WorldWideScience

Sample records for total fuel mass

  1. Spent fuel critical masses and supportive measurements

    International Nuclear Information System (INIS)

    Toffer, H.; Wells, A.H.

    1987-01-01

    Critical masses for spent fuel are larger than for green fuel and therefore use of the increased masses could result in improved handling, storage, and transport of such materials. To apply spent fuel critical masses requires an assessment of fuel exposure and the corresponding isotopic compositions. The paper discusses several approaches at the Hanford N Reactor in establishing fuel exposure, including a direct measurement of spent to green fuel critical masses. The benefits derived from the use of spent fuel critical masses are illustrated for cask designs at the Nuclear Assurance Corporation. (author)

  2. A New Methodology for Fuel Mass Computation of an operating Aircraft

    Directory of Open Access Journals (Sweden)

    M Souli

    2016-03-01

    Full Text Available The paper performs a new computational methodology for an accurate computation of fuel mass inside an aircraft wing during the flight. The computation is carried out using hydrodynamic equations, classically known as Navier-Stokes equations by the CFD community. For this purpose, a computational software is developed, the software computes the fuel mass inside the tank based on experimental data of pressure gages that are inserted in the fuel tank. Actually and for safety reasons, Optical fiber sensor for fluid level sensor detection is used. The optical system consists to an optically controlled acoustic transceiver system which measures the fuel level inside the each compartment of the fuel tank. The system computes fuel volume inside the tank and needs density to compute the total fuel mass. Using optical sensor technique, density measurement inside the tank is required. The method developed in the paper, requires pressure measurements in each tank compartment, the density is then computed based on pressure measurements and hydrostatic assumptions. The methodology is tested using a fuel tank provided by Airbus for time history refueling process.

  3. Total and occluded residual gas content inside the nuclear fuel pellets

    International Nuclear Information System (INIS)

    Moura, Sergio C.; Fernandes, Carlos E.; Oliveira, Justine R.; Machado, Joyce F.; Guglielmo, Luisa M.; Bustillos, Oscar V.

    2009-01-01

    This work describes three techniques available to measure total and occluded residual gases inside the UO 2 nuclear fuel pellets. Hydrogen is the major gas compound inside these pellets, due to sintering fabrication process but Nitrogen is present as well, due to storage atmosphere fuel. The total and occluded residual gas content inside these pellets is a mandatory requirement in a quality control to assure the well function of the pellets inside the nuclear reactor. This work describes the Gas Extractor System coupled with mass spectrometry GES/MS, the Gas Extractor System coupled with gas chromatography GES/GC and the total Hydrogen / Nitrogen H/N analyzer as well. In the GES, occlude gases in the UO 2 pellets is determinate using a high temperature vacuum extraction system, in which the minimum limit of detection is in the range 0.002 cc/g. The qualitative and quantitative determination of the amount of gaseous components employs a mass spectrometry or a gas chromatography technique. The total Hydrogen / Nitrogen analyzer employ a thermal conductivity gas detector linked to a gaseous extractor furnace which has a detection limit is in the range 0.005 cc/g. The specification for the residual gas analyses in the nuclear fuel pellets is 0.03 cc/g, all techniques satisfy the requirement but not the nature of the gases due to reaction with the reactor cladding. The present work details the chemical reaction among Hydrogen / Nitrogen and nuclear reactor cladding. (author)

  4. Determination of total plutonium content in spent nuclear fuel assemblies with the differential die-away self-interrogation instrument

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Alexis C. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87544 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109 (United States); Henzl, Vladimir; Menlove, Howard O.; Swinhoe, Martyn T.; Belian, Anthony P. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87544 (United States); Flaska, Marek; Pozzi, Sara A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109 (United States)

    2014-11-11

    As a part of the Next Generation Safeguards Initiative Spent Fuel project, we simulate the response of the Differential Die-away Self-Interrogation (DDSI) instrument to determine total elemental plutonium content in an assayed spent nuclear fuel assembly (SFA). We apply recently developed concepts that relate total plutonium mass with SFA multiplication and passive neutron count rate. In this work, the multiplication of the SFA is determined from the die-away time in the early time domain of the Rossi-Alpha distributions measured directly by the DDSI instrument. We utilize MCNP to test the method against 44 pressurized water reactor SFAs from a simulated spent fuel library with a wide dynamic range of characteristic parameters such as initial enrichment, burnup, and cooling time. Under ideal conditions, discounting possible errors of a real world measurement, a root mean square agreement between true and determined total Pu mass of 2.1% is achieved.

  5. Mass Flow Data Comparison for Comprehensive Fuel Cycle Options

    International Nuclear Information System (INIS)

    Kim, T.K.; Taiwo, T.A.; Wigeland, R.A.; Dixon, B.W.; Gehin, J.C.; Todosow, M.

    2015-01-01

    One of the key objectives stated in the United States Department of Energy, Nuclear Energy R and D road-map is the development of sustainable nuclear fuel cycles that improve natural resource utilisation and provide adequate capability and capacity to manage wastes produced by the fuel cycle. In order to inform this objective, an evaluation and screening of nuclear fuel cycle options has been conducted. As part of that effort, the entire fuel cycle options space was represented by 40 Evaluation Groups (EGs), and mass flow information for each of the EGs was provided by using an Analysis Example (AE). In this paper, the mass flow data of the 40 AEs are compared to inform on trends in the natural resource utilisation and nuclear waste generation. For the AEs that need enriched uranium support, the natural uranium required is high and the natural resource utilisation is generally lower than 2% regardless of the fuel cycle strategy (i.e., once-through, limited recycle, or continuous recycle). However, the utilisation could be improved by avoiding enriched uranium fuel support. The natural resource utilisation increases to more than 80% by recycling the nuclear fuel continuously without enriched uranium support. The combined mass of spent nuclear fuel (SNF) and high-level waste (HLW), i.e., SNF+HLW mass, is lower by using a continuous recycle option compared to a once-through fuel cycle option, because SNF mass is converted to mass of recycled products and only fission products and other process losses need to be disposed. The combined disposed mass of depleted uranium (DU), recovered uranium (RU) and thorium (RTh), i.e. DU+RU+RTh mass, has a similar trend to the uranium utilisation. For the AEs that need enriched uranium fuel, the DU and RU are the major fraction by mass of the DU+RU+RTh, which are two orders of magnitude higher in mass compared to those for the AEs that do not need enriched uranium fuel. (authors)

  6. The Calculation Of Total Radioactivity Of Kartini Reactor Fuel Element

    International Nuclear Information System (INIS)

    Budisantoso, Edi Trijono; Sardjono, Y.

    1996-01-01

    The total radioactivity of Kartini reactor fuel element has been calculated by using ORIGEN2. In this case, the total radioactivity is the sum of alpha, beta, and gamma radioactivity from activation products nuclides, actinide nuclides and fission products nuclides in the fuel element. The calculation was based on irradiation history of fuel in the reactor core. The fuel element no 3203 has location history at D, E, and F core zone. The result is expressed in graphics form of total radioactivity and photon radiations as function of irradiation time and decay time. It can be concluded that the Kartini reactor fuel element in zone D, E, and F has total radioactivity range from 10 Curie to 3000 Curie. This range is for radioactivity after decaying for 84 days and that after reactor shut down. This radioactivity is happened in the fuel element for every reactor operation and decayed until the fuel burn up reach 39.31 MWh. The total radioactivity emitted photon at the power of 0.02 Watt until 10 Watt

  7. Heat and mass release for some transient fuel source fires: A test report

    International Nuclear Information System (INIS)

    Nowlen, S.P.

    1986-10-01

    Nine fire tests using five different trash fuel source packages were conducted by Sandia National Laboratories. This report presents the findings of these tests. Data reported includes heat and mass release rates, total heat and mass release, plume temperatures, and average fuel heat of combustion. These tests were conducted as a part of the US Nuclear Regulatory Commission sponsored fire safety research program. Data from these tests were intended for use in nuclear power plant probabilistic risk assessment fire analyses. The results were also used as input to a fire test program at Sandia investigating the vulnerability of electrical control cabinets to fire. The fuel packages tested were chosen to be representative of small to moderately sized transient trash fuel sources of the type that would be found in a nuclear power plant. The highest fire intensity encountered during these tests was 145 kW. Plume temperatures did not exceed 820 0 C

  8. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Viktor Johánek

    2016-01-01

    Full Text Available The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc. on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed subjected to a wide range of conditions.

  9. Total quality in spent fuel pool reracking

    International Nuclear Information System (INIS)

    Cranston, J.S.; Bradbury, R.B.; Cacciapouti, R.J.

    1993-01-01

    The nuclear utility environment is one of strict cost control under prescriptive regulations and increasing public scrutiny. This paper presents the results of A Total Quality approach, by a dedicated team, that addresses the need for increased on-site spent fuel storage in this environment. Innovations to spent fuel pool reracking, driven by utilities' specific technical needs and shrinking budgets, have resulted in both product improvements and lower prices. A Total Quality approach to the entire turnkey project is taken, thereby creating synergism and process efficiency in each of the major phases of the project: design and analysis, licensing, fabrication, installation and disposal. Specific technical advances and the proven quality of the team members minimizes risk to the utility and its shareholders and provides a complete, cost effective service. Proper evaluation of spent fuel storage methods and vendors requires a full understanding of currently available customer driven initiatives that reduce cost while improving quality. In all phases of a spent fuel reracking project, from new rack design and analysis through old rack disposal, the integration of diverse experts, at all levels and throughout all phases of a reracking project, better serves utility needs. This Total Quality environment in conjunction with many technical improvements results in a higher quality product at a lower cost

  10. A comparative study of the number and mass of fine particles emitted with diesel fuel and marine gas oil (MGO)

    Science.gov (United States)

    Nabi, Md. Nurun; Brown, Richard J.; Ristovski, Zoran; Hustad, Johan Einar

    2012-09-01

    The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.

  11. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  12. Burnup determination of mass spectrometry for nuclear fuels

    International Nuclear Information System (INIS)

    Zhang Chunhua.

    1987-01-01

    The various methods currently being used in burnup determination of nuclear fuels are studied and reviewed. The mass spectrometry method of destructive testing is discussed emphatically. The burnup determination of mass spectrometry includes heavy isotopic abundance ratio method and isotope dilution mass spectrometry used as burnup indicator for the fission products. The former is applied to high burnup level, but the later to various burnup level. According to experiences, some problems which should be noticed in burnup determination of mass spectrometry are presented

  13. Technique for mass-spectrometric determination of moisture content in fuel elements and fuel element claddings

    International Nuclear Information System (INIS)

    Kurillovich, A.N.; Pimonov, Yu.I.; Biryukov, A.S.

    1988-01-01

    A technique for mass-spectroimetric determination of moisture content in fuel elements and fuek claddings in the 2x10 -4 -1.5x10 -2 g range is developed. The relative standard deviation is 0.13. A character of moisture extraction from oxide uranium fuels in the 20-700 deg C temperature range is studied. Approximately 80% of moisture is extracted from the fuels at 300 deg C. The moisture content in fuel elements with granular uranium oxide fuels is measured. Dependence of fuel element moisture content on conditions of hot vacuum drying is shown. The technique permits to optimize the fuel element fabrication process to decrease the moisture content in them. 4 refs.; 3 figs.; 2 tabs

  14. Fuel cycles of WWER-1000 based on assemblies with increased fuel mass

    International Nuclear Information System (INIS)

    Kosourov, E.; Pavlovichev, A.; Shcherenko, A.

    2011-01-01

    Modern WWER-1000 fuel cycles are based on FAs with the fuel column height of 3680 mm, diameters of the fuel pellet and its central hole of 7.6 and 1.2 mm respectively. The highest possible fuel enrichment has reached its license limit that is 4.95 %. Research in the field of modernization, safety justification and licensing of equipment for fuel manufacture, storage and transportation are required for further fuel enrichment increase (above 5 %). So in the nearest future an improvement of technical and economic characteristics of fuel cycles is possible if assembly fuel mass is increased. The available technology of the cladding thinning makes it possible. If the fuel rod outer diameter is constant and the clad inner diameter is increased to 7.93 mm, the diameter of the fuel pellet can be increased to 7.8 mm. So the suppression of the pellet central hole allows increasing assembly fuel weight by about 8 %. In this paper we analyze how technical and economic characteristics of WWER-1000 fuel cycle change when an advanced FA is applied instead of standard one. Comparison is made between FAs with equal time interval between refueling. This method of comparison makes it possible to eliminate the parameters that constitute the operation component of electricity generation cost, taking into account only the following technical and economic characteristics: 1)cycle length; 2) average burnup of spent FAs; 3) specific natural uranium consumption; 4)specific quantity of separative work units; 5) specific enriched uranium consumption; 6) specific assembly consumption. Collected data allow estimating the efficiency of assembly fuel weight increase and verifying fuel cycle characteristics that may be obtained in the advanced FAs. (authors)

  15. Exploring the Relationship between Skeletal Mass and Total Body Mass in Birds.

    Science.gov (United States)

    Martin-Silverstone, Elizabeth; Vincze, Orsolya; McCann, Ria; Jonsson, Carl H W; Palmer, Colin; Kaiser, Gary; Dyke, Gareth

    2015-01-01

    Total body mass (TBM) is known to be related to a number of different osteological features in vertebrates, including limb element measurements and total skeletal mass. The relationship between skeletal mass and TBM in birds has been suggested as a way of estimating the latter in cases where only the skeleton is known (e.g., fossils). This relationship has thus also been applied to other extinct vertebrates, including the non-avian pterosaurs, while other studies have used additional skeletal correlates found in modern birds to estimate TBM. However, most previous studies have used TBM compiled from the literature rather than from direct measurements, producing values from population averages rather than from individuals. Here, we report a new dataset of 487 extant birds encompassing 79 species that have skeletal mass and TBM recorded at the time of collection or preparation. We combine both historical and new data for analyses with phylogenetic control and find a similar and well-correlated relationship between skeletal mass and TBM. Thus, we confirm that TBM and skeletal mass are accurate proxies for estimating one another. We also look at other factors that may have an effect on avian body mass, including sex, ontogenetic stage, and flight mode. While data are well-correlated in all cases, phylogeny is a major control on TBM in birds strongly suggesting that this relationship is not appropriate for estimating the total mass of taxa outside of crown birds, Neornithes (e.g., non-avian dinosaurs, pterosaurs). Data also reveal large variability in both bird skeletal and TBM within single species; caution should thus be applied when using published mass to test direct correlations with skeletal mass and bone lengths.

  16. The mass balance of a Proton Exchange Membrane Fuel Cell (PEMFC)

    International Nuclear Information System (INIS)

    Miloud, S.; Kamaruzzaman Sopian; Wan Ramli Wan Daud

    2006-01-01

    A Proton Exchange Membrane Fuel Cell (PEMFC), operating at low temperature uses a simple chemical process to combine hydrogen and oxygen into water, producing electric current and heat during the electrochemical reaction. This work concern on the theoretical consideration of the mass balance has been evaluated to predict the mass flow rate of the both gases (hydrogen/oxygen), the water mass balance, and the heat transfer in order to design a single cell PEMFC stack with a better flow field distributor on the performance of Polymer Electrolyte membrane fuel cells

  17. Deriving Fuel Mass by Size Class in Douglas-fir (Pseudotsuga menziesii Using Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Lloyd Queen

    2011-08-01

    Full Text Available Requirements for describing coniferous forests are changing in response to wildfire concerns, bio-energy needs, and climate change interests. At the same time, technology advancements are transforming how forest properties can be measured. Terrestrial Laser Scanning (TLS is yielding promising results for measuring tree biomass parameters that, historically, have required costly destructive sampling and resulted in small sample sizes. Here we investigate whether TLS intensity data can be used to distinguish foliage and small branches (≤0.635 cm diameter; coincident with the one-hour timelag fuel size class from larger branchwood (>0.635 cm in Douglas-fir (Pseudotsuga menziesii branch specimens. We also consider the use of laser density for predicting biomass by size class. Measurements are addressed across multiple ranges and scan angles. Results show TLS capable of distinguishing fine fuels from branches at a threshold of one standard deviation above mean intensity. Additionally, the relationship between return density and biomass is linear by fuel type for fine fuels (r2 = 0.898; SE 22.7% and branchwood (r2 = 0.937; SE 28.9%, as well as for total mass (r2 = 0.940; SE 25.5%. Intensity decays predictably as scan distances increase; however, the range-intensity relationship is best described by an exponential model rather than 1/d2. Scan angle appears to have no systematic effect on fine fuel discrimination, while some differences are observed in density-mass relationships with changing angles due to shadowing.

  18. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.

    Science.gov (United States)

    Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

    2011-03-01

    Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas).

  19. Spectroscopic analysis of seasonal changes in live fuel moisture content and leaf dry mass

    Science.gov (United States)

    Yi Qi; Philip E. Dennison; W. Matt Jolly; Rachael C. Kropp; Simon C. Brewer

    2014-01-01

    Live fuel moisture content (LFMC), the ratio of water mass to dry mass contained in live plant material, is an important fuel property for determining fire danger and for modeling fire behavior. Remote sensing estimation of LFMC often relies on an assumption of changing water and stable dry mass over time. Fundamental understanding of seasonal variation in plant water...

  20. Isotope correlation and mass spectrometry techniques for irradiated fuel assay

    International Nuclear Information System (INIS)

    Deron, S.

    1985-01-01

    This paper outlines the methods used to account for fissionable materials in irradiated nuclear fuel elements entering reprocessing plants. Verification is accomplished at three mass balance stations in the plant. Techniques employed fall into two categories: isotopic and isotope dilution analyses by mass spectometry and isotope correlation techniques. These methods are discussed in some detail

  1. Flame chemistry of alkane-rich gasoline fuels and a surrogate using photoionization mass spectrometry: I. Primary reference fuel

    KAUST Repository

    Selim, H.

    2015-03-30

    Improving the gasoline engines performance requires thorough understanding of their fundamental chemistry of combustion. Since the actual gasoline fuels are difficult to examine, due to the lack of knowledge about their exact composition as well as their numerous fuel components, the approach of using simpler gasoline fuels with limited number of components or using surrogate fuels has become more common. In this study, the combustion chemistry of laminar premixed flame of different gasoline fuels/surrogate has been examined. In this particular paper, the primary reference fuel, PRF84, has been examined at equivalence ratio of 1 and pressure of 20 Torr. The gas analysis was conducted using vacuum ultraviolet photoionization mass spectrometry.

  2. Flame chemistry of alkane-rich gasoline fuels and a surrogate using photoionization mass spectrometry: I. Primary reference fuel

    KAUST Repository

    Selim, H.; Lucassen, A.; Hansen, N.; Sarathy, Mani

    2015-01-01

    Improving the gasoline engines performance requires thorough understanding of their fundamental chemistry of combustion. Since the actual gasoline fuels are difficult to examine, due to the lack of knowledge about their exact composition as well as their numerous fuel components, the approach of using simpler gasoline fuels with limited number of components or using surrogate fuels has become more common. In this study, the combustion chemistry of laminar premixed flame of different gasoline fuels/surrogate has been examined. In this particular paper, the primary reference fuel, PRF84, has been examined at equivalence ratio of 1 and pressure of 20 Torr. The gas analysis was conducted using vacuum ultraviolet photoionization mass spectrometry.

  3. Reactivity effect of non-uniformly distributed fuel in fuel solution systems

    International Nuclear Information System (INIS)

    Hirano, Yasushi; Yamane, Yoshihiro; Nishina, Kojiro; Mitsuhashi, Ishi.

    1991-01-01

    A numerical method to determine the optimal fuel distribution for minimum critical mass, or maximum k-effective, is developed using the Maximum Principle in order to evaluate the maximum effect of non-uniformly distributed fuel on reactivity. This algorithm maximizes the Hamiltonian directly by an iterative method under a certain constraint-the maintenance of criticality or total fuel mass. It ultimately reaches the same optimal state of a flattened fuel importance distribution as another algorithm by Dam based on perturbation theory. This method was applied to two kinds of spherical cores with water reflector in the simulating reprocessing facility. In the slightly-enriched uranyl nitrate solution core, the minimum critical mass decreased by less than 1% at the optimal moderation state. In the plutonium nitrate solution core, the k-effective increment amounted up to 4.3% Δk within the range of present study. (author)

  4. Molten Fuel Mass Assessment for Channel Flow Blockage Event in CANDU6

    International Nuclear Information System (INIS)

    Lee, Kwang Ho; Kim, Yong Bae; Choi, Hoon; Park, Dong Hwan

    2011-01-01

    In CANDU6, a fuel channel flow blockage causes a sudden reduction of flow through the blocked channel. Depending on the severity of the blockage, the reduced flow through the channel can result in severe heat up of the fuel, hence possibly leading to pressure tube and calandria tube failure. If the calandria tube does not fail the fuel and sheath would continue to heat up, and ultimately melting could occur. Eventually, molten material runs down onto the pressure tube. Even a thin layer of molten material in contact with the pressure tube causes the pressure tube and calandreia tube to heat up rapidly. The thermal transient is so rapid that failure temperatures are reached quickly. After channel failure, the contents of the channel, consisting of superheated coolant, fission products and possibly overheated of molten fuel, are rapidly discharged into the moderator. Fuel discharged into the moderator is quenched and cooled. The rapid discharge of hot fuel and coolant into the calandria causes the moderator pressure and temperature to increase, which may cause damage to some in-core components. Thus, the assessment results of molten fuel mass are inputs to the in-core damage analysis. In this paper, the analysis methodology and results of molten fuel mass assessment for the channel flow blockage event are presented

  5. Toxic emissions from mobile sources: a total fuel-cycle analysis for conventional and alternative fuel vehicles.

    Science.gov (United States)

    Winebrake, J J; Wang, M Q; He, D

    2001-07-01

    Mobile sources are among the largest contributors of four hazardous air pollutants--benzene, 1,3-butadiene, acetaldehyde, and formaldehyde--in urban areas. At the same time, federal and state governments are promoting the use of alternative fuel vehicles as a means to curb local air pollution. As yet, the impact of this movement toward alternative fuels with respect to toxic emissions has not been well studied. The purpose of this paper is to compare toxic emissions from vehicles operating on a variety of fuels, including reformulated gasoline (RFG), natural gas, ethanol, methanol, liquid petroleum gas (LPG), and electricity. This study uses a version of Argonne National Laboratory's Greenhouse Gas, Regulated Emissions, and Energy Use in Transportation (GREET) model, appropriately modified to estimate toxic emissions. The GREET model conducts a total fuel-cycle analysis that calculates emissions from both downstream (e.g., operation of the vehicle) and upstream (e.g., fuel production and distribution) stages of the fuel cycle. We find that almost all of the fuels studied reduce 1,3-butadiene emissions compared with conventional gasoline (CG). However, the use of ethanol in E85 (fuel made with 85% ethanol) or RFG leads to increased acetaldehyde emissions, and the use of methanol, ethanol, and compressed natural gas (CNG) may result in increased formaldehyde emissions. When the modeling results for the four air toxics are considered together with their cancer risk factors, all the fuels and vehicle technologies show air toxic emission reduction benefits.

  6. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ramsden, T.

    2013-04-01

    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  7. Cost Analysis of Direct Methanol Fuel Cell Stacks for Mass Production

    Directory of Open Access Journals (Sweden)

    Mauro Francesco Sgroi

    2016-11-01

    Full Text Available Fuel cells are very promising technologies for efficient electrical energy generation. The development of enhanced system components and new engineering solutions is fundamental for the large-scale deployment of these devices. Besides automotive and stationary applications, fuel cells can be widely used as auxiliary power units (APUs. The concept of a direct methanol fuel cell (DMFC is based on the direct feed of a methanol solution to the fuel cell anode, thus simplifying safety, delivery, and fuel distribution issues typical of conventional hydrogen-fed polymer electrolyte fuel cells (PEMFCs. In order to evaluate the feasibility of concrete application of DMFC devices, a cost analysis study was carried out in the present work. A 200 W-prototype developed in the framework of a European Project (DURAMET was selected as the model system. The DMFC stack had a modular structure allowing for a detailed evaluation of cost characteristics related to the specific components. A scale-down approach, focusing on the model device and projected to a mass production, was used. The data used in this analysis were obtained both from research laboratories and industry suppliers specialising in the manufacturing/production of specific stack components. This study demonstrates that mass production can give a concrete perspective for the large-scale diffusion of DMFCs as APUs. The results show that the cost derived for the DMFC stack is relatively close to that of competing technologies and that the introduction of innovative approaches can result in further cost savings.

  8. Nuclear analysis of the Chornobyl fuel containing masses with heterogeneous fuel distribution

    International Nuclear Information System (INIS)

    Turski, R. B.

    1998-01-01

    Although significant data has been obtained on the condition and composition of the fuel containing masses (FCM) located in the concrete chambers under the Chernobyl Unit 4 reactor cavity, there is still uncertainty regarding the possible recriticality of this material. The high radiation levels make access extremely difficult, and most of the samples are from the FCM surface regions. There is little information on the interior regions of the FCM, and one cannot assume with confidence that the surface measurements are representative of the interior regions. Therefore, reasonable assumptions on the key parameters such as fuel concentration, the concentrations of impurities and neutron poisons (especially boron), the void fraction of the FCM due to its known porosity, and the degrees of fuel heterogeneity, are necessary to evaluate the possibility of recriticality. The void fraction is important since it introduces the possibility of water moderator being distributed throughout the FCM. Calculations indicate that the addition of 10 to 30 volume percent (v/o) water to the FCM has a significant impact on the calculated reactivity of the FCM. Therefore, water addition must be considered carefully. The other possible moderators are graphite and silicone dioxide. As discussed later in this paper, silicone dioxide moderation does not represent a criticality threat. For graphite, both heterogeneous fuel arrangements and very large volume fractions of graphite are necessary for a graphite moderated system to go critical. Based on the observations and measurements of the FCM compositions, these conditions do not appear creditable for the Chernobyl FCM. Therefore, the focus of the analysis reported in this paper will be on reasonable heterogeneous fuel arrangements and water moderation. The analysis will evaluate a range of fuel and diluent compositions

  9. Contribution to the determination of total hydrogen in oxide nuclear fuels

    International Nuclear Information System (INIS)

    Bartscher, W.; Kutter, H.

    1979-01-01

    Normally the total hydrogen content of a fast breeder mixed oxide fuel is calculated from the results of the determinations of free hydrogen and water. Thermodynamic considerations, coupled with kinetic results for room temperature and 1000 0 C and taken from the literature indicate, that the normal method for the determination of water by heating in a carrier gas stream and subsequent coulometric determination of the expelled water must give low results. A modification of this method involving the introduction of a copper oxide furnace into the system for the oxidation of hydrogen has been studied. The resulting method for the determination of total hydrogen gives about ten times higher values than those calculated from the normal water determination. These total hydrogen values and the oxygen to metal ratios which are obtained by gravimetric methods and not corrected for the water content, reflect more realistically the in-pile conditions in the fuel pin. (Auth.)

  10. STELLAR AND TOTAL BARYON MASS FRACTIONS IN GROUPS AND CLUSTERS SINCE REDSHIFT 1

    International Nuclear Information System (INIS)

    Giodini, S.; Pierini, D.; Finoguenov, A.; Pratt, G. W.; Boehringer, H.; Leauthaud, A.; Guzzo, L.; Aussel, H.; Bolzonella, M.; Capak, P.; Elvis, M.; Hasinger, G.; Ilbert, O.; Kartaltepe, J. S.; Koekemoer, A. M.; Lilly, S. J.; Massey, R.; Rhodes, J.; Salvato, M.; McCracken, H. J.

    2009-01-01

    We investigate if the discrepancy between estimates of the total baryon mass fraction obtained from observations of the cosmic microwave background (CMB) and of galaxy groups/clusters persists when a large sample of groups is considered. To this purpose, 91 candidate X-ray groups/poor clusters at redshift 0.1 ≤ z ≤ 1 are selected from the COSMOS 2 deg 2 survey, based only on their X-ray luminosity and extent. This sample is complemented by 27 nearby clusters with a robust, analogous determination of the total and stellar mass inside R 500 . The total sample of 118 groups and clusters with z ≤ 1 spans a range in M 500 of ∼10 13 -10 15 M sun . We find that the stellar mass fraction associated with galaxies at R 500 decreases with increasing total mass as M -0.37±0.04 500 , independent of redshift. Estimating the total gas mass fraction from a recently derived, high-quality scaling relation, the total baryon mass fraction (f stars+gas 500 = f stars 500 + f gas 500 ) is found to increase by ∼25%, when M 500 increases from (M) = 5 x 10 13 M sun to (M) = 7 x 10 14 M sun . After consideration of a plausible contribution due to intracluster light (11%-22% of the total stellar mass) and gas depletion through the hierarchical assembly process (10% of the gas mass), the estimated values of the total baryon mass fraction are still lower than the latest CMB measure of the same quantity (WMAP5), at a significance level of 3.3σ for groups of (M) = 5 x 10 13 M sun . The discrepancy decreases toward higher total masses, such that it is 1σ at (M) = 7 x 10 14 M sun . We discuss this result in terms of nongravitational processes such as feedback and filamentary heating.

  11. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    International Nuclear Information System (INIS)

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; Sterbentz, James W.

    2014-01-01

    Highlights: • The burnup of irradiated AGR-1 TRISO fuel was analyzed using gamma spectrometry. • The burnup of irradiated AGR-1 TRISO fuel was also analyzed using mass spectrometry. • Agreement between experimental results and neutron physics simulations was excellent. - Abstract: AGR-1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR-1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non-destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR-1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs-137 activity and the other based on the ratio of Cs-134 and Cs-137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA (fissions per initial heavy metal atom) for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can be determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP-MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma

  12. The Effect of Fuel Mass Fraction on the Combustion and Fluid Flow in a Sulfur Recovery Unit Thermal Reactor

    Directory of Open Access Journals (Sweden)

    Chun-Lang Yeh

    2016-11-01

    Full Text Available Sulfur recovery unit (SRU thermal reactors are negatively affected by high temperature operation. In this paper, the effect of the fuel mass fraction on the combustion and fluid flow in a SRU thermal reactor is investigated numerically. Practical operating conditions for a petrochemical corporation in Taiwan are used as the design conditions for the discussion. The simulation results show that the present design condition is a fuel-rich (or air-lean condition and gives acceptable sulfur recovery, hydrogen sulfide (H2S destruction, sulfur dioxide (SO2 emissions and thermal reactor temperature for an oxygen-normal operation. However, for an oxygen-rich operation, the local maximum temperature exceeds the suggested maximum service temperature, although the average temperature is acceptable. The high temperature region must be inspected very carefully during the annual maintenance period if there are oxygen-rich operations. If the fuel mass fraction to the zone ahead of the choke ring (zone 1 is 0.0625 or 0.125, the average temperature in the zone behind the choke ring (zone 2 is higher than the zone 1 average temperature, which can damage the downstream heat exchanger tubes. If the zone 1 fuel mass fraction is reduced to ensure a lower zone 1 temperature, the temperature in zone 2 and the heat exchanger section must be monitored closely and the zone 2 wall and heat exchanger tubes must be inspected very carefully during the annual maintenance period. To determine a suitable fuel mass fraction for operation, a detailed numerical simulation should be performed first to find the stoichiometric fuel mass fraction which produces the most complete combustion and the highest temperature. This stoichiometric fuel mass fraction should be avoided because the high temperature could damage the zone 1 corner or the choke ring. A higher fuel mass fraction (i.e., fuel-rich or air-lean condition is more suitable because it can avoid deteriorations of both zone 1

  13. Numerical simulation of mass and energy transport phenomena in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Arpino, F. [Dipartimento di Meccanica, Strutture, Ambiente e Territorio (DiMSAT), University of Cassino, via Di Biasio 43, Cassino (Italy); Massarotti, N. [Dipertimento per le Tecnologie (DiT), University of Naples ' ' Parthenope' ' , Centro Direzionale, isola C4, 80143 Napoli (Italy)

    2009-12-15

    Solid Oxide Fuel Cells (SOFCs) represent a very promising technology for near future energy conversion thanks to a number of advantages, including the possibility of using different fuels. In this paper, a detailed numerical model, based on a general mathematical description and on a finite element Characteristic based Split (CBS) algorithm code is employed to simulate mass and energy transport phenomena in SOFCs. The model predicts the thermodynamic quantity of interest in the fuel cell. Full details of the numerical solution obtained are presented both in terms of heat and mass transfer in the cell and in terms of electro-chemical reactions that occur in the system considered. The results obtained with the present algorithm is compared with the experimental data available in the literature for validation, showing an excellent agreement. (author)

  14. On-line mass spectrometry measurement of fission gas release from nuclear fuel submitted to thermal transients

    International Nuclear Information System (INIS)

    Guigues, E.; Janulyte, A.; Zerega, Y.; Pontillon, Y.

    2013-06-01

    The work presented in this paper has been performed in the framework of a joint research program between Aix-Marseille University and CEA Cadarache. The aim is to develop a mass spectrometer (MS) device for the MERARG facility. MERARG is devoted to the study of fission gas release measurement, from nuclear fuels submitted to annealing tests in high activity laboratory such as LECA-STAR, thanks to gamma spectrometry. The mass spectrometer will then extend the measurement capability from the γ-emitters gases to all the gases involved in the release in order to have a better understanding of the fission gas release dynamics from fuel during thermal transients. Furthermore, the mass spectrometer instrument combines the capabilities and performances of both on-line (for release kinetic) and off-line implementations (for delayed accurate analysis of capacities containing total release gas). The paper deals with two main axes: (1) the modelling of gas sampling inlet device and its performance and (2) the first MS qualification/calibration results. The inlet device samples the gas and also adapts the pressure between MERARG sweeping line at 1.2 bar and mass spectrometer chamber at high vacuum. It is a two-stage device comprising a capillary at inlet, an intermediate vacuum chamber, a molecular leak inlet and a two-stage pumping device. Pressure drops, conductance and throughputs are estimated both for mass spectrometer operation and for exhaust gas recovery. Possible gas segregation is also estimated and device modification is proposed to attain a more accurate calibration. First experimental results obtained from a standard gas bottle show that the quantitative analysis at a few ppm level can be achieved for all isotopes of Kr and Xe, as well as masses 2 and 4 u. (authors)

  15. Associations of Infant Subcutaneous Fat Mass with Total and Abdominal Fat Mass at School-Age: The Generation R Study.

    Science.gov (United States)

    Santos, Susana; Gaillard, Romy; Oliveira, Andreia; Barros, Henrique; Abrahamse-Berkeveld, Marieke; van der Beek, Eline M; Hofman, Albert; Jaddoe, Vincent W V

    2016-09-01

    Skinfold thickness enables the measurement of overall and regional subcutaneous fatness in infancy and may be associated with total and abdominal body fat in later childhood. We examined the associations of subcutaneous fat in infancy with total and abdominal fat at school-age. In a population-based prospective cohort study among 821 children, we calculated total subcutaneous fat (sum of biceps, triceps, suprailiacal, and subscapular skinfold thicknesses) and central-to-total subcutaneous fat ratio (sum of suprailiacal and subscapular skinfold thicknesses/total subcutaneous fat) at 1.5 and 24 months. At 6 years, we measured fat mass index (total fat/height(3) ), central-to-total fat ratio (trunk fat/total fat), and android-to-gynoid fat ratio (android fat/gynoid fat) by dual-energy X-ray absorptiometry and preperitoneal fat mass area by abdominal ultrasound. Central-to-total subcutaneous fat ratio at 1.5 months was positively associated with fat mass index and central-to-total fat ratio at 6 years, whereas both total and central-to-total subcutaneous fat ratio at 24 months were positively associated with all childhood adiposity measures. A 1-standard-deviation scores higher total subcutaneous fat at 24 months was associated with an increased risk of childhood overweight (odds ratio 1.70, 95% confidence interval 1.36, 2.12). These associations were weaker than those for body mass index and stronger among girls than boys. Subcutaneous fat in infancy is positively associated with total and abdominal fat at school-age. Our results also suggest that skinfold thicknesses add little value to estimate later body fat, as compared with body mass index. © 2016 John Wiley & Sons Ltd.

  16. Associations of infant subcutaneous fat mass with total and abdominal fat mass at school-age. The Generation R Study

    Science.gov (United States)

    Santos, Susana; Gaillard, Romy; Oliveira, Andreia; Barros, Henrique; Abrahamse-Berkeveld, Marieke; van der Beek, Eline M; Hofman, Albert; Jaddoe, Vincent WV

    2017-01-01

    Background Skinfold thickness enables the measurement of overall and regional subcutaneous fatness in infancy and may be associated with total and abdominal body fat in later childhood. We examined the associations of subcutaneous fat in infancy with total and abdominal fat at school-age. Methods In a population-based prospective cohort study among 821 children, we calculated total subcutaneous fat (sum of biceps, triceps, suprailiacal and subscapular skinfold thicknesses) and central-to-total subcutaneous fat ratio (sum of suprailiacal and subscapular skinfold thicknesses/total subcutaneous fat) at 1.5 and 24 months. At 6 years, we measured fat mass index (total fat/height3), central-to-total fat ratio (trunk fat/total fat) and android-to-gynoid fat ratio (android fat/gynoid fat) by dual-energy X-ray absorptiometry and preperitoneal fat mass area by abdominal ultrasound. Results Central-to-total subcutaneous fat ratio at 1.5 months was positively associated with fat mass index and central-to-total fat ratio at 6 years, whereas both total and central-to-total subcutaneous fat ratio at 24 months were positively associated with all childhood adiposity measures (pfat at 24 months was associated with an increased risk of childhood overweight (Odds Ratio 1.70 [95% Confidence Interval 1.36, 2.12]). These associations were weaker than those for body mass index and stronger among girls than boys. Conclusions Subcutaneous fat in infancy is positively associated with total and abdominal fat at school-age. Our results also suggest that skinfold thicknesses add little value to estimate later body fat, as compared to body mass index. PMID:27225335

  17. Mass spectrometic isotope dilution analysis of Am and Cm in spent fuels

    International Nuclear Information System (INIS)

    Wantschik, M.; Koch, L.; Commission of the European Communities, Karlsruhe; Ganser, B.

    1983-01-01

    Spent nuclear fuels contain Am and Cm in the 10 ppb to 100 ppm range. Because of this low abundance and the necessity of handling small samples of the highly toxic fuel material only a mass-spectrometric isotope dilution analysis can give sufficiently accurate results. Since suitable spikes and/or standards have been lacking, this method has not been applied. Using known masses (+- 0.1%) of Am-241 and Cm-244 metal, Am-243 and Cm-248 spikes were calibrated to an accuracy of better than 0.2%. The standards were reanalysed by chemical titration and several radiometric techniques. The chemical conditioning is based on ionexchange chromatography with alpha-hydroxyisobutyric acid. A sample size of 10 -7 g is sufficient. For the mass-spectrometric measurement 10 -9 g of the elements are required. The accuracy for the determination of the main isotope is 0.5%. (orig./BRB)

  18. Application of laser ablation inductivly coupled plasma mass spectrometry for characterization of U-7Mo/Al-55i dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Mook; Park, Jai Il; Youn, Young Sang; Ha, Yeong Keong; Kim, Jong Yun [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-04-15

    This technical note demonstrates the feasibility of using laser ablation inductively coupled plasma mass spectrometry for the characterization of U–7Mo/Al–5Si dispersion fuel. Our measurements show 5.0% Relative Standard Deviation (RSD) for the reproducibility of measured {sup 98}Mo/{sup 238}U ratios in fuel particles from spot analysis, and 3.4% RSD for {sup 98}Mo/{sup 238}U ratios in a NIST-SRM 612 glass standard. Line scanning allows for the distinction of U–7Mo fuel particles from the Al–5Si matrix. Each mass spectrum peak indicates the presence of U–7Mo fuel particles, and the time width of each peak corresponds to the size of that fuel particle. The size of the fuel particles is estimated from the time width of the mass spectrum peak for {sup 98}Mo by considering the scan rate used during the line scan. This preliminary application clearly demonstrates that laser ablation inductively coupled plasma mass spectrometry can directly identify isotope ratios and sizes of the fuel particles in U–Mo/Al dispersion fuel. Once optimized further, this instrument will be a powerful tool for investigating irradiated dispersion fuels in terms of fission product distributions in fuel matrices, and the changes in fuel particle size or shape after irradiation.

  19. The Total Mass of the Early-Type Galaxy NGC 4649 (M60

    Directory of Open Access Journals (Sweden)

    Ćirković, M. M.

    2008-12-01

    Full Text Available In this paper the problem of the total mass and the total mass-to-light ratio of the early-type galaxy NGC~4649 (M60 is analyzed. Use is made of two independent techniques: the X-ray methodology which is based on the temperature of the X-ray halo of NGC~4649 and the tracer mass estimator (TME which uses globular clusters (GCs observed in this galaxy. The mass is calculated in Newtonian and MOdified Newtonian Dynamics (MOND approaches and it is found that inside 3 effective radii ($R_e$ there is no need for large amounts of dark matter. Beyond $3R_e$ the dark matter starts to play important dynamical role. The possible reasons for the discrepancy between the estimates of the total mass based on X-rays and TME in the outer regions of NGC~4649 are also discussed.

  20. Development and evaluation of analytical techniques for total chlorine in burner fuels

    International Nuclear Information System (INIS)

    Gaskill, A. Jr.; Estes, E.D.; Hardison, D.L.; Friedman, P.H.

    1987-01-01

    A current EPA regulation prohibits the sale for burning in non-industrial boilers of used oils and oil fuels contaminated above specified levels with certain metals and total chlorine. When burned as fuel in a small boiler, the contaminants may be emitted to the ambient air at hazardous levels. This regulation establishes a rebuttable presumption that used oil containing more than 1,000 ppm total chlorine has been mixed with halogenated solvents and is a hazardous waste. Rebutting the presumption requires the seller of the oil to prove that this chlorine is not due to halogenated solvents or other hazardous halogenated organics. If the rebuttal is successful, the oil can be sold as fuel up to a level of 4000 ppm total chlorine. Analytical techniques for determination of total chlorine were evaluated or developed to provide regulatory agencies and the regulated community with appropriate chlorine test methods. The techniques evaluated included chemical titrations following oxygen bomb combustion, disposable field test kits, instrumental microcoulometry, and x-ray fluorescence spectrometry. These candidate techniques were subjected to interlaboratory testing to estimate their precision, accuracy, sensitivity, and susceptibility to matrix effects. Information on ease of use and analysis costs was also collected. Based on this pilot study, test methods will be written for the most promising techniques and subjected to a formal collaborative study to generate precision and accuracy data for each method. These methods are to be proposed in the Federal Register as mandatory for compliance with the existing used oil regulation

  1. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Science.gov (United States)

    2010-07-01

    ... content of the turbine's combustion fuel? 60.4360 Section 60.4360 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Monitoring § 60.4360 How do I determine the total sulfur content of the turbine's combustion fuel? You must monitor the total sulfur content of the...

  2. Total quality approach at ABB Atom Nuclear Fuel - winner of the Swedish quality award 1994

    International Nuclear Information System (INIS)

    Moorlin, K.; Olsson, S.

    1995-01-01

    ABB Atom Nuclear Fuel Division received the Swedish Quality Award 1994. The company has since many years a reputation for high product quality and a well implemented quality assurance system. Since some years a total quality approach is applied. For ABB Atom, total quality means continuous improvement of all business processes keeping the customer in focus. This paper elaborates on the improvement tools used at the ABB Atom Nuclear Fuel Division and gives some detailed information of the experience. (author) 6 figs

  3. Expected total counts for the Self-Interrogation Neutron Resonance Densitometry measurements of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rossa, Riccardo [Belgian nuclear research centre SCK.CEN (Belgium); Universite Libre de Bruxelles (Belgium); Borella, Alessandro; Van der Meer, Klaas [Belgian nuclear research centre SCK.CEN. Boeretang 200, 2400 Mol (Belgium); Labeau, Pierre-Etienne; Pauly, Nicolas [Universite Libre de Bruxelles. Av. F. D. Roosevelt 50, B1050 Brussels (Belgium)

    2015-07-01

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive neutron technique that aims at a direct quantification of {sup 239}Pu in spent fuel assemblies by measuring the attenuation of the neutron flux in the energy region close to the 0.3 eV resonance of {sup 239}Pu. The {sup 239}Pu mass is estimated by calculating the SINRD signature, that is the ratio between the neutron counts in the fast energy region and around the 0.3 eV resonance region. The SINRD measurement approach in this study consisted in introducing a small neutron detector in the central guide tube of a PWR 17x17 fuel assembly. In order to measure the neutron flux in the energy regions defined in the SINRD signature, different detector types were used. The response of a bare {sup 238}U fission chamber is considered for the determination of the fast neutron flux, while other thermal-epithermal detectors wrapped in neutron absorbers are envisaged to measure the neutron flux around the resonance region. This paper provides an estimation of the total neutron counts that can be achieved with the detector types proposed for the SINRD measurement. In the first section a set of detectors are evaluated in terms of total neutron counts and sensitivity to the {sup 239}Pu content, in order to identify the optimal measurement configuration for each detector type. Then a study is performed to increase the total neutron counts by increasing the detector size. The study shows that the highest total neutron counts are achieved by using either {sup 3}He or {sup 10}B proportional counters because of the high neutron efficiency of these detectors. However, the calculations indicate that the biggest contribution to the measurement uncertainty is due to the measurement of the fast neutron flux. Finally, similar sensitivity to the {sup 239}Pu content is obtained by using the different detector types for the measurement of the neutron flux close to the resonance region. Therefore, the total neutron counts

  4. An integrated approach for determining plutonium mass in spent fuel assemblies with nondestructive assay

    International Nuclear Information System (INIS)

    Swinhoe, Martyn T.; Tobin, Stephen J.; Fensin, Mike L.; Menlove, Howard O.

    2009-01-01

    There are a variety of reasons for quantifying plutonium (Pu) in spent fuel. Below, five motivations are listed: (1) To verify the Pu content of spent fuel without depending on unverified information from the facility, as requested by the IAEA ('independent verification'). New spent fuel measurement techniques have the potential to allow the IAEA to recover continuity of knowledge and to better detect diversion. (2) To assure regulators that all of the nuclear material of interest leaving a nuclear facility actually arrives at another nuclear facility ('shipper/receiver'). Given the large stockpile of nuclear fuel at reactor sites around the world, it is clear that in the coming decades, spent fuel will need to be moved to either reprocessing facilities or storage sites. Safeguarding this transportation is of significant interest. (3) To quantify the Pu in spent fuel that is not considered 'self-protecting.' Fuel is considered self-protecting by some regulatory bodies when the dose that the fuel emits is above a given level. If the fuel is not self-protecting, then the Pu content of the fuel needs to be determined and the Pu mass recorded in the facility's accounting system. This subject area is of particular interest to facilities that have research-reactor spent fuel or old light-water reactor (LWR) fuel. It is also of interest to regulators considering changing the level at which fuel is considered self-protecting. (4) To determine the input accountability value at an electrochemical processing facility. It is not expected that an electrochemical reprocessing facility will have an input accountability tank, as is typical in an aqueous reprocessing facility. As such, one possible means of determining the input accountability value is to measure the Pu content in the spent fuel that arrives at the facility. (5) To fully understand the composition of the fuel in order to efficiently and safely pack spent fuel into a long-term repository. The NDA of spent fuel can

  5. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans

    Science.gov (United States)

    Walker, Ann C.; O'Connor-Semmes, Robin L.; Leonard, Michael S.; Miller, Ram R.; Stimpson, Stephen A.; Turner, Scott M.; Ravussin, Eric; Cefalu, William T.; Hellerstein, Marc K.; Evans, William J.

    2014-01-01

    Current methods for clinical estimation of total body skeletal muscle mass have significant limitations. We tested the hypothesis that creatine (methyl-d3) dilution (D3-creatine) measured by enrichment of urine D3-creatinine reveals total body creatine pool size, providing an accurate estimate of total body skeletal muscle mass. Healthy subjects with different muscle masses [n = 35: 20 men (19–30 yr, 70–84 yr), 15 postmenopausal women (51–62 yr, 70–84 yr)] were housed for 5 days. Optimal tracer dose was explored with single oral doses of 30, 60, or 100 mg D3-creatine given on day 1. Serial plasma samples were collected for D3-creatine pharmacokinetics. All urine was collected through day 5. Creatine and creatinine (deuterated and unlabeled) were measured by liquid chromatography mass spectrometry. Total body creatine pool size and muscle mass were calculated from D3-creatinine enrichment in urine. Muscle mass was also measured by magnetic resonance imaging (MRI), dual-energy x-ray absorptiometry (DXA), and traditional 24-h urine creatinine. D3-creatine was rapidly absorbed and cleared with variable urinary excretion. Isotopic steady-state of D3-creatinine enrichment in the urine was achieved by 30.7 ± 11.2 h. Mean steady-state enrichment in urine provided muscle mass estimates that correlated well with MRI estimates for all subjects (r = 0.868, P creatine dose determined by urine D3-creatinine enrichment provides an estimate of total body muscle mass strongly correlated with estimates from serial MRI with less bias than total lean body mass assessment by DXA. PMID:24764133

  6. Mass spectrometry in nuclear technology - a review of application of thermal ionization mass spectrometry in fuel reprocessing plants. PD-7-1

    International Nuclear Information System (INIS)

    Dakshinamoorthy, A.

    2007-01-01

    Mass spectrometry finds the widespread application in nuclear science and technology due to the fact that it can be employed for isotope composition measurements of different elements of interest and also concentration measurements of these elements using isotope dilution techniques. Thermal ionization mass spectrometer (TIMS), Inductively coupled plasma mass spectrometer (ICP-MS) and gas chromatography mass spectrometer (GC-MS) are the different types of mass spectrometers used in nuclear industry for the analyses of isotope composition of special nuclear material, trace impurities in nuclear fuels and components and characterization of various solvents respectively. Among them, TIMS plays a vital role in the nuclear fuel cycle in determining precisely the isotope composition of uranium, plutonium, D/H ratio in heavy water etc. TIMS is an indispensable analytical tool for nuclear material accounting at the input stage of a reprocessing plant by carrying out precise and accurate concentration measurement of plutonium and uranium by isotope dilution mass spectrometry (IDMS). It is the only accepted measurement technique for the purpose because of its high precision, better sensitivity and no quantitative separation is needed. The isotope abundance measurements of uranium and plutonium at this point are also useful for burn-up studies and isotope correlations. Mass spectrometric analysis of uranium and plutonium is also required for nuclear data measurements and calibrating other chemical methods

  7. Shippingport LWBR (Th/U Oxide) Fuel Characteristics for Disposal Criticality Analysis

    International Nuclear Information System (INIS)

    Taylor, L. L.; Loo, H. H.

    1999-01-01

    Department of Energy (DOE)-owned spent nuclear fuels encompass many fuel types. In an effort to facilitate criticality analysis for these various fuel types, they were categorized into eight characteristic fuel groups with emphasis on fuel matrix composition. Out of each fuel group, a representative fuel type was chosen for analysis as a bounding case within that fuel group. Generally, burnup data, fissile enrichments, and total fuel and fissile mass govern the selection of the representative or candidate fuel within that group. The Shippingport Light Water Breeder Reactor (LWBR) fuels incorporate more of the conventional materials (zirconium cladding/heavy metal oxides) and fabrication details (rods and spacers) that make them comparable to a typical commercial fuel assembly. The LWBR seed/blanket configuration tested a light-water breeder concept with Th-232/U-233 binary fuel matrix. Reactor design used several assembly configurations at different locations within the same core . The seed assemblies contain the greatest fissile mass per (displaced) unit volume, but the blanket assemblies actually contain more fissile mass in a larger volume; the atom-densities are comparable

  8. Total evaporation in thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Callis, E.L.; Cappis, J.H.

    1996-01-01

    Experiments were conducted to assess the effects of impurities on the total evaporation method for mass spectrometric measurement of the isotope ratio of uranium. Standard samples were spiked with Na, Ca, Fe, Zr and Ba. The results indicated that only Fe, and possible Na, displayed any interference, and then only at high concentrations. One problem limiting the accuracy of the method is the determination of the relative efficiency of the collectors in the multicollector system. 3 refs., 1 tab

  9. Allometric relationship between changes of visceral fat and total fat mass

    DEFF Research Database (Denmark)

    Hallgreen, C. E.; Hall, K. D.

    2008-01-01

    Objective: To elucidate the mathematical relationship between changes of visceral adipose tissue (VAT) and total body fat mass (FM) during weight loss. Design: We hypothesized that changes of VAT mass are allometrically related to changes of FM, regardless of the type of weight-loss intervention...

  10. Resin bead-thermal ionization mass spectrometry for determination of plutonium concentration in irradiated fuel dissolver solution

    International Nuclear Information System (INIS)

    Paul, Sumana; Shah, R.V.; Aggarwal, S.K.; Pandey, A.K.

    2015-01-01

    Determination of isotopic composition (IC) and concentration of plutonium (Pu) is necessary at various stages of nuclear fuel cycle which involves analysis of complex matrices like dissolver solution of irradiated fuel, nuclear waste stream etc. Mass spectrometry, e.g. thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICP-MS) are commonly used for determination of IC and concentration of plutonium. However, to circumvent matrix interferences, efficient separation as well as preconcentration of Pu is required prior to mass spectrometric analysis. Purification steps employing ion-exchange resins are widely used for the separation of Pu from dissolver solution or from mixture of other actinides e.g. U, Am. However, an alternative way is to selectively preconcentrate Pu on a resin bead, followed by direct loading of the bead on the filament of thermal ionization mass spectrometer

  11. Characterisation of nuclear fuel samples by quadrupole and multi-collector inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Wernli, Beath; Guenther-Leopold, Ines; Kobler Waldis, Judith; Kopajtic, Zlatan

    2003-01-01

    The characterisation of nuclear fuel cycle materials for trace and minor metallic constituents is of great interest for the nuclear industry and safeguard officials. The main objective of various international programmes dealing with postirradiation examinations is to improve the knowledge of the inventories of actinides, fission and spallation products in spent nuclear fuels. The low detection limits for a large number of elements combined with the ability to analyse the isotopic composition of the elements have established inductively coupled plasma mass spectrometry (ICP-MS) as a powerful multi-element technique in diverse analytical applications for the characterisation of nuclear materials. Because numerous isobaric overlaps restrict the direct determination of many fission products by mass spectrometry, extensive chemical separations are required for these elements. In order to simplify this sample preparation procedure, a high performance liquid chromatography system (HPLC) was online coupled to the mass spectrometer. Since about 10 years a quadrupole based ICP-MS (Q-ICP-MS) combined with an HPLC is used within the Hot Laboratory of the Paul Scherrer Institut for different applications on nuclear fuel samples. Since May 2003 also a new multi-collector ICP-MS (MC-ICP-MS) is used for the mass spectrometric characterisation of nuclear fuel samples, especially for the precise determination of the isotopic vectors of fission products and actinides. Therefore, two complementary analytical systems are now available in the group of 'Isotope and Wet Analytical Chemistry'. A comparison of the analytical performance of both systems (with and without an online coupled HPLC system) for the determination of the isotopic composition and the elemental concentration of different nuclides in nuclear fuel samples, the advantages and limitations of both techniques, the accuracy and precision of the results and typical applications for both methods will be discussed in the

  12. Ceramic waste forms for fuel-containing masses at Chernobyl

    International Nuclear Information System (INIS)

    Oversby, V.M.

    1994-05-01

    The fuel materials originally in the core of the Chernobyl Unit 4 reactor are now present within the Ukrytie in three major forms: (1) very fine particles of fuel dispersed as dust (about 10 tonnes), (2) fragments of the destroyed core, and (3) lavas containing fuel, cladding, and other materials. All of these materials will need to be immobilized into waste forms suitable for final disposal. We propose a ceramic waste form system that could accommodate all three waste types with a single set of processing equipment. The waste form would include the mineral zirconolite for immobilization of actinide materials (including uranium), perovskite, nepheline, spinel, and other phases as dictated by the chemistry of the lava masses. Waste loadings as high as 50% U can be achieved if pyrochlore, a close relative of zirconolite, is used as the U host. The ceramic immobilization could be achieved with low additions of inert chemicals to minimize the final disposal volume while ensuring a durable product. The sequence of processing would be to collect and immobilize the fuel dust first. This material will require minimal preprocessing and will provide experience in the handling of the fuel materials. Core fragments would be processed next, using a cryogenic crushing stage to reduce the size prior to adding ceramic additives. The lavas would be processed last, which is compatible with the likely sequence of availability of materials and with the complexity of the operations. The lavas will require more adjustment of chemical additive composition than the other streams to ensure that the desired phases are produced in the waste form

  13. An initial study on modeling the global thermal and fast reactor fuel cycle mass flow using Vensim

    International Nuclear Information System (INIS)

    Brinton, Samuel

    2008-01-01

    This study concentrated on modeling the construction and decommissioning rates of five major facilities comprising the nuclear fuel cycle: (1) current LWRs with a 60-year service life, (2) new LWRs burning MOX fuel, (3) new LWRs to replace units in the current fleet, (4) new FRs to be added to the fleet, and (5) new spent fuel reprocessing facilities. This is a mass flow mode starting from uranium ore and following it to spent forms. The visual dynamic modeling program Vensim was used to create a system of equations and variables to track the mass flows from enrichment, fabrication, burn-up, and the back-end of the fuel cycle. The scenarios considered provide estimates of the uranium ore requirements, quantities of LLW and HLW production, and the number of reprocessing facilities necessary to reduce recently reported levels of spent fuel inventory. Preliminary results indicate that the entire national spent fuel inventory produced in the next 100 years can be reprocessed with a reprocessing plant built every 11 years (small capacity) or even as low as every 23 years (large capacity). (authors)

  14. Experimental Assessment of the Mass of Ash Residue During the Burning of Droplets of a Composite Liquid Fuel

    Science.gov (United States)

    Glushkov, D. O.; Zakharevich, A. V.; Strizhak, P. A.; Syrodoi, S. V.

    2018-05-01

    An experimental study has been made of the regularities of burning of single droplets of typical compositions of a composite liquid fuel during the heating by an air flow with a varied temperature (600-900 K). As the basic components of the compositions of the composite liquid fuel, use was made of the: waste of processing (filter cakes) of bituminous coals of ranks K, C, and T, waste motor, turbine, and transformer oils, process mixture of mazut and oil, heavy crude, and plasticizer. The weight fraction of a liquid combustible component (petroleum) product) ranged within 0-15%. Consideration has been given to droplets of a composite liquid fuel with dimensions (radius) of 0.5 to 2 mm. Conditions of low-temperature initiation of combustion to ensure a minimum possible mass of solid incombustible residue have been determined. Petroleum products have been singled out whose addition to the composition of the composite liquid fuel tends to increase the ash mass (compared to the corresponding composition without a liquid combustible component). Approximation dependences have been obtained which permit predicting the influence of the concentration of the liquid petroleum product as part of the composite liquid fuel on the ash-residue mass.

  15. Schemes for fuel conservation for PHWRs due for complete fuel discharge

    International Nuclear Information System (INIS)

    Bansal, Ravi; Kumar, Deepak; Tejram

    2009-01-01

    Narora Atomic Power Station (NAPS) consists of twin units of pressurized heavy water reactors (PHWR) using natural uranium as fuel and heavy water as moderator and coolant. On-power bi-directional refueling is employed at NAPS. En Masse Coolant Channel Replacement (EMCCR) necessitates the low burn-up bundles present in core to be utilized. The different schemes of In-core fuel management viz. internal, total internal and external recycling were worked out to utilize these low burn-up bundles. This led to saving of: (a) 2011 natural uranium bundles at NAPS and (b) 4 and half months in NAPS-1 and 3 and half months in case of NAPS-2 in core de-fueling time. (author)

  16. Mass transport aspects of polymer electrolyte fuel cells under two-phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.

    2007-03-15

    This well-illustrated, comprehensive dissertation by Dr. Ing. Denis Kramer takes an in-depth look at polymer electrolyte fuel cells (PEFC) and the possibilities for their application. First of all, the operating principles of polymer electrolyte fuel cells are described and discussed, whereby thermodynamics aspects and loss mechanisms are examined. The mass transport diagnostics made with respect to the function of the cells are discussed. Field flow geometry, gas diffusion layers and, amongst other things, liquid distribution, the influence of flow direction and the low-frequency behaviour of air-fed PEFCs are discussed. Direct methanol fuel cells are examined, as are the materials chosen. The documentation includes comprehensive mathematical and graphical representations of the mechanisms involved.

  17. Application of mass spectrometry to fuels and materials testing at FFTF

    International Nuclear Information System (INIS)

    Plucinski, C.E.; Goheen, M.W.; McCown, J.J.

    1983-01-01

    The Fast Flux Test Facility (FFTF) is a sodium cooled reactor operated for the Department of Energy by Westinghouse Hanford Company. In FFTF the 78 fuel pin assemblies have been tagged with a unique combination of Kr and Xe isotopes. In addition to fuel pin assemblies, other test assemblies can also be similarly tagged as in the Materials Open Test Assembly (MOTA). During power operations leaks are monitored by single channel gamma analyzers in the reactor cover gas system. When radioactive Kr and Xe isotopes are detected a gas tag sample trap (GTST) is used to take a sample of the reactor cover gas, the Kr and Xe are concentration, and isotopic analysis is obtained by mass spectrometry

  18. Activity release from the damaged spent VVER-fuel during long-term wet storage

    International Nuclear Information System (INIS)

    Slonszki, E.; Hozer, Z.; Pinter, T.; Baracska Varju, I.

    2010-01-01

    An ex-core fuel damage incident took place at Unit 2 of Paks Nuclear Power Plant in Hungary on the 10 th April 2003. After this event the damaged fuel assemblies were stored under water for four years. During wet storage a continuous activity release was observed. The evaluation of the measured activity concentration showed that the UO 2 mass released from the fuel into the coolant was ∼ 1.8% of the total fuel mass. Furthermore this paper contains the calculation methods and the calculated activity release of the main analysed isotopes. (orig.)

  19. Experimental investigation of particulate emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with diglyme

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    2010-01-01

    Experiments are conducted on a 4-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the base fuel and diglyme as the oxygenate component to investigate the particulate emissions of the engine under five engine loads at two engine speeds of 1800 rev min -1 and 2400 rev min -1. Blended fuels containing 5%, 10.1%, 15.2%, 20.4%, 25.7% and 53% by volume of diglyme, corresponding to 2%, 4%, 6%, 8%, 10% and 20% by mass of oxygen, are studied. The study shows that with the increase of oxygen in the fuel blends, smoke opacity, particulate mass concentration, NO x concentration and brake specific particulate emission are reduced at the two engine speeds. However, the proportion of soluble organic fraction is increased. For each blended fuel, the total particle number concentration is higher while the geometric mean diameter is smaller, compared with that of ultralow-sulfur diesel, though the particle number decreases with the oxygen content of the blended fuel. Furthermore, the blended fuels also increase the number concentrations of particles smaller than 100 nm.

  20. A Triple Iron Triathlon Leads to a Decrease in Total Body Mass but Not to Dehydration

    Science.gov (United States)

    Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas; Oliver, Senn

    2010-01-01

    A loss in total body mass during an ultraendurance performance is usually attributed to dehydration. We identified the changes in total body mass, fat mass, skeletal muscle mass, and selected markers of hydration status in 31 male nonprofessional ultratriathletes participating in a Triple Iron triathlon involving 11.4 km swimming, 540 km cycling…

  1. Mass fragmentographic analysis of total cholesterol in serum using a heptadeuterated internal standard

    International Nuclear Information System (INIS)

    Wolthers, B.G.; Hindriks, F.R.; Muskiet, F.A.J.; Groen, A.

    1980-01-01

    A mass fragmentographic method for the determination of total cholesterol in serum using heptadeuterated [25,26,26,26,27,27,27- 2 H] cholesterol as internal standard is presented. The results obtained are compared with a colorimetric and gas chromatographic method which were previously proposed as reference methods. Criteria for the development of absolute measurement by means of mass fragmentography and stable isotopically labelled internal standards are given. The conclusion is drawn that, at present, mass fragmentographic methods for the determination of total cholesterol in serum do not fulfil the criteria required for absolute methods. (Auth.)

  2. Nondestructive determination of plutonium mass in spent fuel: preliminary modeling results using the passive neutron Albedo reactivity technique

    International Nuclear Information System (INIS)

    Evans, Louise G.; Tobin, Stephen J.; Schear, Melissa A.; Menlove, Howard O.; Lee, Sang Y.; Swinhoe, Martyn T.

    2009-01-01

    There are a variety of motivations for quantifying plutonium (Pu) in spent fuel assemblies by means of nondestructive assay (NDA) including the following: strengthening the capability of the International Atomic Energy Agency (LAEA) to safeguard nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at pyrochemical processing facilities, providing quantitative input to burnup credit and final safeguards measurements at a long-term repository. In order to determine Pu mass in spent fuel assemblies, thirteen NDA techniques were identified that provide information about the composition of an assembly. A key motivation of the present research is the realization that none of these techniques, in isolation, is capable of both (1) quantifying the Pu mass of an assembly and (2) detecting the diversion of a significant number of rods. It is therefore anticipated that a combination of techniques will be required. A 5 year effort funded by the Next Generation Safeguards Initiative (NGSI) of the U.S. DOE was recently started in pursuit of these goals. The first two years involves researching all thirteen techniques using Monte Carlo modeling while the final three years involves fabricating hardware and measuring spent fuel. Here, we present the work in two main parts: (1) an overview of this NGSI effort describing the motivations and approach being taken; (2) The preliminary results for one of the NDA techniques - Passive Neutron Albedo Reactivity (PNAR). The PNAR technique functions by using the intrinsic neutron emission of the fuel (primarily from the spontaneous fission of curium) to self-interrogate any fissile material present. Two separate measurements of the spent fuel are made, both with and without cadmium (Cd) present. The ratios of the Singles, Doubles and Triples count rates obtained in each case are analyzed; known as the Cd ratio. The primary differences between the two measurements are the neutron energy spectrum

  3. The transuranic mass balance during the introduction of metal fuel FBR cycle

    International Nuclear Information System (INIS)

    Yokoo, Takeshi; Inoue, Tadashi

    1999-01-01

    The mass flow of plutonium and minor actinides is calculated for a future light water reactor-fast breeder reactor (LWR-FBR) transition scenario, in which power generation by LWRs is continued on a certain scale for a long period before the replacement by FBRs begins. The burnup of the LWR spent fuel is considered to be higher than the current standard. It is assumed that all the plutonium and minor actinides recovered from LWRs are used to start up and feed metal fuel commercial FBRs, which replace those LWRs that have reached the end of their life. The results show that the accumulated plutonium and minor actinides from the LWRs can be consistently consumed without further accumulation, by gradually establishing the FBR power generation and its fuel cycle on the same scale. The optimum content of the minor actinides in the standard FBR fuel is about 2 weight percents. This result indicates that if FBRs are introduced in the future, extension of the LWR usage period will cause no significant problems in terms of the consumption of accumulated transuranic elements. (author)

  4. Mass spectrometric study of vaporization of (U,Pu)O2 fuel simulating high burnup

    International Nuclear Information System (INIS)

    Maeda, Atsushi; Ohmichi, Toshihiko; Fukushima, Susumu; Handa, Muneo

    1985-08-01

    The vaporization behavior of (U,Pu)O 2 fuel simulatig high burnup was studied in the temperature range of 1,573 -- 2,173 K by high temperature mass spectrometry. The phases in the simulated fuel were examined by X-ray microprobe analysis. The relationship between chemical form and vaporization behavior of simulated fission product elements was discussed. Pd, Sr, Ba, Ce and actinide-bearing vapor species were observed, and it was clarified that Pd vapor originated from metallic inclusion and Sr and Ce vapors, from mixed oxide fuel matrix. The vaporization behavior of the actinide elements was somewhat similar to that of hypostoichiometric mixed oxide fuel. The behavior of Ba-bearing vapor species changed markedly over about 2,000 K. From the determination of BaO vapor pressures over simulated fuel and BaZrO 3 , it was revealed thermodynamically that the transformation of the chemical form of Ba about 2,000 K, i.e., dissolution of BaZrO 3 phase into fuel matrix, might be the reason of the observed vapor pressure change. (author)

  5. Radionuclide mass inventory, activity, decay heat, and dose rate parametric data for TRIGA spent nuclear fuels

    International Nuclear Information System (INIS)

    Sterbentz, J.W.

