WorldWideScience

Sample records for total foliar biomass

  1. Comparing algorithms for estimating foliar biomass of conifers in the Pacific Northwest

    Science.gov (United States)

    Crystal L. Raymond; Donald. McKenzie

    2013-01-01

    Accurate estimates of foliar biomass (FB) are important for quantifying carbon storage in forest ecosystems, but FB is not always reported in regional or national inventories. Foliar biomass also drives key ecological processes in ecosystem models. Published algorithms for estimating FB in conifer species of the Pacific Northwest can yield signifi cantly different...

  2. [Dynamics of microbial biomass carbon and nitrogen during foliar litter decomposition under artificial forest gap in Pinus massoniana plantation.

    Science.gov (United States)

    Zhang, Ming Jin; Chen, Liang Hua; Zhang, Jian; Yang, Wan Qin; Liu, Hua; Li, Xun; Zhang, Yan

    2016-03-01

    Nowadays large areas of plantations have caused serious ecological problems such as soil degradation and biodiversity decline. Artificial tending thinning and construction of mixed forest are frequently used ways when we manage plantations. To understand the effect of this operation mode on nutrient cycle of plantation ecosystem, we detected the dynamics of microbial bio-mass carbon and nitrogen during foliar litter decomposition of Pinus massoniana and Toona ciliate in seven types of gap in different sizes (G 1 : 100 m 2 , G 2 : 225 m 2 , G 3 : 400 m 2 , G 4 : 625 m 2 , G 5 : 900 m 2 , G 6 : 1225 m 2 , G 7 : 1600 m 2 ) of 42-year-old P. massoniana plantations in a hilly area of the upper Yang-tze River. The results showed that small and medium-sized forest gaps(G 1 -G 5 ) were more advantageous for the increment of microbial biomass carbon and nitrogen in the process of foliar litter decomposition. Along with the foliar litter decomposition during the experiment (360 d), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) in P. massoniana foliar litter and MBN in T. ciliata foliar litter first increased and then decreased, and respectively reached the maxima 9.87, 0.22 and 0.80 g·kg -1 on the 180 th d. But the peak (44.40 g·kg -1 ) of MBC in T. ciliata foliar litter appeared on the 90 th d. Microbial biomass carbon and nitrogen in T. ciliate was significantly higher than that of P. massoniana during foliar litter decomposition. Microbial biomass carbon and nitrogen in foliar litter was not only significantly associated with average daily temperature and the water content of foliar litter, but also closely related to the change of the quality of litter. Therefore, in the thinning, forest gap size could be controlled in the range of from 100 to 900 m 2 to facilitate the increase of microbial biomass carbon and nitrogen in the process of foliar litter decomposition, accelerate the decomposition of foliar litter and improve soil fertility of plantations.

  3. A hybrid model for mapping relative differences in belowground biomass and root: Shoot ratios using spectral reflectance, foliar N and plant biophysical data within coastal marsh

    Science.gov (United States)

    Jessica L. O'Connell,; Byrd, Kristin B.; Maggi Kelly,

    2015-01-01

    Broad-scale estimates of belowground biomass are needed to understand wetland resiliency and C and N cycling, but these estimates are difficult to obtain because root:shoot ratios vary considerably both within and between species. We used remotely-sensed estimates of two aboveground plant characteristics, aboveground biomass and % foliar N to explore biomass allocation in low diversity freshwater impounded peatlands (Sacramento-San Joaquin River Delta, CA, USA). We developed a hybrid modeling approach to relate remotely-sensed estimates of % foliar N (a surrogate for environmental N and plant available nutrients) and aboveground biomass to field-measured belowground biomass for species specific and mixed species models. We estimated up to 90% of variation in foliar N concentration using partial least squares (PLS) regression of full-spectrum field spectrometer reflectance data. Landsat 7 reflectance data explained up to 70% of % foliar N and 67% of aboveground biomass. Spectrally estimated foliar N or aboveground biomass had negative relationships with belowground biomass and root:shoot ratio in both Schoenoplectus acutus and Typha, consistent with a balanced growth model, which suggests plants only allocate growth belowground when additional nutrients are necessary to support shoot development. Hybrid models explained up to 76% of variation in belowground biomass and 86% of variation in root:shoot ratio. Our modeling approach provides a method for developing maps of spatial variation in wetland belowground biomass.

  4. Investigating organic matter in Fanno Creek, Oregon, Part 1 of 3: estimating annual foliar biomass for a deciduous-dominant urban riparian corridor

    Science.gov (United States)

    Sobieszczyk, Steven; Keith, Mackenzie K.; Rounds, Stewart A.; Goldman, Jami H.

    2014-01-01

    For this study, we explored the amount, type, and distribution of foliar biomass that is deposited annually as leaf litter to Fanno Creek and its floodplain in Portland, Oregon, USA. Organic matter is a significant contributor to the decreased dissolved oxygen concentrations observed in Fanno Creek each year and leaf litter is amongst the largest sources of organic matter to the stream channel and floodplain. Using a combination of field measurements and light detection and ranging (LiDAR) point cloud data, the annual foliar biomass was estimated for 13 stream reaches along the creek. Biomass estimates were divided into two sets: (1) the annual foliage available from the entire floodplain overstory canopy, and (2) the annual foliage overhanging the stream, which likely contributes leaf litter directly to the creek each year. Based on these computations, an estimated 991 (±22%) metric tons (tonnes, t) of foliar biomass is produced annually above the floodplain, with about 136 t (±24%) of that foliage falling directly into Fanno Creek. The distribution of foliar biomass varies by reach, with between 150 and 640 t/km2 produced along the floodplain and between 400 and 1100 t/km2 available over the channel. Biomass estimates vary by reach based primarily on the density of tree cover, with forest-dominant reaches containing more mature deciduous trees with broader tree canopies than either wetland or urban-dominant reaches, thus supplying more organic material to the creek. By quantifying the foliar biomass along Fanno Creek we have provided a reach-scale assessment of terrestrial organic matter loading, thereby providing land managers useful information for planning future restoration efforts.

  5. Effects of organic matter removal, soil compaction and vegetation control on 10th year biomass and foliar nutrition: LTSP continent-wide comparisons

    Science.gov (United States)

    Felix Ponder Jr.; Robert L. Fleming; Shannon Berch; Matt D. Busse; John D. Elioff; Paul W. Hazlett; Richard D. Kabzems; J. Marty Kranabetter; David M. Morris; Deborah Page-Dumroese; Brian J. Palik; Robert F. Powers; Felipe G. Sanchez; D. Andrew Scott; Richard H. Stagg; Douglas M. Stone; David H. Young; Jianwei Zhang; Kim H. Ludovici; Daniel W. McKenney; Debbie S Mossa; Paul T. Sanborn; Richard A. Voldseth

    2012-01-01

    We examined 10th year above-ground planted tree and total stand biomass, and planted tree foliar N and P concentrations across gradients in soil disturbance at 45 North American Long-Term Soil Productivity (LTSP) installations. While ranging across several climate regions, these installations all share a common experimental design with similar measurement protocols....

  6. Interactions between crop biomass and development of foliar diseases in winter wheat and the potential to graduate the fungicide dose according to crop biomass

    DEFF Research Database (Denmark)

    Jensen, Peter Kryger; Jørgensen, Lise Nistrup

    2016-01-01

    dose. The study was carried out investigating fungicide dose response controlling foliar diseases in winter wheat at three biomass densities obtained growing the crop at three nitrogen levels and using variable seed rates. Further the field experiments included three fungicide dose rates at each...... biomass level, an untreated control, and 75%, 50% and 33% of the recommended fungicide dose rate and the experiments were replicated for three years. Crop biomass had a significant influence on occurrence of septoria and yellow rust with greater disease severity at increasing crop biomass. In two of three...... years, the interaction of crop biomass and fungicide dose rate had a significant influence on disease severity indicating a biomassdependent dose response. The interaction occurred in the two years with high yield potential in combination with severe disease attack. If the variation in crop density...

  7. Effect of Foliar Application of Micro Nutrients on Physiological Growth Indices and Total Dry Matter Yield of Forage Corn

    Directory of Open Access Journals (Sweden)

    A. Soleymani

    2012-04-01

    Full Text Available In order to evaluate the effect of foliar application of micro nutrients on physiological growth indices and total dry matter yield of forage corn. Field experiment was conducted in 2006 at Bersian village Isfahan. A randomized complete block design with four replications was used. Plant treated with 8 foliar application treatments (Fe, Zn, Cu, Mn, Fe + Mn, Cu + Zn, Fe + Mn + Cu + Zn and control. The responses to foliar application in total dry weight, LAI and CGR appeared to differ between the treatments, but there is no significant difference in NAR between the treatments. Maximum leaf area index gained in foliar application of Fe but there is significant difference between this treatment and other treatments except foliar application of Zn and Fe + Mn. Foliar application of Fe and Fe + Mn result to maximum total dry weight, but there is no significant difference between these treatments and foliar application of Zn, Mn, Mn + Cu and Fe + Zn + Cu +Mn. Maximum and minimum NAR gained in foliar application of Mn and control treatments respectively. Maximum CGR gained in foliar application of Zn, there is significant difference between this treatment and others. Control treatment in comparison with others shows minimum value in all measured factors. The results indicate that foliar application of micro nutrients particularly Fe and Fe+Mn may be suitable to product maximum total dry matter yield under similar condition.

