biomass by cultivating these plants in various concentrations of metal contaminants. Sunflowers were grown in soils contaminated with various levels of heavy metals (10-2,000 mg/kg dry soil). The degree of metal uptake by different parts of the biomass and the residual concentration in the soil were estimated through inductively coupled plasma mass spectrometry. An almost 2.5-fold hyperaccumulation of Zn2+ was observed in the leaf and flower biomass compared with the concentration in the soil. For the subsequent saccharification of biomass with hyperaccumulated contaminants, a fungal lignocellulosic consortium was used. The fungal consortium cocktail retained more than 95% filter paper activity with 100 mM Ni2+ ions even after 36 h. The highest saccharification yield (SY, 87.4%) was observed with Ni2+ as the contaminant (10 mg/kg dry wt), whereas Pb2+ (251.9 mg/kg dry wt) was the strongest inhibitor of biomass hydrolysis, resulting in only a 30% SY. Importantly, the enzyme cocktail produced by the fungal consortium resulted in almost the same SY (%) as that obtained from a combination of commercial cellulase and β-glucosidase. Significant sugar conversion (61.7%) from H. annuus biomass hydrolysate occurred, resulting in the production of 11.4 g/L of bioethanol. This is the first study to assess the suitability of phytoremediated sunflower biomass for bioethanol production.

  19. Liquid Chromatography with Electrospray Ionization and Tandem Mass Spectrometry Applied in the Quantitative Analysis of Chitin-Derived Glucosamine for a Rapid Estimation of Fungal Biomass in Soil

    Directory of Open Access Journals (Sweden)

    Madelen A. Olofsson

    2016-01-01

    Full Text Available This method employs liquid chromatography-tandem mass spectrometry to rapidly quantify chitin-derived glucosamine for estimating fungal biomass. Analyte retention was achieved using hydrophilic interaction liquid chromatography, with a zwitter-ionic stationary phase (ZIC-HILIC, and isocratic elution using 60% 5 mM ammonium formate buffer (pH 3.0 and 40% ACN. Inclusion of muramic acid and its chromatographic separation from glucosamine enabled calculation of the bacterial contribution to the latter. Galactosamine, an isobaric isomer to glucosamine, found in significant amounts in soil samples, was also investigated. The two isomers form the same precursor and product ions and could not be chromatographically separated using this rapid method. Instead, glucosamine and galactosamine were distinguished mathematically, using the linear relationships describing the differences in product ion intensities for the two analytes. The m/z transitions of 180 → 72 and 180 → 84 were applied for the detection of glucosamine and galactosamine and that of 252 → 126 for muramic acid. Limits of detection were in the nanomolar range for all included analytes. The total analysis time was 6 min, providing a high sample throughput method.

  20. Visual comparative omics of fungi for plant biomass deconstruction

    Directory of Open Access Journals (Sweden)

    Shingo Miyauchi

    2016-08-01

    Full Text Available Wood-decay fungi are able to decompose plant cell wall components such as cellulose, hemicelluloses and lignin. Such fungal capabilities may be exploited for the enhancement of directed enzymatic degradation of recalcitrant plant biomass. The comparative analysis of wood-decay fungi using a multi-omics approach gives not only new insights into the strategies for decomposing complex plant materials but also basic knowledge for the design of combinations of enzymes for biotechnological applications. We have developed an analytical workflow, Applied Biomass Conversion Design for Efficient Fungal Green Technology (ABCDEFGT, to simplify the analysis and interpretation of transcriptomic and secretomic data. The ABCDEFGT workflow is primarily constructed of self-organizing maps for grouping genes with similar transcription patterns and an overlay with secreted proteins. The ABCDEFGT workflow produces simple graphic outputs of genome-wide transcriptomes and secretomes. It enables visual inspection without a priori of the omics data, facilitating discoveries of co-regulated genes and proteins. Genome-wide omics landscapes were built with the newly sequenced fungal species Pycnoporus coccineus, Pycnoporus sanguineus, and Pycnoporus cinnabarinus grown on various carbon sources. Integration of the post-genomic data showed a global overlap, confirming the pertinence of the genome-wide approach to study the fungal biological responses to the carbon sources. Our method was compared to a recently-developed clustering method in order to assess the biological relevance of the method and ease of interpretation. Our approach provided a better biological representation of fungal behaviors. The genome-wide multi-omics strategy allowed us to determine the potential synergy of enzymes participating in the decomposition of cellulose, hemicellulose and lignin such as Lytic Polysaccharide Monooxygenases (LPMO, modular enzymes associated with a cellulose binding module

  1. A fungal biofilm reactor based on metal structured packing improves the quality of a Gla::GFP fusion protein produced by Aspergillus oryzae.

    Science.gov (United States)

    Zune, Q; Delepierre, A; Gofflot, S; Bauwens, J; Twizere, J C; Punt, P J; Francis, F; Toye, D; Bawin, T; Delvigne, F

    2015-08-01

    Fungal biofilm is known to promote the excretion of secondary metabolites in accordance with solid-state-related physiological mechanisms. This work is based on the comparative analysis of classical submerged fermentation with a fungal biofilm reactor for the production of a Gla::green fluorescent protein (GFP) fusion protein by Aspergillus oryzae. The biofilm reactor comprises a metal structured packing allowing the attachment of the fungal biomass. Since the production of the target protein is under the control of the promoter glaB, specifically induced in solid-state fermentation, the biofilm mode of culture is expected to enhance the global productivity. Although production of the target protein was enhanced by using the biofilm mode of culture, we also found that fusion protein production is also significant when the submerged mode of culture is used. This result is related to high shear stress leading to biomass autolysis and leakage of intracellular fusion protein into the extracellular medium. Moreover, 2-D gel electrophoresis highlights the preservation of fusion protein integrity produced in biofilm conditions. Two fungal biofilm reactor designs were then investigated further, i.e. with full immersion of the packing or with medium recirculation on the packing, and the scale-up potentialities were evaluated. In this context, it has been shown that full immersion of the metal packing in the liquid medium during cultivation allows for a uniform colonization of the packing by the fungal biomass and leads to a better quality of the fusion protein.

  2. Differential sensitivity of total and active soil microbial communities to drought and forest management.

    Science.gov (United States)

    Bastida, Felipe; Torres, Irene F; Andrés-Abellán, Manuela; Baldrian, Petr; López-Mondéjar, Rubén; Větrovský, Tomáš; Richnow, Hans H; Starke, Robert; Ondoño, Sara; García, Carlos; López-Serrano, Francisco R; Jehmlich, Nico

    2017-10-01

    Climate change will affect semiarid ecosystems through severe droughts that increase the competition for resources in plant and microbial communities. In these habitats, adaptations to climate change may consist of thinning-that reduces competition for resources through a decrease in tree density and the promotion of plant survival. We deciphered the functional and phylogenetic responses of the microbial community to 6 years of drought induced by rainfall exclusion and how forest management affects its resistance to drought, in a semiarid forest ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel, community-based strategies in the face of climate change. The diversity and the composition of the total and active soil microbiome were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially mediated ecosystem multifunctionality was studied by the integration of soil enzyme activities related to the cycles of C, N, and P. The microbial biomass and ecosystem multifunctionality decreased in drought-plots, as a consequence of the lower soil moisture and poorer plant development, but this decrease was more notable in unthinned plots. The structure and diversity of the total bacterial community was unaffected by drought at phylum and order level, but did so at genus level, and was influenced by seasonality. However, the total fungal community and the active microbial community were more sensitive to drought and were related to ecosystem multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of ecosystem multifunctionality to drought through changes in the active microbial community. The integration of total and active microbiome analyses avoids misinterpretations of the links between the soil microbial

  3. TOTAL HYDROGENATION OF BIOMASS-DERIVED FURFURAL OVER RANEY NICKEL-CLAY NANOCOMPOSITE CATALYSTS

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2013-08-01

    Full Text Available Inexpensive Raney Ni-clay composite (R-Ni/clay catalysts exhibited excellent activity and reusability in the total hydrogenation of biomass-derived furfural into tetrahydrofurfuryl alcohol under mild conditions. For the Raney Ni-bentonite (R-Ni/BNT catalysts, the complete reaction was achieved at 393 K, 180 min giving almost 99% yield of tetrahydrofurfuryl alcohol. The R-Ni/BNT catalyst was found to be reusable without any significant loss of activity and selectivity for at least six consecutive runs.

  4. Local geology determines responses of stream producers and fungal decomposers to nutrient enrichment: A field experiment.

    Science.gov (United States)

    Mykrä, Heikki; Sarremejane, Romain; Laamanen, Tiina; Karjalainen, Satu Maaria; Markkola, Annamari; Lehtinen, Sirkku; Lehosmaa, Kaisa; Muotka, Timo

    2018-04-16

    We examined how short-term (19 days) nutrient enrichment influences stream fungal and diatom communities, and rates of leaf decomposition and algal biomass accrual. We conducted a field experiment using slow-releasing nutrient pellets to increase nitrate (NO 3 -N) and phosphate (PO 4 -P) concentrations in a riffle section of six naturally acidic (naturally low pH due to catchment geology) and six circumneutral streams. Nutrient enrichment increased microbial decomposition rate on average by 14%, but the effect was significant only in naturally acidic streams. Nutrient enrichment also decreased richness and increased compositional variability of fungal communities in naturally acidic streams. Algal biomass increased in both stream types, but algal growth was overall very low. Diatom richness increased in response to nutrient addition by, but only in circumneutral streams. Our results suggest that primary producers and decomposers are differentially affected by nutrient enrichment and that their responses to excess nutrients are context dependent, with a potentially stronger response of detrital processes and fungal communities in naturally acidic streams than in less selective environments.

  5. Data from: Root biomass and exudates link plant diversity with soil bacterial and fungal biomass

    NARCIS (Netherlands)

    Eisenhauer, Nico; Strecker, Tanja; Lanoue, Arnaud; Scheu, Stefan; Steinauer, Katja; Thakur, Madhav P.; Mommer, L.

    2017-01-01

    Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity

  6. Phylogenetic distribution of fungal sterols.

    Directory of Open Access Journals (Sweden)

    John D Weete

    the synthesis of ergosterol. These findings also invalidate use of ergosterol as an indicator of biomass of certain fungal taxa (e.g., Glomeromycota. Data from this study are available from the Assembling the Fungal Tree of Life (AFTOL Structural and Biochemical Database: http://aftol.umn.edu.

  7. Interactions among filamentous fungi Aspergillus niger, Fusarium verticillioides and Clonostachys rosea: fungal biomass, diversity of secreted metabolites and fumonisin production.

    Science.gov (United States)

    Chatterjee, Subhankar; Kuang, Yi; Splivallo, Richard; Chatterjee, Paramita; Karlovsky, Petr

    2016-05-10

    Interactions among fungi colonizing dead organic matter involve exploitation competition and interference competition. Major mechanism of interference competition is antibiosis caused by secreted secondary metabolites. The effect of competition on secondary metabolite production by fungi is however poorly understood. Fungal biomass was rarely monitored in interaction studies; it is not known whether dominance in pairwise interactions follows congruent patterns. Pairwise interactions of three fungal species with different life styles were studied. The saprophyte Aspergillus niger (A.n.), the plant pathogen Fusarium verticillioides (F.v.), and the mycoparasite Clonostachys rosea (C.r.) were grown in single and dual cultures in minimal medium with asparagine as nitrogen source. Competitive fitness shifted with time: in dual C.r./F.v. cultures after 10 d F.v. grew well while C.r. was suppressed; after 20 d C.r. recovered while F.v. became suppressed; and after 30 d most F.v. was destroyed. At certain time points fungal competitive fitness exhibited a rock-paper-scissors pattern: F.v. > A.n., A.n. > C.r., and C.r. > F.v. Most metabolites secreted to the medium at early stages in single and dual cultures were not found at later times. Many metabolites occurring in supernatants of single cultures were suppressed in dual cultures and many new metabolites not occurring in single cultures were found in dual cultures. A. niger showed the greatest ability to suppress the accumulation of metabolites produced by the other fungi. A. niger was also the species with the largest capacity of transforming metabolites produced by other fungi. Fumonisin production by F. verticillioides was suppressed in co-cultures with C. rosea but fumonisin B1 was not degraded by C. rosea nor did it affect the growth of C. rosea up to a concentration of 160 μg/ml. Competitive fitness in pairwise interactions among fungi is incongruent, indicating that species-specific factors and/or effects are

  8. MICROMICETES QUANTITY AND BIOMASS IN TECHNOGENIC AND NATURAL SOILS

    Directory of Open Access Journals (Sweden)

    Korinovskaya Olga Nikolaevna

    2014-08-01

    Full Text Available It is shown that in edaphotopes around of freight checkpoint of CJSC «Krivorozhskiy Surikovyy Zavod», ore-enrichment factory and fresh-inwashed pool of tailings dam of PJSC «Northern Iron Ore Enrichment Works» there is an increase of heavy metals mobile forms (which are the most dangerous for microorganisms, plants, animals and human: for iron in 310; for zinc - in 4,3-6,5; for lead - in 3.2-5.7; for cadmium - in 5,6-9,8; for copper – 6,8-66,5 and for nickel - in 9 times as compared to zonal soil. Whereas in soils of CJSC «Krivorozhskiy Surikovyy Zavod» sanitary protection zone number of copper, nickel, lead, cadmium and zinc mobile forms exceeded the control values in 2,4-6,6 times. For the first time the features of soil microscopic fungi seasonal dynamics of quantity in industrial disturbed soils of Kryvorizhzhya compared to zonal soil (chernozem usual were registered. Changes in fungal mycelium length and biomass, its spore’s amount and biomass in edaphotopes of ore-enrichment and chemical enterprises and of common chernozem are also presented. It is shown that in edaphotopes of heavy contamination areas of «Krivorozhskiy Surikovyy Zavod» and of «Northern Iron Ore Enrichment Works» in spring, summer, and autumn there was decrease of microscopic fungi quantity in 4-10 times, moreover in tehnozems of «Northern Iron Ore Enrichment Works» fresh-inwashed pool of tailings dam their amount reduces in more than 100 times, compared with common chernozem. In low contamination area of «Krivorozhskiy Surikovyy Zavod» their quantity decreases in 2 times. Also in heavy contamination areas of chemical and ore-enrichment enterprises there is strong decrease in the length of fungal mycelium in 2.7-4.2 times, its biomass in 2,6-4,5 times, the spores amount - in 4,5-7,7 times and their biomass - in 10,5-21 times compared to the natural soil, which could be explained by high contents of toxicants. While in the sanitary protection zone of the

  9. VARIABILITY OF COORDINATION COMPLEXES OF COPPER ACCUMULATED WITHIN FUNGAL COLONY IN THE PRESENCE OF COPPER-CONTAINING MINERALS

    Directory of Open Access Journals (Sweden)

    M. O. Fomina

    2014-04-01

    Full Text Available The aim of work was to elucidate the mechanisms of bioaccumulation of copper leached from minerals by fungus Aspergillus niger with great bioremedial potential due to its ability to produce chelating metabolites and transform toxic metals and minerals. The special attention was paid to the chemical speciation of copper bioaccumulated within fungal colony in the process of fungal transformation of copper-containing minerals. Chemical speciation of copper within different parts of the fungal colony was studied using solid-state chemistry methods such as synchrotron-based X-ray absorption spectroscopy providing information about the oxidation state of the target element, and its coordination environment. The analysis of the obtained X-ray absorption spectroscopy spectra was carried out using Fourier transforms of Extended X-ray Absorption Fine Structure regions, which correspond to the oscillating part of the spectrum to the right of the absorption edge. Results of this study showed that fungus A. niger was involved in the process of solubilization of copper-containing minerals resulted in leaching of mobile copper and its further immobilization by fungal biomass with variable coordination of accumulated copper within fungal colony which depended on the age and physiological/reproductive state of fungal mycelium. X-ray absorption spectroscopy data demonstrated that copper accumulated within outer zone of fungal colony with immature vegetative mycelium was coordinated with sulphur–containing ligands, in contrast to copper coordination with phosphate ligands within mature mycelium with profuse conidia in the central zone of the colony. The findings of this study not only broaden our understanding of the biogeochemical role of fungi but can also be used in the development of various fungal-based biometallurgy technologies such as bioremediation, bioaccumulation and bioleaching and in the assessment of their reliability. The main conclusion is that

  10. The Fungal Defensin Family Enlarged

    Directory of Open Access Journals (Sweden)

    Jiajia Wu

    2014-08-01

    Full Text Available Fungi are an emerging source of peptide antibiotics. With the availability of a large number of model fungal genome sequences, we can expect that more and more fungal defensin-like peptides (fDLPs will be discovered by sequence similarity search. Here, we report a total of 69 new fDLPs encoded by 63 genes, in which a group of fDLPs derived from dermatophytes are defined as a new family (fDEF8 according to sequence and phylogenetic analyses. In the oleaginous fungus Mortierella alpine, fDLPs have undergone extensive gene expansion. Our work further enlarges the fungal defensin family and will help characterize new peptide antibiotics with therapeutic potential.

  11. Biomass production of pleurotus sajor-caju by submerged culture fermentation

    International Nuclear Information System (INIS)

    Kausar, T.; Nasreen, Z.; Nadeem, M.; Baig, S.

    2006-01-01

    The effect of different carbon sources, namely, sawdust and powder of agro wastes (as such, or water soluble extracts), and inorganic/natural nitrogen sources on the biomass production of Pleurotus sajor-caju by submerged culture fermentation was studied. Supplementation of the fermentation medium with 2% molasses, 2% wheat spike powder, extract of 2% wheat spike powder, and com gluten meal resulted in 12.85, 10.85, 12.35 and 13.92 g/sub l/ biomass production of P. sajor-caju, respectively. The fungal hyphae biomass contained 8.28% moisture, 21.18% crude protein, 1.55% fat, 3.59% ash, 2.32% crude fibre, and 63.48% nitrogen-free extract. (author)

  12. Effectiveness of Arbuscular Mycorrhizal Fungal Isolates from the Land Uses of Amazon Region in Symbiosis with Cowpea.

    Science.gov (United States)

    Silva, Gláucia Alves E; Siqueira, José O; Stürmer, Sidney L; Moreira, Fatima M S

    2018-01-01

    Arbuscular mycorrhizal fungi provide several ecosystem services, including increase in plant growth and nutrition. The occurrence, richness, and structure of arbuscular mycorrhizal fungi communities are influenced by human activities, which may affect the functional benefits of these components of the soil biota. In this study, 13 arbuscular mycorrhizal fungi isolates originating from soils with different land uses in the Alto Solimões-Amazon region were evaluated regarding their effect on growth, nutrition, and cowpea yield in controlled conditions using two soils. Comparisons with reference isolates and a mixture of isolates were also performed. Fungal isolates exhibited a wide variability associated with colonization, sporulation, production of aboveground biomass, nitrogen and phosphorus uptake, and grain yield, indicating high functional diversity within and among fungal species. A generalized effect of isolates in promoting phosphorus uptake, increase in biomass, and cowpea yield was observed in both soils. The isolates of Glomus were the most efficient and are promising isolates for practical inoculation programs. No relationship was found between the origin of fungal isolate (i.e. land use) and their symbiotic performance in cowpea.

  13. Conversion from long-term cultivated wheat field to Jerusalem artichoke plantation changed soil fungal communities

    Science.gov (United States)

    Zhou, Xingang; Zhang, Jianhui; Gao, Danmei; Gao, Huan; Guo, Meiyu; Li, Li; Zhao, Mengliang; Wu, Fengzhi

    2017-01-01

    Understanding soil microbial communities in agroecosystems has the potential to contribute to the improvement of agricultural productivity and sustainability. Effects of conversion from long-term wheat plantation to Jerusalem artichoke (JA) plantation on soil fungal communities were determined by amplicon sequencing of total fungal ITS regions. Quantitative PCR and PCR-denaturing gradient gel electrophoresis were also used to analyze total fungal and Trichoderma spp. ITS regions and Fusarium spp. Ef1α genes. Results showed that soil organic carbon was higher in the first cropping of JA and Olsen P was lower in the third cropping of JA. Plantation conversion changed soil total fungal and Fusarium but not Trichoderma spp. community structures and compositions. The third cropping of JA had the lowest total fungal community diversity and Fusarium spp. community abundance, but had the highest total fungal and Trichoderma spp. community abundances. The relative abundances of potential fungal pathogens of wheat were higher in the wheat field. Fungal taxa with plant growth promoting, plant pathogen or insect antagonistic potentials were enriched in the first and second cropping of JA. Overall, short-term conversion from wheat to JA plantation changed soil fungal communities, which is related to changes in soil organic carbon and Olsen P contents.

  14. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products

    DEFF Research Database (Denmark)

    Lange, Lene

    2017-01-01

    Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme treatm...... contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy.......Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme...... treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps...

  15. 2012 Gordon Research Conference on Cellular and Molecular Fungal Biology, Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Judith [Univ. of Minnesota, Minneapolis, MN (United States)

    2012-06-22

    The Gordon Research Conference on Cellular and Molecular Fungal Biology was held at Holderness School, Holderness New Hampshire, June 17 - 22, 2012. The 2012 Gordon Conference on Cellular and Molecular Fungal Biology (CMFB) will present the latest, cutting-edge research on the exciting and growing field of molecular and cellular aspects of fungal biology. Topics will range from yeast to filamentous fungi, from model systems to economically important organisms, and from saprophytes and commensals to pathogens of plants and animals. The CMFB conference will feature a wide range of topics including systems biology, cell biology and morphogenesis, organismal interactions, genome organisation and regulation, pathogenesis, energy metabolism, biomass production and population genomics. The Conference was well-attended with 136 participants. Gordon Research Conferences does not permit publication of meeting proceedings.

  16. Allometric Scaling and Resource Limitations Model of Total Aboveground Biomass in Forest Stands: Site-scale Test of Model

    Science.gov (United States)

    CHOI, S.; Shi, Y.; Ni, X.; Simard, M.; Myneni, R. B.

    2013-12-01

    Sparseness in in-situ observations has precluded the spatially explicit and accurate mapping of forest biomass. The need for large-scale maps has raised various approaches implementing conjugations between forest biomass and geospatial predictors such as climate, forest type, soil property, and topography. Despite the improved modeling techniques (e.g., machine learning and spatial statistics), a common limitation is that biophysical mechanisms governing tree growth are neglected in these black-box type models. The absence of a priori knowledge may lead to false interpretation of modeled results or unexplainable shifts in outputs due to the inconsistent training samples or study sites. Here, we present a gray-box approach combining known biophysical processes and geospatial predictors through parametric optimizations (inversion of reference measures). Total aboveground biomass in forest stands is estimated by incorporating the Forest Inventory and Analysis (FIA) and Parameter-elevation Regressions on Independent Slopes Model (PRISM). Two main premises of this research are: (a) The Allometric Scaling and Resource Limitations (ASRL) theory can provide a relationship between tree geometry and local resource availability constrained by environmental conditions; and (b) The zeroth order theory (size-frequency distribution) can expand individual tree allometry into total aboveground biomass at the forest stand level. In addition to the FIA estimates, two reference maps from the National Biomass and Carbon Dataset (NBCD) and U.S. Forest Service (USFS) were produced to evaluate the model. This research focuses on a site-scale test of the biomass model to explore the robustness of predictors, and to potentially improve models using additional geospatial predictors such as climatic variables, vegetation indices, soil properties, and lidar-/radar-derived altimetry products (or existing forest canopy height maps). As results, the optimized ASRL estimates satisfactorily

  17. Structural stability, microbial biomass and community composition of sediments affected by the hydric dynamics of an urban stormwater infiltration basin. Dynamics of physical and microbial characteristics of stormwater sediment.

    Science.gov (United States)

    Badin, Anne Laure; Monier, Armelle; Volatier, Laurence; Geremia, Roberto A; Delolme, Cécile; Bedell, Jean-Philippe

    2011-05-01

    The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH₄⁺, 53-717 μg/g DW), pH (6.9-7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release

  18. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    Science.gov (United States)

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  19. Coupled Metagenomic and Chemical Analyses of Degrading Fungal Necromass and Implications for Microbial Contributions to Stable Soil OC

    Science.gov (United States)

    Schreiner, K. M.; Morgan, B. S. T.; Schultz, J.; Blair, N. E.; Egerton-Warburton, L. M.

    2014-12-01

    Fungi comprise a significant portion of total soil biomass, the turnover of which must represent a dominant flux within the soil carbon cycle. Fungal OC can turn over on time scales of days to months, but this process is poorly understood. Here, we examined temporal changes in the chemical and microbial community composition of fungal necromass during a 2 month decomposition experiment in which Fusarium avenaceum (a common saprophyte) was exposed to a natural soil microbial community. Over the course of the experiment, residual fungal necromass was harvested and analyzed using FTIR and thermochemolysis-GCMS to examine chemical changes in the tissue. Additionally, genomic DNA was extracted from tissues, amplified with barcoded ITS primers, and sequenced using the high-throughput Illumina platform to examine changes in microbial community composition. Up to 80% of the fungal necromass turned over in the first week. This rapid degradation phase corresponded to colonization of the necromass by known chitinolytic soil fungi including Mortierella species. Zygomycetes and Ascomycetes were among the dominant fungal species involved in degradation with very small contributions from Basidiomycetes. At the end of the 2 month degradation, only 15% of the original necromass remained. The residual material was rich in amide and C-O moieties which is consistent with previous work predicting that peptidoglycans are the main residual product from microbial tissue degradation. Straight-chain fatty acids exhibit varying degradation profiles, with some fatty acids (e.g. C16 and C18:1) degrading more rapidly than bulk tissue, others maintaining steady concentrations relative to bulk OC (e.g. C18), and some increasing in concentration throughout the degradation (e.g. C24). These results indicate that the turnover of fungal necromass has the potential to significantly influence a variety of soil OC properties, including C/N ratios, lipid biomarker distributions, and OC turnover times.

  20. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass.

    Science.gov (United States)

    Minty, Jeremy J; Singer, Marc E; Scholz, Scott A; Bae, Chang-Hoon; Ahn, Jung-Ho; Foster, Clifton E; Liao, James C; Lin, Xiaoxia Nina

    2013-09-03

    Synergistic microbial communities are ubiquitous in nature and exhibit appealing features, such as sophisticated metabolic capabilities and robustness. This has inspired fast-growing interest in engineering synthetic microbial consortia for biotechnology development. However, there are relatively few reports of their use in real-world applications, and achieving population stability and regulation has proven to be challenging. In this work, we bridge ecology theory with engineering principles to develop robust synthetic fungal-bacterial consortia for efficient biosynthesis of valuable products from lignocellulosic feedstocks. The required biological functions are divided between two specialists: the fungus Trichoderma reesei, which secretes cellulase enzymes to hydrolyze lignocellulosic biomass into soluble saccharides, and the bacterium Escherichia coli, which metabolizes soluble saccharides into desired products. We developed and experimentally validated a comprehensive mathematical model for T. reesei/E. coli consortia, providing insights on key determinants of the system's performance. To illustrate the bioprocessing potential of this consortium, we demonstrate direct conversion of microcrystalline cellulose and pretreated corn stover to isobutanol. Without costly nutrient supplementation, we achieved titers up to 1.88 g/L and yields up to 62% of theoretical maximum. In addition, we show that cooperator-cheater dynamics within T. reesei/E. coli consortia lead to stable population equilibria and provide a mechanism for tuning composition. Although we offer isobutanol production as a proof-of-concept application, our modular system could be readily adapted for production of many other valuable biochemicals.

  1. Fungal Anticancer Metabolites: Synthesis Towards Drug Discovery.

    Science.gov (United States)

    Barbero, Margherita; Artuso, Emma; Prandi, Cristina

    2018-01-01

    Fungi are a well-known and valuable source of compounds of therapeutic relevance, in particular of novel anticancer compounds. Although seldom obtainable through isolation from the natural source, the total organic synthesis still remains one of the most efficient alternatives to resupply them. Furthermore, natural product total synthesis is a valuable tool not only for discovery of new complex biologically active compounds but also for the development of innovative methodologies in enantioselective organic synthesis. We undertook an in-depth literature searching by using chemical bibliographic databases (SciFinder, Reaxys) in order to have a comprehensive insight into the wide research field. The literature has been then screened, refining the obtained results by subject terms focused on both biological activity and innovative synthetic procedures. The literature on fungal metabolites has been recently reviewed and these publications have been used as a base from which we consider the synthetic feasibility of the most promising compounds, in terms of anticancer properties and drug development. In this paper, compounds are classified according to their chemical structure. This review summarizes the anticancer potential of fungal metabolites, highlighting the role of total synthesis outlining the feasibility of innovative synthetic procedures that facilitate the development of fungal metabolites into drugs that may become a real future perspective. To our knowledge, this review is the first effort to deal with the total synthesis of these active fungi metabolites and demonstrates that total chemical synthesis is a fruitful means of yielding fungal derivatives as aided by recent technological and innovative advancements. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. The influences of CO2 fertilization and land use change on the total aboveground biomass in Amazonian tropical forest

    Science.gov (United States)

    Castanho, A. D.; Zhang, K.; Coe, M. T.; Costa, M. H.; Moorcroft, P. R.

    2012-12-01

    Field observations from undisturbed old-growth Amazonian forest plots have recently reported on the temporal variation of many of the physical and chemical characteristics such as: physiological properties of leaves, above ground live biomass, above ground productivity, mortality and turnover rates. However, although this variation has been measured, it is still not well understood what mechanisms control the observed temporal variability. The observed changes in time are believed to be a result of a combination of increasing atmospheric CO2 concentration, climate variability, recovery from natural disturbance (drought, wind blow, flood), and increase of nutrient availability. The time and spatial variability of the fertilization effect of CO2 on above ground biomass will be explored in more detail in this work. A precise understanding of the CO2 effect on the vegetation is essential for an accurate prediction of the future response of the forest to climate change. To address this issue we simultaneously explore the effects of climate variability, historical CO2 and land-use change on total biomass and productivity using two different Dynamic Global Vegetation Models (DGVM). We use the Integrated Biosphere Simulator (IBIS) and the Ecosystem Demography Model 2.1 (ED2.1). Using land use changes database from 1700 - 2008 we reconstruct the total carbon balance in the Amazonian forest in space and time and present how the models predict the forest as carbon sink or source and explore why the model and field data diverge from each other. From 1970 to 2005 the Amazonian forest has been exposed to an increase of approximately 50 ppm in the atmospheric CO2 concentration. Preliminary analyses with the IBIS and ED2.1 dynamic vegetation model shows the CO2 fertilization effect could account for an increase in above ground biomass of 0.03 and 0.04 kg-C/m2/yr on average for the Amazon basin, respectively. The annual biomass change varies temporally and spatially from about 0

  3. Early-branching Gut Fungi Possess A Large, And Comprehensive Array Of Biomass-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Kevin V.; Haitjema, Charles; Henske, John K.; Gilmore, Sean P.; Borges-Rivera, Diego; Lipzen, Anna; Brewer, Heather M.; Purvine, Samuel O.; Wright, Aaron T.; Theodorou, Michael K.; Grigoriev, Igor V.; Regev, Aviv; Thompson, Dawn; O' Malley, Michelle A.

    2016-03-11

    The fungal kingdom is the source of almost all industrial enzymes in use for lignocellulose bioprocessing. Its more primitive members, however, remain relatively unexploited. We developed a systems-level approach that integrates RNA-Seq, proteomics, phenotype and biochemical studies of relatively unexplored early-branching free-living fungi. Anaerobic gut fungi isolated from herbivores produce a large array of biomass-degrading enzymes that synergistically degrade crude, unpretreated plant biomass, and are competitive with optimized commercial preparations from Aspergillus and Trichoderma. Compared to these model platforms, gut fungal enzymes are unbiased in substrate preference due to a wealth of xylan-degrading enzymes. These enzymes are universally catabolite repressed, and are further regulated by a rich landscape of noncoding regulatory RNAs. Furthermore, we identified several promising sequence divergent enzyme candidates for lignocellulosic bioprocessing.

  4. Organic farming increases richness of fungal taxa in the wheat phyllosphere.

    Science.gov (United States)

    Karlsson, Ida; Friberg, Hanna; Kolseth, Anna-Karin; Steinberg, Christian; Persson, Paula

    2017-07-01

    Organic farming is often advocated as an approach to mitigate biodiversity loss on agricultural land. The phyllosphere provides a habitat for diverse fungal communities that are important for plant health and productivity. However, it is still unknown how organic farming affects the diversity of phyllosphere fungi in major crops. We sampled wheat leaves from 22 organically and conventionally cultivated fields in Sweden, paired based on their geographical location and wheat cultivar. Fungal communities were described using amplicon sequencing and real-time PCR. Species richness was higher on wheat leaves from organically managed fields, with a mean of 54 operational taxonomic units (OTUs) compared with 40 OTUs for conventionally managed fields. The main components of the fungal community were similar throughout the 350-km-long sampling area, and seven OTUs were present in all fields: Zymoseptoria, Dioszegia fristingensis, Cladosporium, Dioszegia hungarica, Cryptococcus, Ascochyta and Dioszegia. Fungal abundance was highly variable between fields, 10 3 -10 5 internal transcribed spacer copies per ng wheat DNA, but did not differ between cropping systems. Further analyses showed that weed biomass was the strongest explanatory variable for fungal community composition and OTU richness. These findings help provide a more comprehensive understanding of the effect of organic farming on the diversity of organism groups in different habitats within the agroecosystem. © 2017 The Authors Molecular Ecology Published by John Wiley & Sons Ltd.

  5. A parts list for fungal cellulosomes revealed by comparative genomics

    Energy Technology Data Exchange (ETDEWEB)

    Haitjema, Charles H.; Gilmore, Sean P.; Henske, John K.; Solomon, Kevin V.; de Groot, Randall; Kuo, Alan; Mondo, Stephen J.; Salamov, Asaf A.; LaButti, Kurt; Zhao, Zhiying; Chiniquy, Jennifer; Barry, Kerrie; Brewer, Heather M.; Purvine, Samuel O.; Wright, Aaron T.; Hainaut, Matthieu; Boxma, Brigitte; van Alen, Theo; Hackstein, Johannes H. P.; Henrissat, Bernard; Baker, Scott E.; Grigoriev, Igor V.; O' Malley, Michelle A.

    2017-05-26

    Cellulosomes are large, multi-protein complexes that tether plant biomass degrading enzymes together for improved hydrolysis1. These complexes were first described in anaerobic bacteria where species specific dockerin domains mediate assembly of enzymes onto complementary cohesin motifs interspersed within non-catalytic protein scaffolds1. The versatile protein assembly mechanism conferred by the bacterial cohesin-dockerin interaction is now a standard design principle for synthetic protein-scale pathways2,3. For decades, analogous structures have been reported in the early branching anaerobic fungi, which are known to assemble by sequence divergent non-catalytic dockerin domains (NCDD)4. However, the enzyme components, modular assembly mechanism, and functional role of fungal cellulosomes remain unknown5,6. Here, we describe the comprehensive set of proteins critical to fungal cellulosome assembly, including novel, conserved scaffolding proteins unique to the Neocallimastigomycota. High quality genomes of the anaerobic fungi Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis were assembled with long-read, single molecule technology to overcome their repeat-richness and extremely low GC content. Genomic analysis coupled with proteomic validation revealed an average 320 NCDD-containing proteins per fungal strain that were overwhelmingly carbohydrate active enzymes (CAZymes), with 95 large fungal scaffoldins identified across 4 genera that contain a conserved amino acid sequence repeat that binds to NCDDs. Fungal dockerin and scaffoldin domains have no similarity to their bacterial counterparts, yet several catalytic domains originated via horizontal gene transfer with gut bacteria. Though many catalytic domains are shared with bacteria, the biocatalytic activity of anaerobic fungi is expanded by the inclusion of GH3, GH6, and GH45 enzymes in the enzyme complexes. Collectively, these findings suggest that the fungal cellulosome is an evolutionarily

  6. Predictive modeling of hazardous waste landfill total above-ground biomass using passive optical and LIDAR remotely sensed data

    Science.gov (United States)

    Hadley, Brian Christopher

    This dissertation assessed remotely sensed data and geospatial modeling technique(s) to map the spatial distribution of total above-ground biomass present on the surface of the Savannah River National Laboratory's (SRNL) Mixed Waste Management Facility (MWMF) hazardous waste landfill. Ordinary least squares (OLS) regression, regression kriging, and tree-structured regression were employed to model the empirical relationship between in-situ measured Bahia (Paspalum notatum Flugge) and Centipede [Eremochloa ophiuroides (Munro) Hack.] grass biomass against an assortment of explanatory variables extracted from fine spatial resolution passive optical and LIDAR remotely sensed data. Explanatory variables included: (1) discrete channels of visible, near-infrared (NIR), and short-wave infrared (SWIR) reflectance, (2) spectral vegetation indices (SVI), (3) spectral mixture analysis (SMA) modeled fractions, (4) narrow-band derivative-based vegetation indices, and (5) LIDAR derived topographic variables (i.e. elevation, slope, and aspect). Results showed that a linear combination of the first- (1DZ_DGVI), second- (2DZ_DGVI), and third-derivative of green vegetation indices (3DZ_DGVI) calculated from hyperspectral data recorded over the 400--960 nm wavelengths of the electromagnetic spectrum explained the largest percentage of statistical variation (R2 = 0.5184) in the total above-ground biomass measurements. In general, the topographic variables did not correlate well with the MWMF biomass data, accounting for less than five percent of the statistical variation. It was concluded that tree-structured regression represented the optimum geospatial modeling technique due to a combination of model performance and efficiency/flexibility factors.

  7. 137Cs in the fungal compartment of Swedish forest soils

    International Nuclear Information System (INIS)

    Vinichuk, Mykhaylo M.; Johanson, Karl J.; Taylor, Andy F.S.

    2004-01-01

    The 137 Cs activities in soil profiles and in the mycelia of four ectomycorrhizal fungi were studied in a Swedish forest in an attempt to understand the mechanisms governing the transfer and retention of 137 Cs in forest soil. The biomass of four species of fungi was determined and estimated to be 16 g m -2 in a peat soil and 47-189 g m -2 in non-peat soil to the depth of 10 cm. The vertical distribution was rather homogeneous for two species (Tylospora spp. and Piloderma fallax) and very superficial for Hydnellum peckii. Most of the 137 Cs activity in mycelium of non-peat soils was found in the upper 5 cm. Transfer factors were quite high even for those species producing resupinate sporocarps. In the peat soil only approximately 0.3% of the total 137 Cs inventory in soil was found in the fungal mycelium. The corresponding values for non-peat soil were 1.3, 1.8 and 1.9%

  8. Biosorption of heavy metals by pretreated biomass of aspergillus niger

    International Nuclear Information System (INIS)

    Javaid, A.; Bajwa, R.; Manzoor, T.

    2011-01-01

    The present study reports the bio sorption potential of chemically pretreated mycelial biomass of fungus Aspergillus niger van. Tieghem for Cu(II) and Ni(II) ions from aqueous phase. Fungal biomass was pretreated with different types of alkaline/salts (NaOH, NaHCO/sub 3/, Na/sub 2/CO/sub 3/, NaCl and CaCl/sub 2/), acids (HCl and H/sub 2/SO/sub 4/) and detergent. Pretreatment of biomass with Na/sub 2/CO/sub 3/ and NaOH were proved to increase or maintain adsorption efficiency and capacity in comparison to untreated biomass. Pretreatment with NaHCO/sub 3/, detergent, NaCl and CaCl/sub 2/ significantly reduce (10-40%) metal sequestering efficiency of the adsorbent. Whereas, acid treatments resulted in drastic loss (80%) in metal uptake efficiency of the biomass. Amongst various pretreatments, Na/sub 2/CO/sub 3/ could be use efficiently for the removal of Ni(II) and Cu(II) ions from aqueous solution using A. niger. (author)

  9. Quantification of ectomycorrhizal mycelium in soil by real time PCR compared to conventional quantification techniques

    NARCIS (Netherlands)

    Landeweert, R.; Veenman, C.; Kuyper, T.W.; Fritze, H.; Wernars, K.; Smit, E.

    2003-01-01

    Mycelial biomass estimates in soils are usually obtained by measuring total hyphal length or by measuring the amount of fungal-specific biomarkers such as ergosterol and phospholipid fatty acids (PLFAs). These methods determine the biomass of the fungal community as a whole and do not allow

  10. Evaluation of Potential Fungal Species for the in situ Simultaneous Saccharification and Fermentation (SSF of Cellulosic Material

    Directory of Open Access Journals (Sweden)

    Leeuwen, J.

    2011-01-01

    Full Text Available Three fungal species were evaluated for their abilities to saccharify pure cellulose. The three species chosen represented three major wood-rot molds; brown rot (Gloeophyllum trabeum, white rot (Phanerochaete chrysosporium and soft rot (Trichoderma reesei. After solid state fermentation of the fungi on the filter paper for four days, the saccharified cellulose was then fermented to ethanol by using Saccharomyces cerevisiae. The efficiency of the fungal species in saccharifying the filter paper was compared against a low dose (25 FPU/g cellulose of a commercial cellulase. Total sugar, cellobiose and glucose were monitored during the fermentation period, along with ethanol, acetic acid and lactic acid. Results indicated that the most efficient fungal species in saccharifying the filter paper was T. reesei with 5.13 g/100 g filter paper of ethanol being produced at days 5, followed by P. chrysosporium at 1.79 g/100 g filter paper. No ethanol was detected for the filter paper treated with G. trabeum throughout the five day fermentation stage. Acetic acid was only produced in the sample treated with T. reesei and the commercial enzyme, with concentration 0.95 and 2.57 g/100 g filter paper, respectively at day 5. Lactic acid production was not detected for all the fungal treated filter paper after day 5. Our study indicated that there is potential in utilizing in situ enzymatic saccharification of biomass by using T. reesei and P. chrysosporium that may lead to an economical simultaneous saccharification and fermentation process for the production of fuel ethanol.

  11. Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass.

    Directory of Open Access Journals (Sweden)

    Marcia Regina Salvadori

    Full Text Available The use of dead biomass of the fungus Hypocrea lixii as a biological system is a new, effective and environmentally friendly bioprocess for the production and uptake of nickel oxide nanoparticles (NPs, which has become a promising field in nanobiotechnology. Dead biomass of the fungus was successfully used to convert nickel ions into nickel oxide NPs in aqueous solution. These NPs accumulated intracellularly and extracellularly on the cell wall surface through biosorption. The average size, morphology and location of the NPs were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The NPs were mainly spherical and extra and intracellular NPs had an average size of 3.8 nm and 1.25 nm, respectively. X-ray photoelectron spectroscopy analysis confirmed the formation of nickel oxide NPs. Infrared spectroscopy detected the presence of functional amide groups, which are probable involved in particle binding to the biomass. The production of the NPs by dead biomass was analyzed by determining physicochemical parameters and equilibrium concentrations. The present study opens new perspectives for the biosynthesis of nanomaterials, which could become a potential biosorbent for the removal of toxic metals from polluted sites.

  12. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj

    2012-12-20

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  13. Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems

    DEFF Research Database (Denmark)

    Clemmensen, Karina Engelbrecht; Michelsen, Anders; Jonasson, Sven Evert

    2006-01-01

    . This was caused partly by increased dominance of EM plants and partly by stimulation of EM mycelial growth. •  We conclude that cycling of carbon and nitrogen through EM fungi will increase when strongly nutrient-limited arctic ecosystems are exposed to a warmer and more nutrient-rich environment. This has...... the response in EM fungal abundance to long-term warming and fertilization in two arctic ecosystems with contrasting responses of the EM shrub Betula nana. •  Ergosterol was used as a biomarker for living fungal biomass in roots and organic soil and ingrowth bags were used to estimate EM mycelial production...

  14. Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass.

    Science.gov (United States)

    Gupta, Vijai K; Kubicek, Christian P; Berrin, Jean-Guy; Wilson, David W; Couturier, Marie; Berlin, Alex; Filho, Edivaldo X F; Ezeji, Thaddeus

    2016-07-01

    Lignocellulose, the most abundant renewable carbon source on earth, is the logical candidate to replace fossil carbon as the major biofuel raw material. Nevertheless, the technologies needed to convert lignocellulose into soluble products that can then be utilized by the chemical or fuel industries face several challenges. Enzymatic hydrolysis is of major importance, and we review the progress made in fungal enzyme technology over the past few years with major emphasis on (i) the enzymes needed for the conversion of polysaccharides (cellulose and hemicellulose) into soluble products, (ii) the potential uses of lignin degradation products, and (iii) current progress and bottlenecks for the use of the soluble lignocellulose derivatives in emerging biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Fungal contamination in hospital environments.

    Science.gov (United States)

    Perdelli, F; Cristina, M L; Sartini, M; Spagnolo, A M; Dallera, M; Ottria, G; Lombardi, R; Grimaldi, M; Orlando, P

    2006-01-01

    To assess the degree of fungal contamination in hospital environments and to evaluate the ability of air conditioning systems to reduce such contamination. We monitored airborne microbial concentrations in various environments in 10 hospitals equipped with air conditioning. Sampling was performed with a portable Surface Air System impactor with replicate organism detection and counting plates containing a fungus-selective medium. The total fungal concentration was determined 72-120 hours after sampling. The genera most involved in infection were identified by macroscopic and microscopic observation. The mean concentration of airborne fungi in the set of environments examined was 19 +/- 19 colony-forming units (cfu) per cubic meter. Analysis of the fungal concentration in the different types of environments revealed different levels of contamination: the lowest mean values (12 +/- 14 cfu/m(3)) were recorded in operating theaters, and the highest (45 +/- 37 cfu/m(3)) were recorded in kitchens. Analyses revealed statistically significant differences between median values for the various environments. The fungal genus most commonly encountered was Penicillium, which, in kitchens, displayed the highest mean airborne concentration (8 +/- 2.4 cfu/m(3)). The percentage (35%) of Aspergillus documented in the wards was higher than that in any of the other environments monitored. The fungal concentrations recorded in the present study are comparable to those recorded in other studies conducted in hospital environments and are considerably lower than those seen in other indoor environments that are not air conditioned. These findings demonstrate the effectiveness of air-handling systems in reducing fungal contamination.

  16. Fungi-based treatment of brewery wastewater-biomass production and nutrient reduction.

    Science.gov (United States)

    Hultberg, M; Bodin, H

    2017-06-01

    The beer-brewing process produces high amounts of nutrient-rich wastewater, and the increasing number of microbreweries worldwide has created a need for innovative solutions to deal with this waste. In the present study, fungal biomass production and the removal of organic carbon, phosphorus and nitrogen from synthetic brewery wastewater were studied. Different filamentous fungi with a record of safe use were screened for growth, and Trametes versicolor, Pleurotus ostreatus and Trichoderma harzianum were selected for further work. The highest biomass production, 1.78 ± 0.31 g L -1 of dry weight, was observed when P. ostreatus was used for the treatment, while T. harzianum demonstrated the best capability for removing nutrients. The maximum reduction of chemical oxygen demand, 89% of the initial value, was observed with this species. In the removal of total nitrogen and phosphorus, no significant difference was observed between the species, while removal of ammonium varied between the strains. The maximum reduction of ammonium, 66.1% of the initial value, was also found in the T. harzianum treatment. It can be concluded that all treatments provided significant reductions in all water-quality parameters after 3 days of growth and that the utilisation of filamentous fungi to treat brewery wastewater, linked to a deliberate strategy to use the biomass produced, has future potential in a bio-based society.

  17. Biomass Maps | Geospatial Data Science | NREL

    Science.gov (United States)

    Biomass Maps Biomass Maps These maps illustrate the biomass resource in the United States by county . Biomass feedstock data are analyzed both statistically and graphically using a geographic information Data Science Team. Solid Biomass Resources Map of Total Biomass Resources in the United States Solid

  18. Fungal diversity associated with Hawaiian Drosophila host plants.

    Directory of Open Access Journals (Sweden)

    Brian S Ort

    Full Text Available Hawaiian Drosophila depend primarily, sometimes exclusively, on specific host plants for oviposition and larval development, and most specialize further on a particular decomposing part of that plant. Differences in fungal community between host plants and substrate types may establish the basis for host specificity in Hawaiian Drosophila. Fungi mediate decomposition, releasing plant micronutrients and volatiles that can indicate high quality substrates and serve as cues to stimulate oviposition. This study addresses major gaps in our knowledge by providing the first culture-free, DNA-based survey of fungal diversity associated with four ecologically important tree genera in the Hawaiian Islands. Three genera, Cheirodendron, Clermontia, and Pisonia, are important host plants for Drosophila. The fourth, Acacia, is not an important drosophilid host but is a dominant forest tree. We sampled fresh and rotting leaves from all four taxa, plus rotting stems from Clermontia and Pisonia. Based on sequences from the D1/D2 domain of the 26S rDNA gene, we identified by BLAST search representatives from 113 genera in 13 fungal classes. A total of 160 operational taxonomic units, defined on the basis of ≥97% genetic similarity, were identified in these samples, but sampling curves show this is an underestimate of the total fungal diversity present on these substrates. Shannon diversity indices ranged from 2.0 to 3.5 among the Hawaiian samples, a slight reduction compared to continental surveys. We detected very little sharing of fungal taxa among the substrates, and tests of community composition confirmed that the structure of the fungal community differed significantly among the substrates and host plants. Based on these results, we hypothesize that fungal community structure plays a central role in the establishment of host preference in the Hawaiian Drosophila radiation.

  19. Comparative performance of two air samplers for monitoring airborne fungal propagules

    Directory of Open Access Journals (Sweden)

    L.G.F. Távora

    2003-05-01

    Full Text Available Many studies have attempted to evaluate the importance of airborne fungi in the development of invasive fungal infection, especially for immunocompromised hosts. Several kinds of instruments are available to quantitate fungal propagule levels in air. We compared the performance of the most frequently used air sampler, the Andersen sampler with six stages, with a portable one, the Reuter centrifugal sampler (RCS. A total of 84 samples were analyzed, 42 with each sampler. Twenty-eight different fungal genera were identified in samples analyzed with the Andersen instrument. In samples obtained with the RCS only seven different fungal genera were identified. The three most frequently isolated genera in samples analyzed with both devices were Penicillium, Aspergillus and Cladophialophora. In areas supplied with a high efficiency particulate air filter, fungal spore levels were usually lower when compared to areas without these filters. There was a significant correlation between total fungal propagule measurements taken with both devices on each sampling occasion (Pearson coefficient = 0.50. However, the Andersen device recovered a broader spectrum of fungi. We conclude that the RCS can be used for quantitative estimates of airborne microbiological concentrations. For qualitative studies, however, this device cannot be recommended.

  20. Fungal Endophytes as a Metabolic Fine-Tuning Regulator for Wine Grape.

    Directory of Open Access Journals (Sweden)

    Ming-Zhi Yang

    Full Text Available Endophytes proved to exert multiple effects on host plants, including growth promotion, stress resistance. However, whether endophytes have a role in metabolites shaping of grape has not been fully understood. Eight endophytic fungal strains which originally isolated from grapevines were re-inoculated to field-grown grapevines in this study, and their effects on both leaves and berries of grapevines at maturity stage were assessed, with special focused on secondary metabolites and antioxidant activities. High-density inoculation of all these endophytic fungal strains modified the physio-chemical status of grapevine to different degrees. Fungal inoculations promoted the content of reducing sugar (RS, total flavonoids (TF, total phenols (TPh, trans-resveratrol (Res and activities of phenylalanine ammonia-lyase (PAL, in both leaves and berries of grapevine. Inoculation of endophytic fungal strains, CXB-11 (Nigrospora sp. and CXC-13 (Fusarium sp. conferred greater promotion effects in grape metabolic re-shaping, compared to other used fungal strains. Additionally, inoculation of different strains of fungal endophytes led to establish different metabolites patterns of wine grape. The work implies the possibility of using endophytic fungi as fine-tuning regulator to shape the quality and character of wine grape.

  1. Total Protein Content Determination of Microalgal Biomass by Elemental Nitrogen Analysis and a Dedicated Nitrogen-to-Protein Conversion Factor

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Olstad-Thompson, Jessica L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Templeton, David W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-02

    Accurately determining protein content is important in the valorization of algal biomass in food, feed, and fuel markets, where these values are used for component balance calculations. Conversion of elemental nitrogen to protein is a well-accepted and widely practiced method, but depends on developing an applicable nitrogen-to-protein conversion factor. The methodology reported here covers the quantitative assessment of the total nitrogen content of algal biomass and a description of the methodology that underpins the accurate de novo calculation of a dedicated nitrogen-to-protein conversion factor.

  2. Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions

    Directory of Open Access Journals (Sweden)

    McClendon Shara D

    2012-07-01

    Full Text Available Abstract Background Thermophilic fungi have attracted increased interest for their ability to secrete enzymes that deconstruct biomass at high temperatures. However, development of thermophilic fungi as enzyme producers for biomass deconstruction has not been thoroughly investigated. Comparing the enzymatic activities of thermophilic fungal strains that grow on targeted biomass feedstocks has the potential to identify promising candidates for strain development. Thielavia terrestris and Thermoascus aurantiacus were chosen for characterization based on literature precedents. Results Thermoascus aurantiacus and Thielavia terrestris were cultivated on various biomass substrates and culture supernatants assayed for glycoside hydrolase activities. Supernatants from both cultures possessed comparable glycoside hydrolase activities when incubated with artificial biomass substrates. In contrast, saccharifications of ionic liquid pretreated switchgrass (Panicum virgatum revealed that T. aurantiacus enzymes released more glucose than T. terrestris enzymes over a range of protein mass loadings and temperatures. Temperature-dependent saccharifications demonstrated that the T. aurantiacus proteins retained higher levels of activity compared to a commercial enzyme mixture sold by Novozymes, Cellic CTec2, at elevated temperatures. Enzymes secreted by T. aurantiacus released glucose at similar protein loadings to CTec2 on dilute acid, ammonia fiber expansion, or ionic liquid pretreated switchgrass. Proteomic analysis of the T. aurantiacus culture supernatant revealed dominant glycoside hydrolases from families 5, 7, 10, and 61, proteins that are key enzymes in commercial cocktails. Conclusions T. aurantiacus produces a complement of secreted proteins capable of higher levels of saccharification of pretreated switchgrass than T. terrestris enzymes. The T. aurantiacus enzymatic cocktail performs at the same level as commercially available enzymatic cocktail for

  3. Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions.

    Science.gov (United States)

    McClendon, Shara D; Batth, Tanveer; Petzold, Christopher J; Adams, Paul D; Simmons, Blake A; Singer, Steven W

    2012-07-28

    Thermophilic fungi have attracted increased interest for their ability to secrete enzymes that deconstruct biomass at high temperatures. However, development of thermophilic fungi as enzyme producers for biomass deconstruction has not been thoroughly investigated. Comparing the enzymatic activities of thermophilic fungal strains that grow on targeted biomass feedstocks has the potential to identify promising candidates for strain development. Thielavia terrestris and Thermoascus aurantiacus were chosen for characterization based on literature precedents. Thermoascus aurantiacus and Thielavia terrestris were cultivated on various biomass substrates and culture supernatants assayed for glycoside hydrolase activities. Supernatants from both cultures possessed comparable glycoside hydrolase activities when incubated with artificial biomass substrates. In contrast, saccharifications of ionic liquid pretreated switchgrass (Panicum virgatum) revealed that T. aurantiacus enzymes released more glucose than T. terrestris enzymes over a range of protein mass loadings and temperatures. Temperature-dependent saccharifications demonstrated that the T. aurantiacus proteins retained higher levels of activity compared to a commercial enzyme mixture sold by Novozymes, Cellic CTec2, at elevated temperatures. Enzymes secreted by T. aurantiacus released glucose at similar protein loadings to CTec2 on dilute acid, ammonia fiber expansion, or ionic liquid pretreated switchgrass. Proteomic analysis of the T. aurantiacus culture supernatant revealed dominant glycoside hydrolases from families 5, 7, 10, and 61, proteins that are key enzymes in commercial cocktails. T. aurantiacus produces a complement of secreted proteins capable of higher levels of saccharification of pretreated switchgrass than T. terrestris enzymes. The T. aurantiacus enzymatic cocktail performs at the same level as commercially available enzymatic cocktail for biomass deconstruction, without strain development or

  4. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir

    Directory of Open Access Journals (Sweden)

    Haihan Zhang

    2018-02-01

    Full Text Available The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal transcribed spacer (ITS gene Illumina MiSeq sequencing techniques. The results showed the algal bloom was dominated by Synechococcus, Microcystis, and Prochlorothrix. The bloom was characterized by a steady decrease of total phosphorus (TP from the outbreak to the decline period (p < 0.05 while Fe concentration increased sharply during the decline period (p < 0.05. The highest algal biomass and cell concentrations observed during the bloom were 51.7 mg/L and 1.9×108 cell/L, respectively. The cell concentration was positively correlated with CODMn (r = 0.89, p = 0.02. Illumina Miseq sequencing showed that algal bloom altered the water bacterial and fungal community structure. During the bloom, the dominant bacterial genus were Acinetobacter sp., Limnobacter sp., Synechococcus sp., and Roseomonas sp. The relative size of the fungal community also changed with algal bloom and its composition mainly contained Ascomycota, Basidiomycota and Chytridiomycota. Heat map profiling indicated that algal bloom had a more consistent effect upon fungal communities at genus level. Redundancy analysis (RDA also demonstrated that the structure of water bacterial communities was significantly correlated to conductivity and ammonia nitrogen. Meanwhile, water temperature, Fe and ammonia nitrogen drive the dynamics of water fungal communities. The results from this work suggested that water bacterial and fungal communities changed significantly during the outbreak and decline of

  5. Isolation and identification of fungal species from dried date palm ...

    African Journals Online (AJOL)

    A total of 360 dried date palm (Phoenix dactylifera) fruits were collected from hawkers, shops and market places within Maiduguri metropolis for the detection of the presence of fungal species. Investigation was based on cultural, microscopically and biochemical tests. Of the 327 (90.83%) fungal isolates recovered on ...