    1997-03-01

    Parametric burnup calculations are performed to estimate radionuclide isotopic mass and activity concentrations for four different Training, Research, and Isotope General Atomics (TRIGA) nuclear reactor fuel element types: (1) Aluminum-clad standard, (2) Stainless Steel-clad standard, (3) High-enrichment Fuel Life Improvement Program (FLIP), and (4) Low-enrichment Fuel Life Improvement Program (FLIP-LEU-1). Parametric activity data are tabulated for 145 important radionuclides that can be used to generate gamma-ray emission source terms or provide mass quantity estimates as a function of decay time. Fuel element decay heats and dose rates are also presented parametrically as a function of burnup and decay time. Dose rates are given at the fuel element midplane for contact, 3.0-feet, and 3.0-meter detector locations in air. The data herein are estimates based on specially derived Beginning-of-Life (BOL) neutron cross sections using geometrically-explicit TRIGA reactor core models. The calculated parametric data should represent good estimates relative to actual values, although no experimental data were available for direct comparison and validation. However, because the cross sections were not updated as a function of burnup, the actinide concentrations may deviate from the actual values at the higher burnups

  6. Very fast isotopic and mass balance calculations used for strategic planing of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Marguet, S.D.

    1993-01-01

    Owing to the prevalence in France of nuclear generated electricity, the french utility, EDF focuses much research on fuel cycle strategy. In this context, analysis of scenarios combining problems related to planning and economics, but also reactor physics, necessitate a relatively thorough understanding of fuel response to irradiation. The main purpose of the fuel strategy program codes is to predict mass balance modifications with time for the main actinides involved in the cycle, including the minor actinides associated with the current back end fuel cycle key issues. Considering the large number of calculations performed by a strategy code in an iterative process covering a range of about a hundred years, it was important to develop basic computation modules for both the ''reactor'' and ''fabrication'' items. These had to be high speed routines, but on an accuracy level compatible with the strategy code efficiency. At the end of 1992, the EDF Research and Development Division (EDF/DER) developed a very simple, extremely fast method of calculating transuranian isotope masses. This approach, which resulted in the STRAPONTIN software, considerably increased the scope of the EDF/DER fuel strategy code TIRELIRE without undue impairment of machine time requirements for a scenario. (author). 2 figs., 2 tabs., 3 refs

  7. Activity release from the damaged spent VVER-fuel during long-term wet storage

    Energy Technology Data Exchange (ETDEWEB)

    Slonszki, E.; Hozer, Z. [Hungarian Academy of Sciences, KFKI Atomic Energy Research Inst., Budapest (Hungary); Pinter, T.; Baracska Varju, I. [Nuclear Power Plant Paks, Paks (Hungary)

    2010-07-01

    An ex-core fuel damage incident took place at Unit 2 of Paks Nuclear Power Plant in Hungary on the 10{sup th} April 2003. After this event the damaged fuel assemblies were stored under water for four years. During wet storage a continuous activity release was observed. The evaluation of the measured activity concentration showed that the UO{sub 2} mass released from the fuel into the coolant was {approx} 1.8% of the total fuel mass. Furthermore this paper contains the calculation methods and the calculated activity release of the main analysed isotopes. (orig.)

  8. Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister

    International Nuclear Information System (INIS)

    J.W. Davis

    1999-01-01

    The purpose of this calculation is to estimate volumes, masses, and surface areas associated with (a) an empty Department of Energy (DOE) 18-inch diameter, 15-ft long spent nuclear fuel (SNF) canister, (b) an empty DOE 24-inch diameter, 15-ft long SNF canister, (c) Shippingport Light Water Breeder Reactor (LWBR) SNF, and (d) the internal basket structure for the 18-in. canister that has been designed specifically to accommodate Seed fuel from the Shippingport LWBR. Estimates of volumes, masses, and surface areas are needed as input to structural, thermal, geochemical, nuclear criticality, and radiation shielding calculations to ensure the viability of the proposed disposal configuration

  9. Laboratory characterization of PM emissions from combustion of wildland biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, SeyedEhsan; Urbanski, Shawn; Dixit, P.; Qi, L.; Burling, Ian R.; Yokelson, Robert; Johnson, Timothy J.; Shrivastava, ManishKumar B.; Jung, H.; Weise, David; Miller, J. Wayne; Cocker, David R.

    2013-09-09

    Particle emissions from open burning of southwestern (SW) and southeastern (SE) U.S. 17 fuel types during 77 controlled laboratory burns are presented. The fuels include SW 18 vegetation types: ceanothus, chamise/scrub oak, coastal sage scrub, California sagebrush, 19 manzanita, maritime chaparral, masticated mesquite, oak savanna, and oak woodland as 20 well as SE vegetation types: 1-year, 2-year rough, pocosin, chipped understory, 21 understory hardwood, and pine litter. The SW fuels burned at a higher Modified 22 Combustion Efficiency (MCE) than the SE fuels resulting in lower particulate matter 23 (PM) mass emission factor (EF). Particle size distributions for six fuels and particle 24 number emission or all fuels are reported. Excellent mass closure (slope = 1.00, r2=0.94) 25 between ions, metals, and carbon with total weight was obtained. Organic carbon 26 emission factors inversely correlated (= 0.72) with MCE, while elemental carbon (EC) 27 had little correlation with MCE (=0.10). The EC/total carbon (TC) ratio sharply 28 increased with MCE for MCEs exceeding 0.94. The average levoglucosan and total Poly 29 Aromatic Hydrocarbons (PAH) emissions factors ranged from 25-1272 mg/kg fuel and 30 1790-11300 μg/kg fuel, respectively. No correlation between MCE and emissions of 31 PAHs/levoglucosan was found. Additionally, PAH diagnostic ratios were observed to be 32 poor indicators of biomass burning. Large fuel-type and regional dependency was 33 observed in the emission rates of ammonium, nitrate, fluoride, chloride, sodium, and

  10. Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies

    International Nuclear Information System (INIS)

    Pond, R.B.; Matos, J.E.

    1996-05-01

    As part of the Department of Energy's spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, are not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report

  11. Determination of total uranium by mass spectrometry utilizing the isotopic dilution technique

    International Nuclear Information System (INIS)

    Cretella, R.F.; Noutary, C.J.; Servant, R.E.

    1981-01-01

    The isotopic dilution associated to mass spectrometry is a high-sensitivity technique that allows to work with microquantities of the sample, making it possible to analize the content in highly radioactive solutions with excellent accuracy and minimum risk. The proposed technique is described and its results are discussed through the analysis of: 1) A synthetic sample that simulates dissolved spent fuel elements; 2) Uranium dioxide of nuclear purity and 3) Uranium concentrate. 233 U(ORNL) was employed as a tracer and a Nuclide 12-90-SU mass spectrometer of simple magnetic focus as measurement instrument. The accuracy reached in the analyses is better than 0.5% with a reliability of 95%. The analysis of the errors shows that their main contributing source are the errors in the measurement of the isotopic ratios. (M.E.L.) [es

  12. Fission fragment mass and total kinetic energy distributions of spontaneously fissioning plutonium isotopes

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with A = 236-246. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energy distributions are found in good agreement with the data.

  13. Two-Dimensional Simulation of Mass Transfer in Unitized Regenerative Fuel Cells under Operation Mode Switching

    Directory of Open Access Journals (Sweden)

    Lulu Wang

    2016-01-01

    Full Text Available A two-dimensional, single-phase, isothermal, multicomponent, transient model is built to investigate the transport phenomena in unitized regenerative fuel cells (URFCs under the condition of switching from the fuel cell (FC mode to the water electrolysis (WE mode. The model is coupled with an electrochemical reaction. The proton exchange membrane (PEM is selected as the solid electrolyte of the URFC. The work is motivated by the need to elucidate the complex mass transfer and electrochemical process under operation mode switching in order to improve the performance of PEM URFC. A set of governing equations, including conservation of mass, momentum, species, and charge, are considered. These equations are solved by the finite element method. The simulation results indicate the distributions of hydrogen, oxygen, water mass fraction, and electrolyte potential response to the transient phenomena via saltation under operation mode switching. The hydrogen mass fraction gradients are smaller than the oxygen mass fraction gradients. The average mass fractions of the reactants (oxygen and hydrogen and product (water exhibit evident differences between each layer in the steady state of the FC mode. By contrast, the average mass fractions of the reactant (water and products (oxygen and hydrogen exhibit only slight differences between each layer in the steady state of the WE mode. Under either the FC mode or the WE mode, the duration of the transient state is only approximately 0.2 s.

  14. Evaluation of the U-Pu residual mass from spent fuel assemblies with passive and active neutronic methods

    International Nuclear Information System (INIS)

    Bignan, G.; Martin-Deidier, L.

    1991-01-01

    The interpretation of passive and active neutronic measurements to evaluate the U-Pu residual mass in spent fuel assemblies is presented as follows: passive neutron measurements are well correlated to the plutonium mass, active neutron measurements give information linked to the fissile mass content of the assembly ( 235 U + 239 Pu + 241 Pu) and, using the passive neutron measurement, lead to the 235 U mass content of the assemblies

  15. Three-dimensional two-phase mass transport model for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Yang, W.W.; Zhao, T.S.; Xu, C.

    2007-01-01

    A three-dimensional (3D) steady-state model for liquid feed direct methanol fuel cells (DMFC) is presented in this paper. This 3D mass transport model is formed by integrating five sub-models, including a modified drift-flux model for the anode flow field, a two-phase mass transport model for the porous anode, a single-phase model for the polymer electrolyte membrane, a two-phase mass transport model for the porous cathode, and a homogeneous mist-flow model for the cathode flow field. The two-phase mass transport models take account the effect of non-equilibrium evaporation/ condensation at the gas-liquid interface. A 3D computer code is then developed based on the integrated model. After being validated against the experimental data reported in the literature, the code was used to investigate numerically transport behaviors at the DMFC anode and their effects on cell performance

  16. Fiber Optic Mass Flow Gauge for Liquid Cryogenic Fuel Facilities Monitoring and Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a fiber optic mass flow gauge that will aid in managing liquid hydrogen and oxygen fuel storage and transport. The increasing...

  17. Modeling and experimental validation of water mass balance in a PEM fuel cell stack

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Araya, Samuel Simon; Olesen, Anders Christian

    2016-01-01

    Polymer electrolyte membrane (PEM) fuel cells require good hydration in order to deliver high performance and ensure long life operation. Water is essential for proton conductivity in the membrane which increases by nearly six orders of magnitude from dry to fully hydrated. Adequate water...... management in PEM fuel cell is crucial in order to avoid an imbalance between water production and water removal from the fuel cell. In the present study, a novel mathematical zero-dimensional model has been formulated for the water mass balance and hydration of a polymer electrolyte membrane. This model...... is validated against experimental data. In the results it is shown that the fuel cell water balance calculated by this model shows better fit with experimental data-points compared with model where only steady state operation were considered. We conclude that this discrepancy is due a different rate of water...

  18. Experimental studies on spray and gas entrainment characteristics of biodiesel fuel: Implications of gas entrained and fuel oxygen content on soot formation

    International Nuclear Information System (INIS)

    Kuti, Olawole Abiola; Nishida, Keiya; Zhu, Jingyu

    2013-01-01

    Experiments were performed inside the constant volume vessel to simulate the real diesel engine conditions. The LIF–PIV (Laser Induced Florescence – Particulate Image Velocimetry) technique was used to characterize the spray and gas entrainment characteristics of the fuels while the OH-chemiluminescence and two color pyrometry were applied to obtain information about the combustion processes. Biodiesel from palm oil (BDF (Biodiesel Fuel)) and the JIS #2 diesel fuel were utilized. It was observed that the SMD (Sauter mean diameter) obtained through an empirical equation decreased by increasing the injection pressure from 100 to 300 MPa and reducing the nozzle diameter from 0.16 to 0.08 mm. BDF has higher SMD values compared to diesel thus signifying inferior atomization. By increasing the injection pressure up to 300 MPa and reducing the nozzle diameter to 0.08 mm, the normal velocity and total mass flow rate of the entrained gas by the fuels increased. Due to higher viscosity and density properties, BDF possessed inferior atomization characteristics which made the normal velocity and total mass flow rate of the entrained gas lower compared to diesel. Due to inferior atomization which led to less gas being entrained upstream of the lift-off flame, the fuel oxygen content in BDF played a significant role in soot formation processes. - Highlights: • Spray and gas entrainment characteristics of biodiesel (BDF (Biodiesel Fuel)) and fuel were investigated. • Effect of injector parameters on BDF spray and gas entrainment characteristics was identified. • Higher viscosity and density of BDF yielded inferior spray atomization processes. • Gas entrainment velocity and mass flow rate of gas entrained by BDF lower. • Gas entrained had less effect on BDF's soot formation

  19. Optimizing Ship Speed to Minimize Total Fuel Consumption with Multiple Time Windows

    Directory of Open Access Journals (Sweden)

    Jae-Gon Kim

    2016-01-01

    Full Text Available We study the ship speed optimization problem with the objective of minimizing the total fuel consumption. We consider multiple time windows for each port call as constraints and formulate the problem as a nonlinear mixed integer program. We derive intrinsic properties of the problem and develop an exact algorithm based on the properties. Computational experiments show that the suggested algorithm is very efficient in finding an optimal solution.

  20. The synthesis of carbon nanocomposites as fuel cell catalyst support and the characterization of fuel cell catalysts by spatially resolved scanning mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nan

    2007-07-01

    Ammonia decomposition over Ni/SiO{sub 2} and Ni/MgO was investigated by temperature-programmed desorption (TPD) and temperature-programmed surface reaction (TPSR) in order to produce CO{sub x} free hydrogen fuel for fuel cell application. A highly efficient route for the synthesis of carbon nanocomposites based on electrochemical deposition and iron catalyzed chemical vapor deposition (CVD) was developed in order to obtain a promising substrate for fuel cell catalysts. The duration of electrochemical deposition, temperature and time for the carbon nanotubes (CNTs) growth had been optimized to achieve higher surface area after the growth. Hierarchically structured CNTs composites had been synthesized and electrochemical studies provided evidence for the strong interaction among the substrate and grown CNTs, which are essential for the application in fuel cells. A straightforward strategy was developed to synthesize well dispersed gold nanoparticles with a diameter of 4 to 6 nm on the sidewall of multi-walled carbon nanotubes (MWNTs). A gas flow set-up was developed for the evaluation of fuel cell catalysts by performing scanning mass spectrometry with integrated constant-distance positioning. Methanol oxidation was identified as a suitable test reaction. The diameter of scanning probe was reduced in order to achieve higher spatial resolution. Spatially resolved scanning mass spectrometry was successfully applied to visualize the catalytic activity over Pt-based catalysts and monitor the local activity of a catalysts coated membrane (CCM). The gas-solid phase reaction results were proved to be accurate, reliable and independent of the sample topography. This analytical method opens the way for fast quality control of the catalyst coating with respect to even coating and absence of damages, and for a better understanding of the CCM degradation in polymer membrane electrolyte fuel cells (PEMFCs). (orig.)

  1. EXPERIMENTAL STUDY OF LOCAL HYDRODYNAMICS AND MASS EXCHANGE PROCESSES OF COOLANT IN FUEL ASSEMBLIES OF PRESSURIZED WATER REACTORS

    Directory of Open Access Journals (Sweden)

    S. M. Dmitriev

    2016-01-01

    Full Text Available The results of experimental studies of local hydrodynamics and mass exchange of coolant flow behind spacer and mixing grids of different structural versions that were developed for fuel assemblies of domestic and foreign nuclear reactors are presented in the article. In order to carry out the study the models of the following fuel assemblies have been fabricated: FA for VVER and VBER, FA-KVADRAT for PWR-reactor and FA for KLT-40C reactor. All the models have been fabricated with a full geometrical similarity with full-scale fuel assemblies. The study was carried out by simulating the flow of coolant in a core by air on an aerodynamic test rig. In order to measure local hydrodynamic characteristics of coolant flow five-channel Pitot probes were used that enable to measure the velocity vector in a point by its three components. The tracerpropane method was used for studying mass transfer processes. Flow hydrodynamics was studied by measuring cross-section velocities of coolant flow and coolant rates according to the model cells. The investigation of mass exchange processes consisted of a study of concentration distribution for tracer in experimental model, in determination of attenuation lengths of mass transfer processes behind mixing grids, in calculating of inter-cellar mass exchange coefficient. The database on coolant flow in fuel assemblies for different types of reactors had been accumulated that formed the basis of the engineering substantiation of reactor cores designs. The recommendations on choice of optimal versions of mixing grids have been taken into consideration by implementers of the JSC “OKBM Afrikantov” when creating commissioned fuel assemblies. The results of the study are used for verification of CFD-codes and CFD programs of detailed cell-by-cell calculation of reactor cores in order to decrease conservatism for substantiation of thermal-mechanical reliability.

  2. Hybrid fuel cell/diesel generation total energy system, part 2

    Science.gov (United States)

    Blazek, C. F.

    1982-11-01

    Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.

  3. Cross check of the new economic and mass balance feature of the fuel cycle scenario code TR-EVOL

    International Nuclear Information System (INIS)

    Merino-Rodriguez, I.; Garcia-Martinez, M.; Alvarez-Velarde, F.; Lopez, D.

    2016-01-01

    Versatile computational tools with up to date capabilities are needed to assess current nuclear fuel cycles or the transition from the current status of the fuel cycle to the more advanced and sustainable ones. The TR-EVOL module, that is devoted to fuel cycle mass balance, simulates diverse nuclear power plants (PWR, SFR, ADS, etc.), having possibly different types of fuels (UO_2, MOX, etc.), and the associated fuel cycle facilities (enrichment, fuel fabrication, processing, interim storage, waste storage, geological disposal). This work is intended to cross check the new capabilities of the fuel cycle scenario code TR-EVOL.This process has been divided in 2 stages. The first stage is dedicated to check the improvements in the nuclear fuel mass balance estimation using the available data for the Spanish nuclear fuel cycle. The second stage has been focused in verifying the validity of the TR-EVOL economic module, comparing results to data published by the ARCAS EU project. A specific analysis was required to evaluate the back-end cost. Data published by the waste management responsible institutions was used for the validation of the methodology. Results were highly satisfactory for both stages. In particular, the economic assessment provides a difference smaller than 3% regarding results published by the ARCAS project (NRG estimations). Furthermore, concerning the back-end cost, results are highly acceptable (7% difference for a final disposal in a once-through scenario and around 11% for a final disposal in a reprocessing strategy) given the significant uncertainties involved in design concepts and related unit costs. (authors)

  4. The measurements of critical mass with uranium fuel elements and thorium rods

    International Nuclear Information System (INIS)

    Yao Zhiquan; Chen Zhicheng; Yao Zewu; Ji Huaxiang; Bao Borong; Zhang Jiahua

    1991-01-01

    The critical experiments with uranium elements and Thorium rods have been performed in zero power reactor at Shanghai Institute of Nuclear Research. The critical masses have been measured in various U/Th ratios. The fuels are 3% 235 U-enriched uranium. The Thorium rods are made from power of ThF 4 . Ratios of calculated values to experimental values are nearly constant at 0.995

  5. Total homocysteine is positively correlated with body mass index, waist-to-hip ratio, and fat mass among overweight reproductive women: A cross-sectional study.

    Science.gov (United States)

    Al-Bayyari, Nahla; Hamadneh, Jehan; Hailat, Rae'd; Hamadneh, Shereen

    2017-12-01

    Conflicting associations between total homocysteine (tHcy), body mass index (BMI) lean body mass, and fat mass in the general population have been reported. We investigated the hypothesis that elevated tHcy levels are associated with increased BMI, waist-to-hip ratio (WHR), and body fat mass percent. In Jordan, obesity and overweight are prevalent among reproductive women and hyperhomocysteinemia, along with obesity and overweight, are independent risk factors for cardiovascular diseases. The participants used in this cross-sectional study were 325 overweight Jordanian women aged between 18 and 49 years old. The main outcome measures were tHcy, BMI, WHR, fat mass, fat-free mass, and total body water. Serum tHcy was analyzed using a liquid chromatography tandem mass spectrophotometry (LC-MS/MS) complete kit. The body compositions were measured using a bioelectrical impedance analyzer. Study participants were stratified according to their tHcy level into two groups, ≤10 μmol/L and >10 μmol/L, and the difference between mean values of body compositions was evaluated. The tHcy was significantly and negatively correlated with age, fat-free mass, and total body water, and significantly and positively correlated with BMI, hip circumference, WHR, fat mass, and dry lean weight. The chi-square and the independent sample t-tests showed statistically significant (P ≤ .05) differences between tHcy and BMI, WHR, fat and fat-free mass, and total body water percentages. In conclusion, BMI, WHR and body fat mass were found to be associated with elevated tHcy levels among overweight reproductive women, and they might be used as independent predictors of the tHcy level. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Mass transport aspects of polymer electrolyte fuel cells under two-phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.

    2007-03-27

    This work deals with selected aspects of mass transport phenomena in PEFCs and DMFCs. Emphasis is placed on the implications originating from the occurrence of two-phase flow within these devices. Optimality of supply, distribution, and removal of the fuel, the oxidant, and the reaction products is of utmost importance for the stability, efficiency, and durability of the devices. Being a prerequisite for high current densities while maintaining sufficient voltage, mass transport optimization contributes to the development of cost effective as well as compact designs and hence competitive fuel cells. [German] Die Visualisierung und Quantifizierung von Fluessigwasseransammlungen in Polymerelektrolytmembran-Brennstoffzellen konnte mittels Neutronenradiographie erreicht werden. Dank dieser neuartigen diagnostischen Methode konnte erstmals die Fluessigwasseransammlung in den poroesen Gasdiffusionsschichten direkt nachgewiesen und quantifiziert werden. Die Kombination von Neutronenradiographie mit ortsaufgeloesten Stromdichtemessungen bzw. lokaler Impedanzspektroskopie erlaubte die Korrelation des inhomogenen Fluessigwasseranfalls mit dem lokalen elektrochemischen Leistungsverhalten. Systematische Untersuchungen an Polymerelektrolyt- und Direkt-Methanol-Brennstoffzellen verdeutlichen sowohl den Einfluss von Betriebsbedingungen als auch die Auswirkung von Materialeigenschaften auf die Ausbildung zweiphasiger Stroemungen.

  7. Experimental methods for burn-up determination in nuclear fuels, 1

    International Nuclear Information System (INIS)

    Taddei, J.F. de A.C.; Rodrigues, C.

    1977-01-01

    A method is presented that allows the calculation of the total percentage of atoms having undergone fission ('burn up') in nuclear fuels, from the measurement of absolute amounts of fission product neodymium-148 and of uranium and plutoniun present in the spent fuel, the fission yield of neodymium-148 being known. These measurements are performed through the mass spectrometry- isotope dilution technique [pt

  8. Measurement of particle size distribution and mass concentration of nuclear fuel aerosols

    International Nuclear Information System (INIS)

    Pickering, S.

    1982-01-01

    The particle size distribution and particle mass concentration of a nuclear fuel aerosol is measured by admitting the aerosol into a vertically-extending container, positioning an alpha particle detector within the container so that its window is horizontal and directed vertically, stopping the admission of aerosol into the container, detecting the alpha-activity of the particles of the aerosol sedimenting onto the detector window (for example in a series of equal time intervals until a constant level is reached), and converting the alpha-activity measurements into particle size distribution and/or particle mass concentration measurements. The detector is attached to a pivotted arm and by raising a counterweight can be lowered from the container for cleaning. (author)

  9. Mass spectrometric determination of burnup of thorium-uranium dioxide fuel

    International Nuclear Information System (INIS)

    Green, L.W.; Knight, C.H.; Longhurst, T.H.; Cassidy, R.M.

    1984-01-01

    The isotopes 148 Nd and 145+146 Nd were investigated for use as fission monitors. A two-column anion-exchange procedure was used to separate these and U and Th from the fuel matrix, and the purified fractions were analyzed by thermal ionization mass spectrometry. Relative standard deviations of Nd, U, and Th determinations by isotope dilution were ∼0.7%. A computer-generated simulation of the irradiation was used to estimate the effective fission yields for 148 Nd and 145+146 Nd. Burnup results with 145+146 Nd as the fission monitor showed excellent agreement with results obtained by a high-performance liquid chromatographic method that used 139 La as the fission monitor; the average difference between the two methods was 0.02%. The 148 Nd results were biased high by up to 4%; this was attributed to a 147 Nd neutron capture effect. Results obtained with the initial heavy element content estimated from the weight and initial composition of the fuel, instead of from analyses for the actinides, showed excellent agreement (average difference = 0.2 %) with the conventional method. (author)

  10. Correlation of total body potassium and leukemic cell mass in patients with chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Chandra, P.; Sawitsky, A.; Chanana, A.D.; Chikkappa, G.; Cohn, S.H.; Rai, K.R.; Cronkity, E.P.

    1979-01-01

    Total body leukemic mass in patients with chronic lymphocytic leukemia (CLL) was measured by quantitation of total body potassium (TBK) with a whole-body counter. In addition, the predicted normal total body potassium (Kp) for each patient was calculated from an empirically derived relationship involving height, weight age, and sex. Both the absolute TBK and the relative excess of total body potassium (TBK/Kp) were related to the stage of disease. Patients in the early stages of CLL were found to have lower TBK and TBK/Kp than patients in the late stages of disease. Both of these parameters increased with the successively advanced stages of the disease. The clinically monitored reduction of leukemic cell mass following therapy was accompanied by reductions in TBK and TBK/Kp. Data presented support the notion that TBK/Kp is a useful indicator of the total body leukemic mass. Futhermore, the results of these studies quantitatively validate the proposed clinical staging system for CLL. Quantitation of TBK by a whole-body counter is an accurate and noninvasive procedure and does not require administration of isotopes

  11. Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup

    International Nuclear Information System (INIS)

    Kim, Jung Suk; Jeon, Young Shin; Park, Soon Dal; Ha, Yeong Keong; Song, Kyu Seok

    2015-01-01

    The correlation of the isotopic composition of uranium, plutonium, neodymium, and cesium with the burnup for high burnup pressurized water reactor fuels irradiated in nuclear power reactors has been experimentally investigated. The total burnup was determined by Nd-148 and the fractional 235 U burnup was determined by U and Pu mass spectrometric methods. The isotopic compositions of U, Pu, Nd, and Cs after their separation from the irradiated fuel samples were measured using thermal ionization mass spectrometry. The contents of these elements in the irradiated fuel were determined through an isotope dilution mass spectrometric method using 233 U, 242 Pu, 150 Nd, and 133 Cs as spikes. The activity ratios of Cs isotopes in the fuel samples were determined using gamma-ray spectrometry. The content of each element and its isotopic compositions in the irradiated fuel were expressed by their correlation with the total and fractional burnup, burnup parameters, and the isotopic compositions of different elements. The results obtained from the experimental methods were compared with those calculated using the ORIGEN-S code

  12. In-vivo determination of total body water and lean body mass in subjects by deuterium dilution

    International Nuclear Information System (INIS)

    Blagojevic, N.; Allen, B.J.; Baur, L.; Gaskin, K.

    1988-01-01

    Total body water (TBW) estimation is one of a number of basic techniques required for the determination of body composition in normal and malnourished subjects. When combined with total body nitrogen (TBN) analysis by prompt gamma neutron activation, an accurate compartmental model of in vivo body composition can be formed, providing valuable nutritional and other data. This study examines the role of TBW on its own in evaluating lean body mass. Total body water was studied in six male and five female subjects using deuterium oxide and a Fourier transform infrared spectrometer. The lean body mass calculated from the results was compared with the lean body mass deduced from established total body nitrogen measurements. A four-compartment model was also used to calculate lean body mass. Excellent agreement was shown between lean body mass derived from TBW, the four-compartment model and TBN. Hence, TBW can provide a fast, cost-efficient method for evaluating normal subjects. However, for disease-induced malnutrition, or highly developed athletes, both TBN and TBW measurements are essential to establish an accurate picture of their body composition. TBW measurements alone can monitor the hydration state of patients and as such have a useful diagnostic value

  13. In-vivo determination of total body water and lean body mass in subjects by deuterium dilution

    Energy Technology Data Exchange (ETDEWEB)

    Blagojevic, N; Allen, B J; Baur, L; Gaskin, K

    1988-12-01

    Total body water (TBW) estimation is one of a number of basic techniques required for the determination of body composition in normal and malnourished subjects. When combined with total body nitrogen (TBN) analysis by prompt gamma neutron activation, an accurate compartmental model of in vivo body composition can be formed, providing valuable nutritional and other data. This study examines the role of TBW on its own in evaluating lean body mass. Total body water was studied in six male and five female subjects using deuterium oxide and a Fourier transform infrared spectrometer. The lean body mass calculated from the results was compared with the lean body mass deduced from established total body nitrogen measurements. A four-compartment model was also used to calculate lean body mass. Excellent agreement was shown between lean body mass derived from TBW, the four-compartment model and TBN. Hence, TBW can provide a fast, cost-efficient method for evaluating normal subjects. However, for disease-induced malnutrition, or highly developed athletes, both TBN and TBW measurements are essential to establish an accurate picture of their body composition. TBW measurements alone can monitor the hydration state of patients and as such have a useful diagnostic value.

  14. Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport.

    Science.gov (United States)

    Zalitis, Christopher M; Kramer, Denis; Kucernak, Anthony R

    2013-03-28

    An alternative approach to the rotating disk electrode (RDE) for characterising fuel cell electrocatalysts is presented. The approach combines high mass transport with a flat, uniform, and homogeneous catalyst deposition process, well suited for studying intrinsic catalyst properties at realistic operating conditions of a polymer electrolyte fuel cell (PEFC). Uniform catalyst layers were produced with loadings as low as 0.16 μgPt cm(-2) and thicknesses as low as 200 nm. Such ultra thin catalyst layers are considered advantageous to minimize internal resistances and mass transport limitations. Geometric current densities as high as 5.7 A cm(-2)Geo were experimentally achieved at a loading of 10.15 μgPt cm(-2) for the hydrogen oxidation reaction (HOR) at room temperature, which is three orders of magnitude higher than current densities achievable with the RDE. Modelling of the associated diffusion field suggests that such high performance is enabled by fast lateral diffusion within the electrode. The electrodes operate over a wide potential range with insignificant mass transport losses, allowing the study of the ORR at high overpotentials. Electrodes produced a specific current density of 31 ± 9 mA cm(-2)Spec at a potential of 0.65 V vs. RHE for the oxygen reduction reaction (ORR) and 600 ± 60 mA cm(-2)Spec for the peak potential of the HOR. The mass activity of a commercial 60 wt% Pt/C catalyst towards the ORR was found to exceed a range of literature PEFC mass activities across the entire potential range. The HOR also revealed fine structure in the limiting current range and an asymptotic current decay for potentials above 0.36 V. These characteristics are not visible with techniques limited by mass transport in aqueous media such as the RDE.

  15. Cost Savings of Nuclear Power with Total Fuel Reprocessing

    International Nuclear Information System (INIS)

    Solbrig, Charles W.; Benedict, Robert W.

    2006-01-01

    The cost of fast reactor (FR) generated electricity with pyro-processing is estimated in this article. It compares favorably with other forms of energy and is shown to be less than that produced by light water reactors (LWR's). FR's use all the energy in natural uranium whereas LWR's utilize only 0.7% of it. Because of high radioactivity, pyro-processing is not open to weapon material diversion. This technology is ready now. Nuclear power has the same advantage as coal power in that it is not dependent upon a scarce foreign fuel and has the significant additional advantage of not contributing to global warming or air pollution. A jump start on new nuclear plants could rapidly allow electric furnaces to replace home heating oil furnaces and utilize high capacity batteries for hybrid automobiles: both would reduce US reliance on oil. If these were fast reactors fueled by reprocessed fuel, the spent fuel storage problem could also be solved. Costs are derived from assumptions on the LWR's and FR's five cost components: 1) Capital costs: LWR plants cost $106/MWe. FR's cost 25% more. Forty year amortization is used. 2) The annual O and M costs for both plants are 9% of the Capital Costs. 3) LWR fuel costs about 0.0035 $/kWh. Producing FR fuel from spent fuel by pyro-processing must be done in highly shielded hot cells which is costly. However, the five foot thick concrete walls have the advantage of prohibiting diversion. LWR spent fuel must be used as feedstock for the FR initial core load and first two reloads so this FR fuel costs more than LWR fuel. FR fuel costs much less for subsequent core reloads ( 6 /MWe. The annual cost for a 40 year licensed plant would be 2.5 % of this or less if interest is taken into account. All plants will eventually have to replace those components which become radiation damaged. FR's should be designed to replace parts rather than decommission. The LWR costs are estimated to be 2.65 cents/kWh. FR costs are 2.99 cents/kWh for the first

  16. Maternal obesity influences the relationship between location of neonate fat mass and total fat mass.

    Science.gov (United States)

    Hull, H R; Thornton, J; Paley, C; Navder, K; Gallagher, D

    2015-08-01

    It is suggested that maternal obesity perpetuates offspring obesity to future generations. To determine whether location of neonate fat mass (FM: central vs. peripheral) is related to total neonate FM and whether maternal obesity influences this relationship. Neonate body composition and skin-fold thicknesses were assessed in healthy neonates (n = 371; 1-3 days old). Linear regression models examined the relationship between total FM and location of FM (central vs. peripheral). Location of FM was calculated by skin-folds: peripheral was the sum of (biceps and triceps)/2 and central was represented by the subscapular skin-fold. A significant interaction was found for location of FM and maternal obesity. Holding all predictors constant, in offspring born to non-obese mothers, a 0.5 mm increase in central FM predicted a 15 g greater total FM, whereas a 0.5 mm increase in peripheral FM predicted a 66 g greater total FM. However, in offspring born to obese mothers, a 0.5 mm increase in central FM predicted a 56 g total FM, whereas a 0.5 mm increase in peripheral FM predicted a 14 g greater total FM. The relationship between total FM and location of FM is influenced by maternal obesity. © 2014 The Authors. Pediatric Obesity © 2014 World Obesity.

  17. Total energy analysis of nuclear and fossil fueled power plants

    International Nuclear Information System (INIS)

    Franklin, W.D.; Mutsakis, M.; Ort, R.G.

    1971-01-01

    The overall thermal efficiencies of electrical power generation were determined for Liquid Metal Fast Breeder, High Temperature Gas Cooled, Boiling Water, and Pressurized Water Reactors and for coal-, oil-, and gas-fired systems. All important energy consuming steps from mining through processing, transporting, and reprocessing the fuels were included in the energy balance along with electrical transmission and thermal losses and energy expenditures for pollution abatement. The results of these studies show that the overall fuel cycle efficiency of the light water nuclear fueled reactors is less than the efficiency of modern fossil fuel cycles. However, the nuclear fuel cycle based on the fast breeder reactors should produce power more efficiently than the most modern supercritical fossil fuel cycles. The high temperature gas cooled reactor has a cycle efficiency comparable to the supercritical coal fuel cycle

  18. The buckling of fuel rods in transportation casks under hypothetical accident conditions

    International Nuclear Information System (INIS)

    Bjorkman, G.S.

    2004-01-01

    The buckling analysis of fuel rods during an end drop impact of a spent fuel transportation cask has traditionally been performed to demonstrate the structural integrity of the fuel rod cladding or the integrity of the fuel geometry in criticality evaluations following a cask drop event. The actual calculation of the fuel rod buckling load, however, has been the subject of some controversy, with estimates of the critical buckling load differing by as much as a factor of 5. Typically, in the buckling analysis of a fuel rod, assumptions are made regarding the percentage of fuel mass that is bonded to or participates with the cladding during the buckling process, with estimates ranging from 0 to 100%. The greater the percentage of fuel mass that is assumed to be bonded to the cladding the higher the inertia loads on the cladding, and, therefore, the lower the ''g'' value at which buckling occurs. Current published solutions do not consider displacement compatibility between the fuel and the cladding. By invoking displacement compatibility between the fuel column and the cladding column, this paper presents an exact solution for the buckling of fuel rods under inertia loading. The results show that the critical inertia load magnitude for the buckling of a fuel rod depends on the weight of the cladding and the total weight of the fuel, regardless of the percentage of fuel mass that is assumed to be attached to or participate with the cladding in the buckling process. Therefore, 100% of the fuel always participates in the buckling of a fuel rod under inertia loading

  19. Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis.

    Science.gov (United States)

    Maillard, Florie; Pereira, Bruno; Boisseau, Nathalie

    2018-02-01

    High-intensity interval training (HIIT) is promoted as a time-efficient strategy to improve body composition. The aim of this meta-analysis was to assess the efficacy of HIIT in reducing total, abdominal, and visceral fat mass in normal-weight and overweight/obese adults. Electronic databases were searched to identify all related articles on HIIT and fat mass. Stratified analysis was performed using the nature of HIIT (cycling versus running, target intensity), sex and/or body weight, and the methods of measuring body composition. Heterogeneity was also determined RESULTS: A total of 39 studies involving 617 subjects were included (mean age 38.8 years ± 14.4, 52% females). HIIT significantly reduced total (p = 0.003), abdominal (p = 0.007), and visceral (p = 0.018) fat mass, with no differences between the sexes. A comparison showed that running was more effective than cycling in reducing total and visceral fat mass. High-intensity (above 90% peak heart rate) training was more successful in reducing whole body adiposity, while lower intensities had a greater effect on changes in abdominal and visceral fat mass. Our analysis also indicated that only computed tomography scan or magnetic resonance imaging showed significant abdominal and/or visceral fat-mass loss after HIIT interventions. HIIT is a time-efficient strategy to decrease fat-mass deposits, including those of abdominal and visceral fat mass. There was some evidence of the greater effectiveness of HIIT running versus cycling, but owing to the wide variety of protocols used and the lack of full details about cycling training, further comparisons need to be made. Large, multicenter, prospective studies are required to establish the best HIIT protocols for reducing fat mass according to subject characteristics.

  20. Hydrocarbons and fuels analyses with the supersonic gas chromatography mass spectrometry--the novel concept of isomer abundance analysis.

    Science.gov (United States)

    Fialkov, Alexander B; Gordin, Alexander; Amirav, Aviv

    2008-06-27

    Hydrocarbon analysis with standard GC-MS is confronted by the limited range of volatile compounds amenable for analysis and by the similarity of electron ionization mass spectra for many compounds which show weak or no molecular ions for heavy hydrocarbons. The use of GC-MS with supersonic molecular beams (Supersonic GC-MS) significantly extends the range of heavy hydrocarbons that can be analyzed, and provides trustworthy enhanced molecular ion to all hydrocarbons. In addition, unique isomer mass spectral features are obtained in the ionization of vibrationally cold hydrocarbons. The availability of molecular ions for all hydrocarbons results in the ability to obtain unique chromatographic isomer distribution patterns that can serve as a new method for fuel characterization and identification. Examples of the applicability and use of this novel isomer abundance analysis (IAA) method to diesel fuel, kerosene and oil analyses are shown. It is suggested that in similarity to the "three ions method" for identification purposes, three isomer abundance patterns can serve for fuel characterization. The applications of the Supersonic GC-MS for engine motor oil analysis and transformer oil analysis are also demonstrated and discussed, including the capability to achieve fast 1-2s sampling without separation for oil and fuel fingerprinting. The relatively fast analysis of biodiesel is described, demonstrating the provision of molecular ions to heavy triglycerides. Isomer abundance analysis with the Supersonic GC-MS could find broad range of applications including petrochemicals and fuel analysis, arson analysis, environmental oil/fuel spill analysis, fuel adulteration analysis and motor oil analysis.

  1. Simulated effect of timing and Pt quantity injected on On-line NobleChem application on total fuel liftoff

    International Nuclear Information System (INIS)

    Pop, M.G.; Riddle, J.M.; Lamanna, L.S.; Gregorich, C.; Hoornik, A.

    2015-01-01

    Total liftoff is a measure of fuel performance and a risk indicator for fuel reliability. Fuel operability and license limits are directly related to the expected total lifetime liftoff. AREVA's continued commitment to zero fuel failure is expressed, among other efforts, in the continued development and improvement of its fuel cladding corrosion and crud risk assessment tools. The AREVA models used to assess and predict crud deposition on BWR cores over their lifespan have been refined by the development and incorporation of the PEZOG tool in response to the move in the industry to the On-Line NobleChem TM (OLNC) technology. PEZOG models the platinum-enhanced zirconium oxide growth of fuel cladding when exposed to platinum during operation. Depending on the local chemistry and radiation condition, noble metals act as catalysts for many reactions, including but not limited to hydrogen oxidation and oxygen reduction. OLNC's intention is to catalyze the hydrogen and oxygen recombination reaction for core internals protection. However, research has indicated that noble metals catalyze the oxygen reduction under the chemistry and radiation conditions as experienced in the pores of crud deposits, and hence, can increase the corrosion rate of zirconium alloy cladding. The developed PEZOG module calculates the oxide thickness as a function of platinum injection strategy. The stratified nature of oxide and crud layers formed on fuel cladding surfaces is reflected in the calculations as are the different platinum interaction in each of the layers. This paper presents examples of the evaluation of various aspects of the platinum injection strategies and their influence on the oxide growth enhancement as applied to conditions of a U.S. plant. (authors)

  2. Preliminary design and analysis on nuclear fuel cycle for fission-fusion hybrid spent fuel burner

    International Nuclear Information System (INIS)

    Chen Yan; Wang Minghuang; Jiang Jieqiong

    2012-01-01

    A wet-processing-based fuel cycle and a dry-processing were designed for a fission-fusion hybrid spent fuel burner (FDS-SFB). Mass flow of SFB was preliminarily analyzed. The feasibility analysis of initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing were preliminarily evaluated. The results of mass flow of FDS-SFB demonstrated that the initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing of nuclear fuel cycle of FDS-SFB is preliminarily feasible. (authors)

  3. Aerosols emitted in underground mine air by diesel engine fueled with biodiesel.

    Science.gov (United States)

    Bugarski, Aleksandar D; Cauda, Emanuele G; Janisko, Samuel J; Hummer, Jon A; Patts, Larry D

    2010-02-01

    Using biodiesel in place of petroleum diesel is considered by several underground metal and nonmetal mine operators to be a viable strategy for reducing the exposure of miners to diesel particulate matter. This study was conducted in an underground experimental mine to evaluate the effects of soy methyl ester biodiesel on the concentrations and size distributions of diesel aerosols and nitric oxides in mine air. The objective was to compare the effects of neat and blended biodiesel fuels with those of ultralow sulfur petroleum diesel. The evaluation was performed using a mechanically controlled, naturally aspirated diesel engine equipped with a muffler and a diesel oxidation catalyst. The effects of biodiesel fuels on size distributions and number and total aerosol mass concentrations were found to be strongly dependent on engine operating conditions. When fueled with biodiesel fuels, the engine contributed less to elemental carbon concentrations for all engine operating modes and exhaust configurations. The substantial increases in number concentrations and fraction of organic carbon (OC) in total carbon over the baseline were observed when the engine was fueled with biodiesel fuels and operated at light-load operating conditions. Size distributions for all test conditions were found to be single modal and strongly affected by engine operating conditions, fuel type, and exhaust configuration. The peak and total number concentrations as well as median diameter decreased with an increase in the fraction of biodiesel in the fuels, particularly for high-load operating conditions. The effects of the diesel oxidation catalyst, commonly deployed to counteract the potential increase in OC emissions due to use of biodiesel, were found to vary depending upon fuel formulation and engine operating conditions. The catalyst was relatively effective in reducing aerosol number and mass concentrations, particularly at light-load conditions, but also showed the potential for an

  4. Characterization of spent nuclear fuels by an online combination of chromatographic and mass spectrometric techniques

    International Nuclear Information System (INIS)

    Guenther-Leopold, Ines; Wernli, Beat; Kopajtic, Zlatko

    2003-01-01

    The determination of the burn-up is one of the essential parts in post-irradiation examinations on nuclear fuel samples. In the frame of national and international research programs the analysis of the isotopic vectors of uranium, plutonium, neodymium and some other fission products and actinides was carried out in the Hot lab of the Paul Scherrer Institute in the last years by using high-performance liquid chromatography coupled online with an inductively coupled plasma quadrupole mass spectrometer. In the meantime a multicollector ICP-MS, suitable for high precision isotope ratio measurements, was installed within the Hot lab and has been used now in combination with a chromatographic separation system for the first time for burn-up determinations of nuclear fuel samples. The results of these investigations, a comparison of both methods with the classical technique for burn-up analyses (thermal ionization mass spectrometry), the advantages and limitations of the methods and the accuracy and precision of this type of analyses are presented in the paper. (author)

  5. Advantages and implications of U233 fueled thermionic space power energy conversion

    International Nuclear Information System (INIS)

    Terrell, C.W.

    1992-01-01

    In this paper two recent analyses are reported which demonstrate advantages of a U233 fueled thermionic fuel element (TFE) compared to 93 w/o U235, and that application (mission) has broad latitude in how space power reactor systems could or should be optimized. A reference thermionic reactor system was selected to provide the basis for the fuel comparisons. Both oxide and metal fuel forms were compared. Of special interest was to estimate the efficiencies of the four fuel forms to produce electrical power. A figure of merit (FOM) was defined which is directly proportional to the electrical average electrical power produced is proportional to the electrical power produced per unit uranium mass. In a TFE the average electrical power produced is proportional to the emitter surface area (Esa), hence the ratio Esa/Mu was selected as the FOM. Results indicate that the choice of fuel type and form leads to wide variations in critical and system masses FOM values, and system total power

  6. Using Vertical Structure to Infer the Total Mass Hidden in a Debris Disk

    Science.gov (United States)

    Daley, Cail; Hughes, A. Meredith; Carter, Evan; Flaherty, Kevin; Stafford Lambros, Zachary; Pan, Margaret; Schlichting, Hilke; Chiang, Eugene; Wilner, David; Dent, Bill; Carpenter, John; Andrews, Sean; MacGregor, Meredith Ann; Moor, Attila; Kospal, Agnes

    2018-01-01

    Disks of optically thin debris dust surround ≥ 20% of main sequence stars and mark the final stage of planetary system evolution. The features of debris disks encode dynamical interactions between the dust and any unseen planets embedded in the disk. The vertical distribution of the dust is particularly sensitive to the total mass of planetesimal bodies in the disk, and is therefore well suited for constraining the prevalence of otherwise unobservable Uranus and Neptune analogs. Inferences of mass from debris disk vertical structure have previously been applied to infrared and optical observations of several systems, but the smaller particles traced by short-wavelength observations are ‘puffed up’ by radiation pressure, yielding only upper limits on the total embedded mass. The large grains that dominate the emission at millimeter wavelengths are essentially impervious to the effects of stellar radiation, and therefore trace the underlying mass distribution more directly. Here we present 1.3mm dust continuum observations of the debris disk around the nearby M star AU Mic with the Atacama Large Millimeter/submillimeter Array (ALMA). The 3 au spatial resolution of the observations, combined with the favorable edge-on geometry of the system, allows us to measure the vertical structure of a debris disk at millimeter wavelengths for the first time. We analyze the data using a ray-tracing code that translates a 2-D density and temperature structure into a model sky image of the disk. This model image is then compared directly to the interferometric data in the visibility domain, and the model parameters are explored using a Markov Chain Monte Carlo routine. We measure a scale height-to-radius ratio of 0.03, which we then compare to a theoretical model of steady-state, size-dependent velocity distributions in the collisional cascade to infer a total mass within the disk of ∼ 1.7 Earth masses. These measurements rule out the presence of a gas giant or Neptune

  7. Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.

    Science.gov (United States)

    Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J

    1996-06-01

    For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.

  8. Heat and Mass Transfer during Hydrogen Generation in an Array of Fuel Bars of a BWR Using a Periodic Unit Cell

    Directory of Open Access Journals (Sweden)

    H. Romero-Paredes

    2012-01-01

    Full Text Available This paper presents, the numerical analysis of heat and mass transfer during hydrogen generation in an array of fuel cylinder bars, each coated with a cladding and a steam current flowing outside the cylinders. The analysis considers the fuel element without mitigation effects. The system consists of a representative periodic unit cell where the initial and boundary-value problems for heat and mass transfer were solved. In this unit cell, we considered that a fuel element is coated by a cladding with steam surrounding it as a coolant. The numerical simulations allow describing the evolution of the temperature and concentration profiles inside the nuclear reactor and could be used as a basis for hybrid upscaling simulations.

  9. Evaluation of the effect of reactant gases mass flow rates on power density in a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kahveci, E. E.; Taymaz, I.

    2018-03-01

    In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.

  10. Mass spectrometric determination of burnup of thorium-uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Green, L.W.; Knight, C.H.; Longhurst, T.H.; Cassidy, R.M

    1984-07-01

    The isotopes {sup 148}Nd and {sup 145+146}Nd were investigated for use as fission monitors. A two-column anion-exchange procedure was used to separate these and U and Th from the fuel matrix, and the purified fractions were analyzed by thermal ionization mass spectrometry. Relative standard deviations of Nd, U, and Th determinations by isotope dilution were {approx}0.7%. A computer-generated simulation of the irradiation was used to estimate the effective fission yields for {sup 148}Nd and {sup 145+146}Nd. Burnup results with {sup 145+146}Nd as the fission monitor showed excellent agreement with results obtained by a high-performance liquid chromatographic method that used {sup 139}La as the fission monitor; the average difference between the two methods was 0.02%. The {sup 148}Nd results were biased high by up to 4%; this was attributed to a {sup 147}Nd neutron capture effect. Results obtained with the initial heavy element content estimated from the weight and initial composition of the fuel, instead of from analyses for the actinides, showed excellent agreement (average difference = 0.2 %) with the conventional method. (author)

  11. Chemical effect on total mass attenuation coefficients of V, Cr, Mn, Co and Ni

    International Nuclear Information System (INIS)

    Soeguet, Oe.; Colak, S.; Bueyuekkasap, E.; Kuecuekoender, A.

    2002-01-01

    Detailed interpretation of data obtained from X-ray transmission measurements usually depends on the assumption that the contribution of each element is additive. This assumption yields the mixture rule for X-ray attenuation coefficients which is valid if molecular and chemical effects are negligible. Total mass attenuation coefficients of V, Cr, Mn, Co and Ni in various their compounds was measured. Absorption corrections were carried on data for ligands in the compounds. It was found that V, Cr, Mn, Co and Ni had different total mass attenuation coefficients in the different compounds. Results were compared with theoretical values of HUBBELL and SELTZER. (author)

  12. C60 fullerenes from combustion of common fuels

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Andrea J., E-mail: ajtiwari@vt.edu [Department of Civil & Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, VA 24061 (United States); Ashraf-Khorassani, Mehdi, E-mail: mashraf@vt.edu [Department of Chemistry, Virginia Tech, 480 Davidson Hall, 900 West Campus Drive, Virginia Tech, Blacksburg, VA 24061 (United States); Marr, Linsey C., E-mail: lmarr@vt.edu [Department of Civil & Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, VA 24061 (United States)

    2016-03-15

    Releases of C{sub 60} fullerenes to the environment will increase with the growth of nanotechnology. Assessing the potential risks of manufactured C{sub 60} requires an understanding of how its prevalence in the environment compares to that of natural and incidental C{sub 60}. This work describes the characterization of incidental C{sub 60} present in aerosols generated by combustion of five common fuels: coal, firewood, diesel, gasoline, and propane. C{sub 60} was found in exhaust generated by all five fuels; the highest concentrations in terms of mass of C{sub 60} per mass of particulate matter were associated with diesel and coal. Individual aerosols from these combustion processes were examined by transmission electron microscopy. No relationship was found between C{sub 60} content and either the separation of graphitic layers (lamellae) within the particles, nor the curvature of those lamellae. Estimated global emissions of incidental C{sub 60} to the atmosphere from coal and diesel combustion range from 1.6 to 6.3 t yr{sup −1}, depending upon combustion conditions. These emissions may be similar in magnitude to the total amount of manufactured C{sub 60} produced on an annual basis. Consequent loading of incidental C{sub 60} to the environment may be several orders of magnitude higher than has previously been modeled for manufactured C{sub 60}. - Highlights: • Exhaust of common fuels (coal, diesel, etc.) analyzed via chromatography for C{sub 60.} • All five fuels tested produced C{sub 60} in aerosols in mass fractions up to several ppm. • Emissions of incidental C{sub 60} may be comparable to the total amount manufactured.

  13. Total cholesterol in serum determined by isotope dilution/mass spectrometry, with liquid-chromatographic separation

    International Nuclear Information System (INIS)

    Takatsu, Akiko; Nishi, Sueo

    1988-01-01

    We describe an accurate, precise method for determination of total serum cholesterol by isotope dilution/mass spectrometry (IDMS) with liquid chromatographic separation. After adding [3,4- 13 C] cholesterol to serum and hydrolyzing the cholesterol esters, we extract the total cholesterol. High-performance liquid chromatography (HPLC) is used to separate the extracted cholesterol for measurement by electron-impact mass spectrometry with use of a direct-insertion device. To evaluate the specificity and the accuracy of this method, we also studied the conventional IDMS method, which involves converting cholesterol to the trimethylsilyl ether and assay by gas chromatography-mass spectrometry with use of a capillary column. The coefficient of variation for the HPLC method was a little larger than for the conventional method, but mean values by each method agreed within 1% for all sera tested. (author)

  14. Nuclear-fuel-cycle costs. Consolidated Fuel-Reprocessing Program

    International Nuclear Information System (INIS)

    Burch, W.D.; Haire, M.J.; Rainey, R.H.

    1981-01-01

    The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel-cycle costs are given for the pressurized-water reactor once-through and fuel-recycle systems, and for the liquid-metal fast-breeder-reactor system. These calculations show that fuel-cycle costs are a small part of the total power costs. For breeder reactors, fuel-cycle costs are about half that of the present once-through system. The total power cost of the breeder-reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment

  15. Development and evaluation of analytical techniques for total chlorine in used oils and oil fuels

    International Nuclear Information System (INIS)

    Gaskill, A. Jr.; Estes, E.D.; Hardison, D.L.; Friedman, P.H.

    1990-01-01

    A current EPA regulation prohibits the sale for burning in nonindustrial boilers of used oils and oil fuels. This paper discusses how analytical techniques for determining total chlorine were evaluated to provide regulatory agencies and the regulated community with appropriate chlorine test methods. The techniques evaluated included oxygen bomb combustion followed by chemical titration or ion chromatography, instrumental microcoulometry, field test kits, and instrumental furnace/specific ion electrode determinator, a device based on the Beilstein reaction, and x-ray fluorescence spectrometry. These techniques were subjected to interlaboratory testing to estimate their precision, accuracy, and sensitivity. Virgin and used crankcase oils, hydraulic and metalworking oils, oil fuels and oil fuel blends with used oils were tested. The bomb techniques, one of the test kits, microcoulometry and all but one x-ray analyzer were found to be suitable for this application. The chlorine furnace and the Beilstein device were found to be inapplicable at the levels of interest

  16. Total and Lower Extremity Lean Mass Percentage Positively Correlates With Jump Performance.

    Science.gov (United States)

    Stephenson, Mitchell L; Smith, Derek T; Heinbaugh, Erika M; Moynes, Rebecca C; Rockey, Shawn S; Thomas, Joi J; Dai, Boyi

    2015-08-01

    Strength and power have been identified as valuable components in both athletic performance and daily function. A major component of strength and power is the muscle mass, which can be assessed with dual-energy x-ray absorptiometry (DXA). The primary purpose of this study was to quantify the relationship between total body lean mass percentage (TBLM%) and lower extremity lean mass percentage (LELM%) and lower extremity force/power production during a countermovement jump (CMJ) in a general population. Researchers performed a DXA analysis on 40 younger participants aged 18-35 years, 28 middle-aged participants aged 36-55 years, and 34 older participants aged 56-75 years. Participants performed 3 CMJ on force platforms. Correlations revealed significant and strong relationships between TBLM% and LELM% compared with CMJ normalized peak vertical ground reaction force (p lean mass percentages. The findings have implications in including DXA-assessed lean mass percentage as a component for evaluating lower extremity strength and power. A paired DXA analysis and CMJ jump test may be useful for identifying neuromuscular deficits that limit performance.

  17. Performance of the Fuel Conditioning Facility electronic in-cell mass balances

    International Nuclear Information System (INIS)

    Orechwa, Y.; Bucher, R.G.

    1996-01-01

    An approach to error estimation and measurement control in the analysis of the balance measurements of mass standards on the in-cell electronic mass balances of the Fuel Conditioning Facility is presented. In light of measurement data from one year of operation, the algorithms proposed are evaluated. The need to take into account the effects of facility operations on the estimates of measurement uncertainty is demonstrated. In the case of a newly installed balance, where no historical data exists, an ad hoc procedure of adding a term which takes into account the operational variability is proposed. This procedure allows a sufficiently long operation so as to collect data for the estimate of the contribution of operational effects to the uncertainty estimate. An algorithm for systematically taking into account historical data is developed and demonstrated for two balances over two calibration periods. The algorithm, both asymptotically and in the two samples cases, has the necessary desirable properties for estimating the uncertainty in the measurements of the balances

  18. Massachusetts Fuel Cell Bus Project: Demonstrating a Total Transit Solution for Fuel Cell Electric Buses in Boston

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-22

    The Federal Transit Administration's National Fuel Cell Bus Program focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solution for fuel cell electric buses that includes one bus and an on-site hydrogen generation station for the Massachusetts Bay Transportation Authority (MBTA). A team consisting of ElDorado National, BAE Systems, and Ballard Power Systems built the fuel cell electric bus, and Nuvera is providing its PowerTap on-site hydrogen generator to provide fuel for the bus.

  19. Effect of nonuniform fuel distribution

    International Nuclear Information System (INIS)

    Katakura, Jun-ichi

    1987-01-01

    In order to ensure the subcriticality of nuclear fuel, the method of controlling the mass, form or dimensions below the limit values and the method of confirming subcriticality by calculation are taken, but at this time, it is often assumed that the concentration of fuel is constant in a fuel region, or fuel rods are arranged at constant intervals. However, in the extraction process in fuel reprocessing or in fuel storage vessels, the concentration distribution may arise in fuel regions even though temporarily. Even if subcriticality is expected in a uniform system, when concentration distribution arises, and an uneven system results in, criticality may occur. Therefore, it is important to grasp the effect of uneven fuel distribution for ensuring the safety against criticality. In this paper, the effect of uneven fuel distribution is discussed, centering around the critical mass. The examples in literatures and the examples of calculation of uneven fuel distribution are shown. As the result of calculation in Japan Atomic Energy Research Institute, in a high enrichment U-235-water system, the critical mass decreased by about 7 % due to uneven distribution, which nearly agreed with the result of Clark of about 6 %. As for a low enrichment system, the conspicuous decrease of the critical mass was not observed. (Kako, I.)

  20. Final Report: Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications (2012-2016)

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel Allen [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-01

    This report summarizes project activities for Strategic Analysis, Inc. (SA) Contract Number DE-EE0005236 to the U.S. Department of Energy titled “Transportation Fuel Cell System Cost Assessment”. The project defined and projected the mass production costs of direct hydrogen Proton Exchange Membrane fuel cell power systems for light-duty vehicles (automobiles) and 40-foot transit buses. In each year of the five-year contract, the fuel cell power system designs and cost projections were updated to reflect technology advances. System schematics, design assumptions, manufacturing assumptions, and cost results are presented.

  1. Combustion of large solid fuels in cement rotary kilns

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma

    (MBM), waste wood, sewage sludge, paper and plastics. The alternative fuel share of the total energy varies significantly from region to region, but the general trend is towards increased alternative fuel utilization. Solid alternative fuels typically have physical and chemical properties that differ...... from traditional solid fossil fuels. This creates a need for new combustion equipment or modification of existing kiln systems, because alternative fuels may influence process stability and product quality. Process stability is mainly influenced by exposing the raw material bed in the rotary kiln...... oxidation is a slow process which may greatly reduce the amounts of solid fuels to be utilized in the material inlet end of rotary kilns due to the limited residence time. Several parameters control the rate of char oxidation: a) bulk oxygen concentration, b) mass transfer rate of oxygen to char particles...

  2. Synchrotron photoionization mass spectrometry study of intermediates in fuel-rich 1,2-dimethoxyethane flame

    International Nuclear Information System (INIS)

    Lin, Z. K.; Han, D. L.; Li, S. F.; Li, Y. Y.; Yuan, T.

    2009-01-01

    Intermediates in a fuel-rich premixed laminar 1,2-dimethoxyethane (DME) flame are studied by molecular beam mass spectrometry combined with tunable synchrotron vacuum ultraviolet photoionization. About 30 intermediate species are identified in the present work, and their mole fraction profiles are evaluated. The experimental results show that the formations of intermediates, both hydrocarbons and oxygenated hydrocarbons, are closely linked to the structure of fuel, which is consistent with the previous reports. Species produced from H atom abstraction and beta scission of DME usually have much higher concentrations than others. The oxygen atoms in DME are considered to act as partitions of the primary intermediates; therefore farther reactions among these primary intermediates are difficult to occur, resulting in absence of most large intermediate species.

  3. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    Science.gov (United States)

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  4. Postirradiation examination of HTR fuel

    International Nuclear Information System (INIS)

    Nabielek, H.; Reitsamer, G.; Kania, M.J.

    1986-01-01

    Fuel for the High Temperature Reactor (HTR) consists of 1 mm diameter coated particles uniformly distributed in a graphite matrix within a cold-molded 60 mm diameter spherical fuel element. Fuel performance demonstrations under simulated normal operation conditions are conducted in accelerated neutron environments available in Material Test Reactors and in real-time environments such as the Arbeitsgemeinschaft Versuchsreaktor (AVR) Juelich. Postirradiation examinations are then used to assess fuel element behavior and the detailed performance of the coated particles. The emphasis in postirradiation examination and accident testing is on assessment of the capability for fuel elements and individual coated particles to retain fission products and actinide fuel materials. To accomplish this task, techniques have been developed which measures fission product and fuel material distributions within or exterior to the particle: Hot Gas Chlorination - provides an accurate method to measure total fuel material concentration outside intact particles; Profile Electrolytic Deconsolidation - permits determination of fission product distribution along fuel element diameter and retrieval of fuel particles from positions within element; Gamma Spectrometry - provides nondestructive method to measure defect particle fractions based on retention of volatile metallic fission products; Particle Cracking - permits a measure of the partitioning of fission products between fuel kernel and particle coatings, and the derivation of diffusion parameters in fuel materials; Micro Gas Analysis - provides gaseous fission product and reactive gas inventory within free volume of single particles; and Mass-spectrometric Burnup Determination - utilizes isotope dilution for the measurement of heavy metal isotope abundances

  5. Helium Mass Spectrometer Leak Detection: A Method to Quantify Total Measurement Uncertainty

    Science.gov (United States)

    Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    In applications where leak rates of components or systems are evaluated against a leak rate requirement, the uncertainty of the measured leak rate must be included in the reported result. However, in the helium mass spectrometer leak detection method, the sensitivity, or resolution, of the instrument is often the only component of the total measurement uncertainty noted when reporting results. To address this shortfall, a measurement uncertainty analysis method was developed that includes the leak detector unit's resolution, repeatability, hysteresis, and drift, along with the uncertainty associated with the calibration standard. In a step-wise process, the method identifies the bias and precision components of the calibration standard, the measurement correction factor (K-factor), and the leak detector unit. Together these individual contributions to error are combined and the total measurement uncertainty is determined using the root-sum-square method. It was found that the precision component contributes more to the total uncertainty than the bias component, but the bias component is not insignificant. For helium mass spectrometer leak rate tests where unit sensitivity alone is not enough, a thorough evaluation of the measurement uncertainty such as the one presented herein should be performed and reported along with the leak rate value.

  6. A multi-fluid model to simulate heat and mass transfer in a PEM fuel cell

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen

    2011-01-01

    This article summarizes a multi-phase model of a polymer electrolyte membrane fuel cell based on the formerly commercial CFD code CFX-4. It is three-dimensional in nature and includes multiphase heat and mass transfer in porous media. An overview is given and some numerical issues are discussed...... heat and mass transfer properties are superior. Another important aspect of this study is the wetting status of the electrolyte menbrane and the effective drag of water through the menbrane, which indicates what fraction of the product water created at the cathode side diffuses through the membrane...

  7. High-240Pu fuel worth in the Fast Test Reactor Engineering Mockup

    International Nuclear Information System (INIS)

    Daughtry, J.W.; Dobbin, K.D.

    1975-01-01

    Reactivity effects associated with the replacement of low- 240 Pu fuel with high- 240 Pu fuel were calculated and compared to measurements made in the FTR Engineering Mockup Critical (EMC). When the Pu and U isotopic compositions were changed in a way that increased the amounts of 240 Pu and 241 Pu and reduced the amounts of 239 Pu and 238 U while conserving total fissile mass and total fertile mass, the reactivity effect was positive. Calculation-to-experiment bias factors were obtained for this type of change and for the replacement of Fe 2 O 3 with U 3 O 8 in subassembly-size zones of the EMC. The k/sub e/--k/sub c/ bias decreased when high- 240 Pu fuel was introduced and increased when Fe 2 O 3 was replaced with U 3 O 8 . When the two changes were combined, their effects on the k/sub e/ --k/sub c/ bias tended to cancel out. The work described is related to plans for the utilization of light water reactor discharge Pu in the FTR

  8. Increase of Total Body Water with Decrease of Body Mass while Running 100 km Nonstop--Formation of Edema?

    Science.gov (United States)

    Knechtle, Beat; Wirth, Andrea; Knechtle, Patrizia; Rosemann, Thomas

    2009-01-01

    We investigated whether ultraendurance runners in a 100-km run suffer a decrease of body mass and whether this loss consists of fat mass, skeletal muscle mass, or total body water. Male ultrarunners were measured pre- and postrace to determine body mass, fat mass, and skeletal muscle mass by using the anthropometric method. In addition,…

  9. Total reflection x-ray fluorescence (TXRF) - a tool to obtain information about different air masses and air pollution

    International Nuclear Information System (INIS)

    Schmeling, M.