  8. Evaluation of total aboveground biomass and total merchantable biomass in Missouri

    Science.gov (United States)

    Michael E. Goerndt; David R. Larsen; Charles D. Keating

    2014-01-01

    In recent years, the state of Missouri has been converting to biomass weight rather than volume as the standard measurement of wood for buying and selling sawtimber. Therefore, there is a need to identify accurate and precise methods of estimating whole tree biomass and merchantable biomass of harvested trees as well as total standing biomass of live timber for...

  9. Root biomass response to foliar application of imazapyr for two imidazolinone tolerant alleles of sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Sala, Carlos A; Bulos, Mariano; Altieri, Emiliano; Ramos, María Laura

    2012-09-01

    Imisun and CLPlus are two imidazolinone tolerance traits in sunflower (Helianthus annuus L.) determined by the expression of two alleles at the locus Ahasl1. Both traits differed in their tolerance level to imazapyr -a type of imidazolinone herbicide- when aboveground biomass is considered, but the concomitant herbicide effect over the root system has not been reported. The objective of this work was to quantify the root biomass response to increased doses of imazapyr in susceptible (ahasl1/ahasl1), Imisun (Ahasl1-1/Ahasl1-1) and CLPlus (Ahasl1-3/Ahasl1-3) homozygous sunflower genotypes. These materials were sprayed at the V2-V4 stage with increased doses of imazapyr (from 0 to 480 g active ingredient ha(-1)) and 14 days after treatment root biomass of each plant was assessed. Genotype at the Ahasl1 locus, dose of imazapyr and their interaction significantly contributed (P < 0.001) to explain the reduction in root biomass accumulation after herbicide application. Estimated dose of imazapyr required to reduce root biomass accumulation by fifty percent (GR(50)) differed statistically for the three genotypes under study (P < 0.001). CLPlus genotypes showed the highest values of GR(50), 300 times higher on average than the susceptible genotypes, and almost 8 times higher than Imisun materials, demonstrating that both alleles differ in their root biomass response to foliar application of increased doses of imazapyr.

  10. Estimación de la biomasa foliar de Prosopis flexuosa mediante relaciones alométricas Estimation of leaf biomass in Prosopis flexuosa by means of allometric relationships

    Directory of Open Access Journals (Sweden)

    M. Ledesma

    2010-12-01

    Full Text Available La estimación alométrica de la biomasa foliar arbórea es necesaria para determinar la producción primaria y para analizar algunas de las interacciones ecológicas entre los árboles y los demás componentes de la vegetación. El objetivo del trabajo fue ajustar y seleccionar modelos para estimar la biomasa foliar de Prosopis flexuosa a partir de variables dendrométricas. Se apearon seis árboles, se midió su diámetro y se calculó el área de albura de muestras transversales de leño, en cuatro niveles: en los órdenes de ramificación dentro de la copa viva (ramas secundarias, terciarias y cuaternarias agrupadas, en el extremo distal de las ramas primarias y en los extremos distal y basal del fuste. Se recolectaron las hojas correspondientes a cada nivel y se obtuvo el peso seco. El área de albura fue la mejor variable predictora de biomasa foliar, aunque el diámetro tuvo buen ajuste en ramas dentro de la copa viva y en ramas primarias. Los modelos calculados con variables de fuste tuvieron menor ajuste. Se concluye que para la estimación no destructiva de la biomasa foliar de plantas adultas de Prosopis flexuosa es recomendable utilizar el modelo basado en el diámetro distal de las ramas primarias.The estimation of leaf biomass, usually performed by alometric relations, is important for the interpretation of primary production and for the assessment of ecological interactions between trees and the rest of the components in a wood vegetation. The goal for the present work was to adjust and to select allometric models for the estimation of leaf biomass Prosopis flexuosa based on dendrometric variables. Six trees were surveyed. The diameter and sapwood area of transversal samples of wood were determined at four different levels: in the orders of ramification within living crown (secondary, tertiary and quaternary grouped branches, at the distal portions of primary branches and in the apical and basal portions of bole. The leaves were

  11. Modelo matemático para estimativa da área foliar total de bananeira 'Prata-anã' Esteem method of total leaf area of 'Prata anã' banana tree

    Directory of Open Access Journals (Sweden)

    Moises Zucoloto

    2008-12-01

    Full Text Available O objetivo deste trabalho foi desenvolver um modelo para estimar a área foliar total de bananeira, cultivar Prata-Anã, utilizando dimensões lineares da terceira folha, como o comprimento, a largura e o número total de folhas na emissão da inflorescência. As regressões lineares foram determinadas considerando-se a área foliar total de cada planta (AFT como variável dependente e o comprimento (C e a largura (L da terceira folha, o produto de CxL, o número total de folhas por planta (N e o produto de CxLxN como variáveis independentes. O modelo linear que melhor estimou a área foliar total (AFTe da bananeira 'Prata-Anã', ao nível de 5% de significância com R² de 0,89, foi a equação AFTe = 0,5187(CxLxN + 9603,5.The objective of this work was to estimate the total leaf area of banana, cultivar Prata Anã, according to the linear dimensions of the third leaf, such as the length and the width and the total number of leves in the inflorescence emission. The linear regressions were determined considering total leaf area of each plant (AFT such as dependent variable and the length (C and the width (L of the third leaf, the product of CxL, the total number of leaf per plant (N and the product of CxLxN as independent variables. The best linear model that estimated the total leaf area (AFTe of banana 'Prata Anã' at the level of 5% of significance with R² of 0,89 was the equation AFTe = 0.5187 (CxLxN + 9603.5.

  12. Estimating foliar nitrogen in Eucalyptus using vegetation indexes

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Ramalho de Oliveira

    Full Text Available ABSTRACT Nitrogen (N has commonly been applied in Eucalyptus stands in Brazil and it has a direct relation with biomass production and chlorophyll content. Foliar N concentrations are used to diagnose soil and plant fertility levels and to develop N fertilizer application rates. Normally, foliar N is obtained using destructive methods, but indirect analyses using Vegetation Indexes (VIs may be possible. The aim of this work was to evaluate VIs to estimate foliar N concentration in three Eucalyptus clones. Lower crown leaves of three clonal Eucalyptus plantations (25 months old were classified into five color patterns using the Munsell Plant Tissue Color Chart. For each color, N concentration was determined by the Kjeldahl method and foliar reflectance was measured using a CI-710 Miniature Leaf Spectrometer. Foliar reflectance data were used to obtain the VIs and the VIs were used to estimate N concentrations. In the visible region, the relationship between N concentration and reflectance percentage was negative. The highest correlations between VIs and N concentrations were obtained by the Inflection Point Position (IPP, r = 0.97, Normalized Difference Red-Edge (reNDVI, r = 0.97 and Modified Red-Edge Normalized Difference Vegetation Index (mNDI, r = 0.97. Vegetation indexes on the red edge region provided the most accurate estimates of foliar N concentration. The reNDVI index provided the best N concentration estimates in leaves of different colors of Eucalyptus urophylla × grandis and Eucalyptus urophylla × urophylla (R2 = 0.97 and RMSE = 0.91 g kg−1.

  13. Desempenho animal em pasto de aveia e azevém com distintas biomassas de lâminas foliares Animal performance in oat and Italian ryegrass pastures under leaf lamina biomass levels

    Directory of Open Access Journals (Sweden)

    Duilio Guerra Bandinelli

    2005-12-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito de biomassas de lâminas foliares no desempenho animal. Utilizou-se mistura de aveia (Avena strigosa Schreb e azevém (Lolium multiflorum Lam., para determinar quantidades adequadas de sua biomassa no manejo da pastagem. Foram realizados dois experimentos, na estação fria de 2002 e 2003. Na avaliação de 2002, os valores de biomassa de lâminas foliares foram de 360 kg ha-1 (baixa e 630 kg ha-1 (alta. Em 2003, foram obtidas biomassas de 352, 422 e 507 kg ha-1, classificadas como baixa, média e alta, respectivamente. O método de pastejo foi contínuo, com taxa de lotação variada; os animais utilizados foram terneiros da raça Charolês e cruzados com Nelore, com idade inicial de nove meses. As variáveis de produção animal avaliadas, nos dois anos, foram: ganho médio diário, carga animal e ganho de peso vivo por área. As distintas biomassas de lâminas foliares mantidas não são fatores limitantes ao desempenho animal.The objective of this work was to evaluate the effect of different leaf lamina biomass over animal performance. A mixture of oat (Avena strigosa Schreb and Italian ryegrass (Lolium multiflorum Lam. was used to determine adequate levels of leaf lamina biomass for pasture management. Two trials were made, in 2002 and 2003 cool seasons. In 2002 evaluation, leaf lamina biomass values were of 360 kg ha-1 (low and 630 kg ha-1 (high. In 2003, values obtained for leaf lamina biomasses were of 352, 422 and 507 kg ha-1, being classified as low, medium and high, respectively. Grazing method was continuous, with variable stocking rate; testing animals were calves of Charolais breed and its crosses with Nelore breed, with initial age of nine months. Evaluated variables in animal production, in both years, were: average daily gain, stocking rate and live weight gain per area. Leaf lamina biomasses evaluated are not limiting factors to animal performance.