  6. Characteristics and determinants of ambient fungal spores in Hualien, Taiwan

    Science.gov (United States)

    Ho, Hsiao-Man; Rao, Carol Y.; Hsu, Hsiao-Hsien; Chiu, Yueh-Hsiu; Liu, Chi-Ming; Chao, H. Jasmine

    Characteristics and determinants of ambient aeroallergens are of much concern in recent years because of the apparent health impacts of allergens. Yet relatively little is known about the complex behaviors of ambient aeroallergens. To address this issue, we monitored ambient fungal spores in Hualien, Taiwan from 1993-1996 to examine the compositions and temporal variations of fungi, and to evaluate possible determinants. We used a Burkard seven-day volumetric spore trap to collect daily fungal spores. Air pollutants, meteorological factors, and Asian dust events were included in the statistical analyses to predict fungal levels. We found that the most dominant fungal categories were ascospores, followed by Cladosporium and Aspergillus/Penicillium. The majority of the fungal categories had significant diurnal and seasonal variations. Total fungi, Cladosporium, Ganoderma, Arthrinium/Papularia, Cercospora, Periconia, Alternaria, Botrytis, and PM 10 had significantly higher concentrations ( p<0.05) during the period affected by Asian dust events. In multiple regression models, we found that temperature was consistently and positively associated with fungal concentrations. Other factors correlated with fungal concentrations included ozone, particulate matters with an aerodynamic diameter less than 10 μm (PM 10), relative humidity, rainfall, atmospheric pressure, total hydrocarbons, carbon monoxide, nitrogen dioxide, and sulfur dioxide. Most of the fungal categories had higher levels in 1994 than in 1995-96, probably due to urbanization of the study area. In this study, we demonstrated complicated interrelationships between fungi and air pollution/meteorological factors. In addition, long-range transport of air pollutants contributed significantly to local aeroallergen levels. Future studies should examine the health impacts of aeroallergens, as well as the synergistic/antagonistic effects of weather, and local and global-scale air pollutions.

  7. Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2

    Science.gov (United States)

    Jin, V. L.; Schaeffer, S. M.; Ziegler, S. E.; Evans, R. D.

    2011-06-01

    Changes in the rates of nitrogen (N) cycling, microbial carbon (C) substrate use, and extracellular enzyme activities in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 suggest shifts in the size and/or functional characteristics of microbial assemblages in two dominant soil microsites: plant interspaces and under the dominant shrub Larrea tridentata. We used ester-linked phospholipid fatty acid (PLFA) biomarkers as a proxy for microbial biomass to quantify spatial and temporal differences in soil microbial communities from February 2003 to May 2005. Further, we used the 13C signature of the fossil CO2 source for elevated CO2 plots to trace recent plant C inputs into soil organic matter (SOM) and broad microbial groups using δ13C (‰). Differences between individual δ13CPLFA and δ13CSOM for fungal biomarkers indicated active metabolism of newer C in elevated CO2 soils. Total PLFA-C was greater in shrub microsites compared to plant interspaces, and CO2 treatment differences within microsites increased under higher soil water availability. Total, fungal, and bacterial PLFA-C increased with decreasing soil volumetric water content (VWC) in both microsites, suggesting general adaptations to xeric desert conditions. Increases in fungal-to-bacterial PLFA-C ratio with decreasing VWC reflected functional group-specific responses to changing soil water availability. While temporal and spatial extremes in resource availability in desert ecosystems contribute to the difficulty in identifying common trends or mechanisms driving microbial responses in less extreme environments, we found that soil water availability and soil microsite interacted with elevated CO2 to shift fungal and bacterial biomarker abundances in Mojave Desert soils.

  8. Ocular fungal flora from healthy horses in Iran.

    Science.gov (United States)

    Khosravi, A R; Nikaein, D; Sharifzadeh, A; Gharagozlou, F

    2014-03-01

    This study was carried out in order to isolate and identify the normal conjunctival fungal flora from Caspian miniature, Thoroughbred, Turkmen and Persian Arab breeds in Tehran, Iran. A total of seventy-two adult healthy horses were studied. Ocular samples were collected from right and left eyes by using sterile cotton swabs; samples were cultured on Sabouraud dextrose agar and incubated at 30°C for 7-10 days. Molds and yeasts were identified using macro and micro-morphological and physiological characteristics. Number of fungal colonies per eye varied between 0 and 123 colony forming units (CFUs). The most predominant fungal isolates were Aspergillus (19.9%), Rhizopus (15.9%) and Penicillium (15.1%). No significant differences were observed between types of eye fungal floras in different breeds. Caspian miniature horses had significantly the highest number of fungal isolates in compare with other breeds (P<0.001), however no significant difference was observed among other breeds under study. The fungal isolates were almost the same as with studies performed in other countries, although differences in species isolated could be related to geographic and climate difference. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Repression of fungal plant pathogens and fungal-related contaminants: Selected ecosystem services by soil fauna communities in agroecosystems

    Science.gov (United States)

    Meyer-Wolfarth, Friederike; Schrader, Stefan; Oldenburg, Elisabeth; Brunotte, Joachim; Weinert, Joachim

    2017-04-01

    In agroecosystems soil-borne fungal plant diseases are major yield-limiting factors which are difficult to control. Fungal plant pathogens, like Fusarium species, survive as a saprophyte in infected tissue like crop residues and endanger the health of the following crop by increasing the infection risk for specific plant diseases. In infected plant organs, these pathogens are able to produce mycotoxins. Mycotoxins like deoxynivalenol (DON) persist during storage, are heat resistant and of major concern for human and animal health after consumption of contaminated food and feed, respectively. Among fungivorous soil organisms, there are representatives of the soil fauna which are obviously antagonistic to a Fusarium infection and the contamination with mycotoxins. Specific members of the soil macro-, meso-, and microfauna provide a wide range of ecosystem services including the stimulation of decomposition processes which may result in the regulation of plant pathogens and the degradation of environmental contaminants. Investigations under laboratory conditions and in field were conducted to assess the functional linkage between soil faunal communities and plant pathogenic fungi (Fusarium culmorum). The aim was to examine if Fusarium biomass and the content of its mycotoxin DON decrease substantially in the presence of soil fauna (earthworms: Lumbricus terrestris, collembolans: Folsomia candida and nematodes: Aphelenchoides saprophilus) in a commercial cropping system managed with conservation tillage located in Northern Germany. The results of our investigations pointed out that the degradation performance of the introduced soil fauna must be considered as an important contribution to the biodegradation of fungal plant diseases and fungal-related contaminants. Different size classes within functional groups and the traits of keystone species appear to be significant for soil function and the provision of ecosystem services as in particular L. terrestris revealed to

  10. Pyrolysis of biomass for hydrogen production

    International Nuclear Information System (INIS)

    Constantinescu, Marius; David, Elena; Bucura, Felicia; Sisu, Claudia; Niculescu, Violeta

    2006-01-01

    Biomass processing is a new technology within the area of renewable energies. Current energy supplies in the world are dominated by fossil fuels (some 80% of the total use of over 400 EJ per year). Nevertheless, about 10-15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. On average, in the industrialized countries biomass contributes some 9-13% to the total energy supplies, but in developing countries the proportion is as high as a fifth to one third. In quite a number of countries biomass covers even over 50 to 90% of the total energy demand. Classic application of biomass combustion is heat production for domestic applications. A key issue for bio-energy is that its use should be modernized to fit into a sustainable development path. Especially promising are the production of electricity via advanced conversion concepts (i.e. gasification and state-of-the-art combustion and co-firing) and modern biomass derived fuels like methanol, hydrogen and ethanol from ligno-cellulosic biomass, which can reach competitive cost levels within 1-2 decades (partly depending on price developments with petroleum). (authors)

  11. Biomass resources in California

    Energy Technology Data Exchange (ETDEWEB)

    Tiangco, V.M.; Sethi, P.S. [California Energy Commission, Sacramento, CA (United States)

    1993-12-31

    The biomass resources in California which have potential for energy conversion were assessed and characterized through the project funded by the California Energy Commission and the US Department of Energy`s Western Regional Biomass Energy Program (WRBEP). The results indicate that there is an abundance of biomass resources as yet untouched by the industry due to technical, economic, and environmental problems, and other barriers. These biomass resources include residues from field and seed crops, fruit and nut crops, vegetable crops, and nursery crops; food processing wastes; forest slash; energy crops; lumber mill waste; urban wood waste; urban yard waste; livestock manure; and chaparral. The estimated total potential of these biomass resource is approximately 47 million bone dry tons (BDT), which is equivalent to 780 billion MJ (740 trillion Btu). About 7 million BDT (132 billion MJ or 124 trillion Btu) of biomass residue was used for generating electricity by 66 direct combustion facilities with gross capacity of about 800 MW. This tonnage accounts for only about 15% of the total biomass resource potential identified in this study. The barriers interfering with the biomass utilization both in the on-site harvesting, collection, storage, handling, transportation, and conversion to energy are identified. The question whether these barriers present significant impact to biomass {open_quotes}availability{close_quotes} and {open_quotes}sustainability{close_quotes} remains to be answered.

  12. Prophylactic Saccharomyces boulardii versus nystatin for the prevention of fungal colonization and invasive fungal infection in premature infants.

    Science.gov (United States)

    Demirel, Gamze; Celik, Istemi Han; Erdeve, Omer; Saygan, Sibel; Dilmen, Ugur; Canpolat, Fuat Emre

    2013-10-01

    This study aims to compare the efficacy of orally administered Saccharomyces boulardii versus nystatin in prevention of fungal colonization and invasive fungal infections in very low birth weight infants. A prospective, randomized comparative study was conducted in preterm infants with a gestational age of ≤ 32 weeks and birth weight of ≤ 1,500 g. They were randomized into two groups, to receive S. boulardii or nystatin. Skin and stool cultures were performed for colonization and blood cultures for invasive infections, weekly. A total of 181 infants were enrolled (S. boulardii group, n = 91; nystatin group, n = 90). Fungal colonization of the skin (15.4 vs 18.9 %, p = 0.532) and the stool (32.2 vs 27 %, p = 0.441) were not different between the probiotic and nystatin groups. Two patients had Candida-positive blood culture in the nystatin group whereas none in the probiotic group. Feeding intolerance, clinical sepsis, and number of sepsis attacks were significantly lower in the probiotics group than in the nystatin group. Prophylactic S. boulardii supplementation is as effective as nystatin in reducing fungal colonization and invasive fungal infection, more effective in reducing the incidence of clinical sepsis and number of sepsis attacks and has favorable effect on feeding intolerance.

  13. Transplant tourism and invasive fungal infection

    Directory of Open Access Journals (Sweden)

    I. Al Salmi

    2018-04-01

    Full Text Available Background: Deceased and live-related renal transplants (RTXs are approved procedures that are performed widely throughout the world. In certain regions, commercial RTX has become popular, driven by financial greed. Methods: This retrospective, descriptive study was performed at the Royal Hospital from 2013 to 2015. Data were collected from the national kidney transplant registry of Oman. All transplant cases retrieved were divided into two groups: live-related RTX performed in Oman and commercial-unrelated RTX performed abroad. These groups were then divided again into those with and without evidence of fungal infection, either in the wound or renal graft. Results: A total of 198 RTX patients were identified, of whom 162 (81.8% had undergone a commercial RTX that was done abroad. Invasive fungal infections (IFIs were diagnosed in 8% of patients who had undergone a commercial RTX; of these patients, 76.9% underwent a nephrectomy and 23.1% continued with a functioning graft. None of the patients with RTXs performed at the Royal Hospital contracted an IFI. The most common fungal isolates were Aspergillus species (including Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, and Aspergillus nigricans, followed by Zygomycetes. However, there was no evidence of fungal infection including Aspergillus outside the graft site. Computed tomography (CT findings showed infarction of the graft, renal artery thrombosis, aneurysmal dilatation of the external iliac artery, fungal ball, or just the presence of a perigraft collection. Of the total patients with IFIs, 23.1% died due to septic shock and 53.8% were alive and on hemodialysis. The remaining 23.1% who did not undergo nephrectomy demonstrated acceptable graft function. Conclusions: This is the largest single-center study on commercial RTX reporting the highest number of patients with IFI acquired over a relatively short period of time. Aspergillus spp were the main culprit fungi, with no

  14. The effect of particle size and amount of inoculum on fungal treatment of wheat straw and wood chips

    NARCIS (Netherlands)

    Kuijk, van Sandra J.A.; Sonnenberg, Anton S.M.; Baars, Johan J.P.; Hendriks, Wouter H.; Cone, John W.

    2016-01-01

    Background: The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinula edodes with various amounts of colonized millet grains (0.5, 1.5 or 3.0 % per g

  15. Effects of Varying Levels of Fungal ( sp. Treated Wheat Straw as an Ingredient of Total Mixed Ration on Growth Performance and Nutrient Digestibility in Nili Ravi Buffalo Calves

    Directory of Open Access Journals (Sweden)

    F. Shahzad

    2016-03-01

    Full Text Available The study was carried out to explore the effects of replacing wheat straw with fungal treated wheat straw as an ingredient of total mixed ration (TMR on the growth performance and nutrient digestibility in Nili Ravi buffalo male calves. Fungal treated wheat straw was prepared using Arachniotus sp. Four TMRs were formulated where wheat straw was replaced with 0 (TMR1, 33 (TMR2, 67 (TMR3, and 100% (TMR4 fungal treated wheat straw in TMR. All TMRs were iso-caloric and iso-nitrogenous. The experimental TMRs were randomly assigned to four groups of male calves (n = 6 according to completely randomized design and the experiment continued for four months. The calves fed TMR2 exhibited a significant improve in dry matter intake, average daily weight gain, feed conversion ratio and feed economics compared to other groups. The same group also showed higher digestibility of dry matter, crude protein, neutral-, and acid detergent fibers than those fed on other TMRs. It is concluded that TMR with 33% fungal-treated wheat straw replacement has a potential to give an enhanced growth performance and nutrient digestibility in male Nili Ravi buffalo calves.

  16. Differential effects of two strains of Rhizophagus intraradices on dry biomass and essential oil yield and composition in Calamintha nepeta

    Directory of Open Access Journals (Sweden)

    Roxana P Colombo

    Full Text Available The aim of this work was to determine the effects of two geographically different strains of Rhizophagus intraradices (M3 and GA5 on the total biomass and essential oil (EO yield and composition of Calamintha nepeta, with or without phosphorus (P fertilization, under greenhouse conditions.The plant biomass was not significantly affected by any of the treatments, showing higher values in control plants. Strains had a differential response in their root colonization rates: M3 reduced these parameters while GA5 did not modify them. Both strains affected EO yield in absence of P fertilization: M3 promoted EO yield in C. nepeta plants and GA5 resulted in negative effects. The percentage composition of EO was not significantly modified by either strain or P fertilization. M3 strain could be a potential fungal bioinoculant for production and commercialization of C. nepeta in the aromatic plant market.

  17. Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field

    DEFF Research Database (Denmark)

    Olsson, P.A.; Thingstrup, I.; Jakobsen, I.

    1999-01-01

    -organisms was estimated 28, 51 and 72 d after sowing based on amounts of certain fatty acids extracted from the soil. Dazomet application strongly suppressed colonisation of the linseed roots by AM fungi throughout the experiment. In plots with no dazomet application, root colonisation by the AM fungi increased from...... that the biomass of the extraradical mycelium of AM fungi was about 10 times as high as the biomass of intraradical mycelium and that the extraradical mycelium constituted the largest fraction of the soil microbial biomass. Dazomet application also decreased the biomass of saprophytic fungi in the soil...... harvests 1 to 3 as judged both from microscopical estimates and from quantitative analysis of the AM fungal indicative fatty acid 16.1 omega 5. These methods also revealed that AM formation was reduced in P-fertilised plots. The phospholipid fatty acid (PLFA) 16:1 omega 5 decreased in dazomet-treated soil...

  18. Bio sorption of Reactive Dye from Textile Wastewater by Non-viable Biomass of Aspergillus niger and Spirogyra sp

    International Nuclear Information System (INIS)

    Khalaf, M.A.

    2008-01-01

    The Potential of Aspergillus niger fungus and Spirogyra sp., a fresh water green algae, was investigated as a bio sorbents for removal of reactive dye (Synazol) from its multi-component textile wastewater. Pre-treatment of fungal and algal biomass with autoclaving increased the removal of dye more than that pre-treated with gamma-irradiation. The heat dried autoclaved biomass for the 2 organisms exhibited maximum dye removal at ph 3, temperature 30 degree C and 8 g/l (w/v) biomass conc. after 18 h contact time. The results showed that the non-viable biomass possessed high stability and efficiency of dye removal over 3 repeated batches

  19. Burden of serious fungal infections in Ukraine.

    Science.gov (United States)

    Osmanov, Ali; Denning, David W

    2015-10-01

    Ukraine has high rates of TB, AIDS and cancer. We estimated the burden of fungal disease from epidemiology papers and specific populations at risk and fungal infection frequencies. HIV/AIDS cases and deaths (2012) and tuberculosis statistics were obtained from the State Service of Ukraine, while chronic obstructive pulmonary disease (COPD) cases were from M. Miravitlles et al., Thorax 64, 863-868 (2009). Annual estimates are 893,579 Ukrainian women get recurrent vaginal thrush (≥4× per year), 50,847 cases of oral candidiasis and 13,727 cases of oesophageal candidiasis in HIV, and 101 (1%) of 10,085 new AIDS cases develop cryptococcal meningitis, 6152 cases of Pneumocystis pneumonia (13.5 cases per 100,000). Of the 29,265 cases of active respiratory TB in 2012, it is estimated that 2881 new cases of chronic pulmonary aspergillosis (CPA) occurred and that the 5-year period prevalence is 7724 cases with a total CPA burden of 10,054 cases. Assuming adult asthma prevalence is ~2.9%, 28,447 patients with allergic bronchopulmonary aspergillosis (ABPA) are likely and 37,491 with severe asthma with fungal sensitisation. We estimate 2278 cases and 376 postsurgical intra-abdominal Candida infections. Invasive aspergillosis in immunocompromised patients is estimated at 303 patients annually; 930 cases in COPD patients. Ninety cases of mucormycosis (2 per 1,000,000) are estimated. In total, ~1,000,000 (2.2%) people in Ukraine develop serious fungal infections annually. © 2015 Blackwell Verlag GmbH.

  20. 2010 CELL AND MOLECULAR FUNGAL BIOLOGY GORDON RESEARCH CONFERENCE, JUNE 13-18, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Michelle Momany

    2010-06-18

    The Cellular and Molecular Fungal Biology Conference provides a forum for presentation of the latest advances in fungal research with an emphasis on filamentous fungi. This open-registration scientific meeting brings together the leading scientists from academia, government and industry to discuss current research results and future directions at Holderness School, an outstanding venue for scientific interaction. A key objective of the conference is to foster interaction among scientists working on model fungi such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, Neurospora crassa and Aspergillus nidulans and scientists working on a variety of filamentous fungi whose laboratory tractability is often inversely proportional to their medical, industrial or ecological importance. Sessions will be devoted to Systems Biology, Fungi and Cellulosic Biomass, Small RNAs, Population Genomics, Symbioses, Pathogenesis, Membrane Trafficking and Polarity, and Cytoskeleton and Motors. A session will also be devoted to hot topics picked from abstracts. The CMFB conference provides a unique opportunity to examine the breadth of fungal biology in a small meeting format that encourages in-depth discussion among the attendees.

  1. Temporal variation of fungal diversity in a mosaic landscape in Germany

    Directory of Open Access Journals (Sweden)

    S. Rudolph

    2018-03-01

    Full Text Available This study aims at characterizing the diversity and temporal changes of species richness and composition of fungi in an ecotone of a forest border and a meadow in the Taunus mountain range in Germany. All macroscopically visible, epigeous fungi and vascular plants were sampled monthly over three years, together with climatic variables like humidity and temperature that influence fungal diversity and composition as shown by previous studies. In this mosaic landscape, a total of 855 fungal species were collected and identified based on morphological features, the majority of which belonged to Ascomycota (51 % and Basidiomycota (45 %. Records of fungal species and plant species (218 for this area yielded a fungus to plant species ratio of 4:1, with a plant species accumulation curve that reached saturation. The three years of monitoring, however, were not sufficient to reveal the total fungal species richness and estimation factors showed that a fungus to plant species ratio of 6:1 may be reached by further sampling efforts. The effect of climatic conditions on fungal species richness differed depending on the taxonomic and ecological group, with temporal patterns of occurrence of Basidiomycota and mycorrhizal fungi being strongly associated with temperature and humidity, whereas the other fungal groups were only weakly related to abiotic conditions. In conclusion, long-term, monthly surveys over several years yield a higher diversity of macroscopically visible fungi than standard samplings of fungi in autumn. The association of environmental variables with the occurrence of specific fungal guilds may help to improve estimators of fungal richness in temperate regions. Key words: Ascomycota, Basidiomycota, Fungi, Seasonal trend decomposition, Species composition, Temporal variation

  2. Fungal Endocarditis.

    Science.gov (United States)

    Yuan, Shi-Min

    2016-01-01

    Fungal endocarditis is a rare and fatal condition. The Candida and Aspergillus species are the two most common etiologic fungi found responsible for fungal endocarditis. Fever and changing heart murmur are the most common clinical manifestations. Some patients may have a fever of unknown origin as the onset symptom. The diagnosis of fungal endocarditis is challenging, and diagnosis of prosthetic valve fungal endocarditis is extremely difficult. The optimum antifungal therapy still remains debatable. Treating Candida endocarditis can be difficult because the Candida species can form biofilms on native and prosthetic heart valves. Combined treatment appears superior to monotherapy. Combination of antifungal therapy and surgical debridement might bring about better prognosis.

  3. [Compatible biomass models of natural spruce (Picea asperata)].

    Science.gov (United States)

    Wang, Jin Chi; Deng, Hua Feng; Huang, Guo Sheng; Wang, Xue Jun; Zhang, Lu

    2017-10-01

    By using nonlinear measurement error method, the compatible tree volume and above ground biomass equations were established based on the volume and biomass data of 150 sampling trees of natural spruce (Picea asperata). Two approaches, controlling directly under total aboveground biomass and controlling jointly from level to level, were used to design the compatible system for the total aboveground biomass and the biomass of four components (stem, bark, branch and foliage), and the total ground biomass could be estimated independently or estimated simultaneously in the system. The results showed that the R 2 of the one variable and bivariate compatible tree volume and aboveground biomass equations were all above 0.85, and the maximum value reached 0.99. The prediction effect of the volume equations could be improved significantly when tree height was included as predictor, while it was not significant in biomass estimation. For the compatible biomass systems, the one variable model based on controlling jointly from level to level was better than the model using controlling directly under total above ground biomass, but the bivariate models of the two methods were similar. Comparing the imitative effects of the one variable and bivariate compatible biomass models, the results showed that the increase of explainable variables could significantly improve the fitness of branch and foliage biomass, but had little effect on other components. Besides, there was almost no difference between the two methods of estimation based on the comparison.

  4. Fungal communities in ancient peatlands developed from different periods in the Sanjiang Plain, China.

    Science.gov (United States)

    Zhang, Zhenqing; Zhou, Xue; Tian, Lei; Ma, Lina; Luo, Shasha; Zhang, Jianfeng; Li, Xiujun; Tian, Chunjie

    2017-01-01

    Peatlands in the Sanjiang Plain could be more vulnerable to global warming because they are located at the southernmost boundary of northern peatlands. Unlike bacteria, fungi are often overlooked, even though they play important roles in substance circulation in the peatland ecosystems. Accordingly, it is imperative that we deepen our understanding of fungal community structure and diversity in the peatlands. In this study, high-throughput Illumina sequencing was used to study the fungal communities in three fens in the Sanjiang Plain, located at the southern edge of northern peatlands. Peat soil was collected from the three fens which developed during different periods. A total of 463,198 fungal ITS sequences were obtained, and these sequences were classified into at least six phyla, 21 classes, more than 60 orders and over 200 genera. The fungal community structures were distinct in the three sites and were dominated by Ascomycota and Basidiomycota. However, there were no significant differences between these three fens in any α-diversity index (p > 0.05). Soil age and the carbon (C) accumulation rate, as well as total carbon (TC), total nitrogen (TN), C/N ratio, and bulk density were found to be closely related to the abundance of several dominant fungal taxa. We captured a rich fungal community and confirmed that the dominant taxa were those which were frequently detected in other northern peatlands. Soil age and the C accumulation rate were found to play important roles in shaping the fungal community structure.

  5. Fungal communities in ancient peatlands developed from different periods in the Sanjiang Plain, China

    Science.gov (United States)

    Tian, Lei; Ma, Lina; Luo, Shasha; Zhang, Jianfeng; Li, Xiujun

    2017-01-01

    Peatlands in the Sanjiang Plain could be more vulnerable to global warming because they are located at the southernmost boundary of northern peatlands. Unlike bacteria, fungi are often overlooked, even though they play important roles in substance circulation in the peatland ecosystems. Accordingly, it is imperative that we deepen our understanding of fungal community structure and diversity in the peatlands. In this study, high-throughput Illumina sequencing was used to study the fungal communities in three fens in the Sanjiang Plain, located at the southern edge of northern peatlands. Peat soil was collected from the three fens which developed during different periods. A total of 463,198 fungal ITS sequences were obtained, and these sequences were classified into at least six phyla, 21 classes, more than 60 orders and over 200 genera. The fungal community structures were distinct in the three sites and were dominated by Ascomycota and Basidiomycota. However, there were no significant differences between these three fens in any α-diversity index (p > 0.05). Soil age and the carbon (C) accumulation rate, as well as total carbon (TC), total nitrogen (TN), C/N ratio, and bulk density were found to be closely related to the abundance of several dominant fungal taxa. We captured a rich fungal community and confirmed that the dominant taxa were those which were frequently detected in other northern peatlands. Soil age and the C accumulation rate were found to play important roles in shaping the fungal community structure. PMID:29236715

  6. Production of Aspergillus niger biomass on sugarcane distillery wastewater: physiological aspects and potential for biodiesel production.

    Science.gov (United States)

    Chuppa-Tostain, Graziella; Hoarau, Julien; Watson, Marie; Adelard, Laetitia; Shum Cheong Sing, Alain; Caro, Yanis; Grondin, Isabelle; Bourven, Isabelle; Francois, Jean-Marie; Girbal-Neuhauser, Elisabeth; Petit, Thomas

    2018-01-01

    Sugarcane distillery waste water (SDW) or vinasse is the residual liquid waste generated during sugarcane molasses fermentation and alcohol distillation. Worldwide, this effluent is responsible for serious environmental issues. In Reunion Island, between 100 and 200 thousand tons of SDW are produced each year by the three local distilleries. In this study, the potential of Aspergillus niger to reduce the pollution load of SDW and to produce interesting metabolites has been investigated. The fungal biomass yield was 35 g L -1 corresponding to a yield of 0.47 g of biomass/g of vinasse without nutrient complementation. Analysis of sugar consumption indicated that mono-carbohydrates were initially released from residual polysaccharides and then gradually consumed until complete exhaustion. The high biomass yield likely arises from polysaccharides that are hydrolysed prior to be assimilated as monosaccharides and from organic acids and other complex compounds that provided additional C-sources for growth. Comparison of the size exclusion chromatography profiles of raw and pre-treated vinasse confirmed the conversion of humic- and/or phenolic-like molecules into protein-like metabolites. As a consequence, chemical oxygen demand of vinasse decreased by 53%. Interestingly, analysis of intracellular lipids of the biomass revealed high content in oleic acid and physical properties relevant for biodiesel application. The soft-rot fungus A. niger demonstrated a great ability to grow on vinasse and to degrade this complex and hostile medium. The high biomass production is accompanied by a utilization of carbon sources like residual carbohydrates, organic acids and more complex molecules such as melanoidins. We also showed that intracellular lipids from fungal biomass can efficiently be exploited into biodiesel.

  7. Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  8. Anti-fungal activity of cold and hot water extracts of spices against fungal pathogens of Roselle (Hibiscus sabdariffa) in vitro.

    Science.gov (United States)

    Touba, Eslaminejad Parizi; Zakaria, Maziah; Tahereh, Eslaminejad

    2012-02-01

    Crude extracts of seven spices, viz. cardamom, chilli, coriander, onion, garlic, ginger, and galangale were made using cold water and hot water extraction and they were tested for their anti-fungal effects against the three Roselle pathogens i.e. Phoma exigua, Fusarium nygamai and Rhizoctonia solani using the 'poisoned food technique'. All seven spices studied showed significant anti-fungal activity at three concentrations (10, 20 and 30% of the crude extract) in-vitro. The cold water extract of garlic exhibited good anti-fungal activity against all three tested fungi. In the case of the hot water extracts, garlic and ginger showed the best anti-fungal activity. Of the two extraction methods, cold water extraction was generally more effective than hot water extraction in controlling the pathogens. Against P. exigua, the 10% cold water extracts of galangale, ginger, coriander and cardamom achieved total (100%) inhibition of pathogen mycelial growth. Total inhibition of F. nygamai mycelial growth was similarly achieved with the 10% cold water extracts garlic. Against R. solani, the 10% cold water extract of galangale was effective in imposing 100% inhibition. Accordingly, the 10% galangale extract effectively controlled both P. exigua and R. solani in vitro. None of the hot water extracts of the spices succeeded in achieving 100% inhibition of the pathogen mycelial growth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. {sup 137}Cs in the fungal compartment of Swedish forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Vinichuk, Mykhaylo M. [Department of General Ecology, University of Agriculture and Ecology, Stary Blvd. 7, Zhytomyr 10001 (Ukraine); Johanson, Karl J.; Taylor, Andy F.S. [Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, Uppsala S-750 07 (Sweden)

    2004-05-05

    The {sup 137}Cs activities in soil profiles and in the mycelia of four ectomycorrhizal fungi were studied in a Swedish forest in an attempt to understand the mechanisms governing the transfer and retention of {sup 137}Cs in forest soil. The biomass of four species of fungi was determined and estimated to be 16 g m{sup -2} in a peat soil and 47-189 g m{sup -2} in non-peat soil to the depth of 10 cm. The vertical distribution was rather homogeneous for two species (Tylospora spp. and Piloderma fallax) and very superficial for Hydnellum peckii. Most of the {sup 137}Cs activity in mycelium of non-peat soils was found in the upper 5 cm. Transfer factors were quite high even for those species producing resupinate sporocarps. In the peat soil only approximately 0.3% of the total {sup 137}Cs inventory in soil was found in the fungal mycelium. The corresponding values for non-peat soil were 1.3, 1.8 and 1.9%.

  10. Fungal endophytes of sorghum in Burkina Faso

    DEFF Research Database (Denmark)

    Zida, E P; Thio, I G; Néya, B J

    2014-01-01

    A survey was conducted to assess the natural occurrence and distribution of fungal endophytes in sorghum in relation to plant performance in two distinct agro-ecological zones in Burkina Faso. Sorghum farm-saved seeds were sown in 48 farmers’ fields in Sahelian and North Sudanian zones to produce...... sorghum plants. In each field, leaf samples were collected from five well-developed (performing) and five less-developed (non-performing) plants at 3-5 leaf stage, while at plant maturity leaf, stem and root samples were collected from the same plants and fungal endophytes were isolated. A total of 39...... fungal species belonging to 25 genera were isolated. The most represented genera included Fusarium, Leptosphaeria, Curvularia, Nigrospora and Penicillium. The genera Fusarium and Penicillium occurred significantly higher in performing plants as compared to non-performing plants while the genera...

  11. Effects of land use on arbuscular mycorrhizal fungal communities in Estonia.

    Science.gov (United States)

    Sepp, Siim-Kaarel; Jairus, Teele; Vasar, Martti; Zobel, Martin; Öpik, Maarja

    2018-04-01

    Arbuscular mycorrhizal (AM) fungal communities vary across habitat types, as well as across different land use types. Most relevant research, however, has focused on agricultural or other severely human-impacted ecosystems. Here, we compared AM fungal communities across six habitat types: calcareous grassland, overgrown ungrazed calcareous grassland, wooded meadow, farmyard lawn, boreonemoral forest, and boreonemoral forest clear-cut, exhibiting contrasting modes of land use. AM fungi in the roots of a single host plant species, Prunella vulgaris, and in its rhizosphere soil were identified using 454-sequencing from a total of 103 samples from 12 sites in Estonia. Mean AM fungal taxon richness per sample did not differ among habitats. AM fungal community composition, however, was significantly different among habitat types. Both abandonment and land use intensification (clearcutting; trampling combined with frequent mowing) changed AM fungal community composition. The AM fungal communities in different habitat types were most similar in the roots of the single host plant species and most distinct in soil samples, suggesting a non-random pattern in host-fungal taxon interactions. The results show that AM fungal taxon composition is driven by habitat type and land use intensity, while the plant host may act as an additional filter between the available and realized AM fungal species pool.

  12. Production of cellulases by fungal cultures isolated from forest litter soil

    Directory of Open Access Journals (Sweden)

    A. Sri Lakshmi

    2012-06-01

    Full Text Available The aims of this study were the isolation and screening of fungal cultures from forest litter soil for cellulases production. In the present study, four fungal cultures were isolated and identified. Among these fungal cultures, three belonged to the genus Aspergillus and one belonged to the genus Pencillium. These fungal cultures were tested to find their ability to produce cellulases, that catalyze the degradation of cellulose, which is a linear polymer made of glucose subunits linked by beta-1, 4 glycosidic bonds. The fungal isolate 3 (Aspergillus sp. was noticed to show maximum zone of hydrolysis of carboxy-methyl cellulose and produce higher titers of cellulases including exoglucanase, endoglucanase and beta -D-glucosidase. The activities of the cellulases were determined by Filter paper assay (FPA, Carboxy-methly cellulase assay (CMCase and beta -D-glucosidase assay respectively. The total soluble sugar and extracellular protein contents of the fungal filtrates were also determined.

  13. Responses of soil fungal community to the sandy grassland restoration in Horqin Sandy Land, northern China.

    Science.gov (United States)

    Wang, Shao-Kun; Zuo, Xiao-An; Zhao, Xue-Yong; Li, Yu-Qiang; Zhou, Xin; Lv, Peng; Luo, Yong-Qing; Yun, Jian-Ying

    2016-01-01

    Sandy grassland restoration is a vital process including re-structure of soils, restoration of vegetation, and soil functioning in arid and semi-arid regions. Soil fungal community is a complex and critical component of soil functioning and ecological balance due to its roles in organic matter decomposition and nutrient cycling following sandy grassland restoration. In this study, soil fungal community and its relationship with environmental factors were examined along a habitat gradient of sandy grassland restoration: mobile dunes (MD), semi-fixed dunes (SFD), fixed dunes (FD), and grassland (G). It was found that species abundance, richness, and diversity of fungal community increased along with the sandy grassland restoration. The sequences analysis suggested that most of the fungal species (68.4 %) belonged to the phylum of Ascomycota. The three predominant fungal species were Pleospora herbarum, Wickerhamomyces anomalus, and Deconica Montana, accounting for more than one fourth of all the 38 species. Geranomyces variabilis was the subdominant species in MD, Pseudogymnoascus destructans and Mortierella alpine were the subdominant species in SFD, and P. destructans and Fungi incertae sedis were the dominant species in FD and G. The result from redundancy analysis (RDA) and stepwise regression analysis indicated that the vegetation characteristics and soil properties explain a significant proportion of the variation in the fungal community, and aboveground biomass and C:N ratio are the key factors to determine soil fungal community composition during sandy grassland restoration. It was suggested that the restoration of sandy grassland combined with vegetation and soil properties improved the soil fungal diversity. Also, the dominant species was found to be alternative following the restoration of sandy grassland ecosystems.

  14. Bacterial and fungal markers in tobacco smoke

    International Nuclear Information System (INIS)

    Szponar, B.; Pehrson, C.; Larsson, L.

    2012-01-01

    Previous research has demonstrated that cigarette smoke contains bacterial and fungal components including lipopolysaccharide (LPS) and ergosterol. In the present study we used gas chromatography–mass spectrometry to analyze tobacco as well as mainstream and second hand smoke for 3-hydroxy fatty acids (3-OH FAs) of 10 to 18 carbon chain lengths, used as LPS markers, and ergosterol, used as a marker of fungal biomass. The air concentrations of LPS were 0.0017 nmol/m 3 (N = 5) and 0.0007/m 3 (N = 6) in the smoking vs. non-smoking rooms (p = 0.0559) of the studied private houses, and 0.0231 nmol/m 3 (N = 5) vs. 0.0006 nmol/m 3 (N = 5) (p = 0.0173), respectively, at the worksite. The air concentrations of ergosterol were also significantly higher in rooms with ongoing smoking than in rooms without smoking. A positive correlation was found between LPS and ergosterol in rooms with smoking but not in rooms without smoking. 3-OH C14:0 was the main 3-OH FA, followed by 3-OH C12:0, both in mainstream and second hand smoke and in phenol:water smoke extracts prepared in order to purify the LPS. The Limulus activity of the phenolic phase of tobacco was 3900 endotoxin units (EU)/cigarette; the corresponding amount of the smoke, collected on filters from 8 puffs, was 4 EU/cigarette. Tobacco smoking has been associated with a range of inflammatory airway conditions including COPD, asthma, bronchitis, alveolar hypersensitivity etc. Significant levels of LPS and ergosterol were identified in tobacco smoke and these observations support the hypothesis that microbial components of tobacco smoke contribute to inflammation and airway disease. -- Highlights: ► Air concentration of bacterial and fungal markers is significantly higher in rooms with ongoing smoking than without smoking. ► Bacterial LPS correlates with fungal marker in rooms with ongoing smoking but not without smoking. ► LPS from mainstream smoke contains 3-hydroxy 14:0 and 12:0 fatty acids in similar proportion as

  15. Acute fungal sinusitis in neutropenic patients of Namazi hospital/ Shiraz

    Directory of Open Access Journals (Sweden)

    Parisa Badiee

    2008-09-01

    Full Text Available Introduction: Fungal sinusitis is a well known disease in immunocompromised patients, but recently many reports have indicated an increased prevalence of fungal sinusitis in otherwise healthy individuals. The aim of this study was to assess the frequency of invasive fungal sinusitis (IFS in neutropenic patients and to determine outcome factors that may affect their survival. Methods: A total of 142 patients who were undergoing chemotherapy were followed by clinical and radiological features suggestive of fungal sinusitis. Patients with fever, headache, facial swelling and radiological finding underwent endoscopic sinus surgery. The biopsy materials were studied by mycological and histopathological methods. Results: Eleven from 142 patients were identified to have IFS. The ethiologic agents were Aspergillus flavus (5 cases, Alternaria sp. (3 cases, Aspergillus fumigatus (2 cases and mucor (1 case. Eight of 11 cases died. Conclusions: Invasive fungal sinusitis causes a high rate of mortality among immunocompromised patients. Therefore, early diagnosis with aggressive medical and surgical intervention is critical for survival.

  16. Fungal communities in ancient peatlands developed from different periods in the Sanjiang Plain, China.

    Directory of Open Access Journals (Sweden)

    Zhenqing Zhang

    Full Text Available Peatlands in the Sanjiang Plain could be more vulnerable to global warming because they are located at the southernmost boundary of northern peatlands. Unlike bacteria, fungi are often overlooked, even though they play important roles in substance circulation in the peatland ecosystems. Accordingly, it is imperative that we deepen our understanding of fungal community structure and diversity in the peatlands. In this study, high-throughput Illumina sequencing was used to study the fungal communities in three fens in the Sanjiang Plain, located at the southern edge of northern peatlands. Peat soil was collected from the three fens which developed during different periods. A total of 463,198 fungal ITS sequences were obtained, and these sequences were classified into at least six phyla, 21 classes, more than 60 orders and over 200 genera. The fungal community structures were distinct in the three sites and were dominated by Ascomycota and Basidiomycota. However, there were no significant differences between these three fens in any α-diversity index (p > 0.05. Soil age and the carbon (C accumulation rate, as well as total carbon (TC, total nitrogen (TN, C/N ratio, and bulk density were found to be closely related to the abundance of several dominant fungal taxa. We captured a rich fungal community and confirmed that the dominant taxa were those which were frequently detected in other northern peatlands. Soil age and the C accumulation rate were found to play important roles in shaping the fungal community structure.

  17. Determining contributions of biomass burning and other sources to fine particle contemporary carbon in the western United States

    Science.gov (United States)

    Holden, Amanda S.; Sullivan, Amy P.; Munchak, Leigh A.; Kreidenweis, Sonia M.; Schichtel, Bret A.; Malm, William C.; Collett, Jeffrey L., Jr.

    2011-02-01

    Six-day integrated fine particle samples were collected at urban and rural sampling sites using Hi-Volume samplers during winter and summer 2004-2005 as part of the IMPROVE (Interagency Monitoring of PROtected Visual Environments) Radiocarbon Study. Filter samples from six sites (Grand Canyon, Mount Rainier, Phoenix, Puget Sound, Rocky Mountain National Park, and Tonto National Monument) were analyzed for levoglucosan, a tracer for biomass combustion, and other species by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD). Contemporary carbon concentrations were available from previous carbon isotope measurements at Lawrence Livermore National Laboratory. Primary contributions of biomass burning to measured fine particle contemporary carbon were estimated for residential wood burning (winter) and wild/prescribed fires (summer). Calculated contributions ranged from below detection limit to more than 100% and were typically higher at rural sites and during winter. Mannitol, a sugar alcohol emitted by fungal spores, was analyzed and used to determine contributions of fungal spores to fine particle contemporary carbon. Contributions reached up to 13% in summer samples, with higher contributions at rural sites. Concentrations of methyltetrols, oxidation products of isoprene, were also measured by HPAEC-PAD. Secondary organic aerosol (SOA) from isoprene oxidation was estimated to contribute up to 22% of measured contemporary carbon. For each sampling site, a substantial portion of the contemporary carbon was unexplained by primary biomass combustion, fungal spores, or SOA from isoprene oxidation. This unexplained fraction likely contains contributions from other SOA sources, including oxidation products of primary smoke emissions and plant emissions other than isoprene, as well as other primary particle emissions from meat cooking, plant debris, other biological aerosol particles, bio-diesel combustion, and other sources. Loss

  18. Selection and molecular characterization of cellulolytic-xylanolytic fungi from surface soil-biomass mixtures from Black Belt sites.

    Science.gov (United States)

    Okeke, Benedict C; Hall, Rosine W; Nanjundaswamy, Ananda; Thomson, M Sue; Deravi, Yasaman; Sawyer, Leah; Prescott, Andrew

    2015-06-01

    Plant biomass is an abundant renewable natural resource that can be transformed into chemical feedstocks. Enzymes used in saccharification of lignocellulosic biomass are a major part of biofuel production costs. A cocktail of cellulolytic and xylanolytic enzymes are required for optimal saccharification of biomass. Accordingly, thirty-two fungal pure cultures were obtained from surface soil-biomass mixtures collected from Black Belt sites in Alabama by culturing on lignocellulosic biomass medium. The fungal strains were screened for the coproduction of cellulolytic and xylanolytic enzymes. Strains that displayed promising levels of cellulolytic and xylanolytic enzymes were characterized by molecular analysis of DNA sequences from the large subunit and internal transcribed spacer (ITS) of their ribosomal RNA gene. Nucleotide sequence analysis revealed that two most promising isolates FS22A and FS5A were most similar to Penicillium janthinellum and Trichoderma virens. Production dynamics of cellulolytic and xylanolytic enzymes from these two strains were explored in submerged fermentation. Volumetric productivity after 120 h incubation was 121.08 units/L/h and 348 units/L/h for the filter paper cellulase and xylanase of strain FS22A, and 90.83 units/L/h and 359 units/L/h, respectively for strain FS5A. Assays with 10 times dilution of enzymes revealed that the activities were much higher than that observed in the crude culture supernatant. Additionally, both FS22A and FS5A also produced amylase in lignocellulose medium. The enzyme profiles of these strains and their activities suggest potential applications in cost effective biomass conversion and biodegradation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Saccharification of sunflower stalks using lignocellulases from a fungal consortium comprising Pholiota adiposa and Armillaria gemina.

    Science.gov (United States)

    Ramachandran, Priyadharshini; Kim, Tae-Su; Dhiman, Saurabh Sudha; Li, Jinglin; Park, Ji-Hyun; Choi, Joon-Ho; Kim, Jae Young; Kim, Dongwook; Lee, Jung-Kul

    2015-09-01

    Lignocellulases from Armillaria gemina and Pholiota adiposa are efficient in hydrolyzing aspen and poplar biomass, respectively. In the present study, lignocellulosic enzymes obtained from a fungal consortium comprising P. adiposa and A. gemina were used for the saccharification of sunflower stalks. Sunflower stalks were thermochemically pretreated using 2 % NaOH at 50 °C for 24 h. The saccharification process parameters including substrate concentration, enzyme loading, pH, and temperature were optimized using response surface methodology to improve the saccharification yield. The highest enzymatic hydrolysis (84.3 %) was obtained using the following conditions: enzyme loading 10 FPU/g-substrate, substrate 5.5 %, temperature 50 °C, and pH 4.5. The hydrolysis yield obtained using the enzymes from the fungal consortium was equivalent to that obtained using a mixture of commercial enzymes Celluclast and Novozyme β-glucosidase. Addition of up to 500 ppm of heavy metal ions (As, Cu, Fe, Mn, Ni, Pb, and Zn) during saccharification did not significantly affect the saccharification yield. Thus, the biomass grown for phytoremediation of heavy metals can be used for the production of reducing sugars followed by ethanol fermentation.

  20. Fungal Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Fungal Meningitis Language: English Spanish Recommend on Facebook Tweet Share ... the brain or spinal cord. Investigation of Fungal Meningitis, 2012 In September 2012, the Centers for Disease ...

  1. Hydropower and biomass as renewable energy sources in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, K.

    2001-01-01

    When talking about renewable energy sources today, the most important and economical energy sources for Turkey are hydropower and biomass.The present study gives a review of production, consumption, and economics of hydropower and biomass as renewable energy sources in Turkey. Turkey has a total gross hydropower potential of 433 GW, but only 125 GW of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 36% of the economically usable potential of the country could be tapped. On the other hand, biomass (wood and wastes) energy is the second most important renewable energy source for Turkey. However, the biomass energy sources of Turkey are limited. In 1998, the biomass share of the total energy consumption of the country is 10%. In this study, the potential of important biomass energy sources and animal solid wastes of the country were determined. The effects of hydropower and biomass usage on the environment were also discussed. Considering total cereal products and fatty seed plants, approximately 50-60 million tons per year of biomass and 8-10 million tons of solid matter animal waste are produced, and 70% of total biomass is seen as being usable for energy. Some useful suggestions and recommendations are also presented. The present study shows that there is an important potential for hydropower and biomass energy sources in Turkey. (author)

  2. [Intracardial fungal multiplication of order Mucor in an almost totally carbonised part of a male body found after ten days missing].

    Science.gov (United States)

    Iannaccone, Silvia Farkašová; Klán, Jaroslav; Lamps, Laura W; Farkaš, Daniel; Švajdler Ml, Marián; Szabo, Miroslav

    Determination of time of death belongs to the most difficult and also the most important issues for the medical examiners, especially those who deal with violent death. Besides the most frequently evaluated postmortal changes it is sometimes possible to perform the evaluation on the basis of less frequently observed findings. One of such findings is for example the fungal multiplication on the body or in the very close vicinity. Knowledge of moulds as well as information about their speed of growth should contribute to confirmation or negation of some information gained during police investigation. In this case report authors describe the macroscopically visible fungal intracardiac multiplication in heart chambers and aorta in an almost totally carbonised body which was missing for only ten days. Based on the molecular examination it was detected that the body belonged to the 64-year-old man who was repeatedly hospitalised in psychiatry for depression with suicidal tendencies. The last hospitalisation was six weeks before death and there was no organic disability. The cause of fire was a naked flame. The cause of death was burn injury or asphyxia. The almost total carbonisation did not allow to perform toxicological investigation. By histological investigation we found the presence of wide long non-septate moulds growing in the heart muscle, which belonged to the order Mucor. Since there was no obvious inflammatory response, we suppose their growth started on the congealed blood after death.

  3. Conversion of lignocellulosic waste by gamma irradiation and fungal fermentation

    International Nuclear Information System (INIS)

    Le Xuan Tham; Nguyen Duy Hang; Tran Huu Do; Hoang Thi My Linh; Nguyen Duy Lam

    2000-01-01

    Effects of microbial elimination (initially contaminated bacteria and fungi) were confirmed at wide range of irradiation doses (15-30 kGy) with gamma rays of Co-60 for substrates with sawdusts, sugar cane baggasse, rice straw, oil palm fibre and others. Some changes of main components of basic polysaccharides and nitrogen sources in substrates under irradiation and fermentations have been examined to confirm effective conversions and assimilations of inorganic nitrogen into protein, particularly using N-15 tracer techniques. Biomass obtained by fungal fermentations would be used for animal feed and spent compots were useful for biofertilizer production. (author)

  4. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop

    Science.gov (United States)

    A radio-controlled unmanned helicopter-based LARS (Low-Altitude Remote Sensing) platform was used to acquire quality images of high spatial and temporal resolution, in order to estimate yield and total biomass of a rice crop (Oriza Sativa, L.). Fifteen rice field plots with five N-treatments (0, 33,...

  5. Pipelines : moving biomass and energy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2006-07-01

    Moving biomass and energy through pipelines was presented. Field sourced biomass utilization for fuel was discussed in terms of competing cost factors; economies of scale; and differing fuel plant sizes. The cost versus scale in a bioenergy facility was illustrated in chart format. The transportation cost of biomass was presented as it is a major component of total biomass processing cost and is in the typical range of 25-45 per cent of total processing costs for truck transport of biomass. Issues in large scale biomass utilization, scale effects in transportation, and components of transport cost were identified. Other topics related to transportation issues included approaches to pipeline transport; cost of wood chips in pipeline transport; and distance variable cost of transporting wood chips by pipeline. Practical applications were also offered. In addition, the presentation provided and illustrated a model for an ethanol plant supplied by truck transport as well as a sample configuration for 19 truck based ethanol plants versus one large facility supplied by truck plus 18 pipelines. Last, pipeline transport of bio-oil and pipeline transport of syngas was discussed. It was concluded that pipeline transport can help in reducing congestion issues in large scale biomass utilization and that it can offer a means to achieve large plant size. Some current research at the University of Alberta on pipeline transport of raw biomass, bio-oil and hydrogen production from biomass for oil sands and pipeline transport was also presented. tabs., figs.

  6. Transplant tourism and invasive fungal infection.

    Science.gov (United States)

    Al Salmi, I; Metry, A M; Al Ismaili, F; Hola, A; Al Riyami, M; Khamis, F; Al-Abri, S

    2018-04-01

    Deceased and live-related renal transplants (RTXs) are approved procedures that are performed widely throughout the world. In certain regions, commercial RTX has become popular, driven by financial greed. This retrospective, descriptive study was performed at the Royal Hospital from 2013 to 2015. Data were collected from the national kidney transplant registry of Oman. All transplant cases retrieved were divided into two groups: live-related RTX performed in Oman and commercial-unrelated RTX performed abroad. These groups were then divided again into those with and without evidence of fungal infection, either in the wound or renal graft. A total of 198 RTX patients were identified, of whom 162 (81.8%) had undergone a commercial RTX that was done abroad. Invasive fungal infections (IFIs) were diagnosed in 8% of patients who had undergone a commercial RTX; of these patients, 76.9% underwent a nephrectomy and 23.1% continued with a functioning graft. None of the patients with RTXs performed at the Royal Hospital contracted an IFI. The most common fungal isolates were Aspergillus species (including Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, and Aspergillus nigricans), followed by Zygomycetes. However, there was no evidence of fungal infection including Aspergillus outside the graft site. Computed tomography (CT) findings showed infarction of the graft, renal artery thrombosis, aneurysmal dilatation of the external iliac artery, fungal ball, or just the presence of a perigraft collection. Of the total patients with IFIs, 23.1% died due to septic shock and 53.8% were alive and on hemodialysis. The remaining 23.1% who did not undergo nephrectomy demonstrated acceptable graft function. This is the largest single-center study on commercial RTX reporting the highest number of patients with IFI acquired over a relatively short period of time. Aspergillus spp were the main culprit fungi, with no Candida spp being isolated. A high index of suspicion might

  7. Spatial patterns of fish standing biomass across Brazilian reefs.

    Science.gov (United States)

    Morais, R A; Ferreira, C E L; Floeter, S R

    2017-12-01

    A large fish-count dataset from the Brazilian province was used to describe spatial patterns in standing biomass and test if total biomass, taxonomic and functional trophic structure vary across nested spatial scales. Taxonomic and functional structure varied more among localities and sites than among regions. Total biomass was generally higher at oceanic islands and remote or protected localities along the coast. Lower level carnivores comprised a large part of the biomass at almost all localities (mean of 44%), zooplanktivores never attained more than 14% and omnivores were more representative of subtropical reefs and oceanic islands (up to 66% of total biomass). Small and large herbivores and detritivores varied greatly in their contribution to total biomass, with no clear geographical patterns. Macrocarnivores comprised less than 12% of the biomass anywhere, except for two remote localities. Top predators, such as sharks and very large groupers, were rare and restricted to a few reefs, suggesting that their ecological function might have already been lost in many Brazilian reefs. © 2017 The Fisheries Society of the British Isles.

  8. Efficacy Of Some Fungal Isolates And Their Applications For Controlling The Immature Stages Of The Medfly, Ceratitis Capitata (Wiedemann) Before And During Sterile Insect Technique (SIT)

    International Nuclear Information System (INIS)

    OUDA, S.M.; EL-AKHDAR, E.A.

    2009-01-01

    The application of the sterile insect technique (SIT) needs a suitable and effective cheap method alternative to chemical pesticides for suppressing or controlling the population density of the Mediterranean fruit fly, Ceratitis capitata (Wi ed.). The effectiveness of five different fungal isolates: Trichoderma longibranchiatum, T. harzianum, Aspergillus terreus, A. niger and Penicillium oxalicum was evaluated against the immature stages of med fly. Filtrate and three spore suspension concentrations (104, 106 and 108 spores/ml) of each fungal isolate were applied to both 3 rd larval instar and pupae at two ages (2 and 8 days-old). Percentage pupation, pupal mortality, adult emergence and sex ratio were studied. The percentage of pupation of 3 rd larval instar was not affected. However, there was a significant increase (P<0.05) in the percentage of pupal mortality as well as in adult emergence from pupae 2 and 8 days-old at all fungal treatments. Pupae (2 days-old) were more susceptible than pupae (8 days-old) to all fungal treatments. The microbial biomass of both A. terreus and P. oxalicum was selected to apply with different concentrations (5, 10 and 20 w/w) on the pupae at the two ages (2 and 8 days-old). Best results were recorded with biomass at 20% concentration of both fungal isolates. Percentage of mortality was significantly higher (P<0.05) than 50% at the two ages (2 and 8 days-old) for both fungi. A significant decrease (P<0.05) was obtained in adult females emergence resulted in a reduction in the number of eggs deposited and subsequently the punctures on fruits. Chitinase enzyme (important for degradation of chitin which is a component of insect cuticle) and cellulase enzyme (used for improving soil fertility) were determined. The microbial biomass by A. terreus was appeared to be safe to human and animals and can be used for combating immature stages of medfly.

  9. Sustainable biomass production for energy in Sri Lanka

    International Nuclear Information System (INIS)

    Perera, K.K.C.K.; Rathnasiri, P.G.; Sugathapala, A.G.T.

    2003-01-01

    The present study concentrates mainly on the estimation of land availability for biomass production and the estimation of sustainable biomass production potential for energy. The feasible surplus land area available for bioenergy plantation is estimated assuming two land availability scenarios (Scenarios 1 and 2) and three biomass demand scenarios (IBD Scenario, SBD Scenario and FBD Scenario). Scenario 1 assumes that 100% of the surplus area available in base year 1997 will be suitable for plantation without considering population growth and food production and that 75% of this surplus land is feasible for plantation. Scenario 2 assumes that future food requirement will grow by 20% and the potential surplus area will be reduced by that amount. The incremental biomass demand scenario (IBD Scenario) assumes that only the incremental demand for biomass in the year 2010 with respect to the base year 1997 has to be produced from new plantation. The sustainable biomass demand scenario (SBD Scenario) assumes that the total sustainable supply of biomass in 1997 is deducted from the future biomass demand in 2010 and only the balance is to be met by new plantation. The full biomass demand scenario (FBD Scenario) assumes that the entire projected biomass demand of the year 2010 needs to be produced from new plantation. The total feasible land area for the scenarios IBD-1, 1BD-2, SBD-1, SBD-2, FBD-1 and FBD-2 are approximately 0.96, 0.66, 0.80, 0.94, 0.60 and 0.30 Mha, respectively. Biomass production potential is estimated by selecting appropriate plant species, plantation spacing and productivity level. The results show that the total annual biomass production in the country could vary from 2 to 9.9 Mt. With the production option (i.e. 1.5 mx1.5 m spacing plantation with fertilizer application) giving the highest yield, the total biomass production for energy under IBD Scenario would be 9.9 Mt yr -1 for Scenario 1 and 6.7 Mt yr -1 for Scenario 2. Under SBD Scenario, the

  10. Clinical Characteristics of Fungal Sensitization in Children with Allergic Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Pınar Uysal

    2016-08-01

    Full Text Available Objective: The aim of the study was to evaluate the prevelance of fungal sensitization among school-aged children with allergic respiratory diseases who attended our outpatient clinic and to evaluate its clinical impact on disease severity. Materials and Methods: Children with allergic symptoms during mould season, who attended our outpatient clinic between January 2014 and August 2015, were evaluated for allergic respiratory diseases. Skin prick testing with fungal and other commercial standardized solutions of aeroallergens was performed in all children. Spirometry was performed in children with asthma. Serum total immunoglobulin E (IgE and aeroallergen specific IgE (sIgE levels were measured. Results: A total of 112 children were included in the study. The prevelance of fungal sensitization was 6.4%. Alternaria alterna was the most common fungal allergen in both mono and polysensitized groups (p=0.002, p=0.004, respectively. Alternaria alterna sensitization was significantly higher in patients with persistent allergic rhinitis compared to those with intermittant allergic rhinitis (p=0.002. The patients with mild asthma were mostly monosensitized (p=0.003, but cases with severe asthma (SA were polysensitized (p=0.007. In polysensitized cases, Alternaria alterna and Cladosporium spp. coexistance was the most common combination compared to other fungal combinations (p<0.001. The sensitivity rate of sIgE was found to be 88%. In spirometric analysis, forced expiratory volume in 1 second (FEV1 and FEV1/forced vital capacity values were lower in polysensitized children with asthma and in children with asthma coexisting allergic rhinitis compared to children with allergic rhinitis only (p=0.004, p=0.001, respectively. Conclusion: The most common fungal allergen was Alternaria alterna in children with mono or polysensitization. Polysensitization with fungal allergens was closely associated with SA and lower spirometric parameters.

  11. Efficient biodegradation of cyanide and ferrocyanide by Na-alginate beads immobilized with fungal cells of Trichoderma koningii.