    2000-01-01

    Aerosols are solid particles dissolved in the atmosphere and have strong influence in the earth climate. Their solid surfaces are the only atmospheric medium for condensation of water leading to cloud formation and ultimately to precipitation. Besides their role in cloud formation, the elemental composition of aerosols reveals useful information about air masses and their transport patterns as well as air pollution. The elemental composition can be considered like a fingerprint of an air mass telling the story about its origin and fate. The presence of Al, Ti and Fe for instance indicates a source located in a highly exposed soil or often desert region, whereas Ni, V and Pb can be traced back to anthropogenic activities like fuel combustion or industrial processes. Other important source regions are the oceans, which emit the main aerosol constituents Na, Cl, and S. The concentrations of these elements in the atmosphere are extremely low and long sampling times are necessary to gain reliable results with most of the common analysis techniques. In contrast to this total reflection x-ray fluorescence (TXRF), as a technique capable to cope with tiny sample amounts, offers the unique possibility to reduce collection times to a minimum of minutes to hours. Such short sampling times in turn render it possible to monitor different air masses either passing through a ground based station or -in the ideal case- flown into by a small research aircraft. Different aerosol samples were taken by aircraft during the second aerosol characterization experiment (ACE-2) with sampling times ranging from 15 minutes up to one hour. These filter samples were analyzed by TXRF for trace elements subsequently. Together with background information about back trajectories and size distribution covering the time of sampling the presence of different air masses could be detected. In another project, short-term samples in the Chicago/Lake Michigan area are collected to study the air mass

  10. Original Experimental Approach for Assessing Transport Fuel Stability.

    Science.gov (United States)

    Bacha, Kenza; Ben Amara, Arij; Alves Fortunato, Maira; Wund, Perrine; Veyrat, Benjamin; Hayrault, Pascal; Vannier, Axel; Nardin, Michel; Starck, Laurie

    2016-10-21

    The study of fuel oxidation stability is an important issue for the development of future fuels. Diesel and kerosene fuel systems have undergone several technological changes to fulfill environmental and economic requirements. These developments have resulted in increasingly severe operating conditions whose suitability for conventional and alternative fuels needs to be addressed. For example, fatty acid methyl esters (FAMEs) introduced as biodiesel are more prone to oxidation and may lead to deposit formation. Although several methods exist to evaluate fuel stability (induction period, peroxides, acids, and insolubles), no technique allows one to monitor the real-time oxidation mechanism and to measure the formation of oxidation intermediates that may lead to deposit formation. In this article, we developed an advanced oxidation procedure (AOP) based on two existing reactors. This procedure allows the simulation of different oxidation conditions and the monitoring of the oxidation progress by the means of macroscopic parameters, such as total acid number (TAN) and advanced analytical methods like gas chromatography coupled to mass spectrometry (GC-MS) and Fourier Transform Infrared - Attenuated Total Reflection (FTIR-ATR). We successfully applied AOP to gain an in-depth understanding of the oxidation kinetics of a model molecule (methyl oleate) and commercial diesel and biodiesel fuels. These developments represent a key strategy for fuel quality monitoring during logistics and on-board utilization.

  11. Initial concepts on energetics and mass releases during nonnuclear explosive events in fuel cycle facilities

    International Nuclear Information System (INIS)

    Halverson, M.A.; Mishima, J.

    1986-09-01

    Non-nuclear explosions are one of the initiating events (accidents) considered in the US Nuclear Regulatory Commission study of formal methods for estimating the airborne release of radionuclides from fuel cycle facilities. Methods currently available to estimate the energetics and mass airborne release from the four types of non-nuclear explosive events (fast and slow physical explosions and fast and slow chemical explosions) are reviewed. The likelihood that fast physical explosions will occur in fuel cycle facilities appears to be remote and this type of explosion is not considered. Methods to estimate the consequences of slow physical and fast chemical explosions are available. Methods to estimate the consequences of slow chemical explosions are less well defined

  12. Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, Bernhard A; Quiter, Brian J.; Ambers, Scott D.

    2011-01-14

    The Next Generation Safeguard Initiative (NGSI) of the U.S Department of Energy is supporting a multi-lab/university collaboration to quantify the plutonium (Pu) mass in spent nuclear fuel (SNF) assemblies and to detect the diversion of pins with non-destructive assay (NDA) methods. The following 14 NDA techniques are being studied: Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Lead Slowing Down Spectrometer, Neutron Multiplicity, Passive Neutron Albedo Reactivity, Total Neutron (Gross Neutron), X-Ray Fluorescence, {sup 252}Cf Interrogation with Prompt Neutron Detection, Delayed Gamma, Nuclear Resonance Fluorescence, Passive Prompt Gamma, Self-integration Neutron Resonance Densitometry, and Neutron Resonance Transmission Analysis. Understanding and maturity of the techniques vary greatly, ranging from decades old, well-understood methods to new approaches. Nuclear Resonance Fluorescence (NRF) is a technique that had not previously been studied for SNF assay or similar applications. Since NRF generates isotope-specific signals, the promise and appeal of the technique lies in its potential to directly measure the amount of a specific isotope in an SNF assay target. The objectives of this study were to design and model suitable NRF measurement methods, to quantify capabilities and corresponding instrumentation requirements, and to evaluate prospects and the potential of NRF for SNF assay. The main challenge of the technique is to achieve the sensitivity and precision, i.e., to accumulate sufficient counting statistics, required for quantifying the mass of Pu isotopes in SNF assemblies. Systematic errors, considered a lesser problem for a direct measurement and only briefly discussed in this report, need to be evaluated for specific instrument designs in the future. Also, since the technical capability of using NRF to measure Pu in SNF has not been established, this report does not directly address issues such as cost, size

  13. Volatile behaviour of enrichment uranium in the total nuclear fuel price

    International Nuclear Information System (INIS)

    Arnaiz, J.; Inchausti, J. M.; Tarin, F.

    2004-01-01

    In this article the historical high volatile behaviour of the total nuclear fuel price is evaluated quantitatively and it is concluded that it has been due mainly to the fluctuations of the price of the principal components of enriched uranium (concentrates and enrichment). In order to avoid the negative effects of this volatiles behaviour as far as possible, a basic strategy in the uranium procurement activities is recommended (union of buyers, diversification of supplier, stock management, optimisation of contract portfolio and suitable currency management that guarantees a reliable uranium supply at reasonable prices. These guidelines are those that ENUSA has been following on behalf of the Spanish Utilities in the Commission of Uranium Procurement (CAU in Spanish). (Author) 11 refs

  14. Characterization of coal-derived liquids and other fossil-fuel-related materials employing mass spectrometry. Final report, September 30, 1976-September 29, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Scheppele, S E

    1982-05-01

    A document was prepared which assessed the state-of-the art in the mass spectrometric characterization of fossil fuel materials and the relevance of these data to the fossil fuel industry. A Kratos DS50 SM data system was successfully interfaced to a CEC 21-110B mass spectrometer. Communications between the NOVA 3/12 computer in the data system and the OSU central computer were established. A Grant Comparator/Microdensitometer was acquired and made operational. Plans were developed and hardware acquired for interfacing the densitometer to the NOVA 3/12 computer. A quartz direct introduction probe was acquired for the CEC 21-110B. A temperature controller for the probe was acquired and interfaced to the slow speed ADC on the auxillary board in the data system/mass spectrometer interface. The combined FI/EI source was modified to operate in the FD mode and an apparatus was fabricated for conditioning FD emitters. A CSI supergrater 3 was interfaced to the PE 3920 gas chromatograph. The upgraded facility was used to develop mass spectrometric methods for the characterization of fossil fuel materials and to apply methods to the characterization of these materials. Activities included: (1) initial development of field-ionization mass spectrometry for the characterization of saturated hydrocarbons, (2) computerization of the technique of probe microdistillation/mass spectrometry, (3) initation of the development of a new method for the computer assisted assignment of formulas to ion masses, (4) characterization of neutral fractions from a hydrotreated tar-sands oil, and (5) characterization of coal-derived oils and asphaltenes.

  15. Development of a totally computer-controlled triple quadrupole mass spectrometer system

    International Nuclear Information System (INIS)

    Wong, C.M.; Crawford, R.W.; Barton, V.C.; Brand, H.R.; Neufeld, K.W.; Bowman, J.E.

    1983-01-01

    A totally computer-controlled triple quadrupole mass spectrometer (TQMS) is described. It has a number of unique features not available on current commercial instruments, including: complete computer control of source and all ion axial potentials; use of dual computers for data acquisition and data processing; and capability for self-adaptive control of experiments. Furthermore, it has been possible to produce this instrument at a cost significantly below that of commercial instruments. This triple quadrupole mass spectrometer has been constructed using components commercially available from several different manufacturers. The source is a standard Hewlett-Packard 5985B GC/MS source. The two quadrupole analyzers and the quadrupole CAD region contain Balzers QMA 150 rods with Balzers QMG 511 rf controllers for the analyzers and a Balzers QHS-511 controller for the CAD region. The pulsed-positive-ion-negative-ion-chemical ionization (PPINICI) detector is made by Finnigan Corporation. The mechanical and electronics design were developed at LLNL for linking these diverse elements into a functional TQMS as described. The computer design for total control of the system is unique in that two separate LSI-11/23 minicomputers and assorted I/O peripherals and interfaces from several manufacturers are used. The evolution of this design concept from totally computer-controlled instrumentation into future self-adaptive or ''expert'' systems for instrumental analysis is described. Operational characteristics of the instrument and initial results from experiments involving the analysis of the high explosive HMX (1,3,5,7-Tetranitro-1,3,5,7-Tetrazacyclooctane) are presented

  16. Measurement of reactivity effect caused by nonuniform fuel distribution

    International Nuclear Information System (INIS)

    Yamane, Yoshihiro; Hirano, Yasushi; Yasui, Hazime; Nishina, Kojiro; Shiroya, Seiji

    1991-01-01

    A reactivity effect due to a spatial variation of nuclear fuel concentration is an important problem in a reprocessing plant. To estimate this reactivity effect theoretically, the ''Goertzel's necessary condition, and th Fuel Importance'' theory have been proposed. In order to verify these theories, we have performed systematic measurements of reactivity effect due to the nonuniformity in the fuel distribution within the Kyoto University Critical Assembly. Neutron flux distribution and Fuel Importance distribution were also determined. A nonuniform assembly whose fuel concentration in the center region was 40% higher than the uniform one was found to have an excess reactivity of 0.3%Δk/k, with the same total uranium mass for which the uniform assembly was just critical. Moreover, its spatial distribution of thermal neutron flux and of Fuel Importance were more flat than those of the uniform assembly, as expected by the Goertzel's condition and the Fuel Importance theory. (Author)

  17. Fuel cycle cost comparisons with oxide and silicide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matos, J E; Freese, K E [RERTR Program, Argonne National Laboratory (United States)

    1983-09-01

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. The status of the development and demonstration of the oxide and silicide fuels are presented in several papers in these proceedings. Routine utilization of these fuels with the uranium densities considered here requires that they are successfully demonstrated and licensed. Thermal-hydraulic safety margins, shutdown margins, mixed cores, and transient analyses are not addressed here, but analyses of these safety issues are in progress for a limited number of the most promising design options. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data is presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed. All safety criteria for the reactor with these fuel element designs need to be satisfied as well. With LEU oxide fuel, 31 g U/cm{sup 3} 1 and 0.76 mm--thick fuel meat, elements with 18-22 plates 320-391 g {sup 235}U) result in the same or lower total costs than with the HEU element 23 plates, 280 g {sup 235}U). Higher LEU loadings (more plates per element) are needed for larger excess reactivity requirements. However, there is little cost advantage to using more than 20 of these plates per element. Increasing the fuel meat thickness from 0.76 mm to 1.0 mm with 3.1 g U/cm{sup 3} in the design with 20 plates per element could result in significant cost reductions if the

  18. Standard test method for analysis of total and isotopic uranium and total thorium in soils by inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the measurement of total uranium (U) and thorium (Th) concentrations in soils, as well as the determination of the isotopic weight percentages of 234U, 235U, 236U, and 238U, thereby allowing for the calculation of individual isotopic uranium activity or total uranium activity. This inductively coupled plasma-mass spectroscopy (ICP-MS) method is intended as an alternative analysis to methods such as alpha spectroscopy or thermal ionization mass spectroscopy (TIMS). Also, while this test method covers only those isotopes listed above, the instrumental technique may be expanded to cover other long-lived radioisotopes since the preparation technique includes the preconcentration of the actinide series of elements. The resultant sample volume can be further reduced for introduction into the ICP-MS via an electrothermal vaporization (ETV) unit or other sample introduction device, even though the standard peristaltic pump introduction is applied for this test method. The sample preparatio...

  19. Gas chromatography-mass spectrometric determination of traces of ether-type icing inhibitors in free-floating fuels

    Energy Technology Data Exchange (ETDEWEB)

    Shin, H.S. [Dept. of Environmental Education, Kongju National Univ., Kongju (Korea); Abuse Drug Research Center, Kongju National Univ., Kongju (Korea); Ahn, H.S. [Dept. of Environmental Science, Kongju National Univ., Kongju (Korea)

    2004-08-01

    A gas chromatographic-mass spectrometric (GC-MS) assay method has been developed for simultaneous determination of ethylene glycol monomethyl ether (EGME) and diethylene glycol monomethly ether (DEGME) in spilled aviation fuels. Ethylene glycol monobutyl ether (EGBE) and ethylene glycol monoethyl ether (EGEE) were used as internal standard and surrogate, respectively. Sample preparation consisted of back-extraction with 7 mL dichloromethane after extraction of 50 mL of fuel with 2 mL of water. The extract was concentrated to dryness, dissolved in 100 {mu}L methanol, and analyzed by GC-MS with selected-ion monitoring (SIM). The peaks had good chromatographic properties on a semi-polar column. EGME and DEGME were extracted from fuel with high recovery of 75 and 85%, with small variations, respectively. Method detection limits were 1.3 and 1.0 ng mL{sup -1} for EGME and DEGME, respectively, in spilled fuel. DEGME was detected at concentrations of 22.6 and 19.7 ng mL{sup -1} in two samples from among five free-floating samples collected in a tunnel of a subway station located in the vicinity of an army base in Korea. The method might be useful for differentiation between the fuel-types kerosene and JP-8, which might originate from a storage tank. (orig.)

  20. Total β-decay energies and atomic masses in regions far from β-stability

    International Nuclear Information System (INIS)

    Aleklett, K.

    1977-01-01

    This thesis is a summary of experimental investigations on total β-decay energies and deduced atomic masses of nuclei far from the region of β-stability. The Qsub(β) values are given for isotopes of Zn, Ga, Ge, As, Br, Rb, In, Sn, Sb, Te, Cs, Fr, Ra and Ac, with β-unstable nuclei. These unstable nuclei have very short half-lives, often below 10s, and the experimental techniques for the production, separation and collection of these short-lived nuclei are described. Neutron deficient nuclides were produced by spallation, in the ISOLDE facility, and neutron deficient nuclides were produced by thermal neutron induced fission of 235 U in the OSIRIS facility. β-spectra were recorded using an Si(Li)-detector and a coincidence system. Qsub(β) values obtained from mass formulae have been compared with experimental values obtained in different mass regions and a comparison made between results obtained from different droplet mass formulae. (B.D.)

  1. Dependence of sputtering erosion on fuel-pellet characteristics

    International Nuclear Information System (INIS)

    Bohachevsky, I.O.; Hafer, J.F.

    1977-11-01

    Conceptual designs of fusion reactors operating on the principle of inertial confinement require that the dependence of cavity-wall erosion on fuel-pellet energy yield, its mass, and representative atomic number be known. A simple approximate model of sputtering erosion is presented and explicit formulas are derived that express the total amount of eroded wall material in terms of the above three parameters

  2. Assessing the impacts of ethanol and isobutanol on gaseous and particulate emissions from flexible fuel vehicles.

    Science.gov (United States)

    Karavalakis, Georgios; Short, Daniel; Russell, Robert L; Jung, Heejung; Johnson, Kent C; Asa-Awuku, Akua; Durbin, Thomas D

    2014-12-02

    This study investigated the effects of higher ethanol blends and an isobutanol blend on the criteria emissions, fuel economy, gaseous toxic pollutants, and particulate emissions from two flexible-fuel vehicles equipped with spark ignition engines, with one wall-guided direct injection and one port fuel injection configuration. Both vehicles were tested over triplicate Federal Test Procedure (FTP) and Unified Cycles (UC) using a chassis dynamometer. Emissions of nonmethane hydrocarbons (NMHC) and carbon monoxide (CO) showed some statistically significant reductions with higher alcohol fuels, while total hydrocarbons (THC) and nitrogen oxides (NOx) did not show strong fuel effects. Acetaldehyde emissions exhibited sharp increases with higher ethanol blends for both vehicles, whereas butyraldehyde emissions showed higher emissions for the butanol blend relative to the ethanol blends at a statistically significant level. Particulate matter (PM) mass, number, and soot mass emissions showed strong reductions with increasing alcohol content in gasoline. Particulate emissions were found to be clearly influenced by certain fuel parameters including oxygen content, hydrogen content, and aromatics content.

  3. Models of fuel masses transition during second stage of the accident on Chernobyl NPP

    International Nuclear Information System (INIS)

    Tarapon, A.

    2002-01-01

    In ISPE NASU of Ukraine are developed mathematical models and software, which allow to research the processes of fuel masses transition during the accident at ChNPP. We found out, that the main reason of accident on ChNPP is the happening in the reactor of crisis of heat exchange of the second sort, instead of the effect positive output of reactivity from displacers of rods of system of emergency protection, as is accepted in official version

  4. The effect of the mass of a moderator positioned in the central region of a hollow fuel element

    International Nuclear Information System (INIS)

    Simopoulos, S.E.; Leonidou, D.J.

    1981-01-01

    The effect of the presence of a short slowing down length moderator, in the central region of a hollow fuel element is investigated as a function of the mass per unit length of the central moderator . The increase of the thermal neutron flux level, when comparing the situation with that existing without a central moderator , is shown to depend on the quantity of the central moderator and on the mode of the geometrical distribution of the moderator material in the central region of the hollow fuel element. (orig.) [de

  5. Mathematical modeling of water mass balance for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Wan Ramli Wan Daud; Kamaruzzaman Sopian; Jaafar Sahari; Nik Suhaimi Mat Hassan

    2006-01-01

    Gas and water management are key to achieving good performance from a proton exchange membrane fuel cell (PEMFC) stack. Water plays a critical role in PEMFC. The proton conductivity is increase with the water content. In order to achieve enough hydration, water is normally introduced into the cell externally by a variety of methods such as liquid injection, steam introduction, and humidification of reactants by passing them through humidifiers before entering the cell. In this paper, mathematical modeling of water mass balance for PEMFC at anode and cathode side are proposed by using external humidification and assume that steady state, constant pressure, constant temperature and gases distribution are uniform

  6. Characterisation of AGR fuel cladding alloy using secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Allen, G.C.; Sparry, R.P.; Wild, R.K.

    1987-08-01

    Uranium dioxide fuel used in the Advanced Gas Cooled Reactor (AGR) is contained in a ribbed can of 20wt%Cr/25wt%Ni/Nb stabilised steel. Laboratory circumstances, spall during thermal cycling. To date it has been difficult to identify active material originating from the oxidation product of the cladding alloy in the cooling circuit. In an attempt to solve this problem we have set out to characterise fully a sample of oxide from this source and work is in progress to obtain suitable oxide samples from the surface of a 20%Cr/25%Ni/Nb stainless steel. In view of its high sensitivity and the ability to obtain chemical information from relatively small areas we have sought to use Secondary Ion Mass Spectroscopy (SIMS). (author)

  7. Pore-scale investigation of mass transport and electrochemistry in a solid oxide fuel cell anode

    Energy Technology Data Exchange (ETDEWEB)

    Grew, Kyle N.; Joshi, Abhijit S.; Peracchio, Aldo A.; Chiu, Wilson K.S. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269-3139 (United States)

    2010-04-15

    The development and validation of a model for the study of pore-scale transport phenomena and electrochemistry in a Solid Oxide Fuel Cell (SOFC) anode are presented in this work. This model couples mass transport processes with a detailed reaction mechanism, which is used to model the electrochemical oxidation kinetics. Detailed electrochemical oxidation reaction kinetics, which is known to occur in the vicinity of the three-phase boundary (TPB) interfaces, is discretely considered in this work. The TPB regions connect percolating regions of electronic and ionic conducting phases of the anode, nickel (Ni) and yttria-stabilized zirconia (YSZ), respectively; with porous regions supporting mass transport of the fuel and product. A two-dimensional (2D), multi-species lattice Boltzmann method (LBM) is used to describe the diffusion process in complex pore structures that are representative of the SOFC anode. This diffusion model is discretely coupled to a kinetic electrochemical oxidation mechanism using localized flux boundary conditions. The details of the oxidation kinetics are prescribed as a function of applied activation overpotential and the localized hydrogen and water mole fractions. This development effort is aimed at understanding the effects of the anode microstructure within TPB regions. This work describes the methods used so that future studies can consider the details of SOFC anode microstructure. (author)

  8. The role of total body fat mass and trunk fat mass, combined with other endocrine factors, in menstrual recovery and psychopathology of adolescents with Anorexia Nervosa.

    Science.gov (United States)

    Karountzos, Vasileios; Lambrinoudaki, Irene; Tsitsika, Artemis; Deligeoroglou, Efthimios

    2017-10-01

    To determine the threshold of total body and trunk fat mass required for menstrual recovery and to assess the impact of body composition in psychopathology of adolescents with Anorexia Nervosa (AN). Prospective study of 60 adolescents presented with secondary amenorrhea and diagnosed with AN. Anthropometrics, body composition by dual-energy X-ray absorptiometry, hormonal studies and responses to mental health screens (EAT-26), were obtained at the beginning and at complete weight restoration, in all adolescents, independently of menstrual recovery (Group A) or not (Group B). At weight restoration, Group A total body fat mass, trunk fat mass, and trunk/extremities fat ratio were significantly higher (p psychopathology of adolescents with AN.

  9. Total balance of biogenic fuels for thermal uses; Ganzheitliche Bilanzierung verschiedener biogener Festbrennstoffe zur thermischen Nutzung

    Energy Technology Data Exchange (ETDEWEB)

    Becher, S; Kaltschmitt, M [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER)

    1997-12-31

    In this situation of unfavourable energy price levels, the use of biogenic fuels for power supply can be recommended only if it serves to reduce environmental pollution. Against this background and on the basis of a primary energy balance, the authors attempted a total balance of selected enfironmental effects (global heating and acidification potential) of biomass use as compared to fossil fuel combustion. (orig) [Deutsch] ie Nutzung biogener Festbrennstoffe zur Energienachfragedeckung ist bei dem gegenwaertigen unguenstigen Energiepreisniveau nur dann zu rechtfertigen, wenn es durch die Biomassenutzung zu einer Reduzierung der energiebedingten Umwelteffekte kommt. Vor disem Hintergrund werden ausgehend von der Primaerenergiebilanz ausgewaehlte Umwelteffekte (d.h. das Treibhaus- und das Versauerungspotential) einer Biomassenutzung im Vergleich zu einer Nutzung fossiler Energietraeger ganzheitlich bilanziert. Die wesentlichen Ergebnisse werden zusammengefasst und interpretiert. (orig)

  10. Total balance of biogenic fuels for thermal uses; Ganzheitliche Bilanzierung verschiedener biogener Festbrennstoffe zur thermischen Nutzung

    Energy Technology Data Exchange (ETDEWEB)

    Becher, S.; Kaltschmitt, M. [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER)

    1996-12-31

    In this situation of unfavourable energy price levels, the use of biogenic fuels for power supply can be recommended only if it serves to reduce environmental pollution. Against this background and on the basis of a primary energy balance, the authors attempted a total balance of selected enfironmental effects (global heating and acidification potential) of biomass use as compared to fossil fuel combustion. (orig) [Deutsch] ie Nutzung biogener Festbrennstoffe zur Energienachfragedeckung ist bei dem gegenwaertigen unguenstigen Energiepreisniveau nur dann zu rechtfertigen, wenn es durch die Biomassenutzung zu einer Reduzierung der energiebedingten Umwelteffekte kommt. Vor disem Hintergrund werden ausgehend von der Primaerenergiebilanz ausgewaehlte Umwelteffekte (d.h. das Treibhaus- und das Versauerungspotential) einer Biomassenutzung im Vergleich zu einer Nutzung fossiler Energietraeger ganzheitlich bilanziert. Die wesentlichen Ergebnisse werden zusammengefasst und interpretiert. (orig)

  11. Estimation of the Waste Mass from a Pyro-Process of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Soo; Choi, Jong Won; Choi, Heui Joo (and others)

    2008-04-15

    Pyro-Process is now developing to retrieve reusable uranium and TRU, and to reduce the volume of high level waste from a nuclear power plant. In this situation, it is strongly required for the estimation of expected masses and their physical properties of the wastes. In this report, the amount of wastes and their physical properties are presupposed through some assumptions in regard to 10MTHM of Oxide Fuel with 4.5wt% U-235, 45,000 MWD/MTU, and 5yrs cooling. The produced wastes can be divided into three categories such as metal, CWF(Ceramic Waste Form), and VWF(Vitrified Waste Form). The 42 nuclrides in a spent nuclear fuel are distributed into the waste categories on the their physical and thermodynamic properties when they exist in metal, oxide, or chloride forms. The treated atomic groups are Uranium, TRU, Noble metal, Rare earth, Alkali metal, Halogens, and others. The mass of each waste is estimated by the distribution results. The off-gas waste is included into a CWF. The heat generations by the wastes in this Pyro-Process are calculated using a ORIGEN-ARP program. It is possible to estimate the amounts of wastes and their heat generation rates in this Pyro-Process analysis. These information are very helpful to design a waste container and its quantity also can be determined. The number of container and its heat generation rate will be key factor for the construction of interim storage facilities including a underground disposal site.

  12. Characterization of a nose-only inhalation exposure system for hydrocarbon mixtures and jet fuels.

    Science.gov (United States)

    Martin, Sheppard A; Tremblay, Raphael T; Brunson, Kristyn F; Kendrick, Christine; Fisher, Jeffrey W

    2010-04-01

    A directed-flow nose-only inhalation exposure system was constructed to support development of physiologically based pharmacokinetic (PBPK) models for complex hydrocarbon mixtures, such as jet fuels. Due to the complex nature of the aerosol and vapor-phase hydrocarbon exposures, care was taken to investigate the chamber hydrocarbon stability, vapor and aerosol droplet compositions, and droplet size distribution. Two-generation systems for aerosolizing fuel and hydrocarbons were compared and characterized for use with either jet fuels or a simple mixture of eight hydrocarbons. Total hydrocarbon concentration was monitored via online gas chromatography (GC). Aerosol/vapor (A/V) ratios, and total and individual hydrocarbon concentrations, were determined using adsorbent tubes analyzed by thermal desorption-gas chromatography-mass spectrometry (TDS-GC-MS). Droplet size distribution was assessed via seven-stage cascade impactor. Droplet mass median aerodynamic diameter (MMAD) was between 1 and 3 mum, depending on the generator and mixture utilized. A/V hydrocarbon concentrations ranged from approximately 200 to 1300 mg/m(3), with between 20% and 80% aerosol content, depending on the mixture. The aerosolized hydrocarbon mixtures remained stable during the 4-h exposure periods, with coefficients of variation (CV) of less than 10% for the total hydrocarbon concentrations. There was greater variability in the measurement of individual hydrocarbons in the A-V phase. In conclusion, modern analytical chemistry instruments allow for improved descriptions of inhalation exposures of rodents to aerosolized fuel.

  13. Modeling the Thermal Rocket Fuel Preparation Processes in the Launch Complex Fueling System

    Directory of Open Access Journals (Sweden)

    A. V. Zolin

    2015-01-01

    Full Text Available It is necessary to carry out fuel temperature preparation for space launch vehicles using hydrocarbon propellant components. A required temperature is reached with cooling or heating hydrocarbon fuel in ground facilities fuel storages. Fuel temperature preparing processes are among the most energy-intensive and lengthy processes that require the optimal technologies and regimes of cooling (heating fuel, which can be defined using the simulation of heat exchange processes for preparing the rocket fuel.The issues of research of different technologies and simulation of cooling processes of rocket fuel with liquid nitrogen are given in [1-10]. Diagrams of temperature preparation of hydrocarbon fuel, mathematical models and characteristics of cooling fuel with its direct contact with liquid nitrogen dispersed are considered, using the numerical solution of a system of heat transfer equations, in publications [3,9].Analytical models, allowing to determine the necessary flow rate and the mass of liquid nitrogen and the cooling (heating time fuel in specific conditions and requirements, are preferred for determining design and operational characteristics of the hydrocarbon fuel cooling system.A mathematical model of the temperature preparation processes is developed. Considered characteristics of these processes are based on the analytical solutions of the equations of heat transfer and allow to define operating parameters of temperature preparation of hydrocarbon fuel in the design and operation of the filling system of launch vehicles.The paper considers a technological system to fill the launch vehicles providing the temperature preparation of hydrocarbon gases at the launch site. In this system cooling the fuel in the storage tank before filling the launch vehicle is provided by hydrocarbon fuel bubbling with liquid nitrogen. Hydrocarbon fuel is heated with a pumping station, which provides fuel circulation through the heat exchanger-heater, with

  14. Melting of fuel element racks and their recycling as granulate

    International Nuclear Information System (INIS)

    Quade, U.; Kluth, T.; Kreh, R.

    1998-01-01

    In order to increase the storage capacity for spent fuel elements in the Spanish NPPs of Almaraz and Asco, the existing racks were replaced by compact one in 1991/1993. The 28 racks from Almaraz NPP were cut on site, packed in 200-I-drums and taken to intermediate storage. For the remaining 28 racks of Asco NPP, ENRESA preferred the melting alternative. To demonstrate the recycling path melting in Germany, a test campaign with six racks was performed in 1997. As a result of this test melt, the limits for Carla melting plant were modified to 200 Bq/g total, α, β, γ 100 Bq/g nuclear fuels, max. 3g/100 kg 2,000 Bq/g total Fe55, H 3 , C-14 and Ni63. After the test melt campaign, the German authorities licensed the import and treatment of the remaining 22 racks on the condition that the waste resulting from the melting process as well as the granules produced were taken back to Spain. The shipment from Asco via France to Germany has been carried out in F 20-ft-IPII containers in accordance with ADR. Size reduction to chargeable dimensions was carried out by a plasma burner and hydraulic shears. For melting, a 3.2 Mg medium frequency induction furnace, operated in a separate housing, was used. For granules production outside this housing, the liquid iron was cast into a 5Mg ladle and then, through a water jet, into the granulating basin. The total mass of 287,659 Kg of 28 fuel elements racks and components of the storage basin yielded 297,914 kg of iron granulate. Secondary waste from melting amounted to 9,920 kg, corresponding to 3.45% of the input mass. The granulating process produced 6,589 kg, corresponding to 2.28% of the total mass to be melted. Radiological analysis of samples taken from the melt and different waste components confirmed the main nuclides Co60, Cs134 and Cs137. Fe55 was highly overestimated by the preliminary analysis. (Author) 2 refs

  15. A thermodynamic/mass-transport model for the release of ruthenium from irradiated fuel

    International Nuclear Information System (INIS)

    Garisto, F.; Iglesias, F.C.; Hunt, C.E.L.

    1990-01-01

    Some postulated nuclear reactor accidents lead to fuel failures and hence release of fission products into the primary heat transport system (PHTS). To determine the consequences of such accidents, it is important to understand the behavior of fission products both in the PHTS and in the reactor containment building. Ruthenium metal has a high boiling point and is nonvolatile under reducing conditions. However, under oxidizing conditions ruthenium can form volatile oxides at relatively low temperatures and, hence, could escape from failed fuel and enter the containment building. The ruthenium radioisotope Ru-106 presents a potentially significant health risk if it is released outside the reactor containment building. Consequently, it is important to understand the behavior of ruthenium during a nuclear reactor accident. The authors review the thermodynamic behavior of ruthenium at high temperatures. The qualitative behavior of ruthenium, predicted using thermodynamic calculations, is then compared with experimental results from the Chalk River Nuclear Laboratories (CRNL). Finally, a simple thermodynamic/mass-transport model is proposed to explain the release behavior of ruthenium in a steam atmosphere

  16. Economics analysis of fuel cycle cost of fusion–fission hybrid reactors based on different fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Tiejun, E-mail: tiejun@mail.xjtu.edu.cn; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi

    2015-01-15

    Highlights: • Economics analysis of fuel cycle cost of FFHRs is carried out. • The mass flows of different fuel cycle strategies are established based on the equilibrium fuel cycle model. • The levelized fuel cycle costs of different fuel cycle strategies are calculated, and compared with current once-through fuel cycle. - Abstract: The economics analysis of fuel cycle cost of fusion–fission hybrid reactors has been performed to compare four fuel cycle strategies: light water cooled blanket burning natural uranium (Strategy A) or spent nuclear fuel (Strategy B), sodium cooled blanket burning transuranics (Strategy C) or minor actinides (Strategy D). The levelized fuel cycle costs (LFCC) which does not include the capital cost, operation and maintenance cost have been calculated based on the equilibrium mass flows. The current once-through (OT) cycle strategy has also been analyzed to serve as the reference fuel cycle for comparisons. It is found that Strategy A and Strategy B have lower LFCCs than OT cycle; although the LFCC of Strategy C is higher than that of OT cycle when the uranium price is at its nominal value, it would become comparable to that of OT cycle when the uranium price reaches its historical peak value level; Strategy D shows the highest LFCC, because it needs to reprocess huge mass of spent nuclear fuel; LFCC is sensitive to the discharge burnup of the nuclear fuel.

  17. Chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade mixed oxides [(U,Pu)O2

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Mixed oxide, a mixture of uranium and plutonium oxides, is used as a nuclear-reactor fuel in the form of pellets. The plutonium content may be up to 10 wt %, and the diluent uranium may be of any U-235 enrichment. In order to be suitable for use as a nuclear fuel, the material must meet certain criteria for combined uranium and plutonium content, effective fissile content, and impurity content. Analytical procedures used to determine if mixed oxides comply with specifications are: uranium by controlled-potential coulometry; plutonium by controlled-potential coulometry; plutonium by amperometric titration with iron (II); nitrogen by distillation spectrophotometry using Nessler reagent; carbon (total) by direct combustion-thermal-conductivity; total chlorine and fluorine by pyrohydrolysis; sulfur by distillation-spectrophotometry; moisture by the coulometric, electrolytic moisture analyzer; isotopic composition by mass spectrometry; rare earths by copper spark spectroscopy; trace impurities by carrier distillation spectroscopy; impurities by spark-source mass spectrography; total gas in reactor-grade mixed dioxide pellets; tungsten by dithiol-spectrophotometry; rare earth elements by spectroscopy; plutonium-238 isotopic abundance by alpha spectrometry; uranium and plutonium isotopic analysis by mass spectrometry; oxygen-to-metal atom ratio by gravimetry

  18. Standard test method for analysis of isotopic composition of uranium in nuclear-grade fuel material by quadrupole inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method is applicable to the determination of the isotopic composition of uranium (U) in nuclear-grade fuel material. The following isotopic weight percentages are determined using a quadrupole inductively coupled plasma-mass spectrometer (Q-ICP-MS): 233U, 234U, 235U, 236U, and 238U. The analysis can be performed on various material matrices after acid dissolution and sample dilution into water or dilute nitric (HNO3) acid. These materials include: fuel product, uranium oxide, uranium oxide alloys, uranyl nitrate (UNH) crystals, and solutions. The sample preparation discussed in this test method focuses on fuel product material but may be used for uranium oxide or a uranium oxide alloy. Other preparation techniques may be used and some references are given. Purification of the uranium by anion-exchange extraction is not required for this test method, as it is required by other test methods such as radiochemistry and thermal ionization mass spectroscopy (TIMS). This test method is also described i...

  19. MPAI (mass probes aided ionization) method for total analysis of biomolecules by mass spectrometry.

    Science.gov (United States)

    Honda, Aki; Hayashi, Shinichiro; Hifumi, Hiroki; Honma, Yuya; Tanji, Noriyuki; Iwasawa, Naoko; Suzuki, Yoshio; Suzuki, Koji

    2007-01-01

    We have designed and synthesized various mass probes, which enable us to effectively ionize various molecules to be detected with mass spectrometry. We call the ionization method using mass probes the "MPAI (mass probes aided ionization)" method. We aim at the sensitive detection of various biological molecules, and also the detection of bio-molecules by a single mass spectrometry serially without changing the mechanical settings. Here, we review mass probes for small molecules with various functional groups and mass probes for proteins. Further, we introduce newly developed mass probes for proteins for highly sensitive detection.

  20. Multiple tier fuel cycle studies for waste transmutation

    International Nuclear Information System (INIS)

    Hill, R.N.; Taiwo, T.A.; Stillman, J.A.; Graziano, D.J.; Bennett, D.R.; Trellue, H.; Todosow, M.; Halsey, W.G.; Baxter, A.

    2002-01-01

    As part of the U.S. Department of Energy Advanced Accelerator Applications Program, a systems study was conducted to evaluate the transmutation performance of advanced fuel cycle strategies. Three primary fuel cycle strategies were evaluated: dual-tier systems with plutonium separation, dual-tier systems without plutonium separation, and single-tier systems without plutonium separation. For each case, the system mass flow and TRU consumption were evaluated in detail. Furthermore, the loss of materials in fuel processing was tracked including the generation of new waste streams. Based on these results, the system performance was evaluated with respect to several key transmutation parameters including TRU inventory reduction, radiotoxicity, and support ratio. The importance of clean fuel processing (∼0.1% losses) and inclusion of a final tier fast spectrum system are demonstrated. With these two features, all scenarios capably reduce the TRU and plutonium waste content, significantly reducing the radiotoxicity; however, a significant infrastructure (at least 1/10 the total nuclear capacity) is required for the dedicated transmutation system

  1. A fuel-based approach to estimating motor vehicle exhaust emissions

    Science.gov (United States)

    Singer, Brett Craig

    Motor vehicles contribute significantly to air pollution problems; accurate motor vehicle emission inventories are therefore essential to air quality planning. Current travel-based inventory models use emission factors measured from potentially biased vehicle samples and predict fleet-average emissions which are often inconsistent with on-road measurements. This thesis presents a fuel-based inventory approach which uses emission factors derived from remote sensing or tunnel-based measurements of on-road vehicles. Vehicle activity is quantified by statewide monthly fuel sales data resolved to the air basin level. Development of the fuel-based approach includes (1) a method for estimating cold start emission factors, (2) an analysis showing that fuel-normalized emission factors are consistent over a range of positive vehicle loads and that most fuel use occurs during loaded-mode driving, (3) scaling factors relating infrared hydrocarbon measurements to total exhaust volatile organic compound (VOC) concentrations, and (4) an analysis showing that economic factors should be considered when selecting on-road sampling sites. The fuel-based approach was applied to estimate carbon monoxide (CO) emissions from warmed-up vehicles in the Los Angeles area in 1991, and CO and VOC exhaust emissions for Los Angeles in 1997. The fuel-based CO estimate for 1991 was higher by a factor of 2.3 +/- 0.5 than emissions predicted by California's MVEI 7F model. Fuel-based inventory estimates for 1997 were higher than those of California's updated MVEI 7G model by factors of 2.4 +/- 0.2 for CO and 3.5 +/- 0.6 for VOC. Fuel-based estimates indicate a 20% decrease in the mass of CO emitted, despite an 8% increase in fuel use between 1991 and 1997; official inventory models predict a 50% decrease in CO mass emissions during the same period. Cold start CO and VOC emission factors derived from parking garage measurements were lower than those predicted by the MVEI 7G model. Current inventories

  2. Perinatal, sociodemographic and lifestyle correlates of increased total and visceral fat mass levels in schoolchildren in Greece: the Healthy Growth Study.

    Science.gov (United States)

    Moschonis, George; Kaliora, Adriana C; Karatzi, Kalliopi; Michaletos, Aggelos; Lambrinou, Christina-Paulina; Karachaliou, Alexandra K; Chrousos, George P; Lionis, Christos; Manios, Yannis

    2017-03-01

    To identify possibly independent associations of perinatal, sociodemographic and lifestyle factors with childhood total and visceral body fat. A representative sample of 2655 schoolchildren (9-13 years) participated in the Healthy Growth Study, a cross-sectional epidemiological study. Seventy-seven primary schools in four large regions in Greece. A sample of 1228 children having full data on total and visceral fat mass levels, as well as on anthropometric, dietary, physical activity, physical examination, socio-economic and perinatal indices, was examined. Maternal (OR=3·03 and 1·77) and paternal obesity (OR=1·62 and 1·78), maternal smoking during pregnancy (OR=1·72 and 1·93) and rapid infant weight gain (OR=1·42 and 1·96) were significantly and positively associated with children's increased total and visceral fat mass levels, respectively. Children's television watching for >2 h/d (OR=1·40) and maternal pre-pregnancy obesity (OR=2·46) were associated with children's increased total and visceral fat mass level, respectively. Furthermore, increased children's physical activity (OR=0·66 and 0·47) were significantly and negatively associated with children's total and visceral fat mass levels, respectively. Lastly, both father's age >46 years (OR=0·57) and higher maternal educational level (OR=0·45) were associated with children's increased total visceral fat mass level. Parental sociodemographic characteristics, perinatal indices and pre-adolescent lifestyle behaviours were associated with children's abnormal levels of total and visceral fat mass. Any future programme for childhood prevention either from the perinatal age or at late childhood should take these indices into consideration.

  3. CARA design criteria for HWR fuel burnup extension

    International Nuclear Information System (INIS)

    Florido, P.C.; Cirimello, R.O.; Bergallo, J.E.; Marino, A.C.; Delmastro, D.F.; Brasnarof, D.O.; Gonzalez, J.H.; Juanico, L.A.

    2002-01-01

    A new concept for HWR fuel bundles, namely CARA, is presented. The CARA design allows to improve all the major performances in the PHWR fuel technology. Among others, it reaches higher burnup and thermohydraulic safety margins, together with lower fuel pellet temperatures and Zry/HM mass ratio. Moreover, it keeps the fuel mass content per unit length and the channel pressure drop by using a single diameter of fuel rods. (author)

  4. Material input of nuclear fuel

    International Nuclear Information System (INIS)

    Rissanen, S.; Tarjanne, R.

    2001-01-01

    The Material Input (MI) of nuclear fuel, expressed in terms of the total amount of natural material needed for manufacturing a product, is examined. The suitability of the MI method for assessing the environmental impacts of fuels is also discussed. Material input is expressed as a Material Input Coefficient (MIC), equalling to the total mass of natural material divided by the mass of the completed product. The material input coefficient is, however, only an intermediate result, which should not be used as such for the comparison of different fuels, because the energy contents of nuclear fuel is about 100 000-fold compared to the energy contents of fossil fuels. As a final result, the material input is expressed in proportion to the amount of generated electricity, which is called MIPS (Material Input Per Service unit). Material input is a simplified and commensurable indicator for the use of natural material, but because it does not take into account the harmfulness of materials or the way how the residual material is processed, it does not alone express the amount of environmental impacts. The examination of the mere amount does not differentiate between for example coal, natural gas or waste rock containing usually just sand. Natural gas is, however, substantially more harmful for the ecosystem than sand. Therefore, other methods should also be used to consider the environmental load of a product. The material input coefficient of nuclear fuel is calculated using data from different types of mines. The calculations are made among other things by using the data of an open pit mine (Key Lake, Canada), an underground mine (McArthur River, Canada) and a by-product mine (Olympic Dam, Australia). Furthermore, the coefficient is calculated for nuclear fuel corresponding to the nuclear fuel supply of Teollisuuden Voima (TVO) company in 2001. Because there is some uncertainty in the initial data, the inaccuracy of the final results can be even 20-50 per cent. The value

  5. Optimized High Temperature PEM Fuel Cell & High Pressure PEM Electrolyser for Regenerative Fuel Cell Systems in GEO Telecommunication Satellites

    Directory of Open Access Journals (Sweden)

    Farnes Jarle

    2017-01-01

    Full Text Available Next generation telecommunication satellites will demand increasingly more power. Power levels up to 50 kW are foreseen for the next decades. Battery technology that can sustain up to 50 kW for eclipse lengths of up to 72 minutes will represent a major impact on the total mass of the satellite, even with new Li-ion battery technologies. Regenerative fuel cell systems (RFCS were identified years ago as a possible alternative to rechargeable batteries. CMR Prototech has investigated this technology in a series of projects initiated by ESA focusing on both the essential fuel cell technology, demonstration of cycle performance of a RFCS, corresponding to 15 years in orbit, as well as the very important reactants storage systems. In the last two years the development has been focused towards optimising the key elements of the RFCS; the HTPEM fuel cell and the High Pressure PEM electrolyser. In these ESA activities the main target has been to optimise the design by reducing the mass and at the same time improve the performance, thus increasing the specific energy. This paper will present the latest development, including the main results, showing that significant steps have been taken to increase TRL on these key components.

  6. Mass number dependence of total neutron cross section; a discussion based on the semi-classical optical model

    International Nuclear Information System (INIS)

    Angeli, Istvan

    1990-01-01

    The dependence of total neutron cross section on mass number can be calculated by the black nucleus formula, according to the optical model. The fine structure of mass number dependence is studied, and a correction factor formula is given on the basis of a semi-classical optical model. Yielding results in good agreement with experimental data. In addition to the mass number dependence, the neutron-energy dependence can also be calculated using this model. (K.A.)

  7. Passenger car fuel consumption survey

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-01

    This survey originated from a proposal to monitor the fuel consumption and fuel economy of personal use passenger cars operated in Canada. Its purpose is to establish a data base which would contain information on total distance travelled, total amount of fuel consumed, average distance obtained per unit of fuel, total expenditures on fuel, and seasonal fluctuations in fuel consumption and in distance travelled. Among the needs served by this data base are the monitoring of passenger car fuel economy standards and the estimation of pasenger car fuel requirements in conditions involving fuel shortages. Survey methodology is by telephone interview to trace selected vehicles to the registered owners, at which time a fuel purchase diary is then mailed to the principal driver of the car. The results are tabulated on a quarterly basis and to be released as they become available in bulletins similar to this. Data are presented for each province and the total for Canada is given. During the fourth quarter of 1982, it is estimated that there were 7.3 million personal use passenger cars operated in Canada. These cars were driven 28 billion kilometers and consumed 4.3 billion litres of fuel. Their average litres/100 kilometres and the average fuel consumption was 590 litres. 8 tabs.

  8. Fuel cycle cost study with HEU and LEU fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1984-01-01

    Fuel cycle costs are compared for a range of 235 U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors

  9. Heat and mass transfer effects in a direct methanol fuel cell: A 1D model

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, V.B.; Falcao, D.S.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Rangel, C.M. [INETI - Unidade de Electroquimica e Materiais, Paco do Lumiar, 22,1649-038 (Portugal)

    2008-07-15

    Models are a fundamental tool for the design process of fuel cells and fuel cell systems. In this work, a steady-state, one-dimensional model accounting for coupled heat and mass transfer, along with the electrochemical reactions occurring in the DMFC, is presented. The model output is the temperature profile through the cell and the water balance and methanol crossover between the anode and the cathode. The model predicts the correct trends for the influence of current density and methanol feed concentration on both methanol and water crossover. The model estimates the net water transfer coefficient through the membrane, {alpha}, a very important parameter to describe water management in the DMFC. Suitable operating ranges can be set up for different MEA structures maintaining the crossover of methanol and water within acceptable levels. The model is rapidly implemented and is therefore suitable for inclusion in real-time system level DMFC calculations. (author)

  10. Correlation between the Total Gravitating Mass of Groups and Clusters and the Supermassive Black Hole Mass of Brightest Galaxies

    Science.gov (United States)

    Bogdán, Ákos; Lovisari, Lorenzo; Volonteri, Marta; Dubois, Yohan

    2018-01-01

    Supermassive black holes (BHs) residing in the brightest cluster galaxies are over-massive relative to the stellar bulge mass or central stellar velocity dispersion of their host galaxies. As BHs residing at the bottom of the galaxy cluster’s potential well may undergo physical processes that are driven by the large-scale characteristics of the galaxy clusters, it is possible that the growth of these BHs is (indirectly) governed by the properties of their host clusters. In this work, we explore the connection between the mass of BHs residing in the brightest group/cluster galaxies (BGGs/BCGs) and the virial temperature, and hence total gravitating mass, of galaxy groups/clusters. To this end, we investigate a sample of 17 BGGs/BCGs with dynamical BH mass measurements and utilize XMM-Newton X-ray observations to measure the virial temperatures and infer the {M}500 mass of the galaxy groups/clusters. We find that the {M}{BH}{--}{kT} relation is significantly tighter and exhibits smaller scatter than the {M}{BH}{--}{M}{bulge} relations. The best-fitting power-law relations are {{log}}10({M}{BH}/{10}9 {M}ȯ )=0.20+1.74{{log}}10({kT}/1 {keV}) and {{log}}10({M}{BH}/{10}9 {M}ȯ ) = -0.80+1.72{{log}}10({M}{bulge}/{10}11 {M}ȯ ). Thus, the BH mass of BGGs/BCGs may be set by physical processes that are governed by the properties of the host galaxy group/cluster. These results are confronted with the Horizon-AGN simulation, which reproduces the observed relations well, albeit the simulated relations exhibit notably smaller scatter.

  11. Computer simulation of thermal-hydraulics of MNSR fuel-channel assembly using LabView

    International Nuclear Information System (INIS)

    Gadri, L. A.

    2013-07-01

    A LabView simulator of thermal hydraulics has been developed to demonstrate the temperature profile of coolant flow in the reactor core during normal operation. The simulator could equally be used for any transient behaviour of the reactor. Heat generation, transfer and the associated temperature profile in the fuel-channel elements viz: the coolant, cladding and fuel were studied and the corresponding analytical temperature equations in the axial and radial directions for the coolant, outer surface of the cladding, fuel surface and fuel center were obtained for the simulation using LabView. Tables of values for the equations were constructed by MATLAB and excel software programs. Plots of the equations with LabView were verified and validated with the graphs drawn by the MATLAB. In this thesis, an analysis of the effects of the coolant inlet temperature of 24.5°C and exit temperature of 70.0° on the temperature distribution in fuel-channel elements of the reactor core of cylindrical geometry was carried out. Other parameters, including the total fuel channel power, mass flow rate and convective heat transfer coefficient were varied to study the effects on the temperature profile. The analytical temperature equations in the fuel channel elements of the reactor core were obtained. MATLAB and Excel software were used to construct data for the equations. The plots by MATLAB were used to benchmark the LabVIEW simulation. Excellent agreement was obtained between the MATLAB plots and the LabView simulation results with an error margin of 0.001. The analysis of the results by comparing gradients of inlet temperature, total reactor channel power and mass flow indicated that inlet temperature gradient is one of the key parameters in determining the temperature profile in the MNSR core. (au)

  12. Comparison of reconstructed radial pin total fission rates with experimental results in full scale BWR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Giust, Flavio [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Nordostschweizerische Kraftwerke AG, Parkstrasse 23, CH-5401 Baden (Switzerland); Grimm, Peter; Jatuff, Fabian [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Chawla, Rakesh [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)

    2008-07-01

    Total fission rate measurements have been performed on full size BWR fuel assemblies of type SVEA-96+ in the zero power reactor PROTEUS at the Paul Scherrer Institute. This work presents comparisons of reconstructed 2D pin fission rates in two configurations, I-1A and I-2A. Both configurations contain, in the central test zone, an array of 3x3 SVEA-96+ fuel elements moderated with light water at 20 deg. C. In configuration I-2A, an L-shaped hafnium control blade (half of a real cruciform blade) is inserted adjacent to the NW corner of the central fuel element. To minimize the impact of the surroundings, all measurements were done in fuel pins belonging to the central assembly. The 3x3 experimental configuration was modeled using the core monitoring and design tools that are applied at the Leibstadt Nuclear Power Plant (KKL). These are the 2D transport code HELIOS, used for the cross-section generation, and the 3D, 2-group nodal diffusion code PRESTO-2. The exterior is represented, in the axial and radial directions, by 2-group albedos calculated at the test zone boundary using a full-core 3D MCNPX model. The calculated-to-experimental (C/E) ratios of the total fission rates have a standard deviation of 1.3% in configuration I-1A (uncontrolled) and 3.2% in configuration I-2A (controlled). Sensitivity cases are analyzed to show the impact of certain parameters on the calculated fission rate distribution and reactivity. It is shown that the relative pin fission rate is only weakly dependent on these parameters. In cases without a control blade, the pin power reconstruction methodology delivers the same level of accuracy as 2D transport calculations. On the other hand, significant deviations, that are inherent to the use of reflected geometry in the lattice calculations, are observed in cases when the control blade is inserted. (authors)

  13. On the Mass and Heat Transfer in the Porous Electrode of a Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Revuelta Bayod, A.

    2004-07-01

    In the first part of this report a reduced model of the mass transport in the PEMFC cathode gas diffusion layer is formulated ro an interrogated flow field design of the cathode bipolar plate. The non-dimensional formulation of the problem allows to identify the leading parameters which determines the fundamental species distribution and flow field structure. The effect of the forced convection of the gases into the porous electrode, caused by the interrogated flow field, is quantified through the Peclet numbers of the active species, and the non-dimensional polarization curves are obtained. In the second part, the diffusion-thermal instability is analyzed in a porous gas diffusion layer (GDL) of a fuel cell. The investigation presented provides an initial guideline to future theoretical and experimental investigations on one aspect of the fuel cell performance not previously considered, with impact on the fuel cell life-time. Starting from the simples possible 1D-model of the flow into the porous electrode, the steady solution of the model is presented an analyzed depending on a minimum number of non-dimensional parameters. From this steady solution, a linear stability analysis is formulated, taking into account the temporal-spatial perturbations transversal to the gas flow direction, and the marginal stability regions are determined from the corresponding dispersion relation. (Author) 33 refs.

  14. Criticality accident in uranium fuel processing plant. The estimation of the total number of fissions with related reactor physics parameters

    International Nuclear Information System (INIS)

    Nishina, Kojiro; Oyamatsu, Kazuhiro; Kondo, Shunsuke; Sekimoto, Hiroshi; Ishitani, Kazuki; Yamane, Yoshihiro; Miyoshi, Yoshinori

    2000-01-01

    This accident occurred when workers were pouring a uranium solution into a precipitation tank with handy operation against the established procedure and both the cylindrical diameter and the total mass exceeded the limited values. As a result, nuclear fission chain reactor in the solution reached not only a 'criticality' state continuing it independently but also an instantly forming criticality state exceed the criticality and increasing further nuclear fission number. The place occurring the accident at this time was not reactor but a place having not to form 'criticality' called by a processing process of uranium fuel. In such place, as because of relating to mechanism of chain reaction, it is required naturally for knowledge on the reactor physics, it is also necessary to understand chemical reaction in chemical process, and functions of tanks, valves and pumps mounted at the processes. For this purpose, some information on uranium concentration ratio, atomic density of nuclides largely affecting to chain reaction such as uranium, hydrogen, and so forth in the solution, shape, inner structure and size of container for the solution, and its temperature and total volume, were necessary for determining criticality volume of the accident uranium solution by using nuclear physics procedures. Here were described on estimation of energy emission in the JCO accident, estimation from analytical results on neutron and solution, calculation of various nuclear physics property estimation on the JCO precipitation tank at JAERI. (G.K.)

  15. The plutonium fuel cycles

    International Nuclear Information System (INIS)

    Pigford, T.H.; Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000-MW water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium and recycled uranium. The radioactivity quantities of plutonium, americium and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the U.S. nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing ad fuel fabrication to eliminate the off-site transport of separated plutonium. (author)

  16. Unsupervised classification of petroleum Certified Reference Materials and other fuels by chemometric analysis of gas chromatography-mass spectrometry data.

    Science.gov (United States)

    de Carvalho Rocha, Werickson Fortunato; Schantz, Michele M; Sheen, David A; Chu, Pamela M; Lippa, Katrice A

    2017-06-01

    As feedstocks transition from conventional oil to unconventional petroleum sources and biomass, it will be necessary to determine whether a particular fuel or fuel blend is suitable for use in engines. Certifying a fuel as safe for use is time-consuming and expensive and must be performed for each new fuel. In principle, suitability of a fuel should be completely determined by its chemical composition. This composition can be probed through use of detailed analytical techniques such as gas chromatography-mass spectroscopy (GC-MS). In traditional analysis, chromatograms would be used to determine the details of the composition. In the approach taken in this paper, the chromatogram is assumed to be entirely representative of the composition of a fuel, and is used directly as the input to an algorithm in order to develop a model that is predictive of a fuel's suitability. When a new fuel is proposed for service, its suitability for any application could then be ascertained by using this model to compare its chromatogram with those of the fuels already known to be suitable for that application. In this paper, we lay the mathematical and informatics groundwork for a predictive model of hydrocarbon properties. The objective of this work was to develop a reliable model for unsupervised classification of the hydrocarbons as a prelude to developing a predictive model of their engine-relevant physical and chemical properties. A set of hydrocarbons including biodiesel fuels, gasoline, highway and marine diesel fuels, and crude oils was collected and GC-MS profiles obtained. These profiles were then analyzed using multi-way principal components analysis (MPCA), principal factors analysis (PARAFAC), and a self-organizing map (SOM), which is a kind of artificial neural network. It was found that, while MPCA and PARAFAC were able to recover descriptive models of the fuels, their linear nature obscured some of the finer physical details due to the widely varying composition of the

  17. Minimum critical mass systems

    International Nuclear Information System (INIS)

    Dam, H. van; Leege, P.F.A. de

    1987-01-01

    An analysis is presented of thermal systems with minimum critical mass, based on the use of materials with optimum neutron moderating and reflecting properties. The optimum fissile material distributions in the systems are obtained by calculations with standard computer codes, extended with a routine for flat fuel importance search. It is shown that in the minimum critical mass configuration a considerable part of the fuel is positioned in the reflector region. For 239 Pu a minimum critical mass of 87 g is found, which is the lowest value reported hitherto. (author)

  18. Hydrogen and fuel cells

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the hydrogen and fuel cells. It presents the hydrogen technology from the production to the distribution and storage, the issues as motor fuel and fuel cells, the challenge for vehicles applications and the Total commitments in the domain. (A.L.B.)

  19. Elucidation of oxidation and degradation products of oxygen containing fuel components by combined use of a stable isotopic tracer and mass spectrometry.

    Science.gov (United States)

    Frauscher, Marcella; Besser, Charlotte; Allmaier, Günter; Dörr, Nicole

    2017-11-15

    In order to reveal the degradation products of oxygen-containing fuel components, in particular fatty acid methyl esters, a novel approach was developed to characterize the oxidation behaviour. Combination of artificial alteration under pressurized oxygen atmosphere, a stable isotopic tracer, and gas chromatography electron impact mass spectrometry (GC-EI-MS) was used to obtain detailed information on the formation of oxidation products of (9Z), (12Z)-octadecadienoic acid methyl ester (C18:2 ME). Thereby, biodiesel simulating model compound C18:2 ME was oxidized in a rotating pressurized vessel standardized for lubricant oxidation tests (RPVOT), i.e., artificially altered, under 16 O 2 as well as 18 O 2 atmosphere. Identification of the formed degradation products, mainly carboxylic acids of various chain lengths, alcohols, ketones, and esters, was performed by means of GC-EI-MS. Comparison of mass spectra of compounds under both atmospheres revealed not only the degree of oxidation and the origin of oxygen atoms, but also the sites of oxidative attack and bond cleavage. Hence, the developed and outlined strategy based on a gas-phase stable isotopic tracer and mass spectrometry provides insight into the degradation of oxygen-containing fuels and fuel components by means of the accurate differentiation of oxygen origin in a degradation product. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Isotopic Tracing of Fuel Components in Particulate Emissions from Diesel Engines using Accelerator Mass Spectrometry (AMS)

    International Nuclear Information System (INIS)

    Buchholz, B A; Mueller, C J; Garbak, J.

    2001-01-01

    Accelerator mass spectrometry (AMS) is an isotope-ratio measurement technique developed in the late 1970s for tracing long-lived radioisotopes (e.g., 14 C half life = 5760 y). The technique counts individual nuclei rather than waiting for their radioactive decay, allowing measurement of more than 100 low-level 14 C samples per day (Vogel et al, 1995). The LLNL AMS system is shown in Fig.1. The contemporary quantity of 14 C in living things ( 14 C/C = 1.2 x 10 -12 or 110 fmol 14 C/ g C) is highly elevated compared to the quantity of 14 C in petroleum-derived products. This isotopic elevation is sufficient to trace the fate of bio-derived fuel components in the emissions of an engine without the use of radioactive materials. If synthesis of a fuel component from biologically-derived source material is not feasible, another approach is to purchase 14 C-labeled material (e.g., dibutyl maleate (DBM)) and dilute it with petroleum-derived material to yield a contemporary level of 14 C. In each case, the virtual absence of 14 C in petroleum based fuels gives a very low 14 C background that makes this approach to tracing fuel components practical. Regulatory pressure to significantly reduce the particulate emissions from diesel engines is driving research into understanding mechanisms of soot formation. If mechanisms are understood, then combustion modeling can be used to evaluate possible changes in fuel formulation and suggest possible fuel components that can improve combustion and reduce PM emissions. The combustion paradigm assumes that large molecules break down into small components and then build up again during soot formation. AMS allows us to label specific fuel components, including oxygenates, trace the carbon atoms, and test this combustion modeling paradigm. Volatile and non-volatile organic fractions (VOF, NVOF) in the PM can be further separated. The VOF of the PM can be oxidized with catalysts in the exhaust stream to further decrease PM. The effectiveness

  1. Total life-cycle cost analysis of conventional and alternative fueled vehicles

    International Nuclear Information System (INIS)

    Cardullo, M.W.

    1993-01-01

    Total Life-Cycle Cost (TLCC) Analysis can indicate whether paying higher capital costs for advanced technology with low operating and/or environmental costs is advantageous over paying lower capital costs for conventional technology with higher operating and/or environmental costs. While minimizing total life-cycle cost is an important consideration, the consumer often identifies non-cost-related benefits or drawbacks that make more expensive options appear more attractive. The consumer is also likely to heavily weigh initial capital costs while giving limited consideration to operating and/or societal costs, whereas policy-makers considering external costs, such as those resulting from environmental impacts, may reach significantly different conclusions about which technologies are most advantageous to society. This paper summarizes a TLCC model which was developed to facilitate consideration of the various factors involved in both individual and societal policy decision making. The model was developed as part of a US Department of Energy Contract and has been revised to reflect changes necessary to make the model more realistic. The model considers capital, operating, salvage, and environmental costs for cars, vans, and buses using conventional and alternative fuels. The model has been developed to operate on an IBM or compatible personal computer platform using the commercial spreadsheet program MicroSoft Excell reg-sign Version 4 for Windows reg-sign and can be easily kept current because its modular structure allows straightforward access to embedded data sets for review and update

  2. Limits to fuel/coolant mixing

    International Nuclear Information System (INIS)

    Corradini, M.L.; Moses, G.A.

    1985-01-01

    The vapor explosion process involves the mixing of fuel with coolant prior to the explosion. A number of analysts have identified limits to the amount of fuel/coolant mixing that could occur within the reactor vessel following a core melt accident. Past models are reviewed and a sim plified approach is suggested to estimate the upper limit on the amount of fuel/coolant mixing pos sible. The approach uses concepts first advanced by Fauske in a different way. The results indicat that water depth is an important parameter as well as the mixing length scale D /SUB mix/ , and for large values of D /SUB mix/ the fuel mass mixed is limited to <7% of the core mass

  3. An environmental impact measure for nuclear fuel cycle evaluation

    International Nuclear Information System (INIS)

    Ahn, Joonhong

    2004-01-01

    Review of the models and measures for repository performance assessment has revealed that dedicated measures for environmental impacts need to be developed for the purpose of nuclear-fuel-cycle evaluation from the viewpoint of environmental impact minimization. The present study proposes the total toxicity index of released radionuclides that have accumulated in the region exterior to the repository as an environmental impact measure. The measure is quantitatively evaluated by a radionuclide transport model that incorporates the effects of canister-array configuration and the initial mass loading in the waste canister. With the measure, it is demonstrated that the environmental impact of the repository can be effectively reduced by reduction of the initial mass loading and change in the canister-array configuration in the repository. Environmental impacts of the mill tailings and the depleted uranium are as important as those from the high-level radioactive wastes repository. For a fair comparison of various fuel cycles, the sum of these impacts should be compared. (author)

  4. Draining Water from Aircraft Fuel Using Nitrogen Enriched Air

    Directory of Open Access Journals (Sweden)

    Michael Frank

    2018-04-01

    Full Text Available This paper concerns a computational study of the process of removing water from an aircraft’s fuel tank by pumping nitrogen enriched air (NEA from the bottom of the tank. This is an important procedure for the smooth, efficient, and safe operation of the aircraft’s engine. Due to the low partial pressure of water in the pumped NEA, it absorbs water from the fuel. The water-laden bubbles enter the ullage, the empty space above the fuel, and escape into the environment. The effects of the number of NEA inlets and the NEA mass flow rate on the timescale of the NEA pumping were investigated using Computational Fluid Dynamics. The results reveal that the absorption of water by the NEA bubbles is low and is not affected by the number of the inlets used. Yet, the water content in the fuel decreases fast during the procedure, which is the desired outcome. We show that this is due to the relatively dry NEA entering the ullage and displacing the moist air, thus reducing the partial pressure of water at the fuel/ullage interface. This shift from equilibrium conditions forces water to evaporate from the fuel’s entire surface. Furthermore, the amount of water migrating from the fuel directly into the ullage is significantly greater than that absorbed by the rising bubbles. In turn, the rate of decrease of the water content in the ullage is determined by the total NEA mass flow rate and this is the dominant contributor to the draining time, with the number of NEA nozzles playing a minor role. We confirmed this by pumping NEA directly into the ullage, where we observe a significant decrease of water even when the NEA is not pumped through the fuel. We also show that doubling the mass flow rate halves the draining time. When considering the capability of most modern aircraft to pump NEA through the fuel as part of their inerting system, the proposed method for removing water is particularly attractive, requiring very little (if at all design modification.

  5. A fuel cycle cost study with HEU and LEU fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1985-01-01

    Fuel cycle costs are compared for a range of 235 U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors. (author)

  6. A fuel cycle cost study with HEU and LEU fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matos, J E; Freese, K E [Argonne National Laboratory, Argonne, IL (United States)

    1985-07-01

    Fuel cycle costs are compared for a range of {sup 235}U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors. (author)

  7. In-line monitoring of effluents from HTGR fuel particle preparation processes using a time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Lee, D.A.; Costanzo, D.A.; Stinton, D.P.; Carpenter, J.A.; Rainey, W.T. Jr.; Canada, D.C.; Carter, J.A.

    1976-08-01

    The carbonization, conversion, and coating processes in the manufacture of HTGR fuel particles have been studied with the use of a time-of-flight mass spectrometer. Non-condensable effluents from these fluidized-bed processes have been monitored continuously from the beginning to the end of the process. The processes which have been monitored are these: uranium-loaded ion exchange resin carbonization, the carbothermic reduction of UO 2 to UC 2 , buffer and low temperature isotropic pyrocarbon coatings of fuel kernels, SiC coating of the kernels, and high-temperature particle annealing. Changes in concentrations of significant molecules with time and temperature have been useful in the interpretation of reaction mechanisms and optimization of process procedures

  8. Melt Fragmentation Characteristics of Metal Fuel with Melt Injection Mass during Initiating Phase of SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Lee, Min Ho; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of)

    2016-05-15

    The PGSFR has adopted the metal fuel for its inherent safety under severe accident conditions. However, this fuel type is not demonstrated clearly yet under the such severe accident conditions. Additional experiments for examining these issues should be performed to support its licensing activities. Under initiating phase of hypothetic core disruptive accident (HCDA) conditions, the molten metal could be better dispersed and fragmented into the coolant channel than in the case of using oxide fuel. This safety strategy provides negative reactivity driven by a good dispersion of melt. If the coolant channel does not sufficient coolability, the severe recriticality would occur within the core region. Thus, it is important to examine the extent of melt fragmentation. The fragmentation behaviors of melt are closely related to a formation of debris shape. Once the debris shape is formed through the fragmentation process, its coolability is determined by the porosity or thermal conductivity of the melt. There were very limited studies for transient irradiation experiments of the metal fuel. These studies were performed by Transient Reactor Test Facility (TREAT) M series tests in U.S. The TREAT M series tests provided basic information of metal fuel performance under transient conditions. The effect of melt injection mass was evaluated in terms of the fragmentation behaviors of melt. These behaviors seemed to be similar between single-pin and multi-pins failure condition. However, the more melt was agglomerated in case of multi-pins failure.