  14. Impacts of paper sludge and manure on soil and biomass production of willow

    International Nuclear Information System (INIS)

    Quaye, Amos K.; Volk, Timothy A.; Hafner, Sasha; Leopold, Donald J.; Schirmer, Charles

    2011-01-01

    Land application of organic wastes to short rotation woody crops (SRWC) can reduce the environmental impacts associated with waste disposal and enhance the productivity of biomass production systems. Understanding the potential impacts of organic amendments however, requires the examination of changes in soil characteristics and plant productivity. This study was conducted to evaluate the effect of paper sludge and dairy manure on biomass production of shrub willow (Salix dasyclados SV1) and to determine the impacts of these amendments on soil chemical properties. Treatments included urea, dairy manure and paper sludge separately and in combination, and a control. These materials were applied in the summer of 2005 to two fields of SV1 at different stages of growth: An old field with one year old shoots on a 10 year old root system and a young field which was beginning regrowth after being coppiced at the end of its first growing season. Foliar nutrient concentrations and soil chemical properties were analyzed at the end of the second growing season after treatment application to determine plant response to the fertilization regimes and to determine the effects of fertilization on soil characteristics. Fertilization did not increase biomass production in either field. However, application of the N-poor paper sludge did not reduce yield either. In general, fertilization did not influence soil or foliar chemistry, although there were some exceptions. The lack of response observed in this study is probably related to the nutrient status of the site or losses of applied nutrients. -- Highlights: → The fertilization treatments did not have any significant effect biomass production. → Application of paper sludge did not reduce willow biomass yield in both fields. → Foliar N concentration of willow crops in this study is in the range considered for optimal growth. → The limited response of foliar nutrients to fertilization indicates that the site was not limited by

  15. The effect of wildfire and clear-cutting on above-ground biomass, foliar C to N ratios and fiber content throughout succession: Implications for forage quality in woodland caribou (Rangifer tarandus caribou)

    Science.gov (United States)

    Mallon, E. E.; Turetsky, M.; Thompson, I.; Noland, T. L.; Wiebe, P.

    2013-12-01

    Disturbance is known to play an important role in maintaining the productivity and biodiversity of boreal forest ecosystems. Moderate to low frequency disturbance is responsible for regeneration opportunities creating a mosaic of habitats and successional trajectories. However, large-scale deforestation and increasing wildfire frequencies exacerbate habitat loss and influence biogeochemical cycles. This has raised concern about the quality of the under-story vegetation post-disturbance and whether this may impact herbivores, especially those vulnerable to change. Forest-dwelling caribou (Rangifer tarandus caribou) are declining in several regions of Canada and are currently listed as a species at risk by COSEWIC. Predation and landscape alteration are viewed as the two main threats to woodland caribou. This has resulted in caribou utilizing low productivity peatlands as refuge and the impact of this habitat selection on their diet quality is not well understood. Therefore there are two themes in the study, 1) Forage quantity: above-ground biomass and productivity and 2) Forage quality: foliar N and C to N ratios and % fiber. The themes are addressed in three questions: 1) How does forage quantity and quality vary between upland forests and peatlands? 2) How does wildfire affect the availability and nutritional quality of forage items? 3) How does forage quality vary between sites recovering from wildfire versus timber harvest? Research sites were located in the Auden region north of Geraldton, ON. This landscape was chosen because it is known woodland caribou habitat and has thorough wildfire and silviculture data from the past 7 decades. Plant diversity, above-ground biomass, vascular green area and seasonal foliar fiber and C to N ratios were collected across a matrix of sites representing a chronosequence of time since disturbance in upland forests and peatlands. Preliminary findings revealed productivity peaked in early age stands (0-30 yrs) and biomass peaked

  16. Estimating patterns in Spartina alterniflora belowground biomass within salt marshes

    Science.gov (United States)

    O'Connell, J. L.; Mishra, D. R.; Alber, M.; Byrd, K. B.

    2017-12-01

    Belowground biomass of marsh plants, such as Spartina alterniflora, help prevent marsh loss because they promote soil accretion, stabilize soils and add organic matter. However, site-wide estimates of belowground biomass are difficult to obtain because root:shoot ratios vary considerably both within species and across sites. We are working to develop a data fusion tool that can predict key characteristics of S. alterniflora, including belowground biomass and plant canopy N, based on satellite imagery. We used field observations from four salt marsh locations along the Georgia Coast, including one that is studied as part of the Georgia Coastal Ecosystems LTER project. From field and remote-sensing data, we developed a hybrid modeling approach to estimate % foliar N (a surrogate for plant assimilated nutrients). Partial Least squares (PLS) regression analysis of Landsat-8 spectral bands could predict variation in foliar N and belowground biomass, suggesting this public data source might be utilized for site-wide assessment of plant biophysical variables in salt marshes. Spectrally estimated foliar N and aboveground biomass were associated with belowground biomass and root:shoot ratio in S. alterniflora. This mirrors results from a previous study from the Sacramento-San Joaquin Delta, CA, on Scheonoplectus acutus, a marsh plant found in some tidal freshwater marshes. Therefore remote sensing may be a useful tool for measuring whole plant productivity among multiple coastal marsh species.

  17. Effect of potassium and potting-bag size on foliar biomass and ...

    African Journals Online (AJOL)

    Foliar fresh mass was significantly increased by the interaction between K concentration and potting-bag size. Growers may use a 5.3 mmol L−1 K concentration and a 5 L potting bag for optimum production of rose geranium under soil-less cultivation. Keywords: C:G ratio, enzyme activation, oil quality, potassium, rose ...

  18. Interaction Between Phosphorus and Zinc on the Biomass Yield and Yield Attributes of the Medicinal Plant Stevia (Stevia rebaudiana)

    Science.gov (United States)

    Das, Kuntal; Dang, Raman; Shivananda, T. N.; Sur, Pintu

    2005-01-01

    A greenhouse experiment was conducted at the Indian Institute of Horticultural Research (IIHR), Bangalore to study the interaction effect between phosphorus (P) and zinc (Zn) on the yield and yield attributes of the medicinal plant stevia. The results show that the yield and yield attributes have been found to be significantly affected by different treatments. The total yield in terms of biomass production has been increased significantly with the application of Zn and P in different combinations and methods, being highest (23.34 g fresh biomass) in the treatment where Zn was applied as both soil (10 kg ZnSO4/ha) and foliar spray (0.2% ZnSO4). The results also envisaged that the different yield attributes viz. height, total number of branches, and number of leaves per plant have been found to be varied with treatments, being highest in the treatment where Zn was applied as both soil and foliar spray without the application of P. The results further indicated that the yield and yield attributes of stevia have been found to be decreased in the treatment where Zn was applied as both soil and foliar spray along with P suggesting an antagonistic effect between Zn and P. PMID:15915292

  19. Interaction Between Phosphorus and Zinc on the Biomass Yield and Yield Attributes of the Medicinal Plant Stevia (Stevia rebaudiana

    Directory of Open Access Journals (Sweden)

    Kuntal Das

    2005-01-01

    Full Text Available A greenhouse experiment was conducted at the Indian Institute of Horticultural Research (IIHR, Bangalore to study the interaction effect between phosphorus (P and zinc (Zn on the yield and yield attributes of the medicinal plant stevia. The results show that the yield and yield attributes have been found to be significantly affected by different treatments. The total yield in terms of biomass production has been increased significantly with the application of Zn and P in different combinations and methods, being highest (23.34 g fresh biomass in the treatment where Zn was applied as both soil (10 kg ZnSO4/ha and foliar spray (0.2% ZnSO4. The results also envisaged that the different yield attributes viz. height, total number of branches, and number of leaves per plant have been found to be varied with treatments, being highest in the treatment where Zn was applied as both soil and foliar spray without the application of P. The results further indicated that the yield and yield attributes of stevia have been found to be decreased in the treatment where Zn was applied as both soil and foliar spray along with P suggesting an antagonistic effect between Zn and P.

  20. Competition between rice (Oryza sativa L.) and (barnyardgrass (Echinochloa crus-galli (L.) P. Beauv.) as affected by methanol foliar application.