    Science.gov (United States)

    Zhou, Xiaoying; Liu, Lixing; Chen, Yunpeng; Xu, Shufa; Chen, Jie

    2007-09-01

    Cyanide or metal cyanide contaminations have become serious environmental and food-health problems. A fungal mutant of Trichoderma koningii, TkA8, constructed by restriction enzyme-mediated integration, has been verified to have a high cyanide degradation ability in our previous study. In this study, the mutant cells were entrapped in sodium-alginate (Na-alginate) immobilization beads to degrade cyanide and ferrocyanide in a liquid mineral medium. The results showed that the fungus in immobilization beads consisting of 3% Na-alginate and 3% CaCl2 could degrade cyanide more efficiently than a nonimmobilized fungal culture. For maximum degradation efficiency, the optimal ratio of Na-alginate and wet fungal biomass was 20:1 (m/m) and the initial pH was 6.5. In comparison, cell immobilization took at least 3 and 8 days earlier, respectively, to completely degrade cyanide and ferrocyanide. In addition, we showed that the immobilized beads could be easily recovered from the medium and reused for up to 5 batches without significant losses of fungal remediation abilities. The results of this study provide a promising alternative method for the large-scale remediation of soil or water systems from cyanide contamination.

  12. Value-added oil and animal feed production from corn-ethanol stillage using the oleaginous fungus Mucor circinelloides.

    Science.gov (United States)

    Mitra, Debjani; Rasmussen, Mary L; Chand, Priyanka; Chintareddy, Venkat Reddy; Yao, Linxing; Grewell, David; Verkade, John G; Wang, Tong; van Leeuwen, J Hans

    2012-03-01

    This study highlights the potential of oleaginous fungus, Mucor circinelloides in adsorbing/assimilating oil and nutrients in thin stillage (TS), and producing lipid and protein-rich fungal biomass. Fungal cultivation on TS for 2 days in a 6-L airlift bioreactor, resulted in a 92% increase in oil yield from TS, and 20 g/L of fungal biomass (dry) with a lipid content of 46% (g of oil per 100g dry biomass). Reduction in suspended solids and soluble chemical oxygen demand (SCOD) in TS were 95% and 89%, respectively. The polyunsaturated fatty acids in fungal oil were 52% of total lipids. Fungal cells grown on Yeast Malt (YM) broth had a higher concentration of γ-linolenic acid (17 wt.%) than those grown on TS (1.4 wt.%). Supplementing TS with crude glycerol (10%, v/v) during the stationary growth phase led to a further 32% increase (from 46% to 61%) in cellular oil content. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Antimicrobial fungal endophytes from the botanical medicine goldenseal (Hydrastis canadensis).

    Science.gov (United States)

    Egan, Joseph M; Kaur, Amninder; Raja, Huzefa A; Kellogg, Joshua J; Oberlies, Nicholas H; Cech, Nadja B

    2016-09-01

    The potential of fungal endophytes to alter or contribute to plant chemistry and biology has been the topic of a great deal of recent interest. For plants that are used medicinally, it has been proposed that endophytes might play an important role in biological activity. With this study, we sought to identify antimicrobial fungal endophytes from the medicinal plant goldenseal ( Hydrastis canadensis L., Ranunculaceae), a plant used in traditional medicine to treat infection. A total of 23 fungal cultures were obtained from surface-sterilized samples of H. canadensis roots, leaves and seeds. Eleven secondary metabolites were isolated from these fungal endophytes, five of which had reported antimicrobial activity. Hydrastis canadensis plant material was then analyzed for the presence of fungal metabolites using liquid chromatography coupled to high resolving power mass spectrometry. The antimicrobial compound alternariol monomethyl ether was detected both as a metabolite of the fungal endophyte Alternaria spp. isolated from H. canadensis seeds, and as a component of an extract from the H. canadensis seed material. Notably, fungi of the Alternaria genus were isolated from three separate accessions of H. canadensis plant material collected in a time period spanning 5 years. The concentration of alternariol monomethyl ether (991 mg/kg in dry seed material) was in a similar range to that previously reported for metabolites of ecologically important fungal endophytes. The seed extracts themselves, however, did not possess antimicrobial activity.

  14. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils

    Science.gov (United States)

    Alice W. Ratcliff; Matt D. Busse; Carol J. Shestak

    2006-01-01

    Glyphosate applied at the recommended field rate to a clay loam and a sandy loam forest soil resulted in few changes in microbial community structure. Total and culturable bacteria, fungal hyphal length, bacterial:fungal biomass, carbon utilization profiles (BIOLOG), and bacterial and fungal phospholipid fatty acids (PLFA) were unaffected 1, 3, 7, or 30 days...

  15. Freshwater Fungal Infections

    Directory of Open Access Journals (Sweden)

    Dennis J. Baumgardner

    2017-01-01

    Full Text Available Fungal infections as a result of freshwater exposure or trauma are fortunately rare. Etiologic agents are varied, but commonly include filamentous fungi and Candida. This narrative review describes various sources of potential freshwater fungal exposure and the diseases that may result, including fungal keratitis, acute otitis externa and tinea pedis, as well as rare deep soft tissue or bone infections and pulmonary or central nervous system infections following traumatic freshwater exposure during natural disasters or near-drowning episodes. Fungal etiology should be suspected in appropriate scenarios when bacterial cultures or molecular tests are normal or when the infection worsens or fails to resolve with appropriate antibacterial therapy.

  16. Improved biomass degradation using fungal glucuronoyl-esterases-hydrolysis of natural corn fiber substrate

    DEFF Research Database (Denmark)

    d'Errico, Clotilde; Börjesson, Johan; Ding, Hanshu

    2016-01-01

    of improved degradation of lignocellulosic biomass by the use of GEs. Improved C5 sugar, glucose and glucuronic acid release was observed when heat pretreated corn fiber was incubated in the presence of GEs from Cerrena unicolor and Trichoderma reesei on top of different commercial cellulase...

  17. Ignored fungal community in activated sludge wastewater treatment plants: diversity and altitudinal characteristics.

    Science.gov (United States)

    Niu, Lihua; Li, Yi; Xu, Lingling; Wang, Peifang; Zhang, Wenlong; Wang, Chao; Cai, Wei; Wang, Linqiong

    2017-02-01

    Fungi are important contributors to the various functions of activated sludge wastewater treatment plants (WWTPs); however, the diversity and geographic characteristics of fungal populations have remained vastly unexplored. Here, quantitative polymerase chain reaction and 454 pyrosequencing were combined to investigate the abundance and diversity of the activated sludge fungal communities from 18 full-scale municipal WWTPs in China. Phylogenetic taxonomy revealed that the members of the fungal communities were assigned to 7 phyla and 195 genera. Ascomycota and Basidiomycota were the most abundant phyla, dominated by Pluteus, Wickerhamiella, and Penicillium. Twenty-three fungal genera, accounting for 50.1 % of the total reads, were shared by 18 WWTPs and constituted a core fungal community. The fungal communities presented similar community diversity but different community structures across the WWTPs. Significant distance decay relationships were observed for the dissimilarity in fungal community structure and altitudinal distance between WWTPs. Additionally, the community evenness increased from 0.25 to 0.7 as the altitude increased. Dissolved oxygen and the C/N ratio were determined to be the most dominant contributors to the variation in fungal community structure via redundancy analysis. The observed data demonstrated the diverse occurrence of fungal species and gave a marked view of fungal community characteristics based on the previously unexplored fungal communities in activated sludge WWTPs.

  18. Fungal-to-bacterial dominance of soil detrital food-webs: Consequences for biogeochemistry

    Science.gov (United States)

    Rousk, Johannes; Frey, Serita

    2015-04-01

    Resolving fungal and bacterial groups within the microbial decomposer community is thought to capture disparate microbial life strategies, associating bacteria with an r-selected strategy for carbon (C) and nutrient use, and fungi with a K-selected strategy. Additionally, food-web models have established a widely held belief that the bacterial decomposer pathway in soil supports high turnover rates of easily available substrates, while the slower fungal pathway supports the decomposition of more complex organic material, thus characterising the biogeochemistry of the ecosystem. Three field-experiments to generate gradients of SOC-quality were assessed. (1) the Detritus Input, Removal, and Trenching - DIRT - experiment in a temperate forest in mixed hardwood stands at Harvard Forest LTER, US. There, experimentally adjusted litter input and root input had affected the SOC quality during 23 years. (2) field-application of 14-C labelled glucose to grassland soils, sampled over the course of 13 months to generate an age-gradient of SOM (1 day - 13 months). (3) The Park Grass Experiment at Rothamsted, UK, where 150-years continuous N-fertilisation (0, 50, 100, 150 kg N ha-1 y-1) has affected the quality of SOM in grassland soils. A combination of carbon stable and radio isotope studies, fungal and bacterial growth and biomass measurements, and C and N mineralisation (15N pool dilution) assays were used to investigate how SOC-quality influenced fungal and bacterial food-web pathways and the implications this had for C and nutrient turnover. There was no support that decomposer food-webs dominated by bacteria support high turnover rates of easily available substrates, while slower fungal-dominated decomposition pathways support the decomposition of more complex organic material. Rather, an association between high quality SOC and fungi emerges from the results. This suggests that we need to revise our basic understanding for soil microbial communities and the processes

  19. Above-ground biomass equations for Pinus radiata D. Don in Asturias

    Directory of Open Access Journals (Sweden)

    E. Canga

    2013-12-01

    Full Text Available Aim of the study: The aim of this study was to develop a model for above-ground biomass estimation for Pinus radiata D. Don in Asturias.Area of study: Asturias (NE of Spain.Material and methods: Different models were fitted for the different above-ground components and weighted regression was used to correct heteroscedasticity. Finally, all the models were refitted simultaneously by use of Nonlinear Seemingly Unrelated Regressions (NSUR to ensure the additivity of biomass equations.Research highlights: A system of four biomass equations (wood, bark, crown and total biomass was develop, such that the sum of the estimations of the three biomass components is equal to the estimate of total biomass. Total and stem biomass equations explained more than 92% of observed variability, while crown and bark biomass equations explained 77% and 89% respectively.Keywords: radiata pine; plantations; biomass.

  20. Fungal Agents as a Cause of Nasal Polyposis

    Directory of Open Access Journals (Sweden)

    Mohammad Nejadkazem

    2015-01-01

    Full Text Available Introduction: Sinonasal polyposis is the most common tumor of nasal cavity and sinuses. Its complications are but not limited to sinusitis, breathing difficulties, hyposmia, anosmia and bone erosion. Methods and materials: A total of 98 patients with sinonasal polyposis were examined for suspicious causative fungal agent. Results: Direct microscopy and culture confirmed fungal agent in 8 patients (8.1% from which 3 cases had Alternaria spp, 1 patient Aspergillus spp, 1 patient Bipolaris spp, and 3 patients yeast. Conclusion: Fungi may be considered as a potential cause of sinonasal polyposis.   Keywords: Sinonasal Polyposis, Rhinosinusitis, Fungi

  1. Fungal communities in soils along a vegetative ecotone.

    Science.gov (United States)

    Karst, Justine; Piculell, Bridget; Brigham, Christy; Booth, Michael; Hoeksema, Jason D

    2013-01-01

    We investigated the community composition and diversity of soil fungi along a sharp vegetative ecotone between coastal sage scrub (CSS) and nonnative annual grassland habitat at two sites in coastal California. USA- We pooled soil samples across 29 m transects on either side of the ecotone at each of the two sites, and. using clone libraries of fungal ribosomal DNA, we identified 280 operational taxonomic units (OTUs) from a total 40 g soil. We combined information from partial LSU and ITS sequences and found that the majority of OTUs belonged to the phylum Ascomycota, followed by Basidiomycota. Within the Ascomycota. a quarter of OTUs were Sordariomycetes. 17% were Leotiomycet.es, 16% were Dothideomycetes and the remaining OTUs were distributed among the classes Eurotiomycetes, Pezizomycetes, Lecanoromycetes, Orbiliomycetes and Arthoniomycetes. Within the Basidiomycota. all OTUs but one belonged to the subphylum Agaricomycotina. We also sampled plant communities at the same sites to offer a point of comparison for patterns in richness of fungal communities. Fungal communities had higher alpha and beta diversity than plant communities; fungal communities were approximately 20 times as rich as plant communities and the majority of OTUs were found in single soil samples. Soils harbored a unique mycoflora that did not reveal vegetative boundaries or site differences. High alpha and beta diversity and possible sampling artifacts necessitate extensive sampling to reveal differentiation in these fungal communities.

  2. A doubling of microphytobenthos biomass coincides with a tenfold increase in denitrifier and total bacterial abundances in intertidal sediments of a temperate estuary.

    Directory of Open Access Journals (Sweden)

    Helen Decleyre

    Full Text Available Surface sediments are important systems for the removal of anthropogenically derived inorganic nitrogen in estuaries. They are often characterized by the presence of a microphytobenthos (MPB biofilm, which can impact bacterial communities in underlying sediments for example by secretion of extracellular polymeric substances (EPS and competition for nutrients (including nitrogen. Pyrosequencing and qPCR was performed on two intertidal surface sediments of the Westerschelde estuary characterized by a two-fold difference in MPB biomass but no difference in MPB composition. Doubling of MPB biomass was accompanied by a disproportionately (ten-fold increase in total bacterial abundances while, unexpectedly, no difference in general community structure was observed, despite significantly lower bacterial richness and distinct community membership, mostly for non-abundant taxa. Denitrifier abundances corresponded likewise while community structure, both for nirS and nirK denitrifiers, remained unchanged, suggesting that competition with diatoms for nitrate is negligible at concentrations in the investigated sediments (appr. 1 mg/l NO3-. This study indicates that MPB biomass increase has a general, significantly positive effect on total bacterial and denitrifier abundances, with stimulation or inhibition of specific bacterial groups that however do not result in a re-structured community.

  3. Fungal-host diversity among mycoheterotrophic plants increases proportionally to their fungal-host overlap.

    Science.gov (United States)

    Gomes, Sofia I F; Merckx, Vincent S F T; Saavedra, Serguei

    2017-05-01

    The vast majority of plants obtain an important proportion of vital resources from soil through mycorrhizal fungi. Generally, this happens in exchange of photosynthetically fixed carbon, but occasionally the interaction is mycoheterotrophic, and plants obtain carbon from mycorrhizal fungi. This process results in an antagonistic interaction between mycoheterotrophic plants and their fungal hosts. Importantly, the fungal-host diversity available for plants is restricted as mycoheterotrophic interactions often involve narrow lineages of fungal hosts. Unfortunately, little is known whether fungal-host diversity may be additionally modulated by plant-plant interactions through shared hosts. Yet, this may have important implications for plant competition and coexistence. Here, we use DNA sequencing data to investigate the interaction patterns between mycoheterotrophic plants and arbuscular mycorrhizal fungi. We find no phylogenetic signal on the number of fungal hosts nor on the fungal hosts shared among mycoheterotrophic plants. However, we observe a potential trend toward increased phylogenetic diversity of fungal hosts among mycoheterotrophic plants with increasing overlap in their fungal hosts. While these patterns remain for groups of plants regardless of location, we do find higher levels of overlap and diversity among plants from the same location. These findings suggest that species coexistence cannot be fully understood without attention to the two sides of ecological interactions.

  4. Estimating the Burden of Serious Fungal Infections in Uruguay

    Directory of Open Access Journals (Sweden)

    Marina Macedo-Viñas

    2018-03-01

    Full Text Available We aimed to estimate for the first time the burden of fungal infections in Uruguay. Data on population characteristics and underlying conditions were extracted from the National Statistics Institute, the World Bank, national registries, and published articles. When no data existed, risk populations were used to estimate frequencies extrapolating from the literature. Population structure (inhabitants: total 3,444,006; 73% adults; 35% women younger than 50 years. Size of populations at risk (total cases per year: HIV infected 12,000; acute myeloid leukemia 126; hematopoietic stem cell transplantation 30; solid organ transplants 134; COPD 272,006; asthma in adults 223,431; cystic fibrosis in adults 48; tuberculosis 613; lung cancer 1400. Annual incidence estimations per 100,000: invasive aspergillosis, 22.4; candidemia, 16.4; Candida peritonitis, 3.7; Pneumocystis jirovecii pneumonia, 1.62; cryptococcosis, 0.75; severe asthma with fungal sensitization, 217; allergic bronchopulmonary aspergillosis, 165; recurrent Candida vaginitis, 6323; oral candidiasis, 74.5; and esophageal candidiasis, 25.7. Although some under and overestimations could have been made, we expect that at least 127,525 people suffer from serious fungal infections each year. Sporothrichosis, histoplasmosis, paracoccidioidomycosis, and dermatophytosis are known to be frequent but no data are available to make accurate estimations. Given the magnitude of the burden of fungal infections in Uruguay, efforts should be made to improve surveillance, strengthen laboratory diagnosis, and warrant access to first line antifungals.

  5. Bacterial and fungal markers in tobacco smoke

    Energy Technology Data Exchange (ETDEWEB)

    Szponar, B., E-mail: szponar@iitd.pan.wroc.pl [Lund University, Dept. of Laboratory Medicine, Soelvegatan 23, 223 62 Lund (Sweden); Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw (Poland); Pehrson, C.; Larsson, L. [Lund University, Dept. of Laboratory Medicine, Soelvegatan 23, 223 62 Lund (Sweden)

    2012-11-01

    Previous research has demonstrated that cigarette smoke contains bacterial and fungal components including lipopolysaccharide (LPS) and ergosterol. In the present study we used gas chromatography-mass spectrometry to analyze tobacco as well as mainstream and second hand smoke for 3-hydroxy fatty acids (3-OH FAs) of 10 to 18 carbon chain lengths, used as LPS markers, and ergosterol, used as a marker of fungal biomass. The air concentrations of LPS were 0.0017 nmol/m{sup 3} (N = 5) and 0.0007/m{sup 3} (N = 6) in the smoking vs. non-smoking rooms (p = 0.0559) of the studied private houses, and 0.0231 nmol/m{sup 3} (N = 5) vs. 0.0006 nmol/m{sup 3} (N = 5) (p = 0.0173), respectively, at the worksite. The air concentrations of ergosterol were also significantly higher in rooms with ongoing smoking than in rooms without smoking. A positive correlation was found between LPS and ergosterol in rooms with smoking but not in rooms without smoking. 3-OH C14:0 was the main 3-OH FA, followed by 3-OH C12:0, both in mainstream and second hand smoke and in phenol:water smoke extracts prepared in order to purify the LPS. The Limulus activity of the phenolic phase of tobacco was 3900 endotoxin units (EU)/cigarette; the corresponding amount of the smoke, collected on filters from 8 puffs, was 4 EU/cigarette. Tobacco smoking has been associated with a range of inflammatory airway conditions including COPD, asthma, bronchitis, alveolar hypersensitivity etc. Significant levels of LPS and ergosterol were identified in tobacco smoke and these observations support the hypothesis that microbial components of tobacco smoke contribute to inflammation and airway disease. -- Highlights: Black-Right-Pointing-Pointer Air concentration of bacterial and fungal markers is significantly higher in rooms with ongoing smoking than without smoking. Black-Right-Pointing-Pointer Bacterial LPS correlates with fungal marker in rooms with ongoing smoking but not without smoking. Black-Right-Pointing-Pointer LPS

  6. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D [VTT Energy, Espoo (Finland)

    1997-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  7. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  8. Fungal endophytes: diversity and functional roles

    Science.gov (United States)

    Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S.

    2009-01-01

    All plants in natural ecosystems appear to be symbiotic with fungal endophytes. This highly diverse group of fungi can have profound impacts on plant communities through increasing fitness by conferring abiotic and biotic stress tolerance, increasing biomass and decreasing water consumption, or decreasing fitness by altering resource allocation. Despite more than 100 yr of research resulting in thousands of journal articles, the ecological significance of these fungi remains poorly characterized. Historically, two endophytic groups (clavicipitaceous (C) and nonclavicipitaceous (NC)) have been discriminated based on phylogeny and life history traits. Here, we show that NC-endophytes represent three distinct functional groups based on host colonization and transmission, in planta biodiversity and fitness benefits conferred to hosts. Using this framework, we contrast the life histories, interactions with hosts and potential roles in plant ecophysiology of C- and NC-endophytes, and highlight several key questions for future work in endophyte biology.

  9. Evaluation of nested PCR in diagnosis of fungal rhinosinusitis.

    Science.gov (United States)

    Badiee, Parisa; Gandomi, Behrooz; Sabz, Gholamabbass; Khodami, Bijan; Choopanizadeh, Maral; Jafarian, Hadis

    2015-02-01

    Given the importance of rapid diagnosis for fungal rhinosinusitis, this study aimed to evaluate the use of nested PCR to identify Aspergillus and Mucor species in clinical samples from patients with suspected fungal rhinosinusitis. Functional endoscopic sinus surgery specimens were collected from 98 patients with rhinosinusitis from 2012 to 2013. All samples were ground and cultured on sabouraud dextrose agar. The isolated fungi were identified based on their macroscopic and microscopic features. Fungal DNA was extracted from the tissue samples and nested PCR was performed with two sets of primers for Mucor and Aspergillus. Direct microscopic showed that 5.1% contained fungal components and 9.2% exhibited growth of fungi in culture. The most common agents isolated were Aspergillus fumigatus (n= 3), Aspergillus flavus (n=2), Penicillium sp (n=3) and Alternaria sp. (n=1). Mucor sp. was identified in the pathology smear from 1 patient. Positive results for fungal rhinosinusitis were obtained for a total of 10.2% by culture or pathology smear. Positive PCR results were obtained in 72 samples for Aspergillus and 31 samples for Mucor. Our results suggest that endoscopic sinus surgery specimens are not suitable for nested PCR, probably because of the accumulation of fungi that contaminate the environmental air. This drawback is a limiting factor for diagnosis with nasal cavity specimens. Therefore, molecular methods and conventional culture techniques are helpful complementary diagnostic methods to detect fungal rhinosinusitis and determine appropriate management for these patients.

  10. Evaluation of pulmonary fungal diseases in patients with fungal rhino-sinusitis

    Directory of Open Access Journals (Sweden)

    M.Sh. Badawy

    2013-07-01

    Conclusion: Universal screening for pulmonary fungal infection especially in patients with fungal rhino sinusitis is highly recommended to treat it early, decrease morbidity and mortality of the diseases.

  11. Airborne fungal and bacterial components in PM1 dust from biofuel plants.

    Science.gov (United States)

    Madsen, Anne Mette; Schlünssen, Vivi; Olsen, Tina; Sigsgaard, Torben; Avci, Hediye

    2009-10-01

    Fungi grown in pure cultures produce DNA- or RNA-containing particles smaller than spore size ( 3)-beta-D-glucans. In the 29 PM(1) samples, cultivable fungi were found in six samples and with a median concentration below detection level. Using microscopy, fungal spores were identified in 22 samples. The components NAGase and (1 --> 3)-beta-D-glucans, which are mainly associated with fungi, were present in all PM(1) samples. Thermophilic actinomycetes were present in 23 of the 29 PM(1) samples [average = 739 colony-forming units (CFU) m(-3)]. Cultivable and 'total bacteria' were found in average concentrations of, respectively, 249 CFU m(-3) and 1.8 x 10(5) m(-3). DNA- and RNA-containing particles of different lengths were counted by microscopy and revealed a high concentration of particles with a length of 0.5-1.5 microm and only few particles >1.5 microm. The number of cultivable fungi and beta-glucan in the total dust correlated significantly with the number of DNA/RNA-containing particles with lengths of between 1.0 and 1.5 microm, with DNA/RNA-containing particles >1.5 microm, and with other fungal components in PM(1) dust. Airborne beta-glucan and NAGase were found in PM(1) samples where no cultivable fungi were present, and beta-glucan and NAGase were found in higher concentrations per fungal spore in PM(1) dust than in total dust. This indicates that fungal particles smaller than fungal spore size are present in the air at the plants. Furthermore, many bacteria, including actinomycetes, were present in PM(1) dust. Only 0.2% of the bacteria in PM(1) dust were cultivable.

  12. Determination of Total Carbohydrates in Algal Biomass: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Van Wychen, Stefanie; Laurens, Lieve M. L.

    2016-01-13

    This procedure uses two-step sulfuric acid hydrolysis to hydrolyze the polymeric forms of carbohydrates in algal biomass into monomeric subunits. The monomers are then quantified by either HPLC or a suitable spectrophotometric method.

  13. Genomic insights into the fungal lignocellulolytic system of Myceliophthora thermophila

    Directory of Open Access Journals (Sweden)

    Anthi eKarnaouri

    2014-06-01

    Full Text Available The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Cellulolytic fungi represent a promising group of organisms, as they have evolved complex systems for adaptation to their natural habitat. The filamentous fungus Myceliophthora thermophila constitutes an exceptionally powerful cellulolytic microorganism that synthesizes a complete set of enzymes necessary for the breakdown of plant cell wall. The genome of this fungus has been recently sequenced and annotated, allowing systematic examination and identification of enzymes required for the degradation of lignocellulosic biomass. The genomic analysis revealed the existence of an expanded enzymatic repertoire including numerous cellulases, hemicellulases and enzymes with auxiliary activities, covering the most of the recognized CAZy families. Most of them were predicted to possess a secretion signal and undergo through post translational glycosylation modifications. These data offer a better understanding of activities embedded in fungal lignocellulose decomposition mechanisms and suggest that M. thermophila could be made usable as an industrial production host for cellulolytic and hemicellulolytic enzymes.

  14. Water reclamation and value-added animal feed from corn-ethanol stillage by fungal processing.

    Science.gov (United States)

    Rasmussen, M L; Khanal, S K; Pometto, A L; van Leeuwen, J Hans

    2014-01-01

    Rhizopus oligosporus was cultivated on thin stillage from a dry-grind corn ethanol plant. The aim of the research was to develop a process to replace the current energy-intensive flash evaporation and make use of this nutrient-rich stream to create a new co-product in the form of protein-rich biomass. Batch experiments in 5- and 50-L stirred bioreactors showed prolific fungal growth under non-sterile conditions. COD, suspended solids, glycerol, and organic acids removals, critical for in-plant water reuse, reached ca. 80%, 98%, 100% and 100%, respectively, within 5 d of fungal inoculation, enabling effluent recycle as process water. R. oligosporus contains 2% lysine, good levels of other essential amino acids, and 43% crude protein - a highly nutritious livestock feed. Avoiding water evaporation from thin stillage would furthermore save substantial energy inputs on corn ethanol plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. An improved and reproducible protocol for the extraction of high quality fungal RNA from plant biomass substrates

    NARCIS (Netherlands)

    Patyshakuliyeva, Aleksandrina; Mäkelä, Miia R; Sietiö, Outi-Maaria; de Vries, Ronald P; Hildén, Kristiina S; van den Brink, J.

    2014-01-01

    Isolation of high quantity and quality RNA is a crucial step in the detection of meaningful gene expression data. Obtaining intact fungal RNA from complex lignocellulosic substrates is often difficult, producing low integrity RNA which perform poorly in downstream applications. In this study we

  16. Changes in Arbuscular Mycorrhizal Fungal Abundance and Community Structure in Response to the Long-Term Manipulation of Inorganic Nutrients in a Lowland Tropical Forest

    Science.gov (United States)

    Sheldrake, Merlin; Rosenstock, Nicholas; Tanner, Ed

    2014-05-01

    The arbuscular mycorrhizal (AM) symbiosis is considered primarily mutualistic. In exchange for up to 30% of plants' total photosynthate, AM provide improved access to mineral nutrients. While there is evidence that AM fungi provide nitrogen, potassium and other nutrients to their host plants, most research has focused on their effect on plant phosphorus uptake. Pot experiments have shown, and field experiments have provided further support, that nutrient availability (primarily P, but also N) is inversely correlated with mycorrhizal colonization, indicating plant control over carbon losses to AM fungi. Yet pot experiments have also shown that some fungal species are more mutualistic than others and that AM colonization may cause decreased plant growth, suggesting that plant control is not absolute. AMF communities are diverse, and it is poorly understood how factors such as adaptation to local soil environment, fungal-plant compatibility, and plant nutrient status combine to shape AMF community structure. We conducted a study to examine the relative effects of N, P, and K addition on the AMF community in a plant species rich tropical forest, given the long-held belief that AMF are primarily involved in plant P uptake, particularly on weathered tropical soils. Our study site is the Barro Colorado Nature Monument in Panama. It is a 13 year-old factorial N, P, and K addition experiment (40 m x 40m plots; n=4) in an AMF dominated, old (>200 yr), secondary, tropical forest. Previous research has shown co-limitation by N, P, and K, but the strongest plant growth responses were obtained with K additions. We analyzed the AMF community using 454 pyrosequencing of the ribosomal small subunit (SSU) on both soils and the roots of the 6 dominant AMF tree species. Additionally, we used the AMF-specific neutral lipid fatty acid (NLFA) biomarker as a measure of AMF biomass. Both AMF biomass and community structure were altered by nutrient additions. AMF biomass in soil was reduced

  17. Structure and composition of bacterial and fungal community in soil under soybean monoculture in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    J.D Bresolin

    2010-06-01

    Full Text Available Soybean is the most important oilseed cultivated in the world and Brazil is the second major producer. Expansion of soybean cultivation has direct and indirect impacts on natural habitats of high conservation value, such as the Brazilian savannas (Cerrado. In addition to deforestation, land conversion includes the use of fertilizers and pesticides and can lead to changes in the soil microbial communities. This study evaluated the soil bacterial and fungal communities and the microbial biomass C in a native Cerrado and in a similar no-tillage soybean monoculture area using PCR-DGGE and sequencing of bands. Compared to the native area, microbial biomass C was lower in the soybean area and cluster analysis indicated that the structure of soil microbial communities differed. 16S and 18S rDNA dendrograms analysis did not show differences between row and inter-row samples, but microbial biomass C values were higher in inter-rows during soybean fructification and harvest. The study pointed to different responses and alterations in bacterial and fungal communities due to soil cover changes (fallow x growth period and crop development. These changes might be related to differences in the pattern of root exudates affecting the soil microbial community. Among the bands chosen for sequencing there was a predominance of actinobacteria, y-proteobacteria and ascomycetous divisions. Even under no-tillage management methods, the soil microbial community was affected due to changes in the soil cover and crop development, hence warning of the impacts caused by changes in land use.

  18. An investigation on non-invasive fungal sinusitis; Molecular identification of etiologic agents

    Directory of Open Access Journals (Sweden)

    Abdolrasoul Mohammadi

    2017-01-01

    Full Text Available Background: Fungal sinusitis is increasing worldwide in the past two decades. It is divided into two types including invasive and noninvasive. Noninvasive types contain allergic fungal sinusitis (AFS and fungus ball. AFS is a hypersensitivity reaction to fungal allergens in the mucosa of the sinonasal tract in atopic individuals. The fungus ball is a different type of noninvasive fungal rhinosinusitis which is delineated as an accumulation of debris and fungal elements inside a paranasal sinus. Fungal sinusitis caused by various fungi such as Aspergillus species, Penicillium, Mucor, Rhizopus, and phaeohyphomycetes. The aim of the present study is to identify fungal species isolated from noninvasive fungal sinusitis by molecular methods. Materials and Methods: During 2015–2016, a total of 100 suspected patients were examined for fungal sinusitis. Functional endoscopic sinus surgery was performed using the Messerklinger technique. Clinical samples were identified by phenotypic and molecular methods. Polymerase chain reaction (PCR sequencing of ITS1-5.8S-ITS2 region and PCR-restriction fragment length polymorphism with Msp I restriction enzyme was performed for molecular identification of molds and yeasts, respectively. Results: Twenty-seven out of 100 suspected cases (27% had fungal sinusitis. Nasal congestion (59% and headache (19% were the most common clinical signs among patients. Fifteen patients (55.5% were male and 12 patients (44.5% were female. Aspergillus flavus was the most prevalent fungal species (26%, followed by Penicillium chrysogenum (18.5% and Candida glabrata species complex (15%. Conclusion: Since clinical manifestations, computed tomography scan, endoscopy, and histopathological findings are very nonspecific in AFS and fungus ball; therefore, molecular investigations are compulsory for precise identification of etiologic agents and appropriate management of these fungal infections.

  19. Waste biomass adsorbents for copper removal from industrial wastewater--a review.

    Science.gov (United States)

    Bilal, Muhammad; Shah, Jehanzeb Ali; Ashfaq, Tayyab; Gardazi, Syed Mubashar Hussain; Tahir, Adnan Ahmad; Pervez, Arshid; Haroon, Hajira; Mahmood, Qaisar

    2013-12-15

    Copper (Cu(2+)) containing wastewaters are extensively released from different industries and its excessive entry into food chains results in serious health impairments, carcinogenicity and mutagenesis in various living systems. An array of technologies is in use to remediate Cu(2+) from wastewaters. Adsorption is the most attractive option due to the availability of cost effective, sustainable and eco-friendly bioadsorbents. The current review is dedicated to presenting state of the art knowledge on various bioadsorbents and physico-chemical conditions used to remediate Cu(2+) from waste streams. The advantages and constraints of various adsorbents were also discussed. The literature revealed the maximum Cu adsorption capacities of various bioadsorbents in the order of algae>agricultural and forest>fungal>bacterial>activated carbon>yeast. However, based on the average Cu adsorption capacity, the arrangement can be: activated carbon>algal>bacterial>agriculture and forest-derived>fungal>yeast biomass. The data of Cu removal using these bioadsorbents were found best fit both Freundlich and Langmuir models. Agriculture and forest derived bioadsorbents have greater potential for Cu removal because of higher uptake, cheaper nature, bulk availability and mono to multilayer adsorption behavior. Higher costs at the biomass transformation stage and decreasing efficiency with desorption cycles are the major constraints to implement this technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Illumina MiSeq sequencing analysis of fungal diversity in stored dates.

    Science.gov (United States)

    Al-Bulushi, Ismail M; Bani-Uraba, Muna S; Guizani, Nejib S; Al-Khusaibi, Mohammed K; Al-Sadi, Abdullah M

    2017-03-27

    Date palm has been a major fruit tree in the Middle East over thousands of years, especially in the Arabian Peninsula. Dates are consumed fresh (Rutab) or after partial drying and storage (Tamar) during off-season. The aim of the study was to provide in-depth analysis of fungal communities associated with the skin (outer part) and mesocarp (inner fleshy part) of stored dates (Tamar) of two cultivars (Khenizi and Burny) through the use of Illumina MiSeq sequencing. The study revealed the dominance of Ascomycota (94%) in both cultivars, followed by Chytridiomycota (4%) and Zygomycota (2%). Among the classes recovered, Eurotiomycetes, Dothideomycetes, Saccharomycetes and Sordariomycetes were the most dominant. A total of 54 fungal species were detected, with species belonging to Penicillium, Alternaria, Cladosporium and Aspergillus comprising more than 60% of the fungal reads. Some potentially mycotoxin-producing fungi were detected in stored dates, including Aspergillus flavus, A. versicolor and Penicillium citrinum, but their relative abundance was very limited (PerMANOVA analysis revealed the presence of insignificant differences in fungal communities between date parts or date cultivars, indicating that fungal species associated with the skin may also be detected in the mesocarp. It also indicates the possible contamination of dates from different cultivars with similar fungal species, even though if they are obtained from different areas. The analysis shows the presence of different fungal species in dates. This appears to be the first study to report 25 new fungal species in Oman and 28 new fungal species from date fruits. The study discusses the sources of fungi on dates and the presence of potentially mycotoxin producing fungi on date skin and mesocarp.

  1. Protection by fungal starters against growth and secondary metabolite production of fungal spoilers of cheese.

    Science.gov (United States)

    Nielsen, M S; Frisvad, J C; Nielsen, P V

    1998-06-30

    The influence of fungal starter cultures on growth and secondary metabolite production of fungal contaminants associated with cheese was studied on laboratory media and Camembert cheese. Isolates of the species Penicillium nalgiovense, P. camemberti, P. roqueforti and Geotrichum candidum were used as fungal starters. The species P. commune, P. caseifulvum, P. verrucosum, P. discolor, P. solitum, P. coprophilum and Aspergillus versicolor were selected as contaminants. The fungal starters showed different competitive ability on laboratory media and Camembert cheese. The presence of the Penicillium species, especially P. nalgiovense, showed an inhibitory effect on the growth of the fungal contaminants on laboratory media. G. candidum caused a significant inhibition of the fungal contaminants on Camembert cheese. The results indicate that G. candidum plays an important role in competition with undesirable microorganisms in mould fermented cheeses. Among the starters, P. nalgiovense caused the largest reduction in secondary metabolite production of the fungal contaminants on the laboratory medium. On Camembert cheese no significant changes in metabolite production of the fungal contaminants was observed in the presence of the starters.

  2. A biomass energy flow chart for Kenya

    International Nuclear Information System (INIS)

    Senelwa, K.A.; Hall, D.O.

    1993-01-01

    Terrestrial (above ground) biomass production and its utilization in Kenya was analyzed for the 1980s. Total biomass energy production was estimated at 2574 x 10 6 GJ per year, most of which (86.7%) is produced on land classified as agricultural. Of the total production, agriculture and forrestry operations resulted in the harvesting of 1138 x 10 6 GJ (44.2% of total production), half of which (602 x 10 6 GJ) was harvested for use as fuel. Only 80 x 10 6 GJ was harvested for food and 63 x 10 6 GJ for industrial (agricultural and forestry) plus other miscellaneous purposes. About 85% of Kenya's energy is from biomass, with a per capita consumption of 18.6 GJ (0.44 toe, tonne oil equivalent) compared to less than 0.1 toe of commercial energy. Use of the biomass resource was found to be extensive involving bulk harvesting but with low utilization efficiencies; as a result the overall losses were quite high. Only 534 x 10 6 GJ (46.9% of harvested biomass) was useful energy. 480 x 10 6 GJ was left unused, as residues and dung, all which was either burnt or left to decompose in the fields. 124 x 10 6 GJ was lost during charcoal manufacture. Intensified use of the harvested biomass at higher efficiencies in order to minimize wastes would decrease the stress on the biomass resource base. (Author)

  3. Biomass production in energy plantation of Prosopis juliflora

    Energy Technology Data Exchange (ETDEWEB)

    Gurumurti, K.

    1984-09-01

    Studies on time trends of biomass production by means of age series in energy plantations (spacing 1.3 x 1.3 m) of Prosopis juliflora is presented. The component biomass production at the age of 18, 24, 30, 36 and 48 months was determined. The results show considerable variation among the population of trees. However, distinct linear relationship between girth at breast height (GBH) and total height was discernible. The total biomass produced at 18, 24, 30, 36 and 48 months of age was 19.69, 41.39, 69.11, 114.62 and 148.63 dry tonnes per hectare, respectively. The corresponding figures for utilizable biomass (wood, bark and branch) were 14.63, 32.17, 50.59, 88.87 and 113.25 dry tonnes per hectare. At all the periods of study, branch component formed the major portion of total biomass being around 50 to 55%. Utilizable biomass was three-fourths of total biomass at all ages. The solar energy conversion efficiency ranged from 0.59% at 18 months to 1.68% at 48 months of age, the peak value being 1.87% at the age of 36 months. It is shown that the variables diameter and height can be used to reliably predict the biomass production in Prosopis juliflora with the help of the regression equations developed in the present study. It is concluded that Prosopis juliflora is an ideal candidate for energy plantations in semi arid and marginal lands, not only to meet the fuelwood demands but also to improve the soil fertility, for, this plant is a fast growing and nitrogen fixing leguminous tree.

  4. Burden of Serious Fungal Infections in Jordan

    Directory of Open Access Journals (Sweden)

    Jamal Wadi

    2018-01-01

    Full Text Available Objective: To estimate the burden of fungal infections in Jordan for the first time. Material and Methods: Population data was from UN 2011 statistics and TB cases from WHO in 2012. Fewer than 100 patients with HIV were recorded in Jordan in 2013. Approximately 100 renal transplants and eight liver transplants are performed annually. There were 12,233 major surgical procedures in Jordan in 2013, of which 5.3% were major abdominal surgeries; candidemia was estimated in 5% of the population based on other countries, with 33% occurring in the ICU. Candida peritonitis/intra-abdominal candidiasis was estimated to affect 50% of the number of ICU candidemia cases. No adult asthma rates have been recorded for Jordan, so the rate from the Holy Land (8.54% clinical asthma from To et al. has been used. There are an estimated 49,607 chronic obstructive pulmonary disease (COPD patients in Jordan, with 64% symptomatic, 25% Gold stage 3% or 4%, and 7% (3472 are assumed to be admitted to hospital each year. No cystic fibrosis cases have been recorded. Literature searches on fungal infections revealed few data and no prevalence data on fungal keratitis or tinea capitis, even though tinea capitis comprised 34% of patients with dermatophytoses in Jordan. Results: Jordan has 6.3 million inhabitants (65% adults, 6% are >60 years old. The current burden of serious fungal infections in Jordan was estimated to affect ~119,000 patients (1.9%, not including any cutaneous fungal infections. Candidemia was estimated at 316 cases and invasive aspergillosis in leukemia, transplant, and COPD patients at 84 cases. Chronic pulmonary aspergillosis prevalence was estimated to affect 36 post-TB patients, and 175 in total. Allergic bronchopulmonary aspergillosis (ABPA and severe asthma with fungal sensitization (SAFS prevalence in adults with asthma were estimated at 8900 and 11,748 patients. Recurrent vulvovaginal candidiasis was estimated to affect 97,804 patients, using a 6

  5. Conjunctival bacterial and fungal flora in clinically normal sheep.

    Science.gov (United States)

    Bonelli, Francesca; Barsotti, Giovanni; Attili, Anna Rita; Mugnaini, Linda; Cuteri, Vincenzo; Preziuso, Silvia; Corazza, Michele; Preziuso, Giovanna; Sgorbini, Micaela

    2014-01-01

    The aim was to identify conjunctival bacterial and fungal flora in clinically normal sheep. Prospective study. Tuscany. 100 eyes from 50 adult Massese female sheep were examined. The sheep included in the study were considered free of anterior ophthalmic abnormalities. Bacteria were identified by morphological assessment, Gram staining, biochemical tests. Identification of filamentous fungi was achieved at the genus level, and Aspergillus species were identified based on keys provided by other authors. Yeast colonies were highlighted, but not identified. Positive cultures were obtained from 100/100 eyes for bacteria, and from 86/100 eyes for fungi. A total of 14 types of bacteria and 5 types of fungi were isolated. Yeasts were isolated from 13/100 eyes. The most frequent fungal isolates were saprophytic fungi. Conjunctival bacterial and fungal flora of clinically normal eyes were reported in sheep. The positivity obtained for conjunctival bacteria was higher compared to findings in the literature by other authors in the same species (100 per cent v 40 per cent), while our results were in line with a recent work performed on mouflons (Ovis Musimon) with a 100 per cent positivity for bacterial conjunctival fornix. In our survey, Gram-positive species were prevalent, as reported by other authors in different species. Few data are available in the literature regarding conjunctival fungal flora in healthy small ruminants. The prevalence of conjunctival fungal flora in this study was higher than findings reported in mouflons (86 per cent v 45 per cent). Differences in fungal prevalence may be due to different methods of managing herds, though further studies are required to verify this hypothesis. The similarities in bacterial and fungal isolates between sheep and mouflons suggest a genera pattern of conjunctival colonisation by bacteria and fungi.

  6. Use of Jatropha curcas hull biomass for bioactive compost production

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, D.K. [Division of Environmental Sciences, Indian Agricultural Research Institute, New Delhi 110012 (India); Pandey, A.K.; Lata [Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110012 (India)

    2009-01-15

    The paper deals with utilization of biomass of Jatropha hulls for production of bioactive compost. In the process of Jatropha oil extraction, a large amount of hull waste is generated. It has been found that the direct incorporation of hull into soil is considerably inefficient in providing value addition to soil due to its unfavorable physicochemical characteristics (high pH, EC and phenolic content). An alternative to this problem is the bioconversion of Jatropha hulls using effective lignocellulolytic fungal consortium, which can reduce the phytotoxicity of the degraded material. Inoculation with the fungal consortium resulted in better compost of jatropha hulls within 1 month, but it takes nearly 4 months for complete compost maturation as evident from the results of phytotoxicity test. Such compost can be applied to the acidic soil as a remedial organic manure to help maintaining sustainability of the agro-ecosystem. Likewise, high levels of cellulolytic enzymes observed during bioconversion indicate possible use of fungi for ethanol production from fermentation of hulls. (author)

  7. Importance of biomass energy sources for Turkey

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    Various agricultural residues such as grain dust, crop residues and fruit tree residues are available in Turkey as the sources of biomass energy. Among the biomass energy sources, fuelwood seems to be one of the most interesting because its share of the total energy production of Turkey is high at 21% and the techniques for converting it to useful energy are not necessarily sophisticated. Selection of a particular biomass for energy requirements is influenced by its availability, source and transportation cost, competing uses and prevalent fossil fuel prices. Utilization of biomass is a very attractive energy resource, particularly for developing countries since biomass uses local feedstocks and labor. Like many developing countries, Turkey relies on biomass to provide much of its energy requirement. More efficient use of biomass in producing energy, both electrical and thermal, may allow Turkey to reduce petroleum imports, thus affecting its balance of payments dramatically. Turkey has always been one of the major agricultural countries in the world. The importance of agriculture is increasing due to biomass energy being one of the major resources in Turkey. Biomass waste materials can be used in Turkey to provide centralized, medium- and large-scale production of process heat for electricity production. Turkey's first biomass power project is under development in Adana province, at an installed capacity of 45 MW. Two others, at a total capacity of 30 MW, are at the feasibility study stage in Mersin and Tarsus provinces. Electricity production from biomass has been found to be a promising method in the nearest future in Turkey

  8. Exploring the fungal protein cadre in the biosynthesis of PbSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Jaya Mary; Sharma, Sumit; Balakrishnan, Raj Mohan, E-mail: rajmohanbala@gmail.com

    2017-02-15

    Highlights: • Pb and Se stress activates specific metal detoxification surge in the fungus. • Fungus releases phytochelatins, metallothioneins, super oxide dismutases etc. • These mechanisms capacitate the fungi as bio-factories for synthesis of PbSe QDs. • A pathway for PbSe QD biosynthesis by marine Aspergillus terreus was elucidated - Abstract: While a large number of microbial sources have recently emerged as potent sources for biosynthesis of chalcogenide quantum dots (QDs), studies regarding their biomimetic strategies that initiate QD biosynthesis are scarce. The present study describes several mechanistic aspects of PbSe QD biosynthesis using marine Aspergillus terreus. Scanning electron microscopic (SEM) studies indicated distinctive morphological features such as abrasion and agglomeration on the fungal biomass after the biosynthesis reaction. Further, the biomass subsequent to the heavy metal/metalloid precursor was characterized with spectral signatures typical to primary and secondary stress factors such as thiol compounds and oxalic acid using Fourier Transform Infra-Red Spectroscopic (FTIR) analysis. An increase in the total protein content in the reaction mixture after biosynthesis was another noteworthy observation. Further, metal-phytochelatins were identified as the prominent metal-ion trafficking components in the reaction mixture using Liquid Chromatography Mass Spectroscopic analysis (LCMS). Subsequent assays confirmed the involvement of metal binding peptides namely metallothioneins and other anti-oxidant enzymes that might have played a prominent role in the microbial metal detoxification system for the biosynthesis of PbSe QDs. Based on these findings a possible mechanism for the biosynthesis of PbSe QDs by marine A. terreus has been elucidated.

  9. Modelling tree biomasses in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Repola, J.

    2013-06-01

    Biomass equations for above- and below-ground tree components of Scots pine (Pinus sylvestris L), Norway spruce (Picea abies [L.] Karst) and birch (Betula pendula Roth and Betula pubescens Ehrh.) were compiled using empirical material from a total of 102 stands. These stands (44 Scots pine, 34 Norway spruce and 24 birch stands) were located mainly on mineral soil sites representing a large part of Finland. The biomass models were based on data measured from 1648 sample trees, comprising 908 pine, 613 spruce and 127 birch trees. Biomass equations were derived for the total above-ground biomass and for the individual tree components: stem wood, stem bark, living and dead branches, needles, stump, and roots, as dependent variables. Three multivariate models with different numbers of independent variables for above-ground biomass and one for below-ground biomass were constructed. Variables that are normally measured in forest inventories were used as independent variables. The simplest model formulations, multivariate models (1) were mainly based on tree diameter and height as independent variables. In more elaborated multivariate models, (2) and (3), additional commonly measured tree variables such as age, crown length, bark thickness and radial growth rate were added. Tree biomass modelling includes consecutive phases, which cause unreliability in the prediction of biomass. First, biomasses of sample trees should be determined reliably to decrease the statistical errors caused by sub-sampling. In this study, methods to improve the accuracy of stem biomass estimates of the sample trees were developed. In addition, the reliability of the method applied to estimate sample-tree crown biomass was tested, and no systematic error was detected. Second, the whole information content of data should be utilized in order to achieve reliable parameter estimates and applicable and flexible model structure. In the modelling approach, the basic assumption was that the biomasses of

  10. The state of proteome profiling in the fungal genus Aspergillus.

    Science.gov (United States)

    Kim, Yonghyun; Nandakumar, M P; Marten, Mark R

    2008-03-01

    Aspergilli are an important genus of filamentous fungi that contribute to a multibillion dollar industry. Since many fungal genome sequencing were recently completed, it would be advantageous to profile their proteome to better understand the fungal cell factory. Here, we review proteomic data generated for the Aspergilli in recent years. Thus far, a combined total of 28 cell surface, 102 secreted and 139 intracellular proteins have been identified based on 10 different studies on Aspergillus proteomics. A summary proteome map highlighting identified proteins in major metabolic pathway is presented.

  11. Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China.

    Science.gov (United States)

    Liao, Hao; Zhang, Yuchen; Zuo, Qinyan; Du, Binbin; Chen, Wenli; Wei, Dan; Huang, Qiaoyun

    2018-04-20

    Soils, with non-uniform distribution of nutrients across different aggregate-size fractions, provide spatially heterogeneous microhabitats for microorganisms. However, very limited information is available on microbial distributions and their response to fertilizations across aggregate-size fractions in agricultural soils. Here, we examined the structures of bacterial and fungal communities across different aggregate-size fractions (2000-250 μm, 250-53 μm and fractions (>53 μm), especially 250-53 μm aggregates, which contain more soil C and N, are associated with greater microbial biomass and higher fungi/bacteria ratio. We firstly reported the fungal community composition in different aggregate-size fractions by HTS technology and found more Ascomycota but less Zygomycota in larger fractions with higher C content across all fertilization regimes. Fertilization and aggregate-size fractions significantly affect the compositions of bacterial and fungal communities although their effects are different. The bacterial community is mainly driven by fertilization, especially chemical fertilizers, and is closely related to the shifts of soil P (phosphorus). The fungal community is preferentially impacted by different aggregate-size fractions and is more associated with the changes of soil C and N. The distinct responses of microbial communities suggest different mechanisms controlling the assembly of soil bacterial and fungal communities at aggregate scale. The investigations of both bacterial and fungal communities could provide a better understanding on nutrient cycling across aggregate-size fractions. Copyright © 2018. Published by Elsevier B.V.

  12. A single ectomycorrhizal fungal species can enable a Pinus invasion.

    Science.gov (United States)

    Hayward, Jeremy; Horton, Thomas R; Pauchard, Aníbal; Nuñnez, Martin A

    2015-05-01

    Like all obligately ectomycorrhizal plants, pines require ectomycorrhizal fungal symbionts to complete their life cycle. Pines introduced into regions far from their native range are typically incompatible with local ectomycorrhizal fungi, and, when they invade, coinvade with fungi from their native range. While the identities and distributions of coinvasive fungal symbionts of pine invasions are poorly known, communities that have been studied are notably depauperate. However, it is not yet clear whether any number of fungal coinvaders is able to support a Pinaceae invasion, or whether very depauperate communities are unable to invade. Here, we ask whether there is evidence for a minimum species richness of fungal symbionts necessary to support a pine/ectomycorrhizal fungus coinvasion. We sampled a Pinus contorta invasion front near Coyhaique, Chile, using molecular barcoding to identify ectomycorrhizal fungi. We report that the site has a total richness of four species, and that many invasive trees appear to be supported by only a single ectomycorrhizal fungus, Suillus luteus. We conclude that a single ectomycorrhizal (ECM) fungus can suffice to enable a pine invasion.

  13. Bioremediation of aqueous pollutants using biomass embedded in hydrophilic foam. Final report

    International Nuclear Information System (INIS)

    Wilde, E.W.; Radway, J.C.; Santo Domingo, J.; Zingmark, R.G.; Whitaker, M.J.

    1996-01-01

    The major objective of this project was to examine the potential of a novel hydrophilic polyurethane foam as an immobilization medium for algal, bacteria, and other types of biomass, and to test the resulting foam/biomass aggregates for their use in cleaning up waters contaminated with heavy metals, radionuclides and toxic organic compounds. Initial investigations focused on the bioremoval of heavy metals from wastewaters at SRS using immobilized algal biomass. This effort met with limited success for reasons which included interference in the binding of biomass and target metals by various non-target constituents in the wastewater, lack of an appropriate wastewater at SRS for testing, and the unavailability of bioreactor systems capable of optimizing contact of target pollutants with sufficient biomass binding sites. Subsequent studies comparing algal, bacterial, fungal, and higher plant biomass demonstrated that other biomass sources were also ineffective for metal bioremoval under the test conditions. Radionuclide bioremoval using a Tc-99 source provided more promising results than the metal removal studies with the various types of biomass, and indicated that the alga Cyanidium was the best of the tested sources of biomass for this application. However, all of the biomass/foam aggregates tested were substantially inferior to a TEVA resin for removing Tc-99 in comparative testing. The authors also explored the use of hydrophilic polyurethane foam to embed Burkholderia cepacia, which is an efficient degrader of trichloroethylene (TCE), a contaminant of considerable concern at SRS and elsewhere. The embedded population proved to be incapable of growth on nutrient media, but retained respiratory activity. Lastly, the degradative capabilities of embedded G4 were examined. Phenol- or benzene-induced bacteria retained the ability to degrade TCE and benzene. The authors were successful in inducing enzyme activity after the organisms had already been embedded

  14. Bioremediation of aqueous pollutants using biomass embedded in hydrophilic foam. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W.; Radway, J.C.; Santo Domingo, J.; Zingmark, R.G.; Whitaker, M.J.

    1996-12-31

    The major objective of this project was to examine the potential of a novel hydrophilic polyurethane foam as an immobilization medium for algal, bacteria, and other types of biomass, and to test the resulting foam/biomass aggregates for their use in cleaning up waters contaminated with heavy metals, radionuclides and toxic organic compounds. Initial investigations focused on the bioremoval of heavy metals from wastewaters at SRS using immobilized algal biomass. This effort met with limited success for reasons which included interference in the binding of biomass and target metals by various non-target constituents in the wastewater, lack of an appropriate wastewater at SRS for testing, and the unavailability of bioreactor systems capable of optimizing contact of target pollutants with sufficient biomass binding sites. Subsequent studies comparing algal, bacterial, fungal, and higher plant biomass demonstrated that other biomass sources were also ineffective for metal bioremoval under the test conditions. Radionuclide bioremoval using a Tc-99 source provided more promising results than the metal removal studies with the various types of biomass, and indicated that the alga Cyanidium was the best of the tested sources of biomass for this application. However, all of the biomass/foam aggregates tested were substantially inferior to a TEVA resin for removing Tc-99 in comparative testing. The authors also explored the use of hydrophilic polyurethane foam to embed Burkholderia cepacia, which is an efficient degrader of trichloroethylene (TCE), a contaminant of considerable concern at SRS and elsewhere. The embedded population proved to be incapable of growth on nutrient media, but retained respiratory activity. Lastly, the degradative capabilities of embedded G4 were examined. Phenol- or benzene-induced bacteria retained the ability to degrade TCE and benzene. The authors were successful in inducing enzyme activity after the organisms had already been embedded.

  15. Phosphorus fractions, microbial biomass and enzyme activities in ...

    African Journals Online (AJOL)

    Potohar, northern Punjab, Pakistan in September, 2008 and analysed for P fractions and microbial parameters including microbial biomass C, microbial biomass N, microbial biomass P, and activities of dehydrogenase and alkaline phosphatase enzymes. The average size of different P fractions (% of total P) in the soils ...

  16. Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge

    Science.gov (United States)

    Xu, Wei; Gong, Lin-feng; Pang, Ka-Lai; Luo, Zhu-Hua

    2018-01-01

    Deep-sea hydrothermal sediment is known to support remarkably diverse microbial consortia. In deep sea environments, fungal communities remain less studied despite their known taxonomic and functional diversity. High-throughput sequencing methods have augmented our capacity to assess eukaryotic diversity and their functions in microbial ecology. Here we provide the first description of the fungal community diversity found in deep sea sediments collected at the Southwest Indian Ridge (SWIR) using culture-dependent and high-throughput sequencing approaches. A total of 138 fungal isolates were cultured from seven different sediment samples using various nutrient media, and these isolates were identified to 14 fungal taxa, including 11 Ascomycota taxa (7 genera) and 3 Basidiomycota taxa (2 genera) based on internal transcribed spacers (ITS1, ITS2 and 5.8S) of rDNA. Using illumina HiSeq sequencing, a total of 757,467 fungal ITS2 tags were recovered from the samples and clustered into 723 operational taxonomic units (OTUs) belonging to 79 taxa (Ascomycota and Basidiomycota contributed to 99% of all samples) based on 97% sequence similarity. Results from both approaches suggest that there is a high fungal diversity in the deep-sea sediments collected in the SWIR and fungal communities were shown to be slightly different by location, although all were collected from adjacent sites at the SWIR. This study provides baseline data of the fungal diversity and biogeography, and a glimpse to the microbial ecology associated with the deep-sea sediments of the hydrothermal vent system of the Southwest Indian Ridge.