  9. The SLUGGS survey: a comparison of total-mass profiles of early-type galaxies from observations and cosmological simulations, to ˜4 effective radii

    Science.gov (United States)

    Bellstedt, Sabine; Forbes, Duncan A.; Romanowsky, Aaron J.; Remus, Rhea-Silvia; Stevens, Adam R. H.; Brodie, Jean P.; Poci, Adriano; McDermid, Richard; Alabi, Adebusola; Chevalier, Leonie; Adams, Caitlin; Ferré-Mateu, Anna; Wasserman, Asher; Pandya, Viraj

    2018-06-01

    We apply the Jeans Anisotropic Multi-Gaussian Expansion dynamical modelling method to SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey data of early-type galaxies in the stellar mass range 1010 physical processes shaping the mass distributions of galaxies in cosmological simulations are still incomplete. For galaxies with M* > 1010.7 M⊙ in the Magneticum simulations, we identify a significant anticorrelation between total-mass density profile slopes and the fraction of stellar mass formed ex situ (i.e. accreted), whereas this anticorrelation is weaker for lower stellar masses, implying that the measured total-mass density slopes for low-mass galaxies are less likely to be determined by merger activity.

  10. Metal hydride and pyrophoric fuel additives for dicyclopentadiene based hybrid propellants

    Science.gov (United States)

    Shark, Steven C.

    The purpose of this study is to investigate the use of reactive energetic fuel additives that have the potential to increase the combustion performance of hybrid rocket propellants in terms of solid fuel regression rate and combustion efficiency. Additives that can augment the combustion flame zone in a hybrid rocket motor by means of increased energy feedback to the fuel grain surface are of great interest. Metal hydrides have large volumetric hydrogen densities, which gives these materials high performance potential as fuel additives in terms of specifc impulse. The excess hydrogen and corresponding base metal may also cause an increase in the hybrid rocket solid fuel regression rate. Pyrophoric additives also have potential to increase the solid fuel regression rate by reacting more readily near the burning fuel surface providing rapid energy feedback. An experimental performance evaluation of metal hydride fuel additives for hybrid rocket motor propulsion systems is examined in this study. Hypergolic ignition droplet tests and an accelerated aging study revealed the protection capabilities of Dicyclopentadiene (DCPD) as a fuel binder, and the ability for unaided ignition. Static hybrid rocket motor experiments were conducted using DCPD as the fuel. Sodium borohydride (NabH4) and aluminum hydride (AlH3) were examined as fuel additives. Ninety percent rocket grade hydrogen peroxide (RGHP) was used as the oxidizer. In this study, the sensitivity of solid fuel regression rate and characteristic velocity (C*) efficiency to total fuel grain port mass flux and particle loading is examined. These results were compared to HTPB combustion performance as a baseline. Chamber pressure histories revealed steady motor operation in most tests, with reduced ignition delays when using NabH4 as a fuel additive. The addition of NabH4 and AlH3 produced up to a 47% and 85% increase in regression rate over neat DCPD, respectively. For all test conditions examined C* efficiency ranges

  11. Multiple Tier Fuel Cycle Studies for Waste Transmutation

    International Nuclear Information System (INIS)

    Hill, R.N.; Taiwo, T.A.; Stillman, J.A.; Graziano, D.J.; Bennett, D.R.; Trellue, H.; Todosow, M.; Halsey, W.G.; Baxter, A.

    2002-01-01

    As part of the U.S. Department of Energy Advanced Accelerator Applications Program, a systems study was conducted to evaluate the transmutation performance of advanced fuel cycle strategies. Three primary fuel cycle strategies were evaluated: dual-tier systems with plutonium separation, dual-tier systems without plutonium separation, and single-tier systems without plutonium separation. For each case, the system mass flow and TRU consumption were evaluated in detail. Furthermore, the loss of materials in fuel processing was tracked including the generation of new waste streams. Based on these results, the system performance was evaluated with respect to several key transmutation parameters including TRU inventory reduction, radiotoxicity, and support ratio. The importance of clean fuel processing (∼0.1% losses) and inclusion of a final tier fast spectrum system are demonstrated. With these two features, all scenarios capably reduce the TRU and plutonium waste content, significantly reducing the radiotoxicity; however, a significant infrastructure (at least 1/10 the total nuclear capacity) is required for the dedicated transmutation system. (authors)

  12. Molten salt fuels for treatment of plutonium and radwastes in ADS critical systems

    International Nuclear Information System (INIS)

    Ignatiev, Victor V.

    2000-01-01

    Introduction of the innovative reactor concept of the incinerator type in the future nuclear power system should provide the following: Low Plutonium and Minor Actinides Total Inventory in the Nuclear Fuel Cycle (M) Reduced Actinides Total Losses to Waste (W) Minimal Uranium-235 SupportMinimal Neutron Captures Outside Actinides (Coolant and Structural Material Activation Products). Estimations have shown strong dependence of the first two parameters (M and W), which are responsible for incinerator efficiency, from the burnup (c) reached in the core of an incinerator and the actinides mass flow rate in the fuel cycle (A(t)=G(t)/Q(t), where G(t)=amount of TRU fed to the process during t, and Q(t)=electricity produced during (t)

  13. Cost of fuel cell systems on a mass basis as a function of production volume; Kosten von Brennstoffzellensystemen auf Massenbasis in Abhaengigkeit von der Absatzmenge

    Energy Technology Data Exchange (ETDEWEB)

    Werhahn, Johannes

    2009-07-01

    The currently high cost of fuel cells is determined by expensive materials and low production volume. A detailed understanding of the cost structures reveals unexploited potential that can reduce costs in future. However, this requires a method of predicting costs that can be applied with little effort and which offers both a sufficient degree of detail and also good accuracy. Existing forecasting methods do not, however, fulfil these requirements. The major objective of the present work was to apply mass-specific cost forecasting to fuel cell systems for the first time and to modify the approach for this application. In this method, the cost of an object is estimated solely by means of the object mass with the aid of empirical values (Euro/kg). The advantages of the method are its simple application and the accuracy of the forecast. Due to the considerable complexity of the fuel cell and the heterogeneity of the materials used, the application of mass-specific cost forecasting does not provide the desired benefits on the level of the aggregated system. The mass-specific cost forecast approach was therefore expanded and optimized. Instead of determining costs on the level of the aggregated system, the cost forecast was applied directly to the individual components. Cost parameters were also embedded in the method in order to include component-internal cost-relevant differences. Due to the great influence of the production rate on the manufacturing costs, an additional dependence on number of units was also integrated. Expanding the empirical values from discrete values to distribution functions enabled a detailed error analysis to be performed and also a statistical localization of the predicted production costs. Empirical values are necessary in order to implement the modified method and therefore an extensive data search was performed. To this end, a methodology was developed which comprehensively described the data acquisition and the required data evaluation on

  14. Fabrication of fuel elements on the basis of increased concentration fuel composition

    International Nuclear Information System (INIS)

    Alexandrov, A.B.; Afanasiev, V.L.; Enin, A.A.; Suprun, V.B.

    2004-01-01

    As a part of Russian Program RERTR Reduced Enrichment for Research and Test Reactors), at NCCP, Inc. jointly with the State Scientific Centre VNIINM the mastering in industrial environment of design and fabrication process of fuel elements (FE) with increased concentration fuel compositions is performed. Fuel elements with fuel composition on the basis of dioxide uranium with nearly 4 g/cm 3 fuel concentration have been produced thus confirming the principal possibility of fuel enrichment reduction down to 20% for research reactors which were built up according to the projects of the former USSR, by increasing the oxide fuel concentration in fuel assemblies (FAs). The form and geometrical dimensions of FEs and FAs shall remain unchanged, only uranium mass in FA shall be increased. (author)

  15. Analytic tests and their relation to jet fuel thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Heneghan, S.P.; Kauffman, R.E. [Univ. of Dayton Research Institute, OH (United States)

    1995-05-01

    The evaluation of jet fuel thermal stability (TS) by simple analytic procedures has long been a goal of fuels chemists. The reason is obvious: if the analytic chemist can determine which types of material cause his test to respond, the refiners will know which materials to remove to improve stability. Complicating this quest is the lack of an acceptable quantitative TS test with which to compare any analytic procedures. To circumvent this problem, we recently compiled the results of TS tests for 12 fuels using six separate test procedures. The results covering a range of flow and temperature conditions show that TS is not as dependent on test conditions as previously thought. Also, comparing the results from these tests with several analytic procedures shows that either a measure of the number of phenols or the total sulfur present in jet fuels is strongly indicative of the TS. The phenols have been measured using a cyclic voltammetry technique and the polar material by gas chromatography (atomic emission detection) following a solid phase extraction on silica gel. The polar material has been identified as mainly phenols (by mass spectrometry identification). Measures of the total acid number or peroxide concentration have little correlation with TS.

  16. Canadian fuel cell commercialization roadmap update : progress of Canada's hydrogen and fuel cell industry

    International Nuclear Information System (INIS)

    Filbee, S.; Karlsson, T.

    2009-01-01

    Hydrogen and fuel cells are considered an essential part of future low-carbon energy systems for transportation and stationary power. In recognition of this, Industry Canada has worked in partnership with public and private stakeholders to provide an update to the 2003 Canadian Fuel Cell Commercialization Roadmap to determine infrastructure requirements for near-term markets. The update includes technology and market developments in terms of cost and performance. This presentation included an overview of global hydrogen and fuel cell markets as background and context for the activities of the Canadian industry. Approaches toward commercial viability and mass market success were also discussed along with possible scenarios and processes by which these mass markets could develop. Hydrogen and fuel cell industry priorities were outlined along with recommendations for building a hydrogen infrastructure

  17. JASPAS programme task JC-4: Isotopic and isotope dilution analysis of spent fuel solutions by resin bead mass spectrometry

    International Nuclear Information System (INIS)

    Hayashi, N.; Terakado, S.; Kuno, Y.

    1988-05-01

    The use of resin beads for mass spectrometry of U and Pu has been extensively developed at Oak Ridge National Laboratory in the USA and tested in a number of intercomparison experiments between the Safeguards Analytical Laboratory (SAL) of the IAEA and the Power Reactor and Fuel Development Corporation (PNC) - Tokai Reprocessing Plant (TRP) in Japan. Resin beads represent a convenient way to concentrate the U and Pu in spent fuel dissolver solution samples from reprocessing facilities, with the added advantage that fission product elements and other actinides such as Am are removed. Measurements on the resin bead samples at SAL were performed on the ORNL-designed 2-Stage Mass Spectrometer. For the dried tracer samples, the U measurements were obtained on the VG54E instrument and the Pu results were obtained with the Finnigan MAT 261 of SAL. PNC/TRP used a VG54 mass spectrometer and obtained their mass fractionation correction factor for the resin bead measurements from the mixed tracer plus chemical standard resin bead samples. The Safeguards Laboratory (NMCC) used their MAT 260 instrument and obtained the fractionation correction factor from resin bead standards provided with the TIGR-82 programme. Both PNC/TRP and NMCC reported problems with obtaining a sufficient ion beam intensity with the resin bead samples. This problem was overcome by both labs and further improvements in the loading and measurement techniques can be expected to yield even better results. It has been demonstrated that the resin bed sampling method can provide results of sufficient quality for safeguards purposes. 2 refs, 3 figs, 16 tabs

  18. Improving the characteristics of liquid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sakan, T

    1983-02-04

    In order to improve the operational characteristics of a light boiler fuel (LKT) (based on analogous characteristics for a fuel for an internal combustion engine (DVS)) it is proposed to add ether and alcohol to it. The additive of ether improves the viscosity of the fuel, but reduces the heat creating capability. The addition of ether and alcohol (a 3 to 1 ratio by volume) increases the stability of the mixture. With mixing of 75 total percent of the light boiler fuel (a heat creativity of 9,500 kilocalories per liter and a viscosity of 10 centistokes per 30 degrees) with 25 total percent ether produced a fuel with a heat producing capability of 8,690 kilocalories per liter and a viscosity of 2.3 centistokes. With mixing of 70 total percent light boiler oil and 18 total percent ether and 7 total percent alcohol a fuel with a heat creativity of 8,640 kilocalories per liter and a viscosity of 2.7 centistokes was produced.

  19. Heat and mass transfer analysis intermediate temperature solid oxide fuel cells (IT-SOFC)

    International Nuclear Information System (INIS)

    Timurkutluk, B.; Mat, M. M.; Kaplan, Y.

    2007-01-01

    Solid oxide fuel cells (SOFCs) have been considered as next generation energy conversion system due to their high efficiency, clean and quite operation with fuel flexibility. To date, yittria stabilized zirconia (YSZ) electrolytes have been mainly used for SOFC applications at high temperatures around 1000 degree C because of their high ionic conductivity, chemical stability and good mechanical properties. However, such a high temperature is undesirable for fuel cell operations in the viewpoint of stability. Moreover, high operation temperature necessitates high cost interconnect and seal materials. Thus, the reduction in the operation temperature of SOFCs is one of the key issues in the aspects of the cost reduction and the long term operation without degradation as well as commercialization of the SOFC systems. With the reducing temperature, not only low cost stainless steels and glass materials can be used as interconnect and sealing materials respectively but the manufacturing technology will also extend. Therefore, the design of complex geometrical SOFC component will also be possible. One way to reduce the operation temperature of SOFC is use of an alternative electrolyte material to YSZ showing acceptable properties at intermediate temperatures (600-800 degree C). As being one of IT-SOFC electrolyte materials, gadolinium doped ceria (GDC) has been taken great deals. In this study, a mathematical model for mass and heat transfer for a single cell GDC electrolyte SOFC system was developed and numerical solutions were evaluated. In order to verify the mathematical model, set of experiments were performed by taking species from four different samples randomly and five various temperature measurements. The numerical results reasonably agree with experimental data

  20. Fabrication of nano-structured UO2 fuel pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kang, Ki Won; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Heon; Kim, Keon Sik; Song, Kun Woo

    2007-01-01

    Nano-structured materials have received much attention for their possibility for various functional materials. Ceramics with a nano-structured grain have some special properties such as super plasticity and a low sintering temperature. To reduce the fuel cycle costs and the total mass of spent LWR fuels, it is necessary to extend the fuel discharged burn-up. In order to increase the fuel burn-up, it is important to understand the fuel property of a highly irradiated fuel pellet. Especially, research has focused on the formation of a porous and small grained microstructure in the rim area of the fuel, called High Burn-up Structure (HBS). The average grain size of HBS is about 300nm. This paper deals with the feasibility study on the fabrication of nano-structured UO 2 pellets. The nano sized UO 2 particles are prepared by a combined process of a oxidation-reducing and a mechanical milling of UO 2 powder. Nano-structured UO 2 pellets (∼300nm) with a density of ∼93%TD can be obtained by sintering nano-sized UO 2 compacts. The SEM study reveals that the microstructure of the fabricated nano-structure UO 2 pellet is similar to that of HBS. Therefore, this bulk nano-structured UO 2 pellet can be used as a reference pellet for a measurement of the physical properties of HBS

  1. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    Science.gov (United States)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  2. Fasting gall bladder volume and lithogenicity in relation to glucose tolerance, total and intra-abdominal fat masses in obese non-diabetic subjects

    DEFF Research Database (Denmark)

    Hendel, H W; Højgaard, L; Andersen, T

    1998-01-01

    OBJECTIVE: To investigate whether total body fat mass or fat distribution and associated metabolic disturbances in glucose and lipid metabolism influence the well known gallstone pathogenetic factors in obese subjects in order to explain why some obese subjects develop gallstones and some do not...... with a specific radioimmunoassay. Insulin sensitivity was measured by the Minimal Model and glucose tolerance by an oral glucose tolerance test (OGTT). Serum lipid concentrations were measured by standard methods. RESULTS: The gallbladder volume in the fasting state increased with increasing intra-abdominal fat...... mass (P=0.006) and was increased in subjects with impaired glucose tolerance (41 vs 27 ml, P=0.001). The lithogenic index was > 1 in all subjects and correlated with total fat mass (P=0.04). CONCLUSION: Gallstone pathogenesis in obesity seems to be influenced by the total body fat mass and its regional...

  3. Regulated and unregulated emissions from a diesel engine fueled with diesel fuel blended with diethyl adipate

    Science.gov (United States)

    Zhu, Ruijun; Cheung, C. S.; Huang, Zuohua; Wang, Xibin

    2011-04-01

    Experiments were carried out on a four-cylinder direct-injection diesel engine operating on Euro V diesel fuel blended with diethyl adipate (DEA). The blended fuels contain 8.1%, 16.4%, 25% and 33.8% by volume fraction of DEA, corresponding to 3%, 6%, 9% and 12% by mass of oxygen in the blends. The engine performance and exhaust gas emissions of the different fuels were investigated at five engine loads at a steady speed of 1800 rev/min. The results indicated an increase of brake specific fuel consumption and brake thermal efficiency when the engine was fueled with the blended fuels. In comparison with diesel fuel, the blended fuels resulted in an increase in hydrocarbon (HC) and carbon monoxide (CO), but a decrease in particulate mass concentrations. The nitrogen oxides (NO x) emission experienced a slight variation among the test fuels. In regard to the unregulated gaseous emissions, formaldehyde and acetaldehyde increased, while 1,3-butadiene, ethene, ethyne, propylene and BTX (benzene, toluene and xylene) in general decreased. A diesel oxidation catalyst (DOC) was found to reduce significantly most of the investigated unregulated pollutants when the exhaust gas temperature was sufficiently high.

  4. Experimental investigation of particle emissions under different EGR ratios on a diesel engine fueled by blends of diesel/gasoline/n-butanol

    International Nuclear Information System (INIS)

    Huang, Haozhong; Liu, Qingsheng; Wang, Qingxin; Zhou, Chengzhong; Mo, Chunlan; Wang, Xueqiang

    2016-01-01

    Highlights: • The effects of EGR and blend fuels on particulate emission were studied in CI engine. • EGR ⩽ 20%, gasoline or n-butanol increases total particulate number concentration. • EGR ⩾ 30%, gasoline or n-butanol reduces total particulate number concentration. • As EGR ratio increased, the particulate mass concentrations of four fuels increased. • Gasoline or n-butanol increases the ratio of sub-25 nm particles number concentration. - Abstract: The particle emission characteristics of a high-pressure common-rail engine under different EGR conditions were investigated, using pure diesel (D100), diesel/gasoline (with a volume ratio of 70:30, D70G30), diesel/n-butanol (with a volume ratio of 70:30, D70B30) and diesel/gasoline/n-butanol (with a volume ratio of 70:15:15, D70G15B15) for combustion. Our results show that, with increasing EGR ratios, the in-cylinder pressure peak decreases and the heat release is delayed for the combustion of each fuel. At an EGR ratio of 30%, the combustion pressure peaks of D70G30, D70B30, D70G15B15 and D100 have similar values; with an EGR ratio of 40%, the combustion pressure peaks and release rate peaks of D70G30 and D70G15B15 are both lower with respect to D100. For small and medium EGR ratios (⩽20%), after the addition of gasoline and/or n-butanol to the fuel, the total particle number concentration (TPNC) increases, while both the soot emissions and the average geometric size of particles decrease. At large EGR ratios (30% and 40%), the TPNC of D70B30, D70G15B15 and D70G20 compared to D100 are reduced by a maximum amount of 74.7%, 66.7% and 28.6%, respectively. As the EGR ratio increases, the total particle mass concentration increases gradually for all four fuels. Blending gasoline or/and n-butanol into diesel induces an increase in the number concentration of sub-25 nm particles (PN25) which may be harmful in terms of health. However, the PN25 decreases with increasing the EGR ratio for all the tested fuels

  5. Quality control for total evaporation technique by surface/thermal ionization mass spectrometer

    International Nuclear Information System (INIS)

    Kato, Seikou; Inoue, Sinichi; Yamaguchi, Katsuyuki; Tsutaki, Yasuhiro

    2007-01-01

    For the measurement of uranium and plutonium isotopic composition, the surface/thermal ionization mass spectrometry is widely used at the both nuclear facilities and safeguards verification laboratories. The progress of instrument specification makes higher sensitivity. The total evaporation technique is one of the latest measurement techniques by using this progress, in which all of uranium or plutonium on the filament would be evaporated by increasing the filament current. The accuracy and precision of this technique is normally checked by using the certified isotope reference materials measurement. But the fluctuation of ion beam is very different by each filament, depending on the chemical form of evaporation. So, it should be considered how to check the measurement quality of unknown samples which has no certified values. This presentation is focused on the monitoring of ion yields and pattern of isotope ratio fluctuation to attain the traceability between reference material and unknown sample as quality control approach of total evaporation technique. (author)

  6. Fuel-cycle cost comparisons with oxide and silicide fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1982-01-01

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data are presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed

  7. Lead Slowing-Down Spectrometry Time Spectral Analysis for Spent Fuel Assay: FY12 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kulisek, Jonathan A.; Anderson, Kevin K.; Casella, Andrew M.; Siciliano, Edward R.; Warren, Glen A.

    2012-09-28

    Executive Summary Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration, of which PNNL is a part, to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10% typical of today’s confirmatory methods. This document is a progress report for FY2012 PNNL analysis and algorithm development. Progress made by PNNL in FY2012 continues to indicate the promise of LSDS analysis and algorithms applied to used fuel assemblies. PNNL further refined the semi-empirical model developed in FY2011 based on singular value decomposition (SVD) to numerically account for the effects of self-shielding. The average uncertainty in the Pu mass across the NGSI-64 fuel assemblies was shown to be less than 3% using only six calibration assemblies with a 2% uncertainty in the isotopic masses. When calibrated against the six NGSI-64 fuel assemblies, the algorithm was able to determine the total Pu mass within <2% uncertainty for the 27 diversion cases also developed under NGSI. Two purely empirical algorithms were developed that do not require the use of Pu isotopic fission chambers. The semi-empirical and purely empirical algorithms were successfully tested using MCNPX simulations as well applied to experimental data measured by RPI using their LSDS. The algorithms were able to describe the 235U masses of the RPI measurements with an average uncertainty of 2.3%. Analyses were conducted that provided valuable insight with regard to design requirements (e

  8. Separation and mass spectrometry of nanogram quantities of uranium and thorium from thorium-uranium dioxide fuels

    International Nuclear Information System (INIS)

    Green, L.W.; Elliot, N.L.; Longhurst, T.H.

    1983-01-01

    A microchemical procedure was developed for the separation and isotopic analysis of U and Th from irradiated (Th,U)O 2 fuel. The separation procedure consisted of two stages; in the first a tributyl phosphate impregnated resin bead was equilibrated with the dissolved fuel in 0.08 M HF/6 M HNO 3 solution. The bead sorbed approximately 1.7 μg of U and 4.8μg of Th and provided good separation of these from the fission products. In the second stage, the U and Th were back-extracted into 0.025 M HF/8 M HNO 3 solution, which contained a small anion-exchange membrane disk. The disk adsorbed approximately 14 ng of U and 45 ng of Th, and subsequently was transferred to the ionizing filament of a thermal-ionization mass spectrometer and covered with a starch deposit. Sensitivities were sufficiently high for sequential analysis of these quantities of Th and U from a single disk. Isotopic data obtained for a combined U and Th standard showed excellent agreement with certified values: overall bias and precision were < 0.03% and 0.2% relative standard deviation, respectively, for both elements. The applicability of the procedure to uranium fuels was also demonstrated. 6 figures, 2 tables

  9. Separation and mass spectrometry of nanogram quantities of uranium and thorium from thorium-uranium dioxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Green, L.W.; Elliot, N.L.; Longhurst, T.H

    1983-07-01

    A convenient and sensitive microchemical procedure was developed for the separation and isotopic analysis of U and Th from irradiated (Th,U)O{sub 2} fuel. The separation procedure consisted of two stages; in the first a tributyl phosphate impregnated resin bead was equilibrated with the dissolved fuel in 0.08 M HF/6 M HNO{sub 3} solution. The bead sorbed approximately 1.7 {mu}g of U and 4.8 {mu}g of Th and provided good separation of these from the fission products. In the second stage, the U and Th were back-extracted into 0.025 M HF/8 M HNO{sub 3} solution, which contained a small anion-exchange membrane disk. The disk adsorbed approximately 14 ng of U and 45 ng of Th, and subsequently was transferred to the ionizing filament of a thermal-ionization mass spectrometer and covered with a starch deposit. Sensitivities were sufficiently high for sequential analysis of these quantities of Th and U from a single disk. Isotopic data obtained for a combined U and Th standard showed excellent agreement with certified values: overall bias and precision were < -0.03% and 0.2% relative standard deviation, respectively, for both elements. The applicability of the procedure to uranium fuels was also demonstrated. (author)

  10. Multi-layer membrane model for mass transport in a direct ethanol fuel cell using an alkaline anion exchange membrane

    Science.gov (United States)

    Bahrami, Hafez; Faghri, Amir

    2012-11-01

    A one-dimensional, isothermal, single-phase model is presented to investigate the mass transport in a direct ethanol fuel cell incorporating an alkaline anion exchange membrane. The electrochemistry is analytically solved and the closed-form solution is provided for two limiting cases assuming Tafel expressions for both oxygen reduction and ethanol oxidation. A multi-layer membrane model is proposed to properly account for the diffusive and electroosmotic transport of ethanol through the membrane. The fundamental differences in fuel crossover for positive and negative electroosmotic drag coefficients are discussed. It is found that ethanol crossover is significantly reduced upon using an alkaline anion exchange membrane instead of a proton exchange membrane, especially at current densities higher than 500 A m

  11. Analysis of diffusive mass transport in a cracked buffer

    International Nuclear Information System (INIS)

    Garisto, N.C.; Garisto, F.

    1989-11-01

    In the disposal vault design for the Canadian Nuclear Fuel Waste Management Program, cylindrical containers of used nuclear fuel would be placed in vertical boreholes in rock and surrounded with a bentonite-based buffer material. The buffer is expected to absorb and/or retard radionuclides leaching from the fuel after the containers fail. There is some evidence, however, that the buffer may be susceptible to cracking. In this report we investigate numerically the consequences of cracking on uranium diffusion through the buffer. The derivation of the mass-transport equations and the numerical solution method are presented for the solubility-limited diffusion of uranium in a cracked buffer system for both swept-away and semi-impermeable boundary conditions at the rock-buffer interface. The results indicate that for swept-away boundary conditions the total uranium flux through the cracked buffer system is, as expected, greater than through the uncracked buffer. The effect of the cracks is strongly dependent on the ratio D/D eff , where D and D eff are the pore-water and the effective buffer diffusion coefficient, respectively. However, although a decrease in D eff enhances the effect of cracks on the total cumulative flux (relative to the uncracked buffer), it also decreases the total cumulative flux through the cracked buffer system (relative to a cracked buffer with a larger D eff value). Finally, for semi-impermeable boundary conditions, the effect of cracks on the total radionuclide flux is relatively small

  12. Total β-decay energies and masses of tin, antimony and tellurium isotopes in the vicinity of 50132Sn82

    International Nuclear Information System (INIS)

    Lund, E.; Aleklett, K.; Rudstam, G.

    1977-01-01

    Experimental β-decay energies for short-lived isotopes of tin, antimony and tellurium are presented. Mass-separated sources were produced at the on-line isotope separator OSIRIS. By applying β-γ coincidence methods, total β-decay energies have been determined for the following nuclides: 127-131 Sn, 128 130 131 134 Sb and 134 135 Te. The atomic mass excess has been derived for these nuclei, and comparisons are made with mass formula predictions. (Auth.)

  13. Numerical Study of the Dynamic Response of Heat and Mass Transfer to Operation Mode Switching of a Unitized Regenerative Fuel Cell

    Directory of Open Access Journals (Sweden)

    Hong Xiao

    2016-12-01

    Full Text Available Knowledge concerning the complicated changes of mass and heat transfer is desired to improve the performance and durability of unitized regenerative fuel cells (URFCs. In this study, a transient, non-isothermal, single-phase, and multi-physics mathematical model for a URFC based on the proton exchange membrane is generated to investigate transient responses in the process of operation mode switching from fuel cell (FC to electrolysis cell (EC. Various heat generation mechanisms, including Joule heat, reaction heat, and the heat attributed to activation polarizations, have been considered in the transient model coupled with electrochemical reaction and mass transfer in porous electrodes. The polarization curves of the steady-state models are validated by experimental data in the literatures. Numerical results reveal that current density, gas mass fractions, and temperature suddenly change with the sudden change of operating voltage in the mode switching process. The response time of temperature is longer than that of current density and gas mass fractions. In both FC and EC modes, the cell temperature and gradient of gas mass fraction in the oxygen side are larger than that in the hydrogen side. The temperature difference of the entire cell is less than 1.5 K. The highest temperature appears at oxygen-side catalyst layer under the FC mode and at membrane under a more stable EC mode. The cell is exothermic all the time. These dynamic responses and phenomena have important implications for heat analysis and provide proven guidelines for the improvement of URFCs mode switching.

  14. Characterization of urban aerosol in Cork city (Ireland) using aerosol mass spectrometry

    Science.gov (United States)

    Dall'Osto, M.; Ovadnevaite, J.; Ceburnis, D.; Martin, D.; Healy, R. M.; O'Connor, I. P.; Kourtchev, I.; Sodeau, J. R.; Wenger, J. C.; O'Dowd, C.

    2013-05-01

    Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62%), followed by nitrate (15%), sulphate (9%) and ammonium (9%), and chloride (5%). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18%, "biomass burning" organic aerosol (BBOA) comprised 23%, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21%, and finally a species type characterized by primary {m/z} peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).

  15. Characterization of urban aerosol in Cork city (Ireland using aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. Dall'Osto

    2013-05-01

    Full Text Available Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC, sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS and was also found to comprise organic aerosol as the most abundant species (62%, followed by nitrate (15%, sulphate (9% and ammonium (9%, and chloride (5%. Positive matrix factorization (PMF was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA comprised 18%, "biomass burning" organic aerosol (BBOA comprised 23%, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA comprised 21%, and finally a species type characterized by primary extit{m/z}~peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA, but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively.

  16. Effect of cracks in coating on gas release from a fuel microparticle

    International Nuclear Information System (INIS)

    Bondarenko, A.G.; Gudkov, A.N.; Tselishchev, Yu.V.

    1988-01-01

    Effect of cracks in protective coating on gas release from a fuel microparticle is investigated in a general form. A fuel microparticle comprizing a kern, a buffer layer and an external protective coating is considered. The pressure of radioactive inert gases in the microparticle buffer layer is evaluated within the 1000-1800 K temperature range on the base of diffusion-defect-trap transport theory. It is shown that the process of radionuclide adsorption interaction with the coating material leads to a more abrupt than by exponent, weakening of mass transfer coefficient. In this case for long-living isotopes the effect of adsorption processes manifests weaker than for short-living ones. Mass transfer coefficient for the crack system depends sufficiently on the total pressure of gas mixture under the coating while for a single cracks such dependence is not observed. A conclusion is drawn that the obtained ratios can be applied for evaluating the character of fuel microparticle protective coating destruction (single non-intersecting cracks or a crack system) using the data on various nuclide release. These ratios can be also applied for the choice of the coating thichness under which gaseous fission product release from the fuel microparticle in case of its protective coating failure does not exceed the acceptable limits

  17. Technical and economic modelling of processes for liquid fuel production in Europe

    International Nuclear Information System (INIS)

    Bridgwater, A.V.; Double, J.M.

    1991-01-01

    The project which is described had the objective of examining the full range of technologies for liquid fuel production from renewable feedstocks in a technical and economic evaluation in order to identify the most promising technologies. The technologies considered are indirect thermochemical liquefaction (i.e. via gasification) to produce methanol, fuel alcohol or hydrocarbon fuels, direct thermochemical liquefaction or pyrolysis to produce hydrocarbon fuels and fermentation to produce ethanol. Feedstocks considered were wood, refuse derived fuel, straw, wheat and sugar beet. In order to carry out the evaluation, a computer model was developed, based on a unit process approach. Each unit operation is modelled as a process step, the model calculating the mass balance, energy balance and operating cost of the unit process. The results from the process step models are then combined to generate the mass balance, energy balance, capital cost and operating cost for the total process. The results show that the lowest production cost (L7/GJ) is obtained for methanol generated from a straw feedstock, but there is a moderate level of technical uncertainty associated with this result. The lowest production cost for hydrocarbon fuel (L8.6/GJ) is given by the pyrolysis process using a wood feedstock. This process has a high level of uncertainty. Fermentation processes showed the highest production costs, ranging from L14.4/GJ for a simple wood feedstock process to L25.2/GJ for a process based on sugar beet. The important conclusions are as follows: - In every case, the product cost is above current liquid fuel prices; - In most cases the feedstock cost dominates the production cost; -The most attractive products are thermochemically produced alcohol fuels

  18. Technical and economic modelling of processes for liquid fuel production in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Bridgwater, A V; Double, J M [Aston Univ. Birmingham (GB). Dept of Chemical Engineering

    1992-12-31

    The project which is described had the objective of examining the full range of technologies for liquid fuel production from renewable feedstocks in a technical and economic evaluation in order to identify the most promising technologies. The technologies considered are indirect thermochemical liquefaction (i.e. via gasification) to produce methanol, fuel alcohol or hydrocarbon fuels, direct thermochemical liquefaction or pyrolysis to produce hydrocarbon fuels and fermentation to produce ethanol. Feedstocks considered were wood, refuse derived fuel, straw, wheat and sugar beet. In order to carry out the evaluation, a computer model was developed, based on a unit process approach. Each unit operation is modelled as a process step, the model calculating the mass balance, energy balance and operating cost of the unit process. The results from the process step models are then combined to generate the mass balance, energy balance, capital cost and operating cost for the total process. The results show that the lowest production cost (L7/GJ) is obtained for methanol generated from a straw feedstock, but there is a moderate level of technical uncertainty associated with this result. The lowest production cost for hydrocarbon fuel (L8.6/GJ) is given by the pyrolysis process using a wood feedstock. This process has a high level of uncertainty. Fermentation processes showed the highest production costs, ranging from L14.4/GJ for a simple wood feedstock process to L25.2/GJ for a process based on sugar beet. The important conclusions are as follows: - In every case, the product cost is above current liquid fuel prices; - In most cases the feedstock cost dominates the production cost; -The most attractive products are thermochemically produced alcohol fuels.

  19. The Association between Total Protein and Vegetable Protein Intake and Low Muscle Mass among the Community-Dwelling Elderly Population in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Ru-Yi Huang

    2016-06-01

    Full Text Available Sarcopenia, highly linked with fall, frailty, and disease burden, is an emerging problem in aging society. Higher protein intake has been suggested to maintain nitrogen balance. Our objective was to investigate whether pre-sarcopenia status was associated with lower protein intake. A total of 327 community-dwelling elderly people were recruited for a cross-sectional study. We adopted the multivariate nutrient density model to identify associations between low muscle mass and dietary protein intake. The general linear regression models were applied to estimate skeletal muscle mass index across the quartiles of total protein and vegetable protein density. Participants with diets in the lowest quartile of total protein density (<13.2% were at a higher risk for low muscle mass (odds ratio (OR 3.03, 95% confidence interval (CI 1.37–6.72 than those with diets in the highest quartile (≥17.2%. Similarly, participants with diets in the lowest quartile of vegetable protein density (<5.8% were at a higher risk for low muscle mass (OR 2.34, 95% CI 1.14–4.83 than those with diets in the highest quartile (≥9.4%. Furthermore, the estimated skeletal muscle mass index increased significantly across the quartiles of total protein density (p = 0.023 and vegetable protein density (p = 0.025. Increasing daily intakes of total protein and vegetable protein densities appears to confer protection against pre-sarcopenia status.

  20. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Kawada, Toshiyuki; Hirayama, Satoshi; Yoneya, Katsutoshi.

    1980-01-01

    Purpose: To enable load-depending operation as well as moderation for the restriction of operation conditions in the present nuclear reactors, by specifying the essential ingredients and the total weight of the additives to UO 2 fuel substances. Constitution: Two or more additives selected from Al 2 O 3 , B 2 O, CaO, MgO, SiO 2 , Na 2 O and P 2 O 5 are added by the total weight of 2 - 5% to fuel substances consisting of UO 2 or a mixture of UO 2 and PuO 2 . When the mixture is sintered, the strength of the fuel elements is decreased and the fuel-cladding interactions due to the difference in the heat expansion coefficients between the ceramic fuel elements and the metal claddings are decreased to a substantially harmless degree. (Horiuchi, T.)

  1. What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance

    KAUST Repository

    Brett, Daniel J. L.; Kucernak, Anthony R.; Aguiar, Patricia; Atkins, Stephen C.; Brandon, Nigel P.; Clague, Ralph; Cohen, Lesley F.; Hinds, Gareth; Kalyvas, Christos; Offer, Gregory J.; Ladewig, Bradley; Maher, Robert; Marquis, Andrew; Shearing, Paul; Vasileiadis, Nikos; Vesovic, Velisa

    2010-01-01

    Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due

  2. The Study of Prompt and Delayed Muon Induced Fission. I.Total kinetic energies and mass distributions

    NARCIS (Netherlands)

    David, P; Hartfiel, J.; Janszen, H.; Petitjean, C.; Reist, H.W.; Polikanov, S.M.; Konijn, J.; Laat, de C.T.A.M.; Taal, A.; Krogulski, T.; Johansson, T.; Tibell, G.; Achard van Enschut, d' J.F.M.

    1987-01-01

    Mass yield and total kinetic energy release (TKE) distributions of fragments from prompt and delayed muon induced fission, separately, have been measured for the isotopes235U,238U,237Np and242Pu. The distributions from prompt muon induced fission are compared with the corresponding distributions

  3. Determining total hemoglobin mass by means of {sup 13}CO breath analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Marcus; Hering, Peter [Institut fuer Lasermedizin, Universitaetsklinikum Duesseldorf (Germany)

    2010-07-01

    The aim of our investigations is the development of a non-invasive method for the determination of the total hemoglobin mass in the human body by means of Cavity Leak-Out Spectroscopy (CALOS). The mentioned CALOS system utilizes a CO gas laser in the mid infrared region around 5{mu}m. This system allows isotopologue selective online measurements of {sup 13}CO with a sensitivity of 7 ppb.Hz{sup -1/2}. {sup 13}CO is a non radioactive isotopologue occurring in a ratio of about 1.1 % of the natural CO composition. CO is commonly known as a highly toxic gas but it is also endogenously produced during heme degradation. About 80 % of this CO is exhaled yielding to CO concentrations between 1 ppm to 4 ppm in healthy humans. Transportation of CO through the body is established by hemoglobin which has a high affinity towards CO. Because of this fact inhaled CO is taken up by the blood until equilibrium between the alveolar air and the blood is reached. By determining the exhaled CO concentrations before and after the inhalation of a certain amount of CO a measure for the t-Hb mass can be calculated. The enormous advantage of the isotopologue measurement is the very small amount of {sup 13}CO which can be used for harmless CO inhalation. All data necessary for calculating the t-Hb mass are obtained from breath measurements making this method non invasive.

  4. Search for substructure in anti pp total cross section in the 2200 MeV mass region

    International Nuclear Information System (INIS)

    Peaslee, D.C.; DeMarzo, C.; Guerriero, L.

    1975-01-01

    The anti pp total cross section is measured in an apparatus with a small target and high resolution beam in order to supplement previous work by looking for narrow structure that might be hidden in broad-mass bins. One could set limits on the partial widths of bosons coupling to the anti pp system. The product of an unknown production cross section and a partial width was determined. From the data the existence of resolution-sized structure above the smooth fit with the product of cross section and width greater than 7 MeV mb. It can be shown that a Breit--Wigner resonance of spin J coupled to the anti pp system in this region must have partial width GAMMA/sub anti pp/ less than 1.8/(2J + 1) MeV. Also it is found that the broad enhancement observed in the anti pp total cross section persists without modification in an observation with mass resolution six times that of previous work

  5. Material control and accountability aspects of safeguards for the USA 233U/Th fuel recycle plant

    International Nuclear Information System (INIS)

    Carpenter, J.A. Jr.; McNeany, S.R.; Angelini, P.; Holder, N.D.; Abraham, L.

    1978-01-01

    The materials control and accountability aspects of the reprocessing and refabrication of a conceptual large-scale HTGR fuel recycle plant have been discussed. Two fuel cycles were considered. The traditional highly enriched uranium cycle uses an initial or makeup fuel element with a fissile enrichment of 93% 235 U. The more recent medium enriched uranium cycle uses initial or makeup fuel elements with a fissile enrichment less than 20% 235 U. In both cases, 233 U bred from the fertile thorium is recycled. Materials control and accountability in the plant will be by means of a real-time accountability method. Accountability data will be derived from monitoring of total material mass through the processes and a system of numerous assays, both destructive and nondestructive

  6. Aviation Fuel System Reliability and Fail-Safety Analysis. Promising Alternative Ways for Improving the Fuel System Reliability

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2017-01-01

    Full Text Available The paper deals with design requirements for an aviation fuel system (AFS, AFS basic design requirements, reliability, and design precautions to avoid AFS failure. Compares the reliability and fail-safety of AFS and aircraft hydraulic system (AHS, considers the promising alternative ways to raise reliability of fuel systems, as well as elaborates recommendations to improve reliability of the pipeline system components and pipeline systems, in general, based on the selection of design solutions.It is extremely advisable to design the AFS and AHS in accordance with Aviation Regulations АП25 and Accident Prevention Guidelines, ICAO (International Civil Aviation Association, which will reduce risk of emergency situations, and in some cases even avoid heavy disasters.ATS and AHS designs should be based on the uniform principles to ensure the highest reliability and safety. However, currently, this principle is not enough kept, and AFS looses in reliability and fail-safety as compared with AHS. When there are the examined failures (single and their combinations the guidelines to ensure the AFS efficiency should be the same as those of norm-adopted in the Regulations АП25 for AHS. This will significantly increase reliability and fail-safety of the fuel systems and aircraft flights, in general, despite a slight increase in AFS mass.The proposed improvements through the use of components redundancy of the fuel system will greatly raise reliability of the fuel system of a passenger aircraft, which will, without serious consequences for the flight, withstand up to 2 failures, its reliability and fail-safety design will be similar to those of the AHS, however, above improvement measures will lead to a slightly increasing total mass of the fuel system.It is advisable to set a second pump on the engine in parallel with the first one. It will run in case the first one fails for some reasons. The second pump, like the first pump, can be driven from the

  7. Multivariable control system for dynamic PEM fuel cell model

    International Nuclear Information System (INIS)

    Tanislav, Vasile; Carcadea, Elena; Capris, Catalin; Culcer, Mihai; Raceanu, Mircea

    2010-01-01

    Full text: The main objective of this work was to develop a multivariable control system of robust type for a PEM fuel cells assembly. The system will be used in static and mobile applications for different values of power, generated by a fuel cell assembly of up to 10 kW. Intermediate steps were accomplished: a study of a multivariable control strategy for a PEM fuel cell assembly; a mathematic modeling of mass and heat transfer inside of fuel cell assembly, defining the response function to hydrogen and oxygen/air mass flow and inlet pressure changes; a testing stand for fuel cell assembly; experimental determinations of transient response for PEM fuel cell assembly, and more others. To define the multivariable control system for a PEM fuel cell assembly the parameters describing the system were established. Also, there were defined the generic mass and energy balance equations as functions of derivative of m i , in and m i , out , representing the mass going into and out from the fuel cell, while Q in is the enthalpy and Q out is the enthalpy of the unused reactant gases and heat produced by the product, Q dis is the heat dissipated to the surroundings, Q c is the heat taken away from the stack by active cooling and W el is the electricity generated. (authors)

  8. Carbon dioxide emission index as a mean for assessing fuel quality

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. [IMAF Group, Ottawa, ON (Canada)

    2008-07-01

    Carbon dioxide emission index, defined as the amount of CO{sub 2} released per unit of energy value, was used to rate gaseous, liquid and solid fuels. The direct utilization of natural gas is the most efficient option. The conversion of natural gas to synthesis gas for production of liquid fuels represents a significant decrease in fuel value of the former. The fuel value of liquids, such as gasoline, diesel oil, etc. is lower than that of natural gas. Blending gasoline with ethanol obtained either from bio-mass or via synthesis may decrease fuel value of the blend when CO{sub 2} emissions produced during the production of ethanol are included in total emissions. The introduction of liquid fuels produced by pyrolysis and liquefaction of biomass would result in the increase in the CO{sub 2} emissions. The CO{sub 2} emissions from the utilization of coal and petroleum coke are much higher than those from gaseous and liquid fuels. However, for petroleum coke, this is offset by the high value gaseous and liquid fuels that are simultaneously produced during coking. Conversion of low value fuels such as coal and petroleum coke to a high value chemicals via synthesis gas should be assessed as means for replacing natural gas and making it available for fuel applications.

  9. Study on the quench behavior of molten fuel material jet into coolant

    International Nuclear Information System (INIS)

    Abe, Yutaka; Kizu, Tetsuya; Arai, Takahiro; Nariai, Hideki; Chitose, Keiko; Koyama, Kazuya

    2004-01-01

    In a core disruptive accident (CDA) of a Fast Breeder Reactor, the post accident heat removal (PAHR) is crucial for the accident mitigation. The molten core material should be solidified in the sodium coolant in the reactor vessel. In the present experiment, molten material jet is injected into water to experimentally obtain fragments and the visualized information of the fragmentation. The distributed particle behavior of the molten material jet is observed with high-speed video camera. The distributions of the fragmented droplet diameter from the molten material jet are evaluated by correcting the solidified particles. The experimental results of the mean fragmented droplet diameter are compared with the existing theories. Consequently, the fragmented droplet diameter is close to the value estimated based on the Kelvin-Helmholtz instability. Once the particle diameter of the fragmented molten material could be known from a hydrodynamic model, it becomes possible to estimate the mass ratio of the molten particle to the total injected mass by combining an appropriate heat transfer model. The heat transfer model used in the present study is composed of the fragmentation model based on the Kelvin-Helmholtz instability. The mass ratio of the molten fragment to total mass of the melted mixed oxide fuel in sodium coolant estimated in the present study is very small. The result means that most of the molten mixed oxide fuel material injected into the sodium coolant can be cooled down under the solidified temperature, that is so called quenched, if the amount of the coolant is sufficient. (author)

  10. Characterization of spent EBR-II driver fuel

    International Nuclear Information System (INIS)

    McKnight, R. D.

    1998-01-01

    Operations and material control and accountancy requirements for the Fuel Conditioning Facility demand accurate prediction of the mass flow of spent EBR-II driver fuel into the facility. This requires validated calculational tools that can predict the burnup and isotopic distribution in irradiated Zr-alloy fueled driver assemblies. Detailed core-follow depletion calculations have been performed for an extensive series of EBR-II runs to produce a database of material inventories for the spent fuel to be processed. As this fuel is processed, comparison of calculated values with measured data obtained from samples of this fuel is producing a growing set of validation data. A more extensive set of samples and measurements from the initial processing of irradiated driver fuel has produced valuable estimates of the biases and uncertainties in both the measured and calculated values. Results of these comparisons are presented herein and indicate the calculated values adequately predict the mass flows

  11. RSMASS: A simple model for estimating reactor and shield masses

    International Nuclear Information System (INIS)

    Marshall, A.C.; Aragon, J.; Gallup, D.

    1987-01-01

    A simple mathematical model (RSMASS) has been developed to provide rapid estimates of reactor and shield masses for space-based reactor power systems. Approximations are used rather than correlations or detailed calculations to estimate the reactor fuel mass and the masses of the moderator, structure, reflector, pressure vessel, miscellaneous components, and the reactor shield. The fuel mass is determined either by neutronics limits, thermal/hydraulic limits, or fuel damage limits, whichever yields the largest mass. RSMASS requires the reactor power and energy, 24 reactor parameters, and 20 shield parameters to be specified. This parametric approach should be applicable to a very broad range of reactor types. Reactor and shield masses calculated by RSMASS were found to be in good agreement with the masses obtained from detailed calculations

  12. Effects of clamping force on the water transport and performance of a PEM (proton electrolyte membrane) fuel cell with relative humidity and current density

    International Nuclear Information System (INIS)

    Cha, Dowon; Ahn, Jae Hwan; Kim, Hyung Soon; Kim, Yongchan

    2015-01-01

    The clamping force should be applied to a proton electrolyte membrane (PEM) fuel cell due to its structural characteristics. The clamping force affects the ohmic and mass transport resistances in the PEM fuel cell. In this study, the effects of the clamping force on the water transport and performance characteristics of a PEM fuel cell are experimentally investigated with variations in the relative humidity and current density. The water transport characteristics were analyzed by calculating the net drag coefficient. The ohmic resistance decreased with the increase in the clamping force due to the reduced contact resistance and more even membrane hydration. However, the mass transport resistance increased with the increase in the clamping force due to the gas diffusion layer compression. The net drag coefficient decreased with the increase in the clamping force due to high water back-diffusion. Additionally, the relationship between the total resistance and the net drag coefficient was investigated. - Highlights: • Effects of clamping force on the performance of a PEM fuel cell are investigated. • Water transport characteristics are analyzed using net drag coefficient. • Ohmic resistance decreased with clamping force, but mass transport resistance increased. • Net drag coefficient decreased with the increase in clamping force. • Total resistance was significantly degraded for a net drag coefficient below 0.2.

  13. REFLOS, Fuel Loading and Cost from Burnup and Heavy Atomic Mass Flow Calculation in HWR

    International Nuclear Information System (INIS)

    Boettcher, W.; Schmidt, E.

    1969-01-01

    1 - Nature of physical problem solved: REFLOS is a programme for the evaluation of fuel-loading schemes in heavy water moderated reactors. The problems involved in this study are: a) Burn-up calculation for the reactor cell. b) Determination of reactivity behaviour, power distribution, attainable burn-up for both the running-in period and the equilibrium of a 3-dimensional heterogeneous reactor model; investigation of radial fuel movement schemes. c) Evaluation of mass flows of heavy atoms through the reactor and fuel cycle costs for the running-in, the equilibrium, and the shut down of a power reactor. If the subroutine for treating the reactor cell were replaced by a suitable routine, other reactors with weakly absorbing moderators could be analyzed. 2 - Method of solution: Nuclear constants and isotopic compositions of the different fuels in the reactor are calculated by the cell-burn-up programme and tabulated as functions of the burn-up rate (MWD/T). Starting from a known state of the reactor, the 3-dimensional heterogeneous reactor programme (applying an extension of the technique of Feinberg and Galanin) calculates reactivity and neutron flux distribution using one thermal and one or two fast neutron groups. After a given irradiation time, the new state of the reactor is determined, and new nuclear constants are assigned to the various defined locations in the reactor. Reloading of fuel may occur if the prescribed life of the reactor is reached or if the effective multiplication factor or the power form factor falls below a specified level. The scheme of reloading to be carried out is specified by a load vector, giving the number of channels to be discharged, the kind of movement from one to another channel and the type of fresh fuel to be charged for each single reloading event. After having determined the core states characterizing the equilibrium period, and having decided the fuel reloading scheme for the running-in period of the reactor life, the fuel

  14. Radioactive decay properties of CANDU fuel. Volume 1: the natural uranium fuel cycle

    International Nuclear Information System (INIS)

    Clegg, L.J.; Coady, J.R.

    1977-01-01

    The computer code CANIGEN was used to obtain the mass, activity, decay heat and toxicity of CANDU fuel and its component isotopes. Data are also presented on gamma spectra and neutron emissions. Part 1 presents these data for unirradiated fuel, uranium ore and uranium mill tailings. In Part 2 they have been computed for fuel irradiated to levels of burnup ranging from 140 GJ/kg U to 1150 GJ/kg U. (author)

  15. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  16. Leak testing fuel stored in the ICPP fuel storage basin

    International Nuclear Information System (INIS)

    Lee, J.L.; Rhodes, D.W.

    1977-06-01

    Irradiated fuel to be processed at the Idaho Chemical Processing Plant is stored under water at the CPP-603 Fuel Storage Facility. Leakage of radionuclides through breaks in the cladding of some of the stored fuels contaminates the water with radionuclides resulting in radiation exposure to personnel during fuel handling operations and contamination of the shipping casks. A leak test vessel was fabricated to test individual fuel assemblies which were suspected to be leaking. The test equipment and procedures are described. Test results demonstrated that a leaking fuel element could be identified by this method; of the eleven fuel assemblies tested, six were estimated to be releasing greater than 0.5 Ci total radionuclides/day to the basin water

  17. Radioactive decay properties of CANDU fuel. Volume 1: the natural uranium fuel cycle

    International Nuclear Information System (INIS)

    Clegg, L.J.; Coady, J.R.

    1977-01-01

    The two books of Volume 1 comprise the first in a three-volume series of compilations on the radioactive decay propertis of CANDU fuel and deal with the natural uranium fuel cycle. Succeeding volumes will deal with fuel cycles based on plutonium recycle and thorium. In Volume 1 which is divided into three parts, the computer code CANIGEN was used to obtain the mass, activity, decay heat and toxicity of CANDU fuel and its component isotopes. Data are also presented on gamma spectra and neutron emissions. Part 3 contains the data relating to the plutonium product and the high level wastes produced during fuel reprocessing. (author)

  18. Chromatography–mass spectrometry in aerospace industry

    International Nuclear Information System (INIS)

    Buryak, Alexey K; Serduk, T M

    2013-01-01

    The applications of chromatography–mass spectrometry in aerospace industry are considered. The primary attention is devoted to the development of physicochemical grounds of the use of various chromatography–mass spectrometry procedures to solve topical problems of this industry. Various methods for investigation of the composition of rocket fuels, surfaces of structural materials and environmental media affected by aerospace activities are compared. The application of chromatography–mass spectrometry for the development and evaluation of processes for decontaminations of equipment, industrial wastes and soils from rocket fuel components is substantiated. The bibliography includes 135 references.

  19. The Mass Tracking System for the Integral Fast Reactor fuel cycle

    International Nuclear Information System (INIS)

    Adams, C.H.; Beitel, J.C.; Birgersson, G.; Bucher, R.G.; Carrico, C.B.; Daly, T.A.; Keyes, R.W.

    1994-01-01

    As part of the Fuel Cycle Facility (FCF) of Argonne National Laboratory's Integral Fast Reactor (IFR) demonstration, a computer-based Mass-Tracking (MTG) System has been developed. The MTG System collects, stores, retrieves and processes data on all operations which directly affect the flow of process material through FCF and supports such activities as process modeling, compliance with operating limits (e.g., criticality safety), material control and accountability and operational information services. Its architecture is client/server, with input and output connections to operator's equipment-control stations on the floor of FCF as well as to terminal sessions. Its heterogeneous database includes a relational-database manager as well as both binary and ASCII data files. The design of the database, and the software that supports it, is based on a model of discrete accountable items distributed in space and time and constitutes a complete historical record of the material processed in FCF. Although still under development, much of the MTG System has been qualified and is in production use

  20. Two-phase, mass-transport model for direct methanol fuel cells with effect of non-equilibrium evaporation and condensation

    Science.gov (United States)

    Yang, W. W.; Zhao, T. S.

    A two-phase, mass-transport model for liquid-feed direct methanol fuel cells (DMFCs) is developed by taking into account the effect of non-equilibrium evaporation and condensation of methanol and water. The comparison between the present model and other models indicates that the present model yields more reasonable predictions of cell performance. Particularly, it is shown that the models that invoke a thermodynamic-equilibrium assumption between phases will overestimate mass-transport rates of methanol and water, thereby resulting in an inaccurate prediction of cell performance. The parametric study using the present model reveals that the gas coverage at the flow channel-diffusion-layer interface is directly related to the gas-void fraction inside the anode porous region; increasing the gas-void fraction will increase the mass-transfer resistance of methanol and thus lower cell performance. The effects of the geometric dimensions of the cell structure, such as channel width and rib width, on cell performance are also investigated with the model developed in this work.

  1. Total molecular gas masses of Planck - Herschel selected strongly lensed hyper luminous infrared galaxies

    Science.gov (United States)

    Harrington, K. C.; Yun, M. S.; Magnelli, B.; Frayer, D. T.; Karim, A.; Weiß, A.; Riechers, D.; Jiménez-Andrade, E. F.; Berman, D.; Lowenthal, J.; Bertoldi, F.

    2018-03-01

    We report the detection of CO(1-0) line emission from seven Planck and Herschel selected hyper luminous ({L_{IR (8-1000{μ m})} > 10^{13} L_{⊙}) infrared galaxies with the Green Bank Telescope (GBT). CO(1-0) measurements are a vital tool to trace the bulk molecular gas mass across all redshifts. Our results place tight constraints on the total gas content of these most apparently luminous high-z star-forming galaxies (apparent IR luminosities of LIR > 1013 - 14 L⊙), while we confirm their predetermined redshifts measured using the Large Millimeter Telescope, LMT (zCO = 1.33-3.26). The CO(1-0) lines show similar profiles as compared to Jup = 2-4 transitions previously observed with the LMT. We report enhanced infrared to CO line luminosity ratios of = 110 ± 22 L_{⊙} (K km s^{-1} pc^{-2})^{-1} compared to normal star-forming galaxies, yet similar to those of well-studied IR-luminous galaxies at high-z. We find average brightness temperature ratios of 〈 r21〉 = 0.93 (2 sources), 〈 r31〉 = 0.34 (5 sources), and 〈 r41〉 = 0.18 (1 source). The r31 and r41 values are roughly half the average values for SMGs. We estimate the total gas mass content as {μ M_{H2} = (0.9-27.2) × 10^{11} (α _CO/0.8) M_{⊙}, where μ is the magnification factor and αCO is the CO line luminosity to molecular hydrogen gas mass conversion factor. The rapid gas depletion times, = 80} Myr, reveal vigorous starburst activity, and contrast the Gyr depletion time-scales observed in local, normal star-forming galaxies.

  2. Analysis of fuel sodium interaction in a fast breeder reactor

    International Nuclear Information System (INIS)

    Tezuka, M.; Suzuki, K.; Sasanuma, K.; Nagasima, K.; Kawaguchi, O.

    A code ''SUGAR'' has been developed to evaluate molten Fuel Sodium Interaction (FSI) in a fast breeder reactor. This code computes thermohydrodynamic behavior by heat transfer from fuel to sodium and dynamic deformation of reactor structures simultaneously. It was applied to evaluate FSI in local fuel melting accident in a fuel assembly and in core disassembly accident for the 300MWe fast breeder reactor under development in Japan. The analytical methods of the SUGAR code are mainly shown in the following: 1) the thermal and dynamic model of FSI is mainly based on Cho-Wright's model; 2) the axial and radial expansions of surroundings of FSI region are calculated with one-dimensional and compressive hydrodynamics equation; 3) the structure response is calculated with one-dimensional and dynamic stress equation. Our studies show that mass of fuel interacted with sodium, ratio of fuel mass to sodium mass, fuel particle size, heat transfer coefficient from fuel to sodium, and structure's force have great effect on pressure amplitude and deformation of reactor structures

  3. LH2 fuel tank design for SSTO

    Science.gov (United States)

    Wright, Geoff

    1994-01-01

    This report will discuss the design of a liquid hydrogen fuel tank constructed from composite materials. The focus of this report is to recommend a design for a fuel tank which will be able to withstand all static and dynamic forces during manned flight. Areas of study for the design include material selection, material structural analysis, heat transfer, thermal expansion, and liquid hydrogen diffusion. A structural analysis FORTRAN program was developed for analyzing the buckling and yield characteristics of the tank. A thermal analysis Excel spreadsheet was created to determine a specific material thickness which will minimize heat transfer through the wall of the tank. The total mass of the tank was determined by the combination of both structural and thermal analyses. The report concludes with the recommendation of a layered material tank construction. The designed system will include exterior insulation, combination of metal and organize composite matrices and honeycomb.

  4. Surface and canopy fuels vary widely in 24-yr old postfire lodgepole pine forests

    Science.gov (United States)

    Nelson, K. N.; Turner, M.; Romme, W. H.; Tinker, D. B.

    2013-12-01

    Extreme fire seasons have become common in western North America, and the extent of young postfire forests has grown as fire frequency and annual area burned have increased. These young forests will set the stage for future fires, but an assessment of fuel loads in young forests is lacking. The rate of fuel re-accumulation and fuels variability in postfire forest landscapes is needed to anticipate future fire occurrence and behavior in the American West. We studied fuel characteristics in young lodgepole pine forests that regenerated after the 1988 fires in Yellowstone National Park to address two questions: (1) How do surface fuel characteristics change with time-since-fire? (2) How do canopy and surface fuels vary across the Yellowstone landscape 24 years postfire? During summer 2012, we re-measured surface fuels in 11 plots that were established in 1996 (8 yrs post fire), and we measured surface and canopy fuels in 82 stands (each 0.25 ha) distributed across the Yellowstone post-1988 fire landscape. In the remeasured plots, surface fuel loads generally increased over the last 16 years. One-hr fuels did not change between sample dates, but all other fuel classes (i.e., 10-hr, 100-hr, and 1000-hr) increased by a factor of two or three. Within the sample timeframe, variability of fuel loads within stands decreased significantly. The coefficients of variation decreased for all fuel classes by 23% to 67%. Data from the 82 plots revealed that canopy and surface fuels in 24-year-old stands varied tremendously across the Yellowstone landscape. Live tree densities spanned 0 to 344,067 trees ha-1, producing a mean available canopy fuel load of 7.7 Mg ha-1 and a wide range from 0 to 47 Mg ha-1. Total surface fuel loads averaged 130 Mg ha-1 and ranged from 49 to 229 Mg ha-1, of which 90% was in the 1000-hr fuel class. The mass of fine surface fuels (i.e., litter/duff, 1-hr, 10-hr, and herbaceous fuels) and canopy fuels (i.e., foliage and 1-hr branches) were strongly and

  5. A totally automated data acquisition/reduction system for routine treatment of mass spectroscopic data by factor analysis

    International Nuclear Information System (INIS)

    Tway, P.C.; Love, L.J.C.; Woodruff, H.B.

    1980-01-01

    Target transformation factor analysis is applied to typical data from gas chromatography-mass spectrometry and solid-probe mass spectrometry to determine rapidly the number of components in unresolved or partially resolved peaks. This technique allows the detection of hidden impurities which often make interpretation or quantification impossible. The error theory of Malinowski is used to assess the reliability of the results. The totally automated system uses a commercially available g.c.-m.s. data system interfaced to the large computer, and the number of components under a peak can be determined routinely and rapidly. (Auth.)

  6. X-ray vision of fuel sprays

    International Nuclear Information System (INIS)

    Wang, J.

    2005-01-01

    With brilliant synchrotron X-ray sources, microsecond time-resolved synchrotron X-ray radiography and tomography have been used to elucidate the detailed three-dimensional structure and dynamics of high-pressure high-speed fuel sprays in the near-nozzle region. The measurement allows quantitative determination of the fuel distribution in the optically impenetrable region owing to the multiple scattering of visible light by small atomized fuel droplets surrounding the jet. X-radiographs of the jet-induced shock waves prove that the fuel jets become supersonic under appropriate injection conditions and that the quantitative analysis of the thermodynamic properties of the shock waves can also be derived from the most direct measurement. In other situations where extremely axial-asymmetric sprays are encountered, mass deconvolution and cross-sectional fuel distribution models can be computed based on the monochromatic and time-resolved X-radiographic images collected from various rotational orientations of the sprays. Such quantitative analysis reveals the never-before-reported characteristics and most detailed near-nozzle mass distribution of highly transient fuel sprays

  7. Comparison of nodal staging with lean body mass based and with total body weight based in lung cancer

    International Nuclear Information System (INIS)

    Lee, H. Y.; Chung, J. K.; Kang, W. J.; So, Y.; Lee, D. S.; Lee, M. C.

    2004-01-01

    The standardized uptake (SUV) is semiquantitative evaluation parameter in positron emission tomography (PET). But there is no consensus about the application or process of SUV measurement. In this study, we used measured lean body mass (LBM) and total weight for application in SUV measurement. Also we compared the each nodal staging with SUV between measured LBM, and total weight, in non small cell lung cancer (NSCLC). Total 21 patients with lung cancer were enrolled (M:F=17:4, age 45[+-]8 years). PET-CT was done before operation with Gemini (Philips, Milpitas, U.S.). Each image was reconstructed twice with measured weight and lean body mass. Maximum SUVs of 103 dissected lymph nodes were measured and compared with histological result. For the deciding on the cut off value, receiver operating characteristic (ROC) analysis was done. 14 lymph nodes in the 103 dissected lymph nodes were metastatic lesions. From the ROC analysis, the cut off value of SUV was 1.7 with measured LBM and 2.3 with total weight. With measured LBM, Sensitivity and specificity were 92.5%. 78.2% and area under curve was 0.881. With total weight, sensitivity and specificity was 92.5% and 77%, Area under curve was 0.859. The normalization of SUV could be done with measured LBM. With the normalization of SUV with LBM, the nodal staging of NSCLC using SUV could be more accurate than using total weight in the reconstruction and measurement of SUV for lymph node lesions

  8. Inflight fuel tank temperature survey data

    Science.gov (United States)

    Pasion, A. J.

    1979-01-01

    Statistical summaries of the fuel and air temperature data for twelve different routes and for different aircraft models (B747, B707, DC-10 and DC-8), are given. The minimum fuel, total air and static air temperature expected for a 0.3% probability were summarized in table form. Minimum fuel temperature extremes agreed with calculated predictions and the minimum fuel temperature did not necessarily equal the minimum total air temperature even for extreme weather, long range flights.

  9. Motor vehicle fuel economy, the forgotten HC control stragegy?

    Energy Technology Data Exchange (ETDEWEB)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  10. Increased body mass index is a predisposition for treatment by total hip replacement

    DEFF Research Database (Denmark)

    Jacobsen, Steffen; Sonne-Holm, Stig

    2005-01-01

    We investigated the radiological and epidemiological data of 4,151 subjects followed up from 1976 to 2003 to determine individual risk factors for hip osteoarthritis (OA), hip pain and/or treatment by total hip replacement (THR). Pelvic radiographs recorded in 1992 were assessed for evidence of hip......-joint degeneration and dysplasia. Sequential body mass index (BMI) measurements from 1976 to 1992, age, exposure to daily lifting and hip dysplasia were entered into logistic regression analyses. The prevalence of hip dysplasia ranged from 5.4% to 12.8% depending on the radiographical index used. Radiological hip OA...

  11. Correlation of rocket propulsion fuel properties with chemical composition using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry followed by partial least squares regression analysis.