    Science.gov (United States)

    Rezaeieh, Alireza D; Aminpanah, Hashem; Sadeghi, Seyed M

    2015-01-01

    Pot experiment was conducted in Iran, to evaluate the effect of methanol on competition between rice (Oryza sativa) and barnyardgrass (Echinochloa crus-galli). The experiment was conducted as a randomized complete block design with a factorial treatment arrangement and three replicates. Factors were two aqueous methanol foliar applications (0, and 14% v/v) and five rice: barnyardgrass ratios (100:0, 75:25, 50:50, 25:6, and 0:100). Replacement series diagrams for aboveground dry weight illustrated that 'Shiroudi' was more competitive than barnyardgrass as averaged across methanol foliar applications. When methanol was not sprayed, the lines for 'Shiroudi' and barnyardgrass intersected at 75:25 rice: barnyardgrass ratio, but when methanol was sprayed at 14% v/v, the lines for 'Shiroudi' and barnyardgrass intersect at the left of the 75:25 rice: barnyardgrass mixture proportion. These indicate that methanol application reduced competitive ability of 'Shiroudi' against barnyardgrass for aboveground biomass accumulation. At the same time, Methanol foliar application significantly reduced the relative crowding coefficient of 'Shiroudi' while simultaneously it significantly increased the relative crowding coefficient of barnyard grass. This indicates that methanol foliar application reduced the competitive ability of 'Shiroudi' against barnyardgrass for shoot biomass accumulation. This experiment illustrated that foliar spray of aqueous methanol can not be recommended for rice under weedy conditions.

  1. Foliar absorption of 15N labeled urea by tea plant

    International Nuclear Information System (INIS)

    Hoshina, Tsuguo; Kozai, Shuji; Ishigaki, Kozo

    1978-01-01

    The effect of foliar application on the nitrogen nutrient status of tea shoots has been studied using 15 N labelled urea. Furthermore, the difference in nitrogen utilization by tea plant between foliar applied and top dressed nitrogen was investigated using 15 N labelled urea and ammonium sulfate. The foliar application of urea increased the amount of chlorophyll and total nitrogen in the new shoot, and the foliar application was more effective under shading condition. The urea sprayed upon old leaves prior to the opening of new leaf translocated to the new shoots. However, the foliar application after the opening of new leaf was more effective on nitrogen absorption by new shoots than one prior to that, and rather than top dressing for new shoots. It could be recognized that the foliar application of urea raises the nitrogen nutrient status of tea leaves in summer. (author)

  2. Foliar application of ascorbic acid mitigates sodium chloride induced stress in eggplant (solanum melongena l.)

    International Nuclear Information System (INIS)

    Jan, S.; Hamayun, M.

    2016-01-01

    The current work was designed to test the effect of sodium chloride on germination, seedling establishment, vegetative growth, yield, chemical contents and ionic composition of eggplant. The consequences of foliar application of ascorbic acid (AA) on mitigation of adverse effects of sodium chloride were also tested. The seeds of Solanum melongena were germinated using NaCl (60 mM, 100 mM) and ascorbic acid (100 and 200 mM). High levels of salinity significantly affected the seed germination and seedling fresh and dry weights. Plants grown under salinity stress with foliar application of ascorbic acid showed significant increase in germination percentage and seedlings growth as compare to control plants. Sodium chloride stress showed adverse effects on plant height, root length, number of leaves, leaf area, fresh and dry biomass, total chlorophyll, carbohydrates and proteins as compared to untreated plants. The relative water content, electrolyte leakage were increased and Na+ and K+ ions balance was disturbed in different plant parts. Ascorbic acid (100 and 200ppm) enhanced all the growth parameters affected adversely by sodium chloride stress. (author)

  3. Biomass partitioning and leaf area of Pinus radiata trees subjected to silvopastoral and conventional forestry in the VI region, Chile Distribución de biomasa y área foliar en árboles de Pinus radiata sometidos a manejo silvopastoral y convencional en la VI región, Chile

    Directory of Open Access Journals (Sweden)

    ROLANDO RODRÍGUEZ

    2003-09-01

    Full Text Available The effects of silvicultural regimes on leaf area and biomass distribution were analyzed in 16-year old Pinus radiata trees growing in the semiarid zone of Chile. Three stands with different silvopastoral management were compared with a conventionally managed stand. Data were obtained through destructive sampling of 36 trees and analyzed by MANOVA and regression models of ANCOVA. Results show that the management regime affects the leaf area. Specific leaf area was affected by both silvicultural regime and crown position. Total biomass per tree under the silvopastoral regime was 2.1 to 2.5 times larger than in the conventional forestry regime. However, aboveground biomass partitioning was neither affected by the silvicultural regime nor by the schemes of silvopastoral management. The most important allometric change was in fine root biomass, which was greater under the conventional forestry regime than in the silvopastoral one. Fine root biomass increases with a regular distribution of the plants in the field, and decreases with the clumping of trees. Similarly, the fine root biomass decreases with fertilization. Both plantation design and fertilization regimes explain the changes in the fine root biomass to components of the crown. However, crown structure influences the magnitude of these changes.Se analizaron los efectos del régimen silvícola en el área foliar y distribución de biomasa en árboles de Pinus radiata de 16 años, creciendo en la zona semiárida de Chile. Para ello se compararon tres rodales con manejo silvopastoral con uno manejado en forma tradicional. Los datos se obtuvieron mediante muestreo destructivo de 36 árboles y se analizaron mediante MANOVA y regresión en modelos de ANCOVA. Los resultados permiten concluir que el régimen de manejo afectó el área foliar. El área foliar específica fue afectada por el régimen silvícola y su posición en la copa. La biomasa total por árbol con régimen silvopastoral es 2,1 a

  4. Probability of foliar injury for Acer sp. based on foliar fluoride concentrations.

    Science.gov (United States)

    McDonough, Andrew M; Dixon, Murray J; Terry, Debbie T; Todd, Aaron K; Luciani, Michael A; Williamson, Michele L; Roszak, Danuta S; Farias, Kim A

    2016-12-01

    Fluoride is considered one of the most phytotoxic elements to plants, and indicative fluoride injury has been associated over a wide range of foliar fluoride concentrations. The aim of this study was to determine the probability of indicative foliar fluoride injury based on Acer sp. foliar fluoride concentrations using a logistic regression model. Foliage from Acer nedundo, Acer saccharinum, Acer saccharum and Acer platanoides was collected along a distance gradient from three separate brick manufacturing facilities in southern Ontario as part of a long-term monitoring programme between 1995 and 2014. Hydrogen fluoride is the major emission source associated with the manufacturing facilities resulting with highly elevated foliar fluoride close to the facilities and decreasing with distance. Consistent with other studies, indicative fluoride injury was observed over a wide range of foliar concentrations (9.9-480.0 μg F -  g -1 ). The logistic regression model was statistically significant for the Acer sp. group, A. negundo and A. saccharinum; consequently, A. negundo being the most sensitive species among the group. In addition, A. saccharum and A. platanoides were not statistically significant within the model. We are unaware of published foliar fluoride values for Acer sp. within Canada, and this research provides policy maker and scientist with probabilities of indicative foliar injury for common urban Acer sp. trees that can help guide decisions about emissions controls. Further research should focus on mechanisms driving indicative fluoride injury over wide ranging foliar fluoride concentrations and help determine foliar fluoride thresholds for damage.

  5. Estimativa da área foliar de nabo forrageiro em função de dimensões foliares

    Directory of Open Access Journals (Sweden)

    Alberto Cargnelutti Filho

    2012-01-01

    Full Text Available O objetivo deste trabalho foi desenvolver um modelo para estimar a área foliar de nabo forrageiro (Raphanus sativus L. var. oleiferus Metzg determinada por fotos digitais, em função do comprimento, ou da largura e/ou do produto comprimento vezes largura da folha. Aos 76 dias após a semeadura, foram coletadas 557 folhas da haste principal de 92 plantas, sendo mensurados o comprimento (C e a largura (L de cada folha, e calculado o produto comprimento × largura (C×L. Após, determinou-se a área foliar (Y, por meio do método de fotos digitais. Do total de folhas, separaram-se, aleatoriamente, 450 folhas para a construção de modelos do tipo quadrático, potência e linear de Y em função de C, da L, e/ou de C×L. 107 folhas foram usadas para a validação dos modelos. O modelo do tipo potência da área foliar obtida por meio do método de fotos digitais (Ŷ=0,6843x0,9221, R²=0,9862 em função do produto comprimento × largura é adequado para estimar a área foliar de nabo forrageiro.