  17. Characterization of fungal inoculum used in soil bioremediation Caracterização de inóculo fúngico em biorremediação de solo

    Directory of Open Access Journals (Sweden)

    Nara Ballaminut

    2007-06-01

    Full Text Available Studies have indicated the capacity of basidiomycetes to degrade recalcitrant organopollutants. However, the age of the fungal inoculum to obtain a more effective degradation has not been defined. The criterion used is total colonization of the substrate. Psilocybe castanella CCB444 and Lentinus crinitus CCB274 have been evaluated in soils containing hexachlorobenzene. In the present study, the physiological conditions of the fungal inocula were characterized on solid substrate (sugarcane bagasse, starch and soy flour. Colonization of the substrate, loss of organic matter, pH variation, organic carbon, total nitrogen, fungal biomass and enzymatic activity were evaluated over 30 days of incubation. Colonization of the substrate was almost complete after 20 days for both species, with about 90% of organic matter remaining on the substrates. The pH continued to be acid during incubation. The highest enzymatic production was observed at 10 days for L. crinitus and at 5 days for P. castanella. The fungi presented growth up to 30 days. The C/N ratio of the inocula showed little variation. The use among 10 and 15-day-old inoculum is adequate since sufficient nutrients are left to guarantee survival of the fungus, vigorous colonization of the substrate, a growing biomass and an active enzymatic system, thus permitting fungal growth in soil.Estudos indicam capacidade de basidiomicetos em degradar organopoluentes recalcitrantes. Porém, ainda não foi padronizada a idade do inóculo fúngico a ser aplicado para que ocorra uma degradação mais efetiva. O critério utilizado é colonização total do substrato. Psilocybe castanella CCB444 e Lentinus crinitus CCB274 têm sido avaliados em solos com hexaclorobenzeno. No presente trabalho, foram caracterizadas as condições fisiológicas dos inóculos fúngicos em substrato sólido (bagaço de cana-de-açúcar , amido e farinha de soja. Determinou-se a colonização do substrato, perda de matéria org

  18. Effects of Different Ectomycorrhizal Fungal Inoculates on the Growth of Pinus tabulaeformis Seedlings under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2016-12-01

    Full Text Available The tree species Pinus tabulaeformis Carr. (P. tabulaeformis is commonly planted in China due to its economic and ecological value. In order to identify one or more ectomycorrhizal (ECM fungal species for future P. tabulaeformis afforestation, we investigated the effects of five ECM fungal species: Laccaria laccata, Boletus edulis, Gomphidius viscidus, Suillus grevillei, and Suillus luteus on the growth of P. tabulaeformis seedlings under greenhouse conditions. The growth parameters of P. tabulaeformis seedlings were evaluated 90 days following fungal colonisation. The majority of seedlings were significantly affected by ECM inoculation. Mycorrhizal inoculated seedlings were taller, had more lateral roots, and a greater biomass compared with the non-mycorrhizal (CK seedlings. With the exception of G. viscidus, inoculated seedlings exhibited higher phosphorus, potassium, and nitrogen content compared with the CK seedlings. In addition, ECM colonisation increased the enzymatic activity of catalase, acidic phosphatase, protease, and the urease content in the rhizosphere soil. Our study showed that Laccaria laccata, Suillus grevillei, and Suillus luteus may be useful for improving the growth and cultivation of P. tabulaeformis seedlings. Furthermore, we observed that S. luteus inoculation increased the gas exchange parameters of P. tabulaeformis seedlings under field conditions.

  19. Electricity from biomass in the European Union - with or without biomass import

    DEFF Research Database (Denmark)

    Skytte, K.; Meibom, P.; Henriksen, T.C.

    2006-01-01

    The European Union has set up indicative targets for its 15 Member States to supply 22.1% of their total electricity consumption using renewable energy resources by 2010. This paper compares two ways to achieve target compliance-either with import of biomass from countries outside the EU or without...... is that increased imports of low-cost biomass will significantly reduce the cost of target compliance, but would hamper the use of energy crops and further development of wind power within the EU. Despite this, increased importation of biomass can be the cost-reducing factor making the target realisable, which...... would justify promotion of such trade. (c) 2005 Elsevier Ltd. All rights reserved....

  20. Analysis of surfaces for characterization of fungal burden - Does it matter?

    Science.gov (United States)

    Viegas, Carla; Faria, Tiago; Meneses, Márcia; Carolino, Elisabete; Viegas, Susana; Gomes, Anita Quintal; Sabino, Raquel

    2016-01-01

    Mycological contamination of occupational environments can be a result of fungal spores' dispersion in the air and on surfaces. Therefore, it is very important to assess it in both types of the samples. In the present study we assessed fungal contamination in the air and in the surface samples to show relevance of surfaces sampling in complementing the results obtained in the air samples. In total, 42 settings were assessed by the analysis of air and surfaces samples. The settings were divided into settings with a high fungal load (7 poultry farms and 7 pig farms, 3 cork industries, 3 waste management plants, 2 wastewater treatment plants and 1 horse stable) and a low fungal load (10 hospital canteens, 8 college canteens and 1 maternity hospital). In addition to culture-based methods, molecular tools were also applied to detect fungal burden in the settings with a higher fungal load. From the 218 sampling sites, 140 (64.2%) presented different species in the examined surfaces when compared with the species identified in the air. A positive association in the high fungal load settings was found between the presence of different species in the air and surfaces. Wastewater treatment plants constituted the setting with the highest number of different species between the air and surface. We observed that surfaces sampling and application of molecular tools showed the same efficacy of species detection in high fungal load settings, corroborating the fact that surface sampling is crucial for a correct and complete analysis of occupational scenarios. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  1. Biomass thermo-conversion. Research trends

    International Nuclear Information System (INIS)

    Rodriguez Machin, Lizet; Perez Bermudez, Raul; Quintana Perez, Candido Enrique; Ocanna Guevara, Victor Samuel; Duffus Scott, Alejandro

    2011-01-01

    In this paper is studied the state of the art in order to identify the main trends of the processes of thermo conversion of biomass into fuels and other chemicals. In Cuba, from total supply of biomass, wood is the 19% and sugar cane bagasse and straw the 80%, is why research in the country, should be directed primarily toward these. The methods for energy production from biomass can be group into two classes: thermo-chemical and biological conversion routes. The technology of thermo-chemical conversion includes three subclasses: pyrolysis, gasification, and direct liquefaction. Although pyrolysis is still under development, in the current energy scenario, has received special attention, because can convert directly biomass into solid, liquid and gaseous by thermal decomposition in absence of oxygen. The gasification of biomass is a thermal treatment, where great quantities of gaseous products and small quantities of char and ash are produced. In Cuba, studies of biomass thermo-conversion studies are limited to slow pyrolysis and gasification; but gas fuels, by biomass, are mainly obtained by digestion (biogas). (author)

  2. Fungal Biosorption, An Innovative Treatment for the Decolourisation and Detoxification of Textile Effluents

    Directory of Open Access Journals (Sweden)

    Antonella Pannocchia

    2010-08-01

    Full Text Available Textile effluents are among the most difficult-to-treat wastewaters, due to their considerable amount of recalcitrant and toxic substances. Fungal biosorption is viewed as a valuable additional treatment for removing pollutants from textile wastewaters. In this study the efficiency of Cunninghamella elegans biomass in terms of contaminants, COD and toxicity reduction was tested against textile effluents sampled in different points of wastewater treatment plants. The results showed that C. elegans is a promising candidate for the decolourisation and detoxification of textile wastewaters and its versatility makes it very competitive compared with conventional sorbents adopted in industrial processes.

  3. Fungal mycelium and decomposition of needle litter in three contrasting coniferous forests

    Science.gov (United States)

    Virzo De Santo, Amalia; Rutigliano, Flora Angela; Berg, Björn; Fioretto, Antonietta; Puppi, Gigliola; Alfani, Anna

    2002-08-01

    The fungal mycelium ingrowth and the rates of mass loss and respiration of needle litter of Pinus pinea, Pinus laricio, Pinus sylvestris, and Abies alba were investigated, in three coniferous forests, over a 3-year period by means of a composite set of incubations. In the early stages, the fungal flora of the decomposing needles was dominated by dematiaceous hyphomycetes and coelomycetes. Basidiomycetes reached a peak after 6 months on pine needles, but were absent from the N-rich needles of A. alba. Soil fungi ( Penicillium, Trichoderma, Absidia, Mucor sp. pl.) became most frequent in later stages. At the end of the study period, the total mycelium amount showed the lowest values in all pine needles incubated in the P. laricio forest and the highest ones in P. pinea needles incubated in the P. pinea forest. In all data sets, as in data for boreal forests examined for comparison, the concentration of litter fungal mycelium versus litter mass loss followed a common exponential model. However, in later stages, the amount of litter fungal mycelium was very close to that of the humus at the incubation site, thus supporting the hypothesis of a logistic growth pattern. Respiration rates of decomposing litters varied with season and decreased with litter age to values close to those of the humus at the incubation site. Respiration of water-saturated litter was negatively correlated with the total mycelium concentration, and this was consistent with the observation that in far-decomposed litter only a minor fraction of the total mycelium is alive.

  4. Digestibility of Betung Bamboo Fiber Following Fungal Pretreatment

    Directory of Open Access Journals (Sweden)

    Widya Fatriasari

    2014-10-01

    Full Text Available This research evaluated the effect of fungal pretreatment of betung bamboo fibers and enzymatic- and microwave-assisted hydrolysis on the reducing sugar yield. The enzymatic hydrolysis of the pretreated biomass was carried out with cellulase and 10 and 20 FPU/g of substrate in a shaking incubator at 50 °C and 150 rpm for 48 h. The sulfuric acid concentration used in the microwave-assisted acid hydrolysis was 1.0, 2.5, and 5%, either with or without the addition of activated carbon. Microwave irradiation (330 Watt was applied for 5–12.5 min. The yield of reducing sugar was better with the microwave-assisted acid hydrolysis, and the yield tended to increase with an increase in the irradiation time. Based on the dry weight of the initial biomass (bamboo, pretreatment with 5% inoculum loading resulted in a higher reducing sugar yield (17.06% than with 10% inoculum loading (14.54%. At a 1% acid concentration, the formation of brown compounds decreased, followed by a reduction in the reducing sugar yield. The addition of activated carbon at a 1% acid concentration seemed to be of no benefit with respect to the yield in the microwave-assisted acid hydrolysis. The pretreatment with the 5% inoculum loading for 12.5 min at 1% acid concentration resulted in the highest reducing sugar yield. Under these conditions, the yield was 6.3-fold that of the reducing sugar yield using 20 FPU/g of cellulase. The rate of bamboo hollocellulose hydrolysis reached 22.75% of the maximum theoretical reducing sugar reducing sugar of dry biomass.

  5. Analysis of surfaces for characterization of fungal burden – Does it matter?

    Directory of Open Access Journals (Sweden)

    Carla Viegas

    2016-08-01

    Full Text Available Objectives: Mycological contamination of occupational environments can be a result of fungal spores’ dispersion in the air and on surfaces. Therefore, it is very important to assess it in both types of the samples. In the present study we assessed fungal contamination in the air and in the surface samples to show relevance of surfaces sampling in complementing the results obtained in the air samples. Material and Methods: In total, 42 settings were assessed by the analysis of air and surfaces samples. The settings were divided into settings with a high fungal load (7 poultry farms and 7 pig farms, 3 cork industries, 3 waste management plants, 2 wastewater treatment plants and 1 horse stable and a low fungal load (10 hospital canteens, 8 college canteens and 1 maternity hospital. In addition to culture-based methods, molecular tools were also applied to detect fungal burden in the settings with a higher fungal load. Results: From the 218 sampling sites, 140 (64.2% presented different species in the examined surfaces when compared with the species identified in the air. A positive association in the high fungal load settings was found between the presence of different species in the air and surfaces. Wastewater treatment plants constituted the setting with the highest number of different species between the air and surface. Conclusions: We observed that surfaces sampling and application of molecular tools showed the same efficacy of species detection in high fungal load settings, corroborating the fact that surface sampling is crucial for a correct and complete analysis of occupational scenarios.

  6. Effects of storage temperature on the fungal and chemical spoilage of maize grains and flour

    International Nuclear Information System (INIS)

    Akhter, T.; Sattar, A.; Khan, I.; Ahmed, A.

    1989-01-01

    The chemical and fungal spoilage of maize grains and flour of Sarhad White and Sarhad Yellow varieties in relation to time temperature (10 C, 15 C, 20 C and room (30-56 C) storage period at 8-12 months was studied. The results showed that total fungal counts and percent infestation markedly increased with advanced storage and increased temperature. Percentage germination generally decreased during extended storage. Peroxide values of both the grain and flour increased with increasing temperature and storage time. At the end of one year storage the total fungal counts in the grain and flour of Sarhad White and Sarhad Yellow ranged 13.6x10/sup 12/ - 20.0x10/sup 13/ and Yellow ranged 17.1x10/sup 13/ - 22.1x10/sup 14/ respectively. germination and infestation percentage of the grains of Sarhad White and Sarhad Yellow ranged 76-78% and 96-99%. The peroxide value ranged 6.6-7.0 and 6.4-6.8 meg/Kg in the grain and flour of Sarhad White respectively after one year storage. There was more fungal infestation, fungal counts and peroxidation in the grain and flour Sarhad Yellow than that of Sarhad White. (author)

  7. Fungal monitoring of the indoor air of the Museo de La Plata Herbarium, Argentina.

    Science.gov (United States)

    Mallo, Andrea C; Elíades, Lorena A; Nitiu, Daniela S; Saparrat, Mario C N

    Biological agents, such as fungal spores in the air in places where scientific collections are stored, can attack and deteriorate them. The aim of this study was to gather information on the indoor air quality of the Herbarium of Vascular Plants of the Museo de Ciencias Naturales de La Plata, Argentina, in relation to fungal propagules and inert particles. This study was made using a volumetric system and two complementary sampling methods: (1) a non-viable method for direct evaluation, and (2) a viable method by culture for viable fungal propagules. The non-viable method led to ten spore morphotypes being found from related fungal sources. A total of 4401.88spores/m 3 and 32135.18 inert suspended particles/m 3 were recorded. The viable method led to the finding of nine fungal taxa as viable spores that mostly belonged to anamorphic forms of Ascomycota, although the pigmented yeast Rhodotorula F.C. Harrison (Basidiomycota) was also found. A total count of 40,500fungal CFU/m 3 air was estimated for all the sites sampled. Both the non-viable and viable sampling methods were necessary to monitor the bio-aerosol load in the La Plata Herbarium. The indoor air of this institution seems to be reasonably adequate for the conservation of vascular plants due to the low indoor/outdoor index, low concentrations of air spores, and/or lack of indicators of moisture problems. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Evaluation of sampling strategies to estimate crown biomass

    Science.gov (United States)

    Krishna P Poudel; Hailemariam Temesgen; Andrew N Gray

    2015-01-01

    Depending on tree and site characteristics crown biomass accounts for a significant portion of the total aboveground biomass in the tree. Crown biomass estimation is useful for different purposes including evaluating the economic feasibility of crown utilization for energy production or forest products, fuel load assessments and fire management strategies, and wildfire...

  9. Fungal composition on leaves explains pollutant-mediated indirect effects on amphipod feeding.

    Science.gov (United States)

    Bundschuh, Mirco; Zubrod, Jochen P; Kosol, Sujitra; Maltby, Lorraine; Stang, Christoph; Duester, Lars; Schulz, Ralf

    2011-07-01

    The energy stored in coarse particulate organic matter, e.g. leaf litter, is released to aquatic ecosystems by breakdown processes involving microorganisms and leaf shredding invertebrates. The palatability of leaves and thus the feeding of shredders on leaf material are highly influenced by microorganisms. However, implications in the colonization of leaves by microorganisms (=conditioning) caused by chemical stressors are rarely studied. Our laboratory experiments, therefore, investigated for the first time effects of a fungicide on the conditioning process of leaf material by means of food-choice experiments using Gammarus fossarum (Crustacea: Amphipoda). Additionally, microbial analyses were conducted to facilitate the mechanistic understanding of the observed behavior. Gammarids significantly preferred control leaf discs over those conditioned in presence of the fungicide tebuconazole at concentrations of 50 and 500 μg/L. Besides the decrease of fungal biomass with increasing fungicide concentration, also the leaf associated fungal community composition showed that species preferred by gammarids, such as Alatospora acumunata, Clavariopsis aquatica, or Flagellospora curvula, were more frequent in the control. Tetracladium marchalianum, however, which is rejected by gammarids, was abundant in all treatments suggesting an increasing importance of this species for the lower leaf palatability--as other more palatable fungal species were almost absent--in the fungicide treatments. Hence, the food-choice behavior of G. fossarum seems to be a suitable indicator for alterations in leaf associated microbial communities, especially fungal species composition, caused by chemical stressors. Finally, this or similar test systems may be a reasonable supplement to the environmental risk assessment of chemicals in order to achieve its protection goals, as on the one hand, indirect effects may occur far below concentrations known to affect gammarids directly, and on the other

  10. Bioremediation of MGP soils with mixed fungal and bacterial cultures

    International Nuclear Information System (INIS)

    Lee, C.J.B.; Fletcher, M.A.; Avila, O.I.; Munnecke, D.M.; Callanan, J.; Yunker, S.

    1995-01-01

    This culture selection study examines the degradation of polycyclic automatic hydrocarbon (PAH) by a number of brown- and white-rot fungi and bacterial cultures for the treatment of coal tar wastes. Cultures were screened for naphthalene degradation in shake flasks, and selected organisms were then examined for their ability to degrade a mixture of PAHs in aqueous culture. PAH degradation in the presence of the surfactant, TWEEN 80, was examined for some cultures. Many of the organisms were observed to be resistant to greater than 10 mg/L free cyanide. Solid substrate growth conditions were optimized for the selected fungal cultures in preparation for manufactured gas plant (MGP) soil microcosm experiments. The fungi generally produced more biomass under conditions of acidic to neutral pH, incubation at 30 C with 90% moisture saturation, and with granulated corncobs or alfalfa pellets supplied as a lignocellulosic substrate. Of the cultures screened, nine fungal cultures were selected based on their ability to degrade at least 40% of naphthalene, fluorene, or benzo(a)pyrene in 2 weeks or less. A bacterial culture capable of degrading 30 mg/L of naphthalene in 1 week was also selected, and the cultures were examined further in PAH-degradation studies in contaminated soils

  11. Invasive fungal infections after natural disasters.

    Science.gov (United States)

    Benedict, Kaitlin; Park, Benjamin J

    2014-03-01

    The link between natural disasters and subsequent fungal infections in disaster-affected persons has been increasingly recognized. Fungal respiratory conditions associated with disasters include coccidioidomycosis, and fungi are among several organisms that can cause near-drowning pneumonia. Wound contamination with organic matter can lead to post-disaster skin and soft tissue fungal infections, notably mucormycosis. The role of climate change in the environmental growth, distribution, and dispersal mechanisms of pathogenic fungi is not fully understood; however, ongoing climate change could lead to increased disaster-associated fungal infections. Fungal infections are an often-overlooked clinical and public health issue, and increased awareness by health care providers, public health professionals, and community members regarding disaster-associated fungal infections is needed.

  12. Differentiated surface fungal communities at point of harvest on apple fruits from rural and peri-urban orchards

    OpenAIRE

    Shen, Youming; Nie, Jiyun; Li, Zhixia; Li, Haifei; Wu, Yonglong; Dong, Yafeng; Zhang, Jianyi

    2018-01-01

    The diverse fungal communities that colonize fruit surfaces are closely associated with fruit development, preservation and quality control. However, the overall fungi adhering to the fruit surface and the inference of environmental factors are still unknown. Here, we characterized the fungal signatures on apple surfaces by sequencing internal transcribed spacer 1 (ITS1) region. We collected the surface fungal communities from apple fruits cultivated in rural and peri-urban orchards. A total ...

  13. Biosorption and bioaccumulation of thallium by thallium-tolerant fungal isolates.

    Science.gov (United States)

    Sun, Jialong; Zou, Xiao; Xiao, Tangfu; Jia, Yanlong; Ning, Zengping; Sun, Min; Liu, Yizhang; Jiang, Tao

    2015-11-01

    Little is known about the biosorption and bioaccumulation capacity of thallium (Tl) by microorganisms that occur in Tl-polluted soil. The present study focused on characterizing the biosorption and bioaccumulation of Tl by Tl-tolerant fungi isolated from Tl-polluted soils. Preliminary data showed a positive correlation between the biomass and the biosorbed Tl content. The Tl-tolerant strains were capable of bioaccumulating Tl, up to 7189 mg kg(-1) dry weight. The subcellular distribution of Tl showed obvious compartmentalization: cytoplasm ≫ cell wall > organelle. The majority of Tl (up to 79%) was found in the cytoplasm, suggesting that intracellular compartmentalization appeared to be responsible for detoxification. These findings further suggest the applicability of the fungal isolates for cleanup of Tl in Tl-polluted water and soil.

  14. Epidemiology of fungal infections and risk factors in newborn patients

    Directory of Open Access Journals (Sweden)

    Paolo Manzoni

    2013-07-01

    Full Text Available The incidence of fungal infections among newborn babies is increasing, owing mainly to the in­creased ability to care and make survive immature infants at higher specific risk for fungal infections. The risk is higher in infants with very low and extremely low birth weight, in babies receiving total parenteral nutrition, in neonates with limited barrier effect in the gut, or with central venous catheter or other devices where fungal biofilms can originate. Also neonates receiving broad spectrum antibiotics, born through caesarian section or non-breastfed can feature an increased, specific risk. Most fungal infections in neonatology occur in premature children, are of nosocomial origin, and are due to Candida species. Colonization is a preliminary step, and some factors must be considered for the diagnosis and grading process: the iso­lation site, the number of colonized sites, the intensity of colonization, and the Candida subspecies. The most complicated patients are at greater risk of fungal infections, and prophylaxis or pre-emptive therapy should often be considered. A consistent decisional tree in neonatology is yet to be defined, but some efforts have been made in order to identify characteristics that should guide the prophylaxis or treatment choices. A negative blood culture and the absence of symptoms aren’t enough to rule out the diagnosis of fungal infections in newborn babies. Similarly, laboratory tests have been validated only for adults. The clinical judgement is of utmost importance in the diagnostic process, and should take into account the presence of clinical signs of infection, of a severe clinical deterioration, as well as changes in some laboratory tests, and also the presence and characteristics of a pre-existing fungal colonization.http://dx.doi.org/10.7175/rhc.v14i1S.856

  15. Development of biomass energy lacks a clear direction

    International Nuclear Information System (INIS)

    1998-01-01

    By the year 2020, 4.4% of total energy consumption in the Netherlands must be generated from biomass. That means that biomass will be the most important form of renewable energy for this country. But, with 20 years to go, there is still no generally accepted strategy for the technological and economical development of bio-energy. The most important questions are discussed: is biomass sustainable or not, is it better to burn biomass or to gasify, must one built large-scale or small-scale biomass conversion plants, should the Netherlands import or biomass or cultivate biomass themselves, should biomass wastes be incinerated or recycled, must the emission standard for SO2 be 40 or 200 mg, and, finally, is bio-energy economically feasible?

  16. Soil Microbial Community Structure Evolution along Halophyte Succession in Bohai Bay Wetland

    Directory of Open Access Journals (Sweden)

    Mingyang Cong

    2014-01-01

    Full Text Available It is urgent to recover Bohai Bay costal wetland ecosystem because of covering a large area of severe saline-alkali soil. To explore the relationship between halophyte herbaceous succession and microbial community structure, we chose four local communities which played an important role in improving soil microenvironment. We performed phospholipid fatty acid analysis, measured soil parameters, and evaluated shifts of microbial community structure. Results showed that microbial community structure changed significantly along succession and bacteria community was dominant. Total phospholipid fatty acid content increased in different successional stages but decreased with depth, with similar variations in bacterial and fungal biomass. Soil organic carbon and especially total nitrogen were positively correlated with microbial biomass. Colonization of pioneering salt-tolerant plants Suaeda glauca in saline-alkali bare land changed total soil microorganism content and composition. These results showed that belowground processes were strongly related with aboveground halophyte succession. Fungal/bacterial ratio, Gram-negative/Gram-positive bacteria ratio, total microbial biomass, and fungi and bacteria content could indicate the degree of succession stages in Bohai Bay wetland ecosystem. And also these findings demonstrated that microbial community biomass and composition evolved along with vegetation succession environmental variables.

  17. Biomass energy, forests and global warming

    International Nuclear Information System (INIS)

    Rosillo-Calle, Frank; Hall, D.O.

    1992-01-01

    Biomass in all its forms currently provides about 14% of the world's energy, equivalent to 25 million bbl oil/day; in developing countries where it is the major energy source, biomass supplies 35% of total energy use. Although biomass energy use affects the flux of carbon to the atmosphere, the main carbon emission problem is caused by fossil fuels and land clearance for agriculture. Biomass fuels make no net contribution to atmospheric CO 2 if used sustainably. A major global revegetation and reforestation effort is a possible strategy to reduce CO 2 emissions and to slow the pace of climatic change. However, a more attractive alternative strategy might be to substitute fossil fuels, especially coal, with biomass grown specifically for this purpose producing modern fuels such as electricity, liquids and gases. This paper examines biomass energy use, devegetation, biomass burning, the implications for global warming and the ability of biomass to sequester CO 2 and substitute for fossil fuels. It also discusses some socioeconomic and political issues. (author)

  18. Improving North American forest biomass estimates from literature synthesis and meta-analysis of existing biomass equations

    Science.gov (United States)

    David C. Chojnacky; Jennifer C. Jenkins; Amanda K. Holland

    2009-01-01

    Thousands of published equations purport to estimate biomass of individual trees. These equations are often based on very small samples, however, and can provide widely different estimates for trees of the same species. We addressed this issue in a previous study by devising 10 new equations that estimated total aboveground biomass for all species in North America (...

  19. Radiation sensitivity of fungal microflora isolated from some pharmaceutical ingredients

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, S.A. (Ain Shams Univ., Cairo (Egypt). Botany Dept.); El-Zawahry, Y.A.; Abdel All, S.S.

    1983-01-01

    The total number of fungal microflora of D-glucose, NaCl, KCl and their solutions was determined. The fungal isolates were identified as Aspergillus fumigatus. Aspergillus niger; Spicaria divaricate and Spicaria silvatica and their response to ..gamma..-radiation was determined, the most predominant isolate Asp. fumigatus was also the most irradiation resistant. The Dio and the lethal dose were determined for each isolate in a pure spore suspension as well as in the presence of the other isolates. The higher lethal dose values obtained for pure spore suspension as compared to that obtained for the natural fungal flora a D-glucose are discussed in terms of spore clumping. The activity of amylase, protease and L-asparaginase of Asp. fumigatus was examined prior to and after exposure to different doses of ..gamma..-radiation. Though all were inhibited at high doses, the effect was not as drastic as it was on cell viability.

  20. Burden of Serious Fungal Infections in Argentina

    Directory of Open Access Journals (Sweden)

    Fernando O. Riera

    2018-04-01

    Full Text Available The number of fungal infections at any given time in Argentina is not known. Here we estimate the burden of serious fungal infections in Argentina for the first time. Specific population statistics were searched from multiple sources, local literature was identified, and estimates made. Some additional data were sourced from the Ministry of Health, the Global Initiative for Asthma (GINA program, and national haematology and transplant societies. Argentina has a population of 43.8 million, with 25% of this total being children under 15 years. The predicted candidemia annual incidence is 2193 cases, with 50% occurring in the ICU. At a 6% prevalence rate, an estimated 593,695 women suffer from recurrent vulvovaginal candidiasis. Invasive aspergillosis is relatively common because of high smoking and chronic obstructive pulmonary disease (COPD rates, with 268 cases in immunocompromised patients and another 1938 in the 168,000 COPD patients admitted to hospital. Asthma is also common, affecting 14% of adults, and so allergic bronchopulmonary aspergillosis (ABPA and severe asthma with fungal sensitization (SAFS are major problems. An estimated 432 cases of cryptococcal meningitis (CM—90% of them in AIDS patients—and 1177 cases of Pneumocystis pneumonia (PCP occur each year. The estimated annual case number of disseminated histoplasmosis is 404 in AIDS patients, almost as frequent as CM. Paracoccidioidomycosis annual incidence is estimated at 219, and coccidioidomycosis at 16 cases. At least 881,023 people (>2.01% in Argentina are affected by a serious fungal disease annually, with considerable morbidity and mortality.

  1. Release and characteristics of fungal fragments in various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mensah-Attipoe, Jacob [Department of Environmental Science, University of Eastern Finland, Yliopistonranta 1D, P. O. Box 1627, FI-70211 Kuopio (Finland); Saari, Sampo [Department of Physics, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere (Finland); Veijalainen, Anna-Maria; Pasanen, Pertti [Department of Environmental Science, University of Eastern Finland, Yliopistonranta 1D, P. O. Box 1627, FI-70211 Kuopio (Finland); Keskinen, Jorma [Department of Physics, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere (Finland); Leskinen, Jari T.T. [SIB Labs, University of Eastern Finland, Yliopistonranta 1E, P. O. Box 1627, FI-70211, Kuopio (Finland); Reponen, Tiina, E-mail: reponeta@ucmail.uc.edu [Department of Environmental Science, University of Eastern Finland, Yliopistonranta 1D, P. O. Box 1627, FI-70211 Kuopio (Finland); Department of Environmental Health, University of Cincinnati, P.O. Box 670056, Cincinnati, OH 45267-0056 (United States)

    2016-03-15

    Intact spores and submicrometer size fragments are released from moldy building materials during growth and sporulation. It is unclear whether all fragments originate from fungal growth or if small pieces of building materials are also aerosolized as a result of microbial decomposition. In addition, particles may be formed through nucleation from secondary metabolites of fungi, such as microbial volatile organic compounds (MVOCs). In this study, we used the elemental composition of particles to characterize the origin of submicrometer fragments released from materials contaminated by fungi. Particles from three fungal species (Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum), grown on agar, wood and gypsum board were aerosolized using the Fungal Spore Source Strength Tester (FSSST) at three air velocities (5, 16 and 27 m/s). Released spores (optical size, d{sub p} ≥ 0.8 μm) and fragments (d{sub p} ≤ 0.8 μm) were counted using direct-reading optical aerosol instruments. Particles were also collected on filters, and their morphology and elemental composition analyzed using scanning electron microscopes (SEMs) coupled with an Energy-Dispersive X-ray spectroscopy (EDX). Among the studied factors, air velocity resulted in the most consistent trends in the release of fungal particles. Total concentrations of both fragments and spores increased with an increase in air velocity for all species whereas fragment–spore (F/S) ratios decreased. EDX analysis showed common elements, such as C, O, Mg and Ca, for blank material samples and fungal growth. However, N and P were exclusive to the fungal growth, and therefore were used to differentiate biological fragments from non-biological ones. Our results indicated that majority of fragments contained N and P. Because we observed increased release of fragments with increased air velocities, nucleation of MVOCs was likely not a relevant process in the formation of fungal fragments. Based

  2. Age and gender affect the composition of fungal population of the human gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Francesco Strati

    2016-08-01

    Full Text Available The fungal component of the human gut microbiota has been neglected for long time due to the low relative abundance of fungi with respect to bacteria, and only recently few reports have explored its composition and dynamics in health or disease. The application of metagenomics methods to the full understanding of fungal communities is currently limited by the under representation of fungal DNA with respect to the bacterial one, as well as by the limited ability to discriminate passengers from colonizers. Here we investigated the gut mycobiota of a cohort of healthy subjects in order to reduce the gap of knowledge concerning fungal intestinal communities in the healthy status further screening for phenotypical traits that could reflect fungi adaptation to the host. We studied the fecal fungal populations of 111 healthy subjects by means of cultivation on fungal selective media and by amplicon-based ITS1 metagenomics analysis on a subset of 57 individuals. We then characterized the isolated fungi for their tolerance to gastrointestinal tract-like challenges and their susceptibility to antifungals. A total of 34 different fungal species were isolated showing several phenotypic characteristics associated with intestinal environment such as tolerance to body temperature (37°C, to acidic and oxidative stress and to bile salts exposure. We found a high frequency of azoles resistance in fungal isolates, with potential and significant clinical impact. Analyses of fungal communities revealed that the human gut mycobiota differs in function of individuals’ life stage in a gender-related fashion. The combination of metagenomics and fungal cultivation allowed an in-depth understanding of the fungal intestinal community structure associated to the healthy status and the commensalism-related traits of isolated fungi. We further discussed comparatively the results of sequencing and cultivation to critically evaluate the application of metagenomics

  3. Comparison of plain potassium hydroxide mounts, fungal cultures and nail plate biopsies in the diagnosis of onychomycosis

    International Nuclear Information System (INIS)

    Malik, N.A.; Nasiruddin, A.

    2006-01-01

    To compare the relative sensitivity of direct microscopy, fungal culture and nail plate biopsy in the diagnosis of onychomycosis. A total of 50 patients who were suffering from different clinical variants of onychomycosis, irrespective of their age, gender, with or without simultaneous presence of systemic diseases, were subjected to laboratory investigations including direct microscopy with 20% potassium hydroxide (KOH) for fungal hyphae, fungal cultures and nail plate biopsies. These patients were later categorized into two groups based upon the results of nail plate biopsies. Of 50 patients, 15 (30%) were positive for fungal elements in direct microscopy, 8 (16%) were positive for fungal culture and 16 (32%) revealed positive results in nail plate biopsies. Amongst nail plate biopsy positive cases, 10 (63%) were positive for direct microscopy and 6 (37.5%) were positive for fungal cultures. In biopsy negative cases, positive results for direct microscopy were seen in 5 (14.7%) patients and positive fungal culture was found in 2 (5.88%) patients. (author)

  4. Fungal endophytes which invade insect galls: insect pathogens, benign saprophytes, or fungal inquilines?

    Science.gov (United States)

    Wilson, Dennis

    1995-08-01

    Fungi are frequently found within insect galls. However, the origin of these fungi, whether they are acting as pathogens, saprophytes invading already dead galls, or fungal inquilines which invade the gall but kill the gall maker by indirect means, is rarely investigated. A pathogenic role for these fungi is usually inferred but never tested. I chose the following leaf-galling-insect/host-plant pairs (1) a cynipid which forms two-chambered galls on the veins of Oregon white oak, (2) a cynipid which forms single-chambered galls on California coast live oak, and (3) an aphid which forms galls on narrowleaf cottonwood leaves. All pairs were reported to have fungi associated with dead insects inside the gall. These fungi were cultured and identified. For the two cynipids, all fungi found inside the galls were also present in the leaves as fungal endophytes. The cottonwood leaves examined did not harbor fungal endophytes. For the cynipid on Oregon white oak, the fungal endophyte grows from the leaf into the gall and infects all gall tissue but does not directly kill the gall maker. The insect dies as a result of the gall tissue dying from fungal infection. Therefore, the fungus acts as an inquiline. Approximately 12.5% of these galls die as a result of invasion by the fungal endophyte.

  5. Fungal infections as a contributing cause of death: An autopsy study

    Directory of Open Access Journals (Sweden)

    Megha S Uppin

    2011-01-01

    Full Text Available Context: With the continuing rise in the number of immunocompromised patients, the incidence of invasive mycoses has increased. Various studies have reported the trends of fungal infections in autopsies. Because of limitations in antemortem clinical diagnosis owing to lack of sensitive diagnostic tools, information regarding frequency and pathogenesis of fungal infections is largely dependent on autopsy studies. Aim: To study the prevalence of fungal infections at autopsy spanning a period of 20 years and to document recent trends, prevalence of various fungi over decades along with underlying predisposing factors and pathological findings. Settings and Design: Retrospective study. Materials and Methods:All autopsies between 1988 and 2007 were reviewed and all cases showing fungal infections were analyzed. The clinical details and demographic data were retrieved from medical records. Representative sections from all organs were stained with hematoxylin and eosin stain and special stains including Gomori′s silver methenamine (GMS and per-iodic acid Schiff (PAS. Culture details were noted, wherever available. Results: A total of 401 autopsies were performed during the study period. Fungal infections were identified in 35 (8.7% of these cases. Leukemia was the commonest risk factor. The commonest pathogen in the present study was Aspergillus sp. The commonest single organ involved was brain (n = 18. Culture positivity was seen in 23.8% cases. Conclusion: The study highlights various predisposing factors and organisms in autopsy series. Existing diagnostic modalities are not sensitive to ensure antemortem diagnosis of fungal infections.

  6. Fungal treatment: a prospective process for eco-friendly bioremediation of wastewater sludge

    International Nuclear Information System (INIS)

    Molla, A. H.; Fakhru'l-Razi, A.

    2009-01-01

    None of the conventional techniques is safe and environmental friendly for wastewaters/sludge disposal. A sustainable, safe and environmental friendly biological technique is a great apprehension to the relevant scientists. Since the fungal treatment was exercised to evaluate its potentially for sustainable bioseparation and bioremediation of wastewater. Bioseparation and bioremediation of wastewater sludge by fungal inoculation implied the decreasing of bio solids, total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and specific resistance to filtration (SRF) of wastewater. (Author)

  7. Differentiated surface fungal communities at point of harvest on apple fruits from rural and peri-urban orchards.

    Science.gov (United States)

    Shen, Youming; Nie, Jiyun; Li, Zhixia; Li, Haifei; Wu, Yonglong; Dong, Yafeng; Zhang, Jianyi

    2018-02-01

    The diverse fungal communities that colonize fruit surfaces are closely associated with fruit development, preservation and quality control. However, the overall fungi adhering to the fruit surface and the inference of environmental factors are still unknown. Here, we characterized the fungal signatures on apple surfaces by sequencing internal transcribed spacer 1 (ITS1) region. We collected the surface fungal communities from apple fruits cultivated in rural and peri-urban orchards. A total of 111 fungal genera belonging to 4 phyla were identified, showing remarkable fungal diversity on the apple surface. Comparative analysis of rural samples harboured higher fungal diversity than those from peri-urban orchards. In addition, fungal composition varied significantly across apple samples. At the genus level, the protective genera Coniothyrium, Paraphaeosphaeria and Periconia were enriched in rural samples. The pathogenic genera Acremonium, Aspergillus, Penicillium and Tilletiposis were enriched in peri-urban samples. Our findings indicate that rural samples maintained more diverse fungal communities on apple surfaces, whereas peri-urban-planted apple carried potential pathogenic risks. This study sheds light on ways to improve fruit cultivation and disease prevention practices.

  8. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The primary energy production from solid biomass in the European Union reached 79.3 Mtoe in 2010 which implies a growth rate of 8% between 2009 and 2010. The trend, which was driven deeper by Europe's particularly cold winter of 2009-2010, demonstrates that the economic down-turn failed to weaken the member states' efforts to structure the solid biomass sector. Heat consumption rose sharply: the volume of heat sold by heating networks increased by 18% and reached 6.7 Mtoe and if we consider the total heat consumption (it means with and without recovery via heating networks) the figure is 66 Mtoe in 2010, which amounts to 10.1% growth. The growth of electricity production continued through 2010 (8.3% up on 2009) and rose to 67 TWh but at a slower pace than in 2009 (when it rose by 11.3% on 2008). The situation of the main producer countries: Sweden, Finland, Germany and France is reviewed. It appears that cogeneration unit manufacturers and biomass power plant constructors are the main beneficiaries of the current biomass energy sector boom. There is a trend to replace coal-fired plants that are either obsolete or near their end of life with biomass or multi-fuel plants. These opportunities will enable the industry to develop and further exploit new technologies such as gasification, pyrolysis and torrefaction which will enable biomass to be turned into bio-coal. (A.C.)

  9. Some metals in aboveground biomass of Scots pine in Lithuania

    DEFF Research Database (Denmark)

    Varnagiryte-Kabašinskiene, Iveta; Armolaitis, Kestutis; Stupak, Inge

    2014-01-01

    with stemwood and living branches. However, metal export with aboveground biomass represented relatively small proportion of metals in mineral sandy soil. The annual inputs of Fe and Zn with atmospheric deposition were over 10 times higher than the mean annual removals with total aboveground biomass....... The content of metals in forest biomass fuel ash was relatively small to compare with their total removals. The findings of this study have an important implications for future practice, i.e. the recommended maximum forest biomass fuel ash dose for the compensating fertilising could be increased with respect...... to balanced output - input in Lithuania....

  10. Isolation and identification of fungal flora associated with groundnut ...

    African Journals Online (AJOL)

    A total of 25 colonies were isolated from all the samples from which 6 fungal species were identified, namely Mucor, Aspergillus, Rhizophus, Curvularia, Pencillium and Fusarium spp. Of these, Mucor and Rhizopus were most prevalent having been isolated from the three storage facilities studied. Curvularia and Penicillium ...

  11. Hydrogen Transfer during Liquefaction of Elbistan Lignite to Biomass; Total Reaction Transformation Approach

    Science.gov (United States)

    Koyunoglu, Cemil; Karaca, Hüseyin

    2017-12-01

    Given the high cost of the tetraline solvent commonly used in liquefaction, the use of manure with EL is an important factor when considering the high cost of using tetraline as a hydrogen transfer source. In addition, due to the another cost factor which is the catalyst prices, red mud (commonly used, produced as a byproduct in the production of aluminium) is reduced cost in the work of liquefaction of coal, biomass, even coal combined biomass, corresponding that making the EL liquefaction an agenda for our country is another important factor. Conditions for liquefaction experiments conducted for hydrogen transfer from manure to coal; Catalyst concentration of 9%, liquid/solid ratio of 3/1, reaction time of 60 min, fertilizer/lignite ratio of 1/3, and the reaction temperature of 400 °C, the stirred speed of 400 rpm and the initial nitrogen pressure of 20 bar was fixed. In order to demonstrate the hydrogen, transfer from manure to coal, coal is used solely, by using tetraline (also known as a hydrogen carrier) and distilled water which is not hydrogen donor as a solvent in the co-liquefaction of experiments, and also the liquefaction conditions are carried out under an inert (N2) gas atmosphere. According to the results of the obtained liquefaction test; using tetraline solvent the total liquid product conversion percentage of the oil + gas conversion was 38.3 %, however, the results of oil+gas conversion obtained using distilled water and EL combined with manure the total liquid product conversion percentage was 7.4 %. According to the results of calorific value and elemental analysis, only the ratio of (H/C)atomic of coal obtained by using tetraline increased with the liquefaction of manure and distilled water. The reason of the increase in the amount of hydrogen due to hydrogen transfer from the manure on the solid surface of the coal, and also on the surface of the inner pore of the coal during the liquefaction, brings about the evaluation of the coal as a

  12. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  13. Nitrogen cycling in an integrated biomass for energy system

    International Nuclear Information System (INIS)

    Moorhead, K.K.

    1986-01-01

    A series of experiments was conducted to evaluate N cycling in three components of an integrated biomass for energy system, i.e. water hyacinth production, anaerobic digestion in hyacinth biomass, and recycling of digester effluent and sludge. Plants assimilated 50 to 90% of added N in hyacinth production systems. Up to 28% of the total plant N was contained in hyacinth detritus. Nitrogen loading as plant detritus into hyacinth ponds was 92 to 148 kg N ha -1 yr -1 . Net mineralization of plant organic 15 N during anaerobic digestion was 35 and 70% for water hyacinth plants with low and high N content, respectively. Approximately 20% of the 15 N was recovered in the digested sludge while the remaining 15 N was recovered in the effluent. Water hyacinth growth in digester effluents was affected by electrical conductivity and 15 NH 4 + -N concentration. Addition of water hyacinth biomass to soil resulted in decomposition of 39 to 50% of added C for fresh plant biomass and 19 to 23% of added C for digested biomass sludge. Only 8% of added 15 N in digested sludges was mineralized to 15 NO 3 - -N despite differences in initial N content. In contrast, 3 and 33% of added 15 N in fresh biomass with low and high N content, respectively, was recovered as 15 NO 3 - -N. Total 15 N recovery after anaerobic digestion ranged from 70 to 100% of the initial plant biomass 15 N. Total N recovery by sludge and effluent recycling in the integrated biomass for energy system was 48 to 60% of the initial plant biomass 15 N

  14. Woody biomass availability for bioethanol conversion in Mississippi

    International Nuclear Information System (INIS)

    Perez-Verdin, Gustavo; Grebner, Donald L.; Sun, Changyou; Munn, Ian A.; Schultz, Emily B.; Matney, Thomas G.

    2009-01-01

    This study evaluated woody biomass from logging residues, small-diameter trees, mill residues, and urban waste as a feedstock for cellulosic ethanol conversion in Mississippi. The focus on Mississippi was to assess in-state regional variations and provide specific information of biomass estimates for those facilities interested in locating in Mississippi. Supply and cost of four woody biomass sources were derived from Forest Inventory Analysis (FIA) information, a recent forest inventory conducted by the Mississippi Institute for Forest Inventory, and primary production costs. According to our analysis, about 4.0 million dry tons of woody biomass are available for production of up to 1.2 billion liters of ethanol each year in Mississippi. The feedstock consists of 69% logging residues, 21% small-diameter trees, 7% urban waste, and 3% mill residues. Of the total, 3.1 million dry tons (930 million liters of ethanol) can be produced for $34 dry ton -1 or less. Woody biomass from small-diameter trees is more expensive than other sources of biomass. Transportation costs accounted for the majority of total production costs. A sensitivity analysis indicates that the largest impacts in production costs of ethanol come from stumpage price of woody biomass and technological efficiency. These results provide a valuable decision support tool for resource managers and industries in identifying parameters that affect resource magnitude, type, and location of woody biomass feedstocks in Mississippi. (author)

  15. A meta-analysis of soil microbial biomass responses to forest disturbances

    Directory of Open Access Journals (Sweden)

    Sandra Robin Holden

    2013-06-01

    Full Text Available Climate warming is likely to increase the frequency and severity of forest disturbances, with uncertain consequences for soil microbial communities and their contribution to ecosystem C dynamics. To address this uncertainty, we conducted a meta-analysis of 139 published soil microbial responses to forest disturbances. These disturbances included abiotic (fire, harvesting, storm and biotic (insect, pathogen disturbances. We hypothesized that soil microbial biomass would decline following forest disturbances, but that abiotic disturbances would elicit greater reductions in microbial biomass than biotic disturbances. In support of this hypothesis, across all published studies, disturbances reduced soil microbial biomass by an average of 29.4%. However, microbial responses differed between abiotic and biotic disturbances. Microbial responses were significantly negative following fires, harvest, and storms (48.7%, 19.1%, and 41.7% reductions in microbial biomass, respectively. In contrast, changes in soil microbial biomass following insect infestation and pathogen-induced tree mortality were non-significant, although biotic disturbances were poorly represented in the literature. When measured separately, fungal and bacterial responses to disturbances mirrored the response of the microbial community as a whole. Changes in microbial abundance following disturbance were significantly positively correlated with changes in microbial respiration. We propose that the differential effect of abiotic and biotic disturbances on microbial biomass may be attributable to differences in soil disruption and organic C removal from forests among disturbance types. Altogether, these results suggest that abiotic forest disturbances may significantly decrease soil microbial abundance, with corresponding consequences for microbial respiration. Further studies are needed on the effect of biotic disturbances on forest soil microbial communities and soil C dynamics.

  16. A risk factor analysis of healthcare-associated fungal infections in an intensive care unit: a retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Yang Su-Pen

    2013-01-01

    Full Text Available Abstract Background The incidence of fungal healthcare-associated infection (HAI has increased in a major teaching hospital in the northern part of Taiwan over the past decade, especially in the intensive care units (ICUs. The purpose of this study was to determine the factors that were responsible for the outbreak and trend in the ICU. Methods Surveillance fungal cultures were obtained from “sterile” objects, antiseptic solutions, environment of infected patients and hands of medical personnel. Risk factors for comparison included age, gender, admission service, and total length of stay in the ICU, Acute Physiology and Chronic Health Evaluation (APACHE II scores at admission to the ICU, main diagnosis on ICU admission, use of invasive devices, receipt of hemodialysis, total parenteral nutrition (TPN use, history of antibiotic therapy before HAI or during ICU stay in no HAI group, and ICU discharge status (ie, dead or alive. Univariable analysis followed by multiple logistic regression analysis was performed to identify the independent risk factors for ICU fungal HAIs and ICU mortality. Results There was a significant trend in ICU fungal HAIs from 1998 to 2009 (P Candida albicans (27.3%, Candida tropicalis (6.6%, Candida glabrata (6.6%, Candida parapsilosis (1.9%, Candida species (0.8%, and other fungi (1.9%. Candida albicans accounted for 63% of all Candida species. Yeasts were found in the environment of more heavily infected patients. The independent risk factors (P P  Conclusions There was a secular trend of an increasing number of fungal HAIs in our ICU over the past decade. Patients with ICU fungal HAIs had a significantly higher mortality rate than did patients without ICU HAIs. Total parenteral nutrition was a significant risk factor for all types of ICU fungal HAIs, and its use should be monitored closely.

  17. Potential impact of mangrove clearance on biomass and biomass size spectra of nematode along the Sudanese Red Sea coast.

    Science.gov (United States)

    Sabeel, Rasha Adam Osman; Vanreusel, Ann

    2015-02-01

    The potential effect of mangrove clearance on nematode assemblage biomass, biomass size spectra (NBSS) and abundance/biomass curves (ABC) was investigated in three sites representing a varying degree of mangrove clearance as well as in three stations established at each sites representing high-, mid- and low-water levels. Results revealed significant differences in sediment and nematode characteristics between the three sites. Although both the cleared and the intact mangrove had comparable biomass values, clear differences in biomass size spectra and abundance biomass curves were observed. The results suggested that the variation in the silt fraction and the food quality positively affected the total biomass. Mangrove clearance has caused a shift from a unimodal to a bimodal biomass size spectrum at all water levels, owing to an increase in smaller-bodied opportunistic non-selective deposit feeding nematodes. The ABC further confirmed the effect of clearance by classifying the cleared mangrove as moderately to grossly disturbed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Serious fungal infections in Ecuador.

    Science.gov (United States)

    Zurita, J; Denning, D W; Paz-Y-Miño, A; Solís, M B; Arias, L M

    2017-06-01

    There is a dearth of data from Ecuador on the burden of life-threatening fungal disease entities; therefore, we estimated the burden of serious fungal infections in Ecuador based on the populations at risk and available epidemiological databases and publications. A full literature search was done to identify all epidemiology papers reporting fungal infection rates. WHO, ONU-AIDS, Index Mundi, Global Asthma Report, Globocan, and national data [Instituto Nacional de Estadística y Censos (INEC), Ministerio de Salud Pública (MSP), Sociedad de Lucha Contra el Cáncer (SOLCA), Instituto Nacional de Donación y Trasplante de Órganos, Tejidos y Células (INDOT)] were reviewed. When no data existed, risk populations were used to estimate frequencies of fungal infections, using previously described methodology by LIFE. Ecuador has a variety of climates from the cold of the Andes through temperate to humid hot weather at the coast and in the Amazon basin. Ecuador has a population of 15,223,680 people and an average life expectancy of 76 years. The median estimate of the human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) population at risk for fungal disease (Ecuador is affected by serious fungal infection.

  19. DIAGNOSIS & MANAGEMENT OF ALLERGIC FUNGAL SINUSITIS

    Directory of Open Access Journals (Sweden)

    Syam Manohar Gadhamsetty

    2016-08-01

    Full Text Available BACKGROUND Chronic sinusitis is one of the common diagnosis in ENT practice. Allergic fungal sinusitis is a clinical entity with characteristic clinical, radiographic and histopathological findings. Allergic fungal sinusitis and eosinophilic mucin rhinosinusitis can easily be misdiagnosed. AIM OF STUDY A prospective clinical study of allergic Fungal Rhinosinusitis to use diagnostic criteria to confirm the disease with Radiological, Pathological & Microbiological investigations and their management. MATERIALS & METHODS A prospective study of allergic Fungal Rhinosinusitis in 2 years from November 2011 to October 2013. Among the patients who attended the ENT OPD during this period, 21 patients with symptoms and signs suggestive of Allergic Fungal Rhinosinusitis are selected.

  20. Fungal DNA in hotel rooms in Europe and Asia--associations with latitude, precipitation, building data, room characteristics and hotel ranking.

    Science.gov (United States)

    Norbäck, Dan; Cai, Gui-Hong

    2011-10-01

    There is little information on the indoor environment in hotels. Analysis of fungal DNA by quantitative PCR (qPCR) is a new method which can detect general and specific sequences. Dust was collected through swab sampling of door frames in 69 hotel rooms in 20 countries in Europe and Asia (2007-2009). Five sequences were detected by qPCR: total fungal DNA, Aspergillus and Penicillium DNA (Asp/Pen DNA), Aspergillus versicolor (A. versicolor DNA), Stachybotrys chartarum (S. chartarum DNA) and Streptomyces spp. (Streptomyces DNA). Associations were analysed by multiple linear regression. Total fungal DNA (GM = 1.08 × 10(8) cell equivalents m(-2); GSD = 6.36) and Asp/Pen DNA (GM = 1.79 × 10(7) cell equivalents m(-2); GSD = 10.12) were detected in all rooms. A. versicolor DNA, S. chartarum DNA and Streptomyces DNA were detected in 84%, 28% and 47% of the samples. In total, 20% of the rooms had observed dampness/mould, and 30% had odour. Low latitude (range 1.5-64.2 degrees) was a predictor of Asp/Pen DNA. Seaside location, lack of mechanical ventilation, and dampness or mould were other predictors of total fungal DNA and Asp/Pen DNA. Hotel ranking (Trip Advisor) or self-rated quality of the interior of the hotel room was a predictor of total fungal DNA, A. versicolor DNA and Streptomyces DNA. Odour was a predictor of S. chartarum DNA. In conclusion, fungal DNA in swab samples from hotel rooms was related to latitude, seaside location, ventilation, visible dampness and indoor mould growth. Hotels in tropical areas may have 10-100 times higher levels of common moulds such as Aspergillus and Penicillium species, as compared to a temperate climate zone.

  1. A biomass energy flow chart for Sierra Leone

    International Nuclear Information System (INIS)

    Amoo-Gottfried, K.; Hall, D.O.

    1999-01-01

    Terrestrial above-ground biomass production and utilisation in Sierra Leone was analysed for the years 1984/5 to 1990/1. The total production of biomass energy was estimated at an annual average of 131 PJ (39% from agriculture, 51% from forestry and 10% from livestock). Of the 117 PJ produced from agricultural and forestry operations, 37 PJ was harvested as firewood and burnt (10.9 GJ or 0.72 t wood per capita per year, supplying 80% of the country's energy), 12 PJ was harvested for food, 66 PJ was unutilised crop and forestry residues, 3 PJ was harvested crop residues for use directly as fuel, and 2 PJ was harvested and used for industrial purposes and not for fuel. Livestock produced wastes with an energy content of 13 PJ of which only 0.1 PJ was collected and used for fuel. Thus 54 PJ (41%) of the 131 PJ of biomass energy produced annually was actually utilised while 49 PJ remained as unused agricultural residues and dung, and a further 27 PJ was unused forestry residues. The total amount of biomass (fuelwood, residues and dung) used directly to provide energy, mostly in households, was estimated at 40 PJ (11.8 GJ per capita per year of 0.79 t fuelwood equivalent). Direct biomass energy utilisation in agroindustry (0.4 PJ) was negligible in comparison. Two assessments of Sierra Leone's biomass standing stock and MAI (mean annual increment) were examined in order to assess the sustainability of various biomass use scenarios. Large differences were found between the MAI of the two assessments, making it difficult to predict sustainability of biomass production and use. The estimation of total standing stock varied between 227 and 366 Mt and the estimation of MAI varied between 15 and 70 Mt. Analysis of the availability and use of the biomass resource is crucial if biomass energy is to be used on a sustainable basis. A software package has been developed and is available to draft biomass flow charts but further work is needed to incorporate social and economic

  2. Fungal Urinary Tract Infection in Burn Patients‎

    Directory of Open Access Journals (Sweden)

    Suad Yousuf Aldorkee

    2017-11-01

    Full Text Available Background: Urinary tract infection is the most common hospital-acquired infection. Fungal species are unusual causes of urinary tract infection in healthy individuals, but common in the hospital setting or among patients with predisposing diseases and structural abnormalities of the kidney and collecting system. Burn patients are susceptible to nosocomial infections owing to the immunocompromising effects of burn injury, cutaneous and respiratory tract injury, prolonged intensive care unit stays and broad-spectrum antibiotic therapy. Objective: The study population includes adult patients of both genders who presented with different percentages of body burns. Urine sample was collected from each patient at the time of admission and weekly thereafter for 6 weeks and sent for general urine examination and urine culture to test for the possibility of fungal growth. Those who found to develop fungal UTI by urine culture during their hospitalization and had no infection at the time of admission were selected as subjects for our study. Results: 28 (18.6% patients had positive fungal culture during their hospitalization, 11 of them were males and 17 were females, the most common age of presentation was 41-50 years and the mean age ± SD was (44.4 ± 10.7 years. The most common isolated fungi were Candida albicans (64.3%, followed by Candida glabrata (21.4% and Candida tropicalis (7.1%. The majority of patients developed infection within the 2nd and 3rd weeks of hospitalization, however, those who presented with total body surface area burned > 40% developed an earlier infection within the 1st week. Female gender, urethral catheterization and diabetes mellitus were significantly associated with higher risk of infection as the P values were 0.03, 0.005 and 0.004 respectively. Conclusion: Fungal urinary tract infection occurred in 18.6% of burn patients. The most common causative fungi are candida species. Advanced age, female gender, high percentage of

  3. Fungal Communities and Functional Guilds Shift Along an Elevational Gradient in the Southern Appalachian Mountains.

    Science.gov (United States)

    Veach, Allison M; Stokes, C Elizabeth; Knoepp, Jennifer; Jumpponen, Ari; Baird, Richard

    2017-12-04

    Nitrogen deposition alters forest ecosystems particularly in high elevation, montane habitats where nitrogen deposition is greatest and continues to increase. We collected soils across an elevational (788-1940 m) gradient, encompassing both abiotic (soil chemistry) and biotic (vegetation community) gradients, at eight locations in the southern Appalachian Mountains of southwestern North Carolina and eastern Tennessee. We measured soil chemistry (total N, C, extractable PO 4 , soil pH, cation exchange capacity [ECEC], percent base saturation [% BS]) and dissected soil fungal communities using ITS2 metabarcode Illumina MiSeq sequencing. Total soil N, C, PO 4 , % BS, and pH increased with elevation and plateaued at approximately 1400 m, whereas ECEC linearly increased and C/N decreased with elevation. Fungal communities differed among locations and were correlated with all chemical variables, except PO 4 , whereas OTU richness increased with total N. Several ecological guilds (i.e., ectomycorrhizae, saprotrophs, plant pathogens) differed in abundance among locations; specifically, saprotroph abundance, primarily attributable to genus Mortierella, was positively correlated with elevation. Ectomycorrhizae declined with total N and soil pH and increased with total C and PO 4 where plant pathogens increased with total N and decreased with total C. Our results demonstrate significant turnover in taxonomic and functional fungal groups across elevational gradients which facilitate future predictions on forest ecosystem change in the southern Appalachians as nitrogen deposition rates increase and regional temperature and precipitation regimes shift.