    Science.gov (United States)

    Kehimkar, Benjamin; Hoggard, Jamin C; Marney, Luke C; Billingsley, Matthew C; Fraga, Carlos G; Bruno, Thomas J; Synovec, Robert E

    2014-01-31

    There is an increased need to more fully assess and control the composition of kerosene-based rocket propulsion fuels such as RP-1. In particular, it is critical to make better quantitative connections among the following three attributes: fuel performance (thermal stability, sooting propensity, engine specific impulse, etc.), fuel properties (such as flash point, density, kinematic viscosity, net heat of combustion, and hydrogen content), and the chemical composition of a given fuel, i.e., amounts of specific chemical compounds and compound classes present in a fuel as a result of feedstock blending and/or processing. Recent efforts in predicting fuel chemical and physical behavior through modeling put greater emphasis on attaining detailed and accurate fuel properties and fuel composition information. Often, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is employed to provide chemical composition information. Building on approaches that used GC-MS, but to glean substantially more chemical information from these complex fuels, we recently studied the use of comprehensive two dimensional (2D) gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOFMS) using a "reversed column" format: RTX-wax column for the first dimension, and a RTX-1 column for the second dimension. In this report, by applying chemometric data analysis, specifically partial least-squares (PLS) regression analysis, we are able to readily model (and correlate) the chemical compositional information provided by use of GC×GC-TOFMS to RP-1 fuel property information such as density, kinematic viscosity, net heat of combustion, and so on. Furthermore, we readily identified compounds that contribute significantly to measured differences in fuel properties based on results from the PLS models. We anticipate this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an

  12. Criticality safety studies for plutonium–uranium metal fuel pin fabrication facility

    International Nuclear Information System (INIS)

    Stephen, Neethu Hanna; Reddy, C.P.

    2013-01-01

    Highlights: ► Criticality safety limits for PUMP-F facility is identified. ► The fissile mass which can be handled safely during alloy preparation is 10.5 kg. ► The number of fuel slugs which can be handled safely during injection casting is 53. ► The number of fuel slugs which can be handled safely after fuel fabrication is 71. - Abstract: This study focuses on the criticality safety during the fabrication of fast reactor metal fuel pins comprising of the fuel type U–15Pu, U–19Pu and U–19Pu–6Zr in the Plutonium–Uranium Metal fuel Pin fabrication Facility (PUMP-F). Maximum amount of fissile mass which can be handled safely during master alloy preparation, Injection casting and fuel slug preparation following fuel pin fabrication were identified and fixed based on this study. In the induction melting furnace, the fissile mass can be limited to 10.5 kg. During fuel slug preparation and fuel pin fabrication, fuel slugs and pins were arranged in hexagonal and square lattices to identify the most reactive configuration. The number of fuel slugs which can be handled safely after injection casting can be fixed to be 53, whereas after fuel fabrication it is 71

  13. Entropy generation analysis of a proton exchange membrane fuel cell (PEMFC) with a fermat spiral as a flow distributor

    International Nuclear Information System (INIS)

    Rangel-Hernandez, V.H.; Damian-Ascencio, C.; Juarez-Robles, D.; Gallegos-Munoz, A.; Zaleta-Aguilar, A.; Plascencia-Mora, H.

    2011-01-01

    The present paper aims at investigating the main sources of irreversibility in a Proton Exchange Membrane Fuel Cell (PEMFC) using a Fermat spiral as flow distributor and also to direct possible improvements in its design. The numerical analysis is based on a finite volume technique with a SIMPLE algorithm as numerical procedure. In order to have a more complete and rigorous analysis a new dimensionless parameter is proposed here. The parameter represents the ratio of the entropy generation due to mass transfer to the total entropy generation is proposed here. Results demonstrate that the main sources of irreversibility in a fuel cell are the concentration losses for the most part of the operational domain, whereas the heat transfer effect is not dominant. -- Highlights: → PEM Fuel Cell with Fermat Spiral as distributor. → Causes of irreversibilities. → A new dimensionless parameter to determine contribution of mass transfer in entropy generation.

  14. Description of reactor fuel breeding with three integral concepts

    International Nuclear Information System (INIS)

    Ott, K.O.; Hanan, N.A.; Maudlin, P.J.; Borg, R.C.

    1979-01-01

    The time-dependent breeding of fuel in a growing system of breeder reactors can be characterized by the transitory (instantaneous) growth rate, γ(t). The three most important aspects of γ(t) can be expressed by time-independent integral concepts. Two of these concepts are in widespread use. A third integral concept that links the two earlier ones is introduced. The time-dependent growth rate has an asymptotic value, γ/sup infinity/, the equilibrium growth rate, which is the basis for the calculation of the doubling time. The equilibrium growth rate measures the breeding capability and represents a reactor property. Maximum deviation of γ(t) and γ/sup infinity/ generally appears at the initial startup of the reactor, where γ(t = 0) = γ 0 . This deviation is due to the difference between the initial and asymptotic fuel inventory composition. The initial growth rate can be considered a second integral concept; it characterizes the breeding of a particular fuel in a given reactor. Growth rates are logarithmic derivatives of the growing mass of fuel in breeder reactors, especially γ/sup infinity/, which describes the asymptotic growth by exp(γ/sup infinity/t). There is, however, a variation in the fuel-mass factor in front of this exponential function during the transition from γ 0 to γ/sup infinity/. It is shown that this variation of the fuel mass during transitioncan be described by a third integral concept, termed the breeding bonus, b. The breeding bonus measures the quality of a fuel for its use in a given reactor in terms of its impact on the magnitude of the asymptotically growing fuel mass. The calculation of γ 0 and γ/sup infinity/ is facilitated by use of the critical mass (CM) worths and the breeding worth factors, respectively

  15. Geomechanics of the Spent Fuel Test: Climax

    International Nuclear Information System (INIS)

    Wilder, D.G.; Yow, J.L. Jr.

    1987-07-01

    Three years of geomechanical measurements were made at the Spent Fuel Test-Climax (SFT-C) 1400 feet underground in fractured granitic rock. Heating of the rock mass resulted from emplacement of spent fuel as well as the heating by electrical heaters. Cooldown of the rock occurred after the spent fuel was removed and the heaters were turned off. The measurements program examines both gross and localized responses of the rock mass to thermal loading, to evaluate the thermomechanical response of sheared and fractured rock with that of relatively unfractured rock, to compare the magnitudes of displacements during mining with those induced by extensive heating of the rock mass, and to check assumptions regarding symmetry and damaged zones made in numerical modeling of the SFT-C. 28 refs., 113 figs., 10 tabs

  16. Determination of Vaporization Properties and Volatile Hazardous Components Relevant to Kukersite Oil Shale Derived Fuel Oil Handling

    Directory of Open Access Journals (Sweden)

    Ada TRAUMANN

    2014-09-01

    Full Text Available The aim of this study was to investigate vaporization properties of shale fuel oil in relation to inhalation exposure. The shale fuel oil was obtained from kukersite oil shale. The shale oil and its light fraction (5 % of the total fuel oil were characterized by vapor pressure curve, molecular weight distribution, elemental composition and functional groups based on FTIR spectra. The rate of vaporization from the total fuel oil at different temperatures was monitored as a function of time using thermogravimetric analysis (TGA. It is shown that despite its relatively low vapor pressure at room temperature a remarkable amount of oil vaporizes influencing air quality significantly. From the TGA data the changes in the vapor pressure during vaporization process were estimated. Although the shale fuel oil has a strong, unpleasant smell, the main hazards to workplace air quality depend on the vaporization rate of different toxic compounds, such as benzene, toluene, xylene or phenolic compounds. The presence of these hazardous substances in the vapor phase of shale fuel oil was monitored using headspace analysis coupled with selective ion monitoring (SIM and confirmed by the NIST Mass Spectral library and retention times of standards. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4549

  17. Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, A.T.; McKee, R.W.; Daling, P.M.; Konzek, G.J.; Ludwick, J.D.; Purcell, W.L.

    1986-10-01

    There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction.

  18. Measurement of fuel importance distribution in non-uniformly distributed fuel systems

    International Nuclear Information System (INIS)

    Yamane, Yoshihiro; Hirano, Yasushi; Yasui, Hazime; Izima, Kazunori; Shiroya, Seiji; Kobayashi, Keiji.

    1995-01-01

    A reactivity effect due to a spatial variation of nuclear fuel concentration is an important problem for nuclear criticality safety in a reprocessing plant. As a theory estimating this reactivity effect, the Goertzel and fuel importance theories are well known. It has been shown that the Goertzel's theory is valid in the range of our experiments based on measurements of reactivity effect and thermal neutron flux in non-uniformly distributed fuel systems. On the other hand, there have been no reports concerning systematic experimental studies on the flatness of fuel importance which is a more general index than the Goertzel's theory. It is derived from the perturbation theory that the fuel importance is proportional to the reactivity change resulting from a change of small amount of fuel mass. Using a uniform and three kinds of nonuniform fuel systems consisting of 93.2% enriched uranium plates and polyethylene plates, the fuel importance distributions were measured. As a result, it was found experimentally that the fuel importance distribution became flat, as its reactivity effect became large. Therefore it was concluded that the flatness of fuel importance distribution is the useful index for estimating reactivity effect of non-uniformly distributed fuel system. (author)

  19. Modern approach to the problem of fossil gas fuels replacement by alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Soroka, Boris [Gas Institute, National Academy of Sciences, Kiev (Ukraine)

    2013-07-01

    New scientific and engineering fundamentals of fuels substitution have been developed instead of obsolete methodology “Interchangeability of Fuel Gases” developed in USA and existing from the middle of XX{sup th} century. To perform the complex prediction of total or partial substitution of given flow rate of natural gas NG for alternative gases AG the following parameters are to be predicted: plant utilization efficiencies – regarding fuel and energy utilization, the last in form of heat Ș{sub H} and exergy Ș{sub eff} efficiencies, saving or overexpenditure of the NG flow rate in the gas mixture with AG, specific fuel consumption b f and specific issue of harmful substances C{sub t} – pollutants in the combustion products (C{sub NO{sub x}} ) and greenhouse gases (C {sub CO{sub 2}} ). Certification of alternative gas fuels and fuel mixtures as a commodity products is carried out in frame of our approach with necessary set of characteristics, similar to those accepted in the world practice. Key words: alternative fuel, fuel replacement (substitution), natural gas, process gases, theoretical combustion temperature, thermodynamic equilibrium computations, total enthalpy.

  20. New Developments in Actinides Burning with Symbiotic LWR-HTR-GCFR Fuel Cycles

    International Nuclear Information System (INIS)

    Bomboni, Eleonora

    2008-01-01

    The long-term radiotoxicity of the final waste is currently the main drawback of nuclear power production. Particularly, isotopes of Neptunium and Plutonium along with some long-lived fission products are dangerous for more than 100000 years. 96% of spent Light Water Reactor (LWR) fuel consists of actinides, hence it is able to produce a lot of energy by fission if recycled. Goals of Generation IV Initiative are reduction of long-term radiotoxicity of waste to be stored in geological repositories, a better exploitation of nuclear fuel resources and proliferation resistance. Actually, all these issues are intrinsically connected with each other. It is quite clear that these goals can be achieved only by combining different concepts of Gen. IV nuclear cores in a 'symbiotic' way. Light-Water Reactor - (Very) High Temperature Reactor ((V)HTR) - Fast Reactor (FR) symbiotic cycles have good capabilities from the viewpoints mentioned above. Particularly, HTR fuelled by Plutonium oxide is able to reach an ultra-high burn-up and to burn Neptunium and Plutonium effectively. In contrast, not negligible amounts of Americium and Curium build up in this core, although the total mass of Heavy Metals (HM) is reduced. Americium and Curium are characterised by an high radiological hazard as well. Nevertheless, at least Plutonium from HTR (rich in non-fissile nuclides) and, if appropriate, Americium can be used as fuel for Fast Reactors. If necessary, dedicated assemblies for Minor Actinides (MA) burning can be inserted in Fast Reactors cores. This presentation focuses on combining HTR and Gas Cooled Fast Reactor (GCFR) concepts, fuelled by spent LWR fuel and depleted uranium if need be, to obtain a net reduction of total mass and radiotoxicity of final waste. The intrinsic proliferation resistance of this cycle is highlighted as well. Additionally, some hints about possible Curium management strategies are supplied. Besides, a preliminary assessment of different chemical forms of

  1. Advances in fuel cell vehicle design

    Science.gov (United States)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  2. Quantification of total hexose on dry blood spot by tandem mass spectrometry.

    Science.gov (United States)

    Gong, Zhenhua; Tian, Guoli; Huang, Qiwei; Wang, Yanmin; Ge, Qingwei

    2012-12-01

    Because hypoglycemia and hyperglycemia are harmful and not always associated with overt clinical signs, it is necessary to have methods available to screen for glucose levels to detect hypoglycemia and diabetes as early as possible. A new method for such screening and the clinical determination of blood total hexose on a dry blood spot (DBS) using tandem mass spectrometry (MS/MS) was developed. The serum glucose controls and blood were prepared as DBS and then extracted into a methanol solution containing isotope-labeled internal standards. The methanolic extraction was subjected to HPLC, followed by MS/MS in positive ion mode. Multiple-reaction monitoring of m/z 203.1→23 was used to detect hexose, and m/z 209.0→23 was used for 13C6-D-glucose. The recoveries of blood glucose by MS/MS were 90%-102% with an R(2) value of 0.999 after linear regression (pblood total hexose in neonates aged 3-7 days (6.41±1.46 mmol/L) was lower than that in neonates aged 8-30 days (6.66±1.38 mmol/L), and it was lower in neonates than in children aged 1-72 months (7.19±1.87 mmol/L). Quantification of total hexose on a dry blood spot by MS/MS is accurate, reliable and feasible for screening and clinical tests. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. NOx emissions from high swirl turbulent spray flames with highly oxygenated fuels

    KAUST Repository

    Bohon, Myles

    2013-01-01

    Combustion of fuels with fuel bound oxygen is of interest from both a practical and a fundamental viewpoint. While a great deal of work has been done studying the effect of oxygenated additives in diesel and gasoline engines, much less has been done examining combustion characteristics of fuels with extremely high mass fractions of fuel bound oxygen. This work presents an initial investigation into the very low NOx emissions resulting from the combustion of a model, high oxygen mass fraction fuel. Glycerol was chosen as a model fuel with a fuel bound oxygen mass fraction of 52%, and was compared with emissions measured from diesel combustion at similar conditions in a high swirl turbulent spray flame. This work has shown that high fuel bound oxygen mass fractions allow for combustion at low global equivalence ratios with comparable exhaust gas temperatures due to the significantly lower concentrations of diluting nitrogen. Despite similar exhaust gas temperatures, NOx emissions from glycerol combustion were up to an order of magnitude lower than those measured using diesel fuel. This is shown to be a result not of specific burner geometry, but rather is influenced by the presence of higher oxygen and lower nitrogen concentrations at the flame front inhibiting NOx production. © 2012 The Combustion Institute.

  4. Heat and mass transfer of a fuel droplet evaporating in oscillatory flow

    International Nuclear Information System (INIS)

    Jangi, M.; Kobayashi, H.

    2009-01-01

    A numerical study of the heat and mass transfer from an evaporating fuel droplet in oscillatory flow was performed. The flow was assumed to be laminar and axisymmetric, and the droplet was assumed to maintain its spherical shape during its lifetime. Based on these assumptions, the conservation equations in a general curvilinear coordinate were solved numerically. The behaviors of droplet evaporation in the oscillatory flow were investigated by analyzing the effects of flow oscillation on the evaporation process of a n-heptane fuel droplet at high pressure. The response of the time history of the square of droplet diameter and space-averaged Nusselt numbers to the main flow oscillation were investigated in frequency band of 1-75 Hz with various oscillation amplitudes. Results showed that, depending on the frequency and amplitude of the oscillation, there are different modes of response of the evaporation process to the flow oscillation. One response mode is synchronous with the main flow oscillation, and thus the quasi-steady condition is attained. Another mode is asynchronous with the flow oscillation and is highly unsteady. As for the evaporation rate, however, in all conditions is more greatly enhanced in oscillatory flow than in quiescent air. To quantify the conditions of the transition from quasi-steady to unsteady, the response of the boundary layer around the droplet surface to the flow oscillation was investigated. The results led to including the oscillation Strouhal number as a criteria for the transition. The numerical results showed that at a low Strouhal number, a quasi-steady boundary layer is formed in response to the flow oscillation, whereas by increasing the oscillation Strouhal number, the phenomena become unsteady.

  5. Refuse derived fuel incineration: Fuel gas monitoring and analysis

    International Nuclear Information System (INIS)

    Ranaldi, E.; Coronidi, M.; De Stefanis, P.; Di Palo, C.; Zagaroli, M.

    1993-11-01

    Experience and results on refuse derived fuel (selected from municipal solid wastes) incineration are reported. The study involved the investigation of inorganic compounds (heavy metals, acids and toxic gases) emissions, and included feeding materials and incineration residues characterization and mass balance

  6. Chemical composition of air masses transported from Asia to the U.S. West Coast during ITCT 2K2: Fossil fuel combustion versus biomass-burning signatures

    Science.gov (United States)

    de Gouw, J. A.; Cooper, O. R.; Warneke, C.; Hudson, P. K.; Fehsenfeld, F. C.; Holloway, J. S.; Hübler, G.; Nicks, D. K., Jr.; Nowak, J. B.; Parrish, D. D.; Ryerson, T. B.; Atlas, E. L.; Donnelly, S. G.; Schauffler, S. M.; Stroud, V.; Johnson, K.; Carmichael, G. R.; Streets, D. G.

    2004-12-01

    As part of the Intercontinental Transport and Chemical Transformation experiment in 2002 (ITCT 2K2), a National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft was used to study the long-range transport of Asian air masses toward the west coast of North America. During research flights on 5 and 17 May, strong enhancements of carbon monoxide (CO) and other species were observed in air masses that had been transported from Asia. The hydrocarbon composition of the air masses indicated that the highest CO levels were related to fossil fuel use. During the flights on 5 and 17 May and other days, the levels of several biomass-burning indicators increased with altitude. This was true for acetonitrile (CH3CN), methyl chloride (CH3Cl), the ratio of acetylene (C2H2) to propane (C3H8), and, on May 5, the percentage of particles measured by the particle analysis by laser mass spectrometry (PALMS) instrument that were attributed to biomass burning based on their carbon and potassium content. An ensemble of back-trajectories, calculated from the U.S. west coast over a range of latitudes and altitudes for the entire ITCT 2K2 period, showed that air masses from Southeast Asia and China were generally observed at higher altitudes than air from Japan and Korea. Emission inventories estimate the contribution of biomass burning to the total emissions to be low for Japan and Korea, higher for China, and the highest for Southeast Asia. Combined with the origin of the air masses versus altitude, this qualitatively explains the increase with altitude, averaged over the whole ITCT 2K2 period, of the different biomass-burning indicators.

  7. Rotary kiln and batch pyrolysis of waste tire to produce gasoline and diesel like fuels

    International Nuclear Information System (INIS)

    Ayanoğlu, Abdulkadir; Yumrutaş, Recep

    2016-01-01

    Highlights: • Waste Tire Oil (WTO) is produced from waste tire at rotary kiln reactor. • Physical and chemical properties of WTO and fuel samples are analyzed. • Gasoline like fuel (GLF) and diesel like fuel (DLF) are produced from the WTO-10 wt% CaO mixture at fixed bed reactor. • Physical and chemical properties of the GLF and DLF are compared with the standard fuels. - Abstract: In this study, waste tire is pyrolyzed in a rotary kiln reactor to obtain more gas, light liquid, heavy liquid, wax products, and less carbon black at their maximum yields as, 20%, 12%, 25%, 8% and 35% of the total weight (4 tones), respectively. Then, the heavy and light oils are reacted with additives such as natural zeolite (NZ) and lime (CaO) at different mass ratio as 2, 6, and 10 wt%, respectively, in the batch reactor to produce liquids similar to standard petroleum fuels. The heavy and light oils mixture samples are distillated to observe their optimum graphics which are similar to gasoline and diesel like fuel. Consequently, the best results are obtained from the CaO sample with 10 wt% in comparison to the ones from the gasoline and diesel fuels. The 10 wt% CaO light liquid mixture resembles to gasoline named as gasoline like fuel (GLF) and the 10 wt% CaO heavy liquid mixture is similar to diesel called as diesel like fuel (DLF). The chemical and physical features of the waste tire, light oil, heavy oil, GLF, and DLF are analyzed by TG (thermogravimetric)/dTG (derivative thermogravimetric), proximate, ultimate, higher heating value (HHV), fourier transform-infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET), sulfur, density, viscosity, gas chromatography–mass spectroscopy (GC–MS), flash point, moisture, and distillation tests. The test results are turned out to be very close to the standard petroleum fuel.

  8. Molten fuel-coolant interaction behaviours of various fast reactor fuels (Paper No. HMT-45-87)

    International Nuclear Information System (INIS)

    Doshi, J.B.

    1987-01-01

    A parametric computational model of molten fuel-coolant interaction (MFCI) including a particle size distribution is developed and employed to analyse behaviours of various possible reactor fuels, such as oxide, carbide and metal in MFCI scenario. It is observed that while higher thermal conductivity and lower specific heat of carbide compared to oxide is responsible for higher peak pressure and work done per unit mass, the trend is not observed in the metal fuel. The reason for this is the lower operation temperature and latent heat of metallic fuel. (author). 9 refs., 1 fig

  9. Towards proliferation-resistant thorium fuels

    International Nuclear Information System (INIS)

    Alhaj, M. Yousif; Mohamed, Nader M.A.; Badawi, Alya; Abou-Gabal, Hanaa H.

    2017-01-01

    Thorium-plutonium mixture is proposed as alternative nuclear reactor fuel to incinerate the increasing stockpile plutonium. However, this fuel will produce an amount of uranium with about 90% 233U at applicable discharge burnups (60GWD/MTU). This research focuses on proposing an optimum non proliferative thorium fuel, by adding a small amount of 238U to reduce the attractiveness of the resultant uranium. Three types of additive which contain 238U were used: 4.98% enriched, natural and depleted uranium. We found that introducing uranium to the fresh thorium-plutonium fuel reduces its performance even if the uranium was enriched up to 5%. While uranium admixtures reduce the quality of the reprocessed uranium, it also increases the quality of the plutonium. However, this increase is very low compared to the reduced quality of uranium. We also found that using uranium as admixture for thorium-plutonium mixed fuel increases the critical mass of the extracted uranium by a factor of two when using only 1% admixture of uranium. The higher the percentage of uranium admixture the higher the critical mass of the reprocessed one.

  10. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    International Nuclear Information System (INIS)

    Roake, W.E.

    1977-01-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals

  11. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    Energy Technology Data Exchange (ETDEWEB)

    Roake, W E [Westinghouse-Hanford Co., Richland, WA (United States)

    1977-04-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals.

  12. Nanofluidic fuel cell

    Science.gov (United States)

    Lee, Jin Wook; Kjeang, Erik

    2013-11-01

    Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.

  13. Fission induced swelling and creep of U–Mo alloy fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Cheon, J.S. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Robinson, A.B.; Wachs, D.M. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2013-06-15

    Tapering of U–Mo alloy fuel at the end of plates is attributed to lateral mass transfer by fission induced creep, by which fuel mass is relocated away from the fuel end region where fission product induced fuel swelling is in fact the highest. This mechanism permits U–Mo fuel to achieve high burnup by effectively relieving stresses at the fuel end region, where peak stresses are otherwise expected because peak fission product induced fuel swelling occurs there. ABAQUS FEA was employed to examine whether the observed phenomenon can be simulated using physical–mechanical data available in the literature. The simulation results obtained for several plates with different fuel fabrication and loading scheme showed that the measured data were able to be simulated with a reasonable creep rate coefficient. The obtained creep rate constant lies between values for pure uranium and MOX, and is greater than all other ceramic uranium fuels.

  14. Anticipating Potential Waste Acceptance Criteria for Defense Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Rechard, R.P.; Lord, M.E.; Stockman, C.T.; McCurley, R.D.

    1997-01-01

    The Office of Environmental Management of the U.S. Department of Energy is responsible for the safe management and disposal of DOE owned defense spent nuclear fuel and high level waste (DSNF/DHLW). A desirable option, direct disposal of the waste in the potential repository at Yucca Mountain, depends on the final waste acceptance criteria, which will be set by DOE's Office of Civilian Radioactive Waste Management (OCRWM). However, evolving regulations make it difficult to determine what the final acceptance criteria will be. A method of anticipating waste acceptance criteria is to gain an understanding of the DOE owned waste types and their behavior in a disposal system through a performance assessment and contrast such behavior with characteristics of commercial spent fuel. Preliminary results from such an analysis indicate that releases of 99Tc and 237Np from commercial spent fuel exceed those of the DSNF/DHLW; thus, if commercial spent fuel can meet the waste acceptance criteria, then DSNF can also meet the criteria. In large part, these results are caused by the small percentage of total activity of the DSNF in the repository (1.5%) and regulatory mass (4%), and also because commercial fuel cladding was assumed to provide no protection

  15. Mass and Heat Transfer in Ion-Exchange Membranes Applicable to Solid Polymer Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Otteroey, M

    1996-04-01

    In this doctoral thesis, an improved emf method for determination of transference numbers of two counter ions in ion-exchange membranes is presented. Transference numbers were obtained as a continuous function of the composition. The method avoids problems with diffusion by using a stack of membranes. Water transference coefficients in ion-exchange membranes is discussed and reversible and irreversible water transfer is studied by emf methods. Efforts were made to get data relevant to the solid polymer fuel cell. The results support the findings of other researchers that the reversible water transfer is lower than earlier predicted. A chapter on the conductivity of ion-exchange membranes establishes a method to separate the very thin liquid layers surrounding the membranes in a stack. Using the method it was found that the conductivity is obtained with high accuracy and that the liquid layer in a membrane stack can contribute significantly to the total measured resistance. A four point impedance method was tested to measure the conductivity of membranes under fuel cell conditions. Finally, there is a discussion of reversible heat effects and heat transfer in ion-exchange membranes. 155 refs., 45 figs., 13 tabs.

  16. Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline?

    International Nuclear Information System (INIS)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.; Kuhn, I.F. Jr.

    2000-01-01

    Fuel cell vehicles can be powered directly by hydrogen or, with an onboard chemical processor, other liquid fuels such as gasoline or methanol. Most analysts agree that hydrogen is the preferred fuel in terms of reducing vehicle complexity, but one common perception is that the cost of a hydrogen infrastructure would be excessive. According to this conventional wisdom, the automobile industry must therefore develop complex onboard fuel processors to convert methanol, ethanol or gasoline to hydrogen. We show here, however, that the total fuel infrastructure cost to society including onboard fuel processors may be less for hydrogen than for either gasoline or methanol, the primary initial candidates currently under consideration for fuel cell vehicles. We also present the local air pollution and greenhouse gas advantages of hydrogen fuel cell vehicles compared to those powered by gasoline or methanol. (Author)

  17. Advanced fuel cycles and burnup increase of WWER-440 fuel

    International Nuclear Information System (INIS)

    Proselkov, V.; Saprykin, V.; Scheglov, A.

    2003-01-01

    Analyses of operational experience of 4.4% enriched fuel in the 5-year fuel cycle at Kola NPP Unit 3 and fuel assemblies with Uranium-Gadolinium fuel at Kola NPP Unit 4 are made. The operability of WWER-440 fuel under high burnup is studied. The obtained results indicate that the fuel rods of WWER-440 assemblies intended for operation within six years of the reviewed fuel cycle totally preserve their operability. Performed analyses have demonstrated the possibility of the fuel rod operability during the fuel cycle. 12 assemblies were loaded into the reactor unit of Kola 3 in 2001. The predicted burnup in six assemblies was 59.2 MWd/kgU. Calculated values of the burnup after operation for working fuel assemblies were ∼57 MWd/kgU, for fuel rods - up to ∼61 MWd/kgU. Data on the coolant activity, specific activity of the benchmark iodine radionuclides of the reactor primary circuit, control of the integrity of fuel rods of the assemblies that were operated for six years indicate that not a single assembly has reached the criterion for the early discharge

  18. A New Dynamic Model for Nuclear Fuel Cycle System Analysis

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Ko, Won Il

    2014-01-01

    The evaluation of mass flow is a complex process where numerous parameters and their complex interaction are involved. Given that many nuclear power countries have light and heavy water reactors and associated fuel cycle technologies, the mass flow analysis has to consider a dynamic transition from the open fuel cycle to other cycles over decades or a century. Although an equilibrium analysis provides insight concerning the end-states of fuel cycle transitions, it cannot answer when we need specific management options, whether the current plan can deliver these options when needed, and how fast the equilibrium can be achieved. As a pilot application, the government brought several experts together to conduct preliminary evaluations for nuclear fuel cycle options in 2010. According to Table 1, they concluded that the closed nuclear fuel cycle has long-term advantages over the open fuel cycle. However, it is still necessary to assess these options in depth and to optimize transition paths of these long-term options with advanced dynamic fuel cycle models. A dynamic simulation model for nuclear fuel cycle systems was developed and its dynamic mass flow analysis capability was validated against the results of existing models. This model can reflects a complex combination of various fuel cycle processes and reactor types, from once-through to multiple recycling, within a single nuclear fuel cycle system. For the open fuel cycle, the results of the developed model are well matched with the results of other models

  19. Comparison of ammonia and methanol applied indirectly in a hydrogen fuel cell

    International Nuclear Information System (INIS)

    Metkemeijer, R.; Achard, P.

    1993-01-01

    A comparison is presented between ammonia and methanol, applied indirectly in a hydrogen/air fuel cell. The calculations concentrate on specific energy of the fuels (amount of electricity produced per mass of fuel), specific energy of the fuels corrected for the mass and volume of the tank, and the overall energy efficiency (amount of electricity produced by one kg of fuel divided by the amount of energy needed for the production of one kg of this fuel). Taking into consideration the differences in efficiencies between the acid fuel cell and the alkaline fuel cells, the reformer temperatures, the reforming efficiencies, and some ecological and economical considerations, it appears that ammonia is a more interesting fuel than methanol for certain applications. 6 figs., 2 tabs

  20. Special Issue: Aviation Alternative Fuels

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2014-12-01

    Full Text Available The investigation of aviation alternative fuels has increased significantly in recent years in an effort to reduce the environment and climate impact by aviation industry. Special requirements have to be met for qualifying as a suitable aviation fuel. The fuel has to be high in energy content per unit of mass and volume, thermally stable and avoiding freezing at low temperatures. There are also many other special requirements on viscosity, ignition properties and compatibility with the typical aviation materials. There are quite a few contending alternative fuels which can be derived from coal, natural gas and biomass.[...

  1. Development of PHWR fuel fabrication in Korea

    International Nuclear Information System (INIS)

    Suh, K.S.; Yang, M.S.; Kim, D.H.; Rim, C.S.

    1988-01-01

    Korea Advanced Energy Research Institute (KAERI) started a research project to develop the PHWR (CANDU) nuclear fuel fabrication technology in 1981. Based on the results of the intensive developmental work, several prototype fuel bundles were fabricated and tested in the Hot Test Loop at KAERI continuously in 1983 and 1984. After that, irradiation test and post-irradiation examination were carried out for two KAERI-made fuel bundles at Chalk River Nuclear Laboratories in Canada in 1984. Since the results of in-pile and out-of-pile tests with prototype fuel bundles proved to be satisfactory, 48 additional fuel bundles were loaded in Wolsung reactor (CANDU) in 1984 and 1985, and all of them were discharged without a defect after excellent performance in the power reactor. In 1985, the Korean government decided that KAERI supplies all the fuel necessary for the Wolsung reactor. For the mass production of nuclear fuel bundle, several process equipment, facilities and automation methods have been improved making use of experience accumulated during research. A quality assurance program was also established, and quality inspection technology was reviewed and improved to fit the mass production. This paper deals with the development experience so far obtained with the design and fabrication of the Korean PHWR fuel

  2. Total surface area change of Uranium dioxide fuel in function of burn-up and its impact on fission gas release during neutron irradiation for small, intermediate and high burn-up

    International Nuclear Information System (INIS)

    Szuta, M.

    2011-01-01

    In the early published papers it was observed that the fractional fission gas release from the specimen have a tendency to increase with the total surface area of the specimen - a fairy linear relationship was indicated. Moreover it was observed that the increase of total surface area during irradiation occurs in the result of connection the closed porosity with the open porosity what in turn causes the increase of fission gas release. These observations let us surmise that the process of knock-out release is the most significant process of fission gas release since its quantity is proportional to the total surface area. Review of the experiments related to the increase of total surface area in function of burn-up is presented in the paper. For very high burn-up the process of grain sub-division (polygonization) occurs under condition that the temperature of irradiated fuel lies below the temperature of grain re-crystallization. Simultaneously with the process of polygonization, the increase in local porosity and the decrease in local density in function of burn-up occurs, which leads to the increase of total surface area. It is suggested that the same processes take place in the transformed fuel as in the original fuel, with the difference that the total surface area is so big that the whole fuel can be treated as that affected by the knock-out process. This leads to explanation of the experimental data that for very high burn-up (>120 MWd/kgU) the concentration of xenon is constant. An explanation of the grain subdivision process in function of burn-up in the 'athermal' rim region in terms of total surface area, initial grain size and knock-out release is undertaken. Correlation of the threshold burn-up, the local fission gas concentration, local total surface area, initial and local grain size and burn-up in the rim region is expected. (author)

  3. WWER-440 fuel cycles possibilities using improved fuel assemblies design

    International Nuclear Information System (INIS)

    Mikolas, P.; Svarny, J.

    2008-01-01

    Practically five years cycle has been achieved in the last years at NPP Dukovany. There are two principal means how it could be achieved. First, it is necessary to use fuel assemblies with higher fuel enrichment and second, to use fuel loading with very low leakage. Both these conditions are fulfilled at NPP Dukovany at this time. It is known, that the fuel cycle economy can be improved by increasing the fuel residence time in the core up to six years. There are at least two ways how this goal could be achieved. The simplest way is to increase enrichment in fuel. There exists a limit, which is 5.0 w % of 235 U. Taking into account some uncertainty, the calculation maximum is 4.95 w % of 235 U. The second way is to change fuel assembly design. There are several possibilities, which seem to be suitable from the neutron - physical point of view. The first one is higher mass content of uranium in a fuel assembly. The next possibility is to enlarge pin pitch. The last possibility is to 'omit' FA shroud. This is practically unrealistic; anyway, some other structural parts must be introduced. The basic neutron physical characteristics of these cycles for up-rated power are presented showing that the possibilities of fuel assemblies with this improved design in enlargement of fuel cycles are very promising. In the end, on the basis of neutron physical characteristics and necessary economical input parameters, a preliminary evaluation of economic contribution of proposals of advanced fuel assemblies on fuel cycle economy is presented (Authors)

  4. Transportation of nuclear fuel

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1979-01-01

    Shipment of used fuel from nuclear reactors to a central fuel management facility is discussed with particular emphasis on the assessment of the risk to the public due to these shipments. The methods of transporting used fuel in large shipping containers is reviewed. In terms of an accident scenario, it is demonstrated that the primary risk of transport of used fuel is due to injury and death in common road accidents. The radiological nature of the used fuel cargo is, for all practical purposes, an insignificant factor in the total risk to the public. (author)

  5. Oxidation behavior of fuel cladding tube in spent fuel pool accident condition

    International Nuclear Information System (INIS)

    Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro; Nakashima, Kazuo; Tojo, Masayuki

    2017-01-01

    In spent fuel pool (SFP) under loss-of-cooling or loss-of-coolant severe accident condition, the spent fuels will be exposed to air and heated by their own residual decay heat. Integrity of fuel cladding is crucial for SFP safety therefore study on cladding oxidation in air at high temperature is important. Zircaloy-2 (Zry2) and zircaloy-4 (Zry4) were applied for thermogravimetric analyses (TGA) in different temperatures in air at different flow rates to evaluate oxidation behavior. Oxidation rate increased with testing temperature. In a range of flow rate of air which is predictable in spent fuel lack during a hypothetical SFP accident, influence of flow rate was not clearly observed below 950degC for the Zry2, or below 1050degC for Zry4. In higher temperature, oxidation rate was higher in high rate condition, and this trend was seen clearer when temperature increased. Oxide layers were carefully examined after the TGA analyses and compared with mass gain data to investigate detail of oxidation process in air. It was revealed that the mass gain data in pre-breakaway regime reflects growth of dense oxide film on specimen surface, meanwhile in post-breakaway regime, it reflects growth of porous oxide layer beneath fracture of the dense oxide film. (author)

  6. Potential utilization of biodiesel as alternative fuel for compression ignition engine in Malaysia

    Science.gov (United States)

    Wahab, M. A.; Ma'arof, M. I. N.; Ahmad, I. N.; Husain, H.

    2017-10-01

    Biodiesel is a type of fuel which is derived from various sources of vegetable plants and waste fuels. Today, numerous biodiesels have been engineered to be at par or even better in term of performance in comparison to pure diesel. Therefore, biodiesel has shown a promising sign as one of the best candidate in overcoming total dependency on pure diesel. This paper gives review on various tests and experiments conducted on biodiesel in order to highlight the potentials given by this particular fuel. In addition, providing the supporting evidences to further endorse for a mass usage of biodiesel in Malaysia - simultaneously, driving the country to become a potential global biodiesel producer in the near future. The reviewed studies were obtained mainly via indexed journals and online libraries. Conclusively, every test and study for every blend of biodiesel had shown consistent positive results in regards to performance and in overcoming emission related issues. Thus, providing the evidence that biodiesel is highly reliable. Malaysia as a semi-agricultural nation could take the advantage in becoming one of the leading global biodiesel producers. Nevertheless, this will requires total cooperation of every concerned government bodies and authorities.

  7. The impact of the fuel chemical composition on volatile organic compounds emitted by an in-service aircraft gas turbine engine

    Science.gov (United States)

    Setyan, A.; Kuo, Y. Y.; Brem, B.; Durdina, L.; Gerecke, A. C.; Heeb, N. V.; Haag, R.; Wang, J.

    2017-12-01

    Aircraft emissions received increased attention recently because of the steady growth of aviation transport in the last decades. Aircraft engines substantially contribute to emissions of particulate matter and gaseous pollutants in the upper and lower troposphere. Among all the pollutants emitted by aircrafts, volatile organic compounds (VOCs) are particularly important because they are mainly emitted at ground level, posing a serious health risk for people living or working near airports. A series of measurements was performed at the aircraft engine testing facility of SR Technics (Zürich airport, Switzerland). Exhausts from an in-service turbofan engine were sampled at the engine exit plane by a multi-point sampling probe. A wide range of instruments was connected to the common sampling line to determine physico-chemical characteristics of non-volatile particulate matter and gaseous pollutants. Conventional Jet A-1 fuel was used as the base fuel, and measurements were performed with the base fuel doped with two different mixtures of aromatic compounds (Solvesso 150 and naphthalene-depleted Solvesso 150) and an alternative fuel (hydro-processed esters and fatty acids [HEFA] jet fuel). During this presentation, we will show results obtained for VOCs. These compounds were sampled with 3 different adsorbing cartridges, and analyzed by thermal desorption gas chromatography/mass spectrometry (TD-GC/MS, for Tenax TA and Carboxen 569) and by ultra-performance liquid chromatography/ mass spectrometry (UPLC/MS, for DNPH). The total VOC concentration was also measured with a flame ionization detector (FID). In addition, fuel samples were also analyzed by GC/MS, and their chemical compositions were compared to the VOCs emitted via engine exhaust. Total VOCs concentrations were highest at ground idle (>200 ppm C at 4-7% thrust), and substantially lower at high thrust (engine were mainly constituted of alkanes, oxygenated compounds, and aromatics. More than 50 % of the

  8. Ten residual biomass fuels for circulating fluidized-bed gasification

    Energy Technology Data Exchange (ETDEWEB)

    Drift, A. van der; Doorn, J. van [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Vermeulen, J.W. [NV Afvalzorg, Haarlem (Netherlands)

    2001-07-01

    In co-operation with a Dutch company (NV Afvalzorg) and the Dutch agency for energy and environment (Novem), ECN has successfully tested 10 different biomass residues in its 500 kW{sub th} circulating fluidized-bed gasification facility. Among the fuels used as demolition wood (both puree and mixed with sewage sludge and paper sludge), verge grass, railroad ties, cacao shells and different woody fuels. Railroad ties turn out to contain very little (heavy) metals. Initially, fuel feeding problems often impeded smooth operation. Contrary to feeding systems, the circulating fluidized-bed gasification process itself seems very flexible concerning the conversion of different kinds of biomass fuels. The fuel moisture content is one of the most important fuel characteristics. More moisture means that more air is needed to maintain the process temperature resulting in better carbon conversion and lower tar emission but also lower product gas heating value and lower cold gas efficiency. So, for a good comparison of the gasification behaviour of different fuels, the moisture content should be similar. However, the moisture content should be defined on an ash-free basis rather than on total mass (the usual way). Some of the ashes produced and retained in the second cyclone were analysed both for elemental composition and leaching behaviour. It turned out that the leaching rate of Mo and Br, elements only present in small concentrations, are preventing the ash to be considered as inert material according to the Dutch legislation for dumping on landfill sites. (Author)

  9. Comparing the Mass, Energy, and Cost Effects of Lightweighting in Conventional and Electric Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    Johannes Hofer

    2014-09-01

    Full Text Available In this work the effect of weight reduction using advanced lightweight materials on the mass, energy use, and cost of conventional and battery electric passenger vehicles is compared. Analytic vehicle simulation is coupled with cost assessment to find the optimal degree of weight reduction minimizing manufacturing and total costs. The results show a strong secondary weight and cost saving potential for the battery electric vehicles, but a higher sensitivity of vehicle energy use to mass reduction for the conventional vehicle. Generally, light weighting has the potential to lower vehicle costs, however, the results are very sensitive to parameters affecting lifetime fuel costs for conventional and battery costs for electric vehicles. Based on current technology cost estimates it is shown that the optimal amount of primary mass reduction minimizing total costs is similar for conventional and electric vehicles and ranges from 22% to 39%, depending on vehicle range and overall use patterns. The difference between the optimal solutions minimizing manufacturing versus total costs is higher for conventional than battery electric vehicles.

  10. The FIT Model - Fuel-cycle Integration and Tradeoffs

    International Nuclear Information System (INIS)

    Piet, Steven J.; Soelberg, Nick R.; Bays, Samuel E.; Pereira, Candido; Pincock, Layne F.; Shaber, Eric L.; Teague, Melissa C.; Teske, Gregory M.; Vedros, Kurt G.

    2010-01-01

    All mass streams from fuel separation and fabrication are products that must meet some set of product criteria - fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the 'system losses study' team that developed it (Shropshire2009, Piet2010) are an initial step by the FCR and D program toward a global analysis that accounts for the requirements and capabilities of each component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R and D needs and set longer-term goals. The question originally posed to the 'system losses study' was the cost of separation, fuel fabrication, waste management, etc. versus the separation efficiency. In other words, are the costs associated with marginal reductions in separations losses (or improvements in product recovery) justified by the gains in the performance of other systems? We have learned that that is the wrong question. The right question is: how does one adjust the compositions and quantities of all mass streams, given uncertain product criteria, to balance competing objectives including cost? FIT is a method to analyze different fuel cycles using common bases to determine how chemical performance changes in one part of a fuel cycle (say used fuel cooling times or separation efficiencies) affect other parts of the fuel cycle. FIT estimates impurities in fuel and waste via a rough estimate of physics and mass balance for a set of technologies. If feasibility is an issue for a set, as it is for 'minimum fuel treatment' approaches such as melt refining and AIROX, it can help to make an estimate of how performances would have to change to achieve feasibility.

  11. Boiling and fragmentation behaviour during fuel-sodium interactions

    International Nuclear Information System (INIS)

    Schins, H.; Gunnerson, F.S.

    1986-01-01

    A selection of the results and subsequent analysis of molten fuel-sodium interaction experiments conducted within the JRC BETULLA I and II facilities are reported. The fuels were copper and stainless steel, at initial temperatures far above their melting points; or urania and alumina, initially at their melting points. For each test, the molten fuel masses were in lower kilogram range and the subcooled pool mass was either 160 or 4 kg. The sodium pool was instrumented continually monitor the system temperature and pressure. Post-test examination results of the fragmented fuel debris sizes, shape and crystalline structure are given. The results of this study suggest the following: Transition boiling is the dominant boiling mode for the tested fuels in subcooled sodium. Two fragmentation mechanisms, vapour bubble formation/collapse and thermal stress shrinkage cracking prevailed for the oxide fuels. This was evidenced by the presence of both smooth and fractured particulate. In contrast, all metal fuel debris was smooth, suggesting fragmentation by the vapour bubble formation/collapse mechanism only during the molten state and for each test, there was no evidence of an energetic fuel-coolant interaction. (orig.)

  12. Assessment of bio-fuel options for solid oxide fuel cell applications

    Science.gov (United States)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  13. Mass flow discharge and total temperature characterisation of a pyrotechnic gas generator formulation for airbag systems

    Energy Technology Data Exchange (ETDEWEB)

    Neutz, Jochen; Koenig, Andreas [Fraunhofer Institut fuer Chemische Technologie ICT, Pfinztal (Germany); Knauss, Helmut; Jordan, Sebastian; Roediger, Tim; Smorodsky, Boris [Universitaet Stuttgart (Germany). Institut fuer Aerodynamik und Gasdynamik; Bluemcke, Erich Walter [AUDI AG, Department I/EK-523, Ingolstadt (Germany)

    2009-06-15

    The mass flow characteristics of gas generators for airbag applications have to comply with a number of requirements for an optimal deployment of the airbag itself. Up to now, the mass flow was determined from pressure time histories of so-called can tests. This procedure suffers from the missing knowledge on the temperature of the generated gas entering the can. A new test setup described in this paper could overcome this problem by providing highly time resolved information on the gas's total temperature and the mass flow of the generator. The test setup consisted of a combustion chamber with a specially designed Laval nozzle in combination with a temperature sensor of high time resolution. The results showed a high time resolved temperature signal, which was disturbed by the formation of a slag layer on the sensor. Plausibility considerations with experimentally and thermodynamically determined combustion temperatures led to satisfying results for the overall temperature as characteristic parameter of airbag inflating gases flows from pyrotechnics. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  14. Total sulfur determination in gasoline, kerosene and diesel fuel using inductively coupled plasma optical emission spectrometry after direct sample introduction as detergent emulsions

    International Nuclear Information System (INIS)

    Santelli, Ricardo Erthal; Padua Oliveira, Eliane; Batista de Carvalho, Maria de Fatima; Almeida Bezerra, Marcos; Soares Freire, Aline

    2008-01-01

    Herein, we present the development of a procedure for the determination of total sulfur in petroleum-derived products (gasoline, kerosene and diesel fuel) employing inductively coupled plasma optical emission spectrometry (ICP OES). For this procedure, samples were prepared as emulsions that were made using concentrated nitric acid, Triton X-100, sample, and ultra pure water in proportions of 5/10/7/78% (v/v), respectively. Sample volumes were weighed because of the density differences, and oxygen was added to the sheat gas entrance of the ICP OES in order to decrease carbon deposition in the torch and to minimize background effects. A Doehlert design was applied as an experimental matrix to investigate the flow ratios of argon (sheat and plasma gas) and oxygen in relation to the signal-to-background ratio. A comparative study among the slopes of the analytical curves built in aqueous media, surfactant/HNO 3 , and by spike addition for several sample emulsions indicates that a unique solution of surfactant in acidic media can be employed to perform the external calibration for analysis of the emulsions. The developed procedure allows for the determination of the total sulfur content in petroleum derivatives with a limit of detection (LOD) and limit of quantification (LOQ) of 0.72 and 2.4 μg g -1 , respectively. Precision values, expressed as the relative standard deviations (% RSD, n = 10) for 12 and 400 μg g -1 , were 2.2% and 1.3%, respectively. The proposed procedure was applied toward the determination of total sulfur in samples of gasoline, kerosene, and diesel fuel commercialized in the city of Niteroi/RJ, Brazil. The accuracy of the proposed method was evaluated by the determination of the total sulfur in three different standard reference materials (SRM): NIST 2723a (sulfur in diesel fuel oil), NIST 1616b (sulfur in kerosene), and NIST 2298 (sulfur in gasoline). The data indicate that the methodology can be successfully applied to these types of samples

  15. A comparison of sodium borohydride as a fuel for proton exchange membrane fuel cells and for direct borohydride fuel cells

    Science.gov (United States)

    Wee, Jung-Ho

    Two types of fuel cell systems using NaBH 4 aqueous solution as a fuel are possible: the hydrogen/air proton exchange membrane fuel cell (PEMFC) which uses onsite H 2 generated via the NaBH 4 hydrolysis reaction (B-PEMFC) at the anode and the direct borohydride fuel cell (DBFC) system which directly uses NaBH 4 aqueous solution at the anode and air at the cathode. Recently, research on these two types of fuel cells has begun to attract interest due to the various benefits of this liquid fuel for fuel cell systems for portable applications. It might therefore be relevant at this stage to evaluate the relative competitiveness of the two fuel cells. Considering their current technologies and the high price of NaBH 4, this paper evaluated and analyzed the factors influencing the relative favorability of each type of fuel cell. Their relative competitiveness was strongly dependent on the extent of the NaBH 4 crossover. When considering the crossover in DBFC systems, the total costs of the B-PEMFC system were the most competitive among the fuel cell systems. On the other hand, if the crossover problem were to be completely overcome, the total cost of the DBFC system generating six electrons (6e-DBFC) would be very similar to that of the B-PEMFC system. The DBFC system generating eight electrons (8e-DBFC) became even more competitive if the problem of crossover can be overcome. However, in this case, the volume of NaBH 4 aqueous solution consumed by the DBFC was larger than that consumed by the B-PEMFC.

  16. Change in fat-free mass assessed by bioelectrical impedance, total body potassium and dual energy X-ray absorptiometry during prolonged weight loss

    DEFF Research Database (Denmark)

    Hendel, H W; Gotfredsen, A; Højgaard, L

    1996-01-01

    A total of 16 obese women (body mass index (BMI) 30-43 kg m(-2)) participated in a weight reduction study. Before and after a weight loss of 11.7 +/- 7.4 kg (mean +/- SD), body composition was assessed by dual energy X-ray absorptiometry (DXA), and total body potassium counting (TBK). These measu......A total of 16 obese women (body mass index (BMI) 30-43 kg m(-2)) participated in a weight reduction study. Before and after a weight loss of 11.7 +/- 7.4 kg (mean +/- SD), body composition was assessed by dual energy X-ray absorptiometry (DXA), and total body potassium counting (TBK......). These measurements were compared with bioimpedance analysis (BIA) by applying 11 predictive BIA equations published in the literature. Predictive equations for the present study population were developed, with the use of fat-free mass (FFM) as assessed by TBK and DXA as references in multiple regression analysis....... The results of the BIA equations varied widely; FFM was generally overestimated by BIA as compared with DXA and TBK before and after weight loss. During weight loss, the FFM did not change, as estimated by DXA (1.3 +/- 2.3 kg, p > 0.05) and TBK (0.9 +/- 2.9 kg, p > 0.05). The recorded change in impedance (R...

  17. Motor vehicle fuel economy, the forgotten HC control stragegy. [Hydrocarbon (HC)

    Energy Technology Data Exchange (ETDEWEB)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  18. Particulate emissions from a stationary engine fueled with ultra-low-sulfur diesel and waste-cooking-oil-derived biodiesel.

    Science.gov (United States)

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture.

  19. Checklist for transition to new highway fuel(s).

    Energy Technology Data Exchange (ETDEWEB)

    Risch, C.; Santini, D.J. (Energy Systems)

    2011-12-15

    Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s) of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of the primary 'players,' which consist of the customers, the government, the fuel industry, and the automotive industry. To maximize the probability of future successes, the prime considerations of these groups must be addressed. Section 2 presents a succinct outline of the Checklist. Section 3 provides a brief discussion about the groupings on the Checklist.

  20. Safe handling of renewable fuels and fuel mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C; Rautalin, A [VTT Energy, Espoo (Finland)

    1997-12-01

    VTT Energy has for several years carried out co-operation with many European research institutes on contractional basis on safety issues of fuels handling. A two-year co-operational project between VTT Energy and these research institutes was started in EU`s JOULE 3 programme in 1996, the total budget of which is 6.9 million FIM. Dust explosion testing method for `difficult` fuels, and for tests at elevated pressures and temperatures, will be developed in the task `Safe handling of renewable fuels and fuel mixtures`. Self- ignition and dust-explosion characteristics will be generated for wood and agro-biomass based biomasses and for the mixtures of them and coal. Inertization requirements will be studied, and the quenching method, combined with partial inertization, will be tested in 1.0 m{sup 3} test equipment. The ignition properties of the fuels under normal and elevated pressures will be characterised with thermobalances. The self-ignition tests with wood and forest residue dusts at 25 bar pressure have been carried out as scheduled. In addition to this, several fuels have undergone thermobalance tests, sieve analyses and microscopic studies for the characterisation of the fuels

  1. Quantities of actinides in nuclear reactor fuel cycles

    International Nuclear Information System (INIS)

    Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000 MW reactors of the following types: water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breeder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium, and recycled uranium. The radioactivity levels of plutonium, americium, and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the United States nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium processed in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing and fuel fabrication to eliminate the off-site transport of separated plutonium. (U.S.)

  2. Fuel starvation. Irreversible degradation mechanisms in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Carmen M.; Silva, R.A.; Travassos, M.A.; Paiva, T.I.; Fernandes, V.R. [LNEG, National Laboratory for Energy and Geology, Lisboa (Portugal). UPCH Fuel Cells and Hydrogen Unit

    2010-07-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation. (orig.)

  3. Fuel cycle and quality control

    International Nuclear Information System (INIS)

    Stoll, W.

    1979-01-01

    The volume of the fuel cycle is described in its economic importance and its through put, as it is envisaged for the Federal Republic of Germany. Definitions are given for quality continuing usefulness of an object and translated into quality criteria. Requirements on performance of fuel elements are defined. The way in which experimental results are translated into mass production of fuel rods, is described. The economic potential for further quality effort is derived. Future ways of development for quality control organisation and structure are outlined. (Auth.)

  4. Fuel Cell Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance

  5. Source Term Characteristics Analysis for Structural Components in PWR spent fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kook, Dong Hak; Choi, Heui Joo; Cho, Dong Keun [KAERI, Daejeon (Korea, Republic of)

    2010-12-15

    Source terms of metal waste comprising a spent fuel assembly are relatively important when the spent fuel is pyroprocessed, because cesium, strontium, and transuranics are not a concern any more in the aspect of source term of permanent disposal. In this study, characteristics of radiation source terms for each structural component in spent fuel assembly was analyzed by using ORIGEN-S with a assumption that 10 metric tons of uranium is pyroprocessed. At first, mass and volume for each structural component of the fuel assembly were calculated in detail. Activation cross section library was generated by using KENO-VI/ORIGEN-S module for top-end piece and bottom-end piece, because those are located at outer core under different neutron spectrum compared to that of inner core. As a result, values of radioactivity, decay heat, and hazard index were reveled to be 1.32x1015 Bequerels, 238 Watts, 4.32x109 m3 water, respectively, at 10 years after discharge. Those values correspond to 0.6 %, 1.1 %, 0.1 %, respectively, compared to that of spent fuel. Inconel 718 grid plate was shown to be the most important component in the all aspects of radioactivity, decay heat, and hazard index although the mass occupies only 1 % of the total. It was also shown that if the Inconel 718 grid plate is managed separately, the radioactivity and hazard index of metal waste could be decreased to 25{approx}50 % and 35{approx}40 %, respectively. As a whole, decay heat of metal waste was shown to be negligible in the aspect of disposal system design, while the radioactivity and hazard index are important

  6. Method of fabricating zirconium metal for use in composite type fuel cans

    International Nuclear Information System (INIS)

    Imahashi, Hiromichi; Inagaki, Masatoshi; Akabori, Kimihiko; Tada, Naofumi; Yasuda, Tetsuro.

    1985-01-01

    Purpose: To mass produce zirconium metal for fuel cans with less radiation hardening. Method: Zirconium sponges as raw material are inserted in a hearth mold and a procedure of melting the zirconium sponges portionwise by using a melting furnace having electron beams as a heat source while moving the hearth is repeated at least for once. Then, the rod-like ingot after melting is melted again in a vacuum or inert gas atmosphere into an ingot of a low oxygen density capable of fabrication. A composite fuel can billet is formed by using the thus obtained zirconium ingot and a zircalloy, and a predetermined composite type fuel can is manufactured by way of hot extrusion and pipe drawing fabrication. The raw material usable herein is zirconium sponge with an oxygen density of 400 ppm or higher and the content of impurity other than oxygen is between 1000 - 5000 ppm in total, or the molten material thereof. (Kamimura, M.)

  7. TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil

    KAUST Repository

    Elbaz, Ayman M.

    2015-11-12

    There is an increasing interest in the comprehensive study of heavy fuel oil (HFO) due to its growing use in furnaces, boilers, marines, and recently in gas turbines. In this work, the thermal combustion characteristics and chemical composition of HFO were investigated using a range of techniques. Thermogravimetric analysis (TGA) was conducted to study the nonisothermal HFO combustion behavior. Chemical characterization of HFO was accomplished using various standard methods in addition to direct infusion atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (APCI-FTICR MS), high resolution 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional heteronuclear multiple bond correlation (HMBC) spectroscopy. By analyzing thermogravimetry and differential thermogravimetry (TG/DTG) results, three different reaction regions were identified in the combustion of HFO with air, specifically, low temperature oxidation region (LTO), fuel deposition (FD), and high temperature oxidation (HTO) region. At the high end of the LTO region, a mass transfer resistance (skin effect) was evident. Kinetic analysis in LTO and HTO regions was conducted using two different kinetic models to calculate the apparent activation energy. In both models, HTO activation energies are higher than those for LTO. The FT-ICR MS technique resolved thousands of aromatic and sulfur containing compounds in the HFO sample and provided compositional details for individual molecules of three major class species. The major classes of compounds included species with one sulfur atom (S1), with two sulfur atoms (S2), and purely hydrocarbons (HC). The DBE (double bond equivalent) abundance plots established for S1 and HC provided additional information on their distributions in the HFO sample. The 1H NMR and 13C NMR results revealed that nearly 59% of the 1H nuclei were distributed as paraffinic CH2 and 5% were in aromatic groups. Nearly 21% of 13C nuclei were

  8. [Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES].

    Science.gov (United States)

    Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang

    2008-11-01

    Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).

  9. Yugoslav spent nuclear fuel management program and international perspectives

    International Nuclear Information System (INIS)

    Pesic, M.; Subotic, K.; Sotic, O.; Plecas, I.; Ljubenov, V.; Peric, A.; Milosevic, M.

    2002-01-01

    Spent nuclear fuel stored in the Vinca Institute of Nuclear Sciences, Yugoslavia, consists of about 2.5 tons of metal uranium (initial enrichment 2%) and about 20 kg uranium dioxide (dispersed in aluminum matrix, initial fuel uranium enrichment 80%). This spent nuclear fuel is generated in operation of the RA heavy water research reactor during 1959-1984 period. Both types of fuel are of ex-USSR origin, have the same shape and dimensions and approximately the same initial mass of 235 nuclide. They are known as the TVR-S type of fuel elements. The total of 8030 spent fuel elements are stored at the RA research reactor premises, almost all in the spent fuel pool filled by ordinary water. The last used 480 high-enriched uranium spent fuel elements are kept in the drained RA reactor core since 1984. Fuel layer of both enrichments is covered with thin aluminium cladding. Due to non-suitable chemical parameters of water in the spent fuel storage pool, the corrosion processes penetrated aluminium cladding and aluminium walls od storage containers during storage period long from 20 to 40 years. Activity of fission products ( 137 Cs) is detected in water samples during water inspection in 1996 and experts of the lAEA Russia and USA were invited to help. By end of 2001, some remediation of the water transparency of the storage pool and inspections of water samples taken from the storage containers with the spent fuel elements were carried out by the Vinca Institute staff and with the help of experts from the Russia and the IAEA. Following new initiatives on international perspective on spent fuel management, a proposal was set by the IAEA, and was supported by the governments of the USA and the Russian Federation to ship the spent fuel elements of the RA research reactor to Mayak spent fuel processing plant in Russia. This paper describes current status of the reactor RA spent fuel elements, initiative for new Yugoslav spent fuel management program speculates on some of the

  10. Fuel Cells in the Waste-to-Energy Chain Distributed Generation Through Non-Conventional Fuels and Fuel Cells

    CERN Document Server

    McPhail, Stephen J; Moreno, Angelo

    2012-01-01

    As the availability of fossils fuels becomes more limited, the negative impact of their consumption becomes an increasingly relevant factor in our choices with regards to primary energy sources. The exponentially increasing demand for energy is reflected in the mass generation of by-products and waste flows which characterize current society’s development and use of fossil sources. The potential for recoverable material and energy in these ever-increasing refuse flows is huge, even after the separation of hazardous constituent elements, allowing safe and sustainable further exploitation of an otherwise 'wasted' resource.  Fuel Cells in the Waste-to-Energy Chain explores the concept of waste-to-energy through a 5 step process which reflects the stages during the transformation of  refuse flows to a valuable commodity such as clean energy. By providing selected, integrated alternatives to the current centralized, wasteful, fossil-fuel based infrastructure, Fuel Cells in the Waste-to-Energy Chain explores ho...

  11. Chemical composition and source of fine and nanoparticles from recent direct injection gasoline passenger cars: Effects of fuel and ambient temperature

    Science.gov (United States)

    Fushimi, Akihiro; Kondo, Yoshinori; Kobayashi, Shinji; Fujitani, Yuji; Saitoh, Katsumi; Takami, Akinori; Tanabe, Kiyoshi

    2016-01-01

    Particle number, mass, and chemical compositions (i.e., elemental carbon (EC), organic carbon (OC), elements, ions, and organic species) of fine particles emitted from four of the recent direct injection spark ignition (DISI) gasoline passenger cars and a port fuel injection (PFI) gasoline passenger car were measured under Japanese official transient mode (JC08 mode). Total carbon (TC = EC + OC) dominated the particulate mass (90% on average). EC dominated the TC for both hot and cold start conditions. The EC/TC ratios were 0.72 for PFI and 0.88-1.0 (average = 0.92) for DISI vehicles. A size-resolved chemical analysis of a DISI car revealed that the major organic components were the C20-C28 hydrocarbons for both the accumulation-mode particles and nanoparticles. Contribution of engine oil was estimated to be 10-30% for organics and the sum of the measured elements. The remaining major fraction likely originated from gasoline fuel. Therefore, it is suggested that soot (EC) also mainly originated from the gasoline. In experiments using four fuels at three ambient temperatures, the emission factors of particulate mass were consistently higher with regular gasoline than with premium gasoline. This result suggest that the high content of less-volatile compounds in fuel increase particulate emissions. These results suggest that focusing on reducing fuel-derived EC in the production process of new cars would effectively reduce particulate emission from DISI cars.

  12. chemical determination of burnup ratio in nuclear fuels

    International Nuclear Information System (INIS)

    Guereli, L.

    1997-01-01

    Measurements of the extent of fission are important to determine the irradiation performance of a nuclear fuel. The energy released per unit mass of uranium (burnup) can be determined from measurement of the percent of heavy atoms that have fissioned during irradiation.The preferred method for this determination is choosing a suitable fission monitor (usually ''1''4''8Nd) and its determination after separation from the fuel matrix. In thermal reactor fuels where the only heavy element in the starting material is uranium, uranium depletion can be used for burnup determination. ''2''3''5U depletion method requires measurement of uranium isotopic ratios of both irradiated and unirradiated fuel. Isotopic ratios can be determined by thermal ionization mass spectrometer following separation of uranium from the fuel matrix. Separation procedures include solvent extraction, ion exchange and anion exchange chromatography. Another fission monitor used is ''1''3''9La determination by HPLC. Because La is monoisotopic (''1''3''9La) in the fuel, it can be determined by chemical analysis techniques

  13. Influence of altitude training modality on performance and total haemoglobin mass in elite swimmers.

    Science.gov (United States)

    Gough, Clare E; Saunders, Philo U; Fowlie, John; Savage, Bernard; Pyne, David B; Anson, Judith M; Wachsmuth, Nadine; Prommer, Nicole; Gore, Christopher J

    2012-09-01

    We compared changes in performance and total haemoglobin mass (tHb) of elite swimmers in the weeks following either Classic or Live High:Train Low (LHTL) altitude training. Twenty-six elite swimmers (15 male, 11 female, 21.4 ± 2.7 years; mean ± SD) were divided into two groups for 3 weeks of either Classic or LHTL altitude training. Swimming performances over 100 or 200 m were assessed before altitude, then 1, 7, 14 and 28 days after returning to sea-level. Total haemoglobin mass was measured twice before altitude, then 1 and 14 days after return to sea-level. Changes in swimming performance in the first week after Classic and LHTL were compared against those of Race Control (n = 11), a group of elite swimmers who did not complete altitude training. In addition, a season-long comparison of swimming performance between altitude and non-altitude groups was undertaken to compare the progression of performances over the course of a competitive season. Regardless of altitude training modality, swimming performances were substantially slower 1 day (Classic 1.4 ± 1.3% and LHTL 1.6 ± 1.6%; mean ± 90% confidence limits) and 7 days (0.9 ± 1.0% and 1.9 ± 1.1%) after altitude compared to Race Control. In both groups, performances 14 and 28 days after altitude were not different from pre-altitude. The season-long comparison indicated that no clear advantage was obtained by swimmers who completed altitude training. Both Classic and LHTL elicited ~4% increases in tHb. Although altitude training induced erythropoeisis, this physiological adaptation did not transfer directly into improved competitive performance in elite swimmers.

  14. The magnetic centrifugal mass filter

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Mass filters using rotating plasmas have been considered for separating nuclear waste and spent nuclear fuel. We propose a new mass filter that utilizes centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology. This filter is collisional and produces well confined output streams, among other advantages.

  15. The magnetic centrifugal mass filter

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J.; Fisch, Nathaniel J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States)

    2011-09-15

    Mass filters using rotating plasmas have been considered for separating nuclear waste and spent nuclear fuel. We propose a new mass filter that utilizes centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology. This filter is collisional and produces well confined output streams, among other advantages.

  16. Thermal-hydraulic analysis of spent fuel storage systems

    International Nuclear Information System (INIS)

    Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

    1987-01-01

    This paper describes the COBRA-SFS (Spent Fuel Storage) computer code, which is designed to predict flow and temperature distributions in spent nuclear fuel storage and transportation systems. The decay heat generated by spent fuel in a dry storage cask is removed through a combination of conduction, natural convection, and thermal radiation. One major advantage of COBRA-SFS is that fluid recirculation within the cask is computed directly by solving the mass and momentum conservation equations. In addition, thermal radiation heat transfer is modeled using detailed radiation exchange factors based on quarter-rod segments. The equations governing mass, momentum, and energy conservation for incompressible flows are presented, and the semi-implicit solution method is described. COBRA-SFS predictions are compared to temperature data from a spent fuel storage cask test and the effect of different fill media on the cladding temperature distribution is discussed. The effect of spent fuel consolidation on cask thermal performance is also investigated. 16 refs., 6 figs., 2 tabs

  17. Mass size distribution of particles emitted by diesel engines and determination of the contribution of diesel particles to the atmospheric aerosol in Vienna by using a tracer suitable for activation analysis

    International Nuclear Information System (INIS)

    Norek, C.