  6. Purple Phototrophic Bacterium Enhances Stevioside Yield by Stevia rebaudiana Bertoni via Foliar Spray and Rhizosphere Irrigation

    Science.gov (United States)

    Wu, Jing; Wang, Yiming; Lin, Xiangui

    2013-01-01

    This study was conducted to compare the effects of foliar spray and rhizosphere irrigation with purple phototrophic bacteria (PPB) on growth and stevioside (ST) yield of Stevia. rebaudiana. The S. rebaudiana plants were treated by foliar spray, rhizosphere irrigation, and spray plus irrigation with PPB for 10 days, respectively. All treatments enhanced growth of S. rebaudiana, and the foliar method was more efficient than irrigation. Spraying combined with irrigation increased the ST yield plant -1 by 69.2% as compared to the control. The soil dehydrogenase activity, S. rebaudiana shoot biomass, chlorophyll content in new leaves, and soluble sugar in old leaves were affected significantly by S+I treatment, too. The PPB probably works in the rhizosphere by activating the metabolic activity of soil bacteria, and on leaves by excreting phytohormones or enhancing the activity of phyllosphere microorganisms. PMID:23825677

  7. Effect of ambient-level gas-phase peroxides on foliar injury, growth, and net photosynthesis in Japanese radish (Raphanus sativus)

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuan, E-mail: xuan66chen@yahoo.co.j [Chinese Research Academy of Environmental Science, No.8, Dayangfang, Anwai, Chaoyang District, Beijing 100012 (China); Aoki, Masatoshi [Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu-shi, Tokyo 183-8509 (Japan); Takami, Akinori [National Institute for Environmental Studies, Onogawa 16-2, Tsukuba-shi, Ibaraki 305-8506 (Japan); Chai Fahe [Chinese Research Academy of Environmental Science, No.8, Dayangfang, Anwai, Chaoyang District, Beijing 100012 (China); Hatakeyama, Shiro [Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu-shi, Tokyo 183-8509 (Japan)

    2010-05-15

    To investigate the effects of ambient-level gas-phase peroxides concurrent with O{sub 3} on foliar injury, photosynthesis, and biomass in herbaceous plants, we exposed Japanese radish (Raphanus sativus) to clean air, 50 ppb O{sub 3}, 100 ppb O{sub 3}, and 2-3 ppb peroxides + 50 ppb O{sub 3} in outdoor chambers. Compared with exposure to 100 ppb O{sub 3}, exposure to 2-3 ppb peroxides + 50 ppb O{sub 3} induced greater damage in foliar injury, net photosynthetic rates and biomass; the pattern of foliar injury and the cause of net photosynthetic rate reduction also differed from those occurring with O{sub 3} exposure alone. These results indicate for the first time that sub-ppb peroxides + 50 ppb O{sub 3} can cause more severe damage to plants than 100 ppb O{sub 3}, and that not only O{sub 3}, but also peroxides, could be contributing to the herbaceous plant damage and forest decline observed in Japan's air-polluted urban and remote mountains areas. - Ambient-level gas-phase peroxides coexisted with 50 ppb O{sub 3} may contribute to the herbaceous plants damage and forest decline observed in Japan.

  8. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] D. A. Webb).

    Science.gov (United States)

    Saa, Sebastian; Olivos-Del Rio, Andres; Castro, Sebastian; Brown, Patrick H

    2015-01-01

    The use of biostimulants has become a common practice in agriculture. However, there is little peer-reviewed research on this topic. In this study we tested, under controlled and replicated conditions, the effect of one biostimulant derived from seaweed extraction (Bio-1) and another biostimulant derived from microbial fermentation (Bio-2). This experiment utilized 2-years-old almond plants over two growing seasons in a randomized complete design with a full 2 × 4 factorial structure with two soil potassium treatments (125 μg g(-1) of K vs. 5 μg g(-1)) and four foliar treatments (No spray, Foliar-K, Bio-1, Bio-2). Rubidium was utilized as a surrogate for short-term potassium uptake and plant growth, nutrient concentration, and final plant biomass were evaluated. There was a substantial positive effect of both biostimulant treatments on total shoot leaf area, and significant increases in shoot length and biomass under adequate soil potassium supply with a positive effect of Bio-1 only under low K supply. Rubidium uptake was increased by Bio-1 application an effect that was greater under the low soil K treatment. Though significant beneficial effects of the biostimulants used on plant growth were observed, it is not possible to determine the mode of action of these materials. The results presented here illustrate the promise and complexity of research involving biostimulants.

  9. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] D. A. Webb

    Directory of Open Access Journals (Sweden)

    Sebastian eSaa

    2015-02-01

    Full Text Available The use of biostimulants has become a common practice in agriculture. However, there is little peer-reviewed research on this topic. In this study we tested, under controlled and replicated conditions, the effect of one biostimulant derived from seaweed extraction (Bio-1 and another biostimulant derived from microbial fermentation (Bio-2. This experiment utilized two-year-old almond plants over two growing seasons in a randomized complete design with a full 2 x 4 factorial structure with two soil potassium treatments (125 µg g-1 of K vs 5 µg g-1 and four foliar treatments (No spray, Foliar-K, Bio-1, Bio-2. Rubidium was utilized as a surrogate for short-term potassium uptake and plant growth, nutrient concentration, and final plant biomass were evaluated. There was a substantial positive effect of both biostimulant treatments on total shoot leaf area, and significant increases in shoot length and biomass under adequate soil potassium supply with a positive effect of Bio-1 only under low K supply. Rubidium uptake was increased by Bio-1 application an effect that was greater under the low soil K treatment. Though significant beneficial effects of the biostimulants used on plant growth were observed, it is not possible to determine the mode of action of these materials. The results presented here illustrate the promise and complexity of research involving biostimulants.

  10. Temporal variation of biomass and productivity of Thalassia testudinum (Hydrocharitaceae in Venezuela, Southern Caribbean

    Directory of Open Access Journals (Sweden)

    Daisy Pérez

    2006-06-01

    Full Text Available Annual biomass and productivity of Thalassia testudinum were determined during a year at a seagrass bed located in the Parque Nacional Morrocoy, Venezuela. Leaf, rhizome and root biomass were determined monthly, together with short-shoot density, from February 1992 to January 1993, from nine replicated core samples. Productivity was measured using the methodology by Zieman (1974 with minor modifications, and leaf turnover rate was calculated. Leaf biomass values ranged between 101.73 dry g m-2 in February and 178.11 dry g m-2 in August. Productivity ranged from 1.69 dry g m-2 d-1 in April and October to 3.30 dry g m-2 d-1 in July, showing two annual peaks: one in July and one in March. The leaf turnover rate showed the highest value in June (2.41% d-1 and the lowest in May (1.23% d-1. Sampling time differences in leaf biomass, productivity and turnover rate were statistically significant. Short- shoot density values varied between 811.10 shoots m-2 in April and 1226.08 shoots m-2 in December, but the differences were not significant along the year. These results indicated seasonal trends for leaf biomass, productivity and turnover rate of T. testudinum in the Southern Caribbean (latitude 10N. Rev. Biol. Trop. 54(2: 329-339. Epub 2006 Jun 01.Durante un año se determinaron mensualmente la productividad foliar, la densidad de tallos cortos y la biomasa de hojas, tallos cortos, rizomas y raíces de Thalassia testudinum, en una "pradera" localizada en el Parque Nacional Morrocoy, Venezuela. Los valores de biomasa foliar estuvieron entre 101.73 g/m² en febrero y 178.11 g/m² en agosto, los de productividad foliar se ubicaron entre 1.69 g/m²/d en abril y octubre y 3.30 g/m²/d en julio, mostrando dos picos anuales, uno en julio y otro en marzo. La tasa de recambio foliar mostró el mayor valor en junio (2.41%/d y el menor en mayo (1.23%/d. Tales diferencias fueron estadísticamente significativas durante el año para todas estas variables. La

  11. Effects of dispersal on total biomass in a patchy, heterogeneous system: analysis and experiment.

    Science.gov (United States)

    Zhang, Bo; Liu, Xin; DeAngelis, Donald L.; Ni, Wei-Ming; Wang, G Geoff

    2015-01-01

    An intriguing recent result from mathematics is that a population diffusing at an intermediate rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. We extended the current mathematical theory to apply to logistic growth and also showed that the result applies to patchy systems with dispersal among patches, both for continuous and discrete time. This allowed us to make specific predictions, through simulations, concerning the biomass dynamics, which were verified by a laboratory experiment. The experiment was a study of biomass growth of duckweed (Lemna minor Linn.), where the resources (nutrients added to water) were distributed homogeneously among a discrete series of water-filled containers in one treatment, and distributed heterogeneously in another treatment. The experimental results showed that total biomass peaked at an intermediate, relatively low, diffusion rate, higher than the total carrying capacity of the system and agreeing with the simulation model. The implications of the experiment to dynamics of source, sink, and pseudo-sink dynamics are discussed.

  12. Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data

    Directory of Open Access Journals (Sweden)

    Belachew Gizachew

    2016-06-01

    Full Text Available Abstract Background A functional forest carbon measuring, reporting and verification (MRV system to support climate change mitigation policies, such as REDD+, requires estimates of forest biomass carbon, as an input to estimate emissions. A combination of field inventory and remote sensing is expected to provide those data. By linking Landsat 8 and forest inventory data, we (1 developed linear mixed effects models for total living biomass (TLB estimation as a function of spectral variables, (2 developed a 30 m resolution map of the total living carbon (TLC, and (3 estimated the total TLB stock of the study area. Inventory data consisted of tree measurements from 500 plots in 63 clusters in a 15,700 km2 study area, in miombo woodlands of Tanzania. The Landsat 8 data comprised two climate data record images covering the inventory area. Results We found a linear relationship between TLB and Landsat 8 derived spectral variables, and there was no clear evidence of spectral data saturation at higher biomass values. The root-mean-square error of the values predicted by the linear model linking the TLB and the normalized difference vegetation index (NDVI is equal to 44 t/ha (49 % of the mean value. The estimated TLB for the study area was 140 Mt, with a mean TLB density of 81 t/ha, and a 95 % confidence interval of 74–88 t/ha. We mapped the distribution of TLC of the study area using the TLB model, where TLC was estimated at 47 % of TLB. Conclusion The low biomass in the miombo woodlands, and the absence of a spectral data saturation problem suggested that Landsat 8 derived NDVI is suitable auxiliary information for carbon monitoring in the context of REDD+, for low-biomass, open-canopy woodlands.