  4. MycoCosm, an Integrated Fungal Genomics Resource

    Energy Technology Data Exchange (ETDEWEB)

    Shabalov, Igor; Grigoriev, Igor

    2012-03-16

    MycoCosm is a web-based interactive fungal genomics resource, which was first released in March 2010, in response to an urgent call from the fungal community for integration of all fungal genomes and analytical tools in one place (Pan-fungal data resources meeting, Feb 21-22, 2010, Alexandria, VA). MycoCosm integrates genomics data and analysis tools to navigate through over 100 fungal genomes sequenced at JGI and elsewhere. This resource allows users to explore fungal genomes in the context of both genome-centric analysis and comparative genomics, and promotes user community participation in data submission, annotation and analysis. MycoCosm has over 4500 unique visitors/month or 35000+ visitors/year as well as hundreds of registered users contributing their data and expertise to this resource. Its scalable architecture allows significant expansion of the data expected from JGI Fungal Genomics Program, its users, and integration with external resources used by fungal community.

  5. Five-minute grid of total marine bird biomass densities surveyed off central California - selected warm water periods, 1980-2001 (CDAS data set AL1_MASS.shp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — AL0_MASS is a polygon shapefile representing 5 minute x 5 minute latitude x longitude cells that house the overall total biomass densities (kg/sq.km.) of 76 species...

  6. Clinical consideration of fungal paranasal sinusitis

    International Nuclear Information System (INIS)

    Okuni, Tsuyoshi; Asakura, Koji; Homma, Tomo; Kawaguchi, Ryuichi; Ishikawa, Tadataka; Yamazaki, Norikazu; Himi, Tetsuo

    2008-01-01

    Fungal paranasal sinusitis is included in the differential diagnosis of unilateral paranasal lesion. Recently the incidence of fungal paranasal sinusitis has been increasing. We reviewed 24 patients (9 males and 15 females) with fungal paranasal sinusitis treated at Muroran City Hospital between January 2001 and May 2006, and clinical presentation and CT findings with those of 56 patients (36 males and 20 females) with chronic unilateral sinusitis. Fungal sinusitis patients ranged in age from 45 to 87, and the average age was 65.9 years old. In contrast, the age of chronic sinusitis patients ranged from 24 to 83, and the average age was 54.4 years old. The chief complaint of both fungal sinusitis and chronic sinusitis included rhinorrhea, nasal obstruction and post nasal discharge. CT exam was performed in all patients. In 23 cases of paranasal fungal sinusitis and 54 cases of chronic sinusitis the findings involved the maxillary sinus. The most common observation (69.6%) was bone density within the affected sinus in fungal sinusitis. However, only 2 cases of chronic sinusitis (3.9%) showed calcification. All cases of fungal sinusitis were diagnosed by pathological examinations. Most cases were proved to be aspergillus, while only one case was mucor. We treated all cases surgically, 18 cases underwent Caldwell-Luc's procedure and 5 cases underwent endoscopic sinus surgery under local anesthesia. (author)

  7. Limitations of ATP as a measure of microbial biomass

    African Journals Online (AJOL)

    limits the use of ATP as a measure of microbial biomass. S. AIr. J. Zool. 1982, 17: 93 - 95. Beraming van die totale .... only micro-organisms present in the experimental culture, but these were later succeeded by a large ... a value of 49: I by the last day of the experiment. Estimates of the total living biomass of the heterotro-.

  8. Environment and geographic distance differ in relative importance for determining fungal community of rhizosphere and bulk soil.

    Science.gov (United States)

    Zhang, Kaoping; Adams, Jonathan M; Shi, Yu; Yang, Teng; Sun, Ruibo; He, Dan; Ni, Yingying; Chu, Haiyan

    2017-09-01

    Rhizospheric fungi play major roles in both natural and agricultural ecosystems. However, little is known about the determinants of their diversity and biogeographic patterns. Here, we compared fungal communities in rhizosphere and bulk soils of wheat fields in the North China Plain. The rhizosphere had a lower fungal diversity (observed OTUs and Chao1) than bulk soil, and a distinct fungal community structure in rhizosphere compared with bulk soil. The relative importance of environmental factors and geographic distance for fungal distribution differed between rhizosphere and bulk soil. Environmental factors were the primary cause of variations in total fungal community and major fungal phyla in bulk soil. By contrast, fungal communities in soils loosely attached to roots were predictable from both environmental factors and influences of geographic distance. Communities in soils tightly attached to roots were mainly determined by geographic distance. Our results suggest that both contemporary environment processes (present-day abiotic and biotic environment characters) and historical processes (spatial isolation, dispersal limitation occurred in the past) dominate variations of fungal communities in wheat fields, but their relative importance of all these processes depends on the proximity of fungal community to the plant roots. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Fungal infection in organ transplant patients.

    Science.gov (United States)

    Hong, Wei; Wen, Hai; Liao, Wanqing

    2003-09-01

    To review the characteristics and evolution of the fungal spectrum, and the risk factors causing fungal infection, and to make progress in diagnosing fungal infection after organ transplantation. An English-language literature search (MEDLINE 1990 - 2000) and bibliographic review of textbooks and review articles. Twenty-three articles were selected from the literature that specifically addressed the stated purpose. Fungal infections in organ transplant patients were generally divided into two types: (1) disseminated primary or reactivation infection with one of the geographically restricted systemic mycoses; (2) opportunistic infection by fungal species that rarely cause invasive infection in normal hosts. The risk factors of fungal infection after a transplant can be evaluated and predicted according to the organ recipient's conditions before, during and after the transplant. Progress in early diagnostic methods during the past 10 years has mainly revolved around two aspects, culture and non-culture. It is important to undertake a systemic evaluation on the condition of the organ recipient before, during and after a transplant; should any risk factor for fungal infection be suspected, diagnosis should be made as early as possible by employing mycological techniques including culture and non-culture methods.

  10. Global biomass burning. Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    Levine, J.S.

    1991-01-01

    Biomass burning is a significant source of atmospheric gases and, as such, may contribute to global climate changes. Biomass burning includes burning forests and savanna grasslands for land clearing, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The chapters in this volume include the following topics: remote sensing of biomass burning from space;geographical distribution of burning; combustion products of burning in tropical, temperate and boreal ecosystems; burning as a global source of atmospheric gases and particulates; impacts of biomass burning gases and particulates on global climate; and the role of biomass burning on biodiversity and past global extinctions. A total of 1428 references are cited for the 63 chapters. Individual chapters are indexed separately for the data bases

  11. Biomass models to estimate carbon stocks for hardwood tree species

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Peinado, R.; Montero, G.; Rio, M. del

    2012-11-01

    To estimate forest carbon pools from forest inventories it is necessary to have biomass models or biomass expansion factors. In this study, tree biomass models were developed for the main hardwood forest species in Spain: Alnus glutinosa, Castanea sativa, Ceratonia siliqua, Eucalyptus globulus, Fagus sylvatica, Fraxinus angustifolia, Olea europaea var. sylvestris, Populus x euramericana, Quercus canariensis, Quercus faginea, Quercus ilex, Quercus pyrenaica and Quercus suber. Different tree biomass components were considered: stem with bark, branches of different sizes, above and belowground biomass. For each species, a system of equations was fitted using seemingly unrelated regression, fulfilling the additivity property between biomass components. Diameter and total height were explored as independent variables. All models included tree diameter whereas for the majority of species, total height was only considered in the stem biomass models and in some of the branch models. The comparison of the new biomass models with previous models fitted separately for each tree component indicated an improvement in the accuracy of the models. A mean reduction of 20% in the root mean square error and a mean increase in the model efficiency of 7% in comparison with recently published models. So, the fitted models allow estimating more accurately the biomass stock in hardwood species from the Spanish National Forest Inventory data. (Author) 45 refs.

  12. Elimination of fungicides in biopurification systems: Effect of fungal bioaugmentation on removal performance and microbial community structure.

    Science.gov (United States)

    Murillo-Zamora, Sergio; Castro-Gutiérrez, Víctor; Masís-Mora, Mario; Lizano-Fallas, Verónica; Rodríguez-Rodríguez, Carlos E

    2017-11-01

    Bioaugmentation with ligninolytic fungi represents a potential way to improve the performance of biomixtures used in biopurification systems for the treatment of pesticide-containing agricultural wastewater. The fungus Trametes versicolor was employed in the bioaugmentation of a biomixture to be used in the simultaneous removal of seven fungicides. Liquid cultures of the fungus were able to remove tebuconazole, while no evidence of carbendazim, metalaxyl and triadimenol depletion was found. When applied in the biomixture, the bioaugmented matrix failed to remove all the triazole fungicides (including tebuconazole) under the assayed conditions, but was efficient to eliminate carbendazim, edifenphos and metalaxyl (the latter only after a second pesticide application). The re-addition of pesticides markedly increased the elimination of carbendazim and metalaxyl; nonetheless, no clear enhancement of the biomixture performance could be ascribed to fungal bioaugmentation, not even after the re-inoculation of fungal biomass. Detoxification efficiently took place in the biomixture (9 d after pesticide applications) according to acute tests on Daphnia magna. DGGE-analysis revealed only moderate time-divergence in bacterial and fungal communities, and a weak establishment of T. versicolor in the matrix. Data suggest that the non-bioaugmented biomixture is useful for the treatment of fungicides other than triazoles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Vertical zonation of soil fungal community structure in a Korean pine forest on Changbai Mountain, China.

    Science.gov (United States)

    Ping, Yuan; Han, Dongxue; Wang, Ning; Hu, Yanbo; Mu, Liqiang; Feng, Fujuan

    2017-01-01

    Changbai Mountain, with intact montane vertical vegetation belts, is located at a sensitive area of global climate change and a central distribution area of Korean pine forest. Broad-leaved Korean pine mixed forest (Pinus koraiensis as an edificator) is the most representative zonal climax vegetation in the humid region of northeastern China; their vertical zonation is the most intact and representative on Changbai Mountain. In this study, we analyzed the composition and diversity of soil fungal communities in the Korean pine forest on Changbai Mountain at elevations ranging from 699 to 1177 m using Illumina High-throughput sequencing. We obtained a total 186,663 optimized sequences, with an average length of 268.81 bp. We found soil fungal diversity index was decreased with increasing elevation from 699 to 937 m and began to rise after reaching 1044 m; the richness and evenness indices were decreased with an increase in elevation. Soil fungal compositions at the phylum, class and genus levels varied significantly at different elevations, but with the same dominant fungi. Beta-diversity analysis indicated that the similarity of fungal communities decreased with an increased vertical distance between the sample plots, showing a distance-decay relationship. Variation partition analysis showed that geographic distance (mainly elevation gradient) only explained 20.53 % of the total variation of fungal community structure, while soil physicochemical factors explained 69.78 %.

  14. Shaping of the fungal communities isolated from yellow lupin seeds (Lupinus luteus L. throughout storage time

    Directory of Open Access Journals (Sweden)

    Bożena Cwalina-Ambroziak

    2012-12-01

    Full Text Available The object of the experiment were seeds of two traditional cultivars of yellow lupin (Juno and Amulet cultivated in 1999 in two crop-rotation with 20% and 33% yellow lupine contribution. The quantitative and qualitative composition of the fungal community colonizing the seeds were determined in the laboratory conditions after 0.5-, 1.5- and 2.5-year of storage time. In total 1077 fungal colonies were isolated from the lupin seeds. Fungi representing the species of Penicillium - 29.3%, Alternaria alternata - 26.7% and Rhizopus nigricans - 12.7% were isolated most widely. Among the fungi pathogenic to lupin, the species of Colletotrichum gloeosporioides (16.3% isolates was dominant. The crop rotation with 20% lupin reduced the number of fungal colonies colonizing the seeds including the pathogens from the species of C. gloeosporioides. Seed disinfection decreased the total number of fungal colonies isolated from both cultivars. Higher number of C. gloeosporioides isolates was found in the combination with disinfected seeds. More fungal colonies were obtained from seeds of cv. Amulet than from those of cv. Juno. The storage duration had an effect on the population and the composition of species of fungi isolated from seeds of yellow lupine. With longer storage population of Penicillium spp. and Rhizopus spp. increased, whereas the population of C. gloeosporioides decreased.

  15. The impact of selective-logging and forest clearance for oil palm on fungal communities in Borneo.

    Science.gov (United States)

    Kerfahi, Dorsaf; Tripathi, Binu M; Lee, Junghoon; Edwards, David P; Adams, Jonathan M

    2014-01-01

    Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest.

  16. Indoor Fungal and Bacterial Contaminations on Household Environment in Riyadh, Saudi Arabia

    International Nuclear Information System (INIS)

    Alwakeel, Suaad S

    2008-01-01

    This study was conducted to determine the microbial and inhabitant of household environment in Riyadh, Saudi Arabia. Overall, a total of 180 samples were collected and analyzed for fungal growth, 160 house samples were obtained on BAP medium and PDA medium. The Eastern Riyadh region turned out with the highest fungal isolates with 15/61 (24.6%). Among the most common fungal isolates from bedroom carpets were Aspergillus niger (21.6%), Alternaria sp. (15.7%), Aspergillus flavus (15.7%) Candida sp. (11.8%), Cladosporium sp. (9.8%) and Rhizopus sp. (9.8%). Other fungal isolates from bedroom carpets included Penicillium sp (5.9%)., Cunninghamella sp.(3.9%), Rhodotorula sp.(3.9%) and Aspergillus terreus (1.9%) Overall relative densities from all specimens obtained from household carpets, bedroom walls and carpet stores showed Alternaria spp. as the most common fungal isolate (55.3%) followed by Aspergillus niger (29%), Aspergillus flavus (19.3%), Rhizopus spp. (9.7%) and Penicillium spp. (7.0%). Other fungal isolates such as Candida spp., Cladosporium spp., Cunninghamella spp., Rhodotorula spp. and Aspergillus terreus had less than 6% overall relative density. From 40 carpet specimens collected for microbial analysis, 20 (50%) showed bacterial growth. Bacillus spp. was the most common isolated organism (35%) followed by Staphylococcus epidermidis (10%), Epiococcus spp. (10%), Corynebacterium spp. (10%) and Bacillus polymyxa (10%). Other bacterial isolates included Bacillus subtilis, Pseudomonas aeruginosa, Bacteroides spp., Clostridium spp. and Staphylococcus aureus .The presence of these fungal and microbial pathogens poses risk for individuals. When possible, floor carpeting in homes should be minimized or avoided since this serves as habitats for opportunistic fungi and infectious agents that pose harm to one's health. (author)

  17. Evaluation of Simultaneous Exposure to Flour Dust and Airborne Fungal Spores in Milling Plant

    Directory of Open Access Journals (Sweden)

    Alireza Dehdashti

    2016-01-01

    Full Text Available Background and Objectives: Wheat flour as an organic allergen particle has an extensive respiratory exposure in milling industry and related industries. Simultaneous exposure to flour dust and fungal spores causes infectious disease, cancers, and impaired pulmonary function tests. This research was carried out with the aim of assessing the concentration of respirable flour particles, determining the type, and concentration of fungal spores in breathing air of workers in milling industries. Methods: In this descriptive cross-sectional study, 42 area samples were collected on filter and analyzed gravimetrically. Using a specific sampling pump, sampling of bioaerosols and sabro dextrose agar medium of fungal spores, was performed. Microscopic analysis was applied to detect and quantify microorganisms as colony per cubic meter. Results: The mean and standard deviation of total respirable particles in the breathing air of workers was 6/57±1/69mg/m3, which exceeded occupational exposure limit. The concentration of fungal spores in workers’ breathing air ranged from 42 to 310 colony per cubic meter. The percentage of respirable to total dust particles produced in sieve vibration, bagging, and milling sections, were determined 67.83%, 32%, and 62.2%, respectively. Conclusion: The results of this study revealed that the concentration of respirable particles in wheat milling process exceeded the recommended level and the concentration of fungal spores was at the average level of occupational exposure according to ACGIH recommendation. Therefore, engineering controls are required in flour milling process to reduce the exposure of workers.

  18. Assessment of the status and outlook of biomass energy in Jordan

    International Nuclear Information System (INIS)

    Al-Hamamre, Zayed; Al-Mater, Ali; Sweis, Fawaz; Rawajfeh, Khaled

    2014-01-01

    Highlights: • The potential of utilizing biomass as an energy source in Jordan is investigated. • The biomass thermal energy represents 10.2% of the total primary energy. • Bioenergy production depends on biomass availability, conversion and recovery efficiency. - Abstract: This work investigates the status and potential of utilizing biomass as an energy source in Jordan. The amount of waste and residue is estimated to be 6.680 million tons for the year 2011. Two scenarios were investigated: biogas production and thermal treatment. The amount of biogas that can be produced from various biomass sources in Jordan is estimated at 428 MCM. The equivalent annual power production is estimated at 698.1 GW h. This is equivalent to about 5.09% of the consumed electricity (13,535 GW h) and 39.65% of the imported electricity in 2011. The alternative scenario of thermal treatment was investigated. The total theoretical thermal energy that can be obtained assuming 70% conversion efficiency is equivalent to 779 thousand toe (5.33 million barrels of crude oil) which amounts to 10.2% of the total primary energy consumed in 2011. Due to biomass collection and recovery challenges, the energy availability factor varies for the different resources. Hence, contribution of the different biomass resources can significantly vary

  19. Diverse honeydew-consuming fungal communities associated with scale insects.

    Directory of Open Access Journals (Sweden)

    Manpreet K Dhami

    Full Text Available Sooty mould fungi are ubiquitous, abundant consumers of insect-honeydew that have been little-studied. They form a complex of unrelated fungi that coexist and compete for honeydew, which is a chemically complex resource. In this study, we used scanning electron microscopy in combination with T-RFLP community profiling and ITS-based tag-pyrosequencing to extensively describe the sooty mould community associated with the honeydews of two ecologically important New Zealand coelostomidiid scale insects, Coelostomidia wairoensis and Ultracoelostoma brittini. We tested the influence of host plant on the community composition of associated sooty moulds, and undertook limited analyses to examine the influence of scale insect species and geographic location. We report here a previously unknown degree of fungal diversity present in this complex, with pyrosequencing detecting on average 243 operational taxonomic units across the different sooty mould samples. In contrast, T-RFLP detected only a total of 24 different "species" (unique peaks. Nevertheless, both techniques identified similar patterns of diversity suggesting that either method is appropriate for community profiling. The composition of the microbial community associated with individual scale insect species varied although the differences may in part reflect variation in host preference and site. Scanning electron microscopy visualised an intertwined mass of fungal hyphae and fruiting bodies in near-intact physical condition, but was unable to distinguish between the different fungal communities on a morphological level, highlighting the need for molecular research. The substantial diversity revealed for the first time by pyrosequencing and our inability to identify two-thirds of the diversity to further than the fungal division highlights the significant gap in our knowledge of these fungal groups. This study provides a first extensive look at the community diversity of the fungal community

  20. Microbiological diagnostics of fungal infections

    Directory of Open Access Journals (Sweden)

    Corrado Girmenia

    2013-07-01

    Full Text Available Laboratory tests for the detection of fungal infections are easy to perform. The main obstacle to a correct diagnosis is the correlation between the laboratory findings and the clinical diagnosis. Among pediatric patients, the most common fungal pathogen is Candida. The detection of fungal colonization may be performed through the use of chromogenic culture media, which allows also the identification of Candida subspecies, from which pathogenicity depends. In neonatology, thistest often drives the decision to begin a empiric therapy; in this regard, a close cooperation between microbiologists and clinicians is highly recommended. Blood culture, if positive, is a strong confirmation of fungal infection; however, its low sensitivity results in a high percentage of false negatives, thus decreasing its reliability. Molecular diagnostics is still under evaluation, whereas the detection of some fungal antigens, such as β-D-glucan, galactomannan, mannoprotein, and cryptococcal antigen in the serum is used for adults, but still under evaluations for pediatric patients.http://dx.doi.org/10.7175/rhc.v4i1S.862

  1. Intra-antral application of an anti-fungal agent for recurrent maxillary fungal rhinosinusitis: a case report

    Directory of Open Access Journals (Sweden)

    Dunmade Adekunle D

    2012-08-01

    Full Text Available Abstract Introduction Fungal infection of the paranasal sinuses is an increasingly recognized entity both in immunocompetent and immunocompromised individuals. Treatment has been via use of either surgical or medical modalities, or a combination of the two. Here, we present a case of utilization of intra-antral application of an anti-fungal agent in the management of recurrent fungal sinusitis in an indigent Nigerian patient. Case presentation We present the case of a 30-year-old West African Yoruba man, an indigent Nigerian clergyman, who presented to our facility with a history of recurrent nasal discharge (about one year, recurrent nasal blockage (about five months, and right facial swelling (about one week. After intra-nasal antrostomy for debulking with a systemic anti-fungal agent, our patient had a recurrence after four months. Our patient subsequently had an intra-antral application of flumetasone and clioquinol (Locacorten®-Vioform® weekly for six weeks with improvement of symptoms and no recurrence after six months of follow-up. Conclusions We conclude that topical intra-antral application of anti-fungal agents is effective in patients with recurrent fungal maxillary sinusitis after surgical debulking.

  2. Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism.

    Science.gov (United States)

    Partida-Martinez, Laila P; Monajembashi, Shamci; Greulich, Karl-Otto; Hertweck, Christian

    2007-05-01

    Bacterial endosymbionts play essential roles for many organisms, and thus specialized mechanisms have evolved during evolution that guarantee the persistence of the symbiosis during or after host reproduction. The rice seedling blight fungus Rhizopus microsporus represents a unique example of a mutualistic life form in which a fungus harbors endobacteria (Burkholderia sp.) for the production of a phytotoxin. Here we report the unexpected observation that in the absence of endosymbionts, the host is not capable of vegetative reproduction. Formation of sporangia and spores is restored only upon reintroduction of endobacteria. To monitor this process, we succeeded in GFP labeling cultured endosymbionts. We also established a laserbeam transformation technique for the first controlled introduction of bacteria into fungi to observe their migration to the tips of the aseptate hyphae. The persistence of this fungal-bacterial mutualism through symbiont-dependent sporulation is intriguing from an evolutionary point of view and implies that the symbiont produces factors that are essential for the fungal life cycle. Reproduction of the host has become totally dependent on endofungal bacteria, which in return provide a highly potent toxin for defending the habitat and accessing nutrients from decaying plants. This scenario clearly highlights the significance for a controlled maintenance of this fungal-bacterial symbiotic relationship.

  3. Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Guang-Hua; Xu, Xin-Ya; Nong, Xu-Hua; Wang, Jie; Amin, Muhammad; Qi, Shu-Hua

    2016-10-01

    The present study investigated the fungal diversity in four different deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS1). A total of 40,297 fungal ITS1 sequences clustered into 420 operational taxonomic units (OTUs) with 97% sequence similarity and 170 taxa were recovered from these sediments. Most ITS1 sequences (78%) belonged to the phylum Ascomycota, followed by Basidiomycota (17.3%), Zygomycota (1.5%) and Chytridiomycota (0.8%), and a small proportion (2.4%) belonged to unassigned fungal phyla. Compared with previous studies on fungal diversity of sediments from deep-sea environments by culture-dependent approach and clone library analysis, the present result suggested that Illumina sequencing had been dramatically accelerating the discovery of fungal community of deep-sea sediments. Furthermore, our results revealed that Sordariomycetes was the most diverse and abundant fungal class in this study, challenging the traditional view that the diversity of Sordariomycetes phylotypes was low in the deep-sea environments. In addition, more than 12 taxa accounted for 21.5% sequences were found to be rarely reported as deep-sea fungi, suggesting the deep-sea sediments from Okinawa Trough harbored a plethora of different fungal communities compared with other deep-sea environments. To our knowledge, this study is the first exploration of the fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing.

  4. Analysing biomass torrefaction supply chain costs.

    Science.gov (United States)

    Svanberg, Martin; Olofsson, Ingemar; Flodén, Jonas; Nordin, Anders

    2013-08-01

    The objective of the present work was to develop a techno-economic system model to evaluate how logistics and production parameters affect the torrefaction supply chain costs under Swedish conditions. The model consists of four sub-models: (1) supply system, (2) a complete energy and mass balance of drying, torrefaction and densification, (3) investment and operating costs of a green field, stand-alone torrefaction pellet plant, and (4) distribution system to the gate of an end user. The results show that the torrefaction supply chain reaps significant economies of scale up to a plant size of about 150-200 kiloton dry substance per year (ktonDS/year), for which the total supply chain costs accounts to 31.8 euro per megawatt hour based on lower heating value (€/MWhLHV). Important parameters affecting total cost are amount of available biomass, biomass premium, logistics equipment, biomass moisture content, drying technology, torrefaction mass yield and torrefaction plant capital expenditures (CAPEX). Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. INCIDENCE OF FUNGAL ELEMENTS IN SINONASAL POLYPOSIS

    Directory of Open Access Journals (Sweden)

    Santhosh G. S

    2016-12-01

    Full Text Available BACKGROUND Nasal polyposis is a disease entity characterised by formation of pseudoedema of sinonasal mucus membrane progressing to form polyps. It presents clinically with nasal obstruction and fleshy masses in the nasal cavity. The nasal mucosa reacts to formation of polypi in allergic fungal sinusitis also. The present study is an attempt to demonstrate possible fungal elements from the polypi removed during surgery by KOH study and HPE study. The aim of the study is to find out the incidence of fungal elements in sinonasal polyposis. MATERIALS AND METHODS 50 patients attending the ENT OPD for nasal obstruction and showing polypi on anterior rhinoscopy were selected. All the patients were subjected to surgery and specimens collected were subjected to KOH study and histopathology to demonstrate fungal elements. RESULTS Among 50 patients, the age range was from 9-57 years; mean age- 36.46 years. The male-to-female ratio was 1.5:1. Deviated nasal septum was found in 38% of patients. Among the unilateral cases, 47% were antrochoanal polyps and 53% were ethmoid polyps. Out of 50 patients, only 3 specimens were positive for fungal elements with KOH study and only 2 cases with fungal culture. Thus, the incidence of fungal elements in sinonasal polyposis was 6%. CONCLUSION The incidence of fungal elements in sinonasal polyposis was 6%. Histopathological examination of polypectomy specimen was negative for invasive fungal disease and showed inflammatory changes only. There is no difference in the detection of the presence of fungal by two methods.

  6. Long-term addition of fertilizer, labile carbon, and fungicide alters the biomass of plant functional groups in a subarctic-alpine community

    DEFF Research Database (Denmark)

    Haugwitz-Hardenberg-Reventlow, M S; Michelsen, A.

    2011-01-01

    experiment on a subarctic-alpine fellfield dominated by woody evergreen shrubs, bryophytes, and lichens. To manipulate nutrient availability additions of NPK fertilizer, labile C, and fungicide (benomyl) were done in a fully factorial design, replicated in six blocks. The treatments were run for 10 years...... vascular plant groups. Also, limitation of soil nutrient availability caused by labile C addition decreased the relative proportion of green shoots in evergreen shrubs, although these were expected to cope better with the nutrient limitation than the opportunistic graminoids, which, by contrast, were...... unaffected. Reduced fungal biomass due to benomyl addition was accompanied by increased evergreen shrub and clubmoss biomass. Taken together, the effects of treatments were most pronounced 16 years after initiation of the experiment, but despite changes in biomass the overall plant community composition...

  7. Microbial Production of Malic Acid from Biofuel-Related Coproducts and Biomass

    Directory of Open Access Journals (Sweden)

    Thomas P. West

    2017-04-01

    Full Text Available The dicarboxylic acid malic acid synthesized as part of the tricarboxylic acid cycle can be produced in excess by certain microorganisms. Although malic acid is produced industrially to a lesser extent than citric acid, malic acid has industrial applications in foods and pharmaceuticals as an acidulant among other uses. Only recently has the production of this organic acid from coproducts of industrial bioprocessing been investigated. It has been shown that malic acid can be synthesized by microbes from coproducts generated during biofuel production. More specifically, malic acid has been shown to be synthesized by species of the fungus Aspergillus on thin stillage, a coproduct from corn-based ethanol production, and on crude glycerol, a coproduct from biodiesel production. In addition, the fungus Ustilago trichophora has also been shown to produce malic acid from crude glycerol. With respect to bacteria, a strain of the thermophilic actinobacterium Thermobifida fusca has been shown to produce malic acid from cellulose and treated lignocellulosic biomass. An alternate method of producing malic acid is to use agricultural biomass converted to syngas or biooil as a substrate for fungal bioconversion. Production of poly(β-l-malic acid by strains of Aureobasidium pullulans from agricultural biomass has been reported where the polymalic acid is subsequently hydrolyzed to malic acid. This review examines applications of malic acid, metabolic pathways that synthesize malic acid and microbial malic acid production from biofuel-related coproducts, lignocellulosic biomass and poly(β-l-malic acid.

  8. Air toxic emissions from burning of biomass globally-preliminary results

    International Nuclear Information System (INIS)

    Ward, D.E.; Hao, W.M.

    1992-01-01

    Emissions of trace gases, particles, and air toxic substances in the smoke plumes from biomass fires are of importance to global climate change. The potential impact of the air toxic emissions on the human population of specific regions globally is another major concern. The toxic materials are produced in high concentrations in areas of heavy biomass burning, e.g., Amazon Basin and Central/southern Africa. We provide new estimates of air toxics based on the combustion efficiency (percent of total carbon released as CO 2 ) for fires burning in different ecosystems on a global basis. Estimates of total biomass consumed on a global basis range from 2 to 10 Pg (1 petagram = 10 15 g) per year. We apply emission factors for various air toxics (g of emission released per kg of fuel consumed) to the estimate of global biomass consumption of 6.4 Pg per year. The principal air toxics analyzed in this paper include: Total particulate matter, CO, formaldehyde, acetaldehyde, acrolein, benzene, toluene, o-xylene, m, p-xylene, benzo[a]pyrene, and polycyclic organic material. The total emissions calculated for these materials on a yearly global basis are: 75, 362, 4.9, 1.5, 1.5, 2.1, 2.1, 0.3, 0.6, 0.001, 0.026, Tg (1 teragram = 10 12 g) per year, respectively. Biomass burning in the United States contributes less than 3% to the total global emissions

  9. Five-minute grid of total marine bird biomass densities surveyed off central California - selected cool water temperature periods, 1980-2001 (CDAS data set AL3_MASS.shp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — AL3_MASS is a polygon shapefile representing 5 minute x 5 minute latitude x longitude cells that house the overall total biomass densities (kg/sq km) of up to 76...

  10. The potential of the Malaysian oil palm biomass as a renewable energy source

    International Nuclear Information System (INIS)

    Loh, Soh Kheang

    2017-01-01

    Highlights: • An energy resource data for oil palm biomass is generated. • The data encompasses crucial fuel and physicochemical characteristics. • These characteristics guide on biomass behaviors and technology selection. • Oil palm biomass is advantageous in today’s energy competitive markets. • Overall, it is a green alternative for biorefinery establishment. - Abstract: The scarcity of conventional energy such as fossil fuels (which will lead to eventual depletion) and the ever-increasing demand for new energy sources have resulted in the world moving into an era of renewable energy (RE) and energy efficiency. The Malaysian oil palm industry has been one of the largest contributor of lignocellulosic biomass, with more than 90% of the country’s total biomass deriving from 5.4 million ha of oil palms. Recent concerns on accelerating replanting activity, improving oil extraction rate, expanding mill capacity, etc. are expected to further increase the total oil palm biomass availability in Malaysia. This situation has presented a huge opportunity for the utilization of oil palm biomass in various applications including RE. This paper characterizes the various forms of oil palm biomass for their important fuel and other physicochemical properties, and assesses this resource data in totality – concerning energy potential, the related biomass conversion technologies and possible combustion-related problems. Overall, oil palm biomass possesses huge potential as one of the largest alternative energy sources for commercial exploitation.

  11. Molecular diversity of fungal phylotypes co-amplified alongside nematodes from coastal and deep-sea marine environments.

    Directory of Open Access Journals (Sweden)

    Punyasloke Bhadury

    Full Text Available Nematodes and fungi are both ubiquitous in marine environments, yet few studies have investigated relationships between these two groups. Microbial species share many well-documented interactions with both free-living and parasitic nematode species, and limited data from previous studies have suggested ecological associations between fungi and nematodes in benthic marine habitats. This study aimed to further document the taxonomy and distribution of fungal taxa often co-amplified from nematode specimens. A total of 15 fungal 18S rRNA phylotypes were isolated from nematode specimens representing both deep-sea and shallow water habitats; all fungal isolates displayed high pairwise sequence identities with published data in Genbank (99-100% and unpublished high-throughput 454 environmental datasets (>95%. BLAST matches indicate marine fungal sequences amplified in this study broadly represent taxa within the phyla Ascomycota and Basidiomycota, and several phylotypes showed robust groupings with known taxa in phylogenetic topologies. In addition, some fungal phylotypes appeared to be present in disparate geographic habitats, suggesting cosmopolitan distributions or closely related species complexes in at least some marine fungi. The present study was only able to isolate fungal DNA from a restricted set of nematode taxa; further work is needed to fully investigate the taxonomic scope and function of nematode-fungal interactions.

  12. BIOMASS PRODUCTION AND FORMULATION OF Bacillus subtilis FOR BIOLOGICAL CONTROL

    Directory of Open Access Journals (Sweden)

    Amran Muis

    2016-10-01

    Full Text Available Bacillus subtilis is a widespread bacterium found in soil, water, and air. It controls the growth of certain harmful bacteria and fungi, presumably by competing for nutrients, growth sites on plants, and by directly colonizing and attaching to fungal pathogens. When applied to seeds, it colonizes the developing root system of the plants and continues to live on the root system and provides protection throughout the growing season. The study on biomass production and formulation of B. subtilis for biological control was conducted in the laboratory of Department of Plant Pathology, College of Agriculture, University of the Philippines Los Baños (UPLB-CA, College, Laguna from May to July 2005. The objective of the study was to determine the optimum pH and a good carbon source for biomass production of B. subtilis and to develop a seed treatment formulation of B. subtilis as biological control agent. Results showed that the optimum pH for growth of B. subtilis was pH 6 (1.85 x 109 cfu/ml. In laboratory tests for biomass production using cassava flour, corn flour, rice flour, and brown sugar as carbon sources, it grew best in brown sugar plus yeast extract medium (6.8 x 108 cfu ml-1 in sterile distilled water and 7.8 x 108 cfu ml-1 in coconut water. In test for bacterial biomass carriers, talc proved to be the best in terms of number of bacteria recovered from the seeds (3.98 x 105 cfu seed-1.

  13. Biomass cycles, accumulation rates and nutritional characteristics of ...

    African Journals Online (AJOL)

    Annual biomass cycles, accumulation rates and nutritional characteristics of forage and non-forage species groups were determined in the canopied and open, uncanopied subhabitats of the herbaceous layer in Burkea africana savanna. The total amount of biomass of all species over the season was significantly greater in ...

  14. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass

    Directory of Open Access Journals (Sweden)

    Fengge Zhang

    2018-04-01

    Full Text Available In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly (p = 0.019 increased following amendment with 9,000 kg ha−1 of Trichoderma biofertilizer (composted cattle manure + inoculum compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha−1 biofertilizer. This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha−1 increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella. Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella. According to our structural equation modeling (SEM, Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  15. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass.

    Science.gov (United States)

    Zhang, Fengge; Huo, Yunqian; Cobb, Adam B; Luo, Gongwen; Zhou, Jiqiong; Yang, Gaowen; Wilson, Gail W T; Zhang, Yingjun

    2018-01-01

    In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly ( p = 0.019) increased following amendment with 9,000 kg ha -1 of Trichoderma biofertilizer (composted cattle manure + inoculum) compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha -1 biofertilizer). This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS) revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha -1 ) increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella . Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella . According to our structural equation modeling (SEM), Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  16. [Fungal infections of the gastrointestinal tract].

    Science.gov (United States)

    Maragkoudakis, Emmanouil; Realdi, Giuseppe; Dore, Maria Pina

    2005-06-01

    In immunocompetent subjects fungal infections of the gastrointestinal tract are uncommon. Candida esophagitis remains the single most common fungal infection in immunocompromised hosts or in H. pylori- infected patients who receive antibiotic therapy. Enteric fungal infections are uncommon even in HIV-infected patients. Antifungal agents such as amphotericin B, ketoconazole, fluconazole, and the various formulations of itraconazole are effective for most cases.

  17. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass.

    Directory of Open Access Journals (Sweden)

    Gustavo Pagotto Borin

    Full Text Available Our dependence on fossil fuel sources and concern about the environment has generated a worldwide interest in establishing new sources of fuel and energy. Thus, the use of ethanol as a fuel is advantageous because it is an inexhaustible energy source and has minimal environmental impact. Currently, Brazil is the world's second largest producer of ethanol, which is produced from sugarcane juice fermentation. However, several studies suggest that Brazil could double its production per hectare by using sugarcane bagasse and straw, known as second-generation (2G bioethanol. Nevertheless, the use of this biomass presents a challenge because the plant cell wall structure, which is composed of complex sugars (cellulose and hemicelluloses, must be broken down into fermentable sugar, such as glucose and xylose. To achieve this goal, several types of hydrolytic enzymes are necessary, and these enzymes represent the majority of the cost associated with 2G bioethanol processing. Reducing the cost of the saccharification process can be achieved via a comprehensive understanding of the hydrolytic mechanisms and enzyme secretion of polysaccharide-hydrolyzing microorganisms. In many natural habitats, several microorganisms degrade lignocellulosic biomass through a set of enzymes that act synergistically. In this study, two fungal species, Aspergillus niger and Trichoderma reesei, were grown on sugarcane biomass with two levels of cell wall complexity, culm in natura and pretreated bagasse. The production of enzymes related to biomass degradation was monitored using secretome analyses after 6, 12 and 24 hours. Concurrently, we analyzed the sugars in the supernatant.Analyzing the concentration of monosaccharides in the supernatant, we observed that both species are able to disassemble the polysaccharides of sugarcane cell walls since 6 hours post-inoculation. The sugars from the polysaccharides such as arabinoxylan and β-glucan (that compose the most external

  18. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass

    Science.gov (United States)

    Borin, Gustavo Pagotto; Sanchez, Camila Cristina; de Souza, Amanda Pereira; de Santana, Eliane Silva; de Souza, Aline Tieppo; Leme, Adriana Franco Paes; Squina, Fabio Marcio; Buckeridge, Marcos; Goldman, Gustavo Henrique; Oliveira, Juliana Velasco de Castro

    2015-01-01

    Background Our dependence on fossil fuel sources and concern about the environment has generated a worldwide interest in establishing new sources of fuel and energy. Thus, the use of ethanol as a fuel is advantageous because it is an inexhaustible energy source and has minimal environmental impact. Currently, Brazil is the world's second largest producer of ethanol, which is produced from sugarcane juice fermentation. However, several studies suggest that Brazil could double its production per hectare by using sugarcane bagasse and straw, known as second-generation (2G) bioethanol. Nevertheless, the use of this biomass presents a challenge because the plant cell wall structure, which is composed of complex sugars (cellulose and hemicelluloses), must be broken down into fermentable sugar, such as glucose and xylose. To achieve this goal, several types of hydrolytic enzymes are necessary, and these enzymes represent the majority of the cost associated with 2G bioethanol processing. Reducing the cost of the saccharification process can be achieved via a comprehensive understanding of the hydrolytic mechanisms and enzyme secretion of polysaccharide-hydrolyzing microorganisms. In many natural habitats, several microorganisms degrade lignocellulosic biomass through a set of enzymes that act synergistically. In this study, two fungal species, Aspergillus niger and Trichoderma reesei, were grown on sugarcane biomass with two levels of cell wall complexity, culm in natura and pretreated bagasse. The production of enzymes related to biomass degradation was monitored using secretome analyses after 6, 12 and 24 hours. Concurrently, we analyzed the sugars in the supernatant. Results Analyzing the concentration of monosaccharides in the supernatant, we observed that both species are able to disassemble the polysaccharides of sugarcane cell walls since 6 hours post-inoculation. The sugars from the polysaccharides such as arabinoxylan and β-glucan (that compose the most external

  19. Structural Analysis of Fungal Cerebrosides

    Directory of Open Access Journals (Sweden)

    Eliana eBarreto-Bergter

    2011-12-01

    Full Text Available Of the ceramide monohexosides (CMHs, gluco- and galactosylceramides are the main neutral glycosphingolipids expressed in fungal cells. Their structural determination is greatly dependent on the use of mass spectrometric techniques, including fast atom bombardment-mass spectrometry (FAB-MS, electrospray ionization (ESI-MS, and energy collision-induced dissociation mass spectrometry (ESI-MS/CID-MS. Nuclear magnetic resonance (NMR has also been used successfully. Such a combination of techniques, combined with classical analytical separation, such as HPTLC and column chromatography, has led to the structural elucidation of a great number of fungal CMHs. The structure of fungal CMH is conserved among fungal species and consists of a glucose or galactose residue attached to a ceramide moiety containing 9-methyl-4,8-sphingadienine with an amidic linkage to hydroxylated fatty acids, most commonly having 16 or 18 carbon atoms and unsaturation between C-3 and C-4. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. Fungal cerebrosides were also characterized as antigenic molecules directly or indirectly involved in cell growth or differentiation in Schizophyllum commune, Cryptococcus neoformans, Pseudallescheria boydii, Candida albicans, Aspergillus nidulans, A.fumigatus and Colletotrichum gloeosporioides. Besides classical techniques for cerebroside (CMH analysis, we now describe new approaches, combining conventional TLC and mass spectrometry, as well as emerging technologies for subcellular localization and distribution of glycosphingolipids by SIMS and imaging MALDI TOF .

  20. Shorea robusta: A sustainable biomass feedstock

    Directory of Open Access Journals (Sweden)

    Vishal Kumar Singh

    2016-09-01

    Full Text Available The biomass feedstock needs to be available in a manner that is sustainable as well as renewable. However, obtaining reliable and cost effective supplies of biomass feedstock produced in a sustainable manner can prove to be difficult. Traditional biomass, mainly in the form of fallen leaves, fuel wood or dried dung, has long been the renewable and sustainable energy source for cooking and heating. Present study accounts for the biomass of fallen leaves of Shorea robusta, also known as sal, sakhua or shala tree, in the campus of BIT Mesra (Ranchi. These leaves are being gathered and burnt rather than being sold commercially. They contain water to varying degrees which affects their energy content. Hence, measurement of moisture content is critical for its biomass assessment. The leaves were collected, weighed, oven dried at 100oC until constant weight, then dry sample was reweighed to calculate the moisture content that has been driven off. By subtraction of moisture content from the initial weight of leaves, biomass was calculated. Using Differential Scanning Calorimeter (DSC the heat content of the leaves was calculated and the elemental analysis of leaf was done by CHNSO elemental analyser. Further, total biomass and carbon content of Sal tree was calculated using allometric equations so as to make a comparison to the biomass stored in dried fallen leaves

  1. Fungal genomics beyond Saccharomyces cerevisiae?

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Mcintyre, Mhairi; Nielsen, Jens

    2003-01-01

    Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious...

  2. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days.

    Science.gov (United States)

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-01-01

    To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing.

  3. Daphnia can protect diatoms from fungal parasitism

    NARCIS (Netherlands)

    Kagami, M.; Van Donk, E.; De Bruin, A.; Rijkeboer, M.; Ibelings, B.W.

    2004-01-01

    Many phytoplankton species are susceptible to chytrid fungal parasitism. Much attention has been paid to abiotic factors that determine whether fungal infections become epidemic. It is still unknown, however, how biotic factors, such as interactions with zooplankton, affect the fungal infection

  4. Global biomass burning - Atmospheric, climatic, and biospheric implicati ons [Introduction

    International Nuclear Information System (INIS)

    Zhu, Zhiliang; Teuber, K.B.

    1991-01-01

    On a global scale, the total biomass consumed by annual burning is about 8680 million tons of dry material; the estimated total biomass consumed by the burning of savanna grasslands, at 3690 million tons/year, exceeds all other biomass burning (BMB) components. These components encompass agricultural wastes burning, forest burning, and fuel wood burning. BMB is not restricted to the tropics, and is largely anthropogenic. Satellite measurements indicate significantly increased tropospheric concentrations of CO and ozone associated with BMB. BMB significantly enhances the microbial production and emission of NO(x) from soils, and of methane from wetlands

  5. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds.

    Science.gov (United States)

    Balaji, V; Arulazhagan, P; Ebenezer, P

    2014-05-01

    The present study focuses on fungal strains capable of secreting extracellular enzymes by utilizing hydrocarbons present in the contaminated soil. Fungal strains were enriched from petroleum hydrocarbons contaminated soil samples collected from Chennai city, India. The potential fungi were isolated and screened for their enzyme secretion such as lipase, laccase, peroxidase and protease and also evaluated fungal enzyme mediated PAHs degradation. Total, 21 potential PAHs degrading fungi were isolated from PAHs contaminated soil, which belongs to 9 genera such as Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor Penicillium, Rhizopus, Trichoderma, and two oilseed-associated fungal genera such as Colletotrichum and Lasiodiplodia were used to test their efficacy in degradation of PAHs in polluted soil. Maximum lipase production was obtained with P. chrysogenum, M. racemosus and L. theobromae VBE1 under optimized cultural condition, which utilized PAHs in contaminated soil as sole carbon source. Fungal strains, P. chrysogenum, M. racemosus and L. theobromae VBE1, as consortia, used in the present study were capable of degrading branched alkane isoprenoids such as pristine (C17) and pyrene (C18) present in PAHs contaminated soil with high lipase production. The fungal consortia acts as potential candidate for bioremediation of PAHs contaminated environments.

  6. Fungal Volatiles Can Act as Carbon Sources and Semiochemicals to Mediate Interspecific Interactions Among Bark Beetle-Associated Fungal Symbionts.

    Directory of Open Access Journals (Sweden)

    Jonathan A Cale

    Full Text Available Mountain pine beetle (Dendroctonus ponderosae has killed millions of hectares of pine forests in western North America. Beetle success is dependent upon a community of symbiotic fungi comprised of Grosmannia clavigera, Ophiostoma montium, and Leptographium longiclavatum. Factors regulating the dynamics of this community during pine infection are largely unknown. However, fungal volatile organic compounds (FVOCs help shape fungal interactions in model and agricultural systems and thus may be important drivers of interactions among bark beetle-associated fungi. We investigated whether FVOCs can mediate interspecific interactions among mountain pine beetle's fungal symbionts by affecting fungal growth and reproduction. Headspace volatiles were collected and identified to determine species-specific volatile profiles. Interspecific effects of volatiles on fungal growth and conidia production were assessed by pairing physically-separated fungal cultures grown either on a carbon-poor or -rich substrate, inside a shared-headspace environment. Fungal VOC profiles differed by species and influenced the growth and/or conidia production of the other species. Further, our results showed that FVOCs can be used as carbon sources for fungi developing on carbon-poor substrates. This is the first report demonstrating that FVOCs can drive interactions among bark beetle fungal symbionts, and thus are important factors in beetle attack success.

  7. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

    Science.gov (United States)

    Damialis, Athanasios; Kaimakamis, Evangelos; Konoglou, Maria; Akritidis, Ioannis; Traidl-Hoffmann, Claudia; Gioulekas, Dimitrios

    2017-03-16

    Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities' fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents.

  8. Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development.

    Science.gov (United States)

    Martínez-García, Laura B; Richardson, Sarah J; Tylianakis, Jason M; Peltzer, Duane A; Dickie, Ian A

    2015-03-01

    Little is known about the response of arbuscular mycorrhizal fungal communities to ecosystem development. We use a long-term soil chronosequence that includes ecosystem progression and retrogression to quantify the importance of host plant identity as a factor driving fungal community composition during ecosystem development. We identified arbuscular mycorrhizal fungi and plant species from 50 individual roots from each of 10 sites spanning 5-120 000 yr of ecosystem age using terminal restriction fragment length polymorphism (T-RFLP), Sanger sequencing and pyrosequencing. Arbuscular mycorrhizal fungal communities were highly structured by ecosystem age. There was strong niche differentiation, with different groups of operational taxonomic units (OTUs) being characteristic of early succession, ecosystem progression and ecosystem retrogression. Fungal alpha diversity decreased with ecosystem age, whereas beta diversity was high at early stages and lower in subsequent stages. A total of 39% of the variance in fungal communities was explained by host plant and site age, 29% of which was attributed to host and the interaction between host and site (24% and 5%, respectively). The strong response of arbuscular mycorrhizal fungi to ecosystem development appears to be largely driven by plant host identity, supporting the concept that plant and fungal communities are tightly coupled rather than independently responding to habitat. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Northeastern states sharpen biomass focus

    International Nuclear Information System (INIS)

    Lusk, P.D.

    1993-01-01

    Wood energy use in the northeastern region of the USA currently replaces an estimated annual equivalent of 45--50 million barrels of oil. Including municipal wastes and recovered methane emissions for regional landfills, total biomass contribution to the energy economy is over 70 million barrels of oil equivalent annually. A reasonable consensus suggests wood alone could replace the equivalent of over 300 million barrels of oil each year on a sustainable basis over the next two decades. Beyond energy security, over 60,000 total jobs are now provided in the region by the wood energy industry. Over 375,000 total jobs could be generated by the wood energy industry, about 65,000 in the harvesting, transportation, and end-use operations of the wood energy industry. Biomass producers must be committed to sustainable development by necessity. Sound forest management practices that keep residual stand damage from wood harvesting to a minimum can create positive impacts on the region's forest. When combined with a balanced energy policy, the conditional use of wood energy can play a modest, but significant, role in reducing air emissions. Depletion of traditional energy resources creates open-quotes bubbleclose quotes benefits which will be exhausted after a generation. Sustainable development of biomass can create inexhaustible wealth for generations, and does not pose the risk of sudden ecological disruption. While the choice between policy options is not mutually exclusive, the interrelationship between energy security, economic growth and environmental quality clearly favors biomass. The environmental benefits and the economic growth impacts of biobased products produced by the northeastern states are considerable. The 11 states located in the northeastern USA should intensify their efforts to work with industry and investors to expand markets for industrial biobased products, either produced from local feedstocks or manufactured by companies operating in the region

  10. Biomass energy: Sustainable solution for greenhouse gas emission

    Science.gov (United States)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    Biomass is part of the carbon cycle. Carbon dioxide is produced after combustion of biomass. Over a relatively short timescale, carbon dioxide is renewed from atmosphere during next generation of new growth of green vegetation. Contribution of renewable energy including hydropower, solar, biomass and biofuel in total primary energy consumption in world is about 19%. Traditional biomass alone contributes about 13% of total primary energy consumption in the world. The number of traditional biomass energy users expected to rise from 2.5 billion in 2004 to 2.6 billion in 2015 and to 2.7 billion in 2030 for cooking in developing countries. Residential biomass demand in developing countries is projected to rise from 771 Mtoe in 2004 to 818 Mtoe in 2030. The main sources of biomass are wood residues, bagasse, rice husk, agro-residues, animal manure, municipal and industrial waste etc. Dedicated energy crops such as short-rotation coppice, grasses, sugar crops, starch crops and oil crops are gaining importance and market share as source of biomass energy. Global trade in biomass feedstocks and processed bioenergy carriers are growing rapidly. There are some drawbacks of biomass energy utilization compared to fossil fuels viz: heterogeneous and uneven composition, lower calorific value and quality deterioration due to uncontrolled biodegradation. Loose biomass also is not viable for transportation. Pelletization, briquetting, liquefaction and gasification of biomass energy are some options to solve these problems. Wood fuel production is very much steady and little bit increase in trend, however, the forest land is decreasing, means the deforestation is progressive. There is a big challenge for sustainability of biomass resource and environment. Biomass energy can be used to reduce greenhouse emissions. Woody biomass such as briquette and pellet from un-organized biomass waste and residues could be used for alternative to wood fuel, as a result, forest will be saved and

  11. Fungal prostatitis: an update.

    Science.gov (United States)

    Mayayo, Emilio; Fernández-Silva, Fabiola

    2014-06-01

    Prostate pathology is a daily occurrence in urological and general medical consultations. Besides hyperplasia and neoplastic pathology, other processes, such as infectious ones, are also documented. Their etiology is diverse and varied. Within the infectious prostatic processes, fungi can also be a specific cause of prostatitis. Fungal prostatitis often appears in patients with impaired immunity and can also be rarely found in healthy patients. It can result from a disseminated infection, but it can also be localized. Fungal prostatitis is a nonspecific and harmless process. Diagnosis is commonly made by fine needle aspiration cytology or by biopsy. A number of fungi can be involved. Although there are not many reported cases, they are becoming more frequent, in particular in patients with some degree of immunodeficiency or those who live in areas where specific fungi are endemic or in visitors of those areas. We present a comprehensive review of the various forms of fungal prostatitis, and we describe the morphological characteristics of the fungi more frequently reported as causes of fungal prostatitis. We also report our own experience, aiming to alert physicians, urologists and pathologists of these particular infections.

  12. Current management of fungal infections.

    NARCIS (Netherlands)

    Meis, J.F.G.M.; Verweij, P.E.

    2001-01-01

    The management of superficial fungal infections differs significantly from the management of systemic fungal infections. Most superficial infections are treated with topical antifungal agents, the choice of agent being determined by the site and extent of the infection and by the causative organism,

  13. Biomass Burning 5x5 degree data in Native Format

    Data.gov (United States)

    National Aeronautics and Space Administration — The BIO_MASS_5X5_HAO_NAT data set contains data representing the geographical and temporal distribution of total amount of biomass burned. The data were collected by...

  14. Decolorization of different textile dyes by Penicillium simplicissimum and toxicity evaluation after fungal treatment

    Directory of Open Access Journals (Sweden)

    L.R. Bergsten-Torralba

    2009-12-01

    Full Text Available The objective of this study was to investigate the capacity of decolorization and detoxification of the textile dyes Reactive Red 198 (RR198, Reactive Blue 214 (RB214, Reactive Blue 21 (RB21 and the mixture of the three dyes (MXD by Penicillium simplicissimum INCQS 40211. The dye RB21, a phthalocyanine, was totally decolorized in 2 days, and the others, the monoazo RR198, the diazo RB214 and MXD were decolorized after 7 days by P. simplicissimum. Initially the dye decolorization involved dye adsorption by the biomass followed by degradation. The acute toxicity after fungal treatment was monitored with the microcrustacean Daphnia pulex and measured through Effective Concentration 50% (EC50. P. simplicissimum reduced efficiently the toxicity of RB21 from moderately acutely toxic to minor acutely toxic and it also reduced the toxicity of RB214 and MXD, which remained minor acutely toxic. Nevertheless, the fungus increased the toxicity of RR198 despite of the reduction of MXD toxicity, which included this dye. Thus, P. simplicissimum INCQS 40211 was efficient to decolorize different textile dyes and the mixture of them with a significant reduction of their toxicity. In addition this investigation also demonstrated the need of toxicological assays associated to decolorization experiments.

  15. Comparison of plain potassium hydroxide mounts, fungal cultures and nail plate biopsies in the diagnosis of onychomycosis.

    Science.gov (United States)

    Malik, Naveed Akhter; Nasiruddin; Dar, Nasser Rasheed; Khan, Ashfaq Ahmed

    2006-10-01

    To compare the relative sensitivity of direct microscopy, fungal culture and nail plate biopsy in the diagnosis of onychomycosis. Cross-sectional study. The Skin Department, Military Hospital, Rawalpindi from February 1998 to February 1999. A total of 50 patients who were suffering from different clinical variants of onychomycosis, irrespective of their age, gender, with or without simultaneous presence of systemic diseases, were subjected to laboratory investigations including direct microscopy with 20% potassium hydroxide (KOH) for fungal hyphae, fungal cultures and nail plate biopsies. These patients were later categorized into two groups based upon the results of nail plate biopsies. Of 50 patients, 15 (30%) were positive for fungal elements in direct microscopy, 8 (16%) were positive for fungal culture and 16 (32%) revealed positive results in nail plate biopsies. Amongst nail plate biopsy positive cases, 10 (63%) were positive for direct microscopy and 6 (37.5%) were positive for fungal cultures. In biopsy negative cases, positive results for direct microscopy were seen in 5 (14.7%) patients and positive fungal culture was found in 2 (5.88%) patients. The clinical impression of onychomycosis is not true in all the cases. Nail scraping for direct microscopy with 20% KOH should be the first line screening test for all patients which should then be supplemented with fungal culture and/ or nail plate biopsy.

  16. A method for detecting fungal contaminants in wall cavities.

    Science.gov (United States)

    Spurgeon, Joe C

    2003-01-01

    This article describes a practical method for detecting the presence of both fungal spores and culturable fungi in wall cavities. Culturable fungi were collected in 25 mm cassettes containing 0.8 microm mixed cellulose ester filters using aggressive sampling conditions. Both culturable fungi and fungal spores were collected in modified slotted-disk cassettes. The sample volume was 4 L. The filters were examined microscopically and dilution plated onto multiple culture media. Collecting airborne samples in filter cassettes was an effective method for assessing wall cavities for fungal contaminants, especially because this method allowed the sample to be analyzed by both microscopy and culture media. Assessment criteria were developed that allowed the sample results to be used to classify wall cavities as either uncontaminated or contaminated. As a criterion, wall cavities with concentrations of culturable fungi below the limit of detection (LOD) were classified as uncontaminated, whereas those cavities with detectable concentrations of culturable fungi were classified as contaminated. A total of 150 wall cavities was sampled as part of a field project. The concentrations of culturable fungi were below the LOD in 34% of the samples, whereas Aspergillus and/or Penicillium were the only fungal genera detected in 69% of the samples in which culturable fungi were detected. Spore counting resulted in the detection of Stachybotrys-like spores in 25% of the samples that were analyzed, whereas Stachybotrys chartarum colonies were only detected on 2% of malt extract agar plates and on 6% of corn meal agar plates.

  17. Meteorological factors associated with abundance of airborne fungal spores over natural vegetation

    Science.gov (United States)

    Crandall, Sharifa G.; Gilbert, Gregory S.