    1985-01-01

    In Vienna a large fraction of light absorbing aerosols has been found. The traffic could be a source for the high absorption coefficients, since the time dependent absorption coefficients varise similar to the traffic densities. Diesel vehicles have high soot emissions, so they may contribute considerably to light absorption during the summer. The emission factors of the vehicles were estimated by measurements at different motor and driving conditions by the Constant-Volume-Sampling-Method. To determine the size distributions a 10-stage-low pressure impactor with a lower cut size of 0.015 μm aerodynamic particle diameter was used. In order to estimate the contribution of diesel vehicles to the total mass concentrations all diesel fuel sold in Vienna and its vincinity was marked with an organic Dysprosium compound. This rare earth tracer was emitted by vehicles together with the soot particles and collected at eleven stations in Vienna. The filter samples were extracted with diluted HNO 3 and the extraction was analysed for Dy by neutron activation analysis. The mass size distributions of the particles and the soot emitted from diesel engines are only slightly influenced by motor and driving parameters. The total mass emissions showed considerable variations, but the mean emission factor obtained from the tests was 2.43 g per litre fuel; knowing also the concentration of the tracer in the fuel, the contribution of diesel particles to the mass of the suspended particulates could be estimated. During the measuring period the contribution was c. 25% to the total mass and c. 40% to the absorbing matter in the atmosphere. (Author)

  18. New measurement capabilities of mass spectrometry in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Perrin, R.E.

    1979-01-01

    Three recent developments, when combined, have the potential for greatly improving accountability measurements in the nuclear fuel cycle. The techniques are particularly valuable when measuring the contents of vessels which are difficult to calibrate by weight or volume. Input dissolver accountability measurements, inparticular, benefit from the application of these techniques. Los Alamos Scientific Laboratory has developed the capability for isotopic analysis of U and Pu samples at the nanogram level with an accuracy of 0.1 relative %. The Central Bureau for Nuclear Materials Measurement in Geel, Belgium has developed the capability of preparing mixed, solid metal U and Pu spikes with an accuracy of better than 0.1 relative %. Idaho Nuclear Energy Laboratory and C.K. Mathews at Bhabha Atomic Research have demonstrated a technique for determining the ratio of sample size to total solution measured which is independent of both the weight and the volume of the solution being measured. The advantages and limitations of these techniques are discussed. An analytical scheme which takes advantage of the special features of these techniques is proposed. 4 refs

  19. Analysis and Design of Fuel Cell Systems for Aviation

    Directory of Open Access Journals (Sweden)

    Thomas Kadyk

    2018-02-01

    Full Text Available In this paper, the design of fuel cells for the main energy supply of passenger transportation aircraft is discussed. Using a physical model of a fuel cell, general design considerations are derived. Considering different possible design objectives, the trade-off between power density and efficiency is discussed. A universal cost–benefit curve is derived to aid the design process. A weight factor w P is introduced, which allows incorporating technical (e.g., system mass and efficiency as well as non-technical design objectives (e.g., operating cost, emission goals, social acceptance or technology affinity, political factors. The optimal fuel cell design is not determined by the characteristics of the fuel cell alone, but also by the characteristics of the other system components. The fuel cell needs to be designed in the context of the whole energy system. This is demonstrated by combining the fuel cell model with simple and detailed design models of a liquid hydrogen tank. The presented methodology and models allows assessing the potential of fuel cell systems for mass reduction of future passenger aircraft.

  20. Speeding the transition: Designing a fuel-cell hypercar

    Energy Technology Data Exchange (ETDEWEB)

    Williams, B.D.; Moore, T.C.; Lovins, A.B. [Rocky Mountain Inst., Snowmass, CO (United States). Hypercar Center

    1997-12-31

    A rapid transformation now underway in automotive technology could accelerate the transition to transportation powered by fuel cells. Ultralight, advanced-composite, low-drag, hybrid-electric hypercars--using combustion engines--could be three- to fourfold more efficient and one or two orders of magnitude cleaner than today`s cars, yet equally safe, sporty, desirable, and (probably) affordable. Further, important manufacturing advantages--including low tooling and equipment costs, greater mechanical simplicity, autobody parts consolidation, shorter product cycles, and reduced assembly effort and space--permit a free-market commercialization strategy. This paper discusses a conceptual hypercar powered by a proton-exchange-membrane fuel cell (PEMFC). It outlines the implications of platform physics and component selection for the vehicle`s mass budget and performance. The high fuel-to-traction conversion efficiency of the hypercar platform could help automakers overcome the Achilles` heel of hydrogen-powered vehicles: onboard storage. Moreover, because hypercars would require significantly less tractive power, and even less fuel-cell power, they could adopt fuel cells earlier, before fuel cells` specific cost, mass, and volume have fully matured. In the meantime, commercialization in buildings can help prepare fuel cells for hypercars. The promising performance of hydrogen-fueled PEMFC hypercars suggests important opportunities in infrastructure development for direct-hydrogen vehicles.

  1. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels

    KAUST Repository

    Naser, Nimal

    2017-06-29

    A better understanding on the effects of fuel properties and injection timing is required to improve the performance of advanced engines based on low temperature combustion concepts. In this work, an experimental and computational study was conducted to investigate the effects of physical and chemical kinetic properties of low octane fuels and their surrogates in partially premixed compression ignition (PPCI) engines. The main objective was to identify the relative importance of physical versus chemical kinetic properties in predicting practical fuel combustion behavior across a range of injection timings. Two fuel/surrogate pairs were chosen for comparison: light naphtha (LN) versus the primary reference fuel (PRF) with research octane number of 65 (PRF 65), and FACE (fuels for advanced combustion engines) I gasoline versus PRF 70. Two sets of parametric studies were conducted: the first varied the amount of injected fuel mass at different injection timings to match a fixed combustion phasing, and the second maintained the same injected fuel mass at each injection timing to assess resulting combustion phasing changes. Full-cycle computational fluid dynamic engine simulations were conducted by accounting for differences in the physical properties of the original and surrogate fuels, while employing identical chemical kinetics. The simulations were found to capture trends observed in the experiments, while providing details on spatial mixing and chemical reactivity for different fuels and injection timings. It was found that differences in physical properties become increasingly important as injection timing was progressively delayed from premixed conditions, and this was rationalized by analysis of mixture stratification patterns resulting from injection of fuels with different physical properties. The results suggest that accurate descriptions of both physical and chemical behavior of fuels are critical in predictive simulations of PPCI engines for a wide range of

  2. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels

    KAUST Repository

    Naser, Nimal; Jaasim, Mohammed; Atef, Nour; Chung, Suk-Ho; Im, Hong G.; Sarathy, Mani

    2017-01-01

    A better understanding on the effects of fuel properties and injection timing is required to improve the performance of advanced engines based on low temperature combustion concepts. In this work, an experimental and computational study was conducted to investigate the effects of physical and chemical kinetic properties of low octane fuels and their surrogates in partially premixed compression ignition (PPCI) engines. The main objective was to identify the relative importance of physical versus chemical kinetic properties in predicting practical fuel combustion behavior across a range of injection timings. Two fuel/surrogate pairs were chosen for comparison: light naphtha (LN) versus the primary reference fuel (PRF) with research octane number of 65 (PRF 65), and FACE (fuels for advanced combustion engines) I gasoline versus PRF 70. Two sets of parametric studies were conducted: the first varied the amount of injected fuel mass at different injection timings to match a fixed combustion phasing, and the second maintained the same injected fuel mass at each injection timing to assess resulting combustion phasing changes. Full-cycle computational fluid dynamic engine simulations were conducted by accounting for differences in the physical properties of the original and surrogate fuels, while employing identical chemical kinetics. The simulations were found to capture trends observed in the experiments, while providing details on spatial mixing and chemical reactivity for different fuels and injection timings. It was found that differences in physical properties become increasingly important as injection timing was progressively delayed from premixed conditions, and this was rationalized by analysis of mixture stratification patterns resulting from injection of fuels with different physical properties. The results suggest that accurate descriptions of both physical and chemical behavior of fuels are critical in predictive simulations of PPCI engines for a wide range of

  3. Vibration of fuel bundles

    International Nuclear Information System (INIS)

    Chen, S.S.

    1975-06-01

    Several mathematical models have been proposed for calculating fuel rod responses in axial flows based on a single rod consideration. The spacing between fuel rods in liquid metal fast breeder reactors is small; hence fuel rods will interact with one another due to fluid coupling. The objective of this paper is to study the coupled vibration of fuel bundles. To account for the fluid coupling, a computer code, AMASS, is developed to calculate added mass coefficients for a group of circular cylinders based on the potential flow theory. The equations of motion for rod bundles are then derived including hydrodynamic forces, drag forces, fluid pressure, gravity effect, axial tension, and damping. Based on the equations, a method of analysis is presented to study the free and forced vibrations of rod bundles. Finally, the method is applied to a typical LMFBR fuel bundle consisting of seven rods

  4. Hawaiian hydrogen mass transit system

    International Nuclear Information System (INIS)

    Russell, G.W.; Russell, A.

    1990-01-01

    This paper proposes a joint effort between the scientific and business communities; to create, make and have hydrogen fuel become the primary fuel of the future. Hawaii has abundant, unharnessed renewable resources yet imports almost all of its fuel. Initiating hydrogen production and industrial application in conjunction with a prototype pilot project such as this mass transit system would not only accomplish the joining of science and business but give an environmentally safe energy alternative to the state and people of Hawaii and hopefully the world

  5. Increasing of MERARG experimental performances: on-line fission gas release measurement by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pontillon, Y.; Capdevila, H.; Clement, S. [CEA, DEN, DEC, SA3C, LAMIR, F-13108 Saint Paul lez Durance, (France); Guigues, E.; Janulyte, A.; Zerega, Y.; Andre, J. [Aix-Marseille Universite, LISA EA 4672, 13397 MARSEILLE cedex 20, (France)

    2015-07-01

    The MERARG device - implemented at the LECASTAR Hot Laboratory, at the CEA Cadarache - allows characterizing nuclear fuels with respect to the behaviour of fission gases during thermal transients representative of normal or off normal operating nuclear power plant conditions. The fuel is heated in order to extract a part or the total gas inventory it contains. Fission Gas Release (FGR) is actually recorded by mean of both on-line gamma spectrometry station and micro gas chromatography. These two devices monitor the quantity and kinetics of fission gas release rate. They only address {sup 85}Kr radioactive isotope and the elemental quantification of Kr, Xe and He (with a relatively low detection limit in the latter case, typically 5-10 ppm). In order to better estimate the basic mechanisms that promote fission gas release from irradiated nuclear fuels, the CEA fuel study department decided to improve its experimental facility by modifying MERARG to extend the studies of gamma emitter fission gases to all gases (including Helium) with a complete isotopic distribution capability. To match these specifications, a Residual Gas Analyser (RGA) has been chosen as mass spectrometer. This paper presents a review of the main aspects of the qualification/calibration phase of the RGA type analyser. In particular, results recorded over three mass ranges 1-10 u, 80-90 u and 120-140 u in the two classical modes of MERARG, i.e. on-line and off-line measurements are discussed. Results obtained from a standard gas bottle show that the quantitative analysis at a few ppm levels can be achieved for all isotopes of Kr and Xe, as well as masses 2 and 4 u. (authors)

  6. Determination of equilibrium fuel composition for fast reactor in closed fuel cycle

    Directory of Open Access Journals (Sweden)

    Ternovykha Mikhail

    2017-01-01

    Full Text Available Technique of evaluation of multiplying and reactivity characteristics of fast reactor operating in the mode of multiple refueling is presented. We describe the calculation model of the vertical section of the reactor. Calculation validations of the possibility of correct application of methods and models are given. Results on the isotopic composition, mass feed, and changes in the reactivity of the reactor in closed fuel cycle are obtained. Recommendations for choosing perspective fuel compositions for further research are proposed.

  7. Total employment effect of biofuels

    International Nuclear Information System (INIS)

    Stridsberg, S.

    1998-08-01

    The study examined the total employment effect of both direct production of biofuel and energy conversion to heat and electricity, as well as the indirect employment effect arising from investments and other activities in conjunction with the production organization. A secondary effect depending on the increased capital flow is also included in the final result. The scenarios are based on two periods, 1993-2005 and 2005-2020. In the present study, the different fuels and the different applications have been analyzed individually with regard to direct and indirect employment within each separate sector. The greatest employment effect in the production chain is shown for logging residues with 290 full-time jobs/TWh, whereas other biofuels range between 80 and 280 full-time jobs/TWh. In the processing chain, the corresponding range is 200-300 full-time jobs per each additional TWh. Additionally and finally, there are secondary effects that give a total of 650 full-time jobs/TWh. Together with the predicted increase, this suggests that unprocessed fuel will provide an additional 16 000 annual full-time jobs, and that fuel processing will contribute with a further 5 000 full-time jobs. The energy production from the fuels will provide an additional 13 000 full-time jobs. The total figure of 34 000 annual full-time jobs must then be reduced by about 4000 on account of lost jobs, mainly in the oil sector and to some extent in imports of biofuel. In addition, the anticipated increase in capital turnover that occurs within the biofuel sector, will increase full-time jobs up to year 2020. Finally, a discussion is given of the accomplishment of the programmes anticipated by the scenario, where it is noted that processing of biofuel to wafers, pellets or powder places major demands on access to raw material of good quality and that agrarian fuels must be given priority if they are to enter the system sufficiently fast. Straw is already a resource but is still not accepted by

  8. DuPont IsoTherming clean fuel technology

    Energy Technology Data Exchange (ETDEWEB)

    Levinski, E. [E.I. DuPont Co., Wilmington, DE (United States)

    2009-07-01

    This poster described a hydroprocessing technology that DuPont has acquired from Process Dynamics, Inc. The IsoTherming clean fuel technology significantly reduces sulphur in motor fuels. The technology provides petroleum refiners the solution for meeting ultra low sulphur diesel requirements, at much lower costs than conventional technologies. IsoTherming hydroprocessing operates in a kinetically limited mode, with no mass transfer limitation. Hydrogen is delivered to the reactor in the liquid phase as soluble hydrogen, allowing for much higher space velocities than conventional hydrotreating reactors. Treated diesel is recycled back to the inlet of the reactor, generating less heat and more hydrogen into the reactor. The process results in a more isothermal reactor operation that allows for better yields, fewer light ends and greater catalyst life. The technology reduces coking, because the process provides enough hydrogen in the solution when cracking reactions take place. As a result, the process yields longer catalyst life. Other advantages for refiners include lower total investment; reduced equipment delivery lead times; reduced maintenance and operating costs; and configuration flexibility. tabs., figs.

  9. Graphite fuels combustion off-gas treatment options

    International Nuclear Information System (INIS)

    Kirkham, R.J.; Lords, R.E.

    1993-03-01

    Scenarios for burning bulk graphite and for burning crushed fuel particles from graphite spent nuclear fuels have been considered. Particulates can be removed with sintered metal filters. Subsequent cooling would then condense semi-volatile fission products into or onto a particulate. These particulates would be trapped by a second sintered metal filter or downstream packed bed. A packed bed scrub column can be used to eliminate most of the iodine-129 and tritium. A molecular sieve bed is proposed to collect the residual 129 I and other tramp radionuclides downstream (Ruthenium, etc.). Krypton-85 can be recovered, if need be, either by cryogenics or by the KALC process (Krypton Adsorption in Liquid Carbon dioxide). Likewise carbon-14 in the form of carbon dioxide could be collected with a caustic or lime scrub solution and incorporated into a grout. Sulfur dioxide present will be well below regulatory concern level of 4.0 tons per year and most of it would be removed by the scrubber. Carbon monoxide emissions will depend on the choice of burner and start-up conditions. Should the system exceed the regulatory concern level, a catalytic converter in the final packed bed will be provided. Radon and its daughters have sufficiently short half-lives (less than two minutes). If necessary, an additional holdup bed can be added before the final HEPA filters or additional volume can be added to the molecular sieve bed to limit radon emissions. The calculated total effective dose equivalent at the Idaho National Engineering Laboratory boundary from a single release of all the 3 , 14 C, 85 Kr, and 129 I in the total fuel mass if 0.43 mrem/year

  10. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols.

    Science.gov (United States)

    Gillman, I G; Kistler, K A; Stewart, E W; Paolantonio, A R

    2016-03-01

    The study objective was to determine the effect of variable power applied to the atomizer of refillable tank based e-cigarette (EC) devices. Five different devices were evaluated, each at four power levels. Aerosol yield results are reported for each set of 25 EC puffs, as mass/puff, and normalized for the power applied to the coil, in mass/watt. The range of aerosol produced on a per puff basis ranged from 1.5 to 28 mg, and, normalized for power applied to the coil, ranged from 0.27 to 1.1 mg/watt. Aerosol samples were also analyzed for the production of formaldehyde, acetaldehyde, and acrolein, as DNPH derivatives, at each power level. When reported on mass basis, three of the devices showed an increase in total aldehyde yield with increasing power applied to the coil, while two of the devices showed the opposite trend. The mass of formaldehyde, acetaldehyde, and acrolein produced per gram of total aerosol produced ranged from 0.01 to 7.3 mg/g, 0.006 to 5.8 mg/g, and acrolein from EC aerosols from specific devices, and were compared to estimated exposure from consumption of cigarettes, to occupational and workplace limits, and to previously reported results from other researchers. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Fuel-motion diagnostics and cineradiography

    International Nuclear Information System (INIS)

    DeVolpi, A.

    1982-09-01

    Nuclear and non-nuclear applications of cineradiography are reviewed, with emphasis on diagnostic instrumentation for in-pile transient-reactor safety testing of nuclear fuel motion. The primary instrument for this purpose has been the fast-neutron hodoscope, which has achieved quantitative monitoring of time, location, mass, and velocity of fuel movement under the difficult conditions associated with transient-reactor experiments. Alternative diagnostic devices that have been developed have not matched the capabilities of the hodoscope. Other applications for the fuel-motion diagnostic apparatus are also evolving, including time-integrated radiography and direct time- and space-resolved fuel-pin power monitoring. Although only two reactors are now actively equipped with high-resolution fuel-motion diagnostic systems, studies and tests have been carried out in and for many other reactors

  12. Liquid chromatography-tandem mass spectrometry assay for the quantification of free and total sialic acid in human cerebrospinal fluid.

    NARCIS (Netherlands)

    Ham, M. van der; Koning, T.J. de; Lefeber, D.J.; Fleer, A.; Prinsen, B.H.; Sain-van der Velden, M.G. de

    2010-01-01

    BACKGROUND: Analysis of sialic acid (SA) metabolites in cerebrospinal fluid (CSF) is important for clinical diagnosis. In the present study, a high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS) method for free sialic acid (FSA) and total sialic acid (TSA) in human CSF was

  13. Uranium-plutonium fuel for fast reactors

    International Nuclear Information System (INIS)

    Antipov, S.A.; Astafiev, V.A.; Clouchenkov, A.E.; Gustchin, K.I.; Menshikova, T.S.

    1996-01-01

    Technology was established for fabrication of MOX fuel pellets from co-precipitated and mechanically blended mixed oxides. Both processes ensure the homogeneous structure of pellets readily dissolvable in nitric acid upon reprocessing. In order to increase the plutonium charge in a reactor-burner a process was tested for producing MOX fuel with higher content of plutonium and an inert diluent. It was shown that it is feasible to produce fuel having homogeneous structure and the content of plutonium up to 45% mass

  14. Standard test method for determination of uranium or plutonium isotopic composition or concentration by the total evaporation method using a thermal ionization mass spectrometer

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This method describes the determination of the isotopic composition and/or the concentration of uranium and plutonium as nitrate solutions by the thermal ionization mass spectrometric (TIMS) total evaporation method. Purified uranium or plutonium nitrate solutions are loaded onto a degassed metal filament and placed in the mass spectrometer. Under computer control, ion currents are generated by heating of the filament(s). The ion beams are continually measured until the sample is exhausted. The measured ion currents are integrated over the course of the run, and normalized to a reference isotope ion current to yield isotopic ratios. 1.2 In principle, the total evaporation method should yield isotopic ratios that do not require mass bias correction. In practice, some samples may require this bias correction. When compared to the conventional TIMS method, the total evaporation method is approximately two times faster, improves precision from two to four fold, and utilizes smaller sample sizes. 1.3 The tot...

  15. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques

    International Nuclear Information System (INIS)

    Tobin, S.J.; Fensin, M.L.; Ludewigt, B.A.; Menlove, H.O.; Quiter, B.J.; Sandoval, N.P.; Swinhoe, M.T.; Thompson, S.J.

    2009-01-01

    There are a variety of motivations for quantifying Pu in spent (used) fuel assemblies by means of nondestructive assay (NDA) including the following: strengthen the capabilities of the International Atomic Energy Agencies to safeguards nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at reprocessing facilities and providing quantitative input to burnup credit determination for repositories. For the purpose of determining the Pu mass in spent fuel assemblies, twelve NDA techniques were identified that provide information about the composition of an assembly. A key point motivating the present research path is the realization that none of these techniques, in isolation, is capable of both (1) quantifying the elemental Pu mass of an assembly and (2) detecting the diversion of a significant number of pins. As such, the focus of this work is determining how to best integrate 2 or 3 techniques into a system that can quantify elemental Pu and to assess how well this system can detect material diversion. Furthermore, it is important economically to down-select among the various techniques before advancing to the experimental phase. In order to achieve this dual goal of integration and down-selection, a Monte Carlo library of PWR assemblies was created and is described in another paper at Global 2009 (Fensin et al.). The research presented here emphasizes integration among techniques. An overview of a five year research plan starting in 2009 is given. Preliminary modeling results for the Monte Carlo assembly library are presented for 3 NDA techniques: Delayed Neutrons, Differential Die-Away, and Nuclear Resonance Fluorescence. As part of the focus on integration, the concept of 'Pu isotopic correlation' is discussed and the role of cooling time determination.

  16. Molecular Characterization of Thiols in Fossil Fuels by Michael Addition Reaction Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    Science.gov (United States)

    Wang, Meng; Zhao, Suoqi; Liu, Xuxia; Shi, Quan

    2016-10-04

    Thiols widely occur in sediments and fossil fuels. However, the molecular composition of these compounds is unclear due to the lack of appropriate analytical methods. In this work, a characterization method for thiols in fossil fuels was developed on the basis of Michael addition reaction derivatization followed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Model thiol compound studies showed that thiols were selectively reacted with phenylvinylsulfone and transformed to sulfones with greater than 98% conversions. This method was applied to a coker naphtha, light and heavy gas oils, and crude oils from various geological sources. The results showed that long alkyl chain thiols are readily present in petroleum, which have up to 30 carbon atoms. Large DBE dispersity of thiols indicates that naphthenic and aromatic thiols are also present in the petroleum. This method is capable of detecting thiol compounds in the part per million range by weight. This method allows characterization of thiols in a complex hydrocarbon matrix, which is complementary to the comprehensive analysis of sulfur compounds in fossil fuels.

  17. Analysis on the fuel cycle requirements of the FR systems

    International Nuclear Information System (INIS)

    Maki, Takashi; Horiuchi, Nobutake

    2002-01-01

    The functions of the nuclear fuel cycle amount analysis code, developed in 2001 were extended. This code is a program that calculates the change in characteristics with time of mass balance (for example, the amount of natural uranium demand, plutonium mass balance, environmental load reduction, etc.) in a nuclear fuel cycle, to examine the state of future reactor types or recycling facilities. In 2002, as for this code, calculation functions of reprocessing facilities on plutonium-thermal spent fuels, recovery uranium recycling, and multiple FR concepts were added, and the I/O function was improved according to it. Moreover, benchmark calculation to the extended amount analysis code was performed using the other tool, and it was confirmed that mass balance was calculated appropriately. Furthermore, the mass balance of a few typical FR cycle concepts was calculated in this analysis code, and the feature of each concept was clarified. (author)

  18. LEAD SLOWING DOWN SPECTROSCOPY FOR DIRECT Pu MASS MEASUREMENTS

    International Nuclear Information System (INIS)

    Ressler, Jennifer J.; Smith, Leon E.; Anderson, Kevin K.

    2008-01-01

    The direct measurement of Pu in previously irradiated fuel assemblies is a recognized need in the international safeguards community. A suitable technology could support more timely and independent material control and accounting (MC and A) measurements at nuclear fuel storage areas, the head-end of reprocessing facilities, and at the product-end of recycled fuel fabrication. Lead slowing down spectroscopy (LSDS) may be a viable solution for directly measuring not only the mass of 239Pu in fuel assemblies, but also the masses of other fissile isotopes such as 235U and 241Pu. To assess the potential viability of LSDS, an LSDS spectrometer was modeled in MCNP5 and 'virtual assays' of nominal PWR assemblies ranging from 0 to 60 GWd/MTU burnup were completed. Signal extraction methods, including the incorporation of nonlinear fitting to account for self-shielding effects in strong resonance regions, are described. Quantitative estimates of Pu uncertainty are given for simplistic and more realistic fuel isotopic inventories calculated using ORIGEN. A discussion of additional signal-perturbing effects that will be addressed in future work, and potential signal extraction approaches that could improve Pu mass uncertainties, are also discussed

  19. Diesel engine performance as influenced by fuel temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, H.R.; Best, W.D.; Monroe, G.E.

    1986-11-01

    The effects of diesel fuel temperature on the efficiency of a 4.4-L diesel engine were studied. Fuel temperatures of 41, 67, and 81 C were used with engine loads of 0 to 100% of full load at three engine frequencies. Regression equations were developed that predicted fuel economy as a function of PTO power at three engine frequencies. An increase in engine fuel temperature did not improve fuel economy, but did result in reduced fuel mass flow through the injector pump and reduced maximum PTO power. Reducing engine frequency improved fuel economy and supported the 'throttle back shift up' technique for saving fuel. 4 figs., 1 tab., 11 refs.

  20. Influence of fuel composition on the spent fuel verification by Self‑Interrogation Neutron Resonance Densitometry

    International Nuclear Information System (INIS)

    Rossa, Riccardo; Borella, Alessandro; Van der Meer, Klaas; Labeau, Pierre‑Etienne; Pauly, Nicolas

    2015-01-01

    The Self‑Interrogation Neutron Resonance Densitometry (SINRD) is a passive Non‑Destructive Assay (NDA) that is developed for the safeguards verification of spent nuclear fuel. The main goal of SINRD is the direct quantification of 239Pu by estimating the SINRD signature, which is the ratio between the neutron flux in the fast energy region and in the region close to the 0.3 eV resonance of 239 Pu. The resonance region was chosen because the reduction of the neutron flux within 0.2-0.4 eV is due mainly to neutron absorption from 239 Pu, and therefore the SINRD signature can be correlated to the 239Pu mass in the fuel assembly. This work provides an estimate of the influence of 239 Pu and other nuclides on the SINRD signature. This assessment is performed by Monte Carlo simulations by introducing several nuclides in the fuel material composition and by calculating the SINRD signature for each case. The reference spent fuel library developed by SCK CEN was used for the detailed fuel compositions of PWR 17x17 fuel assemblies with different initial enrichments, burnup, and cooling times. The results from the simulations show that the SINRD signature is mainly correlated to the 239 Pu mass, with significant influence by 235 U. Moreover, the SINRD technique is largely insensitive to the cooling time of the assembly, while it is affected by the burnup and initial enrichment of the fuel. Apart from 239 Pu and 235 U, many other nuclides give minor contributions to the SINRD signature, especially at burnup higher than 20 GWd/tHM.

  1. Total mass difference statistics algorithm: a new approach to identification of high-mass building blocks in electrospray ionization Fourier transform ion cyclotron mass spectrometry data of natural organic matter.

    Science.gov (United States)

    Kunenkov, Erast V; Kononikhin, Alexey S; Perminova, Irina V; Hertkorn, Norbert; Gaspar, Andras; Schmitt-Kopplin, Philippe; Popov, Igor A; Garmash, Andrew V; Nikolaev, Evgeniy N

    2009-12-15

    The ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrum of natural organic matter (NOM) contains several thousand peaks with dozens of molecules matching the same nominal mass. Such a complexity poses a significant challenge for automatic data interpretation, in which the most difficult task is molecular formula assignment, especially in the case of heavy and/or multielement ions. In this study, a new universal algorithm for automatic treatment of FTICR mass spectra of NOM and humic substances based on total mass difference statistics (TMDS) has been developed and implemented. The algorithm enables a blind search for unknown building blocks (instead of a priori known ones) by revealing repetitive patterns present in spectra. In this respect, it differs from all previously developed approaches. This algorithm was implemented in designing FIRAN-software for fully automated analysis of mass data with high peak density. The specific feature of FIRAN is its ability to assign formulas to heavy and/or multielement molecules using "virtual elements" approach. To verify the approach, it was used for processing mass spectra of sodium polystyrene sulfonate (PSS, M(w) = 2200 Da) and polymethacrylate (PMA, M(w) = 3290 Da) which produce heavy multielement and multiply-charged ions. Application of TMDS identified unambiguously monomers present in the polymers consistent with their structure: C(8)H(7)SO(3)Na for PSS and C(4)H(6)O(2) for PMA. It also allowed unambiguous formula assignment to all multiply-charged peaks including the heaviest peak in PMA spectrum at mass 4025.6625 with charge state 6- (mass bias -0.33 ppm). Application of the TMDS-algorithm to processing data on the Suwannee River FA has proven its unique capacities in analysis of spectra with high peak density: it has not only identified the known small building blocks in the structure of FA such as CH(2), H(2), C(2)H(2)O, O but the heavier unit at 154.027 amu. The latter was

  2. Estimates of Particulate Mass for an MCO Containing Mark 1A Fuel

    International Nuclear Information System (INIS)

    WYMAN, H.A.

    1999-01-01

    High, best estimate, and low values are given for particulate inventories within an MCO basket containing freshly cleaned Mark 1A fuel. The findings are compared with the estimates of particulate inventories for an MCO basket containing freshly cleaned Mark IV fuel

  3. Direct sorbitol proton exchange membrane fuel cell using moderate catalyst loadings

    International Nuclear Information System (INIS)

    Oyarce, Alejandro; Gonzalez, Carlos; Lima, Raquel Bohn; Lindström, Rakel Wreland; Lagergren, Carina; Lindbergh, Göran

    2014-01-01

    Highlights: •The performance of a direct sorbitol fuel cell was evaluated at different temperatures. •The performance was compared to the performance of a direct glucose fuel cell. •The mass specific peak power density of the direct sorbitol fuel cell was 3.6 mW mg −1 totalcatalystloading at 80 °C. •Both sorbitol and glucose fuel cell suffer from deactivation. -- Abstract: Recent progress in biomass hydrolysis has made it interesting to study the use of sorbitol for electricity generation. In this study, sorbitol and glucose are used as fuels in proton exchange membrane fuel cells having 0.9 mg cm −2 PtRu/C at the anode and 0.3 mg cm −2 Pt/C at the cathode. The sorbitol oxidation was found to have slower kinetics than glucose oxidation. However, at low temperatures the direct sorbitol fuel cell shows higher performance than the direct glucose fuel cell, attributed to a lower degree of catalyst poisoning. The performance of both fuel cells is considerably improved at higher temperatures. High temperatures lower the poisoning, allowing the direct glucose fuel cell to reach a higher performance than the direct sorbitol fuel cell. The mass specific peak power densities of the direct sorbitol and direct glucose fuel cells at 65 °C was 3.2 mW mg −1 catalyst and 3.5 mW mg −1 catalyst , respectively. Both of these values are one order of magnitude larger than mass specific peak power densities of earlier reported direct glucose fuel cells using proton exchange membranes. Furthermore, both the fuel cells showed a considerably decrease in performance with time, which is partially attributed to sorbitol and glucose crossover poisoning the Pt/C cathode

  4. Mathematical Model of the Jet Engine Fuel System

    Directory of Open Access Journals (Sweden)

    Klimko Marek

    2015-01-01

    Full Text Available The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator will be described, with respect to advanced predetermined simplifications.

  5. Mathematical Model of the Jet Engine Fuel System

    Science.gov (United States)

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  6. Modeling and simulation of PEM fuel cell's flow channels using CFD techniques

    International Nuclear Information System (INIS)

    Cunha, Edgar F.; Andrade, Alexandre B.; Robalinho, Eric; Bejarano, Martha L.M.; Linardi, Marcelo; Cekinski, Efraim

    2007-01-01

    Fuel cells are one of the most important devices to obtain electrical energy from hydrogen. The Proton Exchange Membrane Fuel Cell (PEMFC) consists of two important parts: the Membrane Electrode Assembly (MEA), where the reactions occur, and the flow field plates. The plates have many functions in a fuel cell: distribute reactant gases (hydrogen and air or oxygen), conduct electrical current, remove heat and water from the electrodes and make the cell robust. The cost of the bipolar plates corresponds up to 45% of the total stack costs. The Computational Fluid Dynamic (CFD) is a very useful tool to simulate hydrogen and oxygen gases flow channels, to reduce the costs of bipolar plates production and to optimize mass transport. Two types of flow channels were studied. The first type was a commercial plate by ELECTROCELL and the other was entirely projected at Programa de Celula a Combustivel (IPEN/CNEN-SP) and the experimental data were compared with modelling results. Optimum values for each set of variables were obtained and the models verification was carried out in order to show the feasibility of this technique to improve fuel cell efficiency. (author)

  7. Mass-produced multi-walled carbon nanotubes as catalyst supports for direct methanol fuel cells.

    Science.gov (United States)

    Jang, In Young; Park, Ki Chul; Jung, Yong Chae; Lee, Sun Hyung; Song, Sung Moo; Muramatsu, Hiroyuki; Kim, Yong Jung; Endo, Morinobu

    2011-01-01

    Commercially mass-produced multi-walled carbon nanotubes, i.e., VGNF (Showa Denko Co.), were applied to support materials for platinum-ruthenium (PtRu) nanoparticles as anode catalysts for direct methanol fuel cells. The original VGNFs are composed of high-crystalline graphitic shells, which hinder the favorable surface deposition of the PtRu nanoparticles that are formed via borohydride reduction. The chemical treatment of VGNFs with potassium hydroxide (KOH), however, enables highly dispersed and dense deposition of PtRu nanoparticles on the VGNF surface. This capability becomes more remarkable depending on the KOH amount. The electrochemical evaluation of the PtRu-deposited VGNF catalysts showed enhanced active surface areas and methanol oxidation, due to the high dispersion and dense deposition of the PtRu nanoparticles. The improvement of the surface deposition states of the PtRu nanoparticles was significantly due to the high surface area and mesorporous surface structure of the KOH-activated VGNFs.

  8. Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2007-06-11

    The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities

  9. Determination of burn-up of irradiated nuclear fuels using mass spectrometry

    International Nuclear Information System (INIS)

    Jagadish Kumar, S.; Telmore, V.M.; Shah, R.V.; Sasi Bhushan, K.; Paul, Sumana; Kumar, Pranaw; Rao, Radhika M.; Jaison, P.G.

    2017-01-01

    Burn-up defined as the atom percent fission, is a vital parameter used for assessing the performance of nuclear fuel during its irradiation in the reactor. Accurate data on the actinide isotopes are also essential for the reliable accountability of nuclear materials and for nuclear safeguards. Both destructive and non-destructive methods are employed in the post-irradiation analysis for the burn-up measurements. Though non-destructive methods are preferred from the point view of remote handling of irradiated fuels with high radioactivity, they do not provide the high accuracy as achieved by the chemical analysis methods. Thus destructive radiochemical and chemical analyses are still the established reference methods for accurate and reliable burn-up determination of irradiated nuclear fuels. In the destructive method, burn-up of irradiated nuclear fuel is determined by correlating the amount of a fission product formed during irradiation with that of heavy elements. Thus the destructive experimental determination of burn-up involves the dissolution of irradiated fuel samples followed by the separation and determination of heavy elements and fission product(s) to be used as burn-up monitor(s). Another approach for the experimental determination of burn-up is based on the changes in the abundances of the heavy element isotopes. A widely accepted method for burn-up determination is based on stable "1"4"8Nd and "1"3"9La as burn-up monitors. Several properties such as non-volatility, nearly same yields for thermal fissions of "2"3"5U and "2"3"9Pu etc justifies the selection of "1"4"8Nd as a burn-up monitor

  10. Sensing methanol concentration in direct methanol fuel cell with total harmonic distortion: Theory and application

    International Nuclear Information System (INIS)

    Mao Qing; Krewer, Ulrike

    2012-01-01

    The nonlinear frequency response of a direct methanol fuel cell (DMFC) is studied by analyzing the total harmonic distortion (THD) spectra. The dependence of the THD spectra on methanol concentration and methanol oxidation kinetics is investigated by means of both simulation and experiment. Simulation using a continuous stirred tank reactor network model suggests that the methanol concentration profile in the anode has a strong impact on the THD spectra. The experimentally observed nonlinear behavior of the DMFC anode can be qualitatively reproduced with a model containing a three-step methanol oxidation mechanism with Kauranen–Frumkin/Temkin kinetics. Both experiment and simulation results show that THD value has a monotonic correlation with methanol concentration at certain frequencies and its sensitivity to concentration is improved with increased current amplitude. The monotonic relationship enables the THD to sense the methanol concentration level by the DMFC itself, which is of mayor interest for the portable application as an external sensor for the system can be omitted.

  11. Fuel Cycle Impacts of Uranium-Plutonium Co-extraction

    International Nuclear Information System (INIS)

    Taiwo, Temitope; Szakaly, Frank; Kim, Taek-Kyum; Hill, Robert

    2008-01-01

    A systematic investigation of the impacts of uranium and plutonium co-extraction during fuel separations on reactor performance and fuel cycle has been performed. Proliferation indicators, critical mass and radiation source levels of the separation products or fabricated fuel, were also evaluated. Using LWR-spent-uranium-based MOX fuel instead of natural-uranium-based fuel in a PWR MOX core requires a higher initial plutonium content (∼1%), and results in higher Np-237 content (factor of 5) in the spent fuel, and less consumption of Pu-238 (20%) and Am-241 (14%), indicating a reduction in the effective repository space utilization. Additionally, minor actinides continue to accumulate in the fuel cycle, and thus a separate solution is required for them. Differences were found to be quite smaller (∼0.4% in initial transuranics) between the equilibrium cycles of advanced fast reactor cores using spent and depleted uranium for make-up, in additional to transuranics. The critical masses of the co-extraction products were found to be higher than for weapons-grade plutonium (WG-Pu) and the decay heat and radiation sources of the materials (products) were also found to be generally higher than for WG-Pu in the transuranics content range of 10% to 100% in the heavy-metal. (authors)

  12. Measuring the total and baryonic mass profiles of the very massive CASSOWARY 31 strong lens

    DEFF Research Database (Denmark)

    Grillo, Claudio; Christensen, L.; Gallazzi, A.

    2013-01-01

    We investigate the total and baryonic mass distributions in deflector number 31 (CSWA 31) of the Cambridge And Sloan Survey Of Wide ARcs in the skY (CASSOWARY). We confirm spectroscopically a four-image lensing system at redshift 1.4870 with Very Large Telescope/X-shooter observations. The lensed...... find that the CSWA 31 deflector has properties suggesting it to be among the most distant and massive fossil systems studied so far. The unusually strong central dark matter dominance and the possible fossil nature of this system render it an interesting target for detailed tests of cosmological models...

  13. Change in fat-free mass assessed by bioelectrical impedance, total body potassium and dual energy X-ray absorptiometry during prolonged weight loss

    DEFF Research Database (Denmark)

    Hendel, H W; Gotfredsen, A; Højgaard, L

    1996-01-01

    A total of 16 obese women (body mass index (BMI) 30-43 kg m(-2)) participated in a weight reduction study. Before and after a weight loss of 11.7 +/- 7.4 kg (mean +/- SD), body composition was assessed by dual energy X-ray absorptiometry (DXA), and total body potassium counting (TBK). These measu...

  14. An open-source library for the numerical modeling of mass-transfer in solid oxide fuel cells

    Science.gov (United States)

    Novaresio, Valerio; García-Camprubí, María; Izquierdo, Salvador; Asinari, Pietro; Fueyo, Norberto

    2012-01-01

    The generation of direct current electricity using solid oxide fuel cells (SOFCs) involves several interplaying transport phenomena. Their simulation is crucial for the design and optimization of reliable and competitive equipment, and for the eventual market deployment of this technology. An open-source library for the computational modeling of mass-transport phenomena in SOFCs is presented in this article. It includes several multicomponent mass-transport models ( i.e. Fickian, Stefan-Maxwell and Dusty Gas Model), which can be applied both within porous media and in porosity-free domains, and several diffusivity models for gases. The library has been developed for its use with OpenFOAM ®, a widespread open-source code for fluid and continuum mechanics. The library can be used to model any fluid flow configuration involving multicomponent transport phenomena and it is validated in this paper against the analytical solution of one-dimensional test cases. In addition, it is applied for the simulation of a real SOFC and further validated using experimental data. Program summaryProgram title: multiSpeciesTransportModels Catalogue identifier: AEKB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 18 140 No. of bytes in distributed program, including test data, etc.: 64 285 Distribution format: tar.gz Programming language:: C++ Computer: Any x86 (the instructions reported in the paper consider only the 64 bit case for the sake of simplicity) Operating system: Generic Linux (the instructions reported in the paper consider only the open-source Ubuntu distribution for the sake of simplicity) Classification: 12 External routines: OpenFOAM® (version 1.6-ext) ( http://www.extend-project.de) Nature of problem: This software provides a library of models for

  15. Mechanical analysis of UMo/Al dispersion fuel

    International Nuclear Information System (INIS)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Sohn, Dong-Seong

    2015-01-01

    Deformation of fuel particles and mass transfer from the transverse end of fuel meat toward the meat center was observed. This caused plate thickness peaking at a location between the meat edge and the meat center. The underlying mechanism for this fuel volume transport is believed to be fission induced creep of the U–Mo/Al meat. Fuel meat swelling was measured using optical microscopy images of the cross sections of the irradiated test plates. The time-dependent meat swelling was modeled for use in numerical simulation. A distinctive discrepancy between the predicted and measured meat thickness was found at the meat ends, which was assumed to be due to creep-induced mass relocation from the meat end to the meat center region that was not considered in the meat swelling model. ABAQUS FEA simulation was performed to reproduce the observed phenomenon at the meat ends. Through the simulation, we obtained the effective creep rate constants for the interaction layers (IL) and aluminum matrix. In addition, we obtained the corresponding stress and strain analysis results that can be used to understand mechanical behavior of U–Mo/Al dispersion fuel.

  16. Mechanical analysis of UMo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon [Ulsan National Institute of Science and Technology, Department of Nuclear Engineering, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Sohn, Dong-Seong, E-mail: dssohn@unist.ac.kr [Ulsan National Institute of Science and Technology, Department of Nuclear Engineering, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of)

    2015-11-15

    Deformation of fuel particles and mass transfer from the transverse end of fuel meat toward the meat center was observed. This caused plate thickness peaking at a location between the meat edge and the meat center. The underlying mechanism for this fuel volume transport is believed to be fission induced creep of the U–Mo/Al meat. Fuel meat swelling was measured using optical microscopy images of the cross sections of the irradiated test plates. The time-dependent meat swelling was modeled for use in numerical simulation. A distinctive discrepancy between the predicted and measured meat thickness was found at the meat ends, which was assumed to be due to creep-induced mass relocation from the meat end to the meat center region that was not considered in the meat swelling model. ABAQUS FEA simulation was performed to reproduce the observed phenomenon at the meat ends. Through the simulation, we obtained the effective creep rate constants for the interaction layers (IL) and aluminum matrix. In addition, we obtained the corresponding stress and strain analysis results that can be used to understand mechanical behavior of U–Mo/Al dispersion fuel.

  17. SMAFS, Steady-state analysis Model for Advanced Fuel cycle Schemes

    International Nuclear Information System (INIS)

    LEE, Kwang-Seok

    2006-01-01

    1 - Description of program or function: The model was developed as a part of the study, 'Advanced Fuel Cycles and Waste Management', which was performed during 2003-2005 by an ad-hoc expert group under the Nuclear Development Committee in the OECD/NEA. The model was designed for an efficient conduct of nuclear fuel cycle scheme cost analyses. It is simple, transparent and offers users the capability to track down the cost analysis results. All the fuel cycle schemes considered in the model are represented in a graphic format and all values related to a fuel cycle step are shown in the graphic interface, i.e., there are no hidden values embedded in the calculations. All data on the fuel cycle schemes considered in the study including mass flows, waste generation, cost data, and other data such as activities, decay heat and neutron sources of spent fuel and high-level waste along time are included in the model and can be displayed. The user can modify easily the values of mass flows and/or cost parameters and see the corresponding changes in the results. The model calculates: front-end fuel cycle mass flows such as requirements of enrichment and conversion services and natural uranium; mass of waste based on the waste generation parameters and the mass flow; and all costs. It performs Monte Carlo simulations with changing the values of all unit costs within their respective ranges (from lower to upper bounds). 2 - Methods: In Monte Carlo simulation, it is assumed that all unit costs follow a triangular probability distribution function, i.e., the probability that the unit cost has a value increases linearly from its lower bound to the nominal value and then decreases linearly to its upper bound. 3 - Restrictions on the complexity of the problem: The limit for the Monte Carlo iterations is the one of an Excel worksheet, i.e. 65,536

  18. Control chart analysis of data regarding 0.2% yield strength (YS) and percent total circumferential elongation (%TCE) for zircaloy clad tubes for PHWR and BWR fuels

    International Nuclear Information System (INIS)

    Yadav, M.B.; Singh, Hari; Vaidyanathan, S.; Sood, D.D.; Raghavan, S.V.; Bandyopadhyay, A.K.; Kulkarni, P.G.

    1992-01-01

    Zircaloy cladding tubes for PHWR and BWR fuels are manufactured and tested at Nuclear Fuel Complex (NFC), Hyderabad. Atomic Fuels Division is carrying out the quality assurance of the fuels on behalf of Nuclear Power Corporation (NPC). In this paper an attempt has been made to assess whether the quality of the clad tubes has met the requirements specified for the two mechanical properties of the tubes namely 0.2% yield strength and percent total circumferential elongation using control chart technique. For this purpose data for about 100 lots in each case were used. Process means and process standard deviations for these properties and the control limits for the corresponding control charts were estimated. The main findings are: (i) In case of PHWR tubes the production quality level with respect to 0.2% YS is higher, while that in case of %TCE is lower causing rejection of lots. On the other hand in the case of BWR tubes the production quality levels with respect to both the properties are higher than the required one. (ii) With respect to 0.2% YS, in case of BWR tubes a change in the pattern of distribution is detected beyond the lot serial no.47. However in case of PHWR tubes, though the data falls into two groups, no such pattern is seen. A modification in the acceptance/rejection criterion of the lot has been suggested. It is also pointed out that to have a correct picture of the total variation it is necessary to study the within tube variation. (author). 4 figs, 2 tabs

  19. Fuel cells - a perspective

    International Nuclear Information System (INIS)

    Biegler, T.

    2005-01-01

    Unfortunately, fuel cell publicity conveys expectations and hopes that are often based on uncritical interpretations of the underlying science. The aim here is to use that science to analyse how the technology has developed and what can realistically be delivered by fuel cells. There have been great achievements in fuel cell technology over the past decade, with most types reaching an advanced stage of engineering development. But there has been some muddled thinking about one critical aspect, fuel cell energy efficiency. The 'Carnot cycle' argument, that fuel cells must be much more efficient than heat engines, is a red herring, of no help in predicting real efficiencies. In practice, fuel cells are not always particularly efficient and there are good scientific reasons for this. Cost reduction is a big issue for fuel cells. They are not in principle especially simple devices. Better engineering and mass production will presumably bring costs down, but because of their inherent complexity there is no reason to expect them to be cheap. It is fair to conclude that predictions of fuel cells as commonplace components of energy systems (including a hydrogen economy) need to be treated with caution, at least until major improvements eventuate. However, one type, the direct methanol fuel cell, is aimed at a clear existing market in consumer electronics

  20. The impact of a more even fuel distribution of solid fuel to a fluidized boiler; Betydelsen av jaemnare braenslefoerdelning av fastbraensle till fluidbaeddpanna

    Energy Technology Data Exchange (ETDEWEB)

    Helgesson, Johan; Andersson, Christer; Helgesson, Anna; Svanberg, Marcus [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2005-01-01

    The goals for this project has been to: 1. Demonstrate and evaluate methods to visualize and optimize the mass-flow distribution of fuel in different chutes. 2. Show the effects of uneven and even fuel distribution on the discharge of CO and NO{sub x} in the chimney. The goals were reached by full-scale tests in two (BFB) plants. Field campaign 1 were performed in Idbaecksverket in Nykoeping. It was a large campaign with measurements both at high and low load. Methods evaluated were: mass flow measurements, lambda probes, suction pyrometer, IR pyrometer, bed temperatures, wall mounted temperatures, permanent mounted O{sub 2} instruments and fireplace camera. Field campaign 2 took place in an M-real plant in Husum. The most promising methods from campaign 1 were evaluated once again. This project has shown that uneven distribution of fuel between different fuel chutes gives raise to exceeded emissions of CO and NO{sub x}. It is the emissions of CO that increases most at uneven distribution. Furthermore it seems that uneven distribution gives a less stable condition for the plant in handling. A conclusion from the project is that mass flow measurements in the chutes are the best method for distribution detection of fuel between the chutes. Bed temperatures are measurements that almost all plants have. These give a decent indication of distribution changes of fuel, at least at high loads. Lambda probe measurements are a method that showed promising result in Husum. In Idbaecken it was less successful due to the placing of available measuring holes. The method has great potential if the probes are placed above each fuel chute. CO are well correlated to O{sub 2} and is connected to mass flow. This is a method that gives fast response on the fuel distribution between different chutes and would therefore work in all likelihood. Suction pyrometer is a well-tested and reliable method for furnace measurements. The cons for the method and equipment are the slow response, i

  1. Potential pyrolysis pathway assessment for microalgae-based aviation fuel based on energy conversion efficiency and life cycle

    International Nuclear Information System (INIS)

    Guo, Fang; Wang, Xin; Yang, Xiaoyi

    2017-01-01

    Highlights: • High lipid content in microalgae increases energy conversion efficiency. • Indirect pathway has the highest mass ratio, energy ratio and energy efficiency. • The Isochrysis indirect pathway produces most kerosene component precursor. • The Isochrysis indirect pyrolysis pathway shows the best performance in LCA. - Abstract: Although the research of microalgae pyrolysis has been conducted for many years, there is a lack of investigations on energy efficiency and life cycle assessment. In this study, we investigated the biocrude yield and energy efficiency of direct pyrolysis, microalgae residue pyrolysis after lipid extraction (indirect pyrolysis), and different microalgae co-pyrolysis. This research also investigated the life cycle assessment of the three different pyrolysis pathways. A system boundary of Well-to-Wake (WTWa) was defined and included sub-process models, such as feedstock production, fuel production and pump-to-wheels (PTW) stages. The pathway of Isochrysis indirect pyrolysis shows the best performance in the mass ratio and energy ratio, produces the most kerosene component precursor, has the lowest WTWa total energy input, fossil fuel consumption and greenhouse gas emissions, and resultes in the best energy efficiency. All the evidence indicates that Isochrysis R2 pathway is a potential and optimal pyrolysis pathway to liquid biofuels. The mass ratio of pyrolysis biocrude is shown to be the decisive factor for different microalgae species. The sensitivity analysis results also indicates that the life cycle indicators are particularly sensitive to the mass ratio of pyrolysis biocrude for microalgae-based hydrotreated pyrolysis aviation fuel.

  2. Ethanol fuels in Brazil

    International Nuclear Information System (INIS)

    Trindade, S.C.

    1993-01-01

    The largest alternative transportation fuels program in the world today is Brazil's Proalcool Program. About 6.0 million metric tons of oil equivalent (MTOE) of ethanol, derived mainly from sugar cane, were consumed as transportation fuels in 1991 (equivalent to 127,000 barrels of crude oil per day). Total primary energy consumed by the Brazilian economy in 1991 was 184.1 million MTOE, and approximately 4.3 million vehicles -- about one third of the total vehicle fleet or about 40 percent of the total car population -- run on hydrous or open-quotes neatclose quotes ethanol at the azeotropic composition (96 percent ethanol, 4 percent water, by volume). Additional transportation fuels available in the country are diesel and gasoline, the latter of which is defined by three grades. Gasoline A (regular, leaded gas)d has virtually been replaced by gasoline C, a blend of gasoline and up to 22 percent anhydrous ethanol by volume, and gasoline B (premium gasoline) has been discontinued as a result of neat ethanol market penetration

  3. Source Term Characterization for Structural Components in 17 x 17 KOFA Spent Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dong Keun; Kook, Dong Hak; Choi, Heui Joo; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-12-15

    Source terms of metal waste comprising a spent fuel assembly are relatively important when the spent fuel is pyroprocessed, because cesium, strontium, and transuranics are not a concern any more in the aspect of source term of permanent disposal. In this study, characteristics of radiation source terms for each structural component in spent fuel assembly was analyzed by using ORIGEN-S with a assumption that 10 metric tons of uranium is pyroprocessed. At first, mass and volume for each structural component of the fuel assembly were calculated in detail. Activation cross section library was generated by using KENO-VI/ORIGEN-S module for top-end piece and bottom-end piece, because those are located at outer core with different neutron spectrum compared to that of inner core. As a result, values of radioactivity, decay heat, and hazard index were reveled to be 1.40 x 10{sup 15} Bequerels, 236 Watts, 4.34 x 10{sup 9} m{sup 3}-water, respectively, at 10 years after discharge. Those values correspond to 0.7 %, 1.1 %, 0.1 %, respectively, compared to that of spent fuel. Inconel 718 grid plate was shown to be the most important component in the all aspects of radioactivity, decay heat, and hazard index although the mass occupies only 1 % of the total. It was also shown that if the Inconel 718 grid plate is managed separately, the radioactivity and hazard index of metal waste could be decreased to 20 {approx} 45 % and 30 {approx} 45 %, respectively. As a whole, decay heat of metal waste was shown to be negligible in the aspect of disposal system design, while the radioactivity and hazard index are important.

  4. Understanding Kelvin-Helmholtz instability in paraffin-based hybrid rocket fuels

    Science.gov (United States)

    Petrarolo, Anna; Kobald, Mario; Schlechtriem, Stefan

    2018-04-01

    Liquefying fuels show higher regression rates than the classical polymeric ones. They are able to form, along their burning surface, a low viscosity and surface tension liquid layer, which can become unstable (Kelvin-Helmholtz instability) due to the high velocity gas flow in the fuel port. This causes entrainment of liquid droplets from the fuel surface into the oxidizer gas flow. To better understand the droplets entrainment mechanism, optical investigations on the combustion behaviour of paraffin-based hybrid rocket fuels in combination with gaseous oxygen have been conducted in the framework of this research. Combustion tests were performed in a 2D single-slab burner at atmospheric conditions. High speed videos were recorded and analysed with two decomposition techniques. Proper orthogonal decomposition (POD) and independent component analysis (ICA) were applied to the scalar field of the flame luminosity. The most excited frequencies and wavelengths of the wave-like structures characterizing the liquid melt layer were computed. The fuel slab viscosity and the oxidizer mass flow were varied to study their influence on the liquid layer instability process. The combustion is dominated by periodic, wave-like structures for all the analysed fuels. Frequencies and wavelengths characterizing the liquid melt layer depend on the fuel viscosity and oxidizer mass flow. Moreover, for very low mass flows, no wavelength peaks are detected for the higher viscosity fuels. This is important to better understand and predict the onset and development of the entrainment process, which is connected to the amplification of the longitudinal waves.

  5. Societal lifecycle costs of cars with alternative fuels/engines

    International Nuclear Information System (INIS)

    Ogden, Joan M.; Williams, Robert H.; Larson, Eric D.

    2004-01-01

    Effectively addressing concerns about air pollution (especially health impacts of small-particle air pollution), climate change, and oil supply insecurity will probably require radical changes in automotive engine/fuel technologies in directions that offer both the potential for achieving near-zero emissions of air pollutants and greenhouse gases and a diversification of the transport fuel system away from its present exclusive dependence on petroleum. The basis for comparing alternative automotive engine/fuel options in evolving toward these goals in the present analysis is the 'societal lifecycle cost' of transportation, including the vehicle first cost (assuming large-scale mass production), fuel costs (assuming a fully developed fuel infrastructure), externality costs for oil supply security, and damage costs for emissions of air pollutants and greenhouse gases calculated over the full fuel cycle. Several engine/fuel options are considered--including current gasoline internal combustion engines and a variety of advanced lightweight vehicles: internal combustion engine vehicles fueled with gasoline or hydrogen; internal combustion engine/hybrid electric vehicles fueled with gasoline, compressed natural gas, Diesel, Fischer-Tropsch liquids or hydrogen; and fuel cell vehicles fueled with gasoline, methanol or hydrogen (from natural gas, coal or wind power). To account for large uncertainties inherent in the analysis (for example in environmental damage costs, in oil supply security costs and in projected mass-produced costs of future vehicles), lifecycle costs are estimated for a range of possible future conditions. Under base-case conditions, several advanced options have roughly comparable lifecycle costs that are lower than for today's conventional gasoline internal combustion engine cars, when environmental and oil supply insecurity externalities are counted--including advanced gasoline internal combustion engine cars, internal combustion engine

  6. Fuel shipment experience, fuel movements from the BMI-1 transport cask

    International Nuclear Information System (INIS)

    Bauer, Thomas L.; Krause, Michael G.

    1986-01-01

    The University of Texas at Austin received two shipments of irradiated fuel elements from Northrup Aircraft Corporation on April 11 and 16, 1985. A total of 59 elements consisting of standard and instrumented TRIGA fuel were unloaded from the BMI-1 shipping cask. At the time of shipment, the Northrup core burnup was approximately 50 megawatt days with fuel element radiation levels, after a cooling time of three months, of approximately 1.75 rem/hr at 3 feet. In order to facilitate future planning of fuel shipment at the UT facility and other facilities, a summary of the recent transfer process including several factors which contributed to its success are presented. Numerous color slides were made of the process for future reference by UT and others involved in fuel transfer and handling of the BMI-1 cask

  7. Increased body mass index is a predisposition for treatment by total hip replacement

    DEFF Research Database (Denmark)

    Jacobsen, Steffen; Sonne-Holm, Stig

    2005-01-01

    -joint degeneration and dysplasia. Sequential body mass index (BMI) measurements from 1976 to 1992, age, exposure to daily lifting and hip dysplasia were entered into logistic regression analyses. The prevalence of hip dysplasia ranged from 5.4% to 12.8% depending on the radiographical index used. Radiological hip OA...... prevalence was 1.0--2.5% in subjects or=60 years of age. While radiological OA was significantly influenced by hip dysplasia in men and hip dysplasia and age in women, the risk of THR being performed was only influenced by BMI assessed in 1976. Hip......We investigated the radiological and epidemiological data of 4,151 subjects followed up from 1976 to 2003 to determine individual risk factors for hip osteoarthritis (OA), hip pain and/or treatment by total hip replacement (THR). Pelvic radiographs recorded in 1992 were assessed for evidence of hip...

  8. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Aoyama, Motoo; Koyama, Jun-ichi; Ishibashi, Yoko; Mochida, Takaaki; Soneda, Hideo.

    1994-01-01

    In a fuel assembly having moderator rods, an axial average value of a ratio between the total of the lateral cross sectional area of a portion to be filled with moderators and the total of the lateral cross sectional area of fuel pellets is determined as greater than 0.4, a lateral cross sectional area of a portion to be filled with moderators per one moderator rod is determined as from 14 to 50cm 2 and the ratio between the total of the lateral cross sectional area of moderators and a total of the lateral cross sectional area of fuel pellets in a horizontal cross section is determined as from 2.7 to 3.4. Since the axial average value for lateral cross sectional area of a portion to be filled with moderators/lateral cross sectional area of fuel pellets is determined as ≥ 0.4, the lateral cross sectional area of moderators of moderator rods is increased, the lateral cross sectional area of a gap water region is decreased to reduce the value of local power peaking coefficient, so that thermal margin is ensured. At least one of the moderating rods is formed as a double-walled water rod tube to enhance an effect of spectral shift by flow rate control, reduce an uranium enrichment degree, and conduct operation without inserting control rods. (N.H.)

  9. Fuel-Coolant Interactions: Visualization and Mixing Measurements

    International Nuclear Information System (INIS)

    Loewen, Eric P.; Bonazza, Riccardo; Corradini, Michael L.; Johannesen, Robert E.

    2002-01-01

    Dynamic X-ray imaging of fuel-coolant interactions (FCI), including quantitative measurement of fuel-coolant volume fractions and length scales, has been accomplished with a novel imaging system at the Nuclear Safety Research Center at the University of Wisconsin, Madison. The imaging system consists of visible-light high-speed digital video, low-energy X-ray digital imaging, and high-energy X-ray digital imaging subsystems. The data provide information concerning the melt jet velocity, melt jet configuration, melt volume fractions, void fractions, and spatial and temporal quantification of premixing length scales for a model fuel-coolant system of molten lead poured into a water pool (fuel temperatures 500 to 1000 K; jet diameters 10 to 30 mm; coolant temperatures 20 to 90 deg. C). Overall results indicate that the FCI has three general regions of behavior, with the high fuel-coolant temperature region similar to what might be expected under severe accident conditions. It was observed that the melt jet leading edge has the highest void fraction and readily fragments into discrete masses, which then subsequently subdivide into smaller masses of length scales <10 mm. The intact jet penetrates <3 to 5 jet length/jet diameter before this breakup occurs into discrete masses, which continue to subdivide. Hydrodynamic instabilities can be visually identified at the leading edge and along the jet column with an interfacial region that consists of melt, vapor, and water. This interface region was observed to grow in size as the water pool temperature was increased, indicating mixing enhancement by boiling processes

  10. Direct and indirect economics of wind energy systems relative to fuel based systems

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, B

    1977-01-01

    It is shown that the addition of an energy-storage system of modest capacity, to a wind energy generator, provides a total-wind-energy electricity-generating system as dependable as current alternative means of producing electricity. It is further shown, based on projections of the mass-production costs of wind-energy generators and energy-storage systems, that such combined systems, as well as fuel-saving generators without storage, appear economically competitive to the alternatives, provided the comparison is made over the entire life cycle of the systems.

  11. Storage arrangement for nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Wade, E.E.

    1977-01-01

    Said invention is intended for providing an arrangement of spent fuel assembly storage inside which the space is efficiently used without accumulating a critical mass. The storage is provided for long fuel assemblies having along their longitudinal axis an active part containing the fuel and an inactive part empty of fuel. Said storage arrangement comprises a framework constituting some long-shaped cells designed so as each of them can receive a fuel assembly. Means of axial positioning of said assembly in a cell make it possible to support the fuel assemblies inside the framework according to a spacing ratio, along the cell axis, such as the active part of an assembly is adjacent to the inactive part of the adjacent assemblies [fr

  12. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    Energy Technology Data Exchange (ETDEWEB)

    Andres, R. J.; Marland, G.; Boden, T. A. (Environmental Sciences Div., Oak Ridge National Laboratory, Oak Ridge, TN (United States)), e-mail: andresrj@ornl.gov; Gregg, J. S. (Risoe DTU National Laboratory for Sustainable Energy, Roskilde (Denmark)); Losey, L. (Dept. of Space Studies, Univ. of North Dakota, Grand Forks, ND (United States))

    2011-07-15

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950-2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models

  13. Code structure for U-Mo fuel performance analysis in high performance research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Cho, Tae Won; Lee, Chul Min; Sohn, Dong Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A performance analysis modeling applicable to research reactor fuel is being developed with available models describing fuel performance phenomena observed from in-pile tests. We established the calculation algorithm and scheme to best predict fuel performance using radio-thermo-mechanically coupled system to consider fuel swelling, interaction layer growth, pore formation in the fuel meat, and creep fuel deformation and mass relocation, etc. In this paper, we present a general structure of the performance analysis code for typical research reactor fuel and advanced features such as a model to predict fuel failure induced by combination of breakaway swelling and pore growth in the fuel meat. Thermo-mechanical code dedicated to the modeling of U-Mo dispersion fuel plates is being under development in Korea to satisfy a demand for advanced performance analysis and safe assessment of the plates. The major physical phenomena during irradiation are considered in the code such that interaction layer formation by fuel-matrix interdiffusion, fission induced swelling of fuel particle, mass relocation by fission induced stress, and pore formation at the interface between the reaction product and Al matrix.

  14. Vibration characteristics analysis for HANARO fuel assembly

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2001-06-01

    For investigating the vibration characteristics of HANARO fuel assembly, the finite element models of the in-air fuel assemblies and flow tubes were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes and the fuel assemblies were developed. Then, modal analysis of the developed models was carried out. The analysis results show that the fundamental vibration modes of the in-air 18-element and 36-element fuel assemblies are lateral bending modes and its corresponding natural frequencies are 26.4Hz and 27.7Hz, respectively. The fundamental natural frequency of the in-water 18-element and 36-element fuel assemblies were obtained as 16.1Hz and 16.5Hz. For the verification of the developed finite element models, modal analysis results were compared with those obtained from the modal test. These results demonstrate that the natural frequencies of lower order modes obtained from finite element analysis agree well with those of the modal test and the estimation of the hydrodynamic mass is appropriate. It is expected that the analysis results will be applied as a basic data for the operation and management of the HANARO. In addition, when it is necessary to improve the design of the fuel assembly, the developed finite element models will be utilized as a base model for the vibration characteristic analysis of the modified fuel assembly

  15. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    OpenAIRE

    Yousri M.A. Welaya; Mohamed M. El Gohary; Nader R. Ammar

    2012-01-01

    Proton exchange membrane fuel cell (PEM) generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas productio...

  16. Methanol commercial aviation fuel

    International Nuclear Information System (INIS)

    Price, R.O.

    1992-01-01

    Southern California's heavy reliance on petroleum-fueled transportation has resulted in significant air pollution problems within the south Coast Air Basin (Basin) which stem directly from this near total dependence on fossil fuels. To deal with this pressing issue, recently enacted state legislation has proposed mandatory introduction of clean alternative fuels into ground transportation fleets operating within this area. The commercial air transportation sector, however, also exerts a significant impact on regional air quality which may exceed emission gains achieved in the ground transportation sector. This paper addresses the potential, through the implementation of methanol as a commercial aviation fuel, to improve regional air quality within the Basin and the need to flight test and demonstrate methanol as an environmentally preferable fuel in aircraft turbine engines

  17. Packet D: Fuel containing materials

    International Nuclear Information System (INIS)

    Tokarevskij, V.V.

    1999-01-01

    The tasks of the project 'D' are: increase of nuclear safety by fuel containing mass (FCM) characterisation, and development of a preliminary plan for FCM management which should be accomplished by FCM extraction

  18. A control-oriented approach to estimate the injected fuel mass on the basis of the measured in-cylinder pressure in multiple injection diesel engines

    International Nuclear Information System (INIS)

    Finesso, Roberto; Spessa, Ezio

    2015-01-01

    Highlights: • Control-oriented method to estimate injected quantities from in-cylinder pressure. • Able to calculate the injected quantities for multiple injection strategies. • Based on the inversion of a heat-release predictive model. • Low computational time demanding. - Abstract: A new control-oriented methodology has been developed to estimate the injected fuel quantities, in real-time, in multiple injection DI diesel engines on the basis of the measured in-cylinder pressure. The method is based on the inversion of a predictive combustion model that was previously developed by the authors, and that is capable of estimating the heat release rate and the in-cylinder pressure on the basis of the injection rate. The model equations have been rewritten in order to derive the injected mass as an output quantity, starting from use of the measured in-cylinder pressure as input. It has been verified that the proposed method is capable of estimating the injected mass of pilot pulses with an uncertainty of the order of ±0.15 mg/cyc, and the total injected mass with an uncertainty of the order of ±0.9 mg/cyc. The main sources of uncertainty are related to the estimation of the in-cylinder heat transfer and of the isentropic coefficient γ = c_p/c_v. The estimation of the actual injected quantities in the combustion chamber can represent a powerful means to diagnose the behavior of the injectors during engine operation, and offers the possibility of monitoring effects, such as injector ageing and injector coking, as well as of allowing an accurate control of the pilot injected quantities to be obtained; the latter are in fact usually characterized by a large dispersion, with negative consequences on the combustion quality and emission formation. The approach is characterized by a very low computational time, and is therefore suitable for control-oriented applications.