  13. Detecting terrestrial nutrient limitation: a global meta-analysis of foliar nutrient concentrations after fertilization

    Directory of Open Access Journals (Sweden)

    Rebecca eOstertag

    2016-03-01

    Full Text Available Examining foliar nutrient concentrations after fertilization provides an alternative method for detecting nutrient limitation of ecosystems, which is logistically simpler to measure than biomass change. We present a meta-analysis of response ratios of foliar nitrogen and phosphorus (RRN, RRP after addition of fertilizer of nitrogen (N, phosphorus (P, or the two elements in combination, in relation to climate, ecosystem type, life form, family, and methodological factors. Results support other meta-analyses using biomass, and demonstrate there is strong evidence for nutrient limitation in natural communities. However, because N fertilization experiments greatly outnumber P fertilization trials, it is difficult to discern the absolute importance of N vs. P vs. co-limitation across ecosystems. Despite these caveats, it is striking that results did not follow conventional wisdom that temperate ecosystems are N-limited and tropical ones are P-limited. In addition, the use of ratios of N-to-P rather than response ratios also are a useful index of nutrient limitation, but due to large overlap in values, there are unlikely to be universal cutoff values for delimiting N vs. P limitation. Differences in RRN and RRP were most significant across ecosystem types, plant families, life forms, and between competitive environments, but not across climatic variables.

  14. Foliar application of two silica sols reduced cadmium accumulation in rice grains

    International Nuclear Information System (INIS)

    Liu Chuanping; Li Fangbai; Luo Chunling; Liu Xinming; Wang Shihua; Liu Tongxu; Li Xiangdong

    2009-01-01

    In the present study, pot experiments were conducted to investigate the effects of foliar application of two silica (Si) sols on the alleviation of cadmium (Cd) toxicity in contaminated soil to rice. Results showed that the foliar application of Si sols significantly increased the dry weight of grains (without husk) and shoots in rice grown in Cd contaminated soil, whereas the Cd concentration in the grains and shoots decreased obviously. The total accumulation of Cd in rice grains also decreased with the application of both of the Si sols, but no significant effect was found on the Cd accumulation in the shoots. For the optimal effect, Si-sol-B should be foliar applied at the tillering-stage during rice growth. The mechanism of Si foliar application to alleviate the toxicity and accumulation of Cd in grains of rice may be related to the probable Cd sequestration in the shoot cell walls

  15. FOLIAR FERTILIZATION ON PINEAPPLE QUALITY AND YIELD ADUBAÇÃO FOLIAR NA QUALIDADE E PRODUTIVIDADE DE ABACAXI

    Directory of Open Access Journals (Sweden)

    Marcelo Carvalho Minhoto Teixeira Filho

    2011-04-01

    Full Text Available There are just a few studies using foliar sprays with micronutrients on pineapple crops. The objective of this study was to evaluate the B and Zn effect, as chelate, acid or salt, via foliar feeding, on fruit yield and quality. The experiment was carried out in Guaraçaí, São Paulo State, Brazil, in a loamy medium texture soil, by using Smooth Cayenne (Hawaiian pineapple seedlings. A randomized block design with four replications was adopted, with 110 g ha-1 of B and 250 g ha-1 of Zn for each application. Two foliar sprays were applied, at 7 and 9 months after planting. The B and Zn sources did not affect the total soluble solids contents, titratable acidity, average fruit diameter, fruit length without crown, and maturity index. Only the B, Zn, and K concentrations in the leaves were influenced by the application of micronutrients.

    Poucos são os estudos desenvolvidos com a aplicação via foliar de micronutrientes, na cultura do abacaxi. Este trabalho teve como objetivo avaliar os efeitos de B e Zn, em forma de quelato, ácido ou sal, via foliar, buscando-se obter respostas sobre os efeitos na produtividade e qualidade dos frutos. O experimento foi realizado em Guaraçaí (SP, em solo com textura média. Foram utilizadas mudas tipo filhote, da cultivar Smooth Cayenne (Havaiano. O delineamento experimental adotado foi o de blocos ao acaso, com quatro repetições, utilizando-se fontes para fornecer, em cada aplicação, 110 g ha-1 de B e 250 g ha-1 de Zn. Foram realizadas duas pulverizações foliares, aos 7 e 9 meses após o plantio. As fontes de B e Zn não exerceram efeito nos teores de sólidos solúveis totais, acidez titulável, diâmetro médio do fruto, comprimento do fruto sem coroa e índice de maturação. Apenas os teores de B, Zn e K, na

  16. Seasonal relationships between foliar moisture content, heat content and biochemistry of lodge pole pine and big sagebrush foliage

    Science.gov (United States)

    Yi Qi; Matt Jolly; Philip E. Dennison; Rachael C. Kropp

    2016-01-01

    Wildland fires propagate by liberating energy contained within living and senescent plant biomass. The maximum amount of energy that can be generated by burning a given plant part can be quantified and is generally referred to as its heat content (HC). Many studies have examined heat content of wildland fuels but studies examining the seasonal variation in foliar HC...

  17. Foliar Epidermal Studies of Plants in Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    H. A. Thakur

    2014-03-01

    Full Text Available This paper describes foliar epidermal structure in 17 species belonging to 17 genera of the family Euphoprbiaceae. Anomocytic stomata is predominant, rarely they are anisocytic, paracytic on the same foliar surface with different combinations. Leaves are hypostomatic and rarely amphistomatic. The foliar surface is smooth, rarely striated. The foliar epidermal cell walls are straight or undulate. Distribution of stomata, stomatal index, stomatal frequency, stomatal size and other cell wall contours are described in detail.

  18. Review of cleaning techniques and their effects on the chemical composition of foliar samples

    Energy Technology Data Exchange (ETDEWEB)

    Rossini Oliva, S.; Raitio, H.

    2003-07-01

    Chemical foliar analysis is a tool widely used to study tree nutrition and to monitor the impact and extent of air pollutants. This paper reviews a number of cleaning methods, and the effects of cleaning on foliar chemistry. Cleaning may include mechanical techniques such as the use of dry or moistened tissues, shaking, blowing, and brushing, or use various washing techniques with water or other solvents. Owing to the diversity of plant species, tissue differences, etc., there is no standard procedure for all kinds of samples. Analysis of uncleaned leaves is considered a good method for assessing the degree of air contamination because it provides an estimate of the element content of the deposits on leaf surfaces or when the analysis is aimed at the investigation of transfer of elements along the food chain. Sample cleaning is recommended in order (1) to investigate the transfer rate of chemical elements from soil to plants, (2) to qualify the washoff of dry deposition from foliage and (3) to separate superficially absorbed and biomass-incorporated elements. Since there is not a standard cleaning procedure for all kinds of samples and aims, it is advised to conduct a pilot study in order to be able to establish a cleaning procedure to provide reliable foliar data. (orig.)

  19. Foliar retention, transport and leaching of polonium-210 and lead-210

    Energy Technology Data Exchange (ETDEWEB)

    Athalye, V V; Mistry, K B

    1972-01-01

    Polonium-210 and lead-210, the long-lived daughter radionuclides of gaseous radon-222, are deposited on plant surfaces under conditions of atmospheric washout. Foliar retention, transport and leaching of these radionuclides in Red Kidney beans were investigated in nutrient culture experiments. Under identical conditions, over 90 percent of foliar applied radiolead was retained by the plant while only about 30 percent of polonium was retained. Over a 48-hr period small quantities of polonium were translocated from the treated leaflet to other parts of the plant. By comparison, radiolead was totally immobilized at the site of retention. Leachability of root absorbed radiolead from bean leaves was 20-fold greater than that of polonium. The marked differences in the extent of foliar retention, translocation and leaching of polonium and radiolead could significantly affect the levels of these long-lived radionuclides attained in plants.