    2017-08-01

    The abundance of airborne fungal spores in agricultural and urban settings increases with greater air temperature, relative humidity, or precipitation. The same meteorological factors that affect temporal patterns in spore abundance in managed environments also vary spatially across natural habitats in association with differences in vegetation structure. Here we investigated how temporal and spatial variation in aerial spore abundance is affected by abiotic (weather) and biotic (vegetation) factors as a foundation for predicting how fungi may respond to changes in weather and land-use patterns. We measured the phenology of airborne fungal spores across a mosaic of naturally occurring vegetation types at different time scales to describe (1) how spore abundance changes over time, (2) which local meteorological variables are good predictors for airborne spore density, and (3) whether spore abundance differs across vegetation types. Using an air volumetric vacuum sampler, we collected spore samples at 3-h intervals over a 120-h period in a mixed-evergreen forest and coastal prairie to measure diurnal, nocturnal, and total airborne spore abundance across vegetation types. Spore samples were also collected at weekly and monthly intervals in mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types from 12 field sites across two years. We found greater airborne spore densities during the wetter winter months compared to the drier summer months. Mean total spore abundance in the mixed-evergreen forest was twice than in the coastal prairie, but there were no significant differences in total airborne spore abundance among mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types. Weekly and monthly peaks in airborne spore abundance corresponded with rain events and peaks in soil moisture. Overall, temporal patterns in meteorological factors were much more important in determining airborne fungal spore abundance than the

  18. Five-minute grid of the total marine bird biomass densities surveyed off central California - selected neutral water temperature periods, 1980-2001 (CDAS data set AL2_MASS.shp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — AL2_MASS is a polygon shapefile representing 5 minute x 5 minute latitude x longitude cells that house the overall total biomass densities (kg/sq.km.) of up to 76...

  19. Variability of total and mobile element contents in ash derived from biomass combustion

    Czech Academy of Sciences Publication Activity Database

    Száková, J.; Ochecová, P.; Hanzlíček, Tomáš; Perná, Ivana; Tlustoš, P.

    2013-01-01

    Roč. 67, č. 11 (2013), s. 1376-1385 ISSN 0366-6352 R&D Projects: GA MZe QI102A207 Institutional support: RVO:67985891 Keywords : biomass combustion * fly ash * bottom ash * element contents Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.193, year: 2013

  20. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms.

    Science.gov (United States)

    Garvey, Megan; Klose, Holger; Fischer, Rainer; Lambertz, Camilla; Commandeur, Ulrich

    2013-10-01

    Improvement of cellulase expression has the potential to change the nature of the biofuel industry. Increasing the economic feasibility of cellulase systems would significantly broaden the range of practicable biomass conversion, lowering the environmental impact of our civilisations' fuel needs. Cellulases are derived from certain fungi and bacteria, which are often difficult to culture on an industrial scale. Accordingly, methods to recombinantly express important cellulases and other glycosyl hydrolase (GH) enzymes are under serious investigation. Herein, we examine the latest developments in bacterial, yeast, plant, and fungal expression systems. We discuss current strategies for producing cellulases, and evaluate the benefits and drawbacks in yield, stability, and activity of enzymes from each system, and the overall progress in the field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Biomass Resource Assessment and Existing Biomass Use in the Madhya Pradesh, Maharashtra, and Tamil Nadu States of India

    Directory of Open Access Journals (Sweden)

    Karthikeyan Natarajan

    2015-05-01

    Full Text Available India is experiencing energy crisis and a widening gap between energy supply and demand. The country is, however, endowed with considerable, commercially and technically available renewable resources, from which surplus agro-biomass is of great importance and a relatively untapped resource. In the policy making process, knowledge of existing biomass use, degree of social reliance, and degree of biomass availability for energy production is unequivocal and pre-conditional. Field observations, documentation, and fill-in sheet tools were used to investigate the potential of biomass resources and the existing domestic, commercial, and industrial uses of biomass in selected Indian states. To do so, a team of field observers/supervisors visited three Indian states namely: Maharashtra (MH, Madhya Pradesh (MP, and Tamil Nadu (TN. Two districts from each state were selected to collect data regarding the use of biomass and the extent of biomass availability for energy production. In total, 471 farmers were interviewed, and approximately 75 farmers with various land holdings have been interviewed in each district. The existing uses of biomass have been documented in this survey study and the results show that the majority of biomass is used as fodder for domestic livestock followed by in-site ploughing, leaving trivial surplus quantities for other productive uses. Biomass for cooking appeared to be insignificant due to the availability and access to Liquefied Petroleum Gas (LPG cylinders in the surveyed districts. Opportunities exist to utilize roadside-dumped biomass, in-site burnt biomass, and a share of biomass used for ploughing. The GIS-based maps show that biomass availability varies considerably across the Taluks of the surveyed districts, and is highly dependent on a number of enviromental and socio-cultural factors. Developing competitive bioenergy market and enhancing and promoting access to more LPG fuel connections seem an appropriate socio

  2. Quebec Centre for Biomass Valorization, annual report 1990/91. Centre quebecois de valorisation de la biomasse, rapport annuel 1990/91

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-01

    The Quebec Centre for Biomass Valorization has the objectives of facilitating research pertaining to that subject while relating that research to industrial and community needs, channelling financial resources into biomass research, encouraging industry participation, and supplying information to prospective investigators for carrying out relevant projects. In 1990/91, this organization received an additional mandate from the provincial government to continue its activities. Of 253 projects proposed in 1991, 83 were related to forest biomass, 73 to agricultural biomass, 25 to aquatic biomass, 34 to peat, and 38 to urban wastes. The products to be derived from this biomass are in the alimentary, biological, chemical/material, energy, and decontamination categories. Total disbursements for the approved projects were about $14.6 million. A summary is provided of the previous 5 years of activity in such areas as wood polymers, fermentation, bioherbicides, peat-based substrates, biofiltration, and waste treatment. Objectives for the next five years are also outlined. Key sectors are identified as the valorization of lignocellulosic and agricultural wastes, municipal biomass, and peat materials. Financial statements are also included. 4 figs., 5 tabs.

  3. Biomass decomposition in near critical water

    International Nuclear Information System (INIS)

    Sinag, Ali; Guelbay, Selen; Uskan, Burcin; Canel, Muammer

    2010-01-01

    Conversion of baby food (taken as model biomass for protein and carbohydrate containing biomass) to the valuable chemicals in near critical water (648 K and 24 MPa) in an autoclave is presented in this work. K 2 CO 3 , Nickel on silica and Zeolith (HZSM-5) are selected as catalysts. A detailed characterization of the aqueous phases is performed by High Pressure Liquid Chromatography, UV-Vis Spectroscopy, Total Organic Carbon Analyser. Solid particles recovered by the experiments are also subjected to Scanning Electron Microscopy analysis. This study determines the effect of reaction conditions on the reactivity of the major biomass component. Acetic, formic and glycolic acid, aldehydes (acetaldehyde, formaldehyde), phenol and phenol derivatives, furfural, methyl furfural, hydroxymethyl furfural are the intermediates found in the aqueous phase. Baby food contains mostly carbohydrates, proteins, a variety of salts and minerals, etc. Thus, the results show the effect of these ingredients on the hydrothermal conversion of biomass. It is found that the formation and degradation pathways of the intermediates are influenced by the biomass structure.

  4. Biomass decomposition in near critical water

    Energy Technology Data Exchange (ETDEWEB)

    Sinag, Ali, E-mail: sinag@science.ankara.edu.t [Department of Chemistry, Science Faculty, Ankara University, 06100 Besevler, Ankara (Turkey); Guelbay, Selen; Uskan, Burcin; Canel, Muammer [Department of Chemistry, Science Faculty, Ankara University, 06100 Besevler, Ankara (Turkey)

    2010-03-15

    Conversion of baby food (taken as model biomass for protein and carbohydrate containing biomass) to the valuable chemicals in near critical water (648 K and 24 MPa) in an autoclave is presented in this work. K{sub 2}CO{sub 3}, Nickel on silica and Zeolith (HZSM-5) are selected as catalysts. A detailed characterization of the aqueous phases is performed by High Pressure Liquid Chromatography, UV-Vis Spectroscopy, Total Organic Carbon Analyser. Solid particles recovered by the experiments are also subjected to Scanning Electron Microscopy analysis. This study determines the effect of reaction conditions on the reactivity of the major biomass component. Acetic, formic and glycolic acid, aldehydes (acetaldehyde, formaldehyde), phenol and phenol derivatives, furfural, methyl furfural, hydroxymethyl furfural are the intermediates found in the aqueous phase. Baby food contains mostly carbohydrates, proteins, a variety of salts and minerals, etc. Thus, the results show the effect of these ingredients on the hydrothermal conversion of biomass. It is found that the formation and degradation pathways of the intermediates are influenced by the biomass structure.

  5. Integrated strategic and tactical biomass-biofuel supply chain optimization.

    Science.gov (United States)

    Lin, Tao; Rodríguez, Luis F; Shastri, Yogendra N; Hansen, Alan C; Ting, K C

    2014-03-01

    To ensure effective biomass feedstock provision for large-scale biofuel production, an integrated biomass supply chain optimization model was developed to minimize annual biomass-ethanol production costs by optimizing both strategic and tactical planning decisions simultaneously. The mixed integer linear programming model optimizes the activities range from biomass harvesting, packing, in-field transportation, stacking, transportation, preprocessing, and storage, to ethanol production and distribution. The numbers, locations, and capacities of facilities as well as biomass and ethanol distribution patterns are key strategic decisions; while biomass production, delivery, and operating schedules and inventory monitoring are key tactical decisions. The model was implemented to study Miscanthus-ethanol supply chain in Illinois. The base case results showed unit Miscanthus-ethanol production costs were $0.72L(-1) of ethanol. Biorefinery related costs accounts for 62% of the total costs, followed by biomass procurement costs. Sensitivity analysis showed that a 50% reduction in biomass yield would increase unit production costs by 11%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The evolution of fungal epiphytes

    NARCIS (Netherlands)

    Hongsanan, S.; Sánchez-Ramírez, S.; Crous, P.W.; Ariyawansa, H.A.; Zhao, R.L.; Hyde, K.D.

    2016-01-01

    Fungal epiphytes are a polyphyletic group found on the surface of plants, particularly on leaves, with a worldwide distribution. They belong in the phylum Ascomycota, which contains the largest known number of fungal genera. There has been little research dating the origins of the common ancestors

  7. Biomass - Activities and projects in 2002; Biomasse Aktivitaeten und Projekte 2002. Ueberblicksbericht zum Forschungsprogramm 2002

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D.; Guggisberg, B.

    2003-07-01

    This annual report made for the Swiss Federal Office of Energy reviews the activities carried out under the Biomass Research Programme in 2002 and describes the various projects that were active during the year. The situation concerning energy supply from biomass is discussed and figures are presented on its share in total Swiss energy consumption. Three categories of biomass use are presented - burning, fermentation of wastes and biofuels. >From each of these categories, several pilot and demonstration projects are described that cover a wide range of technologies and research activities, ranging from the pre-processing of biogenic wastes through to the optimisation of biogas-based combined heat and power installations and the operational economics of compact biogas installations. The report is completed with lists of research and development projects and pilot and demonstration projects.

  8. Differential Selection by Nematodes on an Introduced Biocontrol Fungus vs. Indigenous Fungi in Nonsterile Soil.

    Science.gov (United States)

    Kim, Tae Gwan; Knudsen, Guy R

    2018-03-15

    Trophic interactions of introduced biocontrol fungi with soil animals can bea key determinant in the fungal proliferation and activity.This study investigated trophic interaction of an introduced biocontrol fungus with soil nematodes. The biocontrol fungus Trichoderma harzianum ThzID1-M3 and the fungivorous nematode Aphelenchoides sp. (10 per gram of soil) were added to nonsterile soil, and microbial populations were monitored for 40 days. Similar results were obtained when the experiment was duplicated. ThzID1-M3 stimulated the population growth of indigenous nematodes ( p nematodes did not increase in number and the added Aphelenchoides sp. nematodes almost disappeared by day 10. With ThzID1-M3, population growth of nematodes was rapid between 5 and 10 days after treatment. ThzID1-M3 biomass peaked on day 5, dropped at day 10, and then almost disappeared at day 20, which was not influenced by the addition of nematodes.In contrast, a large quantity of ThzID1-M3 hyphae were present in a heat-treated soil in which nematodes were eliminated.Total fungal biomass in all treatments peaked on day 5 and subsequently decreased.Addition of nematodes increased the total fungal biomass ( p nematode population growth; however, hyphae of the introduced fungus when densely localized did.The results suggest that soil fungivorous nematodes are an important constraint onhyphal proliferation of fungal agents introduced into natural soils.

  9. Spatial distribution of microbial biomass, activity, community structure, and the biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) in the subsurface.

    Science.gov (United States)

    Federle, T W; Ventullo, R M; White, D C

    1990-12-01

    The vertical distribution of microbial biomass, activity, community structure and the mineralization of xenobiotic chemicals was examined in two soil profiles in northern Wisconsin. One profile was impacted by infiltrating wastewater from a laundromat, while the other served as a control. An unconfined aquifer was present 14 meters below the surface at both sites. Biomass and community structure were determined by acridine orange direct counts and measuring concentrations of phospholipid-derived fatty acids (PLFA). Microbial activity was estimated by measuring fluorescein diacetate (FDA) hydrolysis, thymidine incorporation into DNA, and mixed amino acid (MAA) mineralization. Mineralization kinetics of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) were determined at each depth. Except for MAA mineralization rates, measures of microbial biomass and activity exhibited similar patterns with depth. PLFA concentration and rates of FDA hydrolysis and thymidine incorporation decreased 10-100 fold below 3 m and then exhibited little variation with depth. Fungal fatty acid markers were found at all depths and represented from 1 to 15% of the total PLFAs. The relative proportion of tuberculostearic acid (TBS), an actinomycete marker, declined with depth and was not detected in the saturated zone. The profile impacted by wastewater exhibited higher levels of PLFA but a lower proportion of TBS than the control profile. This profile also exhibited faster rates of FDA hydrolysis and amino acid mineralization at most depths. LAS was mineralized in the upper 2 m of the vadose zone and in the saturated zone of both profiles. Little or no LAS biodegradation occurred at depths between 2 and 14 m. LAE was mineralized at all depths in both profiles, and the mineralization rate exhibited a similar pattern with depth as biomass and activity measurements. In general, biomass and biodegradative activities were much lower in groundwater than in soil samples obtained

  10. Maternal biomass smoke exposure and birth weight in Malawi ...

    African Journals Online (AJOL)

    We, therefore, investigated effects of exposure to biomass fuels on reduced birth weight in the Malawian population. Methods: We conducted a cross-sectional analysis using secondary data from the 2010 Malawi Demographic Health Survey with a total of 9124 respondents. Information on exposure to biomass fuels, ...

  11. Biomass and volume yield after 6 years in multiclonal hybrid poplar riparian buffer strips

    Energy Technology Data Exchange (ETDEWEB)

    Fortier, Julien [Centre d' etude de la foret (CEF), Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Institut des sciences de l' environnement, Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Gagnon, Daniel [Centre d' etude de la foret (CEF), Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Institut des sciences de l' environnement, Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Fiducie de recherche sur la foret des Cantons-de-l' Est, 1 rue Principale, St-Benoit-du-Lac, Quebec (Canada); Truax, Benoit; Lambert, France [Fiducie de recherche sur la foret des Cantons-de-l' Est, 1 rue Principale, St-Benoit-du-Lac, Quebec (Canada)

    2010-07-15

    In this paper the potential of five hybrid poplar clones (Populus spp.) to provide biomass and wood volume in the riparian zone is assessed in four agroecosystems of southern Quebec (Canada). For all variables measured, significant Site effects were detected. Survival, biomass yield and volume yield were highest at the Bromptonville site. After 6 years of growth, total aboveground biomass production (stems + branches + leaves) reached 112.8 tDM/ha and total leafless biomass production (stems + branches) reached 101.1 tDM/ha at this site, while stem wood volume attained 237.5 m{sup 3}/ha. Yields as low as 14.2 tDM/ha for total biomass and 24.8 m{sup 3}/ha for total stem volume were also observed at the Magog site. Highest yields were obtained on the most fertile sites, particularly in terms of NO{sub 3} supply rate. Mean stem volume per tree was highly correlated with NO{sub 3} supply rate in soils (R{sup 2} = 0.58, p < 0.001). Clone effects were also detected for most of the variables measured. Total aboveground biomass and total stem volume production were high for clone 3729 (Populus nigra x P. maximowiczii) (73.1 tDM/ha and 134.2 m{sup 3}/ha), although not statistically different from clone 915311 (P. maximowiczii x P. balsamifera). However, mean whole-tree biomass (including leaves) was significantly higher for clone 3729 (38.8 kgDM/tree). Multifunctional agroforestry systems such as hybrid poplar riparian buffer strips are among the most sustainable ways to produce a high amount of biomass and wood in a short time period, while contributing to alleviate environmental problems such as agricultural non-point source pollution. (author)

  12. Kinetic and Modeling Investigation to Provide Design Guidelines for the NREL Dilute-Acid Process Aimed at Total Hydrolysis/Fractionation of Lignocellulosic Biomass: July 1998

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. Y.; Iyer, P.; Xiang, Q.; Hayes, J.

    2004-08-01

    Following up on previous work, subcontractor investigated three aspects of using NREL ''pretreatment'' technology for total hydrolysis (cellulose as well as hemicellulose) of biomass. Whereas historic hydrolysis of biomass used either dilute acid or concentrated acid technology for hydrolysis of both hemicellulose and cellulose, NREL has been pursuing very dilute acid hydrolysis of hemicellulose followed by enzymatic hydrolysis of cellulose. NREL's countercurrent shrinking-bed reactor design for hemicellulose hydrolysis (pretreatment) has, however, shown promise for total hydrolysis. For the first task, subcontractor developed a mathematical model of the countercurrent shrinking bed reactor operation and, using yellow poplar sawdust as a feedstock, analyzed the effect of: initial solid feeding rate, temperature, acid concentration, acid flow rate, Peclet number (a measure of backmixing in liquid flow), and bed shrinking. For the second task, subcontractor used laboratory trials, with yellow poplar sawdust and 0.07 wt% sulfuric acid at various temperatures, to verify the hydrolysis of cellulose to glucose (desired) and decomposition of glucose (undesired) and determine appropriate parameters for use in kinetic models. Unlike cellulose and hemicellulose, lignins, the third major component of biomass, are not carbohydrates that can be broken down into component sugars. They are, however, aromatic complex amorphous phenolic polymers that can likely be converted into low-molecular weight compounds suitable for production of fuels and chemicals. Oxidative degradation is one pathway for such conversion and hydrogen peroxide would be an attractive reagent for this, as it would leave no residuals. For the third task, subcontractor reacted lignin with hydrogen peroxide under various conditions and analyzed the resulting product mix.

  13. Differential Response of Extracellular Proteases of Trichoderma Harzianum Against Fungal Phytopathogens.

    Science.gov (United States)

    Sharma, Vivek; Salwan, Richa; Sharma, Prem N

    2016-09-01

    In the present study, production of extracellular proteases by Trichoderma harzianum was evaluated based on the relative gene expression and spectrophotometric assay. The fungal isolates were grown in Czapek Dox Broth medium supplemented with deactivated mycelium of plant fungal pathogens such as Fusarium oxysporum, Colletotrichum capsici, Gloeocercospora sorghi, and Colletotrichum truncatum. The maximum protease activity was detected after 48 h of incubation against Colletotrichum spp. Similarly in qRT-PCR, the relative gene expression of four proteases varied from 48 to 96 h against host pathogens in a time-independent manner. Among proteases, statistically significant upregulation of asp, asp, and srp was observed against Colletotrichum spp., followed by F. oxysporum. But in the case of pepM22, maximum upregulation was observed against F. oxysporum. The variation in enzyme assay and qRT-PCR of proteases at different time intervals against various fungal phytopathogens could be due to the limitation of using casein as a substrate for all types of proteases or protease-encoding transcripts selected for qRT-PCR, which may not be true representative of total protease activity.

  14. Biomass of Sacrificed Spruce/Aspen (SNF)

    Data.gov (United States)

    National Aeronautics and Space Administration — Dimension analysis (diameter at breast high, tree height, depth of crown), estimated leaf area, and total aboveground biomass for sacrificed spruce and aspens in...

  15. The role of fungi in the immobilisation and translocation of Cs137 in the organic horizons of a conifer forest in Ireland

    International Nuclear Information System (INIS)

    Dawson, David.

    1995-01-01

    This project investigates the size of the microbial and fungal biomass of the Of organic horizon of a Picea sitchensis forest soil. The immobilisation of Cs 137 within the microbial and fungal biomass is determined. The translocation of Cs 137 via fungal transport within the organic layers of a Pinus sylvestris forest is also investigated in a laboratory microcosm experiment and under field conditions. The microbial biomass was determined by fumigation-incubation using three soil biocides; chloroform, gamma irradiation and a selective fungicide. All biocides gave similar results for microbial biomass which was calculated from the pooled data to be 1.42 +-0.08 g C m -2 . The selective fungicide did not selectively kill the fungal biomass, it was therefore estimated to be 1.13 +- 0.06 g C m -2 . The fungal biomass was determined independently by the agar-film technique and found to be 10.63 +- 0.8 g C m -2 . The large difference in results is due to the methods used to identify the metabolically active fungal biomass. Chloroform and irradiation treatments yielded similar results for the quantity of Cs 137 immobilised within the fungal biomass. The selective fungicide did not selectively lyse the fungal biomass. The quantity of Cs 137 immobilised within the fungal biomass was estimated to be 8% of the Cs 137 deposition to the Of layer or 25 Bq g -1 C m -2 . The importation of Cs 137 into litterbags in the forest was observed as a cumulative effect over the period of study. The agar-film technique proved unsatisfactory in determining the relationship between Cs 137 importation and fungal growth. However, a significant (P 137 content of the O1 litterbags. A poor relationship was observed for Of litterbags. A large increase in Cs 137 activity on O1 and Of litter in the lab based study was observed although confounded by inadvertent contamination. (author)

  16. Food and disturbance effects on Arctic benthic biomass and production size spectra

    Science.gov (United States)

    Górska, Barbara; Włodarska-Kowalczuk, Maria

    2017-03-01

    Body size is a fundamental biological unit that is closely coupled to key ecological properties and processes. At the community level, changes in size distributions may influence energy transfer pathways in benthic food webs and ecosystem carbon cycling; nevertheless they remain poorly explored in benthic systems, particularly in the polar regions. Here, we present the first assessment of the patterns of benthic biomass size spectra in Arctic coastal sediments and explore the effects of glacial disturbance and food availability on the partitioning of biomass and secondary productivity among size-defined components of benthic communities. The samples were collected in two Arctic fjords off west Spitsbergen (76 and 79°N), at 6 stations that represent three regimes of varying food availability (indicated by chlorophyll a concentration in the sediments) and glacial sedimentation disturbance intensity (indicated by sediment accumulation rates). The organisms were measured using image analysis to assess the biovolume, biomass and the annual production of each individual. The shape of benthic biomass size spectra at most stations was bimodal, with the location of a trough and peaks similar to those previously reported in lower latitudes. In undisturbed sediments macrofauna comprised 89% of the total benthic biomass and 56% of the total production. The lower availability of food resources seemed to suppress the biomass and secondary production across the whole size spectra (a 6-fold decrease in biomass and a 4-fold decrease in production in total) rather than reshape the spectrum. At locations where poor nutritional conditions were coupled with disturbance, the biomass was strongly reduced in selected macrofaunal size classes (class 10 and 11), while meiofaunal biomass and production were much higher, most likely due to a release from macrofaunal predation and competition pressure. As a result, the partitioning of benthic biomass and production shifted towards meiofauna

  17. Culture of microalgae biomass for valorization of table olive processing water

    International Nuclear Information System (INIS)

    Contreras, C.G.; Serrano, A.; Ruiz-Filippi, G.; Borja, R.; Fermoso, F.G.

    2016-01-01

    Table olive processing water (TOPW) contains many complex substances, such as phenols, which could be valorized as a substrate for microalgae biomass culture. The aim of this study was to assess the capability of Nannochloropsis gaditana to grow in TOPW at different concentrations (10- 80%) in order to valorize this processing water. Within this range, the highest increment of biomass was determined at percentage of 40% of TOPW, reaching an increment of 0.36 ± 0.05 mg volatile suspended solids (VSS)/L. Components of algal biomass were similar for the experiments at 10-40% of TOPW, where proteins were the major compounds (56-74%). Total phenols were retained in the microalgae biomass (0.020 ± 0.002 g of total phenols/g VSS). Experiments for 80% of TOPW resulted in a low production of microalgae biomass. High organic matter, nitrogen, phosphorus and phenol removal were achieved in all TOPW concentrations. Although high-value products, such as proteins, were obtained and high removal efficiencies of nutrients were determined, microalgae biomass culture should be enhanced to become a suitable integral processing water treatment. [es

  18. Phylogenetic analysis of fungal ABC transporters.

    Science.gov (United States)

    Kovalchuk, Andriy; Driessen, Arnold J M

    2010-03-16

    The superfamily of ABC proteins is among the largest known in nature. Its members are mainly, but not exclusively, involved in the transport of a broad range of substrates across biological membranes. Many contribute to multidrug resistance in microbial pathogens and cancer cells. The diversity of ABC proteins in fungi is comparable with those in multicellular animals, but so far fungal ABC proteins have barely been studied. We performed a phylogenetic analysis of the ABC proteins extracted from the genomes of 27 fungal species from 18 orders representing 5 fungal phyla thereby covering the most important groups. Our analysis demonstrated that some of the subfamilies of ABC proteins remained highly conserved in fungi, while others have undergone a remarkable group-specific diversification. Members of the various fungal phyla also differed significantly in the number of ABC proteins found in their genomes, which is especially reduced in the yeast S. cerevisiae and S. pombe. Data obtained during our analysis should contribute to a better understanding of the diversity of the fungal ABC proteins and provide important clues about their possible biological functions.

  19. Fungal endophytes for sustainable crop production.

    Science.gov (United States)

    Lugtenberg, Ben J J; Caradus, John R; Johnson, Linda J

    2016-12-01

    This minireview highlights the importance of endophytic fungi for sustainable agriculture and horticulture production. Fungal endophytes play a key role in habitat adaptation of plants resulting in improved plant performance and plant protection against biotic and abiotic stresses. They encode a vast variety of novel secondary metabolites including volatile organic compounds. In addition to protecting plants against pathogens and pests, selected fungal endophytes have been used to remove animal toxicities associated with fungal endophytes in temperate grasses, to create corn and rice plants that are tolerant to a range of biotic and abiotic stresses, and for improved management of post-harvest control. We argue that practices used in plant breeding, seed treatments and agriculture, often caused by poor knowledge of the importance of fungal endophytes, are among the reasons for the loss of fungal endophyte diversity in domesticated plants and also accounts for the reduced effectiveness of some endophyte strains to confer plant benefits. We provide recommendations on how to mitigate against these negative impacts in modern agriculture. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Fueling the Future with Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2014-10-27

    Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.

  1. Modeling natural regeneration biomass of Pinus stand

    Directory of Open Access Journals (Sweden)

    Rafael Cubas

    2016-09-01

    Full Text Available Reliable biomass data are very important in the evaluation of ecosystems, and help in understanding the contribution of forests in climate change. Variables that describe the size of the tree, like diameter and height are directly associated with biomass, which allows the use of regression models to estimate this element. Therefore, this study aimed to estimate by regression models, the biomass of different compartments of natural regeneration of trees of a Pinus taeda L. stand. The data were obtained through direct destructive method, using 100 randomly selected trees in the understory of a stand of Pinus taeda. We analyzed three arithmetical models, three logarithmic and two models developed by Stepwise process. Logarithmic equations developed by Stepwise procedure showed the best estimates of total and stems biomass. However, for needles and twigs compartments the best adjust was observed with Husch model and for root biomass Berkhout model proved to be the most suitable.

  2. Various forms of organic and inorganic P fertilizers did not negatively affect soil- and root-inhabiting AM fungi in a maize-soybean rotation system.

    Science.gov (United States)

    Beauregard, M S; Gauthier, M-P; Hamel, C; Zhang, T; Welacky, T; Tan, C S; St-Arnaud, M

    2013-02-01

    Arbuscular mycorrhizal (AM) fungi are key components of most agricultural ecosystems. Therefore, understanding the impact of agricultural practices on their community structure is essential to improve nutrient mobilization and reduce plant stress in the field. The effects of five different organic or mineral sources of phosphorus (P) for a maize-soybean rotation system on AM fungal diversity in roots and soil were assessed over a 3-year period. Total DNA was extracted from root and soil samples collected at three different plant growth stages. An 18S rRNA gene fragment was amplified and taxa were detected and identified using denaturing gradient gel electrophoresis followed by sequencing. AM fungal biomass was estimated by fatty acid methyl ester analysis. Soil P fertility parameters were also monitored and analyzed for possible changes related with fertilization or growth stages. Seven AM fungal ribotypes were detected. Fertilization significantly modified soil P flux, but had barely any effect on AM fungi community structure or biomass. There was no difference in the AM fungal community between plant growth stages. Specific ribotypes could not be significantly associated to P treatment. Ribotypes were associated with root or soil samples with variable detection frequencies between seasons. AM fungal biomass remained stable throughout the growing seasons. This study demonstrated that roots and soil host distinct AM fungal communities and that these are very temporally stable. The influence of contrasting forms of P fertilizers was not significant over 3 years of crop rotation.

  3. COFIRING BIOMASS WITH LIGNITE COAL

    Energy Technology Data Exchange (ETDEWEB)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  4. Burden of fungal infections in Senegal.

    Science.gov (United States)

    Badiane, Aida S; Ndiaye, Daouda; Denning, David W

    2015-10-01

    Senegal has a high rate of tuberculosis and a low HIV seropositivity rate and aspergilloma, life-threatening fungal infections, dermatophytosis and mycetoma have been reported in this study. All published epidemiology papers reporting fungal infection rates from Senegal were identified. Where no data existed, we used specific populations at risk and fungal infection frequencies in each to estimate national incidence or prevalence. The results show that tinea capitis is common being found in 25% of children, ~1.5 million. About 191,000 Senegalese women get recurrent vaginal thrush, ≥4 times annually. We estimate 685 incident cases of chronic pulmonary aspergillosis (CPA) following TB and prevalence of 2160 cases. Asthma prevalence in adults varies from 3.2% to 8.2% (mean 5%); 9976 adults have allergic bronchopulmonary aspergillosis (ABPA) and 13,168 have severe asthma with fungal sensitisation (SAFS). Of the 59,000 estimated HIV-positive patients, 366 develop cryptococcal meningitis; 1149 develop Pneumocystis pneumonia and 1946 develop oesophageal candidiasis, in which oral candidiasis (53%) and dermatophytosis (16%) are common. Since 2008-2010, 113 cases of mycetoma were diagnosed. In conclusion, we estimate that 1,743,507 (12.5%) people in Senegal suffer from a fungal infection, excluding oral candidiasis, fungal keratitis, invasive candidiasis or aspergillosis. Diagnostic and treatment deficiencies should be rectified to allow epidemiological studies. © 2015 Blackwell Verlag GmbH.

  5. Mapping Russian forest biomass with data from satellites and forest inventories

    International Nuclear Information System (INIS)

    Houghton, R A; Butman, D; Bunn, A G; Krankina, O N; Schlesinger, P; Stone, T A

    2007-01-01

    The forests of Russia cover a larger area and hold more carbon than the forests of any other nation and thus have the potential for a major role in global warming. Despite a systematic inventory of these forests, however, estimates of total carbon stocks vary, and spatial variations in the stocks within large aggregated units of land are unknown, thus hampering measurement of sources and sinks of carbon. We mapped the distribution of living forest biomass for the year 2000 by developing a relationship between ground measurements of wood volume at 12 sites throughout the Russian Federation and data from the MODIS satellite bidirectional reflectance distribution function (BRDF) product (MOD43B4). Based on the results of regression-tree analyses, we used the MOD43B4 product to assign biomass values to individual 500 m x 500 m cells in areas identified as forest by two satellite-based maps of land cover. According to the analysis, the total living biomass varied between 46 and 67 Pg, largely because of different estimates of forest area. Although optical data are limited in distinguishing differences in biomass in closed canopy forests, the estimates of total living biomass obtained here varied more in response to different definitions of forest than to saturation of the optical sensing of biomass

  6. Mapping Russian forest biomass with data from satellites and forest inventories

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, R A [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States); Butman, D [Yale School of Forestry and Environmental Science, Yale University, New Haven, CT 06511 (United States); Bunn, A G [Department of Environmental Sciences, Huxley College of the Environment, Western Washington University, 516 High Street, Bellingham, WA 98225-9181 (United States); Krankina, O N [Department of Forest Science, Oregon State University, 202 Richardson Hall, Corvallis, OR 97331-5752 (United States); Schlesinger, P [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States); Stone, T A [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States)

    2007-10-15

    The forests of Russia cover a larger area and hold more carbon than the forests of any other nation and thus have the potential for a major role in global warming. Despite a systematic inventory of these forests, however, estimates of total carbon stocks vary, and spatial variations in the stocks within large aggregated units of land are unknown, thus hampering measurement of sources and sinks of carbon. We mapped the distribution of living forest biomass for the year 2000 by developing a relationship between ground measurements of wood volume at 12 sites throughout the Russian Federation and data from the MODIS satellite bidirectional reflectance distribution function (BRDF) product (MOD43B4). Based on the results of regression-tree analyses, we used the MOD43B4 product to assign biomass values to individual 500 m x 500 m cells in areas identified as forest by two satellite-based maps of land cover. According to the analysis, the total living biomass varied between 46 and 67 Pg, largely because of different estimates of forest area. Although optical data are limited in distinguishing differences in biomass in closed canopy forests, the estimates of total living biomass obtained here varied more in response to different definitions of forest than to saturation of the optical sensing of biomass.

  7. Deashing macroalgae biomass by pulsed electric field treatment.

    Science.gov (United States)

    Robin, Arthur; Sack, Martin; Israel, Alvaro; Frey, Wolfgang; Müller, Georg; Golberg, Alexander

    2018-05-01

    Among all biomass constituents, the ashes are major hurdles for biomass processing. Ashes currently have low market value and can make a non-negligible fraction of the biomass dry weight significantly impacting its further processing by degrading equipment, lowering process yield, inhibiting reactions and decreasing products qualities. However, most of the current treatments for deashing biomass are of poor efficiency or industrial relevance. This work is the first report on the use of Pulsed Electric Field (PEF) to enhance deashing of biomass from a high ash content green marine macroalga, Ulva sp., using hydraulic pressing. By inducing cell permeabilization of the fresh biomass, PEF was able to enhance the ash extraction from 18.4% (non-treated control) to 37.4% of the total ash content in average, significantly enhancing the extraction of five of the major ash elements (K, Mg, Na, P and S) compared to pressing alone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Biomass energy utilisation in Malaysia - prospects and problems

    International Nuclear Information System (INIS)

    Kong, Hoi Why

    1999-01-01

    An assessment of the contribution of biomass fuels in the rubber, palm oil, cocoa, brick and charcoal industries is given with biomass accounting for about 16% of the total power demand; equivalent to about 2.48 MTOE. The use of biomass in Malaysia is by the direct combustion of wood for heat and power and by gasification with power production via a diesel engine. Challenges facing Malaysia include a rapid increase in demand for power, the need for development funding, environmental issues, and increases in the price of rubber wood, the main fuel source. (uk)

  9. An empirical, integrated forest biomass monitoring system

    Science.gov (United States)

    Kennedy, Robert E.; Ohmann, Janet; Gregory, Matt; Roberts, Heather; Yang, Zhiqiang; Bell, David M.; Kane, Van; Hughes, M. Joseph; Cohen, Warren B.; Powell, Scott; Neeti, Neeti; Larrue, Tara; Hooper, Sam; Kane, Jonathan; Miller, David L.; Perkins, James; Braaten, Justin; Seidl, Rupert

    2018-02-01

    The fate of live forest biomass is largely controlled by growth and disturbance processes, both natural and anthropogenic. Thus, biomass monitoring strategies must characterize both the biomass of the forests at a given point in time and the dynamic processes that change it. Here, we describe and test an empirical monitoring system designed to meet those needs. Our system uses a mix of field data, statistical modeling, remotely-sensed time-series imagery, and small-footprint lidar data to build and evaluate maps of forest biomass. It ascribes biomass change to specific change agents, and attempts to capture the impact of uncertainty in methodology. We find that: • A common image framework for biomass estimation and for change detection allows for consistent comparison of both state and change processes controlling biomass dynamics. • Regional estimates of total biomass agree well with those from plot data alone. • The system tracks biomass densities up to 450-500 Mg ha-1 with little bias, but begins underestimating true biomass as densities increase further. • Scale considerations are important. Estimates at the 30 m grain size are noisy, but agreement at broad scales is good. Further investigation to determine the appropriate scales is underway. • Uncertainty from methodological choices is evident, but much smaller than uncertainty based on choice of allometric equation used to estimate biomass from tree data. • In this forest-dominated study area, growth and loss processes largely balance in most years, with loss processes dominated by human removal through harvest. In years with substantial fire activity, however, overall biomass loss greatly outpaces growth. Taken together, our methods represent a unique combination of elements foundational to an operational landscape-scale forest biomass monitoring program.

  10. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates

    Energy Technology Data Exchange (ETDEWEB)

    Khadempour, Lily [Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Zoology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53706 USA; Burnum-Johnson, Kristin E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Baker, Erin S. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Nicora, Carrie D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Webb-Robertson, Bobbie-Jo M. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; White, Richard A. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Monroe, Matthew E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Huang, Eric L. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Smith, Richard D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Currie, Cameron R. [Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53706 USA

    2016-10-26

    Herbivores use symbiotic microbes to help gain access to energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, having tremendous impact on their ecosystems as dominant generalist herbivores through cultivation of a fungus, Leucoagaricus gongylophorous. Here we examine how this mutualism could facilitate the flexible substrate incorporation of the ants by providing leaf-cutter ant subcolonies four substrate types: leaves, flowers, oats, and a mixture of all three. Through metaproteomic analysis of the fungus gardens, we were able to identify and quantify 1766 different fungal proteins, including 161 biomass-degrading enzymes. This analysis revealed that fungal protein profiles were significantly different between subcolonies fed different substrates with the highest abundance of cellulolytic enzymes observed in the leaf and flower treatments. When the fungus garden is provided with leaves and flowers, which contain the majority of their energy in recalcitrant material, it increases its production of proteins that break down cellulose: endoglucanases, exoglucanase and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, the mixed treatment closely resembled the treatment with oats alone. This suggests that when provided a mixture of substrates, the fungus garden preferentially produces enzymes necessary for breakdown of simpler, more digestible substrates. This flexible, substrate-specific response of the fungal cultivar allows the leaf-cutter ants to derive energy from a wide range of substrates, which may contribute to their ability to be dominant generalist herbivores.

  11. Human Fungal Pathogens of Mucorales and Entomophthorales.

    Science.gov (United States)

    Mendoza, Leonel; Vilela, Raquel; Voelz, Kerstin; Ibrahim, Ashraf S; Voigt, Kerstin; Lee, Soo Chan

    2014-11-06

    In recent years, we have seen an increase in the number of immunocompromised cohorts as a result of infections and/or medical conditions, which has resulted in an increased incidence of fungal infections. Although rare, the incidence of infections caused by fungi belonging to basal fungal lineages is also continuously increasing. Basal fungal lineages diverged at an early point during the evolution of the fungal lineage, in which, in a simplified four-phylum fungal kingdom, Zygomycota and Chytridiomycota belong to the basal fungi, distinguishing them from Ascomycota and Basidiomycota. Currently there are no known human infections caused by fungi in Chytridiomycota; only Zygomycotan fungi are known to infect humans. Hence, infections caused by zygomycetes have been called zygomycosis, and the term "zygomycosis" is often used as a synonym for "mucormycosis." In the four-phylum fungal kingdom system, Zygomycota is classified mainly based on morphology, including the ability to form coenocytic (aseptated) hyphae and zygospores (sexual spores). In the Zygomycota, there are 10 known orders, two of which, the Mucorales and Entomophthorales, contain species that can infect humans, and the infection has historically been known as zygomycosis. However, recent multilocus sequence typing analyses (the fungal tree of life [AFTOL] project) revealed that the Zygomycota forms not a monophyletic clade but instead a polyphyletic clade, whereas Ascomycota and Basidiomycota are monophyletic. Thus, the term "zygomycosis" needed to be further specified, resulting in the terms "mucormycosis" and "entomophthoramycosis." This review covers these two different types of fungal infections. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  12. Energy potential through agricultural biomass using geographical information system - A case study of Punjab

    International Nuclear Information System (INIS)

    Singh, Jagtar; Panesar, B.S.; Sharma, S.K.

    2008-01-01

    Agricultural biomass has immense potential for power production in an Indian state like Punjab. A judicious use of biomass energy could potentially play an important role in mitigating environmental impacts of non-renewable energy sources particularly global warming and acid rain. But the availability of agricultural biomass is spatially scattered. The spatial distribution of this resource and the associate costs of collection and transportation are major bottlenecks for the success of biomass energy conversion facilities. Biomass, being scattered and loose, has huge collection and transportation costs, which can be reduced by properly planning and locating the biomass collection centers for biomass-based power plants. Before planning the collection centers, it is necessary to evaluate the biomass, energy and collection cost of biomass in the field. In this paper, an attempt has been made to evaluate the spatial potential of biomass with geographical information system (GIS) and a mathematical model for collection of biomass in the field has been developed. The total amount of unused agricultural biomass is about 13.73 Mt year -1 . The total power generation capacity from unused biomass is approximately 900 MW. The collection cost in the field up to the carrier unit is US$3.90 t -1 . (author)

  13. Mycological profile of fungal sinusitis: An audit of specimens over a 7-year period in a tertiary care hospital in Tamil Nadu

    Directory of Open Access Journals (Sweden)

    Michael Rajiv

    2008-10-01

    Full Text Available Background: Fungi are being increasingly implicated in the etiopathology of rhinosinusitis. Fungal sinusitis is frequently seen in diabetic or immunocompromised patients, although it has also been reported in immunocompetent individuals. Invasive fungal sinusitis, unless diagnosed early and treated aggressively, has a high mortality rate. Aim: Our aim was to look at the mycological and clinical aspects of fungal sinusitis in a tertiary referral center in Tamil Nadu. Design: This is a retrospective audit conducted on fungal culture positive sinus samples submitted to the Microbiology department from January 2000 to August 2007. Relevant clinical and histopathological details were analysed. Results: A total of 211 culture-positive fungal sinusitis samples were analysed. Of these, 63% had allergic fungal sinusitis and 34% had invasive fungal sinusitis. Aspergillus flavus was the most common causative agent of allergic fungal sinusitis and Rhizopus arrhizus was the most common causative agent of acute invasive sinusitis. A significant proportion of these patients did not have any known predisposing factors. Conclusion: In our study, the etiology of fungal sinusitis was different than that of western countries. Allergic fungal sinusitis was the most common type of fungal sinusitis in our community. Aspergillus sp was the most common causative agent in both allergic and chronic invasive forms of the disease.

  14. DYNAMICS OF ALGAE NUMBER AND BIOMASS OF STEPPE BIOGEOCOENOSES AND AGROCOENOSES IN KHERSON REGION

    Directory of Open Access Journals (Sweden)

    Shcherbina V.V.

    2011-12-01

    Full Text Available Characteristics of daily dynamics of seaweeds abundance and biomass were determined for steppe biogeocoenosis and agrocoenosis of Biosphere reserve “Askaniya-Nova” in spring of 2011. Fluctuation ranges in seaweeds abundance and biomass have been registered.Analyzing the indices of total number and algae biomass in studied biogeocoenoses it should be noted that the maximal values of alga number in virgin soil steppe exceeded minimal in 3,3 times; biomasses - in 2,1. For virgin soil steppe of post-fire-induced development the relation between maximum and minimal value of total number of algae was up to 2,1; biomass - 2,4. For agrocoenosis we noted the largest ranges in variation of number and biomass. In conditions of dry-land arable land the maximum values of total number of alga exceeded minimal in 21,9 times; biomasses - in 8,7; for irrigated arable land - in 12,5 and 5,6 respectively.In soil samples, selected within the limits of virgin soil biogeocoenoses of biosphere reserve “Askania-Nova” and agrocoenosis of dry-land and irrigated arable land in biosphere reserve by direct count, the algae species of Bacillariophyta, Cyanophyta, Chlorophyta, Xanthophyta and Eustigmatophyta have been found. The largest contribution to number and biomass of algae belonged to Bacillariophyta. The number and biomass of agrocoenosis algae is more dynamic feature, than for algae of virgin soil biogeocoenoses.

  15. Review: Assessing the climate mitigation potential of biomass

    Directory of Open Access Journals (Sweden)

    Patrick Moriarty

    2016-12-01

    Full Text Available For many millennia, humans have used biomass for three broad purposes: food for humans and fodder for farm animals; energy; and materials. Food has always been exclusively produced from biomass, and in the year 1800, biomass still accounted for about 95% of all energy. Biomass has also been a major source of materials for construction, implements, clothing, bedding and other uses, but some researchers think that total human uses of biomass will soon reach limits of sustainability. It is thus important to select those biomass uses that will maximise global climate change benefits. With a ‘food first’ policy, it is increasingly recognised that projections of food needs are important for estimating future global bioenergy potential, and that non-food uses of biomass can be increased by both food crop yield improvements and dietary changes. However, few researchers have explicitly included future biomaterials production as a factor in bioenergy potential. Although biomaterials’ share of the materials market has roughly halved over the past quarter-century, we show that per tonne of biomass, biomaterials will usually allow greater greenhouse gas reductions than directly using biomass for bioenergy. particularly since in many cases, biomaterials can be later burnt for energy after their useful life.

  16. Production of biomass and polysaccharides of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt. :Fr.) P. Karst. (higher Basidiomycetes), by submerged cultivation.

    Science.gov (United States)

    Habijanic, Jozica; Berovic, Marin; Boh, Bojana; Wraber, Branka; Petravic-Tominac, Vlatka

    2013-01-01

    Submerged batch and repeated fed-batch cultivation techniques were used for mycelia cultivation and polysaccharide production of the Lingzhi or Reishi medicinal mushroom Ganoderma lucidum. Although most publications use various Asiatic G. lucidum strains, the growth of the strain Ga.l 4 (Biotechnical Faculty Strain Collection, Ljubljana, Slovenia), originally isolated from the Slovenian forest, is much faster. The results between the batch and repeated fed-batch cultivation are compared with the polysaccharide production in batch cultivation. From the aspect of biomass production, the best results were obtained in repeated fed-batch after 44 days, where 12.4 g/L of dry fungal biomass was obtained.

  17. Biomass energy in the making

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Wood, straw, agricultural residues, organic wastes, biomass is everywhere you look. But the efficient use of this source of green electricity - the world's second largest renewable energy source - requires optimization of biomass collection and combustion processes. Biomass is back on the political agenda. In mid-June of this year, the French government gave this renewable energy a boost by selecting twenty-two projects to generate power and heat with biomass. The plants, to be commissioned by 2010, will be located in eleven different regions and will consume energy from organic plant matter. The power generated will be bought at a firm price of 128 euros per megawatt-hour. Most of the fuel will come from forest and paper industry waste, but straw and even grape pomace will be used in some cases. The plants will have a combined generating capacity of 300 MWh, raising France's installed biomass capacity to a total of 700 MWe. A drop of water in the ocean in the overall scheme of France's electricity. It is true that France has long neglected biomass. In 2004, electricity generated from biological resources represented a mere 1.74 TWhe in France, just 0.3% of its power consumption. This will rise to 0.6% once the new plants have come on line. The trend is the same in all of the EU's 27 member states, according to Eurostat, the statistical office of the European Communities: the amount of electricity generated from biomass (including biogas, municipal waste and wood) has practically doubled in six years, rising from 40 to 80 TWhe between 2000 and 2005. This is an improvement, but it still only represents 2.5% of the electricity supplied to Europeans. On a global scale, biomass contributes just 1% of total electric power generation. Yet biomass is an energy resource found all over the world, whether as agricultural waste, wood chips, or dried treatment plant sludge, to name but a few. Biomass power plants have managed to gain a foothold mainly in countries that produce

  18. Soil fungal community responses to global changes

    DEFF Research Database (Denmark)

    Haugwitz, Merian Skouw

    Global change will affect the functioning and structure of terrestrial ecosystems and since soil fungi are key players in organic matter decomposition and nutrient turnover, shifts in fungal community composition might have a strong impact on soil functioning. The main focus of this thesis...... was therefore to investigate the impact of global environmental changes on soil fungal communities in a temperate and subartic heath ecosystem. The objective was further to determine global change effects on major functional groups of fungi and analyze the influence of fungal community changes on soil carbon...... and nutrient availability and storage. By combining molecular methods such as 454 pyrosequencing and quantitative PCR of fungal ITS amplicons with analyses of soil enzymes, nutrient pools of carbon, nitrogen and phosphorus we were able to characterize soil fungal communities as well as their impact on nutrient...

  19. Biomass production and water use efficiency of grassland in ...

    African Journals Online (AJOL)

    Using the results from a long-term grazing trial in the Dry Highland Sourveld of the KwaZulu-Natal province, we prepared a water use efficiency value (the ratio of the increment in annual biomass to total annual evapotranspiration) for this rangeland type. Using seasonal biomass measurements recorded between March ...

  20. The characteristic changes of betung bamboo (Dendrocalamus asper pretreated by fungal pretreatment

    Directory of Open Access Journals (Sweden)

    Widya Fatriasari

    2014-05-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 The fungal pretreatment effect on chemical structural and morphological changes of Betung Bamboo was evaluated based on its biomass components after being cultivated by white rot fungi, Trametes versicolor. Betung bamboo powder (15 g was exposed to liquid inoculum of white rot fungi and incubated at 270C for 15, 30 and 45 days. The treated samples were then characterized by FT-IR spectroscopy, X-Ray diffraction and SEM-EDS analyses. Cultivation for 30 days with 5 and 10% loadings retained greater selectivity compared to that of the other treatments. FTIR spectra demonstrated that the fungus affected the decreasing of functional group quantities without changing the functional groups. The decrease in intensity at wave number of 1246 cm-1 (guaiacyl of lignin was greater than that at wave number of 1328 cm-1 (deformation combination of syringyl and xylan after fungal treatment. X-ray analysis showed the pretreated samples had a higher crystallinity than the untreated ones which might be due to the cleavage of amorphous fractions of cellulose. The pretreated samples have more fragile than the untreated ones confirmed by SEM. Crystalline allomorph calculated by XRD analysis showed that fungus pretreatment for 30 days has transformed triclinic structure of cellulose to monoclinic structure.

  1. Human presence impacts fungal diversity of inflated lunar/Mars analog habitat.

    Science.gov (United States)

    Blachowicz, A; Mayer, T; Bashir, M; Pieber, T R; De León, P; Venkateswaran, K

    2017-07-11

    An inflatable lunar/Mars analog habitat (ILMAH), simulated closed system isolated by HEPA filtration, mimics International Space Station (ISS) conditions and future human habitation on other planets except for the exchange of air between outdoor and indoor environments. The ILMAH was primarily commissioned to measure physiological, psychological, and immunological characteristics of human inhabiting in isolation, but it was also available for other studies such as examining its microbiological aspects. Characterizing and understanding possible changes and succession of fungal species is of high importance since fungi are not only hazardous to inhabitants but also deteriorate the habitats. Observing the mycobiome changes in the presence of human will enable developing appropriate countermeasures with reference to crew health in a future closed habitat. Succession of fungi was characterized utilizing both traditional and state-of-the-art molecular techniques during the 30-day human occupation of the ILMAH. Surface samples were collected at various time points and locations to observe both the total and viable fungal populations of common environmental and opportunistic pathogenic species. To estimate the cultivable fungal population, potato dextrose agar plate counts method was utilized. The internal transcribed spacer region-based iTag Illumina sequencing was employed to measure the community structure and fluctuation of the mycobiome over time in various locations. Treatment of samples with propidium monoazide (PMA; a DNA intercalating dye for selective detection of viable microbial populations) had a significant effect on the microbial diversity compared to non-PMA-treated samples. Statistical analysis confirmed that viable fungal community structure changed (increase in diversity and decrease in fungal burden) over the occupation time. Samples collected at day 20 showed distinct fungal profiles from samples collected at any other time point (before or after

  2. Stabilization of Pb(II) accumulated in biomass through phosphate-pretreated pyrolysis at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Saijun; Zhang, Tao; Li, Jianfa, E-mail: ljf@usx.edu.cn; Shi, Lingna; Zhu, Xiaoxiao; Lü, Jinhong; Li, Yimin

    2017-02-15

    Highlights: • Phosphate-pretreated pyrolysis can stabilize Pb(II) accumulated in biomass. • More than 95% of Pb(II) in celery and wood biomass was stabilized. • Pb from biomass was almost totally retained in char. • Most Pb was transformed into phosphates according to XRD and SEM/EDX analyses. - Abstract: The remediation of heavy metal-contaminated soil and water using plant biomass is considered to be a green technological approach, although the harmless disposal of biomass accumulated with heavy metals remains a challenge. A potential solution to this problem explored in this work involves combining phosphate pretreatment with pyrolysis. Pb(II) was accumulated in celery biomass with superior sorption capacity and also in ordinary wood biomass through biosorption. The Pb(II)-impregnated biomass was then pretreated with phosphoric acid or calcium dihydrogen phosphate (CaP) and pyrolyzed at 350 or 450 °C. Pb(II) from biomass was in turn almost totally retained in chars, and the percentage of DTPA-extractable Pb(II) was reduced to less than 5% of total Pb(II) in chars through CaP pretreatment. Pb(II) stabilization was further confirmed through a sequential extraction test, which showed that more than 95% of Pb(II) was converted into stable species composed mainly of lead phosphates according to X-ray diffraction (XRD) and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analyses. Overall, phosphate-pretreated pyrolysis can stabilize both Pb(II) and degradable biomass, so as to control efficiently the hazards of heavy metal-contaminated biomass.

  3. Inositol Polyphosphate Kinases, Fungal Virulence and Drug Discovery

    Directory of Open Access Journals (Sweden)

    Cecilia Li

    2016-09-01

    Full Text Available Opportunistic fungi are a major cause of morbidity and mortality world-wide, particularly in immunocompromised individuals. Developing new treatments to combat invasive fungal disease is challenging given that fungal and mammalian host cells are eukaryotic, with similar organization and physiology. Even therapies targeting unique fungal cell features have limitations and drug resistance is emerging. New approaches to the development of antifungal drugs are therefore needed urgently. Cryptococcus neoformans, the commonest cause of fungal meningitis worldwide, is an accepted model for studying fungal pathogenicity and driving drug discovery. We recently characterized a phospholipase C (Plc1-dependent pathway in C. neoformans comprising of sequentially-acting inositol polyphosphate kinases (IPK, which are involved in synthesizing inositol polyphosphates (IP. We also showed that the pathway is essential for fungal cellular function and pathogenicity. The IP products of the pathway are structurally diverse, each consisting of an inositol ring, with phosphate (P and pyrophosphate (PP groups covalently attached at different positions. This review focuses on (1 the characterization of the Plc1/IPK pathway in C. neoformans; (2 the identification of PP-IP5 (IP7 as the most crucial IP species for fungal fitness and virulence in a mouse model of fungal infection; and (3 why IPK enzymes represent suitable candidates for drug development.

  4. Fungal Endophytes: Beyond Herbivore Management

    Directory of Open Access Journals (Sweden)

    Bamisope S. Bamisile

    2018-03-01

    Full Text Available The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production.

  5. Fungal contamination of produced wheat flour in West Azerbaijan, northwest of Iran

    Directory of Open Access Journals (Sweden)

    Jafar Asadzadeh

    2014-09-01

    Full Text Available Objective: To investigate fungal contamination of produced wheat flours in West Azarbaijan Province, located in the North West of Iran as wheat flour is one of the most important food and nutrient in the Iranians diet. Methods: This descriptive study was performed during March 2011 to April 2013 in flour mills of West Azerbaijan province. A total of 17 samples of produced wheat flour in Azerbaijan Province of Iran were tested for mold contamination based on Iran National Standard Method No. 2393. Results: Presence of molds in all collected 151 samples from flour factories of Azerbaijan Province were at the limit based on Iranian national standard. Conclusions: The obtained results showed that the process of flour production was hygienic quietly. Bread is staple ingredient of Iranian diet, and strict control on its processing of wheat flour, maintenance and distribution results nonpolluting or reduction of fungal contamination. Objective: To investigate fungal contamination of produced wheat flours in West Azarbaijan Province, located in the North West of Iran as wheat flour is one of the most important food and nutrient in the Iranians diet. Methods: This descriptive study was performed during March 2011 to April 2013 in flour mills of West Azerbaijan province. A total of 17 samples of produced wheat flour in Azerbaijan Province of Iran were tested for mold contamination based on Iran National Standard Method No. 2393. Results: Presence of molds in all collected 151 samples from flour factories of Azerbaijan Province were at the limit based on Iranian national standard. Conclusions: The obtained results showed that the process of flour production was hygienic quietly. Bread is staple ingredient of Iranian diet, and strict control on its processing of wheat flour, maintenance and distribution results nonpolluting or reduction of fungal contamination.

  6. Large mesopelagic fishes biomass and trophic efficiency in the open ocean.

    KAUST Repository

    Irigoien, Xabier; Klevjer, T A; Rø stad, Anders; Martinez, U; Boyra, G; Acuñ a, J L; Bode, A; Echevarria, F; Gonzalez-Gordillo, J I; Hernandez-Leon, S; Agusti, S; Aksnes, D L; Duarte, Carlos M.; Kaartvedt, Stein

    2014-01-01

    With a current estimate of ~1,000 million tons, mesopelagic fishes likely dominate the world total fishes biomass. However, recent acoustic observations show that mesopelagic fishes biomass could be significantly larger than the current estimate

  7. Comparison of the efficiency of bacterial and fungal laccases in delignification and detoxification of steam-pretreated lignocellulosic biomass for bioethanol production.

    Science.gov (United States)

    De La Torre, María; Martín-Sampedro, Raquel; Fillat, Úrsula; Eugenio, María E; Blánquez, Alba; Hernández, Manuel; Arias, María E; Ibarra, David

    2017-11-01

    This study evaluates the potential of a bacterial laccase from Streptomyces ipomoeae (SilA) for delignification and detoxification of steam-exploded wheat straw, in comparison with a commercial fungal laccase from Trametes villosa. When alkali extraction followed by SilA laccase treatment was applied to the water insoluble solids fraction, a slight reduction in lignin content was detected, and after a saccharification step, an increase in both glucose and xylose production (16 and 6%, respectively) was observed. These effects were not produced with T. villosa laccase. Concerning to the fermentation process, the treatment of the steam-exploded whole slurry with both laccases produced a decrease in the phenol content by up to 35 and 71% with bacterial and fungal laccases, respectively. The phenols reduction resulted in an improved performance of Saccharomyces cerevisiae during a simultaneous saccharification and fermentation (SSF) process, improving ethanol production rate. This enhancement was more marked with a presaccharification step prior to the SSF process.