  19. Determining Bond Sodium Remaining in Plenum Region of Spent Nuclear Driver Fuel

    International Nuclear Information System (INIS)

    Vaden, D.; Li, S.X.

    2008-01-01

    The Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL) treats spent nuclear fuel using an electro-chemical process that separates the uranium from the fission products, sodium thermal bond, and cladding materials (REF 1). Upon immersion into the ER electrolyte, the sodium used to thermally bond the fuel to the clad jacket chemically reacts with the UCl3 in the electrolyte producing NaCl and uranium metal. The uranium in the spent fuel is separated from the cladding and fission products by taking advantage of the electro-chemical potential differences between uranium and the other fuel components. Assuming all the sodium in the thermal bond is converted to NaCl in the ER, the difference between the cumulative bond sodium mass in the fuel elements and the cumulative sodium mass found in the driver ER electrolyte inventory provides an upper mass limit for the sodium that migrated to the upper gas region, or plenum section, of the fuel element during irradiation in the reactor. The plenums are to be processed as metal waste via melting and metal consolidation operations. However, depending on the amount of sodium in the plenums, additional processing may be required to remove the sodium before metal waste processing

  20. Fuel Chemistry Division: progress report for 1985

    International Nuclear Information System (INIS)

    1988-01-01

    Fuel Chemistry Division was formed in May 1985 to give a larger emphasis on the research and development in chemistry of the nuclear fuel cycle. The areas of research in Fuel Chemistry Division are fuel development and its chemical quality control, understanding of the fuel behaviour and post irradiation examinations, chemistry of reprocessing and waste management processes as also the basic aspects of actinide and relevant fission product elements. This report summarises the work by the staff of the Division during 1985 and also some work from the previous periods which was not reported in the progress reports of the Radiochemistry Division. The work related to the FBTR fuel was one of the highlights during this period. In the area of process chemistry useful work has been carried out for processing of plutonium bearing solutions. In the area of mass spectrometry, the determination of trace constituents by spark source mass spectrometry has been a major area of research. Significant progress has also been made in the use of alpha spectromet ry techniques for the determination of plutonium in dissolver solution and other samples. The technology of plutonium utilisation is quite complex and the Division would continue to look into the chemical aspects of this technology and provide the necessary base for future developments in this area. (author)

  1. Measurement of total and free docetaxel concentration in human plasma by ultra-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Rigo-Bonnin, Raül; Cobo-Sacristán, Sara; Gonzalo-Diego, Núria; Colom, Helena; Muñoz-Sánchez, Carmen; Urruticoechea, Ander; Falo, Catalina; Alía, Pedro

    2016-01-05

    Docetaxel is a semi-synthetic taxane with cytotoxic anti-neoplastic activity and, currently used as anticancer agent in several types of cancer. Docetaxel is highly bound to plasma proteins, and this significantly determines its clearance and activity. Therefore, measurement of free docetaxel in plasma is pharmacologically important when pharmacokinetics is investigated. We developed and validated chromatographic methods by ultra-performance liquid chromatography-tandem mass spectrometry to measure total and free docetaxel concentration in human plasma. The final validated methods involved liquid-liquid extraction followed by dryness under nitrogen evaporation. To measure free docetaxel concentration, sample preparation was preceded by ultrafiltration. Chromatographic separation was achieved using an Acquity(®) UPLC(®) BEH™ (2.1×100 mm id, 1.7 μm) reverse-phase C18 column at a flow rate of 0.4 mL/min, using isocratic elution mode containing ammonium acetate/formic acid in water/methanol (30:70 v/v) as mobile phase. Docetaxel and its internal standard (paclitaxel) were detected by electrospray ionization mass spectrometry in positive ion multiple reaction monitoring mode using mass-to-charge (m/z) transitions of 808.3→527.0 (quantifier) and 808.3→509.0 (qualifier); and 854.3→569.0 (quantifier) and 854,3→509,0 (qualifier), respectively. The run time per sample was 3.5 min. The limits of quantification were 1,95 and 0.42 μg/L and linearity was observed between 1.95 and 1000 and 0.42-100 μg/L for total and free docetaxel, respectively. Coefficients of variation and absolute relative biases were less than 13.8% and 10.0%. Recovery values were greater than 79.4%. Evaluation of the matrix effect showed ion suppression and no carry-over was observed. The validated methods could be useful for both therapeutic drug monitoring and pharmacokinetic studies. They could be applied to daily clinical laboratory practice to measure the concentration of total and free

  2. Hydrodeoxygenation of oxidized distilled bio-oil for the production of gasoline fuel type

    International Nuclear Information System (INIS)

    Luo, Yan; Guda, Vamshi Krishna; Hassan, El Barbary; Steele, Philip H.; Mitchell, Brian; Yu, Fei

    2016-01-01

    Highlights: • Oxidation had more influence on the yield of total hydrocarbons than distillation. • The highest total hydrocarbon yield was obtained from oxidized distilled bio-oil. • The 2nd-stage hydrocarbons were in the range of gasoline fuel boiling points. • The main products for upgrading of oxidized bio-oil were aliphatic hydrocarbons. • The main products for upgrading of non-oxidized bio-oil were aromatic hydrocarbons. - Abstract: Distilled and oxidized distilled bio-oils were subjected to 1st-stage mild hydrodeoxygenation and 2nd-stage full hydrodeoxygenation using nickel/silica–alumina catalyst as a means to enhance hydrocarbon yield. Raw bio-oil was treated for hydrodeoxygenation as a control to which to compare study treatments. Following two-stage hydrodeoxygenation, four types of hydrocarbons were mainly comprised of gasoline and had water contents, oxygen contents and total acid numbers of nearly zero and higher heating values of 44–45 MJ/kg. Total hydrocarbon yields for raw bio-oil, oxidized raw bio-oil, distilled bio-oil and oxidized distilled bio-oil were 11.6, 16.2, 12.9 and 20.5 wt.%, respectively. The results indicated that oxidation had the most influence on increasing the yield of gasoline fuel type followed by distillation. Gas chromatography/mass spectrometry characterization showed that 66.0–76.6% of aliphatic hydrocarbons and 19.5–31.6% of aromatic hydrocarbons were the main products for oxidized bio-oils while 35.5–38.7% of aliphatic hydrocarbons and 58.2–63.1% of aromatic hydrocarbons were the main products for non-oxidized bio-oils. Both aliphatic and aromatic hydrocarbons are important components for liquid transportation fuels and chemical products.

  3. Investigations of effect of phase change mass transfer rate on cavitation process with homogeneous relaxation model

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhixia; Zhang, Liang; Saha, Kaushik; Som, Sibendu; Duan, Lian; Wang, Qian

    2017-12-01

    The super high fuel injection pressure and micro size of nozzle orifice has been an important development trend for the fuel injection system. Accordingly, cavitation transient process, fuel compressibility, amount of noncondensable gas in the fuel and cavitation erosion have attracted more attention. Based on the fact of cavitation in itself is a kind of thermodynamic phase change process, this paper takes the perspective of the cavitation phase change mass transfer process to analyze above mentioned phenomenon. The two-phase cavitating turbulent flow simulations with VOF approach coupled with HRM cavitation model and U-RANS of standard k-ε turbulence model were performed for investigations of cavitation phase change mass transfer process. It is concluded the mass transfer time scale coefficient in the Homogenous Relaxation Model (HRM) representing mass transfer rate should tend to be as small as possible in a condition that ensured the solver stable. At very fast mass transfer rate, the phase change occurs at very thin interface between liquid and vapor phase and condensation occurs more focused and then will contribute predictably to a more serious cavitation erosion. Both the initial non-condensable gas in fuel and the fuel compressibility can accelerate the cavitation mass transfer process.

  4. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    Science.gov (United States)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  5. Analysis of some fuel characteristics deviations and their influence over WWER-440 fuel cycle design

    International Nuclear Information System (INIS)

    Stoyanova, I.; Kamenov, K.

    2001-01-01

    The aim of this study is to estimate the influence of some deviations in WWER-440 fuel assemblies (FA) characteristics upon fuel core design. A large number of different fresh fuel assemblies with enrichment of 3.5 t % are examined related to the enrichment, mass of initial metal Uranium and assembly shroud thickness. Infinite multiplication factor (Kinf) in fuel assembly has been calculated by HELIOS spectral code for basic assembly and for different FA with deviation of a single parameter. The effects from single parameter deviation (enrichment) and from two parameter deviations (enrichment and wall thickness) on the neutron-physics characteristics of the core are estimated for different fuel assemblies. Relatively week burnup dependence on Kinf is observed as result of deviation in the enrichment of the fuel and in the wall thickness of the assembly. An assessment of a FA single and two parameter deviations effects on design fuel cycle duration and relative power peaking factor is also considers in the paper. As a final conclusion can be settled that the maximum relative shortness of fuel cycle can be observed in the case of two FA parameters deviations

  6. One approach to accepting and transporting spent fuel from early-generation reactors with short fuel assemblies

    International Nuclear Information System (INIS)

    Peterson, R.W.; Bentz, E.J. Jr.; Bentz, C.B.

    1993-01-01

    In the early days of development of commercial nuclear power reactors in the U.S., the overall length and uranium loading of the fuel assemblies were considerably less than those of later generation facilities. In turn, some of these early facilities were designed for handling shorter casks than currently-certified casks. The spent fuel assemblies from these facilities are nearly all standard fuel within the definition in the Standard Contract (10 CFR 961) between the utilities and the U.S. Department of Energy (DOE) (the Big Rock Point fuel cross-section is outside the standard fuel dimension), and the utilities involved hold early delivery rights under DOE's oldest-fuel-first (OFF) allocation scenario. However, development of casks suitable for satisfying the acceptance and transportation requirements of some of these facilities is not currently underway in the DOE Cask System Development Program (CSDP). While the total MTU of these fuels is relatively small compared to the total program, the number of assemblies to be transported is significant, especially in the early years of operation according to the OFF allocation scenario. We therefore perceive a need for DOE to develop an approach and to implement plans to satisfy the unique acceptance and transportation requirements of these facilities. One such approach is outlined below. (author)

  7. Demonstration of Passive Fuel Cell Thermal Management Technology

    Science.gov (United States)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  8. HEU and Leu FueL Shielding Comparative Study Applied for Spent Fuel Transport

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Margeanu, S.; Barbos, D.

    2009-01-01

    , and in air at 1 m and 2 m, respectively, from the cask, by means of 3a Monte Carlo Morse-S GC code. Before loading into the shipping cask, TRIGA spent fuel source terms and spent fuel parameters have been obtained by means of Origin-S code. Both codes are included in the ORNL s Scale 5 programs package. 60 Co radioactivity is important for HEU spent fuel; actinides contribution to total fuel radioactivity is low. For LEU spent fuel 60 Co radioactivity is insignificant; actinides contribution to total fuel radioactivity is high. Dose rates for both HEU and LEU fuel contents are below regulatory limits, LEU spent fuel photon dose rates being greater than the HEU ones. The comparison between HEU spent fuel theoretical and measured dose rates in selected measuring points shows a good agreement, the calculated values being greater than the measured ones both to cask wall surface (about 34% relative difference) and in air at 1 m distance from the cask surface (about 15% relative difference). Keywords: TRIGA fuel, spent fuel transport, shipping cask, shielding analysis, photon dose rates

  9. An intercomparison experiment on isotope dilution thermal ionisation mass spectrometry using plutonium-239 spike for the determination of plutonium concentration in dissolver solution of irradiated fuel

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Shah, P.M.; Saxena, M.K.; Jain, H.C.; Gurba, P.B.; Babbar, R.K.; Udagatti, S.V.; Moorthy, A.D.; Singh, R.K.; Bajpai, D.D.

    1996-01-01

    Determination of plutonium concentration in the dissolver solution of irradiated fuel is one of the key measurements in the nuclear fuel cycle. This report presents the results of an intercomparison experiment performed between Fuel Chemistry Division (FCD) at BARC and PREFRE, Tarapur for determining plutonium concentration in dissolver solution of irradiated fuel using 239 Pu spike in isotope dilution thermal ionisation mass spectrometry (ID-TIMS). The 239 Pu spike method was previously established at FCD as viable alternative to the imported enriched 242 Pu or 244 Pu; the spike used internationally for plutonium concentration determination by IDMS in dissolver solution of irradiated fuel. Precision and accuracy achievable for determining plutonium concentration are compared under the laboratory and the plant conditions using 239 Pu spike in IDMS. For this purpose, two different dissolver solutions with 240 Pu/ 239 Pu atom ratios of about 0.3 and 0.07 corresponding, respectively, to high and low burn-up fuels, were used. The results of the intercomparison experiment demonstrate that there is no difference in the precision values obtained under the laboratory and the plant conditions; with mean precision values of better than 0.2%. Further, the plutonium concentration values determined by the two laboratories agreed within 0.3%. This exercise, therefore, demonstrates that ID-TIMS method using 239 Pu spike can be used for determining plutonium concentration in dissolver solution of irradiated fuel, under the plant conditions. 7 refs., 8 tabs

  10. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    Energy Technology Data Exchange (ETDEWEB)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  11. Rapid scanning system for fuel drawers

    International Nuclear Information System (INIS)

    Caldwell, J.T.; Fehlau, P.E.; France, S.W.

    1981-01-01

    A nondestructive method for uniqely distinguishing among and quantifying the mass of individual fuel plates in situ in fuel drawers utilized in nuclear reactors is described. The method is both rapid and passive, eliminating the personnel hazard of the commonly used irradiation techniques which require that the analysis be performed in proximity to an intense neutron source such as a reactor. In the present technique, only normally decaying nuclei are observed. This allows the analysis to be performed anywhere. This feature, combined with rapid scanning of a given fuel drawer (in approximately 30 s), and the computer data analysis allows the processing of large numbers of fuel drawers efficiently in the event of a loss alert

  12. 40 CFR 80.46 - Measurement of reformulated gasoline fuel parameters.

    Science.gov (United States)

    2010-07-01

    ... Method for Total Sulfur in Gaseous Fuels by Hydrogenolysis and Rateometric Colorimetry,” or (ii) ASTM... Total Sulfur in Gaseous Fuels by Hydrogenolysis and Rateometric Colorimetry. (2) [Reserved] [59 FR 7813...

  13. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    Science.gov (United States)

    Feddema, Rick

    fuels. Optical patternation data and line of sight laser diffraction data show that there is significant difference between jet fuels. Particularly at low fuel injection pressures (0.345 MPa) and cold temperatures (-40 C), the patternation data shows that the total surface area in the spray at 38.1 mm from the pressure swirl injector for the JP-10 fuel type is one-sixth the amount of the JP-8. Finally, this study compares the atomizer performance of a pressure swirl nozzle to a hybrid air blast nozzle. The total surface area for both the hybrid air blast nozzle and the pressure swirl nozzle show a similar decline in atomization performance at low fuel injection pressures and cold temperatures. However, the optical patternator radial profile data and the line of sight laser diffraction data show that the droplet size and spray distribution data are less affected by injection conditions and fuel type in the hybrid air blast nozzle, than they are in the pressure swirl nozzle. One explanation is that the aerodynamic forces associated with the swirler on the hybrid air blast nozzle control the distribution droplets in the spray. This is in contrast to the pressure swirl nozzle droplet distribution that is controlled by internal geometry and droplet ballistics.

  14. Spent fuel consolidation in the 105KW Building fuel storage basin

    International Nuclear Information System (INIS)

    Johnson, B.H.

    1994-01-01

    This study is one element of a larger engineering study effort by WHC to examine the feasibility of irradiated fuel and sludge consolidation in the KW Basin in response to TPA Milestone (target date) M-34-00-T03. The study concludes that up to 11,500 fuel storage canisters could be accommodated in the KW Basin with modifications. These modifications would include provisions for multi-tiered canister storage involving the fabrication and installation of new storage racks and installation of additional decay heat removal systems for control of basin water temperature. The ability of existing systems to control radionuclide concentrations in the basin water is examined. The study discusses requirements for spent nuclear fuel inventory given the proposed multi-tiered storage arrangement, the impact of the consolidated mass on the KW Basin structure, and criticality issues associated with multi-tiered storage

  15. Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M.L.; Quinn, Matthew; Wychen, Stefanie van; Templeton, David W.; Wolfrum, Edward J. [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States)

    2012-04-15

    In the context of algal biofuels, lipids, or better aliphatic chains of the fatty acids, are perhaps the most important constituents of algal biomass. Accurate quantification of lipids and their respective fuel yield is crucial for comparison of algal strains and growth conditions and for process monitoring. As an alternative to traditional solvent-based lipid extraction procedures, we have developed a robust whole-biomass in situ transesterification procedure for quantification of algal lipids (as fatty acid methyl esters, FAMEs) that (a) can be carried out on a small scale (using 4-7 mg of biomass), (b) is applicable to a range of different species, (c) consists of a single-step reaction, (d) is robust over a range of different temperature and time combinations, and (e) tolerant to at least 50% water in the biomass. Unlike gravimetric lipid quantification, which can over- or underestimate the lipid content, whole biomass transesterification reflects the true potential fuel yield of algal biomass. We report here on the comparison of the yield of FAMEs by using different catalysts and catalyst combinations, with the acid catalyst HCl providing a consistently high level of conversion of fatty acids with a precision of 1.9% relative standard deviation. We investigate the influence of reaction time, temperature, and biomass water content on the measured FAME content and profile for 4 different samples of algae (replete and deplete Chlorella vulgaris, replete Phaeodactylum tricornutum, and replete Nannochloropsis sp.). We conclude by demonstrating a full mass balance closure of all fatty acids around a traditional lipid extraction process. (orig.)

  16. Automatic control of the NMB level in general anaesthesia with a switching total system mass control strategy.

    Science.gov (United States)

    Teixeira, Miguel; Mendonça, Teresa; Rocha, Paula; Rabiço, Rui

    2014-12-01

    This paper presents a model based switching control strategy to drive the neuromuscular blockade (NMB) level of patients undergoing general anesthesia to a predefined reference. A single-input single-output Wiener system with only two parameters is used to model the effect of two different muscle relaxants, atracurium and rocuronium, and a switching controller is designed based on a bank of total system mass control laws. Each of such laws is tuned for an individual model from a bank chosen to represent the behavior of the whole population. The control law to be applied at each instant corresponds to the model whose NMB response is closer to the patient's response. Moreover a scheme to improve the reference tracking quality based on the analysis of the patient's response, as well as, a comparison between the switching strategy and the Extended Kalman Kilter (EKF) technique are presented. The results are illustrated by means of several simulations, where switching shows to provide good results, both in theory and in practice, with a desirable reference tracking. The reference tracking improvement technique is able to produce a better reference tracking. Also, this technique showed a better performance than the (EKF). Based on these results, the switching control strategy with a bank of total system mass control laws proved to be robust enough to be used as an automatic control system for the NMB level.

  17. Gas-cooled reactor programs. Fuel-management positioning and accounting module: FUELMANG Version V1. 11, September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Medlin, T.W.; Hill, K.L.; Johnson, G.L.; Jones, J.E.; Vondy, D.R.

    1982-01-01

    This report documents the code module FUELMANG for fuel management of a reactor. This code may be used to position fuel during the calculation of a reactor history, maintain a mass balance history of the fuel movement, and calculate the unit fuel cycle component of the electrical generation cost. In addition to handling fixed feed fuel without recycle, provision has been made for fuel recycle with various options applied to the recycled fuel. A continuous fueling option is also available with the code. A major edit produced by the code is a detailed summary of the mass balance history of the reactor and a fuel cost analysis of that mass balance history. This code is incorporated in the system containing the VENTURE diffusion theory neutronics code for routine use. Fuel movement according to prescribed instructions is performed without the access of additional user input data during the calculation of a reactor operating history. Local application has been primarily for analysis of the performance of gas-cooled thermal reactor core concepts.

  18. Gas-cooled reactor programs. Fuel-management positioning and accounting module: FUELMANG Version V1.11, September 1981

    International Nuclear Information System (INIS)

    Medlin, T.W.; Hill, K.L.; Johnson, G.L.; Jones, J.E.; Vondy, D.R.

    1982-01-01

    This report documents the code module FUELMANG for fuel management of a reactor. This code may be used to position fuel during the calculation of a reactor history, maintain a mass balance history of the fuel movement, and calculate the unit fuel cycle component of the electrical generation cost. In addition to handling fixed feed fuel without recycle, provision has been made for fuel recycle with various options applied to the recycled fuel. A continuous fueling option is also available with the code. A major edit produced by the code is a detailed summary of the mass balance history of the reactor and a fuel cost analysis of that mass balance history. This code is incorporated in the system containing the VENTURE diffusion theory neutronics code for routine use. Fuel movement according to prescribed instructions is performed without the access of additional user input data during the calculation of a reactor operating history. Local application has been primarily for analysis of the performance of gas-cooled thermal reactor core concepts

  19. Mass transport of direct methanol fuel cell species in sulfonated poly(ether ether ketone) membranes

    International Nuclear Information System (INIS)

    Silva, V.S.; Ruffmann, B.; Vetter, S.; Boaventura, M.; Mendes, A.M.; Madeira, L.M.; Nunes, S.P.

    2006-01-01

    Homogeneous membranes based on sulfonated poly(ether ether ketone) (sPEEK) with different sulfonation degrees (SD) were prepared and characterized. In order to perform a critical analysis of the SD effect on the polymer barrier and mass transport properties towards direct methanol fuel cell species, proton conductivity, water/methanol pervaporation and nitrogen/oxygen/carbon dioxide pressure rise method experiments are proposed. This procedure allows the evaluation of the individual permeability coefficients in hydrated sPEEK membranes with different sulfonation degrees. Nafion[reg] 112 was used as reference material. DMFC tests were also performed at 50 deg. C. It was observed that the proton conductivity and the permeability towards water, methanol, oxygen and carbon dioxide increase with the sPEEK sulfonation degree. In contrast, the SD seems to not affect the nitrogen permeability coefficient. In terms of selectivity, it was observed that the carbon dioxide/oxygen selectivity increases with the sPEEK SD. In contrast, the nitrogen/oxygen selectivity decreases. In terms of barrier properties for preventing the DMFC reactants loss, the polymer electrolyte membrane based on the sulfonated poly(ether ether ketone) with SD lower or equal to 71%, although having slightly lower proton conductivity, presented much better characteristics for fuel cell applications compared with the well known Nafion[reg] 112. In terms of the DMFC tests of the studied membranes at low temperature, the sPEEK membrane with SD = 71% showed to have similar performance, or even better, as that of Nafion[reg] 112. However, the highest DMFC overall efficiency was achieved using sPEEK membrane with SD = 52%

  20. On the mixing model for calculating the temperature fields in nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Mikhin, V.I.; Zhukov, A.V.

    1985-01-01

    One of the alternatives of the mixing model applied for calculating temperature fields in nuclear reactor fuel assemblies,including the fuel assemblies with nonequilibrium energy-release in fuel element cross section, is consistently described. The equations for both constant and variable values of coolant density and heat capacity are obtained. The mixing model is based on a set of mass, heat and longitudinal momentum balance equations. This set is closed by the ratios connecting the unknown values for gaps between fuel elements with the averaged values for neighbouring channels. The ratios to close momentum and heat balance equations, explaining, in particular, the nonequivalent heat and mass, momentum and mass transfer coefficients, are suggested. The balance equations with variable coolant density and heat capacity are reduced to the form coinciding with those of the similar equations with constant values of these parameters. Application of one of the main ratios of the mixing model relating the coolant transverse overflow in the gaps between fuel elements to the averaged coolant rates (flow rates) in the neighbouring channels is mainly limited by the coolant stabilized flow in the fuel assemblies with regular symmetrical arrangement of elements. Mass transfer coefficients for these elements are experimentally determined. The ratio in the paper is also applicable for calculation of fuel assembly temperature fields with a small relative shift of elements

  1. Special aspects of implementing advanced fuel cycles at Kalinin NPP

    International Nuclear Information System (INIS)

    Tsvetkov, A.

    2015-01-01

    The presentation showed the experience of different TVSA modifications usage at Kalinin NPP. The strategy of 18 month fuel cycles implementation at uprated power (104%) was also presented. The transition and equilibrium fuel loadings features were discussed. The implementation of burn-up measurement installation MKS-01 was presented, in order to solve the spent nuclear fuel handling and transportation issues due to the increased fuel enrichment and heavy metal mass

  2. Determination of plutonium content in TRR spent fuel by nondestructive neutron counting

    International Nuclear Information System (INIS)

    Chen, Y.-F.; Sheu, R.-J.; Chiao, L.-H.; Yuan, M.-C.; Jiang, S.-H.

    2010-01-01

    For the nuclear safeguard purpose, this work aims to nondestructively determine the plutonium content in the Taiwan Research Reactor (TRR) spent fuel rods in the storage pool before the stabilization process, which transforms the metal spent fuel rods into oxide powder. A SPent-fuel-Neutron-Counter (SPNC) system was designed and constructed to carry out underwater scan measurements of neutrons emitting from the spent fuel rod, from which the 240 Pu mass in the fuel rod will be determined. The SAS2 H control module of the SCALE 5.1 code package was applied to calculate the 240 Pu-to-Pu mass ratio in the TRR spent fuel rod according to the given power history. This paper presents the methodology and design of our detector system as well as the measurements of four TRR spent fuel rods in the storage pool and the comparison of the measured results with the facility declared values.

  3. Economics of fuel energy in an Indian village ecosystem

    International Nuclear Information System (INIS)

    Nisanka, S.K.; Misra, M.K.; Sahu, N.C.

    1992-01-01

    Fuel energy consumption pattern and its associated socio-economic factors have been intensively studied in the Bhabinarayanpur village ecosystem, Orissa, located on the east coast of India. About 21% of the gross annual income of the village is devoted to the fuels. Biomass, which is mostly collected free from the environment, is the major source of fuel energy. It constitutes 94.1% of the total fuel consumption. Family size and consumption of cereals and legumes significantly influence fuel use. However, there is no significant correlation between fuel consumption and other variables such as farm size, income and number of earning members in the family. The efficiency of the traditional stove is low in respect of all the biomass fuels for which more than three-quarters of the total energy is lost in the village. There is scope for improving the efficiency of fuel consumption and for ensuring a continuous supply of fuel energy to the village, for which suggestions have been made. (author)

  4. Analysis of the second part of the fuel cycle of nuclear spanish park using module TREVOL of EVOLCODE2

    International Nuclear Information System (INIS)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2011-01-01

    This paper describes the application of the code TR E VOL an associated fuel cycle Spanish nuclear park, with the objective of estimating the mass of nuclear fuel manufactured by reactor and the mass generated of irradiated fuel.

  5. Degradation of nitrile rubber fuel hose by biodiesel use

    International Nuclear Information System (INIS)

    Coronado, Marcos; Montero, Gisela; Valdez, Benjamín; Stoytcheva, Margarita; Eliezer, Amir; García, Conrado; Campbell, Héctor; Pérez, Armando

    2014-01-01

    Nowadays biodiesel is becoming an increasingly important and popular fuel, obtained from renewable sources, and contributes to pollutant emissions reduction and decreasing fossil fuels dependence. However, its easier oxidation and faster degradation in comparison to diesel led to compatibility problems between biodiesel and various metallic and polymeric materials contacted. Therefore, the objective of this work is to investigate the effect of different mixtures diesel–biodiesel (fuel type B5, B10, B20) used in Baja California, Mexico on the resistance of nitrile rubber fuel hoses at temperatures of 25 °C and 70 °C applying gravimetric tests, tensile strength measurements and scanning electron microscopy analysis. The factors affecting the material mass change were identified using an experimental design analysis. It was found that the fuel temperature did not conduct to significant mass loss of nitrile rubber fuel hose, while biodiesel concentration affected the properties of the elastomer, causing the phenomenon of swelling. The exposure of hoses to fuel with increasing concentrations of biodiesel led to tensile strength decrease. - Highlights: • The biodiesel oxidation led to problems with polymeric materials. • The degradation of a nitrile rubber fuel hose in biodiesel blends was assessed. • The nitrile rubber showed greater affinity for biodiesel than diesel. • The elastomer swelled, cracked and lost its mechanical properties by biodiesel. • SEM analysis confirmed surface morphology changes in higher biodiesel blends

  6. Very fast mass balance and other fuel cycle response calculations for studying back end of fuel cycle scenari

    International Nuclear Information System (INIS)

    Dekens, O.; Marguet, S.; Risch, P.

    1997-01-01

    In order to optimize nuclear fuel utilization, as far as irradiation and storage are concerned, the Research and Development Division of Electricite de France (EDF) developed as fast and accurate software that simulates a fuel assembly life from the inside-reactor stay to the final repository: STRAPONTIN. The discrepancies between reference calculations and STRAPONTIN are generally smaller than 5 %. Moreover, the low calculation time enables to couple STRAPONTIN to any large code in order to widen its scope without impairing its CPU time. (authors)

  7. For the criticality of water reflected homogeneous arrays and heterogeneous reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Hj; Rabitsch, H; Schuerrer, F [Technische Univ., Graz (Austria). Inst. fuer Theoretische Physik und Reaktorphysik

    1980-01-01

    The smallest critical masses for fuel elements of research reactors having a medium and high enrichment are calculated. The results fit close on the known critical masses of power reactors with low enrichment. The comparison of the critical masses of reactor fuel elements and homogenized uranium dioxide water systems yields the influence of the homogeneity and of the cladding on the criticality. A coefficient for heterogeneity is suggested which takes into consideration these influences.

  8. Selection of optimal conditions for preparation of emulsified fuel fluids

    Science.gov (United States)

    Ivanov, V. A.; Berg, V. I.; Frolov, M. D.

    2018-05-01

    The aim of the article is to derive the optimal concept of physical and chemical effects, and its application to the production of water-fuel emulsions. The authors set a research task to attempt to estimate the influence of the surfactant concentration on such indicator as the time before the beginning of emulsion breaking. The analysis, based on experimental data, showed that an increase in the concentration of sodium lauryl sulfate is expedient to a certain point, corresponding to 0.05% of the total mass fraction. The main advantage of the model is a rational combination of methods of physical and chemical treatment used in the production of emulsions.

  9. Facilities of fuel transfer for nuclear reactors

    International Nuclear Information System (INIS)

    Wade, E.E.

    1977-01-01

    This invention relates to sodium cooled fast breeder reactors. It particularly concerns facilities for the transfer of fuel assemblies between the reactor core and a fuel transfer area. The installation is simple in construction and enables a relatively small vessel to be used. In greater detail, the invention includes a vessel with a head, fuel assemblies housed in this vessel, and an inlet and outlet for the coolant covering these fuel assemblies. The reactor has a fuel transfer area in communication with this vessel and gear inside the vessel for the transfer of these fuel assemblies. These facilities are borne by the vessel head and serve to transfer the fuel assemblies from the vessel to the transfer area; whilst leaving the fuel assemblies completely immersed in a continuous mass of coolant. A passageway is provided between the vessel and this transfer area for the fuel assemblies. Facilities are provided for closing off this passageway so that the inside of the reactor vessel may be isolated as desired from this fuel transfer area whilst the reactor is operating [fr

  10. Nuclear fuel, mass balances, conversion ratio, doubling time, and uncertainty

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1976-11-01

    Information on the performance aspects of nuclear power plants is presented concerning conversion ratio, criticality, primitive economic analysis, stable breeder-converter industry, doubling time, breeder industry economic benefit, defining nuclear fuel, recommendations, and uncertainty

  11. Progress of fossil fuel science

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, M.F.

    2007-07-01

    Coal is the most abundant and widely distributed fossil fuel. More than 45% of the world's electricity is generated from coal, and it is the major fuel for generating electricity worldwide. The known coal reserves in the world are enough for more than 215 years of consumption, while the known oil reserves are only about 39 times of the world's consumption and the known natural gas reserves are about 63 times of the world's consumption level in 1998. In recent years, there have been effective scientific investigations on Turkish fossil fuels, which are considerable focused on coal resources. Coal is a major fossil fuel source for Turkey. Turkish coal consumption has been stable over the past decade and currently accounts for about 24% of the country's total energy consumption. Lignite coal has had the biggest share in total fossil fuel production, at 43%, in Turkey. Turkish researchers may investigate ten broad pathways of coal species upgrading, such as desulfurization and oxydesulfurization, pyrolysis and hydropyrolysis, liquefaction and hydroliquefaction, extraction and supercritical fluid extraction, gasification, oxidation, briquetting, flotation, and structure identification.

  12. New fossil fuel combustion technologies

    International Nuclear Information System (INIS)

    Minghetti, E.; Palazzi, G.

    1995-01-01

    The aim of the present article is to supply general information concerning fossil fuels that represent, today and for the near future, the main energy source of our Planet. New fossil fuel technologies are in continual development with two principal goals: to decrease environmental impact and increase transformation process efficiency. Examples of this efforts are: 1) gas-steam combined cycles integrated with coal gasification plants, or with pressurized-fluidized-bed combustors; 2) new cycles with humid air or coal direct fired turbine, now under development. In the first part of this article the international and national energy situations and trends are shown. After some brief notes on environmental problems and alternative fuels, such as bio masses and municipal wastes, technological aspects, mainly relevant to increase fossil-fueled power plant performances, are examined in greater depth. Finally the research and technological development activities of ENEA (Italian Agency for New Technologies, Energy and Environment) Engineering Branch, in order to improve fossil fuels energy and environmental use are presented

  13. CFD thermal-hydraulic analysis of a CANDU fuel channel with SEU43 type fuel bundle

    International Nuclear Information System (INIS)

    Catana, A.; Prisecaru, Ilie; Dupleac, D.; Danila, Nicolae

    2009-01-01

    This paper presents the numerical investigation of a CANDU fuel channel using CFD (Computational Fluid Dynamics) methodology approach, when SEU43 fuel bundles are used. Comparisons with STD37 fuel bundles are done in order to evaluate the influence of geometrical differences of the fuel bundle types on fluid flow properties. We adopted a strategy to analyze only the significant segments of fuel channel, namely : - the fuel bundle junctions with adjacent segments; - the fuel bundle spacer planes with adjacent segments; - the fuel bundle segments with turbulence enhancement buttons; - and the regular segments of fuel bundles. The computer code used is an academic version of FLUENT code, available from UPB. The complex flow domain of fuel bundles contained in pressure tube and operating conditions determine a high turbulence flow and in some parts of fuel channel also a multi-phase flow. Numerical simulation of the flow in the fuel channel has been achieved by solving the equations for conservation of mass, momentum and energy. For turbulence model the standard k-model is employed although other turbulence models can be used. In this paper we do not consider heat generation and heat transfer capabilities of CFD methods. Boundary conditions for CFD analysis are provided by system and sub-channel analysis. In this paper the discussion is focused on some flow parameters behaviour at the bundle junction, spacer's plane configuration, etc. of a SEU43 fuel bundle in conditions of a typical CANDU 6 fuel channel starting from some experience gained in a previous work. (authors)

  14. Seismic analysis of freestanding fuel racks

    International Nuclear Information System (INIS)

    Gilmore, C.B.

    1982-01-01

    This paper presents a nonlinear transient dynamic time-history analysis of freestanding spent fuel storage racks subjected to seismic excitation. This type of storage rack is structurally unrestrained and submerged in water in the spent fuel pool of a nuclear power complex, holds (spent) fuel assemblies which have been removed from the reactor core. Nonlinearities in the fuel rack system include impact between the fuel assembly and surrounding cell due to clearances between them, friction due to sliding between the fuel rack support structure and spent fuel pool floor, and the lift-off of the fuel rack support structure from the spent fuel pool floor. The analysis of the fuel rack system includes impacting due to gap closures, energy losses due to impacting bodies, Coulomb damping between sliding surfaces, and hydrodynamic mass effects. Acceleration time history excitation development is discussed. Modeling considerations, such as the initial status of nonlinear elements, number of mode shapes to include in the analysis, modal damping, and integration time-step size are presented. The response of the fuel rack subjected to two-dimensional seismic excitation is analyzed by the modal superposition method, which has resulted in significant computer cost savings when compared to that of direct integration

  15. Method of making nuclear fuel bodies

    International Nuclear Information System (INIS)

    Davis, D.E.; Leary, D.F.

    1977-01-01

    A method of making nuclear fuel bodies is described comprising: providing particulate graphite having a particle size not greater than about 1500 microns; impregnating the graphite with a polymerizable organic resin in liquid form; treating the impregnated particles with a hot aqueous acid solution to pre-cure the impregnated resin and to remove excess resin from the surfaces of said graphite particles; heating the treated particles to polymerize the impregnant; blending the impregnated particles with particulate nuclear fuel; and forming a nuclear fuel body by joining the blend of particles into a cohesive mass using a carbonaceous binder

  16. Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts

    Energy Technology Data Exchange (ETDEWEB)

    S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

    2010-09-01

    The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse

  17. Advances in AGR fuel fabrication - now and the future

    International Nuclear Information System (INIS)

    Bleasdale, P.A.

    1995-01-01

    To date, over 3 million AGR fuel pins have been manufactured at Springfields for the UK AGR programme. During this time, AGR fuel design and manufacture has developed and evolved in response to the needs of the reactor operators to enhance fuel reliability and performance. More recently, major advances have been made in the systems and organisational culture which support fuel manufacture at Fuel Division. The introduction of MRP II in 1989 into Fuel Division enabled significant reductions in stock and work-in-progress, together with reductions in manufacturing lead times. Other successful initiatives introduced into Fuel Division have been Just-in-Time (JIT) and AST (Additional Skills Training) which have built on the success of MRP II. All of these initiatives are evidence of Fuel Division's ''Total Quality'' approach to fabricating fuel. Fuel Division is currently in the final stages of commissioning the New Oxide Fuels Complex (NOFC) where both AGR and PWR fuel will be manufactured to the highest standards of quality, safety and environmental protection. NOFC is a totally integrated plant which represents a Pound 200M investment, demonstrating Fuel Division's commitment to building on its 40+ years of fuel fabrication experience and ensuring secure supply of fuel to its customers for years to come. (author)

  18. Spent-Fuel Test - Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Executive summary of final results

    International Nuclear Information System (INIS)

    Patrick, W.C.

    1986-01-01

    This summary volume outlines results that are covered in more detail in the final report of the Spent-Fuel Test - Climate project. The project was conducted between 1978 and 1983 in the granitic Climax stock at the Nevada Test Site. Results indicate that spent fuel can be safely stored for periods of years in this host medium and that nuclear waste so emplaced can be safely retrieved. We also evaluated the effects of heat and radiation (alone and in combination) on emplacement canisters and the surrounding rock mass. Storage of the spent-fuel affected the surrounding rock mass in measurable ways, but did not threaten the stability or safety of the facility at any time

  19. Physical and chemical feasibility of fueling molten salt reactors with TRU's trifluorides

    International Nuclear Information System (INIS)

    Ignatiev, V.; Feinberg, O.; Konakov, S.; Subbotine, S.; Surenkov, A.; Zakirov, R.

    2001-01-01

    The molten salt reactor (MSR) concept is very important for consideration as an element of future nuclear energy systems. These reactor systems are unique in many ways. Particularly, the MSRs appear to have substantial promise not only as advanced TRU free system operating in U-Th cycle, but also as transmuter of TRU. Physical and chemical feasibility of fueling MSR with TRU trifluorides is examined. Solvent compositions with and without U-Th as fissile / fertile addition are considered. The principle reactor and fuel cycle variables available for optimizing the performance of MSR as TRU transmuting system are discussed. These efforts led to the definition in minimal TRU mass flow rate, reduced total losses to waste and maximum possible burn up rate for the molten salt transmuter. The current status of technology and prospects for revisited interest are summarized. Significant chemical problems are remain to be resolved at the end of prior MSRs programs, notably, graphite life durability, tritium control, fate of noble metal fission products. Questions arising from plutonium and minor actinide fueling include: corrosion and container chemistry, new redox buffer for systems without uranium, analytical chemistry instrumentation, adequate constituent solubilities, suitable fuel processing and waste form development. However these problems appear to be soluble. (author)

  20. Hydrogen fueling stations in Japan hydrogen and fuel cell demonstration project

    International Nuclear Information System (INIS)

    Koseki, K.; Tomuro, J.; Sato, H.; Maruyama, S.

    2004-01-01

    A new national demonstration project of fuel cell vehicles, which is called Japan Hydrogen and Fuel Cell Demonstration Project (JHFC Project), has started in FY2002 on a four-year plan. In this new project, ten hydrogen fueling stations have been constructed in Tokyo and Kanagawa area in FY2002-2003. The ten stations adopt the following different types of fuel and fueling methods: LPG reforming, methanol reforming, naphtha reforming, desulfurized-gasoline reforming, kerosene reforming, natural gas reforming, water electrolysis, liquid hydrogen, by-product hydrogen, and commercially available cylinder hydrogen. Approximately fifty fuel cell passenger cars and a fuel cell bus are running on public roads using these stations. In addition, two hydrogen stations will be constructed in FY2004 in Aichi prefecture where The 2005 World Exposition (EXPO 2005) will be held. The stations will service eight fuel cell buses used as pick-up buses for visitors. We, Engineering Advancement Association of Japan (ENAA), are commissioned to construct and operate a total of twelve stations by Ministry of Economy Trade and Industry (METI). We are executing to demonstrate or identify the energy-saving effect, reduction of the environmental footprint, and issues for facilitating the acceptance of hydrogen stations on the basis of the data obtained from the operation of the stations. (author)

  1. Calculation of Heat-Bearing Agent’s Steady Flow in Fuel Bundle

    Science.gov (United States)

    Amosova, E. V.; Guba, G. G.

    2017-11-01

    This paper introduces the result of studying the heat exchange in the fuel bundle of the nuclear reactor’s fuel magazine. The article considers the fuel bundle of the infinite number of fuel elements, fuel elements are considered in the checkerboard fashion (at the tops of a regular triangle a fuel element is a plain round rod. The inhomogeneity of volume energy release in the rod forms the inhomogeneity of temperature and velocity fields, and pressure. Computational methods for studying hydrodynamics in magazines and cores with rod-shape fuel elements are based on a significant simplification of the problem: using basic (averaged) equations, isobaric section hypothesis, porous body model, etc. This could be explained by the complexity of math description of the three-dimensional fluid flow in the multi-connected area with the transfer coefficient anisotropy, curved boundaries and technical computation difficulties. Thus, calculative studying suggests itself as promising and important. There was developed a method for calculating the heat-mass exchange processes of inter-channel fuel element motions, which allows considering the contribution of natural convection to the heat-mass exchange based on the Navier-Stokes equations and Boussinesq approximation.

  2. Radiochemical measurement of mass transport in sodium

    International Nuclear Information System (INIS)

    Cooper, M.H.; Chiang, S.H.

    1976-01-01

    Mass transport processes in the sodium coolant of Liquid Metal Fast Breeder Reactors (LMFBRs) are significant in determining rates of corrosion and deposition of radioactive nuclides from the fuel cladding, deposition and cold trapping of fission products from defect or failed fuel, carbon and nitrogen redistribution in the containment materials, and removal of impurities by cold trapping or hot trapping. Mass transport between rotating, concentric cylinders in molten sodium has been investigated using a unique radiochemical method. Long-lived (33 year) cesium-137, dissolved in the sodium, decays radioactively emitting a beta to barium-137m, which decays with a short half-life (2.6 minutes) emitting a gamma. Cesium is weakly adsorbed and remains in solution, while the barium is strongly adsorbed on the stainless steel surfaces. Hence, by measuring the barium-137m activity on movable stainless steel surfaces, one can calculate the mass transport to that surface. Mass transfer coefficients in sodium measured by this method are in agreement with published heat transfer correlations when the effect of the volumetric mass source is taken into account. Hence, heat transfer correlations can be confidently utilized by analogy in estimating mass transfer in liquid-metal systems

  3. Wood fuels utilization in Central Europe - the wood fuels consumption and the targets of utilization

    International Nuclear Information System (INIS)

    Alakangas, E.

    1999-01-01

    Following subjects are discussed in this presentation: The share of bioenergy of the total energy consumption in EU region; the wood fuels consumption in EU region in 1995; the division of bioenergy utilization (households, wood- based district heating, wood consumption in industry, power generation from wood and residues, biofuels, biogas and sludges); wood fuels consumption in households in EU countries in 1995; wood consumption in France; the additional wood fuel consumption potential in France; Blan bois - wood energy program; French wood energy markets; German wood energy markets; energy consumption in Germany; wood consumption in Bavaria; the wood fuels potential in Bavaria; wood fuels consumption in households in Bavaria; wood fuels consumption for district heating in Bavaria; fuel prices in Bavaria; Environmental regulations in Germany; small boiler markets in Germany; Energy consumption in Austria; small-scale utilization of wood fuels; utilization of wood energy. (Slides, additional information from the author)

  4. Missing mass spectra in pp inelastic scattering at total energies of 23 GeV and 31 GeV

    CERN Document Server

    Albrow, M G; Barber, D P; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C; Van der Veen, F

    1974-01-01

    Results are reported of measurements of the momentum spectra of protons emitted at small angles in inelastic reactions at the CERN ISR. The data are for total energies s/sup 1///sub 2/ of 23 GeV and 31 GeV. The structure of the peak at low values of the missing mass M (of the system recoiling against the observed proton) is studied. The missing mass distributions have the form (M/sup 2/)-/sup B(t)/ where t is the four-momentum transfer squared. B(t) drops from 0.98+or-0.06 at t=-0.15 GeV/sup 2/ to 0.20+or-0.15 at t=-1.65 GeV/sup 2/. The results are compared with a simple triple-Regge formula. (12 refs).

  5. Hydrocarbon emission fingerprints from contemporary vehicle/engine technologies with conventional and new fuels

    Science.gov (United States)

    Montero, Larisse; Duane, Matthew; Manfredi, Urbano; Astorga, Covadonga; Martini, Giorgio; Carriero, Massimo; Krasenbrink, Alois; Larsen, B. R.

    2010-06-01

    The present paper presents results from the analysis of 29 individual C 2-C 9 hydrocarbons (HCs) specified in the European Commission Ozone Directive. The 29 HCs are measured in exhaust from common, contemporary vehicle/engine/fuel technologies for which very little or no data is available in the literature. The obtained HC emission fingerprints are compared with fingerprints deriving from technologies that are being phased out in Europe. Based on the total of 138 emission tests, thirteen type-specific fingerprints are extracted (Mean ± SD percentage contributions from individual HCs to the total mass of the 29 HCs), essential for receptor modelling source apportionment. The different types represent exhaust from Euro3 and Euro4 light-duty (LD) diesel and petrol-vehicles, Euro3 heavy-duty (HD) diesel exhaust, and exhaust from 2-stroke preEuro, Euro1 and Euro2 mopeds. The fuels comprise liquefied petroleum gas, petrol/ethanol blends (0-85% ethanol), and mineral diesel in various blends (0-100%) with fatty acid methyl esters, rapeseed methyl esters palm oil methyl esters, soybean oil methyl or sunflower oil methyl esters. Type-specific tracer compounds (markers) are identified for the various vehicle/engine/fuel technologies. An important finding is an insignificant effect on the HC fingerprints of varying the test driving cycle, indicating that combining HC fingerprints from different emission studies for receptor modelling purposes would be a robust approach. The obtained results are discussed in the context of atmospheric ozone formation and health implications from emissions (mg km -1 for LD and mopeds and mg kW h -1 for HD, all normalised to fuel consumption: mg dm -3 fuel) of the harmful HCs, benzene and 1,3-butadiene. Another important finding is a strong linear correlation of the regulated "total" hydrocarbon emissions (tot-HC) with the ozone formation potential of the 29 HCs (ΣPO 3 = (1.66 ± 0.04) × tot-RH; r2 = 0.93). Tot-HC is routinely monitored in

  6. Modeling and simulation of PEM fuel cell's flow channels using CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Edgar F.; Andrade, Alexandre B.; Robalinho, Eric; Bejarano, Martha L.M.; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: efcunha@ipen.br; abodart@ipen.br; eric@ipen.br; mmora@ipen.br; mlinardi@ipen.br; Cekinski, Efraim [Instituto de Pesquisas Tecnologicas (IPT-SP), Sao Paulo, SP (Brazil)]. E-mail: cekinski@ipt.br

    2007-07-01

    Fuel cells are one of the most important devices to obtain electrical energy from hydrogen. The Proton Exchange Membrane Fuel Cell (PEMFC) consists of two important parts: the Membrane Electrode Assembly (MEA), where the reactions occur, and the flow field plates. The plates have many functions in a fuel cell: distribute reactant gases (hydrogen and air or oxygen), conduct electrical current, remove heat and water from the electrodes and make the cell robust. The cost of the bipolar plates corresponds up to 45% of the total stack costs. The Computational Fluid Dynamic (CFD) is a very useful tool to simulate hydrogen and oxygen gases flow channels, to reduce the costs of bipolar plates production and to optimize mass transport. Two types of flow channels were studied. The first type was a commercial plate by ELECTROCELL and the other was entirely projected at Programa de Celula a Combustivel (IPEN/CNEN-SP) and the experimental data were compared with modelling results. Optimum values for each set of variables were obtained and the models verification was carried out in order to show the feasibility of this technique to improve fuel cell efficiency. (author)

  7. Advantages and Challenges of Dried Blood Spot Analysis by Mass Spectrometry Across the Total Testing Process

    Science.gov (United States)

    Zakaria, Rosita; Allen, Katrina J.; Koplin, Jennifer J.; Roche, Peter

    2016-01-01

    Introduction Through the introduction of advanced analytical techniques and improved throughput, the scope of dried blood spot testing utilising mass spectrometric methods, has broadly expanded. Clinicians and researchers have become very enthusiastic about the potential applications of dried blood spot based mass spectrometric applications. Analysts on the other hand face challenges of sensitivity, reproducibility and overall accuracy of dried blood spot quantification. In this review, we aim to bring together these two facets to discuss the advantages and current challenges of non-newborn screening applications of dried blood spot quantification by mass spectrometry. Methods To address these aims we performed a key word search of the PubMed and MEDLINE online databases in conjunction with individual manual searches to gather information. Keywords for the initial search included; “blood spot” and “mass spectrometry”; while excluding “newborn”; and “neonate”. In addition, databases were restricted to English language and human specific. There was no time period limit applied. Results As a result of these selection criteria, 194 references were identified for review. For presentation, this information is divided into: 1) clinical applications; and 2) analytical considerations across the total testing process; being pre-analytical, analytical and post-analytical considerations. Conclusions DBS analysis using MS applications is now broadly applied, with drug monitoring for both therapeutic and toxicological analysis being the most extensively reported. Several parameters can affect the accuracy of DBS measurement and further bridge experiments are required to develop adjustment rules for comparability between dried blood spot measures and the equivalent serum/plasma values. Likewise, the establishment of independent reference intervals for dried blood spot sample matrix is required. PMID:28149263

  8. Fuels. Deliveries and consumption of fuels during 4th quarter 2001 and during 2001

    International Nuclear Information System (INIS)

    2002-01-01

    The total volume of oil product deliveries (excluded lubricants, bitumen etc.) from the oil companies was 3 per cent higher during 2001 compared with 2000. The deliveries of motor gasoline and diesel oil increased by 1 per cent. Domestic heating oil decreased by 2 per cent and heavy fuel oils increased by 17 per cent, all compared with 2000. Under the forth quarter 2001 the deliveries of oil products (excluded lubricants bitumen etc.) was 5 per cent higher compared with the same quarter 2000. The deliveries of domestic heating oil and heavy fuel oils increased by 4 per cent and 28 per cent respectively. Motor gasoline increased by 3 per cent while the deliveries of diesel oil decreased by 1 per cent. The consumption of fuels in mining and manufacturing decreased by 5 per cent during 2001 compared with 2000. Most of the reduction came from the lower use of domestic fuel in manufacture of pulp, paper and paper products, printing and publishing. The total consumption in mining and manufacturing was unchanged during the 4 th quarter 2001 compared with the same period 2000. The consumption of domestic fuels decreased by 6 per cent and the oil consumption increased by 11 per cent. Higher consumption of fuels in electricity, gas and district heating services. The consumption of fuels in electricity, gas and district heating services increased by 14 per cent 2001 compared with 2000. The consumption of domestic fuels raised with 12 per cent and the use of fossil fuels raised with 17 per cent. The highest increasing, 27 per cent, was found within the use of oil. Electricity, gas and district heating services increased there fuel consumption with 29 per cent during the 0 quarter 2001 compared with the same period 2000. The raise can be explained with the fact that the 4th quarter 2000 was unusually warm. The increasing is found both in the use of domestic and fossil fuels

  9. Material Control and Accountability Experience at the Fuel Conditioning Facility

    International Nuclear Information System (INIS)

    Vaden, D.; Fredrickson, G.L.

    2007-01-01

    The Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL) treats spent nuclear fuel using an electrometallurgical process that separates the uranium from the fission products, sodium thermal bond, and cladding materials. Material accountancy is necessary at FCF for two reasons: 1) it provides a mechanism for detecting a potential loss of nuclear material for safeguards and security, and 2) it provides a periodic check of inventories to ensure that processes and materials are within control limits. Material Control and Accountability is also a Department of Energy (DOE) requirement (DOE Order 474.1). The FCF employs a computer based Mass Tracking (MTG) System to collect, store, retrieve, and process data on all operations that directly affect the flow of materials through the FCF. The MTG System is important for the operations of the FCF because it supports activities such as material control and accountability, criticality safety, and process modeling. To conduct material control and accountability checks and to monitor process performance, mass balances are routinely performed around the process equipment. The equipment used in FCF for pyro-processing consists of two mechanical choppers and two electro-refiners (the Mark-IV with the accompanying element chopper and Mark-V with the accompanying blanket chopper for processing driver fuel and blanket, respectively), and a cathode processor (used for processing both driver fuel and blanket) and casting furnace (mostly used for processing driver fuel). Performing mass balances requires the measurement of the masses and compositions of several process streams and equipment inventories. The masses of process streams are obtained via in-cell balances (i.e., load cells) that weigh containers entering and leaving the process equipment. Samples taken at key locations are analyzed to determine the composition of process streams and equipment inventories. In cases where equipment or containers cannot be

  10. Design and Performance of LPG Fuel Mixer for Dual Fuel Diesel Engine

    Science.gov (United States)

    Desrial; Saputro, W.; Garcia, P. P.

    2018-05-01

    Small horizontal diesel engines are commonly used for agricultural machinery, however, availability of diesel fuel become one of big problems especially in remote area. Conversely, in line with government policy for conversion of kerosene into LPG for cooking, then LPG become more popular and available even in remote area. Therefore, LPG is potential fuel to replace the shortage of diesel fuel for operating diesel engine in remote area. The purpose of this study was to design mixing device for using dual fuel i.e. LPG and diesel fuel and evaluate its performance accordingly. Simulation by using CFD was done in order to analyze mixture characteristics of LPG in air intake manifold. The performance test was done by varying the amount of LPG injected in intake air at 20%, 25%, 30%, 35%, until 40%, respectively. Result of CFD contour simulation showed the best combination when mixing 30% LPG into the intake air. Performance test of this research revealed that mixing LPG in air intake can reduce the diesel fuel consumption about 0.7 l/hour (without load) and 1.14 l/hour (with load). Diesel engine revolution increases almost 300 rpm faster than when using diesel fuel only. Based on economic analysis, using the fuel combination (diesel fuel – LPG) is not recommended in the area near SPBU where the price of diesel fuel is standard. However, using the fuel combination LPG-diesel fuel is highly recommended in the remote areas in Indonesia where price of diesel fuel is comparatively expensive which will provide cheaper total fuel cost for diesel engine operation.

  11. Pulse Detonation Assessment for Alternative Fuels

    Directory of Open Access Journals (Sweden)

    Muhammad Hanafi Azami

    2017-03-01

    Full Text Available The higher thermodynamic efficiency inherent in a detonation combustion based engine has already led to considerable interest in the development of wave rotor, pulse detonation, and rotating detonation engine configurations as alternative technologies offering improved performance for the next generation of aerospace propulsion systems, but it is now important to consider their emissions also. To assess both performance and emissions, this paper focuses on the feasibility of using alternative fuels in detonation combustion. Thus, the standard aviation fuels Jet-A, Acetylene, Jatropha Bio-synthetic Paraffinic Kerosene, Camelina Bio-synthetic Paraffinic Kerosene, Algal Biofuel, and Microalgae Biofuel are all asessed under detonation combustion conditions. An analytical model accounting for the Rankine-Hugoniot Equation, Rayleigh Line Equation, and Zel’dovich–von Neumann–Doering model, and taking into account single step chemistry and thermophysical properties for a stoichiometric mixture, is applied to a simple detonation tube test case configuration. The computed pressure rise and detonation velocity are shown to be in good agreement with published literature. Additional computations examine the effects of initial pressure, temperature, and mass flux on the physical properties of the flow. The results indicate that alternative fuels require higher initial mass flux and temperature to detonate. The benefits of alternative fuels appear significant.

  12. Criticality control during conditioning of spent nuclear fuel in the Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lell, R.M.; Khalil, H.S.

    1994-01-01

    Spent nuclear fuel may be unacceptable for direct repository storage because of composition, enrichment, form, physical condition, or the presence of undesirable materials such as sodium. Fuel types which are not acceptable for direct storage must be processed or conditioned to produce physical forms which can safely be stored in a repository. One possible approach to conditioning is the pyroprocess implemented in the Fuel Cycle Facility (FCF) at Argonne National Laboratory-West. Conditioning of binary (U-Zr) and ternary (U-Pu-Zr) metallic fuels from the EBR-2 reactor is used to demonstrate the process. Criticality safety considerations limit batch sizes during the conditioning steps and provide one constraint on the final form of conditioned material. Criticality safety during conditioning is assured by the integration of criticality safety analysis, equipment design, process development, a measurement program, accountability procedures, and a computerized Mass Tracking System. Criticality issues related to storage and shipment of conditioned material have been examined

  13. Interfaces in ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    Internal interfaces in all-ceramic dispersion fuels (such as these for HTGRs) are discussed for two classes: BeO-based dispersions, and coated particles for graphite-based fuels. The following points are made: (1) The strength of a two-phase dispersion is controlled by the weaker dispersed phase bonded to the matrix. (2) Differential expansion between two phases can be controlled by an intermediate buffer zone of low density. (3) A thin ceramic coating should be in compression. (4) Chemical reaction between coating and substrate and mass transfer in service should be minimized. The problems of the nuclear fuel designer are to develop coatings for fission product retention, and to produce radiation-resistant interfaces. 44 references, 18 figures

  14. Ecological consequences of elevated total dissolved solids associated with fossil fuel extraction in the United States

    Science.gov (United States)

    Fossil fuel burning is considered a major contributor to global climate change. The outlook for production and consumption of fossil fuels int he US indicates continued growth to support growing energy demands. For example, coal-generated electricity is projected ot increase from...

  15. Advanced Fuel Cycle Economic Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Shropshire; Kent Williams; J.D. Smith; Brent Boore

    2006-12-01

    A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

  16. Reprocessing flowsheet and material balance for MEU spent fuel

    International Nuclear Information System (INIS)

    Abraham, L.

    1978-10-01

    In response to nonproliferation concerns, the high-temperature gas-cooled reactor (HTGR) Fuel Recycle Development Program is investigating the processing requirements for a denatured medium-enriched uranium--thorium (MEU/Th) fuel cycle. Prior work emphasized the processing requirements for a high-enriched uranium--thorium (HEU/Th) fuel cycle. This report presents reprocessing flowsheets for an HTGR/MEU fuel recycle base case. Material balance data have been calculated for reprocessing of spent MEU and recycle fuels in the HTGR Recycle Reference Facility (HRRF). Flowsheet and mass flow effects in MEU-cycle reprocessing are discussed in comparison with prior HEU-cycle flowsheets

  17. Primary emissions and secondary organic aerosol formation from the exhaust of a flex-fuel (ethanol) vehicle

    Science.gov (United States)

    Suarez-Bertoa, R.; Zardini, A. A.; Platt, S. M.; Hellebust, S.; Pieber, S. M.; El Haddad, I.; Temime-Roussel, B.; Baltensperger, U.; Marchand, N.; Prévôt, A. S. H.; Astorga, C.

    2015-09-01

    Incentives to use biofuels may result in increasing vehicular emissions of compounds detrimental to air quality. Therefore, regulated and unregulated emissions from a Euro 5a flex-fuel vehicle, tested using E85 and E75 blends (gasoline containing 85% and 75% of ethanol (vol/vol), respectively), were investigated at 22 and -7 °C over the New European Driving Cycle, at the Vehicle Emission Laboratory at the European Commission Joint Research Centre Ispra, Italy. Vehicle exhaust was comprehensively analyzed at the tailpipe and in a dilution tunnel. A fraction of the exhaust was injected into a mobile smog chamber to study the photochemical aging of the mixture. We found that emissions from a flex-fuel vehicle, fueled by E85 and E75, led to secondary organic aerosol (SOA) formation, despite the low aromatic content of these fuel blends. Emissions of regulated and unregulated compounds, as well as emissions of black carbon (BC) and primary organic aerosol (POA) and SOA formation were higher at -7 °C. The flex-fuel unregulated emissions, mainly composed of ethanol and acetaldehyde, resulted in very high ozone formation potential and SOA, especially at low temperature (860 mg O3 km-1 and up to 38 mg C kg-1). After an OH exposure of 10 × 106 cm-3 h, SOA mass was, on average, 3 times larger than total primary particle mass emissions (BC + POA) with a high O:C ratio (up to 0.7 and 0.5 at 22 and -7 °C, respectively) typical of highly oxidized mixtures. Furthermore, high resolution organic mass spectra showed high 44/43 ratios (ratio of the ions m/z 44 and m/z 43) characteristic of low-volatility oxygenated organic aerosol. We also hypothesize that SOA formation from vehicular emissions could be due to oxidation products of ethanol and acetaldehyde, both short-chain oxygenated VOCs, e.g. methylglyoxal and acetic acid, and not only from aromatic compounds.

  18. Bipolar plates for PEM fuel cells

    Science.gov (United States)

    Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.

    The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.

  19. Study Of The Fuel Cycle Effect To The Electricity Generating Cost

    International Nuclear Information System (INIS)

    Salimy, D. H.

    1998-01-01

    The nuclear fuel cycle cost contributes relatively small fraction to the total nuclear power generation cost, I.e. about 15 to 30%, compared to the fuel cost in the coal-generated electricity (40-60%). Or in the oil-generated electricity (70-80%). This situation will give effect that the future generation cost is much less sensitive to the changes in the fuel prince than in the case of fossil fuel power plants. The study has shown that by assuming a 100% increase in the natural uranium price, the total nuclear fuel cycle cost would increase only by about 27% and in turn it contributes about 29% increase to the total nuclear fuel cycle cost. As a result, it contributes only 4 to 8% increase in the nuclear energy generation cost. As a comparison, if the same situation should occur to fossil fuel plants, the assumed fuel price increase would have increased the electricity generating cost by about 40-65% for coal-fired plants, and about 70-85% for oil-fired plants. This study also has assesses the economic aspects of the electricity generating cots for nuclear power plant (NPP) and the coal power plant. For an NPP the most affecting factor is the investment cost, while for the coal power plant, the major factor influencing the total cost is the price/cost of the fuel

  20. A preliminary assessment of thorium as a fuel for thermal reactors

    International Nuclear Information System (INIS)

    Duret, M.F.; Halsall, M.J.

    1965-08-01

    This report presents a preliminary survey of the contributing factors to total fuel cost, for a variety of potentially economic fuel cycles. U 238 and Th 232 are considered as fertile materials with enrichments of U 235 , U 233 and plutonium. The total fuel cost comprises: (a) a fuel supply cost which is derived from a manufacturing cost and the fuel burnup, (b) as spent fuel credit, and (c) inventory charges. The interrelation of these three factors and their dependence on reactor flux, fuel burnup, the heat rating of the fuel and the interest rate are considered for each combination of fertile and fissile material. Results show inventory charges, spent fuel credit (hence processing costs) and fabrication costs have an important effect on the fuelling cost. In addition, using highly rated thorium-based fuels will affect reactor capital costs. Further, more detailed studies of reactor design, fuel design and fuel management schemes are now required to verify the attraction of using thorium as a reactor fuel. (author)

  1. Critical heat flux tests for self-spaced square finned 7 fuel rod bundle

    International Nuclear Information System (INIS)

    Moon, Sang Ki; Chun, Se Young; Choi, Ki Young; Park, Jong Kuk; Hwang, Dae Hyun; Zee, Sung Quun; Kim, Keung Koo

    2001-09-01

    Now, KAERI is developing a new advanced reactor aimed at achieving highly enhanced safety and reliability, and improved economics. SSF (Self-Spaced Square Finned) fuel rod bundle is considered as a suitable one for the new advanced reactor. The SSF fuel rods have rectangular shapes and four fins at the corners, and are arranged in triangular geometry. While the SSF fuel rod bundle is considered to have enhanced cooling efficiency, the correlations used for commercial PWR might be able to be applied. The application results of some conventional correlations show that the SSF fuel rod bundle show an enhanced CHF performance about 10 to 40 %. When some conventional CHF correlations are applied to CHF data with a similar geometry to the SSF fuel rod bundle, conventional CHF correlations including a correlation developed in Russia are judged not to be suitable for the development of SSF fuel rod bundle and for the use in a safety analysis code. From CHF experiments for SSF 7 fuel rod bundle performed in KAERI, the following results are obtained: the CHF increases with increasing mass flux, and the CHF increasing rate decreases at high mass flux conditions. The exit quality decreases with increasing mass flux. The overall effect of the mass flux on the CHF and exit quality coincides with previous understanding. Compared to the CHF data of IPPE with the same system pressure and inlet temperature, the CHF data of KAERI show the similar values. Thus, the reliability of IPPE CHF data can be confirmed indirectly

  2. Quantitative fuel motion determination with the CABRI fast neutron hodoscope

    International Nuclear Information System (INIS)

    Baumung, K.; Augier, G.

    1991-01-01

    The fast neutron hodoscope installed at the CABRI reactor in Cadarache, France, is employed to provide quantitative fuel motion data during experiments in which single liquid-metal fast breeder reactor test pins are subjected to simulated accident conditions. Instrument design and performance are reviewed, the methods for the quantitative evaluation are presented, and error sources are discussed. The most important findings are the axial expansion as a function of time, phenomena related to pin failure (such as time, location, pin failure mode, and fuel mass ejected after failure), and linear fuel mass distributions with a 2-cm axial resolution. In this paper the hodoscope results of the CABRI-1 program are summarized

  3. Fuel characterization requirements for cofiring biomass in coal-fired boilers

    International Nuclear Information System (INIS)

    Prinzing, D.E.; Tillman, D.A.; Harding, N.S.