  20. Physiological and Biochemical Responses of Lavandula angustifolia to Salinity Under Mineral Foliar Application

    Science.gov (United States)

    Chrysargyris, Antonios; Michailidi, Evgenia; Tzortzakis, Nikos

    2018-01-01

    Saline water has been proposed as a solution to partially cover plant water demands due to scarcity of irrigation water in hot arid areas. Lavender (Lavandula angustifolia Mill.) plants were grown hydroponically under salinity (0–25–50–100 mM NaCl). The overcome of salinity stress was examined by K, Zn, and Si foliar application for the plant physiological and biochemical characteristics. The present study indicated that high (100 mM NaCl) salinity decreased plant growth, content of phenolics and antioxidant status and essential oil (EO) yield, while low-moderate salinity levels maintained the volatile oil profile in lavender. The integrated foliar application of K and Zn lighten the presumable detrimental effects of salinity in terms of fresh biomass, antioxidant capacity, and EO yield. Moderate salinity stress along with balanced concentration of K though foliar application changed the primary metabolites pathways in favor of major volatile oil constituents biosynthesis and therefore lavender plant has the potential for cultivation under prevalent semi-saline conditions. Zn and Si application, had lesser effects on the content of EO constituents, even though altered salinity induced changings. Our results have demonstrated that lavender growth/development and EO production may be affected by saline levels, whereas mechanisms for alteration of induced stress are of great significance considering the importance of the oil composition, as well. PMID:29731759

  1. Influence of foliar fertilization on walnut foliar zinc levels and nut production in black walnut

    Science.gov (United States)

    William R. Reid; Andrew L. Thomas

    2013-01-01

    The impact of foliar zinc fertilizer application on nut-bearing black walnut (Juglans nigra L.) trees was studied. Foliar sprays were applied three times per season on two cultivars during four growing seasons by wetting the foliage of the entire crown using a tank mix containing 500 ppm zinc, starting at leaf burst and continuing at 2 week intervals...

  2. Assimilação foliar de enxofre elementar pela soja Foliar elementary sulfur assimilation by soybean

    Directory of Open Access Journals (Sweden)

    Godofredo Cesar Vitti

    2007-02-01

    Full Text Available O objetivo deste trabalho foi avaliar a assimilação de enxofre elementar (S0, aplicado nas folhas de soja, e sua eficiência comparada à adubação feita ao solo, de acordo com a dose e a natureza da fonte do nutriente. O S0 aplicado às folhas, independentemente da dose e fonte, foi assimilado pela planta, o que acarretou em aumento no teor de proteína total na folha. Todas as fontes de S aplicadas às folhas aumentaram a produção de grãos, semelhantemente à aplicação ao solo. Observou-se uma mesma produtividade com o uso de 20 kg ha-1 de S0 no solo ou de 6 kg ha-1 via foliar. A eficiência da aplicação de S via foliar, com base no conteúdo de proteína solúvel total, foi superior à da aplicação ao solo.The objective of this work was to evaluate the elementary sulfur (S0 assimilation applied on soybean leaves, and its efficiency compared to the fertilization done in the soil, according to the dose and nature of the nutrient source. The S0 applied to leaves, independently of the dose and source, was assimilated by the plant, what resulted in increase of total protein content in the leaf. All S sources applied to leaves increased the grain yield, similarly to the application to the soil. The same productivity was observed with the use of 20 kg ha-1 of S0 in the soil or 6 kg ha-1 applied to leaves. The elementary S application efficiency on leaves, based on the content of total soluble protein, was superior to application efficiency on soil.

  3. Response of Some Bread Wheat Cultivars to Foliar Application of Zn and Fe Different Forms in Two Locations with Different Soil Properties

    Directory of Open Access Journals (Sweden)

    E Arazmjoo

    2018-05-01

    Research Farm of Birjand University located in Amirabad region which the soil texture was sandy clay loam, with 8.1 pH, 0.15% organic matter, 30 ppm available P and 184 ppm available K. The second experiment was conducted at the South Khorasan Agricultural and Natural Resources Research and Education Center located in Mohammadieh region which the soil texture was loam, with 7.6 pH, 0.54% organic matter, 30 ppm available P and 140 ppm available K. At the end of growth stage wheat traits included days to heading, days to physiological maturity, grain filing period, plant height, spike length, peduncle length, number of grain per spike, 1000 grains weight, grain yield, biomass and harvest index were measured. Data analyses were performed using two-way analysis of variance (ANOVA with SAS 9.1. Means of treatments were compared between locations, cultivars and foliar application of zinc and iron according to protected Least Significance Differences (LSD test at the 5% level. Results and Discussion Results showed that location had a significant effect on all traits except for number of grains per spike. Grain yield and yield components were higher in soil of Mohammadieh against Amirabad. Investigated cultivars also were significantly different in all traits but days to heading and biomass. The higher number of grain per spike, grain yield and harvest index and relatively lower 1000 grains weight were related to new wheat cultivars. New cultivars also possessed less height and peduncle length and more grain filling period and spike length. Zinc foliar application significantly increased plant height, spike length, number of grain per spike, 1000 grains weight, grain yield and biomass but no significant effects were observed on days to heading and maturity, grain filing period, peduncle length and harvest index. Zinc sulfate treatment increased grain yield and biomass by 9.6 and 8.2 percent and chelated zinc increased these traits by 6.7 and 4.1 percent compared to control

  4. Foliar additional nutrition in the fruit growing field

    International Nuclear Information System (INIS)

    Soare, M.; Borlan, Z.; Gavriluta, I.; Budoi, G.; Marinca, C.; Bandu, G.G.

    1999-01-01

    This paper presents data concerning the influence of foliar application of some types of complex foliar fertilizers under the conditions of SCPP Caransebes (Caras-Severin district). The composition of these nutrients fulfils the nutritional needs of the fruit growing species on the fruit yield obtained in orchards. The application of different types of foliar nutrients on plants teguments resulted in some significant yield increases for the two species that were studied: apple and plum tree. The novelty of this paper is represented by the apparent degrees of productive use in yields of the macro and micronutrients from foliar fertilizers, as well as the productive use degrees of nutrients present in soil and of the nutrients applied in soil (we took into account the mean values for the studied years). The apparent degrees of productive use (in yield increases) of the nutrients from complex foliar fertilizers applied on apple-trees and plum-trees generally exceed 100 %. They determine high levels of productive use of the nutrients from soil and foliar nutrients applied. The experimental data emphasize the ecological protection effect of the supplementary foliar fertilization for the yield stimulation especially on soils with light texture and sloping soils. Refs. 6 (author)

  5. Improving tolerance of sunflower and safflower during growth stages to salinity through foliar spray of nutrient solutions

    International Nuclear Information System (INIS)

    Jabeen, N.; Ahmad, R.

    2012-01-01

    The effect of salinity and foliar application of nutrient solutions on sunflower and safflower in vegetative and reproductive phases of the growth were investigated in Bio saline Research Field, University of Karachi, Pakistan. The seeds were sown in pots under non saline condition and saline water irrigation was started at three leaf stage after germination. Different concentration of saline water were made by dissolving 3g and 6g sea salt per litre of tap water, equivalent to an EC of 4.8 and 8.6 dS/m respectively. Nutrient solution (KNO/sub 3 /, H/sub 3/ BO/sub 3/, Fe-EDTA or its mixture) was sprayed thrice, i.e., 45, 75 and 95 days after planting. KNO/sub 3/ was given at the rate 250 ppm and other H/sub 3/ BO/sub 3/ and Fe-EDTA was given at the rate 5 ppm. Salinity caused a significant reduction in nutrient uptake, height, biomass and yield of both sunflower and safflower. Foliar application of macro and micro nutrients (i.e. KNO/sub 3/, H/sub 3/BO/sub 3/, Fe-EDTA and mixture of KNO/sub 3/ + H/sub 3/BO/sub 3/ + Fe-EDTA) partially minimized the salt induced deficiency and showed significant increase in height, fresh and dry biomass, number and weight of seeds, and amount of oil per sunflower and safflower plant irrespective to their growth under non saline or saline conditions. Among the nutrient solutions, mixture of KNO/sub 3/+ H/sub 3/BO/sub 3/ + Fe-EDTA seemed to be the most effective followed by H/sub 3/ BO/sub 3/ and Fe-EDTA. These results suggested that foliar application of nutrients could be used to improve plant tolerance to salinity by alleviating the adverse effects of salinity on growth and reproductive yield. (author)

  6. Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Van Wychen, Stefanie; Laurens, Lieve M. L.

    2016-01-13

    This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575 deg. C is covered for ash content.

  7. Effects of Foliar Selenite on the Nutrient Components of Turnip (Brassica rapa var. rapa Linn.

    Directory of Open Access Journals (Sweden)

    Xiong Li

    2018-03-01

    Full Text Available We administered foliar applications of 50, 100, and 200 mg L−1 selenium (Se, selenite on turnip (Brassica rapa var. rapa Linn. and detected the changes in the main nutrient components in fleshy roots. Results showed that the foliar application of Se (IV significantly increased the Se content in turnip, and Se (IV positively affected the uptake of several mineral elements, including magnesium, phosphorus, iron, zinc, manganese, and copper. Se (IV treatments also improved the synthesis of protein and multiple amino acids instead of crude fat and total carbohydrate in turnip, indicating that the foliar application of Se (IV could enhance Se biofortification in turnip and promote its nutritional value. We recommended 50–100 mg L−1 Se treatment for foliar application on turnip based on the daily intake of Se for adults (96–139 μg person−1 day−1 and its favorable effects on the nutrient components of turnip.