  8. BOREAS RSS-15 SIR-C and Landsat TM Biomass and Landcover Maps of the NSA

    Science.gov (United States)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Ranson, K. Jon

    2000-01-01

    As part of BOREAS, the RSS-15 team conducted an investigation using SIR-C, X-SAR, and Landsat TM data for estimating total above-ground dry biomass for the SSA and NSA modeling grids and component biomass for the SSA. Relationships of backscatter to total biomass and total biomass to foliage, branch, and bole biomass were used to estimate biomass density across the landscape. The procedure involved image classification with SAR and Landsat TM data and development of simple mapping techniques using combinations of SAR channels. For the SSA, the SIR-C data used were acquired on 06-Oct-1994, and the Landsat TM data used were acquired on 02-Sep-1995. The maps of the NSA were developed from SIR-C data acquired on 13-Apr-1994. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  9. Prospects of biomass energy in Bangladesh: an alternative development

    International Nuclear Information System (INIS)

    Salahuddin, Ahmed

    1998-01-01

    Biomass plays an important and complex role in the lives of the people of rural Bangladesh, where more than 80 per cent of the country's population live. The problems relating to biomass do not have to do merely with the question of supply of wood, or of food or of fuel; the problems are linked to competition in the variegations of land-use and to differing end-uses of by-products that may compete with or complement each other. The paper discusses the present pattern and amount of biomass consumption with a view to assessing the future prospect of biomass supply in meeting various needs. Regarding biomass energy supply, several important conclusions can be drawn: a) the energy consumption pattern in Bangladesh is characterized by heavy dependence on traditional fuel; b) the domestic sector uses 80 per cent of the total biomass fuel and c) in the industrial sector, about 76 per cent of the energy used consists of biomass fuel, mainly for processing agricultural products. Several observations are made pertaining to different sectors of biomass fuel demand. (author)

  10. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  11. Synthesis of biomass derived carbon materials for environmental engineering and energy storage applications

    Science.gov (United States)

    Huggins, Mitchell Tyler

    Biomass derived carbon (BC) can serve as an environmentally and cost effective material for both remediation and energy production/storage applications. The use of locally derived biomass, such as unrefined wood waste, provides a renewable feedstock for carbon material production compared to conventional unrenewable resources like coal. Additionally, energy and capital cost can be reduced through the reduction in transport and processing steps and the use of spent material as a soil amendment. However, little work has been done to evaluate and compare biochar to conventional materials such as granular activated carbon or graphite in advanced applications of Environmental Engineering. In this work I evaluated the synthesis and compared the performance of biochar for different applications in wastewater treatment, nutrient recovery, and energy production and storage. This includes the use of biochar as an electrode and filter media in several bioelectrochemical systems (BES) treating synthetic and industrial wastewater. I also compared the treatment efficiency of granular biochar as a packed bed adsorbent for the primary treatment of high strength brewery wastewater. My studies conclude with the cultivation of fungal biomass to serve as a template for biochar synthesis, controlling the chemical and physical features of the feedstock and avoiding some of the limitations of waste derived materials.

  12. Analysis of integrated animal-fish production system under subtropical hill agro ecosystem in India: growth performance of animals, total biomass production and monetary benefit.

    Science.gov (United States)

    Kumaresan, A; Pathak, K A; Bujarbaruah, K M; Vinod, K

    2009-03-01

    The present study assessed the benefits of integration of animals with fish production in optimizing the bio mass production from unit land in subtropical hill agro ecosystem. Hampshire pigs and Khaki Campbell ducks were integrated with composite fish culture. The pig and duck excreta were directly allowed into the pond and no supplementary feed was given to fish during the period of study. The average levels of N, P and K in dried pig and duck manure were 0.9, 0.7 and 0.6 per cent and 1.3, 0.6 and 0.5 per cent, respectively. The average body weight of pig and duck at 11 months age was 90 and 1.74 kg with an average daily weight gain of 333.33 and 6.44 g, respectively. The fish production in pig-fish and duck-fish systems were 2209 and 2964 kg/ha, respectively while the fish productivity in control pond was only 820 kg/ha. The total biomass (animal and fish) production was higher (pfeeding system compared to the traditional system, however the input/output ratio was 1:1.2 and 1:1.55 for commercial and traditional systems, respectively. It was inferred that the total biomass production per unit land was high (pfish were integrated together.

  13. Closed-loop system for growth of aquatic biomass and gasification thereof

    Science.gov (United States)

    Oyler, James R.

    2017-09-19

    Processes, systems, and methods for producing combustible gas from wet biomass are provided. In one aspect, for example, a process for generating a combustible gas from a wet biomass in a closed system is provided. Such a process may include growing a wet biomass in a growth chamber, moving at least a portion of the wet biomass to a reactor, heating the portion of the wet biomass under high pressure in the reactor to gasify the wet biomass into a total gas component, separating the gasified component into a liquid component, a non-combustible gas component, and a combustible gas component, and introducing the liquid component and non-combustible gas component containing carbon dioxide into the growth chamber to stimulate new wet biomass growth.

  14. Fungal Genomics for Energy and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  15. Indoor and outdoor atmospheric fungal spores in the São Paulo metropolitan area (Brazil): species and numeric concentrations

    Science.gov (United States)

    Gonçalves, Fábio Luiz Teixeira; Bauer, Heidi; Cardoso, Maria Regina Alves; Pukinskas, Sandra; Matos, Dulcilena; Melhem, Márcia; Puxbaum, Hans

    2010-07-01

    The aim of this study was to estimate the indoor and outdoor concentrations of fungal spores in the Metropolitan Area of Sao Paulo (MASP), collected at different sites in winter/spring and summer seasons. The techniques adopted included cultivation (samples collected with impactors) and microscopic enumeration (samples collected with impingers). The overall results showed total concentrations of fungal spores as high as 36,000 per cubic meter, with a large proportion of non culturable spores (around 91% of the total). Penicillium sp. and Aspergillus sp. were the dominant species both indoors and outdoors, in all seasons tested, occurring in more than 30% of homes at very high concentrations of culturable airborne fungi [colony forming units(CFU) m-3]. There was no significant difference between indoor and outdoor concentrations. The total fungal spore concentration found in winter was 19% higher than that in summer. Heat and humidity were the main factors affecting fungal growth; however, a non-linear response to these factors was found. Thus, temperatures below 16°C and above 25°C caused a reduction in the concentration (CFU m-3) of airborne fungi, which fits with MASP climatalogy. The same pattern was observed for humidity, although not as clearly as with temperature given the usual high relative humidity (above 70%) in the study area. These results are relevant for public health interventions that aim to reduce respiratory morbidity among susceptible populations.

  16. Biomass energy inventory and mapping system

    Energy Technology Data Exchange (ETDEWEB)

    Kasile, J.D. [Ohio State Univ., Columbus, OH (United States)

    1993-12-31

    A four-stage biomass energy inventory and mapping system was conducted for the entire State of Ohio. The product is a set of maps and an inventory of the State of Ohio. The set of amps and an inventory of the State`s energy biomass resource are to a one kilometer grid square basis on the Universal Transverse Mercator (UTM) system. Each square kilometer is identified and mapped showing total British Thermal Unit (BTU) energy availability. Land cover percentages and BTU values are provided for each of nine biomass strata types for each one kilometer grid square. LANDSAT satellite data was used as the primary stratifier. The second stage sampling was the photointerpretation of randomly selected one kilometer grid squares that exactly corresponded to the LANDSAT one kilometer grid square classification orientation. Field sampling comprised the third stage of the energy biomass inventory system and was combined with the fourth stage sample of laboratory biomass energy analysis using a Bomb calorimeter and was then used to assign BTU values to the photointerpretation and to adjust the LANDSAT classification. The sampling error for the whole system was 3.91%.

  17. Study on new biomass energy systems

    Science.gov (United States)

    1992-03-01

    A biomass energy total system is proposed, and its feasibility is studied. It is the system in which liquid fuel is produced from eucalyptuses planted in the desert area in Australia for production of biomass resource. Eucalyptus tree planting aims at a growth amount of 40 cu m/ha. per year and a practical application area of 45,000ha. CO2 fixation in the biomass plantation becomes 540,000 tons at a 12 ton/ha. rate. Assuming that 0.55 ton of liquid fuel is produced from 1 ton of biomass, a petrochemical plant having a production of 2.5 million bbl/year per unit (equivalent to the fuel used in the 100,000kW class power plant) is needed. Moreover, survey is made on practicality of diesel substitution fuel by esterification of palm oil, and a marked effect of reduction in soot/smoke and particulates in exhaust gas is confirmed. The biomass conversion process technology and the technology for afforestation at the arid land and irrigation are important as future subjects, and the technology development using a bench plant and a pilot plant is needed.

  18. Fungal cell gigantism during mammalian infection.

    Directory of Open Access Journals (Sweden)

    Oscar Zaragoza

    2010-06-01

    Full Text Available The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.

  19. Fungal cell gigantism during mammalian infection.

    Science.gov (United States)

    Zaragoza, Oscar; García-Rodas, Rocío; Nosanchuk, Joshua D; Cuenca-Estrella, Manuel; Rodríguez-Tudela, Juan Luis; Casadevall, Arturo

    2010-06-17

    The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.

  20. Fungal melanins and their interactions with metals.

    Science.gov (United States)

    Fogarty, R V; Tobin, J M

    1996-09-01

    Fungal melanins are dark brown or black pigments located in cell walls. They also exist as extracellular polymers. Melanized fungi possess increased virulence and resistance to microbial attack as well as enhanced survival while under environmental stress. Melanins contain various functional groups which provide an array of multiple nonequivalent binding sites for metal ions. Pigmented Cladosporium cladosporoides was shown to biosorb 2.5- to four-fold more Ni, Cu, Zn, Cd, and Pb than albino Penicillium digitatum and at four- to six-fold higher rates. Metal desorption was significantly lower for extracellular melanin than from pigmented or albino biomass which indicated the strength of the melanin-metal bond. At equilibrium, tributyltin chloride (TBTC) concentrations of 2.5 mM, pigmented and albino Aureobasidium pullulans absorbed approximately 0.9 and 0.7 mumol TBTC mg -1 dry wt, respectively, whereas purified extracellular melanin exhibited uptake levels of approximately 22 mumol TBTC mg-1 dry wt at an equilibrium concentration of only 0.4 mM. Addition of melanin to the growth medium reduced the toxic effect of CuSO4 and TBTC due to melanin metal binding and sequestration.

  1. Fungal Endocarditis: Update on Diagnosis and Management.

    Science.gov (United States)

    Pasha, Ahmed Khurshid; Lee, Justin Z; Low, See-Wei; Desai, Hem; Lee, Kwan S; Al Mohajer, Mayar

    2016-10-01

    Fungal endocarditis is an extremely debilitating disease associated with high morbidity and mortality. Candida spp. are the most common isolated organisms in fungal endocarditis. It is most prevalent in patients who are immunosuppressed and intravenous drug users. Most patients present with constitutional symptoms, which are indistinguishable from bacterial endocarditis, hence a high index of suspicion is required for pursuing diagnosis. Diagnosis of fungal endocarditis can be very challenging: most of the time, blood cultures are negative or take a long time to yield growth. Fungal endocarditis mandates an aggressive treatment strategy. A medical and surgical combined approach is the cornerstone of therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Fungal infections in neutropenic cancer patients

    International Nuclear Information System (INIS)

    Parvez, T.

    2003-01-01

    Invasive fungal infections are important causes of morbidity and mortality in cancer patients with prolonged neutropenia following chemotherapy. Recent trends indicate a change toward infections by Aspergillus species, non-albicans species of Candida, and previously uncommon fungal pathogens. These have decreased susceptibility to current antifungal agents. In the last decade there has been much effort to find solutions for these changing trends. This article reviews current approaches to prevention and treatment of opportunistic fungal infections in postchemotherapy neutropenic patients and discussion future antifungal approaches and supportive methods. (author)

  3. Effects of gamma irradiation on fungal load and Mycotoxin on Sesame seeds in Abuja, Nigeria

    International Nuclear Information System (INIS)

    Akueche, E.C.; Kana, N.D.; Adeboye, E.T.; Adeleke, A. T.; Shehu, I.; Akande, R.; Shonowo, O. A.; Adesanmi, C.A.; Anjorin, S.T.

    2011-01-01

    Gamma rays of average energy of 1.25 MeV from radionuclide 60 Co was used in this study and the effects of varying doses 3, 6, 9, 12, 15 kGy on fungal load of and mycotoxin content on sesame seeds were investigated. Sesame seed samples were collected from Abaji, Gwagwalada, Kubwa and Karu markets in Abuja, Federal Capital Territory, Nigeria. A serial dilution technique was employed and the fungi so diluted from the sesame seed samples were identified based on micro and macro morphological characteristics. The Aflatoxin Total and Ochratoxin A Contents in the samples were analysed using AgraQaunt direct combative enzyme-linked immunosorbent assay (ELISA). In all, 157 fungal isolates to four genera: Aspergillus, Curvularia, Penicillium, and Fusarium spp. in decreasing order of predominance were identified. Aspergillus spp. were observed from all the nonirradiated samples. Doses of 6-15kGy eliminated the entire fungal load. Also doses of 9-15kGy generally reduced Ochratoxin A content in all the samples, the rate of mycotoxin reduction was inconsistent with absorbed dose. However, sesame seed samples from the four markets exposed to irradiation dose of 15kGy had the comparatively least Aflatoxin Total content.

  4. Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations

    Science.gov (United States)

    Dannemiller, Karen C.; Lang-Yona, Naama; Yamamoto, Naomichi; Rudich, Yinon; Peccia, Jordan

    2014-02-01

    We examined fungal communities associated with the PM10 mass of Rehovot, Israel outdoor air samples collected in the spring and fall seasons. Fungal communities were described by 454 pyrosequencing of the internal transcribed spacer (ITS) region of the fungal ribosomal RNA encoding gene. To allow for a more quantitative comparison of fungal exposure in humans, the relative abundance values of specific taxa were transformed to absolute concentrations through multiplying these values by the sample's total fungal spore concentration (derived from universal fungal qPCR). Next, the sequencing-based absolute concentrations for Alternaria alternata, Cladosporium cladosporioides, Epicoccum nigrum, and Penicillium/Aspergillus spp. were compared to taxon-specific qPCR concentrations for A. alternata, C. cladosporioides, E. nigrum, and Penicillium/Aspergillus spp. derived from the same spring and fall aerosol samples. Results of these comparisons showed that the absolute concentration values generated from pyrosequencing were strongly associated with the concentration values derived from taxon-specific qPCR (for all four species, p 0.70). The correlation coefficients were greater for species present in higher concentrations. Our microbial aerosol population analyses demonstrated that fungal diversity (number of fungal operational taxonomic units) was higher in the spring compared to the fall (p = 0.02), and principal coordinate analysis showed distinct seasonal differences in taxa distribution (ANOSIM p = 0.004). Among genera containing allergenic and/or pathogenic species, the absolute concentrations of Alternaria, Aspergillus, Fusarium, and Cladosporium were greater in the fall, while Cryptococcus, Penicillium, and Ulocladium concentrations were greater in the spring. The transformation of pyrosequencing fungal population relative abundance data to absolute concentrations can improve next-generation DNA sequencing-based quantitative aerosol exposure assessment.

  5. Biomass and nutrient accumulation in young Prosopis Juliflora at Mombasa, Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Maghembe, J.A.; Kariuki, E.M.; Haller, R.D.

    1983-01-01

    Data are presented for 6-yr old P. juliflora, grown for quarry reclamation on: biomass of stems, large branches, small branches and leaves; height and volume of stems and large branches. All were calculated from regressions on based diameter. Volume was 209 cubic m/ha (stems), 75 cubic m/ha (large branches). Total biomass was 216 t/ha (77% in stems and large branches). Leaves plus small branches (22.6% of biomass) contained over 50% of the pool of nutrients N, P, K and Mg. Implications are discussed for site depletion as a result of total tree use for fuelwood and fodder. 25 references.

  6. Current and potential utilisation of biomass energy in Fiji

    International Nuclear Information System (INIS)

    Prasad, S.

    1990-01-01

    Energy from biomass accounts for an average of 43% of the primary energy used in developing countries, with some countries totally dependent on biomass for all their energy needs. The most common use for biomass for energy is the provision of heat for cooking and heating; other uses include steam and electricity generation and crop and food drying. Fiji, a developing country, uses energy from wood and coconut wastes for cooking and copra drying. Bagasse from sugar mills is used to generate process steam as well as some 15 MW of electricity, for mill consumption and for sale to the national grid. Other, relatively small scale uses for biomass include the generation of steam and electricity for industry. This paper attempts to quantify the amount of biomass, in its various forms, available in Fiji and assesses the current potential utilisation of biomass for energy in Fiji. (author)

  7. Microbiological Contamination at Workplaces in a Combined Heat and Power (CHP Station Processing Plant Biomass

    Directory of Open Access Journals (Sweden)

    Justyna Szulc

    2017-01-01

    Full Text Available The aim of the study was to evaluate the microbial contamination at a plant biomass processing thermal power station (CHP. We found 2.42 × 103 CFU/m3 of bacteria and 1.37 × 104 CFU/m3 of fungi in the air; 2.30 × 107 CFU/g of bacteria and 4.46 × 105 CFU/g of fungi in the biomass; and 1.61 × 102 CFU/cm2 bacteria and 2.39 × 101 CFU/cm2 fungi in filtering facepiece respirators (FFRs. Using culture methods, we found 8 genera of mesophilic bacteria and 7 of fungi in the air; 10 genera each of bacteria and fungi in the biomass; and 2 and 5, respectively, on the FFRs. Metagenomic analysis (Illumina MiSeq revealed the presence of 46 bacterial and 5 fungal genera on the FFRs, including potential pathogens Candida tropicalis, Escherichia coli, Prevotella sp., Aspergillus sp., Penicillium sp.. The ability of microorganisms to create a biofilm on the FFRs was confirmed using scanning electron microscopy (SEM. We also identified secondary metabolites in the biomass and FFRs, including fumigaclavines, quinocitrinines, sterigmatocistin, and 3-nitropropionic acid, which may be toxic to humans. Due to the presence of potential pathogens and mycotoxins, the level of microbiological contamination at workplaces in CHPs should be monitored.

  8. Spatial Analysis of Depots for Advanced Biomass Processing

    Energy Technology Data Exchange (ETDEWEB)

    Hilliard, Michael R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Webb, Erin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sokhansanj, Shahabaddine [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eaton, Laurence M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinez Gonzalez, Maria I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    The objective of this work was to perform a spatial analysis of the total feedstock cost at the conversion reactor for biomass supplied by a conventional system and an advanced system with depots to densify biomass into pellets. From these cost estimates, the conditions (feedstock cost and availability) for which advanced processing depots make it possible to achieve cost and volume targets can be identified.

  9. Monitoring of fungal spores in the indoor air of preschool institution facilities in Novi Sad

    Directory of Open Access Journals (Sweden)

    Novaković Milana S.

    2013-01-01

    Full Text Available Fungal spores can cause a range of health problems in humans such as respiratory diseases and mycotoxicoses. Since children are the most vulnerable, the presence of fungal spores in the facilities of preschool and school institutions should be investigated readily. In order to estimate air contamination by fungal spores, air sampling was conducted in eight facilities of the preschool institution in Novi Sad during February and March, 2007. Sedimentation plate method was used for the detection of viable fungal spores, mostly being members of subdv. Deuteromycota (Fungi imperfecti. In 32 samples a total of 148 colonies were developed, among which five genera were identified: Penicillium, Cladosporium, Aspergillus, Alternaria and Acremonium while non-sporulating fungal colonies were labeled as sterile mycelia. Most frequently recorded genera were Penicillium with 46 colonies and Cladosporium with 44 colonies. The genera Aspergillus and Alternaria were represented with 3 colonies each and Acremonium with only 1 colony. The greatest number of colonies emerged in the samples from the day care facilities “Vendi” (58 colonies and “Panda” (49 colonies. Most diverse samples were obtained from the day care center “Zvončica”, with presence of all identified genera. These results showed notable presence of fungal spores in the indoor air of Preschool institution facilities and indicated the need for further, more complete seasonal research. Obtained information is considered useful for the evaluation of potential mycofactors that endanger health of children. [Projekat Ministarstva nauke Republike Srbije, br. III43002

  10. UV-guided isolation of fungal metabolites by HSCCC

    DEFF Research Database (Denmark)

    Dalsgaard, P.W.; Nielsen, K.F.; Larsen, Thomas Ostenfeld

    2005-01-01

    Analytical standardised reversed phase liquid chromatography (RPLC) data can be helpful in finding a suitable solvent combination for isolation of fungal metabolites by high-speed counter current chromatography. Analysis of the distribution coefficient (K-D) of fungal metabolites in a series...... peptides from a crude fungal extract....

  11. Histone Acetylation in Fungal Pathogens of Plants

    Directory of Open Access Journals (Sweden)

    Junhyun Jeon

    2014-03-01

    Full Text Available Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

  12. Autoreactive T Cells and Chronic Fungal Infection Drive Esophageal Carcinogenesis

    Science.gov (United States)

    Zhu, Feng; Willette-Brown, Jami; Song, Na-Young; Lomada, Dakshayani; Song, Yongmei; Xue, Liyan; Gray, Zane; Zhao, Zitong; Davis, Sean R.; Sun, Zhonghe; Zhang, Peilin; Wu, Xiaolin; Zhan, Qimin; Richie, Ellen R.; Hu, Yinling

    2018-01-01

    SUMMARY Humans with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a T cell–driven autoimmune disease caused by impaired central tolerance, are susceptible to developing chronic fungal infection and esophageal squamous cell carcinoma (ESCC). However, the relationship between autoreactive T cells and chronic fungal infection in ESCC development remains unclear. We find that kinase-dead Ikkα knockin mice develop phenotypes reminiscent of APECED, including impaired central tolerance, autoreactive T cells, chronic fungal infection, and ESCCs expressing specific human ESCC markers. Using this model, we investigated the potential link between ESCC and fungal infection. Autoreactive CD4 T cells permit fungal infection and incite tissue injury and inflammation. Antifungal treatment or depletion of autoreactive CD4 T cells rescues, whereas oral fungal administration promotes, ESCC development. Inhibition of inflammation or EGFR activity decreases fungal burden. Importantly, fungal infection is highly associated with ESCCs in non-autoimmune human patients. Therefore, autoreactive T cells and chronic fungal infection, fostered by inflammation and epithelial injury, promote ESCC development. PMID:28407484

  13. Fungal polyketide azaphilone pigments as future natural food colorants?

    DEFF Research Database (Denmark)

    Mapari, Sameer Shamsuddin; Thrane, Ulf; Meyer, Anne S.

    2010-01-01

    The recent approval of fungal carotenoids as food colorants by the European Union has strengthened the prospects for fungal cell factories for the production of polyketide pigments. Fungal production of colorants has the main advantage of making the manufacturer independent of the seasonal supply...... functionality and to expand the color palette of contemporary natural food colorants.......The recent approval of fungal carotenoids as food colorants by the European Union has strengthened the prospects for fungal cell factories for the production of polyketide pigments. Fungal production of colorants has the main advantage of making the manufacturer independent of the seasonal supply...... of raw materials, thus minimizing batch-to-batch variations. Here, we review the potential of polyketide pigments produced from chemotaxonomically selected non-toxigenic fungal strains (e.g. Penicillium and Epicoccum spp.) to serve as food colorants. We argue that the production of polyketide azaphilone...

  14. Exploration of Fungal Association From Hard Coral Against Pathogen MDR Staphylococcus haemolyticus

    Science.gov (United States)

    Cristianawati, O.; Radjasa, O. K.; Sabdono, A.; Trianto, A.; Sabdaningsih, A.; Sibero, M. T.; Nuryadi, H.

    2017-02-01

    Staphylococcus haemolyticus are opportunistic bacteria and as the second leading cause of nosocomial infections. It is a disease causing septicemia, peritonitis, otitis, and urinary tract infections and infections of the eye. It also a phenotype resistant to multiple antibiotics commercial. There is now an urgency to find an alternative antibiotics to combat this bacteria. It has been widely reported that many bioactive marine natural products from marine invertebrate have striking similarities to metabolites of their associated microorganisms including fungi. Hard coral associated microorganisms are among of the most interesting and promising marine natural product sources, which produce with various biological activities. The proposed work focused on the discovery of bioactive compounds and also estimated the phylogenetic diversity from fungal association of hard coral against pathogen MDR Staphylococcus haemolyticus. A total of 32 fungal association, FHP 7 which were isolated from Favia sp. capable of inhibiting the growth MDR. Molecular identification based on 18S rRNA gene sequences revealed that the active fungal association belonged 100% to the members from one of the genera Trichoderma longibrachiatum. Accession Number LC185084.1.

  15. Air Contamination With Fungals In Museum

    Science.gov (United States)

    Scarlat, Iuliana; Haiducu, Maria; Stepa, Raluca

    2015-07-01

    The aim of the studies was to determine the level and kind of fungal contamination of air in museum, deposits patrimony, restoration and conservation laboratories and their effects on health of workers. Microbiological air purity was measured with a SAS-100 Surface Air System impactor. The fungal contamination was observed in all 54 rooms where we made determinations. The highest levels of fungal were recorded at rooms with hygroscopic patrimony objects, eg carpets, chairs, upholstered chairs, books etc. The most species identified included under common allergens: Aspergillus, Penicillium, and Mucor. There fungal species belonging to the genus identified in this study, can trigger serious diseases museum workers, such as for example Aspergillus fumigatus, known allergies and toxic effects that may occur. In some places of the museum, occupational exposure limit values to fungi present in the air in the work environment, recommended by the specialized literature, have been overcome.

  16. Average stem biomass of Gundelia ( Gundelia tournefortii L.) in ...

    African Journals Online (AJOL)

    We studied Gundelia tournefortii L. to determine its stem biomass characteristics. Data were collected with accidental sampling method (1*1 m) in this area. A total of 15 plots were collected and 75 samples were studied in this study. However, the minimum, maximum and mean stem biomass of this plant was 5.5, 22.6 and ...

  17. Mycoremediation of Textile Dyes: Application of Novel Autochthonous Fungal Isolates

    Directory of Open Access Journals (Sweden)

    Sweety

    2017-07-01

    Full Text Available Four fungal isolates Trichoderma virens, Phlebiopsis cf. ravenelii, Talaromyces stipitatus, Aspergillus niger originally isolated from the textile dye contaminated soil of Meerut (U.P. India. They were used for the decolorization studies of selected textile azo dyes under laboratory conditions. Out of total 74 isolates, selected four fungal strains were picked on the basis of primary screening carried out using agar layer decolorization method. Decolorization efficiency of textile dyes was studied at an interval of 3, 5, 7 and 9 days at temperatures 20, 25, 30 and 40°C using five synthetic dyes viz. Xylene cynol FF, Brilliant blue R, Aniline Blue, Orange G II and Crystal violet. Decolorization study was carried out under shaking and stationary conditions at pH 4.0, 5.4, 6.5, and 8.0. The results obtained showed that Trichoderma virens and Aspergillus niger were more efficient then Phlebiopsis cf. ravenelii and Talaromyces stipitatus. Highest biodegradation activities of dyes by these aboriginal fungal isolates were observed at pH 5.4 after 9 days of incubation. Maximum decolorization 99.84 % was achieved by Aspergillus niger, followed by Trichoderma virens. This is the first report where the bioremediation aspects of Phlebiopsis cf. ravenelii and Talaromyces stipitatus has been revealed.

  18. An alternative anionic bio-sustainable anti-fungal agent: Investigation of its mode of action on the fungal cell membrane.

    Science.gov (United States)

    Stenbæk, Jonas; Löf, David; Falkman, Peter; Jensen, Bo; Cárdenas, Marité

    2017-07-01

    The potential of a lactylate (the sodium caproyl lactylate or C10 lactylate), a typical food grade emulsifier, as an anionic environmental friendly anti-fungal additive was tested in growth medium and formulated in a protective coating for exterior wood. Different laboratory growth tests on the blue stain fungus Aureobasidium pullulans were performed and its interactions on a model fungal cell membrane were studied. Promising short term anti-fungal effects in growth tests were observed, although significant but less dramatic effects took place in coating test on wood panels. Scanning electron microscope analysis shows clear differences in the amount of fungal slime on the mycelium of Aureobasidium pullulans when the fungus was exposed of C10 lactylate. This could indicate an effect on the pullulan and melanin production by the fungus. Moreover, the interaction studies on model fungal cell membranes show that C10 lactylate affects the phospholipid bilayer in a similar manner to other negative charged detergents. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Production of a recombinant swollenin from Trichoderma harzianum in Escherichia coli and its potential synergistic role in biomass degradation.

    Science.gov (United States)

    Santos, Clelton A; Ferreira-Filho, Jaire A; O'Donovan, Anthonia; Gupta, Vijai K; Tuohy, Maria G; Souza, Anete P

    2017-05-16

    Fungal swollenins (SWOs) constitute a class of accessory proteins that are homologous to canonical plant expansins. Expansins and expansin-related proteins are well known for acting in the deagglomeration of cellulose structure by loosening macrofibrils. Consequently, SWOs can increase the accessibility and efficiency of the other enzymes involved in the saccharification of cellulosic substrates. Thus, SWOs are promising targets for improving the hydrolysis of plant biomass and for use as an additive to enhance the efficiency of an enzyme cocktail designed for the production of biofuels. Here, we report the initial characterization of an SWO from Trichoderma harzianum (ThSwo) that was successfully produced using Escherichia coli as a host. Initially, transcriptome and secretome data were used to compare swo gene expression and the amount of secreted ThSwo. The results from structural modeling and phylogenetic analysis of the ThSwo protein showed that ThSwo does preserve some structural features of the plant expansins and family-45 glycosyl hydrolase enzymes, but it evolutionarily diverges from both of these protein classes. Recombinant ThSwo was purified at a high yield and with high purity and showed secondary folding similar to that of a native fungal SWO. Bioactivity assays revealed that the purified recombinant ThSwo created a rough and amorphous surface on Avicel and displayed a high synergistic effect with a commercial xylanase from T. viride, enhancing its hydrolytic performance up to 147 ± 7%. Many aspects of the structure and mechanism of action of fungal SWOs remain unknown. In the present study, we produced a recombinant, active SWO from T. harzianum using a prokaryotic host and confirmed its potential synergistic role in biomass degradation. Our work paves the way for further studies evaluating the structure and function of this protein, especially regarding its use in biotechnology.

  20. Fungal infection knowledge gap in Ethiopia

    African Journals Online (AJOL)

    EPHA USER33

    receiving immunosuppressive therapy, and patients with chronic obstructive lung disease (1). Fungi also play a role in allergic fungal disease such as allergic broncho- pulmonary Aspergilosis (ABPA) and chronic or deep tissue infections. The laboratory diagnosis of fungal infection starts with a simple potassium hydroxide.

  1. Biomass energy in Central America

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J M [Biomass Users` Network, Regional Office for Central America and the Caribbean, San Jose (Costa Rica)

    1995-12-01

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  2. Biomass energy in Central America

    International Nuclear Information System (INIS)

    Blanco, J.M.

    1995-01-01

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  3. Performance evaluation of a biomass boiler on the basis of heat loss method and total heat values of steam

    International Nuclear Information System (INIS)

    Munir, A.; Alvi, J.Z.; Ashfaq, S.; Ghafoor, A.

    2014-01-01

    Pakistan being an agricultural country has large resources of biomass in the form of crop residues like wood, wheat straw, rice husk, cotton sticks and bagasse. Power generation using biomass offers an excellent opportunity to overcome current scenario of energy crises. Of the all biomass resources, bagasse is one of the potential energy sources which can be successfully utilized for power generation. During the last decade, bagasse fired boilers attained major importance due to increasing prices of primary energy (e.g. fossil fuels). Performance of a bagasse fired boiler was evaluated at Shakarganj Sugar Mill, Bhone-Jhang having steam generation capacity of 80 tons h/sup -1/at 25 bar working pressure. The unit was forced circulation and bi-drum type water tube boiler which was equipped with all accessories like air heater, economizer and super-heater. Flue gas analyzer and thermocouples were used to record percent composition and temperature of flue gases respectively. Physical analysis of bagasse showed gross calorific value of bagasse as 2326 kCal kg/sup -1/. Ultimate analysis of bagasse was performed and the actual air supplied to the boiler was calculated to be 4.05 kg per kg of bagasse under the available resources of the plant. Performance evaluation of the boiler was carried out and a complete heat balance sheet was prepared to investigate the different sources of heat losses. The efficiency of the boiler was evaluated on the basis of heat losses through boiler and was found to be 56.08%. It was also determined that 2 kg of steam produced from 1 kg of bagasse under existing condition of the boiler. The performance evaluation of the boiler was also done on the basis of total heat values of steam and found to be 55.98%. The results obtained from both the methods were found almost similar. Effects of excess air, stack and ambient temperature on the efficiency of boiler have also been evaluated and presented in the manuscript. (author)

  4. Fungal colonization of air-conditioning systems

    Directory of Open Access Journals (Sweden)

    Ljaljević-Grbić Milica

    2008-01-01

    Full Text Available Fungi have been implicated as quantitatively the most important bioaerosol component of indoor air associated with contaminated air-conditioning systems. rarely, indoor fungi may cause human infections, but more commonly allergenic responses ranging from pneumonitis to asthma-like symptoms. From all air conditioner filters analyzed, 16 fungal taxa were isolated and identified. Aspergillus fumigatus causes more lethal infections worldwide than any other mold. Air-conditioning filters that adsorb moisture and volatile organics appear to provide suitable substrates for fungal colonization. It is important to stress that fungal colonization of air-conditioning systems should not be ignored, especially in hospital environments.

  5. Fungal endophytes: modifiers of plant disease.

    Science.gov (United States)

    Busby, Posy E; Ridout, Mary; Newcombe, George

    2016-04-01

    Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation.

  6. Fungal endophyte (Epichloë festucae alters the nutrient content of Festuca rubra regardless of water availability.

    Directory of Open Access Journals (Sweden)

    Beatriz R Vázquez-de-Aldana

    Full Text Available Festuca rubra plants maintain associations with the vertically transmitted fungal endophyte Epichloë festucae. A high prevalence of infected host plants in semiarid grasslands suggests that this association could be mutualistic. We investigated if the Epichloë-endophyte affects the growth and nutrient content of F. rubra plants subjected to drought. Endophyte-infected (E+ and non-infected (E- plants of two half-sib lines (PEN and RAB were subjected to three water availability treatments. Shoot and root biomass, nutrient content, proline, phenolic compounds and fungal alkaloids were measured after the treatments. The effect of the endophyte on shoot and root biomass and dead leaves depended on the plant line. In the PEN line, E+ plants had a greater S:R ratio than E-, but the opposite occurred in RAB. In both plant lines and all water treatments, endophyte-infected plants had greater concentrations of N, P and Zn in shoots and Ca, Mg and Zn in roots than E- plants. On average, E+ plants contained in their shoots more P (62%, Zn (58% and N (19% than E- plants. While the proline in shoots increased in response to water stress, the endophyte did not affect this response. A multivariate analysis showed that endophyte status and plant line impose stronger differences in the performance of the plants than the water stress treatments. Furthermore, differences between PEN and RAB lines seemed to be greater in E- than in E+ plants, suggesting that E+ plants of both lines are more similar than those of their non-infected version. This is probably due to the endophyte producing a similar effect in both plant lines, such as the increase in N, P and Zn in shoots. The remarkable effect of the endophyte in the nutrient balance of the plants could help to explain the high prevalence of infected plants in natural grasslands.

  7. Estimating aboveground tree biomass on forest land in the Pacific Northwest: a comparison of approaches

    Science.gov (United States)

    Xiaoping Zhou; Miles A. Hemstrom

    2009-01-01

    Live tree biomass estimates are essential for carbon accounting, bioenergy feasibility studies, and other analyses. Several models are currently used for estimating tree biomass. Each of these incorporates different calculation methods that may significantly impact the estimates of total aboveground tree biomass, merchantable biomass, and carbon pools. Consequently,...

  8. Subseafloor basalts as fungal habitats

    Directory of Open Access Journals (Sweden)

    M. Ivarsson

    2012-09-01

    Full Text Available The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50–200 µm in diameter body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  9. Burden of serious fungal infections in Guatemala.

    Science.gov (United States)

    Medina, N; Samayoa, B; Lau-Bonilla, D; Denning, D W; Herrera, R; Mercado, D; Guzmán, B; Pérez, J C; Arathoon, E

    2017-06-01

    Guatemala is a developing country in Central America with a high burden of HIV and endemic fungal infections; we attempted to estimate the burden of serious fungal infections for the country. A full literature search was done to identify epidemiology papers reporting fungal infections from Guatemala. We used specific populations at risk and fungal infection frequencies in the population to estimate national rates. The population of Guatemala in 2013 was 15.4 million; 40% were younger than 15 and 6.2% older than 60. There are an estimated 53,000 adults with HIV infection, in 2015, most presenting late. The estimated cases of opportunistic fungal infections were: 705 cases of disseminated histoplasmosis, 408 cases of cryptococcal meningitis, 816 cases of Pneumocystis pneumonia, 16,695 cases of oral candidiasis, and 4,505 cases of esophageal candidiasis. In the general population, an estimated 5,568 adult asthmatics have allergic bronchopulmonary aspergillosis (ABPA) based on a 2.42% prevalence of asthma and a 2.5% ABPA proportion. Amongst 2,452 pulmonary tuberculosis patients, we estimated a prevalence of 495 for chronic pulmonary aspergillosis in this group, and 1,484 for all conditions. An estimated 232,357 cases of recurrent vulvovaginal candidiasis is likely. Overall, 1.7% of the population are affected by these conditions. The true fungal infection burden in Guatemala is unknown. Tools and training for improved diagnosis are needed. Additional research on prevalence is needed to employ public health measures towards treatment and improving the reported data of fungal diseases.

  10. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  11. Estimating forest biomass and volume using airborne laser data

    Science.gov (United States)

    Nelson, Ross; Krabill, William; Tonelli, John

    1988-01-01

    An airborne pulsed laser system was used to obtain canopy height data over a southern pine forest in Georgia in order to predict ground-measured forest biomass and timber volume. Although biomass and volume estimates obtained from the laser data were variable when compared with the corresponding ground measurements site by site, the present models are found to predict mean total tree volume within 2.6 percent of the ground value, and mean biomass within 2.0 percent. The results indicate that species stratification did not consistently improve regression relationships for four southern pine species.

  12. Evaluation of hirst-type spore trap to monitor environmental fungal load in hospital.

    Science.gov (United States)

    Dananché, Cédric; Gustin, Marie-Paule; Cassier, Pierre; Loeffert, Sophie Tiphaine; Thibaudon, Michel; Bénet, Thomas; Vanhems, Philippe

    2017-01-01

    The main purpose was to validate the use of outdoor-indoor volumetric impaction sampler with Hirst-type spore traps (HTSTs) to continuously monitor fungal load in order to prevent invasive fungal infections during major structural work in hospital settings. For 4 weeks, outdoor fungal loads were quantified continuously by 3 HTSTs. Indoor air was sampled by both HTST and viable impaction sampler. Results were expressed as particles/m3 (HTST) or colony-forming units (CFU)/m3 (biocollector). Paired comparisons by day were made with Wilcoxon's paired signed-rank test or paired Student's t-test as appropriate. Paired airborne spore levels were correlated 2 by 2, after log-transformation with Pearson's cross-correlation. Concordance was calculated with kappa coefficient (κ). Median total fungal loads (TFLs) sampled by the 3 outdoor HTSTs were 3,025.0, 3,287.5 and 3,625.0 particles/m3 (P = 0.6, 0.6 and 0.3).-Concordance between Aspergillaceae fungal loads (AFLs, including Aspergillus spp. + Penicillium spp.) was low (κ = 0.2). A low positive correlation was found between TFLs sampled with outdoor HTST and indoor HTST with applying a 4-hour time lag, r = 0.30, 95% CI (0.23-0.43), PHTST-I on only 3.6% of the samples. Concordance between Aspergillus spp. loads and AFLs sampled with the 2 methods was very low (κ = 0.1). This study showed a 4-hour time lag between increase of outdoor and indoor TFLs, possibly due to insulation and aeraulic flow of the building. Outdoor HTSTs may permit to quickly identify (after 48 hours) time periods with high outdoor fungal loads. An identified drawback is that a too low sample area read did not seem to enable detection of Aspergillaceae spores efficiently. Indoor HTSTs may not be recommended at this time, and outdoor HTSTs need further study. Air sampling by viable impaction sampler remains the reference tool for quantifying fungal contamination of indoor air in hospitals.

  13. Acid-functionalized nanoparticles for biomass hydrolysis

    Science.gov (United States)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during

  14. Spatial and temporal distribution of tropical biomass burning

    Science.gov (United States)

    Hao, Wei Min; Liu, Mei-Huey

    1994-12-01

    A database for the spatial and temporal distribution of the amount of biomass burned in tropical America, Africa, and Asia during the late 1970s is presented with a resolution of 5° latitude × 5° longitude. The sources of burning in each grid cell have been quantified. Savanna fires, shifting cultivation, deforestation, fuel wood use, and burning of agricultural residues contribute about 50, 24, 10, 11, and 5%, respectively, of total biomass burned in the tropics. Savanna fires dominate in tropical Africa, and forest fires dominate in tropical Asia. A similar amount of biomass is burned from forest and savanna fires in tropical America. The distribution of biomass burned monthly during the dry season has been derived for each grid cell using the seasonal cycles of surface ozone concentrations. Land use changes during the last decade could have a profound impact on the amount of biomass burned and the amount of trace gases and aerosol particles emitted.

  15. A novel class of fungal lipoxygenases

    NARCIS (Netherlands)

    Heshof, R.; Jylhä, S.; Haarmann, T.; Jørgensen, A.L.W.; Dalsgaard, T.K.; Graaff, de L.H.

    2014-01-01

    Lipoxygenases (LOXs) are well-studied enzymes in plants and mammals. However, fungal LOXs are less studied. In this study, we have compared fungal LOX protein sequences to all known characterized LOXs. For this, a script was written using Shell commands to extract sequences from the NCBI database

  16. Pseudotumor of the Hip due to Fungal Prosthetic Joint Infection

    Directory of Open Access Journals (Sweden)

    Stefano Artiaco

    2013-01-01

    Full Text Available Pseudotumors associated with total hip arthroplasty have been associated with metal-on-metal and metal-on-polyethylene total hip arthroplasties due to a granulomatous foreign-body reaction to methyl methacrylate, polyethylene, or metal ion release, but they have not been related to prosthetic joint infections. In this paper, we report an unusual case of Candida albicans total hip arthroplasty infection, causing a large inflammatory pseudotumor of the hip joint. Fungal periprosthetic joint infections are a rare clinical entity and difficult to diagnose, and a pseudotumor may be part of their clinical presentation. They should be suspected in immunodeficient host patients when clinical symptoms of prosthetic joint infections are observed.

  17. The contribution of biomass burning to global warming: An integrated assessment

    International Nuclear Information System (INIS)

    Lashof, D.A.

    1991-01-01

    An analysis of studies of emissions form biomass burning suggests that while biomass burning is less significant than fossil fuel combustion on global basis, it is a major contributor to the greenhouse gas buildup, responsible for perhaps 10% to 15% of the total forcing from current emissions. Uncertainties about emissions and the relative impact of different gases are large, yielding a range of 5% to 30%. Nonetheless, biomass burning is probably the dominant source of greenhouse gases in some regions. A comprehensive policy to limit global climate change must, therefore, address biomass burning

  18. Assessment of forest management influences on total live aboveground tree biomass in William B Bankhead National Forest, Alabama

    Science.gov (United States)

    Callie Schweitzer; Dawn Lemke; Wubishet Tadesse; Yong Wang

    2015-01-01

    Forests contain a large amount of carbon (C) stored as tree biomass (above and below ground), detritus, and soil organic material. The aboveground tree biomass is the most rapid change component in this forest C pool. Thus, management of forest resources can influence the net C exchange with the atmosphere by changing the amount of C stored, particularly in landscapes...

  19. ABOVE GROUND BIOMASS MICRONUTRIENTS IN A SEASONAL SUBTROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Hamilton Luiz Munari Vogel

    2015-06-01

    Full Text Available In the above ground biomass of a native forest or plantation are stored large quantities of nutrients, with few studies in the literature, especially concerning micronutrients. The present work aimed to quantify the micronutrients in above ground biomass in a Seasonal Subtropical forest in Itaara-RS, Brazil. For the above ground biomass evaluation, 20 trees of five different diameter classes were felled. The above ground biomass was separated in the following compartments: stem wood, stem bark, branches and leaves. The contents of B, Cu, Fe, Mn and Zn in the biomass samples were determined. The stock of micronutrients in the biomass for each component was obtained based on the estimated dry biomass, multiplied by the nutrient content. The total production of above ground biomass was estimated at 210.0 Mg.ha-1. The branches, stem wood, stem bark and leaves corresponded to 48.8, 43.3, 5.4 and 2.4% of the above ground biomass. The lower levels of B, Cu, Fe and Mn are in stem wood, except for Zn; in the branches and trunk wood are the largest stocks of B, Cu, Fe and Mn. In the branches, leaves and trunk bark are stored most micronutrients, pointing to the importance of these to remain on the soil.

  20. Efficacy of fungal decolorization of a mixture of dyes belonging to different classes

    Directory of Open Access Journals (Sweden)

    Wioletta Przystas

    2015-06-01

    Full Text Available Dyes are the most difficult constituents to remove by conventional biological wastewater treatment. Colored wastewater is mainly eliminated by physical and chemical procedures, which are very expensive and have drawbacks. Therefore, the advantage of using biological processes, such as the biotransformation of dyes, is that they may lead to complete mineralization or formation of less toxic products. To prove the possibility of using fungal processes for decolorization and other applications, the analysis of the toxicity of the processes' products is required. The decolorization of the mixture of two dyes from different classes - triphenylmethane brilliant green and azo Evans blue (GB - total concentration 0.08 g/L, proportion 1:1 w/w - by Pleurotus ostreatus (BWPH and MB, Gloeophyllum odoratum (DCa, RWP17 (Polyporus picipes and Fusarium oxysporum (G1 was studied. Zootoxicity (Daphnia magna and phytotoxicity (Lemna minor changes were estimated at the end of the experiment. The mixture of dyes was significantly removed by all the strains that were tested with 96 h of experimental time. However, differences among strains from the same species (P. ostreatus were noted. Shaking improved the efficacy and rate of the dye removal. In static samples, the removal of the mixture reached more than 51.9% and in shaken samples, more than 79.2%. Tests using the dead biomass of the fungi only adsorbed up to 37% of the dye mixture (strain BWPH, which suggests that the process with the living biomass involves the biotransformation of the dyes. The best results were reached for the MB strain, which removed 90% of the tested mixture under shaking conditions. Regardless of the efficacy of the dye removal, toxicity decreased from class V to class III in tests with D. magna. Tests with L. minor control samples were classified as class IV, and samples with certain strains were non-toxic. The highest phytotoxicity decrease was noted in shaken samples where the

  1. COFIRING BIOMASS WITH LIGNITE COAL; FINAL

    International Nuclear Information System (INIS)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy and Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO(sub x) emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a$1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community

  2. Comparative nitrogen fixation, native arbuscular mycorrhiza formation and biomass production potentials of some grain legumes species grown in the field in the Guinea Savannah zone of Ghana

    International Nuclear Information System (INIS)

    Ahiabor, B.D.K.; Fosu, M.; Tibo, I.; Sumaila, I.

    2007-01-01

    An on-station trial was conducted in the experimental field of Savannah Agricultural Research Institute at Nyankpala in the Northern Region of Ghana to assess the nitrogen fixation, native arbuscular mycorrhizal formation and biomass production potentials of cowpea (Vigna unguiculata), devil-bean (Crotalaria retusa), Mucuna pruriens var. utilis (black and white types) and Canavalia ensiformis with maize (Dorke SR) as the reference crop using the total nitrogen difference (TND) method. Plants were fertilized with 40 kg P/ha and 30 kg K/ha at 2 weeks after planting and grown for 55 days after which they were harvested. The harvested biomass (separated into roots, stems and leaves) of each crop was oven-dried at 70 0 C for 48 h to a constant weight. Cowpea and devil-bean produced approximately 5 and 6 t/ha biomass whereas Mucuna and Canavalia yielded about 2 t/ha biomass each. Although cowpea had the least number of arbuscular mycorrhiza fungal (AMF) spores in its rhizosphere, its roots were the most heavily colonized (34%) and M. pruriens recording below 5% colonization. Apart from C. ensiformis, the test legumes derived over 50% of their total accumulated N from the atmosphere with cowpea being the most efficient (90% Ndfa). Both N and P accumulations were significantly higher in cowpea than the other legumes due to increased N concentration and dry matter accumulation, respectively. In all the legumes, there was a direct positive correlation between the extent of mycorrhiza formation, biological N fixation and total N uptake. It could, therefore, be concluded that the extensive mycorrhiza formation in cowpea and its high N 2 -fixing potential resulted in a high shoot N and P uptake leading to a comparatively better growth enhancement. Cowpea could, therefore, be the grain legume for consideration in the selection of a suitable legume pre-crop to cereals for the amelioration of the low fertility of the degraded soils of the Guinea savannah zone of Ghana, and also as

  3. Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design.

    Science.gov (United States)

    Suwannarangsee, Surisa; Bunterngsook, Benjarat; Arnthong, Jantima; Paemanee, Atchara; Thamchaipenet, Arinthip; Eurwilaichitr, Lily; Laosiripojana, Navadol; Champreda, Verawat

    2012-09-01

    Synergistic enzyme system for the hydrolysis of alkali-pretreated rice straw was optimised based on the synergy of crude fungal enzyme extracts with a commercial cellulase (Celluclast™). Among 13 enzyme extracts, the enzyme preparation from Aspergillus aculeatus BCC 199 exhibited the highest level of synergy with Celluclast™. This synergy was based on the complementary cellulolytic and hemicellulolytic activities of the BCC 199 enzyme extract. A mixture design was used to optimise the ternary enzyme complex based on the synergistic enzyme mixture with Bacillus subtilis expansin. Using the full cubic model, the optimal formulation of the enzyme mixture was predicted to the percentage of Celluclast™: BCC 199: expansin=41.4:37.0:21.6, which produced 769 mg reducing sugar/g biomass using 2.82 FPU/g enzymes. This work demonstrated the use of a systematic approach for the design and optimisation of a synergistic enzyme mixture of fungal enzymes and expansin for lignocellulosic degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Survey of fungal counts and natural occurrence of aflatoxins in Malaysian starch-based foods.

    Science.gov (United States)

    Abdullah, N; Nawawi, A; Othman, I

    1998-01-01

    In a survey of starch-based foods sampled from retail outlets in Malaysia, fungal colonies were mostly detected in wheat flour (100%), followed by rice flour (74%), glutinous rice grains (72%), ordinary rice grains (60%), glutinous rice flour (48%) and corn flour (26%). All positive samples of ordinary rice and glutinous rice grains had total fungal counts below 10(3) cfu/g sample, while among the positive rice flour, glutinous rice flour and corn flour samples, the highest total fungal count was more than 10(3) but less than 10(4) cfu/g sample respectively. However, in wheat flour samples total fungal count ranged from 10(2) cfu/g sample to slightly more than 10(4) cfu/g sample. Aflatoxigenic colonies were mostly detected in wheat flour (20%), followed by ordinary rice grains (4%), glutinous rice grains (4%) and glutinous rice flour (2%). No aflatoxigenic colonies were isolated from rice flour and corn flour samples. Screening of aflatoxin B1, aflatoxin B2, aflatoxin G1 and aflatoxin G2 using reversed-phase HPLC were carried out on 84 samples of ordinary rice grains and 83 samples of wheat flour. Two point four percent (2.4%) of ordinary rice grains were positive for aflatoxin G1 and 3.6% were positive for aflatoxin G2. All the positive samples were collected from private homes at concentrations ranging from 3.69-77.50 micrograms/kg. One point two percent (1.2%) of wheat flour samples were positive for aflatoxin B1 at a concentration of 25.62 micrograms/kg, 4.8% were positive for aflatoxin B2 at concentrations ranging from 11.25-252.50 micrograms/kg, 3.6% were positive for aflatoxin G1 at concentrations ranging from 25.00-289.38 micrograms/kg and 13.25% were positive for aflatoxin G2 at concentrations ranging from 16.25-436.25 micrograms/kg. Similarly, positive wheat flour samples were mostly collected from private homes.

  5. Fungal symbiosis unearthed

    Science.gov (United States)

    Daniel Cullen

    2008-01-01

    Associations between plant roots and fungi are a feature of many terrestrial ecosystems. The genome sequence of a prominent fungal partner opens new avenues for studying such mycorrhizal interactions....

  6. Genotypic Regulation of Aflatoxin Accumulation but Not Aspergillus Fungal Growth upon Post-Harvest Infection of Peanut (Arachis hypogaea L. Seeds

    Directory of Open Access Journals (Sweden)

    Walid Ahmed Korani

    2017-07-01

    Full Text Available Aflatoxin contamination is a major economic and food safety concern for the peanut industry that largely could be mitigated by genetic resistance. To screen peanut for aflatoxin resistance, ten genotypes were infected with a green fluorescent protein (GFP—expressing Aspergillus flavus strain. Percentages of fungal infected area and fungal GFP signal intensity were documented by visual ratings every 8 h for 72 h after inoculation. Significant genotypic differences in fungal growth rates were documented by repeated measures and area under the disease progress curve (AUDPC analyses. SICIA (Seed Infection Coverage and Intensity Analyzer, an image processing software, was developed to digitize fungal GFP signals. Data from SICIA image analysis confirmed visual rating results validating its utility for quantifying fungal growth. Among the tested peanut genotypes, NC 3033 and GT-C20 supported the lowest and highest fungal growth on the surface of peanut seeds, respectively. Although differential fungal growth was observed on the surface of peanut seeds, total fungal growth in the seeds was not significantly different across genotypes based on a fluorometric GFP assay. Significant differences in aflatoxin B levels were detected across peanut genotypes. ICG 1471 had the lowest aflatoxin level whereas Florida-07 had the highest. Two-year aflatoxin tests under simulated late-season drought also showed that ICG 1471 had reduced aflatoxin production under pre-harvest field conditions. These results suggest that all peanut genotypes support A. flavus fungal growth yet differentially influence aflatoxin production.

  7. Genotypic Regulation of Aflatoxin Accumulation but Not Aspergillus Fungal Growth upon Post-Harvest Infection of Peanut (Arachis hypogaea L.) Seeds.

    Science.gov (United States)

    Korani, Walid Ahmed; Chu, Ye; Holbrook, Corley; Clevenger, Josh; Ozias-Akins, Peggy

    2017-07-12

    Aflatoxin contamination is a major economic and food safety concern for the peanut industry that largely could be mitigated by genetic resistance. To screen peanut for aflatoxin resistance, ten genotypes were infected with a green fluorescent protein (GFP)-expressing Aspergillus flavus strain. Percentages of fungal infected area and fungal GFP signal intensity were documented by visual ratings every 8 h for 72 h after inoculation. Significant genotypic differences in fungal growth rates were documented by repeated measures and area under the disease progress curve (AUDPC) analyses. SICIA (Seed Infection Coverage and Intensity Analyzer), an image processing software, was developed to digitize fungal GFP signals. Data from SICIA image analysis confirmed visual rating results validating its utility for quantifying fungal growth. Among the tested peanut genotypes, NC 3033 and GT-C20 supported the lowest and highest fungal growth on the surface of peanut seeds, respectively. Although differential fungal growth was observed on the surface of peanut seeds, total fungal growth in the seeds was not significantly different across genotypes based on a fluorometric GFP assay. Significant differences in aflatoxin B levels were detected across peanut genotypes. ICG 1471 had the lowest aflatoxin level whereas Florida-07 had the highest. Two-year aflatoxin tests under simulated late-season drought also showed that ICG 1471 had reduced aflatoxin production under pre-harvest field conditions. These results suggest that all peanut genotypes support A. flavus fungal growth yet differentially influence aflatoxin production.

  8. Non-destructive estimation of Oecophylla smaragdina colony biomass

    DEFF Research Database (Denmark)

    Pinkalski, Christian Alexander Stidsen; Offenberg, Joachim; Jensen, Karl-Martin Vagn

    in mango plantations in Darwin, Australia. The total nest volume of O. smaragdina colonies in a tree was related to the activity of the ants (R2=0.85), estimated as the density of ant trails in the tree. Subsequently, the relation between nest volume and ant biomass (R2=0.70) was added to enable...... a prediction of ant biomass directly from ant activity. With this combined regression the ant biomass in a tree equaled 244.5 g fresh mass*ant activity. Similarly, the number of workers in trees was estimated using the relationship between nest volume and worker numbers (R2=0.84). Based on the model, five O...

  9. Darkness: A Crucial Factor in Fungal Taxol Production

    Directory of Open Access Journals (Sweden)

    Sameh S. M. Soliman

    2018-03-01

    Full Text Available Fungal Taxol acquired lots of attention in the last few decades mainly because of the hope that fungi could be manipulated more easily than yew trees to scale up the production level of this valuable anticancer drug. Several researchers have studied diverse factors to enhance fungal Taxol production. However, up to date fungal Taxol production has never been enhanced to the commercial level. We have hypothesized that optimization of fungal Taxol production may require clear understanding of the fungal habitat in its original host plant. One major feature shared by all fungal endophytes is that they are located in the internal plant tissues where darkness is prominent; hence here the effect of light on fungal Taxol production was tested. Incubation of Taxol-producing endophytic SSM001 fungus in light prior to inoculation in Taxol production culture media showed dramatic loss of Taxol accumulation, significant reduction in Taxol-containing resin bodies and reduction in the expression of genes known to be involved in Taxol biosynthesis. The loss of Taxol production was accompanied by production of dark green pigments. Pigmentation is a fungal protection mechanism which is photoreceptor mediated and induced by light. Opsin, a known photoreceptor involved in light perception and pigment production, was identified in SSM001 by genome sequencing. SSM001 opsin gene expression was induced by white light. The results from this study indicated that the endophytic fungus SSM001 required the dark habitat of its host plant for Taxol production and hence this biosynthetic pathway shows a negative response to light.