    1993-01-01

    The cofiring of biofuels with coal in existing boilers, or the cofiring of biofuels in combined cycle combustion turbine (CCCT) systems presents significant potential benefits to utilities, including reductions in SO 2 and NO x emissions as a function of reducing the mass flow of sulfur and nitrogen to the boiler, reducing CO 2 emissions from the combustion of fossil fuels; potentially reducing fuel costs both by the availability of wood residues and by the fact that biofuels are exempt from the proposed BTU tax; and providing support to industrial customers from the forest products industry. At the same time, cofiring requires careful attention to the characterization of the wood and coal, both singly and in combination. This paper reviews characterization requirements associated with cofiring biofuels and fossil fuels in boilers and CCCT installations with particular attention not only to such concerns as sulfur, nitrogen, moisture, and Btu content, but also to such issues as total ash content, base/acid ratio of the wood ash and the coal ash, alkali metal content in the wood ash and wood fuel (including converted fuels such as low Btu gas or pyrolytic oil), slagging and fouling indices, ash fusion temperature, and trace metal contents in the wood and coal. The importance of each parameter is reviewed, along with potential consequences of a failure to adequately characterize these parameters. The consequences of these parameters are reviewed with attention to firing biofuels with coal in pulverized coal (PC) and cyclone boilers, and firing biofuels with natural gas in CCCT installations

  4. PYRO, a system for modeling fuel reprocessing

    International Nuclear Information System (INIS)

    Ackerman, J.P.

    1989-01-01

    Compact, on-site fuel reprocessing and waste management for the Integral Fast Reactor are based on the pyrochemical reprocessing of metal fuel. In that process, uranium and plutonium in spent fuel are separated from fission products in an electrorefiner using liquid cadmium and molten salt solvents. Quantitative estimates of the distribution of the chemical elements among the metal and salt phases are essential for development of both individual pyrochemical process steps and the complete process. This paper describes the PYRO system of programs used to generate reliable mass flows and compositions

  5. Improvements in the preparation of nuclear fuel elements with addition of a molding mixture to fuel particles

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1975-01-01

    An improved molting mixture to be added to nuclear fuel particles for the preparation of nuclear fuel elements is presented. It consists of carbon and pitch particles and contains an additive reducing the final coke yield of the fuel mass formed. This additive is chosen from: polystyrene and copolymers of styrene and butadiene of molecular weight between 500 and 1000000; aromatic compounds of molecular weight between 75 and 300; saturated hydrocarbon polymers of molecular weight between 500 and 1000000. The additive may be camphor, naphthalene, anthracene, phenanthrene, dimethyl terephthalate or their mixtures and is present at a concentration of 5 to 50% by weight. The carbon particles used consist of powdered graphite. These fuel elements are intended for gas-cooled high-temperature reactors [fr

  6. Determination of trace sulfur in biodiesel and diesel standard reference materials by isotope dilution sector field inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Amais, Renata S. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, São Carlos, SP (Brazil); Long, Stephen E. [Chemical Sciences Division, National Institute of Standards and Technology, Charleston, SC (United States); Nóbrega, Joaquim A. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, São Carlos, SP (Brazil); Christopher, Steven J., E-mail: steven.christopher@nist.gov [Chemical Sciences Division, National Institute of Standards and Technology, Charleston, SC (United States)

    2014-01-02

    Graphical abstract: -- Highlights: •Sulfur mass fractions are measured below 10 mg kg{sup −1} in diesel fuel materials. •SF-ICP-MS resolves molecular interferences, including oxygen and sulfur hydrides. •A detection limit of 0.7 mg kg{sup −1} (in the fuel sample) was obtained. -- Abstract: A method is described for quantification of sulfur at low concentrations on the order of mg kg{sup −1} in biodiesel and diesel fuels using isotope dilution and sector field inductively coupled plasma mass spectrometry (ID-SF-ICP-MS). Closed vessel microwave-assisted digestion was employed using a diluted nitric acid and hydrogen peroxide decomposition medium to reduce sample dilution volumes. Medium resolution mode was employed to eliminate isobaric interferences at {sup 32}S and {sup 34}S related to polyatomic phosphorus and oxygen species, and sulfur hydride species. The method outlined yielded respective limits of detection (LOD) and limits of quantification (LOQ) of 0.7 mg kg{sup −1} S and 2.5 mg kg{sup −1} S (in the sample). The LOD was constrained by instrument background counts at {sup 32}S but was sufficient to facilitate value assignment of total S mass fraction in NIST SRM 2723b Sulfur in Diesel Fuel Oil at 9.06 ± 0.13 mg kg{sup −1}. No statistically significant difference at a 95% confidence level was observed between the measured and certified values for certified reference materials NIST SRM 2773 B100 Biodiesel (Animal-Based), CENAM DRM 272b and NIST SRM 2723a Sulfur in Diesel Fuel Oil, validating method accuracy.

  7. Compound process fuel cycle concept

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo

    2005-01-01

    Mass flow of light water reactor spent fuel for a newly proposed nuclear fuel cycle concept 'Compound Process Fuel Cycle' has been studied in order to assess the capacity of the concept for accepting light water reactor spent fuels, taking an example for boiling water reactor mixed oxide spent fuel of 60 GWd/t burn-up and for a fast reactor core of 3 GW thermal output. The acceptable heavy metal of boiling water reactor mixed oxide spent fuel is about 3.7 t/y/reactor while the burn-up of the recycled fuel is about 160 GWd/t and about 1.6 t/y reactor with the recycled fuel burn-up of about 300 GWd/t, in the case of 2 times recycle and 4 times recycle respectively. The compound process fuel cycle concept has such flexibility that it can accept so much light water reactor spent fuels as to suppress the light water reactor spent fuel pile-up if not so high fuel burn-up is expected, and can aim at high fuel burn-up if the light water reactor spent fuel pile-up is not so much. Following distinctive features of the concept have also been revealed. A sort of ideal utilization of boiling water reactor mixed oxide spent fuel might be achieved through this concept, since both plutonium and minor actinide reach equilibrium state beyond 2 times recycle. Changes of the reactivity coefficients during recycles are mild, giving roughly same level of reactivity coefficients as the conventional large scale fast breeder core. Both the radio-activity and the heat generation after 4 year cooling and after 4 times recycle are less than 2.5 times of those of the pre recycle fuel. (author)

  8. Uncertainty measurement evaluation of WDXRF and EDXRF techniques for the Si and U{sub total} determination in U{sub 3}Si{sub 2} used as nuclear fuel material

    Energy Technology Data Exchange (ETDEWEB)

    Scapin, Marcos A.; Salvador, Vera L.R.; Cotrim, Marycel E.B.; Pires, Maria Ap. F.; Sato, Ivone M., E-mail: mascapin@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente

    2009-07-01

    Uranium silicide (U{sub 3}Si{sub 2}), 20% {sup 235}U enriched powder, is an intermetallic compound used as nuclear fuel material; that is the state-of-the-art among nuclear fuel materials used in modern research reactors. It is produced by IPEN and used as nuclear fuel of the IEA-R1 reactor (IPEN/CNEN, Sao Paulo, Brazil); U{sub 3}Si{sub 2} has 92.3%wtU and 7.7%wtSi. The qualification of this material requires chemical and physical tests such as Si and U{sub total} content, isotope ratio, impurities, density, specific surface area and particle size determination. The Si and U{sub total} determination were made by gravimetric and volumetric procedures at the Environment Chemistry Center (CQMA-IPEN/CNEN). Usually, these classical methods require a long time for analyses and are expensive. The objective of this study was to establish a fast and efficient analytical method to meet ISO/IEC 17025:2005 requirements in the Si and U{sub total} determination. The X-ray fluorescence techniques (XRF) were chosen to allow a direct and non-destructive testing, what is a principal advantage faced to other instrumental techniques, since previous chemical treatments are not necessary. In this study, the performance of the wavelength dispersive (WDXRF) and energy dispersive (EDXRF) X- ray fluorescence techniques was evaluated. Furthermore, two different sample preparation procedures, plain powdered and pressed powdered were evaluated. Statistical tools were used to evaluate the results and a comparison between these results and the conventional methods was done. (author)

  9. Bio-fuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    European Union bio-fuel use for transport reached 12 million tonnes of oil equivalent (mtoe) threshold during 2009. The slowdown in the growth of European consumption deepened again. Bio-fuel used in transport only grew by 18.7% between 2008 and 2009, as against 30.3% between 2007 and 2008 and 41.8% between 2006 and 2007. The bio-fuel incorporation rate in all fuels used by transport in the E.U. is unlikely to pass 4% in 2009. We can note that: -) the proportion of bio-fuel in the German fuels market has plummeted since 2007: from 7.3% in 2007 to 5.5% in 2009; -) France stays on course with an incorporation rate of 6.25% in 2009; -) In Spain the incorporation rate reached 3.4% in 2009 while it was 1.9% in 2008. The European bio-diesel industry has had another tough year. European production only rose by 16.6% in 2009 or by about 9 million tonnes which is well below the previous year-on-year growth rate recorded (35.7%). France is leading the production of bio-ethanol fuels in Europe with an output of 1250 million liters in 2009 while the total European production reached 3700 million litters and the world production 74000 million liters. (A.C.)

  10. Reactor mass flow data base prepared for the nonproliferation alternative systems assessment program

    International Nuclear Information System (INIS)

    Primm III, R.T.C.

    1981-02-01

    This report presents charge and discharge mass flow data for reactors judged to have received sufficient technical development to enable them to be demonstrated or commercially available by the year 2000. Brief descriptions of the reactors and fuel cycles evaluated are presented. A discussion of the neutronics methods used to produce the mass flow data is provided. Detailed charge and discharge fuel isotopics are presented. U 3 O 8 , separative work, and fissile material requirements are computed and provided for each fuel cycle

  11. Fuel options for public bus fleets in Sweden

    OpenAIRE

    Xylia, Maria; Silveira, Semida

    2015-01-01

    The Swedish public transport sector has defined two major targets, i.e., to run 90% of the total vehicle kilometers of the fleet on non-fossil fuels and double the volume of travel via public transport by 2020, increasing the share of public transport in relation to the total personal transport in the country . The f3 report Fuel options for public bus fleets in Sweden highlights the challenges and solutions encountered, particularly when it comes to the adoption of renewable fuels in the reg...

  12. Performance assessment of self-interrogation neutron resonance densitometry for spent nuclear fuel assay

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei, E-mail: huj1@ornl.gov [Reactor and Nuclear Systems Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, PO Box 2008, MS-6172, Oak Ridge, TN 37831-6172 (United States); Tobin, Stephen J.; LaFleur, Adrienne M.; Menlove, Howard O.; Swinhoe, Martyn T. [Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory (United States)

    2013-11-21

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is one of several nondestructive assay (NDA) techniques being integrated into systems to measure spent fuel as part of the Next Generation Safeguards Initiative (NGSI) Spent Fuel Project. The NGSI Spent Fuel Project is sponsored by the US Department of Energy's National Nuclear Security Administration to measure plutonium in, and detect diversion of fuel pins from, spent nuclear fuel assemblies. SINRD shows promising capability in determining the {sup 239}Pu and {sup 235}U content in spent fuel. SINRD is a relatively low-cost and lightweight instrument, and it is easy to implement in the field. The technique makes use of the passive neutron source existing in a spent fuel assembly, and it uses ratios between the count rates collected in fission chambers that are covered with different absorbing materials. These ratios are correlated to key attributes of the spent fuel assembly, such as the total mass of {sup 239}Pu and {sup 235}U. Using count rate ratios instead of absolute count rates makes SINRD less vulnerable to systematic uncertainties. Building upon the previous research, this work focuses on the underlying physics of the SINRD technique: quantifying the individual impacts on the count rate ratios of a few important nuclides using the perturbation method; examining new correlations between count rate ratio and mass quantities based on the results of the perturbation study; quantifying the impacts on the energy windows of the filtering materials that cover the fission chambers by tallying the neutron spectra before and after the neutrons go through the filters; and identifying the most important nuclides that cause cooling-time variations in the count rate ratios. The results of these studies show that {sup 235}U content has a major impact on the SINRD signal in addition to the {sup 239}Pu content. Plutonium-241 and {sup 241}Am are the two main nuclides responsible for the variation in the count

  13. Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel

    Directory of Open Access Journals (Sweden)

    A. K. Azad

    2017-10-01

    Full Text Available Mandarin (Citrus reticulata is one of the most popular fruits in tropical and sub-tropical countries around the world. It contains about 22–34 seeds per fruit. This study investigated the potential of non-edible mandarin seed oil as an alternative fuel in Australia. The seeds were prepared after drying in the oven for 20 h to attain an optimum moisture content of around 13.22%. The crude oil was extracted from the crushed seed using 98% n-hexane solution. The biodiesel conversion reaction (transesterification was designed according to the acid value (mg KOH/g of the crude oil. The study also critically examined the effect of various reaction parameters (such as effect of methanol: oil molar ratio, % of catalyst concentration, etc. on the biodiesel conversion yield. After successful conversion of the bio-oil into biodiesel, the physio-chemical fuel properties of the virgin biodiesel were measured according to relevant ASTM standards and compared with ultra-low sulphur diesel (ULSD and standard biodiesel ASTM D6751. The fatty acid methyl esters (FAMEs were analysed by gas chromatography (GC using the EN 14103 standard. The behaviour of the biodiesel (variation of density and kinematic viscosity at various temperatures (10–40 °C was obtained and compared with that of diesel fuel. Finally, mass and energy balances were conducted for both the oil extraction and biodiesel conversion processes to analyse the total process losses of the system. The study found 49.23 wt % oil yield from mandarin seed and 96.82% conversion efficiency for converting oil to biodiesel using the designated transesterification reaction. The GC test identified eleven FAMEs. The biodiesel mainly contains palmitic acid (C16:0 26.80 vol %, stearic acid (C18:0 4.93 vol %, oleic acid (C18:1 21.43 vol % (including cis. and trans., linoleic acid (C18:2 4.07 vol %, and less than one percent each of other fatty acids. It is an important source of energy because it has a higher

  14. Developments in fuel manufacturing

    International Nuclear Information System (INIS)

    Williams, T.

    1997-01-01

    BNFL has a long tradition of willingness to embrace technological challenge and a dedication to quality. This paper describes advances in the overall manufacturing philosophy at BNFL's Fuel Business Group and then covers how some new technologies are currently being employed in BNFL Fuel Business Group's flagship oxide complex (OFC), which is currently in its final stages of commissioning. This plant represents a total investment of some Pound 200 million. This paper also describes how these technologies are also being deployed in BNFL's MOX plant now being built at Sellafield and, finally, covers some new processes being developed for advanced fuel manufacture. (author)

  15. Fuel resources in Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The total resources of fossil fuel in the country are estimated (rounded off into billion m/sup 3/ of oil equivalent) as 30--oil 22, natural gas 4 and coal 4. The explored reserves are 2.39--oil 1.68, natural gas 0.25 and coal 0.46. The main type of fuel in the fuel and energy balance of the country is oil. Coal is used in limited quantity in cement, ceramic and other sectors of industry. Outlook for development of the coal industry is discussed in relation to the planned use of coal at the TES.

  16. A Computational Study of A Lithium Deuteride Fueled Electrothermal Plasma Mass Accelerator

    OpenAIRE

    Gebhart III, Gerald Edward

    2013-01-01

    Future magnetic fusion reactors such as tokamaks will need innovative, fast, deep-fueling systems to inject frozen deuterium-tritium pellets at high speeds and high repetition rates into the hot plasma core. There have been several studies and concepts for pellet injectors generated, and different devices have been proposed. In addition to fueling, recent studies show that it may be possible to disrupt edge localized mode (ELM) formation by injecting pellets or gas into the fusion plasma. The...

  17. Mathematical Modeling Analysis and Optimization of Key Design Parameters of Proton-Conductive Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2014-01-01

    Full Text Available A proton-conductive solid oxide fuel cell (H-SOFC has the advantage of operating at higher temperatures than a PEM fuel cell, but at lower temperatures than a SOFC. This study proposes a mathematical model for an H-SOFC in order to simulate the performance and optimize the flow channel designs. The model analyzes the average mass transfer and species’ concentrations in flow channels, which allows the determination of an average concentration polarization in anode and cathode gas channels, the proton conductivity of electrolyte membranes, as well as the activation polarization. An electrical circuit for the current and proton conduction is applied to analyze the ohmic losses from an anode current collector to a cathode current collector. The model uses relatively less amount of computational time to find the V-I curve of the fuel cell, and thus it can be applied to compute a large amount of cases with different flow channel dimensions and operating parameters for optimization. The modeling simulation results agreed satisfactorily with the experimental results from literature. Simulation results showed that a relatively small total width of flow channel and rib, together with a small ratio of the rib’s width versus the total width, are preferable for obtaining high power densities and thus high efficiency.

  18. Exergetic analysis and optimization of a solar-powered reformed methanol fuel cell micro-powerplant

    Science.gov (United States)

    Hotz, Nico; Zimmerman, Raúl; Weinmueller, Christian; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Rosengarten, Gary; Poulikakos, Dimos

    The present study proposes a combination of solar-powered components (two heaters, an evaporator, and a steam reformer) with a proton exchange membrane fuel cell to form a powerplant that converts methanol to electricity. The solar radiation heats up the mass flows of methanol-water mixture and air and sustains the endothermic methanol steam reformer at a sufficient reaction temperature (typically between 220 and 300 °C). In order to compare the different types of energy (thermal, chemical, and electrical), an exergetic analysis is applied to the entire system, considering only the useful part of energy that can be converted to work. The effect of the solar radiation intensity and of different operational and geometrical parameters like the total inlet flow rate of methanol-water mixture, the size of the fuel cell, and the cell voltage on the performance of the entire system is investigated. The total exergetic efficiency comparing the electrical power output with the exergy input in form of chemical and solar exergy reaches values of up to 35%, while the exergetic efficiency only accounting for the conversion of chemical fuel to electricity (and neglecting the 'cost-free' solar input) is increased up to 59%. At the same time, an electrical power density per irradiated area of more than 920 W m -2 is obtained for a solar heat flux of 1000 W m -2.

  19. Improving Fuel Statistics for Danish Aviation

    DEFF Research Database (Denmark)

    Winther, M.

    This report contains fuel use figures for Danish civil aviation broken down into domestic and international numbers from 1985 to 2000, using a refined fuel split procedure and official fuel sale totals. The results from two different models are used. The NERI (National Environmental Research...... Institute) model estimates the fuel use per flight for all flights leaving Danish airports in 1998, while the annual Danish CORINAIR inventories are based on improved LTO/aircraft type statistics. A time series of fuel use from 1985 to 2000 is also shown for flights between Denmark and Greenland/the Faroe...... Islands, obtained with the NERI model. In addition a complete overview of the aviation fuel use from the two latter areas is given, based on fuel sale information from Statistics Greenland and Statistics Faroe Islands, and fuel use data from airline companies. The fuel use figures are presented on a level...

  20. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.

    Science.gov (United States)

    Duan, Chuancheng; Kee, Robert J; Zhu, Huayang; Karakaya, Canan; Chen, Yachao; Ricote, Sandrine; Jarry, Angelique; Crumlin, Ethan J; Hook, David; Braun, Robert; Sullivan, Neal P; O'Hayre, Ryan

    2018-05-01

    Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency 1,2 . Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time 3-6 . Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells 2,7,8 , there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.

  1. Evaluation of conservatism in analysis of fuel-coolant interaction

    International Nuclear Information System (INIS)

    Reynolds, A.B.; Erdman, C.A.; Garner, P.L.; Haas, P.M.; Allen, C.L.

    Using the ANL parametric model developed by Cho e.a. the following mechanisms and parameters involved in fuel-coolant interaction were examined: coherence of fuel-sodium mixing; two-phase heat transfer; sodium-to-fuel mass ratio; fuel particle size; heat transfer to plenum and core cladding; constraint geometry. Both overpower and loss-of-flow transients were studied. Main attention is given to the maximum mechanical work to be expected. As a general conclusion, it can be stated that more realistic models will result in a reduction of the estimated mechanical work

  2. Measurement of the photon-proton total cross section at a center-of-mass energy of 209 GeV at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Yoshida, R.; Mattingly, M.C.K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Bartsch, D.; Brock, I.; Crittenden, J.; Goers, S.; Hartmann, H.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U.F.; Kerger, R.; Kind, O.; Paul, E.; Rautenberg, J.; Renner, R.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K.C.; Weber, A.; Wessoleck, H.; Bailey, D.S.; Brook, N.H.; Cole, J.E.; Foster, B.; Heath, G.P.; Heath, H.F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R.J.; Wing, M.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Jeoung, H.Y.; Kim, J.Y.; Lee, J.H.; Lim, I.T.; Ma, K.J.; Pac, M.Y.; Caldwell, A.; Helbich, M.; Liu, X.; Mellado, B.; Paganis, S.; Schmidke, W.B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Olkiewicz, K.; Przybycien, M.B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Grabowska-Bold, I.; Jelen, K.; Kisielewska, D.; Kowal, A.M.; Kowal, M.; Kowalski, T.; Mindur, B.; Przybycien, M.; Rulikowska-Zarebska, E.; Suszycki, L.; Szuba, D.; Szuba, J.; Kotanski, A.; Slominski, W.; Bauerdick, L.A.T.; Behrens, U.; Borras, K.; Chiochia, V.; Dannheim, D.; Desler, K.; Drews, G.; Fourletova, J.; Fox-Murphy, A.; Fricke, U.; Geiser, A.; Goebel, F.; Goettlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G.F.; Hillert, S.; Koetz, U.; Kowalski, H.; Labes, H.; Lelas, D.; Loehr, B.; Mankel, R.; Martens, J.; Martinez, M.; Moritz, M.; Notz, D.; Petrucci, M.C.; Polini, A.; Schneekloth, U.; Selonke, F.; Stonjek, S.; Surrow, B.; Whitmore, J.J.; Wichmann, R.; Wolf, G.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Genta, C.; Pelfer, P.G.; Bamberger, A.; Benen, A.; Coppola, N.; Markun, P.; Raach, H.; Woelfle, S.; Bell, M.; Bussey, P.J.; Doyle, A.T.; Glasman, C.; Hanlon, S.; Lee, S.W.; Lupi, A.; McCance, G.J.; Saxon, D.H.; Skillicorn, I.O.; Bodmann, B.; Holm, U.; Salehi, H.; Wick, K.; Ziegler, A.; Ziegler, Ar.; Carli, T.; Gialas, I.; Klimek, K.; Lohrmann, E.; Milite, M.; Collins-Tooth, C.; Foudas, C.; Goncalo, R.; Long, K.R.; Metlica, F.; Miller, D.B.; Tapper, A.D.; Walker, R.; Cloth, P.; Filges, D.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A.N.; Boos, E.G.; Pokrovskiy, N.S.; Zhautykov, B.O.; Ahn, S.H.; Lee, S.B.; Park, S.K.; Lim, H.; Son, D.; Barreiro, F.; Garcia, G.; Gonzalez, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terron, J.; Vazquez, M.; Barbi, M.; Bertolin, A.; Corriveau, F.; Ochs, A.; Padhi, S.; Stairs, D.G.; St-Laurent, M.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, P.; Dolgoshein, B.A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R.K.; Ermolov, P.F.; Golubkov, Yu.A.; Katkov, I.I.; Khein, L.A.; Korotkova, N.A.; Korzhavina, I.A.; Kuzmin, V.A.; Levchenko, B.B.; Lukina, O.Yu.; Proskuryakov, A.S.; Shcheglova, L.M.; Solomin, A.N.; Vlasov, N.N.; Zotkin, S.A.; Bokel, C.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Maddox, E.; Schagen, S.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J.J.; Wiggers, L.; de Wolf, E.; Bruemmer, N.; Bylsma, B.; Durkin, L.S.; Gilmore, J.; Ginsburg, C.M.; Kim, C.L.; Ling, T.Y.; Boogert, S.; Cooper-Sarkar, A.M.; Devenish, R.C.E.; Ferrando, J.; Matsushita, T.; Rigby, M.; Ruske, O.; Sutton, M.R.; Walczak, R.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Parenti, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Oh, B.Y.; Saull, P.R.B.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J.C.; McCubbin, N.A.; Heusch, C.; Park, I.H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M.I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Galea, R.; Koop, T.; Levman, G.M.; Martin, J.F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J.M.; Gwenlan, C.; Hall-Wilton, R.; Hayes, M.E.; Heaphy, E.A.; Jones, T.W.; Lane, J.B.; Lightwood, M.S.; West, B.J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R.J.; Pawlak, J.M.; Smalska, B.; Sztuk, J.; Tymieniecka, T.; Ukleja, A.; Ukleja, J.; Zakrzewski, J.A.; Zarnecki, A.F.; Adamus, M.; Plucinski, P.; Eisenberg, Y.; Gladilin, L.K.; Hochman, D.; Karshon, U.; Breitweg, J.; Chapin, D.; Cross, R.; Kcira, D.; Lammers, S.; Reeder, D.D.; Savin, A.A.; Smith, W.H.; Deshpande, A.; Dhawan, S.; Hughes, V.W.; Straub, P.B.; Bhadra, S.; Catterall, C.D.; Fourletov, S.; Menary, S.; Soares, M.; Standage, J.

    2002-01-01

    The photon-proton total cross section has been measured in the process e + p→e + γp→e + X with the ZEUS detector at HERA. Events were collected with photon virtuality Q 2 2 and average γp center-of-mass energy W γp =209 GeV in a dedicated run, designed to control systematic effects, with an integrated luminosity of 49 nb -1 . The measured total cross section is σ tot γp =174±1 (stat.)±13 (syst.) μb. The energy dependence of the cross section is compatible with parameterizations of high-energy pp and pp-bar data

  3. Globalization of the nuclear fuel cycle impact of developments on fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Durpel, L.; Bertel, E. [OCDE-NEA, Nuclear Development Div., 92 - Issy-les-Moulineaux (France)

    1999-07-01

    Nuclear energy will have to cope more and more with a rapid changing environment due to economic competitive pressure and the de-regulatory progress. In current economic environment, utilities will have to focus strongly on the reduction of their total generation costs, covering the fuel cycle costs, which are only partly under their control. Developments in the fuel cycle will be in the short-term rather evolutionary addressing the current needs of utilities. However, within the context of sustainable development and more and more inclusion of externalities in energy generation costs, more performing developments in the fuel cycle could become important and feasible. A life-cycle design approach of the fuel cycle will be requested in order to cover all factors in order to decrease significantly the nuclear energy generation cost to compete with other alternative fuels in the long-term. This paper will report on some of the trends one could distinguish in the fuel cycle with emphasis on cost reduction. OECD/NEA is currently conducting a study on the fuel cycle aiming to assess current and future nuclear fuel cycles according the potential for further improvement of the full added-value chain of these cycles from a mainly technological and economical perspective including environmental and social considerations. (authors)

  4. Globalisation of the nuclear fuel cycle - impact of developments on fuel management

    International Nuclear Information System (INIS)

    Durpel, L. van den; Bertel, E.

    2000-01-01

    Nuclear energy will have to cope more and more with a rapid changing environment due to economic competitive pressure and the deregulatory progress. In current economic environment, utilities will have to focus strongly on the reduction of their total generation costs, covering the fuel cycle costs, which are only partly under their control. Developments in the fuel cycle will be in the short-term rather evolutionary addressing the current needs of utilities. However, within the context of sustainable development and more and more inclusion of externalities in energy generation costs, more performing developments in the fuel cycle could become important and feasible. A life-cycle design approach of the fuel cycle will be requested in order to cover all factors in order to decrease significantly the nuclear energy generation cost to complete with other alternative fuels in the long-term. This paper will report on some of the trends one could distinguish in the fuel cycle with emphasis on cost reduction. OECD/NEA is currently conducting a study on the fuel cycle aiming to assess current and future nuclear fuel cycles according to the potential for further improvement of the full added-value chain of these cycles from a mainly technological and economic perspective including environmental and social considerations. (orig.) [de

  5. Fossil fuel support mechanisms in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Ari

    2013-10-15

    Fossil fuel subsidies and other state support for fossil fuels are forbidden by the Kyoto Protocol and other international treaties. However, they are still commonly used. This publication presents and analyses diverse state support mechanisms for fossil fuels in Finland in 2003-2010. Total of 38 support mechanisms are covered in quantitative analysis and some other mechanisms are mentioned qualitatively only. For some mechanisms the study includes a longer historical perspective. This is the case for tax subsidies for crude oil based traffic fuels that have been maintained in Finland since 1965.

  6. Mechanical energy release and fuel fragmentation in high energy deposition into fuel under a reactivity initiated accident condition

    International Nuclear Information System (INIS)

    Tsuruta, Takaharu; Saito, Shinzo; Ochiai, Masaaki

    1985-01-01

    The fuel fragmentation is one of important subjects to be studied, since it is one of basic processes of molten fuel-coolant interaction (MFCI) and it has not yet been made clear enough. Accordingly, UO 2 fuel fragmentation was studied in the NSRR experiments simulating a reactivity initiated accident (RIA). As results of the experiments, the distribution of the size of fuel fragments was obtained and the mechanism of fuel fragmentation was discussed as described below. It was revealed that the distribution was well displayed in the form of logarithmic Rosin-Rammler's distribution law. It was shown that the conversion ratio from thermal energy to mechanical in the experiment was in inverse propotion to the volume-surface mean diameter defined as a ratio of the total volume of fragments to the total surface. Consequently, it was confirmed that the mean diameter was proper as an index for the degree of the fuel fragmentation. It was also pointed out that the Weber-type hydraulic instability model for fragmentation was consistent with the experimental results. The mechanism of the fuel fragmentation is understood as follows. Cladding tube is ruptured due to the increase in rod pressure when fuel is molten, and then molten fuel spouts through the openings in the form of jet. As a result of molten fuel spouting, fuel is fragmented by the Weber-type of hydraulic instability. The model well explains the effects of experimental parameters as heat deposition, subcooling of cooling water and capsule diameter, on the fuel fragmentation. According to the model, fuel fragments have to be spherical. There were many spherical particles which had hollow and burst crack. This may be due to internal burst during solidification process. The items which should be studied further are also described in the end of this report. (author)

  7. Fuel assembly for use in BWR type reactor

    International Nuclear Information System (INIS)

    Inaba, Yuzo.

    1988-01-01

    Purpose: To attain the reduction of neutron irradiation amount to control rods by the improvement in the reactor shutdown margin and the improvement of the control rod worth, by enhancing the arrangement of burnable poisons. Constitution: The number of burnable poison-incorporated fuel rods present in the outer two rows along the sides in adjacent with a control rod among the square lattice arrangement in a fuel assembly is decreased to less than 1/4 for that of total burnable poison-incorporated fuel rods, while the remaining burnable posion-incorporated fuel rods are arranged in the region other than above (that is, those regions not nearer to the control rod). Thus, even if a sufficient number of burnable poison to prolong the controlling effect for the reactivity with the burnable contents as the fuel assembly are disposed, only the burnable poison -incorporated fuel rods by the number less than 1/4 for that of the total burnable poison-incorporated fuel rods are present near the control rod of the fuel assembly. Accordingly, the control rod worth at the initial stage of the burning is increased at both high and normal temperatures. (Kawakami, Y.)

  8. Alternatives to traditional transportation fuels 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    In recent years, gasoline and diesel fuel have accounted for about 80 percent of total transportation fuel and nearly all of the fuel used in on-road vehicles. Growing concerns about the environmental effects of fossil fuel use and the Nation`s high level of dependence on foreign oil are providing impetus for the development of replacements or alternatives for these traditional transportation fuels. (The Energy Policy Act of 1992 definitions of {open_quotes}replacement{close_quotes} and {open_quotes}alternative{close_quotes} fuels are presented in the following box.) The Alternative Motor Fuels Act of 1988, the Clean Air Act Amendments of 1990 (CAAA90) and the Energy Policy Act of 1992 (EPACT) are significant legislative forces behind the growth of replacement fuel use. Alternatives to Traditional Transportation Fuels 1993 provides the number of on-road alternative fueled vehicles in use in the United States, alternative and replacement fuel consumption, and information on greenhouse gas emissions resulting from the production, delivery, and use of replacement fuels for 1992, 1993, and 1995.

  9. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  10. Research reactor spent fuel in Ukraine

    International Nuclear Information System (INIS)

    Trofimenko, A.P.

    1996-01-01

    This paper describes the research reactors in Ukraine, their spent fuel facilities and spent fuel management problems. Nuclear sciences, technology and industry are highly developed in Ukraine. There are 5 NPPs in the country with 14 operating reactors which have total power capacity of 12,800 MW

  11. Spent-fuel composition: a comparison of predicted and measured data

    International Nuclear Information System (INIS)

    Thomas, C.C. Jr.; Cobb, D.D.; Ostenak, C.A.

    1981-03-01

    The uncertainty in predictions of the nuclear materials content of spent light-water reactor fuel was investigated to obtain guidelines for nondestructive spent-fuel verification and assay. Values predicted by the reactor operator were compared with measured values from fuel reprocessors for six reactors (three PWR and three BWR). The study indicates that total uranium, total plutonium, fissile uranium, fissile plutonium, and total fissile content can be predicted with biases ranging from 1 to 6% and variabilities (1-sigma) ranging from 2 to 7%. The higher values generally are associated with BWRs. Based on the results of this study, nondestructive assay measurements that are accurate and precise to 5 to 10% (1sigma) or better should be useful for quantitative analyses of typical spent fuel

  12. The need for a characteristics-based approach to radioactive waste classification as informed by advanced nuclear fuel cycles using the fuel-cycle integration and tradeoffs (FIT) model

    International Nuclear Information System (INIS)

    Djokic, D.; Piet, S.; Pincock, L.; Soelberg, N.

    2013-01-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. Because heat generation is generally the most important factor limiting geological repository areal loading, this analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. Waste streams generated in different fuel cycles and their possible classification based on the current U.S. framework and international standards are discussed. It is shown that the effects of separating waste streams are neglected under a source-based radioactive waste classification system. (authors)

  13. Nuclear imaging of the fuel assembly in ignition experiments

    Energy Technology Data Exchange (ETDEWEB)

    Grim, G. P.; Guler, N.; Merrill, F. E.; Morgan, G. L.; Danly, C. R.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C.; Clark, D. S.; Hinkel, D. E.; Jones, O. S.; Raman, K. S.; Izumi, N.; Fittinghoff, D. N.; Drury, O. B.; Alger, E. T.; Arnold, P. A.; Ashabranner, R. C.; Atherton, L. J.; Barrios, M. A.; Batha, S.; Bell, P. M.; Benedetti, L. R.; Berger, R. L.; Bernstein, L. A.; Berzins, L. V.; Betti, R.; Bhandarkar, S. D.; Bionta, R. M.; Bleuel, D. L.; Boehly, T. R.; Bond, E. J.; Bowers, M. W.; Bradley, D. K.; Brunton, G. K.; Buckles, R. A.; Burkhart, S. C.; Burr, R. F.; Caggiano, J. A.; Callahan, D. A.; Casey, D. T.; Castro, C.; Celliers, P. M.; Cerjan, C. J.; Chandler, G. A.; Choate, C.; Cohen, S. J.; Collins, G. W.; Cooper, G. W.; Cox, J. R.; Cradick, J. R.; Datte, P. S.; Dewald, E. L.; Di Nicola, P.; Di Nicola, J. M.; Divol, L.; Dixit, S. N.; Dylla-Spears, R.; Dzenitis, E. G.; Eckart, M. J.; Eder, D. C.; Edgell, D. H.; Edwards, M. J.; Eggert, J. H.; Ehrlich, R. B.; Erbert, G. V.; Fair, J.; Farley, D. R.; Felker, B.; Fortner, R. J.; Frenje, J. A.; Frieders, G.; Friedrich, S.; Gatu-Johnson, M.; Gibson, C. R.; Giraldez, E.; Glebov, V. Y.; Glenn, S. M.; Glenzer, S. H.; Gururangan, G.; Haan, S. W.; Hahn, K. D.; Hammel, B. A.; Hamza, A. V.; Hartouni, E. P.; Hatarik, R.; Hatchett, S. P.; Haynam, C.; Hermann, M. R.; Herrmann, H. W.; Hicks, D. G.; Holder, J. P.; Holunga, D. M.; Horner, J. B.; Hsing, W. W.; Huang, H.; Jackson, M. C.; Jancaitis, K. S.; Kalantar, D. H.; Kauffman, R. L.; Kauffman, M. I.; Khan, S. F.; Kilkenny, J. D.; Kimbrough, J. R.; Kirkwood, R.; Kline, J. L.; Knauer, J. P.; Knittel, K. M.; Koch, J. A.; Kohut, T. R.; Kozioziemski, B. J.; Krauter, K.; Krauter, G. W.; Kritcher, A. L.; Kroll, J.; Kyrala, G. A.; Fortune, K. N. La; LaCaille, G.; Lagin, L. J.; Land, T. A.; Landen, O. L.; Larson, D. W.; Latray, D. A.; Leeper, R. J.; Lewis, T. L.; LePape, S.; Lindl, J. D.; Lowe-Webb, R. R.; Ma, T.; MacGowan, B. J.; MacKinnon, A. J.; MacPhee, A. G.; Malone, R. M.; Malsbury, T. N.; Mapoles, E.; Marshall, C. D.; Mathisen, D. G.; McKenty, P.; McNaney, J. M.; Meezan, N. B.; Michel, P.; Milovich, J. L.; Moody, J. D.; Moore, A. S.; Moran, M. J.; Moreno, K.; Moses, E. I.; Munro, D. H.; Nathan, B. R.; Nelson, A. J.; Nikroo, A.; Olson, R. E.; Orth, C.; Pak, A. E.; Palma, E. S.; Parham, T. G.; Patel, P. K.; Patterson, R. W.; Petrasso, R. D.; Prasad, R.; Ralph, J. E.; Regan, S. P.; Rinderknecht, H.; Robey, H. F.; Ross, G. F.; Ruiz, C. L.; Seguin, F. H.; Salmonson, J. D.; Sangster, T. C.; Sater, J. D.; Saunders, R. L.; Schneider, M. B.; Schneider, D. H.; Shaw, M. J.; Simanovskaia, N.; Spears, B. K.; Springer, P. T.; Stoeckl, C.; Stoeffl, W.; Suter, L. J.; Thomas, C. A.; Tommasini, R.; Town, R. P.; Traille, A. J.; Wonterghem, B. Van; Wallace, R. J.; Weaver, S.; Weber, S. V.; Wegner, P. J.; Whitman, P. K.; Widmann, K.; Widmayer, C. C.; Wood, R. D.; Young, B. K.; Zacharias, R. A.; Zylstra, A.

    2013-05-01

    First results from the analysis of neutron image data collected on implosions of cryogenically layered deuterium-tritium capsules during the 2011-2012 National Ignition Campaign are reported. The data span a variety of experimental designs aimed at increasing the stagnation pressure of the central hotspot and areal density of the surrounding fuel assembly. Images of neutrons produced by deuterium–tritium fusion reactions in the hotspot are presented, as well as images of neutrons that scatter in the surrounding dense fuel assembly. The image data are compared with 1D and 2D model predictions, and consistency checked using other diagnostic data. The results indicate that the size of the fusing hotspot is consistent with the model predictions, as well as other imaging data, while the overall size of the fuel assembly, inferred from the scattered neutron images, is systematically smaller than models’ prediction. Preliminary studies indicate these differences are consistent with a significant fraction (20%–25%) of the initial deuterium-tritium fuel mass outside the compact fuel assembly, due either to low mode mass asymmetry or high mode 3D mix effects at the ablator-ice interface.

  14. Development of Passive Fuel Cell Thermal Management Heat Exchanger

    Science.gov (United States)

    Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.

    2010-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.

  15. Nuclear imaging of the fuel assembly in ignition experiments

    Energy Technology Data Exchange (ETDEWEB)

    Grim, G. P.; Guler, N.; Merrill, F. E.; Morgan, G. L.; Danly, C. R.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C.; Batha, S.; Herrmann, H. W.; Kline, J. L.; Kyrala, G. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Clark, D. S.; Hinkel, D. E.; Jones, O. S.; Raman, K. S.; Izumi, N.; Fittinghoff, D. N.; Drury, O. B.; Alger, E. T. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States); and others

    2013-05-15

    First results from the analysis of neutron image data collected on implosions of cryogenically layered deuterium-tritium capsules during the 2011-2012 National Ignition Campaign are reported. The data span a variety of experimental designs aimed at increasing the stagnation pressure of the central hotspot and areal density of the surrounding fuel assembly. Images of neutrons produced by deuterium–tritium fusion reactions in the hotspot are presented, as well as images of neutrons that scatter in the surrounding dense fuel assembly. The image data are compared with 1D and 2D model predictions, and consistency checked using other diagnostic data. The results indicate that the size of the fusing hotspot is consistent with the model predictions, as well as other imaging data, while the overall size of the fuel assembly, inferred from the scattered neutron images, is systematically smaller than models' prediction. Preliminary studies indicate these differences are consistent with a significant fraction (20%–25%) of the initial deuterium-tritium fuel mass outside the compact fuel assembly, due either to low mode mass asymmetry or high mode 3D mix effects at the ablator-ice interface.

  16. A new alternative paraffinic-palmbiodiesel fuel for reducing polychlorinated dibenzo-p-dioxin/dibenzofuran emissions from heavy-duty diesel engines.

    Science.gov (United States)

    Lin, Yuan-Chung; Liu, Shou-Heng; Chen, Yan-Min; Wu, Tzi-Yi

    2011-01-15

    Polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F) emissions from heavy-duty diesel engines (HDDEs) fuelled with paraffinic-palmbiodiesel blends have been rarely addressed in the literature. A high-resolution gas chromatograph/high-resolution mass spectrometer (HRGC/HRMS) was used to analyze 17 PCDD/F species. Experimental results indicate that the main species of PCDD/Fs were OCDD (octachlorinated debenzo-p-dioxin) and OCDF (octachlorodibenzofuran), and they accounted for 40-50% of the total PCDD/Fs for all test fuels. Paraffinic-palmbiodiesel blends decreased PCDD/Fs by 86.1-88.9%, toxic PCDD/Fs by 91.9-93.0%, THC (total hydrocarbons) by 13.6-23.3%, CO (carbon monoxide) by 27.2-28.3%, and PM (particulate matter) by 21.3-34.2%. Using biodiesel blends, particularly BP9505 or BP8020, instead of premium diesel fuel (PDF) significantly reduced emissions of both PCDD/Fs and traditional pollutants. Using BP9505 (95vol% paraffinic fuel+5vol% palmbiodiesel) and BP8020 instead of PDF can decrease PCDD/F emissions by 5.93 and 5.99gI-TEQyear(-1) in Taiwan, respectively. Copyright © 2010. Published by Elsevier B.V.

  17. Emissions from a Diesel Engine using Fe-based Fuel Additives and a Sintered Metal Filtration System.

    Science.gov (United States)

    Bugarski, Aleksandar D; Hummer, Jon A; Stachulak, Jozef S; Miller, Arthur; Patts, Larry D; Cauda, Emanuele G

    2016-03-01

    A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated

  18. Electrocatalytic upgrading of biomass pyrolysis oils to chemical and fuel

    Science.gov (United States)

    Lam, Chun Ho

    The present project's aim is to liquefy biomass through fast pyrolysis and then upgrade the resulting "bio-oil" to renewable fuels and chemicals by intensifying its energy content using electricity. This choice reflects three points: (a) Liquid hydrocarbons are and will long be the most practical fuels and chemical feedstocks because of their energy density (both mass and volume basis), their stability and relative ease of handling, and the well-established infrastructure for their processing, distribution and use; (b) In the U.S., the total carbon content of annually harvestable, non-food biomass is significantly less than that in a year's petroleum usage, so retention of plant-captured carbon is a priority; and (c) Modern technologies for conversion of sunlight into usable energy forms---specifically, electrical power---are already an order of magnitude more efficient than plants are at storing solar energy in chemical form. Biomass fast pyrolysis (BFP) generates flammable gases, char, and "bio-oil", a viscous, corrosive, and highly oxygenated liquid consisting of large amounts of acetic acid and water together with hundreds of other organic compounds. With essentially the same energy density as biomass and a tendency to polymerize, this material cannot practically be stored or transported long distances. It must be upgraded by dehydration, deoxygenation, and hydrogenation to make it both chemically and energetically compatible with modern vehicles and fuels. Thus, this project seeks to develop low cost, general, scalable, robust electrocatalytic methods for reduction of bio-oil into fuels and chemicals.

  19. Comparison of 15N analysis by optical emission spectrometry and mass spectrometry for clinical studies during total parenteral nutrition

    International Nuclear Information System (INIS)

    Ragon, A.; Reynier, J.P.; Guiraud, G.

    1985-01-01

    During total and stable parenteral nutrition, a branched chain amino acid enriched solution containing [ 15 N]leucine was infused into a patient to determine the fate of the nitrogen administered through this formulation. Measurements of 15 N isotopic enrichments were performed on the same biological samples (urinary urea, total plasma proteins and albumin) by optical emission spectrometry (OES) and mass spectrometry (MS) to determine if OES with its specific advantages (cost, handling maintenance) constituted even with low enrichments a useful alternative technique to MS considered as the reference method. The results show that OES constituted a very useful analytical technique to obtain reliable information in clinical metabolic studies when low 15 N enrichments must be determined. (Auth.)

  20. Total energy consumption in Finland increased by one percent

    International Nuclear Information System (INIS)

    Timonen, L.

    2000-01-01

    The total energy consumption in Finland increased by less than a percent in 1999. The total energy consumption in 1999 was 1310 PJ corresponding to about 31 million toe. The electric power consumption increased moderately by 1.6%, which is less than the growth of the gross national product (3.5%). The final consumption of energy grew even less, only by 0.5%. Import of electric power increased by 19% in 1999. The import of electric power was due to the availability of low-priced electric power on the Nordic electricity markets. Nuclear power generation increased by 5% and the consumption of wood-based fuels by 3%. The increment of the nuclear power generation increased because of the increased output capacity and good operability of the power plants. Wind power production doubles, but the share of it in the total energy consumption is only about 0.01%. The peat consumption decreased by 12% and the consumption of hydroelectric power by 15%. The decrease in production of hydroelectric power was compensated by an increase import of electric power. The consumption of fossil fuels, coal, oil and natural gas remained nearly the same as in 1998. The gasoline consumption, however, decreased, but the consumption of diesel oil increased due to the increased road transport. The share of the fossil fuels was nearly half of the total energy consumption. The consumption of renewable energy sources remained nearly the same, in 23% if the share of peat is excluded, and in 30% if the share of peat is included. Wood-based fuels are the most significant type of renewable fuels. The share of them in 1999 was over 80% of the total usage of the renewable energy sources. The carbon dioxide emissions in Finland decreased in 1999 by 1.0 million tons. The total carbon dioxide emissions were 56 million tons. The decrease was mainly due to the decrease of the peat consumption. The final consumption of energy increased by 0.5%, being hence about 1019 PJ. Industry is the main consumer of energy

  1. The conditions of gaseous fuels development

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Face to the actual situation of petrol and gas oil in France, the situation of gaseous fuels appears to be rather modest. However, the aim of gaseous fuels is not to totally supersede the liquid fuels. Such a situation would imply a complete overturn which has not been seriously considered yet. This short paper describes the essential conditions to promote the wider use of gaseous fuels: the intervention of public authorities to adopt a more advantageous tax policy in agreement with the ''Clean Air''law project, a suitable distribution network for gaseous fuels, a choice of vehicles consistent with the urban demand, the development of transformation kits of quality and of dual-fuel vehicles by the car manufacturers. (J.S.)

  2. Sales of diesel fuel up, gasoline sales down

    International Nuclear Information System (INIS)

    Nupponen, J.

    2000-01-01

    The combined sales of petroleum products in Finland during 1999 totalled more than nine million tonnes, which was little changed from the figure for 1998. Sales of traffic fuels increased, while those of fuel oil fell. Diesel fuel sales reached a record level, while sales of gasoline continued their downward trend

  3. Automated assembling of single fuel cell units for use in a fuel cell stack

    Science.gov (United States)

    Jalba, C. K.; Muminovic, A.; Barz, C.; Nasui, V.

    2017-05-01

    The manufacturing of PEMFC stacks (POLYMER ELEKTROLYT MEMBRAN Fuel Cell) is nowadays still done by hand. Over hundreds of identical single components have to be placed accurate together for the construction of a fuel cell stack. Beside logistic problems, higher total costs and disadvantages in weight the high number of components produce a higher statistic interference because of faulty erection or material defects and summation of manufacturing tolerances. The saving of costs is about 20 - 25 %. Furthermore, the total weight of the fuel cells will be reduced because of a new sealing technology. Overall a one minute cycle time has to be aimed per cell at the manufacturing of these single components. The change of the existing sealing concept to a bonded sealing is one of the important requisites to get an automated manufacturing of single cell units. One of the important steps for an automated gluing process is the checking of the glue application by using of an image processing system. After bonding the single fuel cell the sealing and electrical function can be checked, so that only functional and high qualitative cells can get into further manufacturing processes.

  4. The COS/UVES absorption survey of the Magellanic stream. III. Ionization, total mass, and inflow rate onto the Milky Way

    International Nuclear Information System (INIS)

    Fox, Andrew J.; Thom, Christopher; Tumlinson, Jason; Ely, Justin; Kumari, Nimisha; Wakker, Bart P.; Hernandez, Audra K.; Haffner, L. Matthew; Barger, Kathleen A.; Lehner, Nicolas; Howk, J. Christopher; Richter, Philipp; Bland-Hawthorn, Joss; Charlton, Jane C.; Westmeier, Tobias; Misawa, Toru; Rodriguez-Hidalgo, Paola

    2014-01-01

    Dynamic interactions between the two Magellanic Clouds have flung large quantities of gas into the halo of the Milky Way. The result is a spectacular arrangement of gaseous structures, including the Magellanic Stream, the Magellanic Bridge, and the Leading Arm (collectively referred to as the Magellanic System). In this third paper of a series studying the Magellanic gas in absorption, we analyze the gas ionization level using a sample of 69 Hubble Space Telescope/Cosmic Origins Spectrograph sightlines that pass through or within 30° of the 21 cm emitting regions. We find that 81% (56/69) of the sightlines show UV absorption at Magellanic velocities, indicating that the total cross-section of the Magellanic System is ≈11,000 deg 2 , or around one-quarter of the entire sky. Using observations of the Si III/Si II ratio together with Cloudy photoionization modeling, we calculate the total gas mass (atomic plus ionized) of the Magellanic System to be ≈2.0 × 10 9 M ☉ (d/55 kpc) 2 , with the ionized gas contributing around three times as much mass as the atomic gas. This is larger than the current-day interstellar H I mass of both Magellanic Clouds combined, indicating that they have lost most of their initial gas mass. If the gas in the Magellanic System survives to reach the Galactic disk over its inflow time of ∼0.5-1.0 Gyr, it will represent an average inflow rate of ∼3.7-6.7 M ☉ yr –1 , potentially raising the Galactic star formation rate. However, multiple signs of an evaporative interaction with the hot Galactic corona indicate that the Magellanic gas may not survive its journey to the disk fully intact and will instead add material to (and cool) the corona.

  5. The COS/UVES absorption survey of the Magellanic stream. III. Ionization, total mass, and inflow rate onto the Milky Way

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Andrew J.; Thom, Christopher; Tumlinson, Jason; Ely, Justin; Kumari, Nimisha [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Wakker, Bart P.; Hernandez, Audra K.; Haffner, L. Matthew [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Barger, Kathleen A.; Lehner, Nicolas; Howk, J. Christopher [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Richter, Philipp [Institut für Physik und Astronomie, Universität Potsdam, Haus 28, Karl-Liebknecht-Strasse 24/25, D-14476, Potsdam (Germany); Bland-Hawthorn, Joss [Institute of Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Charlton, Jane C. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Westmeier, Tobias [ICRAR, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Misawa, Toru [School of General Education, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Rodriguez-Hidalgo, Paola, E-mail: afox@stsci.edu [Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, ON M3J 1P3 (Canada)

    2014-06-01

    Dynamic interactions between the two Magellanic Clouds have flung large quantities of gas into the halo of the Milky Way. The result is a spectacular arrangement of gaseous structures, including the Magellanic Stream, the Magellanic Bridge, and the Leading Arm (collectively referred to as the Magellanic System). In this third paper of a series studying the Magellanic gas in absorption, we analyze the gas ionization level using a sample of 69 Hubble Space Telescope/Cosmic Origins Spectrograph sightlines that pass through or within 30° of the 21 cm emitting regions. We find that 81% (56/69) of the sightlines show UV absorption at Magellanic velocities, indicating that the total cross-section of the Magellanic System is ≈11,000 deg{sup 2}, or around one-quarter of the entire sky. Using observations of the Si III/Si II ratio together with Cloudy photoionization modeling, we calculate the total gas mass (atomic plus ionized) of the Magellanic System to be ≈2.0 × 10{sup 9} M {sub ☉} (d/55 kpc){sup 2}, with the ionized gas contributing around three times as much mass as the atomic gas. This is larger than the current-day interstellar H I mass of both Magellanic Clouds combined, indicating that they have lost most of their initial gas mass. If the gas in the Magellanic System survives to reach the Galactic disk over its inflow time of ∼0.5-1.0 Gyr, it will represent an average inflow rate of ∼3.7-6.7 M {sub ☉} yr{sup –1}, potentially raising the Galactic star formation rate. However, multiple signs of an evaporative interaction with the hot Galactic corona indicate that the Magellanic gas may not survive its journey to the disk fully intact and will instead add material to (and cool) the corona.

  6. Feasibility study on AFR-100 fuel conversion from uranium-based fuel to thorium-based fuel

    Energy Technology Data Exchange (ETDEWEB)

    Heidet, F.; Kim, T.; Grandy, C. (Nuclear Engineering Division)

    2012-07-30

    best core performance characteristics for each of them. With the exception of the fuel type and enrichment, the reference AFR-100 core design characteristics were kept unchanged, including the general core layout and dimensions, assembly dimensions, materials and power rating. In addition, the mass of {sup 235}U required was kept within a reasonable range from that of the reference AFR-100 design. The core performance characteristics, kinetics parameters and reactivity feedback coefficients were calculated using the ANL suite of fast reactor analysis code systems. Orifice design calculations and the steady-state thermal-hydraulic analyses were performed using the SE2-ANL code. The thermal margins were evaluated by comparing the peak temperatures to the design limits for parameters such as the fuel melting temperature and the fuel-cladding eutectic temperature. The inherent safety features of AFR-100 cores proposed were assessed using the integral reactivity parameters of the quasi-static reactivity balance analysis. The design objectives and requirements, the computation methods used as well as a description of the core concept are provided in Section 2. The three major approaches considered are introduced in Section 3 and the neutronics performances of those approaches are discussed in the same section. The orifice zoning strategies used and the steady-state thermal-hydraulic performance are provided in Section 4. The kinetics and reactivity coefficients, including the inherent safety characteristics, are provided in Section 5, and the Conclusions in Section 6. Other scenarios studied and sensitivity studies are provided in the Appendix section.

  7. CANFLEX fuel bundle junction pressure drop

    International Nuclear Information System (INIS)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs

  8. CANFLEX fuel bundle junction pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs.

  9. Fuel cycle related parametric study considering long lived actinide production, decay heat and fuel cycle performances

    International Nuclear Information System (INIS)

    Raepsaet, X.; Damian, F.; Lenain, R.; Lecomte, M.

    2001-01-01

    One of the very attractive HTGR reactor characteristics is its highly versatile and flexible core that can fulfil a wide range of diverse fuel cycles. Based on a GTMHR-600 MWth reactor, analyses of several fuel cycles were carried out without taking into account common fuel particle performance limits (burnup, fast fluence, temperature). These values are, however, indicated in each case. Fuel derived from uranium, thorium and a wide variety of plutonium grades has been considered. Long-lived actinide production and total residual decay heat were evaluated for the various types of fuel. The results presented in this papers provide a comparison of the potential and limits of each fuel cycle and allow to define specific cycles offering lowest actinide production and residual heat associated with a long life cycle. (author)

  10. Energy analysis of a combined solid oxide fuel cell with a steam turbine power plant for marine applications

    Science.gov (United States)

    Welaya, Yousri M. A.; Mosleh, M.; Ammar, Nader R.

    2013-12-01

    Strong restrictions on emissions from marine power plants (particularly SO x , NO x ) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and steam turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. The analyzed variant of the combined cycle includes a SOFC operated with natural gas fuel and a steam turbine with a single-pressure waste heat boiler. The calculations were performed for two types of tubular and planar SOFCs, each with an output power of 18 MW. This paper includes a detailed energy analysis of the combined system. Mass and energy balances are performed not only for the whole plant but also for each component in order to evaluate the thermal efficiency of the combined cycle. In addition, the effects of using natural gas as a fuel on the fuel cell voltage and performance are investigated. It has been found that a high overall efficiency approaching 60% may be achieved with an optimum configuration using the SOFC system. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

  11. Hot-wire air flow meter for gasoline fuel-injection system. Calculation of air mass in cylinder during transient condition; Gasoline funsha system yo no netsusenshiki kuki ryuryokei. Kato untenji no cylinder juten kukiryo no keisan

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Y [Hitachi Car Engineering, Ltd., Tokyo (Japan); Nishimura, Y; Osuga, M; Yamauchi, T [Hitachi, Ltd., Tokyo (Japan)

    1997-10-01

    Air flow characteristics of hot-wire air flow meters for gasoline fuel-injection systems with supercharging and exhaust gas recycle during transient conditions were investigated to analyze a simple method for calculating air mass in cylinder. It was clarified that the air mass in cylinder could be calculated by compensating for the change of air mass in intake system by using aerodynamic models of intake system. 3 refs., 6 figs., 1 tab.

  12. Process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide

    International Nuclear Information System (INIS)

    Heremanns, R.H.; Vandersteene, J.J.

    1983-01-01

    The invention concerns a process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide in the form of PuO 2 . Mixed fuels consisting of uranium oxide and plutonium oxide are being used more and more. The plants which prepare these mixed fuels have around 5% of the total mass of fuels as fabrication residue, either as waste or scrap. In view of the high cost of plutonium, it has been attempted to recover this plutonium from the fabrication residues by a process having a purchase price lower than the price of plutonium. The problem is essentially to separate the plutonium, the uranium and the impurities. The residues are fluorinated, the UF 6 and PuF 6 obtained are separated by selective absorption of the PuF 6 on NaF at a temperature of at least 400 0 C, the complex obtained by this absorption is dissolved in nitric acid solution, the plutonium is precipitated in the form of plutonium oxalate by adding oxalic acid, and the precipitated plutonium oxalate is calcined

  13. Method for the fabrication of nuclear fuel bodies

    International Nuclear Information System (INIS)

    Davis, D.E.; Leary, D.F.

    1976-01-01

    According to the method, graphite particles are treated with a liquid impregnating agent containing heat-hardenable resin components; the resulting particles are mixed with nuclear fuel particles, and a nuclear fuel body is formed by binding the mixture of particles into a cohesive mass by means of a carbon-contained binder. The claim concerns the details of the process. (UA) [de

  14. Fuel assembly identification by magnetic scanning

    International Nuclear Information System (INIS)

    Badurek, G.

    1986-09-01

    In order to identify individual fuel assemblies by a magnetic fingerprint, investigations were made on iron inclusions in fuel elements and a method was developed to measure these by magnetically scanning the element. The fuel assembly is drawn with constant speed through a homogeneous magnetic field to magnetize iron inclusions. Resulting inhomogeneous magnetic dipole fields induce a voltage difference in pick up coils which is proportional to the mass of the inclusion. Using lock-in technique 3 mg pieces of steel wire on the surface of the fuel element were detected while the lower limit for the center of an assembly for ferromagnetic spheres was 50 mg. In single rods ferromagnetic samples of 1 mg were detected regardless of geometric form or location. With minor modifications of the measuring procedure the sensitivity limit can be improved to about 10 mg at the center of an assembly. In the KWU-fuel at Zwentendorf no iron inclusions were found

  15. Measurements of total lead concentrations and of lead isotope ratios in whole blood by use of inductively coupled plasma source mass spectrometry

    International Nuclear Information System (INIS)

    Delves, H.T.; Campbell, M.J.

    1988-01-01

    Methods are described for the accurate and precise determination of total lead and its isotopic composition in whole blood using inductively coupled plasma source mass spectrometry (ICP-MS). Sensitivities of up to 3 x 10 6 counts s -1 for 208 Pb at a total lead concentration of 5 μmol l -1 (1 μg ml -1 ) enabled total blood lead levels to be measured in 4 min per sample, with a detection limit of 0.072 μmol l -1 (15 μg l -1 ). The agreement between ICP-MS and atomic absorption spectrometry (AAS) for this analysis was excellent: ICP-MS 0.996 x AAS -0.0165 μmol l -1 ; r 0.994. Isotope ratio measurements required 15 min to achieve the required accuracy and precision both of which were generally better than 0.5% for 206 Pb: 207 Pb and 208 Pb: 206 Pb isotopic lead ratios. The ICP-MS data for these ratios in ten quality control blood specimens has a mean bias relative to isotope dilution mass spectrometry of -0.412% for 206 Pb: 207 Pb ratios and of +0.055% for the 208 Pb: 206 Pb ratios. This level of accuracy and that of the total blood lead measurements is sufficient to permit application of these ICP-MS methods to environmental studies. (author)

  16. Assessment of energy performance and air pollutant emissions in a diesel engine generator fueled with water-containing ethanol-biodiesel-diesel blend of fuels

    International Nuclear Information System (INIS)

    Lee, Wen-Jhy; Liu, Yi-Cheng; Mwangi, Francis Kimani; Chen, Wei-Hsin; Lin, Sheng-Lun; Fukushima, Yasuhiro; Liao, Chao-Ning; Wang, Lin-Chi

    2011-01-01

    Biomass based oxygenated fuels have been identified as possible replacement of fossil fuel due to pollutant emission reduction and decrease in over-reliance on fossil fuel energy. In this study, 4 v% water-containing ethanol was mixed with (65-90%) diesel using (5-30%) biodiesel (BD) and 1 v% butanol as stabilizer and co-solvent respectively. The fuels were tested against those of biodiesel-diesel fuel blends to investigate the effect of addition of water-containing ethanol for their energy efficiencies and pollutant emissions in a diesel-fueled engine generator. Experimental results indicated that the fuel blend mix containing 4 v% of water-containing ethanol, 1 v% butanol and 5-30 v% of biodiesel yielded stable blends after 30 days standing. BD1041 blend of fuel, which composed of 10 v% biodiesel, 4 v% of water-containing ethanol and 1 v% butanol demonstrated -0.45 to 1.6% increase in brake-specific fuel consumption (BSFC, mL kW -1 h -1 ) as compared to conventional diesel. The better engine performance of BD1041 was as a result of complete combustion, and lower reaction temperature based on the water cooling effect, which reduced emissions to 2.8-6.0% for NO x , 12.6-23.7% particulate matter (PM), 20.4-23.8% total polycyclic aromatic hydrocarbons (PAHs), and 30.8-42.9% total BaPeq between idle mode and 3.2 kW power output of the diesel engine generator. The study indicated that blending diesel with water-containing ethanol could achieve the goal of more green sustainability. -- Highlights: → Water-containing ethanol was mixed with diesel using biodiesel and butanol as stabilizer and co-solvent, respectively. → Fuel blends with 4 v% water-containing ethanol, 1 v% butanol, 5-30 v% biodiesel and conventional diesel yielded a stable blended fuel after more than 30 days. → Due to more complete combustion and water quench effect, target fuel BD1041 was gave good energy performance and significant reduction of PM, NO x , total PAH and total BaPeq emissions.

  17. Analysis of coolant flow in central tube of WWER-440 fuel assemblies

    International Nuclear Information System (INIS)

    Zsiros, G.; Toth, S.; Attila Aszodi, A.

    2011-01-01

    Three dimensional computational fluid dynamics model has been built to investigate the coolant flow in the central tube of the WWER-440 fuel assemblies. The model was verified based on measured data of the Kurchatov Institute. With the model calculations were performed for two fuel assemblies used in PAKS NPP. One of them has symmetrical and another has inclined pin power profile. Ratios of the outlet mass fluxes of the central tube to the inlet mass fluxes of the rod bundle were determined. Heat up ratios of the tube and rod bundle flows were calculated too. Sensitivity of the results on the assembly power distribution, inlet temperature and mass flow rate was investigated. The results of these simulations can be used as boundary conditions of central tube in studies of coolant mixing in fuel assembly heads. (Authors)

  18. The scaling of economic and performance parameters of DT and advanced fuel fusion reactors

    International Nuclear Information System (INIS)

    Roth, J.R.

    1983-01-01

    In this study, the plasma stability index beta and the fusion power density in the plasma were treated as independent variables to determine how they influenced three economic performance parameters of fusion reactors burning the DT and four advanced fusion fuel cycles. The economic/performance parameters included the total power produced per unit length of reactor; the mass per unit length, and the specific mass in kilograms/kilowatt. The scaling of these parameters with beta and fusion power density was examined for a common set of engineering assumptions on the allowable wall loading limits, the maximum magnetic field existing in the plasma, average blanket mass density, etc. It was found that the power per unit length decreased as the plasma power density and beta increased. This is a consequence of the fact that the first wall is a bottleneck in the energy flow from the plasma to the generating equipment, and the wall power flux will exceed wall loading limits if the plasma radius exceeds a critical value. If one wished to build an engineering test reactor which produced a burning plasma at the lowest possible initial cost, and without regard to whether such a reactor would ultimately produce the cheapest power, then one would minimize the mass per unit length. The mass per unit length decreases with increasing plasma power density and beta, with the DT reaction being the most expensive at a fixed plasma power density (because of its thicker blanket), and the least expensive at a fixed value of beta, at least up to values of beta of 50%. The specific mass, in kg/kw, which is a rough measure of the cost of the power generated by the reactor, shows an opposite trend. It increases with increasing plasma power density and beta. At a given plasma power density and low beta, the DT reaction gives the lowest specific mass, but at a fixed beta above 10%, the advanced fuel cycles have the lowest specific mass

  19. Japan's fuel recycling policy

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Atomic Energy Commission (AEC) has formulated Japanese nuclear fuel recycling plan for the next 20 years, based on the idea that the supply and demand of plutonium should be balanced mainly through the utilization of plutonium for LWRs. The plan was approved by AEC, and is to be incorporated in the 'Long term program for development and utilization of nuclear energy' up for revision next year. The report on 'Nuclear fuel recycling in Japan' by the committee is characterized by Japanese nuclear fuel recycling plan and the supply-demand situation for plutonium, the principle of the possession of plutonium not more than the demand in conformity with nuclear nonproliferation attitude, and the establishment of a domestic fabrication system of uranium-plutonium mixed oxide fuel. The total plutonium supply up to 2010 is estimated to be about 85 t, on the other hand, the demand will be 80-90 t. The treatment of plutonium is the key to the recycling and utilization of nuclear fuel. By around 2000, the private sector will commercialize the fabrication of the MOX fuel for LWRs at the annual rate of about 100 t. Commitment to nuclear nonproliferation, future nuclear fuel recycling program in Japan, MOX fuel fabrication system in Japan and so on are reported. (K.I.)

  20. A radioactive tracer dilution method to determine the mass of molten salt

    International Nuclear Information System (INIS)

    Lei Cao; Jarrell, Josh; Hardtmayer, D.E.; White, Susan; Herminghuysen, Kevin; Kauffman, Andrew; Sanders, Jeff; Li, Shelly

    2017-01-01

    A new technique for molten salt mass determination, termed radioactive tracer dilution, that uses 22 Na as a tracer was validated at bench scale. It has been a challenging problem to determine the mass of molten salt in irregularly shaped containers, where a highly radioactive, high-temperature molten salt was used to process nuclear spent/used fuel during electrochemical recycling (pyro-processing) or for coolant/fuel salt from molten salt reactors. A radioactive source with known activity is dissolved into the salt. After a complete mixture, a small amount of the salt is sampled and measured in terms of its mass and radioactivity. By finding the ratio of the mass to radioactivity, the unknown salt mass in the original container can be precisely determined. (author)