  10. Plant and fungal diversity in gut microbiota as revealed by molecular and culture investigations.

    Directory of Open Access Journals (Sweden)

    Nina Gouba

    Full Text Available BACKGROUND: Few studies describing eukaryotic communities in the human gut microbiota have been published. The objective of this study was to investigate comprehensively the repertoire of plant and fungal species in the gut microbiota of an obese patient. METHODOLOGY/PRINCIPAL FINDINGS: A stool specimen was collected from a 27-year-old Caucasian woman with a body mass index of 48.9 who was living in Marseille, France. Plant and fungal species were identified using a PCR-based method incorporating 25 primer pairs specific for each eukaryotic phylum and universal eukaryotic primers targeting 18S rRNA, internal transcribed spacer (ITS and a chloroplast gene. The PCR products amplified using these primers were cloned and sequenced. Three different culture media were used to isolate fungi, and these cultured fungi were further identified by ITS sequencing. A total of 37 eukaryotic species were identified, including a Diatoms (Blastocystis sp. species, 18 plant species from the Streptophyta phylum and 18 fungal species from the Ascomycota, Basidiomycota and Chytridiocomycota phyla. Cultures yielded 16 fungal species, while PCR-sequencing identified 7 fungal species. Of these 7 species of fungi, 5 were also identified by culture. Twenty-one eukaryotic species were discovered for the first time in human gut microbiota, including 8 fungi (Aspergillus flavipes, Beauveria bassiana, Isaria farinosa, Penicillium brevicompactum, Penicillium dipodomyicola, Penicillium camemberti, Climacocystis sp. and Malassezia restricta. Many fungal species apparently originated from food, as did 11 plant species. However, four plant species (Atractylodes japonica, Fibraurea tinctoria, Angelica anomala, Mitella nuda are used as medicinal plants. CONCLUSIONS/SIGNIFICANCE: Investigating the eukaryotic components of gut microbiota may help us to understand their role in human health.

  11. LCA of domestic and centralized biomass combustion: The case of Lombardy (Italy)

    International Nuclear Information System (INIS)

    Caserini, S.; Livio, S.; Giugliano, M.; Grosso, M.; Rigamonti, L.

    2010-01-01

    This paper analyzes and compares the environmental impacts of biomass combustion in small appliances such as domestic open fireplaces and stoves, and in two types of centralized combined heat and power plants, feeding district heating networks. The analysis is carried out following a Life Cycle Assessment (LCA) approach. The expected savings of GHG (greenhouse gases) emissions due to the substitution of fossil fuels with biomass are quantified, as well as emissions of toxic pollutants and substances responsible for acidification and ozone formation. The LCA results show net savings of GHG emissions when using biomass instead of conventional fuels, varying from 0.08 to 1.08 t of CO 2 eq. per t of dry biomass in the different scenarios. Avoided GHG emissions thanks to biomass combustion in Lombardy are 1.32 Mt year -1 (1.5% of total regional GHG emissions). For the other impact categories, the use of biomass in district heating systems can again cause a consistent reduction of impacts, whereas biomass combustion in residential devices shows higher impacts than fossil fuels with a particular concern for PAH, VOC and particulate matter emissions. For example, in Lombardy, PM10 emissions from domestic devices are about 8100 t year -1 , corresponding to almost one third of the total particulate emissions in 2005. (author)

  12. Effort versus Reward: Preparing Samples for Fungal Community Characterization in High-Throughput Sequencing Surveys of Soils.

    Directory of Open Access Journals (Sweden)

    Zewei Song

    Full Text Available Next generation fungal amplicon sequencing is being used with increasing frequency to study fungal diversity in various ecosystems; however, the influence of sample preparation on the characterization of fungal community is poorly understood. We investigated the effects of four procedural modifications to library preparation for high-throughput sequencing (HTS. The following treatments were considered: 1 the amount of soil used in DNA extraction, 2 the inclusion of additional steps (freeze/thaw cycles, sonication, or hot water bath incubation in the extraction procedure, 3 the amount of DNA template used in PCR, and 4 the effect of sample pooling, either physically or computationally. Soils from two different ecosystems in Minnesota, USA, one prairie and one forest site, were used to assess the generality of our results. The first three treatments did not significantly influence observed fungal OTU richness or community structure at either site. Physical pooling captured more OTU richness compared to individual samples, but total OTU richness at each site was highest when individual samples were computationally combined. We conclude that standard extraction kit protocols are well optimized for fungal HTS surveys, but because sample pooling can significantly influence OTU richness estimates, it is important to carefully consider the study aims when planning sampling procedures.

  13. Characterizing aeroallergens by infrared spectroscopy of fungal spores and pollen.

    Directory of Open Access Journals (Sweden)

    Boris Zimmermann

    Full Text Available Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens.The study is based on measurement of spore and pollen samples by single reflectance attenuated total reflectance Fourier transform infrared spectroscopy (SR-ATR FTIR. The experimental set includes 71 spore (Basidiomycota and 121 pollen (Pinales, Fagales and Poales samples. Along with fresh basidiospores, the study has been conducted on the archived samples collected within the last 50 years.The spectroscopic-based methodology enables clear spectral differentiation between pollen and spores, as well as the separation of confamiliar and congeneric species. In addition, the analysis of the scattering signals inherent in the infrared spectra indicates that the FTIR methodology offers indirect estimation of morphology of pollen and spores. The analysis of fresh and archived spores shows that chemical composition of spores is well preserved even after decades of storage, including the characteristic taxonomy-related signals. Therefore, biochemical analysis of fungal spores by FTIR could provide economical, reliable and timely methodologies for improving fungal taxonomy, as well as for fungal identification and monitoring. This proof of principle study shows the potential for using FTIR as a rapid tool in aeroallergen studies. In addition, the presented method is ready to be immediately implemented in biological and ecological studies for direct measurement of pollen and spores from flowers and sporocarps.

  14. Bird communities and biomass yields in potential bioenergy grasslands.

    Directory of Open Access Journals (Sweden)

    Peter J Blank

    Full Text Available Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields, and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.

  15. Frequency of fungal infection in biopsies of oral mucosal lesions: A prospective hospital-based study

    Directory of Open Access Journals (Sweden)

    Thimmarasa Venkappa Bhovi

    2015-01-01

    Full Text Available Aims and Objectives: To determine the frequency and common site of fungal infection in biopsies of oral mucosal lesions and also to detect the lesions most likely to be infected with fungal infection. Materials and Methods: A total of 100 patients with oral mucosal lesions were advised routine hematological examination followed by incisional biopsy under local anesthesia. The specimen were fixed in 10% neutral buffered formalin and processed. One section from the specimen was stained with hematoxylin and eosin staining for histopathological diagnosis of the lesion and a second section was stained with Periodic acid-Schiff (PAS stain for detection of fungal infection. Results: Out of the 100 patients, the most common mucosal lesion encountered was carcinoma (56% followed by lesions with dysplastic changes (28%, benign lesions (9%, squamous papilloma (2% and oral submucous fibrosis (5%. The most common anatomic location affected by the mucosal lesions were buccal mucosa, followed by the tongue, gingiva, maxillary tuberosity and floor of the mouth with values of 73%, 16%, 6%, 4% and 1%, respectively. Squamous papilloma had the highest positive association with fungal infection (100% followed by lesions with dysplastic changes (17.9% and carcinoma (8.9%. The maximum fungal positive association was encountered in the mucosal lesions over the tongue (18.7% followed by the buccal mucosa (12.3%. Conclusion: There is statistically significant association of fungal infection with dysplastic lesions and papilloma with the tongue and buccal mucosa as the most common sites. Hence a PAS stain should be performed whenever epithelial dysplasia on the tongue and buccal mucosa is diagnosed.

  16. Fungal Succession and Decomposition of Acacia mangium Leaf Litters in Health and Ganoderma Attacked Standings

    Directory of Open Access Journals (Sweden)

    SAMINGAN

    2009-09-01

    Full Text Available Leaf litters of Acacia mangium play an important functional role in ecosystem, producing sources of nutrients and giving diversity of microorganisms. Understanding the variation in fungal populations in A. mangium forest is important due to the roles of fungi in regulating populations of other organisms and ecosystem processes. For these purposes, the tests were conducted under two years old of health standing (2S and Ganoderma attacked standing (2G using litterbag method. Litter weight loss and lignin, cellulose, C, N contents were measured each month during eight months of decomposition, as well as fungal community involved was observed. Litter weight loss and lignin, cellulose, C, N contents were measured each month during eight months of decomposition, as well as fungal community involved was observed. After eight months of decomposition, litter weight losses were low up to 34.61% (k = 0.7/year in 2S and 30.64% (k = 0.51/year in 2G, as well as lignin weight losses were low up to 20.05% in 2S and 13.87% in 2G. However, cellulose weight losses were 16.34% in 2S and 14.71% in 2G. In both standings, the numbers of fungal species were 21 and 20 respectively, while the total of fungal populations tends to increase after one month of decomposition and tend to decrease in the last three months. In the first and second months of decomposition fungal species were dominated by genera of Penicillium and Aspergillus and the last three months by Trichoderma, Phialophora, and Pythium.

  17. Fungal keratitis - improving diagnostics by confocal microscopy

    DEFF Research Database (Denmark)

    Nielsen, Esben; Heegaard, S; Prause, J U

    2013-01-01

    Purpose: Introducing a simple image grading system to support the interpretation of in vivo confocal microscopy (IVCM) images in filamentous fungal keratitis. Setting: Clinical and confocal studies took place at the Department of Ophthalmology, Aarhus University Hospital, Denmark. Histopathological...... analysis was performed at the Eye Pathology Institute, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark. Methods: A recent series of consecutive patients with filamentous fungal keratitis is presented to demonstrate the results from in-house IVCM. Based upon our experience...... with IVCM and previously published images, we composed a grading system for interpreting IVCM images of filamentous fungal keratitis. Results: A recent case series of filamentous fungal keratitis from 2011 to 2012 was examined. There were 3 male and 3 female patients. Mean age was 44.5 years (range 12...

  18. Characterization and ethanol potential from giant cassava (Manihot esculenta) stem waste biomass

    Science.gov (United States)

    Septia, E.; Supriadi; Suwinarti, W.; Amirta, R.

    2018-04-01

    Manihot esculenta stem waste biomass is promising material for ethanol production since it is unutilized substance from cassava production. Nowadays, cassava is the most common food in Indonesian society. The aims of this study were to identify availability and characteristic of giant cassava (M. esculenta) stem waste biomass for ethanol feedstock. In term of that, four plots with the size of 5m x 5m were made to calculate the total stem biomass obtained after harvesting process. In this study, various concentrations of alkaline were used to degrade lignin from the substrate. The effects of alkaline pretreatment were investigated using TAPPI method and the ethanol yield was estimated using modified NREL protocol. The results showed that the potential dry stem waste biomass from harvesting of M. esculenta was approximately 10.5 ton/ha. Further, alkaline pretreatment of stem waste biomass with 2% of NaOH coupled with the enzymatic saccharification process using meicelase was showed the highest production of sugar to reach of 38.49 % of total reduction sugar and estimated potentially converted to 2,62 L/ha of ethanol. We suggested M. esculenta stem waste biomass could be used as sustainable feedstock for ethanol production in Indonesia.

  19. Biomass in the Dutch Energy Infrastructure in 2030

    International Nuclear Information System (INIS)

    Rabou, L.P.L.M.; Deurwaarder, E.P.; Elbersen, H.W.; Scott, E.L.

    2006-01-01

    The goal of this study is to evaluate the ambition of the Platform to replace 30% of the fossil energy carriers by biomass in the Netherlands in 2030. Starting points are the total annual consumption of primary energy carriers of 3000 PJ by 2030 and contributions of biomass of 60% in transportation, 25% in electricity production, 20% in raw materials for chemicals, materials and products and 17% in heat production. The study provides a review of the current Dutch energy balance, with the role of different energy carriers, based on data for the year 2000 and estimates for the year 2030. For the situation in 2030, an analysis is made of the possible role of biomass. The study also provides a review of the Dutch import, export and production of biomass in 2000 and an estimation of the developments until 2030.

  20. Biosaline Biomass. Energy for the Netherlands in 2040

    International Nuclear Information System (INIS)

    Hoek, J.

    2004-12-01

    European governments are aiming for a considerable contribution of biomass in their transition towards a sustainable energy society and the replacement of raw materials based on fossil fuels. For the Netherlands, the national goals are set such that the share of biomass should grow to 30% of total energy consumption by the year 2040. Biosaline biomass - produced in saline environments characterized by increased soil and water salinities up to half seawater level - may become an important source of secure and sustainable energy to cover part, or all, of the Dutch biomass energy target. This report assesses the viability of the import of biosaline forestry as a secure, cost-effective, environmentally and socially responsible source of renewable energy for the Netherlands until 2040. The report also defines steps to be taken and investments to be made to realize the biosaline transition path

  1. Stem Cell Transplant Patients and Fungal Infections

    Science.gov (United States)

    ... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Stem Cell Transplant Patients and Fungal Infections Recommend on Facebook ... Mold . Top of Page Preventing fungal infections in stem cell transplant patients Fungi are difficult to avoid because ...

  2. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol

    OpenAIRE

    Maurya, Devendra Prasad; Singla, Ankit; Negi, Sangeeta

    2015-01-01

    Second-generation bioethanol can be produced from various lignocellulosic biomasses such as wood, agricultural or forest residues. Lignocellulosic biomass is inexpensive, renewable and abundant source for bioethanol production. The conversion of lignocellulosic biomass to bioethanol could be a promising technology though the process has several challenges and limitations such as biomass transport and handling, and efficient pretreatment methods for total delignification of lignocellulosics. P...

  3. Audit of laboratory mycology services for the management of patients with fungal infections in the northwest of England.

    Science.gov (United States)

    Hassan, I A; Critten, P; Isalska, B; Denning, D W

    2006-07-01

    Fungal infection is increasingly recognised as an important cause of morbidity and mortality, especially in immunocompromised patients. Little information exists on laboratory services available and the methods used by general microbiology laboratories to diagnose these important infections. To investigate the services microbiology laboratories in northwest England provide towards the diagnosis and management of superficial and deep fungal infections. A questionnaire was sent to laboratories to get a holistic view of the support given to clinicians looking after patients with fungal infections. The aim was not to investigate details of each laboratory's standard operating procedures. The completed questionnaires, which formed the basis of this report, were returned by all 21 laboratories which were recruited. This study was conducted between March 2004 and September 2004. Services were provided to District General Hospitals and to six tertiary centres, including eight teaching hospitals by 16 laboratories. Their bed capacity was 250-1300 beds. Total specimens (including bacterial and viral) processed annually were 42 000-500,000 whereas fungal ones were 560-5400. In most microbiology laboratories of northwest England, clinicians were aware of the potential of fungal pathogens to cause infections especially in immunocompromised patients. Additional measures such as prolonged incubation of samples were introduced to improve fungal yield from patients at high risk. It is necessary to train and educate laboratory and medical staff about the role of serology and molecular methods in diagnosis and management of patients with fungal infection.

  4. Monitoring to assess progress toward meeting the Assabet River, Massachusetts, phosphorus total maximum daily load - Aquatic macrophyte biomass and sediment-phosphorus flux

    Science.gov (United States)

    Zimmerman, Marc J.; Qian, Yu; Yong Q., Tian

    2011-01-01

    In 2004, the Total Maximum Daily Load (TMDL) for Total Phosphorus in the Assabet River, Massachusetts, was approved by the U.S. Environmental Protection Agency. The goal of the TMDL was to decrease the concentrations of the nutrient phosphorus to mitigate some of the instream ecological effects of eutrophication on the river; these effects were, for the most part, direct consequences of the excessive growth of aquatic macrophytes. The primary instrument effecting lower concentrations of phosphorus was to be strict control of phosphorus releases from four major wastewatertreatment plants in Westborough, Marlborough, Hudson, and Maynard, Massachusetts. The improvements to be achieved from implementing this control were lower concentrations of total and dissolved phosphorus in the river, a 50-percent reduction in aquatic-plant biomass, a 30-percent reduction in episodes of dissolved oxygen supersaturation, no low-flow dissolved oxygen concentrations less than 5.0 milligrams per liter, and a 90-percent reduction in sediment releases of phosphorus to the overlying water. In 2007, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated studies to evaluate conditions in the Assabet River prior to the upgrading of wastewater-treatment plants to remove more phosphorus from their effluents. The studies, completed in 2008, implemented a visual monitoring plan to evaluate the extent and biomass of the floating macrophyte Lemna minor (commonly known as lesser duckweed) in five impoundments and evaluated the potential for phosphorus flux from sediments in impounded and free-flowing reaches of the river. Hydrologically, the two study years 2007 and 2008 were quite different. In 2007, summer streamflows, although low, were higher than average, and in 2008, the flows were generally higher than in 2007. Visually, the effects of these streamflow differences on the distribution of Lemna were obvious. In 2007, large amounts of

  5. Use of an Artificial Neural Network to Construct a Model of Predicting Deep Fungal Infection in Lung Cancer Patients.

    Science.gov (United States)

    Chen, Jian; Chen, Jie; Ding, Hong-Yan; Pan, Qin-Shi; Hong, Wan-Dong; Xu, Gang; Yu, Fang-You; Wang, Yu-Min

    2015-01-01

    The statistical methods to analyze and predict the related dangerous factors of deep fungal infection in lung cancer patients were several, such as logic regression analysis, meta-analysis, multivariate Cox proportional hazards model analysis, retrospective analysis, and so on, but the results are inconsistent. A total of 696 patients with lung cancer were enrolled. The factors were compared employing Student's t-test or the Mann-Whitney test or the Chi-square test and variables that were significantly related to the presence of deep fungal infection selected as candidates for input into the final artificial neural network analysis (ANN) model. The receiver operating characteristic (ROC) and area under curve (AUC) were used to evaluate the performance of the artificial neural network (ANN) model and logistic regression (LR) model. The prevalence of deep fungal infection from lung cancer in this entire study population was 32.04%(223/696), deep fungal infections occur in sputum specimens 44.05% (200/454). The ratio of candida albicans was 86.99% (194/223) in the total fungi. It was demonstrated that older (≥65 years), use of antibiotics, low serum albumin concentrations (≤37.18 g /L), radiotherapy, surgery, low hemoglobin hyperlipidemia (≤93.67 g /L), long time of hospitalization (≥14 days) were apt to deep fungal infection and the ANN model consisted of the seven factors. The AUC of ANN model (0.829±0.019) was higher than that of LR model (0.756±0.021). The artificial neural network model with variables consisting of age, use of antibiotics, serum albumin concentrations, received radiotherapy, received surgery, hemoglobin, time of hospitalization should be useful for predicting the deep fungal infection in lung cancer.

  6. Molecular Diagnostics for Soilborne Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    E.J. Paplomatas

    2004-08-01

    Full Text Available Several classical approaches have been developed to detect and identify soil fungal inhabitants through the years. Selective media have been devised to exclude the large number of soil organisms and allow growth of target fungi. However the advent of molecular biology has offered a number of revolutionary insights into the detection and enumeration of soilborne fungal pathogens and also has started to provide information on the identification of unknown species from DNA sequences. This review paper focuses on the application of various molecular techniques in the detection, identification, characterization and quantification of soilborne fungal plant pathogens. This is based on information from the literature and is combined with personal research findings of the author.

  7. Biomass torrefaction: A promising pretreatment technology for biomass utilization

    Science.gov (United States)

    Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen

    2018-02-01

    Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.

  8. Expression of cytokines in aqueous humor from fungal keratitis patients.

    Science.gov (United States)

    Zhang, Yingnan; Liang, Qingfeng; Liu, Yang; Pan, Zhiqiang; Baudouin, Christophe; Labbé, Antoine; Lu, Qingxian

    2018-04-19

    Although a series of reports on corneal fungal infection have been published, studies on pathogenic mechanisms and inflammation-associated cytokines remain limited. In this study, aqueous humor samples from fungal keratitis patients were collected to examine cytokine patterns and cellular profile for the pathogenesis of fungal keratitis. The aqueous humor samples were collected from ten patients with advanced stage fungal keratitis. Eight aqueous humor samples from patients with keratoconus or corneal dystrophy were taken as control. Approximately 100 μl to 300 μl of aqueous humor in each case were obtained for examination. The aqueous humor samples were centrifuged and the cells were stained and examined under optical microscope. Bacterial and fungal cultures were performed on the aqueous humor and corneal buttons of all patients. Cytokines related to inflammation including IL-1β, IL-6, IL-8, IL-10, TNF-α, and IFN-γ were examined using multiplex bead-based Luminex liquid protein array systems. Fungus infection was confirmed in these ten patients by smear stains and/or fungal cultures. Bacterial and fungal cultures revealed negative results in all aqueous humor specimens. Polymorphonuclear leukocytes were the predominant infiltrating cells in the aqueous humor of fungal keratitis. At the advanced stages of fungal keratitis, the levels of IL-1β, IL-6, IL-8, and IFN-γ in the aqueous humor were significantly increased when compared with control (phumor was associated with fungal keratitis.

  9. Fungal Skin Infections

    Science.gov (United States)

    ... Abbreviations Weights & Measures ENGLISH View Professional English Deutsch Japanese Espaniol Find information on medical topics, symptoms, drugs, ... touching the infected area. Diagnosis Skin scrapings or cultures Doctors may suspect a fungal infection when they ...

  10. Physicochemical and Microbiological Characteristics of Tundra Soils on the Rybachii Peninsula

    Science.gov (United States)

    Evdokimova, G. A.; Mozgova, N. P.; Myazin, V. A.

    2018-01-01

    The Rybachii Peninsula is composed of Proterozoic sedimentary rocks and differs sharply from the rest of the Kola Peninsula in its geological structure, topographic forms, and parent rocks. It is dominated by Al-Fe-humus soils formed on moraines with an admixture of local rock fragments, including slates. Organic horizons of tundra soils in the peninsula are less acid than those on granitoids of adjacent mainland of the Kola Peninsula. The content of exchangeable calcium in the organic horizons varies from 17.4 to 68.0 cmolc/kg, and the content of water-soluble carbon reaches 400 mg/100 g amounting to 1-2% of the total soil organic matter content. The total number of bacteria in the organic horizons of tundra soils varies from 3.5 × 109 to 4.8 × 109 cells/g; and bacterial biomass varies from 0.14 to 0.19 mg/g. The length of fungal mycelium and its biomass in the organic horizons are significant (>1000 m/g soil). The biomass of fungal mycelium in the organic horizons exceeds the bacterial biomass by seven times in podzols (Albic Podzols) and by ten times in podbur (Entic Podzol), dry-peat soil (Folic Histosol), and low-moor peat soil (Sapric Histosol).

  11. Estimation of aerial biomass of Lychnophora ericoides (Mart.

    Directory of Open Access Journals (Sweden)

    Brunno Santana de Andrade

    2007-07-01

    Full Text Available For sustainable use of native plant species, knowledge of the amount of harvestable biomass is necessary. This study presents data on allometric relationships of Lychnophora ericoides Mart. (Asteraceae, an extractive resource in the Cerrado region of Brazil. On the Fazenda Água Limpa (15º 45'S, 47º 57'W of the Universidade de Brasilia, 38 individuals of this species were measured in the field, the parts above ground were harvested, separated into components and oven dried. The best regression equations to estimate biomass were geometric and the best fit was between total height and total biomass (r² = 0.923. The economically useful portions, the leaves and branches accounted for approximately 20% of total above ground dry weight, but when used as the dependent variable, the strength of the relationship decreased (r² = 0.694. The relationship between branch diameter and leaf biomass was similar to that between height and leaf dry weight (r² = 0.600. The relation between the number of leaves and their biomass was linear but weak. The development of these equations is the first step towards the implementation of plans for sustainable use of this species.Para o uso sustentável das espécies vegetais nativas o conhecimento da quantidade de biomassa disponível é necessário. O objetivo deste estudo foi verificar as relações alométricas para Lychnophora ericoides Mart., um recurso extrativista importante na região dos Cerrados. Na Fazenda Água Limpa da Universidade de Brasília, 38 indivíduos desta espécie foram medidas no campo, a parte aérea foi cortada, separada em componentes de folhas, galhos e tronco e estas componentes foram secas e pesadas. As melhores equações de regressão para estimar a biomassa foram geométricas e o melhor ajuste foi entre altura total e biomassa total (r² = 0,923. As partes economicamente exploradas, as folhas e ramos, contribuíram com aproximadamente 20% do peso seco total desta espécie, mas a equa

  12. The Interface between Fungal Biofilms and Innate Immunity

    Directory of Open Access Journals (Sweden)

    John F. Kernien

    2018-01-01

    Full Text Available Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus, and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.

  13. Above-ground biomass of mangrove species. I. Analysis of models

    Science.gov (United States)

    Soares, Mário Luiz Gomes; Schaeffer-Novelli, Yara

    2005-10-01

    This study analyzes the above-ground biomass of Rhizophora mangle and Laguncularia racemosa located in the mangroves of Bertioga (SP) and Guaratiba (RJ), Southeast Brazil. Its purpose is to determine the best regression model to estimate the total above-ground biomass and compartment (leaves, reproductive parts, twigs, branches, trunk and prop roots) biomass, indirectly. To do this, we used structural measurements such as height, diameter at breast-height (DBH), and crown area. A combination of regression types with several compositions of independent variables generated 2.272 models that were later tested. Subsequent analysis of the models indicated that the biomass of reproductive parts, branches, and prop roots yielded great variability, probably because of environmental factors and seasonality (in the case of reproductive parts). It also indicated the superiority of multiple regression to estimate above-ground biomass as it allows researchers to consider several aspects that affect above-ground biomass, specially the influence of environmental factors. This fact has been attested to the models that estimated the biomass of crown compartments.

  14. Ensiling and hydrothermal pretreatment of grass: Consequences for enzymatic biomass conversion and total monosaccharide yields

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten; Johansen, Katja Salomon; Didion, Thomas

    2014-01-01

    Ensiling may act as a pretreatment of fresh grass biomass and increase the enzymatic conversion of structural carbohydrates to fermentable sugars. However, ensiling does not provide sufficient severity to be a standalone pretreatment method. Here, ensiling of grass is combined with hydrothermal...... treatment (HTT) with the aim of improving the enzymatic biomass convertibility and decrease the required temperature of the HTT. Results: Grass silage (Festulolium Hykor) was hydrothermally treated at temperatures of 170, 180, and 190°C for 10 minutes. Relative to HTT treated dry grass, ensiling increased...... convertibility). The effect of ensiling of grass prior to HTT improved the enzymatic conversion of cellulose for HTT at 170 and 180°C, but the increased glucose release did not make up for the loss of water soluble carbohydrates (WSC) during ensiling. Overall, sugar yields (C6 + C5) were similar for HTT of grass...

  15. Gene activation by UV light, fungal elicitor or fungal infection in Petroselinum crispum is correlated with repression of cell cycle-related genes

    International Nuclear Information System (INIS)

    Logemann, E.; Wu ShengCheng; Schröder, J.; Schmelzer, E.; Somssich, I.E.; Hahlbrock, K.

    1995-01-01

    The effects of UV light or fungal elicitors on plant cells have so far been studied mostly with respect to defense-related gene activation. Here, an inverse correlation of these stimulatory effects with the activities of several cell cycle-related genes is demonstrated. Concomitant with the induction of flavonoid biosynthetic enzymes in UV-irradiated cell suspension cultures of parsley (Petroselinum crispum), total histone synthesis declined to about half the initial rate. A subclass of the histone H3 gene family was selected to demonstrate the close correlation of its expression with cell division, both in intact plants and cultured cells. Using RNA-blot and run-on transcription assays, it was shown that one arbitrarily selected subclass of each of the histone H2A, H2B, H3 and H4 gene families and of the genes encoding a p34cdc2 protein kinase and a mitotic cyclin were transcriptionally repressed in UV-irradiated as well as fungal elicitor-treated parsley cells. The timing and extent of repression differed between the two stimuli; the response to light was more transient and smaller in magnitude. These differential responses to light and elicitor were inversely correlated with the induction of phenylalanine ammonia-lyase, a key enzyme of phenylpropanoid metabolism. Essentially the same result was obtained with a defined oligopeptide elicitor, indicating that the same signaling pathway is responsible for defense-related gene activation and cell cycle-related gene repression. A temporary (UV light) or long-lasting (fungal elicitor) cessation of cell culture growth is most likely due to an arrest of cell division which may be a prerequisite for full commitment of the cells to transcriptional activation of full commitment of the cells to transcriptional activation of pathways involved in UV protection or pathogen defense. This conclusion is corroborated by the observation that the histone H3 mRNA level greatly declined around fungal infection sites in young parsley

  16. Renewable energy--traditional biomass vs. modern biomass

    International Nuclear Information System (INIS)

    Goldemberg, Jose; Teixeira Coelho, Suani

    2004-01-01

    Renewable energy is basic to reduce poverty and to allow sustainable development. However, the concept of renewable energy must be carefully established, particularly in the case of biomass. This paper analyses the sustainability of biomass, comparing the so-called 'traditional' and 'modern' biomass, and discusses the need for statistical information, which will allow the elaboration of scenarios relevant to renewable energy targets in the world

  17. Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas.

    Science.gov (United States)

    Bencherif, Karima; Boutekrabt, Ammar; Fontaine, Joël; Laruelle, Fréderic; Dalpè, Yolande; Sahraoui, Anissa Lounès-Hadj

    2015-11-15

    Soil salinization is an increasingly important problem in many parts of the world, particularly under arid and semi-arid areas. Unfortunately, the knowledge about restoration of salt affected ecosystems using mycorrhizae is limited. The current study aims to investigate the impact of salinity on the microbial richness of the halophytic plant Tamarix articulata rhizosphere. Soil samples were collected from natural sites with increasing salinity (1.82-4.95 ds.m(-1)). Six arbuscular mycorrhizal fungi (AMF) species were isolated from the different saline soils and identified as Septoglomus constrictum, Funneliformis mosseae, Funneliformis geosporum, Funneliformis coronatum, Rhizophagus fasciculatus, and Gigaspora gigantea. The number of AMF spores increased with soil salinity. Total root colonization rate decreased from 65 to 16% but remained possible with soil salinity. Microbial biomass in T. articulata rhizosphere was affected by salinity. The phospholipid fatty acids (PLFA) C16:1ω5 as well as i15:0, a15:0, i16:0, i17:0, a17:0, cy17:0, C18:1ω7 and cy19:0 increased in high saline soils suggesting that AMF and bacterial biomasses increased with salinity. In contrast, ergosterol amount was negatively correlated with soil salinity indicating that ectomycorrhizal and saprotrophic fungal biomasses were reduced with salinity. Our findings highlight the adaptation of arbuscular and bacterial communities to natural soil salinity and thus the potential use of mycorrhizal T. articulata trees as an approach to restore moderately saline disturbed arid lands. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes

    Science.gov (United States)

    Clay, Keith; Shearin, Zachery; Bourke, Kimberly; Bickford, Wesley A.; Kowalski, Kurt P.

    2016-01-01

    Plant–microbial interactions may play a key role in plant invasions. One common microbial interaction takes place between plants and fungal endophytes when fungi asymptomatically colonize host plant tissues. The objectives of this study were to isolate and sequence fungal endophytes colonizing non-native Phragmites australis in the Great Lakes region to evaluate variation in endophyte community composition among three host tissue types and three geographical regions. We collected entire ramets from multiple clones and populations, surface sterilized plant tissues, and plated replicate tissue samples from leaves, stems, and rhizomes on corn meal agar plates to culture and isolate fungal endophytes. Isolates were then subjected to Sanger sequencing of the ITS region of the nuclear ribosomal DNA. Sequences were compared to fungal databases to define operational taxonomic units (OTUs) that were analyzed statistically for community composition. In total, we obtained 173 endophyte isolates corresponding to 55 OTUs, 39 of which were isolated only a single time. The most common OTU corresponded most closely to Sarocladium strictum and comprised 25 % of all fungal isolates. More OTUs were found in stem tissues, but endophyte diversity was greatest in rhizome tissues. PERMANOVA analyses indicated significant differences in endophyte communities among tissue types, geographical regions, and the interaction between those factors, but no differences among individual ramets were detected. The functional role of the isolated endophytes is not yet known, but one genus isolated here (Stagonospora) has been reported to enhance Phragmites growth. Understanding the diversity and functions of Phragmites endophytes may provide targets for control measures based on disrupting host plant/endophyte interactions.

  19. FY 2000 Report on survey results. Curtailment of the carbon dioxide emission by effective use of woody biomass system waste; 2000 nendo mokushitsu biomass kei haikibutsu no yuko riyo ni yoru nisanka tanso haishutsu no sakugen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    It is estimated that the woody biomass resources in Japan total 42.70 million t/y on a dry basis (indigenous production: 20.00 million t/y), which corresponds to 18.00 million t/y as oil. This project studies effective utilization of low-quality biomass resources now discarded, e.g., thinning materials and demolition woods, by reference to biomass utilization pursued in European and North American countries. The study activities cover the 3 areas of woody biomass wastes, current status of biomass utilization technologies in the overseas countries, and feasibility of introduction of the utilization technologies, after investigating necessity of abatement of the green-effect gases, current status of energy demands and policies, and woody biomass. Utilization of biomass resources for low-temperature heat purposes, which is the central issue in Japan, is not well established both technologically and politically. Moreover, the biomass resources are not exposed to price competition. Based on these premises, a total of 6 scenarios are proposed to promote utilization of biomass resources, including power/heat co-generation at a wood processing center, and dual firing at existing coal-fired boilers. (NEDO)

  20. Biomass and Swedish energy policy

    International Nuclear Information System (INIS)

    Johansson, Bengt

    2001-01-01

    The use of biomass in Sweden has increased by 44% between 1990 and 1999. In 1999 it was 85 TWh, equivalent to 14% of the total Swedish energy supply. The existence of large forest industry and district heating systems has been an essential condition for this expansion. The tax reform in 1991 seems, however, to have been the most important factor responsible for the rapid bioenergy expansion. Through this reform, the taxation of fossil fuels in district heating systems increased by approximately 30-160%, depending on fuel, whereas bioenergy remained untaxed. Industry is exempted from the energy tax and pays reduced carbon tax. No tax is levied on fossil fuels used for electricity production. Investment grants have existed for biomass-based electricity production but these grants have not been large enough to make biomass-based electricity production economically competitive in a period of falling electricity prices. Despite this, the biomass-based electricity production has increased slightly between 1990 and 1999. A new taxation system aiming at a removal of the tax difference between the industry, district heating and electricity sectors has recently been analysed by the Swedish government. One risk with such a system is that it reduces the competitiveness for biomass in district heating systems as it seems unlikely that the taxes on fossil fuels in the industry and electricity sectors will increase to a level much higher than in other countries. A new system, based on green certificates, for supporting electricity from renewable energy sources has also been proposed by the government.

  1. Above Ground Biomass-carbon Partitioning, Storage and Sequestration in a Rehabilitated Forest, Bintulu, Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Kueh, J.H.R.; Majid, N.M.A.; Seca, G.; Ahmed, O.H.

    2013-01-01

    Forest degradation and deforestation are some of the major global concerns as it can reduce forest carbon storage and sequestration capacity. Forest rehabilitation on degraded forest areas has the potential to improve carbon stock, hence mitigate greenhouse gases emission. However, the carbon storage and sequestration potential in a rehabilitated tropical forest remains unclear due to the lack of information. This paper reports an initiative to estimate biomass-carbon partitioning, storage and sequestration in a rehabilitated forest. The study site was at the UPM-Mitsubishi Corporation Forest Rehabilitation Project, UPM Bintulu Sarawak Campus, Bintulu, Sarawak. A plot of 20 x 20 m 2 was established each in site 1991 (Plot 1991), 1999 (Plot 1999) and 2008 (Plot 2008). An adjacent natural regenerating secondary forest plot (Plot NF) was also established for comparison purposes. The results showed that the contribution of tree component biomass/ carbon to total biomass/ carbon was in the order of main stem > branch > leaf. As most of the trees were concentrated in diameter size class = 10 cm for younger rehabilitated forests, the total above ground biomass/ carbon was from this class. These observations suggest that the forests are in the early successional stage. The total above ground biomass obtained for the rehabilitated forest ranged from 4.3 to 4,192.3 kg compared to natural regenerating secondary forest of 3,942.3 kg while total above ground carbon ranged from 1.9 to 1,927.9 kg and 1,820.4 kg, respectively. The mean total above ground biomass accumulated ranged from 1.3 x 10 -2 to 20.5 kg/ 0.04 ha and mean total carbon storage ranged from 5.9 x 10 -3 to 9.4 kg/ 0.04 ha. The total CO 2 sequestrated in rehabilitated forest ranged from 6.9 to 7,069.1 kg CO 2 / 0.04 ha. After 19 years, the rehabilitated forest had total above ground biomass and carbon storage comparable to the natural regeneration secondary forest. The forest rehabilitated activities have the

  2. Dynamics of Understory Shrub Biomass in Six Young Plantations of Southern Subtropical China

    Directory of Open Access Journals (Sweden)

    Yuanqi Chen

    2017-11-01

    Full Text Available Understory shrubs are an important component of forest ecosystems and drive ecosystem processes, such as ecosystem carbon cycling. However, shrub biomass carbon stocks have rarely been reported, which limits our understanding of ecosystem C stock and cycling. In this study, we evaluated carbon accumulation of shrub species using allometric equations based on height and basal diameter in six subtropical plantations at the age of 1, 3, 4 and 6 years. The results showed that plantation type did not significantly affect the total biomass of shrubs, but it significantly affected the biomass of Rhodomyrtus tomentosa, Ilex asprella, Clerodendrum fortunatum and Baeckea frutescens. The biomass of dominant shrub species R. tomentosa, I. asprella, Gardenia jasminoides and Melastoma candidum increased with stand age, while the biomass of C. fortunatum and B. frutescens decreased. The inconsistent biomass-time patterns of different shrub species may be the primary reason for the altered total shrub biomass in each plantation. Consequently, we proposed that R. tomentosa, I. asprella, G. jasminoides and M. candidum could be preferable for understory carbon accumulation and should be maintained or planted because of their important functions in carbon accumulation and high economic values in the young plantations of southern subtropical China.

  3. Use of GIS for estimating potential and actual forest biomass for continental South and Southeast Asia.

    Science.gov (United States)

    L. R. Iverson; S. Brown; A. Prasad; H. Mitasova; A. J. R. Gillespie; A. E. Lugo

    1994-01-01

    A geographic information system (GIS) was used to estimate total biomass and biomass density of the tropical forest in south and southeast Asia because available data from forest inventories were insufficient to extrapolate biomass-density estimates across the region.

  4. How important is biomass burning in Canada to mercury contamination?

    Science.gov (United States)

    Fraser, Annemarie; Dastoor, Ashu; Ryjkov, Andrei

    2018-05-01

    total biomass burning Hg emissions to be highly variable from year to year and estimate average 2010-2015 total atmospheric biomass burning emissions of Hg in Canada to be between 6 and 14 t during the biomass burning season (i.e. from May to September), which is 3-7 times the mercury emission from anthropogenic sources in Canada for this period. On average, 65 % of the emissions occur in the provinces west of Ontario. We find that while emissions from biomass burning have a small impact on surface air concentrations of GEM averaged over individual provinces/territories, the impact at individual sites can be as high as 95 % during burning events. We estimate average annual mercury deposition from biomass burning in Canada to be between 0.3 and 2.8 t, compared to 0.14 t of mercury deposition from anthropogenic sources during the biomass burning season in Canada. Compared to the biomass burning emissions, the relative impact of fires on mercury deposition is shifted eastward, with on average 54 % percent of the deposition occurring in provinces west of Ontario. While the relative contribution of Canadian biomass burning to the total mercury deposition over each province/territory is no more than 9 % between 2010 and 2015, the local contribution in some locations (including areas downwind of biomass burning) can be as high as 80 % (e.g. northwest of Great Slave Lake in 2014) from May to September. We find that northern Alberta and Saskatchewan, central British Columbia, and the area around Great Slave Lake in the Northwest Territories are at greater risk of mercury contamination from biomass burning. GEM is considered to be the dominant mercury species emitted from biomass burning; however, there remains an uncertainty in the speciation of mercury released from biomass burning. We find that the impact of biomass burning emissions on mercury deposition is significantly affected by the uncertainty in speciation of emitted mercury because PBM is more readily deposited closer

  5. Evaluation of hirst-type spore trap to monitor environmental fungal load in hospital.

    Directory of Open Access Journals (Sweden)

    Cédric Dananché

    Full Text Available The main purpose was to validate the use of outdoor-indoor volumetric impaction sampler with Hirst-type spore traps (HTSTs to continuously monitor fungal load in order to prevent invasive fungal infections during major structural work in hospital settings. For 4 weeks, outdoor fungal loads were quantified continuously by 3 HTSTs. Indoor air was sampled by both HTST and viable impaction sampler. Results were expressed as particles/m3 (HTST or colony-forming units (CFU/m3 (biocollector. Paired comparisons by day were made with Wilcoxon's paired signed-rank test or paired Student's t-test as appropriate. Paired airborne spore levels were correlated 2 by 2, after log-transformation with Pearson's cross-correlation. Concordance was calculated with kappa coefficient (κ. Median total fungal loads (TFLs sampled by the 3 outdoor HTSTs were 3,025.0, 3,287.5 and 3,625.0 particles/m3 (P = 0.6, 0.6 and 0.3.-Concordance between Aspergillaceae fungal loads (AFLs, including Aspergillus spp. + Penicillium spp. was low (κ = 0.2. A low positive correlation was found between TFLs sampled with outdoor HTST and indoor HTST with applying a 4-hour time lag, r = 0.30, 95% CI (0.23-0.43, P<0.001. In indoor air, Aspergillus spp. were detected by the viable impaction sampler on 63.1% of the samples, whereas AFLs were found by HTST-I on only 3.6% of the samples. Concordance between Aspergillus spp. loads and AFLs sampled with the 2 methods was very low (κ = 0.1. This study showed a 4-hour time lag between increase of outdoor and indoor TFLs, possibly due to insulation and aeraulic flow of the building. Outdoor HTSTs may permit to quickly identify (after 48 hours time periods with high outdoor fungal loads. An identified drawback is that a too low sample area read did not seem to enable detection of Aspergillaceae spores efficiently. Indoor HTSTs may not be recommended at this time, and outdoor HTSTs need further study. Air sampling by viable impaction sampler remains the

  6. Frequency of fungal infection in the nasal polyposis patients undergoing polypectomy in a tertiary care unit

    International Nuclear Information System (INIS)

    Jawad, A.; Nisar, Y.B.

    2015-01-01

    Objective: To determine the frequency of fungal infection in nasal polyposis patients undergoing polypectomy in a tertiary care ENT unit. Methodology: This cross sectional study was conducted in the department of ENT, Pakistan Institute of Medical Sciences, Islamabad. A total of 60 patients with nasal polyposis were enrolled. Patients who did not give consent, with sinonasal malignancy, diabetes, and pregnant or lactating women were excluded from study. All the patients were operated and specimens of polypectomies were sent to the Department of Pathology for fungal culture, direct microscopy and histopathology. Data was entered and analysed using SPSS version 20. (author)

  7. Species associations overwhelm abiotic conditions to dictate the structure and function of wood-decay fungal communities.

    Science.gov (United States)

    Maynard, Daniel S; Covey, Kristofer R; Crowther, Thomas W; Sokol, Noah W; Morrison, Eric W; Frey, Serita D; van Diepen, Linda T A; Bradford, Mark A

    2018-04-01

    Environmental conditions exert strong controls on the activity of saprotrophic microbes, yet abiotic factors often fail to adequately predict wood decomposition rates across broad spatial scales. Given that species interactions can have significant positive and negative effects on wood-decay fungal activity, one possibility is that biotic processes serve as the primary controls on community function, with abiotic controls emerging only after species associations are accounted for. Here we explore this hypothesis in a factorial field warming- and nitrogen-addition experiment by examining relationships among wood decomposition rates, fungal activity, and fungal community structure. We show that functional outcomes and community structure are largely unrelated to abiotic conditions, with microsite and plot-level abiotic variables explaining at most 19% of the total variability in decomposition and fungal activity, and 2% of the variability in richness and evenness. In contrast, taxonomic richness, evenness, and species associations (i.e., co-occurrence patterns) exhibited strong relationships with community function, accounting for 52% of the variation in decomposition rates and 73% in fungal activity. A greater proportion of positive vs. negative species associations in a community was linked to strong declines in decomposition rates and richness. Evenness emerged as a key mediator between richness and function, with highly even communities exhibiting a positive richness-function relationship and uneven communities exhibiting a negative or null response. These results suggest that community-assembly processes and species interactions are important controls on the function of wood-decay fungal communities, ultimately overwhelming substantial differences in abiotic conditions. © 2018 by the Ecological Society of America.

  8. Root Characteristics of Perennial Warm-Season Grasslands Managed for Grazing and Biomass Production

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2013-07-01

    Full Text Available Minirhizotrons were used to study root growth characteristics in recently established fields dominated by perennial C4-grasses that were managed either for cattle grazing or biomass production for bioenergy in Virginia, USA. Measurements over a 13-month period showed that grazing resulted in smaller total root volumes and root diameters. Under biomass management, root volume was 40% higher (49 vs. 35 mm3 and diameters were 20% larger (0.29 vs. 0.24 mm compared to grazing. While total root length did not differ between grazed and biomass treatments, root distribution was shallower under grazed areas, with 50% of total root length in the top 7 cm of soil, compared to 41% in ungrazed exclosures. These changes (i.e., longer roots and greater root volume in the top 10 cm of soil under grazing but the reverse at 17–28 cm soil depths were likely caused by a shift in plant species composition as grazing reduced C4 grass biomass and allowed invasion of annual unsown species. The data suggest that management of perennial C4 grasslands for either grazing or biomass production can affect root growth in different ways and this, in turn, may have implications for the subsequent carbon sequestration potential of these grasslands.

  9. Sensitization to fungal allergens: Resolved and unresolved issues

    Directory of Open Access Journals (Sweden)

    Yuma Fukutomi

    2015-10-01

    Despite its importance in the management of allergic diseases, precise recognition of species-specific IgE sensitization to fungal allergens is often challenging because the majority of fungal extracts exhibit broad cross-reactivity with taxonomically unrelated fungi. Recent progress in gene technology has contributed to the identification of specific and cross-reactive allergen components from different fungal sources. However, data demonstrating the clinical relevance of IgE reactivity to these allergen components are still insufficient.

  10. Production costs for SRIC Populus biomass

    International Nuclear Information System (INIS)

    Strauss, C.H.

    1991-01-01

    Production costs for short rotation, intensive culture (SRIC) Populus biomass were developed from commercial-sized plantations under investigation throughout the US. Populus hybrid planted on good quality agricultural sites at a density of 850 cuttings/acre was projected to yield an average of 7 ovendry (OD) tons/acre/year. Discounted cash-flow analysis of multiple rotations showed preharvest production costs of $14/ton (OD). Harvesting and transportation expenses would increase the delivered cost to $35/ton (OD). Although this total cost compared favorably with the regional market price for aspen (Populus tremuloides), future investments in SRIC systems will require the development of biomass energy markets

  11. Surplus biomass through energy efficient kilns

    International Nuclear Information System (INIS)

    Anderson, Jan-Olof; Westerlund, Lars

    2011-01-01

    Highlights: → The magnitude of the national heat demand for drying lumber in kilns is established. → Each part of the total heat consumption is divided and shown between the main drying conditions. → The potential to increase the energy efficiency in kilns with available techniques is presented. → The market demand for the biomass, available with increase kiln energy efficiency, is reviled. -- Abstract: The use of biomass in the European Union has increased since the middle of the 1990s, mostly because of high subsidies and CO 2 emission regulation through the Kyoto protocol. The sawmills are huge biomass suppliers to the market; out of the Swedish annual lumber production of 16.4 Mm 3 , 95% is produced by medium to large-volume sawmills with a lumber quotient of 47%. The remaining part is produced as biomass. An essential part (12%) of the entering timber is used for supply of heat in their production processes, mostly in the substantial drying process. The drying process is the most time and heat consuming process in the sawmill. This study was undertaken to determine the sawmills' national use of energy and potential magnitude of improvements. If the drying process can be made more effective, sawmills' own use of biomass can be decreased and allow a considerably larger supply to the biomass market through processed or unprocessed biomass, heat or electricity production. The national electricity and heat usage when drying the lumber have been analysed by theoretical evaluation and experimental validation at a batch kiln. The main conclusion is that the heat consumption for drying lumber among the Swedish sawmills is 4.9 TW h/year, and with available state-of-the-art techniques it is possible to decrease the national heat consumption by approximately 2.9 TW h. This additional amount of energy corresponds to the market's desire for larger energy supply.

  12. Effect of 40 and 80 Years of Conifer Regrowth on Soil Microbial Activities and Community Structure in Subtropical Low Mountain Forests

    Directory of Open Access Journals (Sweden)

    Ed-Haun Chang

    2016-10-01

    Full Text Available The effects of long-term reforestation on soil microbial communities and biomass are poorly understood. This study was conducted on two coniferous plantations: Cunninghamia konishii Hayata, planted 40 years ago (CONIF-40, and Calocedrus formosana (Florin Florin, planted 80 years ago (CONIF-80. An adjacent natural broadleaf forest (BROAD-Nat was used as a control. We determined microbial biomass C and N contents, enzyme activities, and community composition (via phospholipid fatty acid [PLFA] assessment. Both microbial biomass and PLFA content were higher in the summer than in the winter and differed among the forests in summer only. Total PLFA, total bacterial, gram-positive bacterial, gram-negative bacterial, and vesicular arbuscular mycorrhizal fungal contents followed the same pattern. Total fungal content and the ratios of fungi to bacteria and of gram-positive to gram-negative bacteria were highest in CONIF-40, with no difference between the other forests. Principal component analysis of PLFA contents revealed that CONIF-40 communities were distinct from those of CONIF-80 and BROAD-Nat. Our results suggest that vegetation replacement during reforestation exerts a prolonged impact on the soil microbial community. The understory broadleaf shrubs and trees established after coniferous plantation reforestation may balance out the effects of coniferous litter, contributing to bacterial recovery.

  13. Structure and biosynthesis of fungal alpha-glucans

    NARCIS (Netherlands)

    Grün, Christian Hugo

    2003-01-01

    The fungal cell wall is unique among eukaryotes and therefore it forms an ideal target for the development of novel antifungal drugs. Fungal cell morphology and integrity depend on a cell-surrounding wall, which is composed of glycoproteins and polysaccharides. Disrupting enzymes that are involved

  14. Biomass co-firing for Delta Electricity

    International Nuclear Information System (INIS)

    Anon

    2014-01-01

    efficient than coal due to a higher moisture content. 'It is very difficult to guarantee a stable source of biomass, hence the lack of significant capital investment in this technology by the industry,' said Flood. Delta can manage biomass co-firing up to about 2% of its total output without the requirement for major capital investment, but it isn't satisfied with that cap. This is where the company's interest in investigating CBC comes in (see story below). Not only does it deal with the moisture issue with raw biomass, but can make the process more efficient. 'Part of the current focus for Delta Electricity and Crucible is aimed at removing the final hurdles for commercial deployment,' said Flood

  15. Fungal endophytes characterization from four species of Diplazium Swartz

    Science.gov (United States)

    Affina-Eliya, A. A.; Noraini, T.; Nazlina, I.; Ruzi, A. R.

    2014-09-01

    Four species on genus Diplazium namely Diplazium tomentosum, D. sorzogonense, D. asperum and D. accedens of Peninsular Malaysia were studied for presence of fungal endophyte. The objective of this study is to characterize fungal endophytes in the rhizome of four Diplazium species. The rhizome was surface sterilized and incubated to isolate fungal endophytes. Characterization of the colonies was performed by macroscopic morphological, microscopic identification, types of hyphae and mycelium, and spore structure. For isolation that produces spores, the structure of conidiophores and conidia were identified. From this study, four fungal have been isolated and determined as Aspergillus sp. (isolates AE 1), Aspergillus fumigatus (isolates AE 2), Aspergillus versicolor (isolates AE 3) and Verticillium sp. (isolates AE 4). The fungal isolates from this study were classified from the same family Moniliaceae.

  16. Adaptations in bacterial and fungal communities to termite fungiculture

    DEFF Research Database (Denmark)

    Otani, Saria

    in the bacterial and fungal communities. To do this, we used pyrosequencing, fluorescent in situ hybridisation, light and confocal microscopy, enzymatic assays, chemical extractions, in vitro assays, and feeding experiments in this thesis work to elucidate these predicted changes in fungus-growing termite...... in the proportion of fungal material provided to the cockroaches. However, gut microbiotas remained distinct from those of termites after Termitomyces-feeding, indicating that a fungal diet can play a role in structuring gut community composition, but at the same time exemplifies how original community compositions......, and possibly gut microenvironment constrain the magnitude of change. This thesis also characterises the fungus comb fungal communities (mycobiotas) in fungusgrowing termites, and shows that non-Termitomyces fungi were essentially absent in combs, and that Termitomyces fungal crops are maintained...

  17. Metal impacts on microbial biomass in the anoxic sediments of a contaminated lake

    Energy Technology Data Exchange (ETDEWEB)

    Gough, Heidi L.; Dahl, Amy L.; Nolan, Melissa A.; Gaillard, Jean-Francois; Stahl, David A.

    2008-04-26

    Little is known about the long-term impacts of metal contamination on the microbiota of anoxic lake sediments. In this study, we examined microbial biomass and metals (arsenic, cadmium, chromium, copper, iron, lead, manganese, and zinc) in the sediments of Lake DePue, a backwater lake located near a former zinc smelter. Sediment core samples were examined using two independent measures for microbial biomass (total microscopic counts and total phospholipid-phosphate concentrations), and for various fractions of each metal (pore water extracts, sequential extractions, and total extracts of all studied metals and zinc speciation by X-ray absorption fine structure (XAFS). Zinc concentrations were up to 1000 times higher than reported for sediments in the adjacent Illinois River, and ranged from 21,400 mg/kg near the source to 1,680 mg/kg near the river. However, solid metal fractions were not well correlated with pore water concentrations, and were not good predictors of biomass concentrations. Instead, biomass, which varied among sites by as much as two-times, was inversely correlated with concentrations of pore water zinc and arsenic as established by multiple linear regression. Monitoring of other parameters known to naturally influence biomass in sediments (e.g., organic carbon concentrations, nitrogen concentrations, pH, sediment texture, and macrophytes) revealed no differences that could explain observed biomass trends. This study provides strong support for control of microbial abundance by pore water metal concentrations in contaminated freshwater sediments.

  18. CT scan findings of fungal pneumonia

    International Nuclear Information System (INIS)

    Heckmann, M.; Uder, M.; Bautz, W.; Heinrich, M.

    2008-01-01

    The importance of fungal infection of the lung in immunocompromised patients has increased substantially during the last decades. Numerically the most patients are those with neutropenia, e.g. patients with malignancies or solid organ and stem cell transplantation, chemotherapy, corticosteroid use and HIV infection. Although fungal infections can occur in immunocompetent patients, their frequency in this population is rare. The clinical symptoms such as fever accompanied with non-productive cough are unspecific. In some patients progression to hypoxemia and dyspnea may occur rapidly. In spite of improved antifungal therapy morbidity and mortality of these infections are still high. Therefore an early and non-invasive diagnosis is very important. That is why CT and even better High-Resolution-CT (HR-CT) is a very important modality in examining immunocompromised patients with a probability of fungal infection. CT is everywhere available and, as a non-invasive method, able to give the relevant diagnose efficiently. This paper should give an overview about the radiologic findings and possible differential diagnosis of diverse pulmonary fungal infections in CT. Pneumonias caused by Aspergillus, Cryptococcus, Candida, Histoplasma, Mucor and Geotrichum capitatum are illustrated. (orig.)

  19. 50-plus years of fungal viruses

    Energy Technology Data Exchange (ETDEWEB)

    Ghabrial, Said A., E-mail: saghab00@email.uky.edu [Plant Pathology Department, University of Kentucky, Lexington, KY (United States); Castón, José R. [Department of Structure of Macromolecules, Centro Nacional Biotecnologıa/CSIC, Campus de Cantoblanco, Madrid (Spain); Jiang, Daohong [State Key Lab of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province (China); Nibert, Max L. [Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA (United States); Suzuki, Nobuhiro [Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama (Japan)

    2015-05-15

    Mycoviruses are widespread in all major taxa of fungi. They are transmitted intracellularly during cell division, sporogenesis, and/or cell-to-cell fusion (hyphal anastomosis), and thus their life cycles generally lack an extracellular phase. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups, although recent advances have established expanded experimental host ranges for some mycoviruses. Most known mycoviruses have dsRNA genomes packaged in isometric particles, but an increasing number of positive- or negative-strand ssRNA and ssDNA viruses have been isolated and characterized. Although many mycoviruses do not have marked effects on their hosts, those that reduce the virulence of their phytopathogenic fungal hosts are of considerable interest for development of novel biocontrol strategies. Mycoviruses that infect endophytic fungi and those that encode killer toxins are also of special interest. Structural analyses of mycoviruses have promoted better understanding of virus assembly, function, and evolution. - Highlights: • Historical perspective of fungal virus research. • Description, classification and diversity of fungal virus families. • Structural features of fungal virus particles. • Hypovirulence and exploitation of mycoviruses in biological control of plant pathogenic fungi.

  20. Phylogenetic structure of arbuscular mycorrhizal fungal communities along an elevation gradient.

    Science.gov (United States)

    Egan, Cameron P; Callaway, Ragan M; Hart, Miranda M; Pither, Jason; Klironomos, John

    2017-04-01

    Despite the importance of arbuscular mycorrhizal (AM) fungi within terrestrial ecosystems, we know little about how natural AM fungal communities are structured. To date, the majority of studies examining AM fungal community diversity have focused on single habitats with similar environmental conditions, with relatively few studies having assessed the diversity of AM fungi over large-scale environmental gradients. In this study, we characterized AM fungal communities in the soil along a high-elevation gradient in the North American Rocky Mountains. We focused on phylogenetic patterns of AM fungal communities to gain insight into how AM fungal communities are naturally assembled. We found that alpine AM fungal communities had lower phylogenetic diversity relative to lower elevation communities, as well as being more heterogeneous in composition than either treeline or subalpine communities. AM fungal communities were phylogenetically clustered at all elevations sampled, suggesting that environmental filtering, either selection by host plants or fungal niches, is the primary ecological process structuring communities along the gradient.