  8. Effects of foliar selenite on the nutrient components of turnip (Brassica rapa var. rapa Linn.)

    Science.gov (United States)

    Li, Xiong; Li, Boqun; Yang, Yongping

    2018-03-01

    We administered foliar applications of 50, 100 and 200 mg L‑1 selenium (Se, selenite) on turnip (Brassica rapa var. rapa Linn.) and detected the changes in the main nutrient components in fleshy roots. Results showed that the foliar application of Se (Ⅳ) significantly increased the Se content in turnip, and Se (Ⅳ) positively affected the uptake of several mineral elements, including magnesium, phosphorus, iron, zinc, manganese and copper. Se (Ⅳ) treatments also improved the synthesis of protein and multiple amino acids instead of crude fat and total carbohydrate in turnip, indicating that the foliar application of Se (Ⅳ) could enhance Se biofortification in turnip and promote its nutritional value. We recommended 50–100 mg L‑1 Se treatment for foliar application on turnip based on the daily intake of Se for adults (96–139 µg person‑1 day‑1) and its favourable effects on the nutrient components of turnip.

  9. Foliar Absorption, Translocation and Utilization of Zn-65 by Mango Seedlings

    International Nuclear Information System (INIS)

    Mohamed, F.A.; Sharaf, A.N.M.; Awad, S.M.; Abu EL Azm, S.K.

    2001-01-01

    Greenhouse experiment was designed using ZnSO 4 at rates of 0.125,0.25 and 0.50%. Solutions were adjusted to ph 6.0 and Tween-20 was added as a surfactant. The prepared solutions were labelled with carrier-free Zn-65. Six-month old mango seedlings were arranged in a complete block design to study the foliar absorption,translocation and percentage use of Zn-65 as influenced by soil application of phosphorus. The total absorption of Zn-65 by mango leaves was affected by spraying treatment of Zn-65 and soil application of phosphorus. In this respect increasing the rates of labelled Zn solution resulted in a great increment in the total absorption of in total absorption of Zn-65 by mango leaves was observed due to increasing P rates as a soil application from 0.0 up to 100 ppm. Translocation of the absorbed Zn-65 either in upward or downward direction was positively related to the absorbed amount. The percentage use of Zn-65 by mango leaves was reduced by increasing foliar Zn rates. On the contrary, it was slightly increased as a result of increasing soil application rate of P. Generally, the percentage use of Zn-65 mango leaves was ranged between 8.7 and 16.87 under the conditions of this experiment. Therefore, foliar application of ZnSO 4 could be recommended as a good source of Zn for mango nutrition in particular with addition of high rates of phosphorus as a soil application

  10. Diagnóstico do estado nutricional de n em porta-enxertos de citros, utilizando-se de teores foliares de clorofila

    OpenAIRE

    Decarlos Neto, Antônio; Siqueira, Dalmo Lopes de; Pereira, Paulo Roberto Gomes; Venegas, Victor Hugo Alvarez

    2002-01-01

    Objetivou-se, neste trabalho, avaliar os teores foliares de clorofila total (a+b) em porta-enxertos de citros cultivados em tubetes, como índices no diagnóstico do estado nutricional de N, de acordo com adição das doses de N (0; 400; 800; 1.600; 3.200 e 4.800 mg/dm³ de N no substrato). Os teores foliares de clorofila total apresentaram alta correlação positiva com a altura, diâmetro do caule, massa da matéria seca da parte aérea e raízes, área foliar e teor de N-NO3 da parte aérea dos porta-e...

  11. Estimation of aerial biomass of Lychnophora ericoides (Mart.

    Directory of Open Access Journals (Sweden)

    Brunno Santana de Andrade

    2007-07-01

    Full Text Available For sustainable use of native plant species, knowledge of the amount of harvestable biomass is necessary. This study presents data on allometric relationships of Lychnophora ericoides Mart. (Asteraceae, an extractive resource in the Cerrado region of Brazil. On the Fazenda Água Limpa (15º 45'S, 47º 57'W of the Universidade de Brasilia, 38 individuals of this species were measured in the field, the parts above ground were harvested, separated into components and oven dried. The best regression equations to estimate biomass were geometric and the best fit was between total height and total biomass (r² = 0.923. The economically useful portions, the leaves and branches accounted for approximately 20% of total above ground dry weight, but when used as the dependent variable, the strength of the relationship decreased (r² = 0.694. The relationship between branch diameter and leaf biomass was similar to that between height and leaf dry weight (r² = 0.600. The relation between the number of leaves and their biomass was linear but weak. The development of these equations is the first step towards the implementation of plans for sustainable use of this species.Para o uso sustentável das espécies vegetais nativas o conhecimento da quantidade de biomassa disponível é necessário. O objetivo deste estudo foi verificar as relações alométricas para Lychnophora ericoides Mart., um recurso extrativista importante na região dos Cerrados. Na Fazenda Água Limpa da Universidade de Brasília, 38 indivíduos desta espécie foram medidas no campo, a parte aérea foi cortada, separada em componentes de folhas, galhos e tronco e estas componentes foram secas e pesadas. As melhores equações de regressão para estimar a biomassa foram geométricas e o melhor ajuste foi entre altura total e biomassa total (r² = 0,923. As partes economicamente exploradas, as folhas e ramos, contribuíram com aproximadamente 20% do peso seco total desta espécie, mas a equa

  12. Induction of drought tolerance in zea mays l. by foliar application of triacontanol

    International Nuclear Information System (INIS)

    Perveen, S.; Iqbal, M.; Nawaz, A.

    2016-01-01

    In the present study, we assessed the effect of foliar application of triacontanol (TRIA) on various growth and physiochemical parameters of two maize (Zea mays L.) cultivars (cv. MMRI-Yellow and cv. Hybrid S-515) under different irrigation levels i.e., normal watering (control) and watering at 60% of the field capacity (drought). Seeds of the two maize cultivars were sown in plastic pots filled with sandy loam soil (2 kg in each). Foliar application of TRIA (0, 2 and 5 micro M) was performed after two weeks of drought stress to 28-day-old plants. Data of 58-day-old maize plants was collected for analysis of various growth and physiochemical attributes. Drought stress significantly decreased growth and superoxide dismutase (SOD) activity while increased the activities of catalase (CAT) and peroxidase (POD) and the contents of total phenolics, total soluble proteins, glycinebetaine (GB) and free proline. Foliar treatment with TRIA further increased CAT and POD activities whereas decreased the contents of hydrogen peroxide (H/sub 2/O/sub 2/), malondialdehyde (MDA), total phenolics and GB in the maize plants when under drought stress. Of the two maize cultivars, cv. MMRI-Yellow excelled the growth under both normal and drought stress (60% of the field capacity). Overall, TRIA (5 micro M) was much more effective in modulating various growth and physiochemical attributes, and thus improving drought tolerance in maize plants. (author)

  13. Distribution, Seasonal Variations and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons in Foliar Dust of Nanjing, China.

    Science.gov (United States)

    Zha, Yan; Zhang, Yinlong; Ma, Zilong; Tang, Jie; Sun, Kai

    2018-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are of concern for both ecosystem and human health due to their potential teratogenic, carcinogenic, and mutagenic properties. The concentration of ∑ 16 PAHs in foliar dust ranged from 49.4 to 19,018.1 µg kg -1 , with a mean value of 7074.5 µg kg -1 . There were significant seasonal variations in the concentration of ∑ 16 PAHs, with the concentration in winter being almost twice as high as in summer. Similarly, the differences between PAH profiles in different seasons indicated that they had common sources, which were attributed to the combined effect of regional transport and local emissions. The diagnostic ratios of indicator compounds indicated that PAHs detected in foliar dust originated from a mixture of gasoline vehicle emissions, biomass, and coal combustion in Nanjing. According to the ecological risk classification of ∑ 16 PAHs, the ecological risk caused by PAHs was high since the value of RQ ∑16PAHs(MPCs) was ≥ 1 and RQ ∑16PAHs(NCs) were ≥ 800. The mean values for RQ∑ 16 PAHs (MPCs) and RQ∑ 16 PAHs (NCs) were 14.8 and 2368.9, which indicated a relatively high ecological risks of PAHs in foliar dust in Nanjing.

  14. Estimativa da área foliar da berinjela em função das dimensões foliares

    Directory of Open Access Journals (Sweden)

    Fernando Dill Hinnah

    2014-09-01

    Full Text Available Este trabalho explora diferentes modelos não destrutivos de estimativa da área foliar de Solanum melongela L. através de medidas do comprimento (C e largura (L do limbo foliar. Para tanto, um cultivo de berinjela em estufa plástica foi conduzido no período de março a junho de 2007. Amostraram-se folhas de plantas em momentos aleatórios totalizando 186 folhas, sendo 98 utilizadas na estimativa dos parâmetros dos modelos e 88 para sua validação. As amostragens abrangeram amplo espectro de dimensões foliares, visando minimizar a raiz do quadrado médio do erro (RQME. Elas foram realizadas aos 71, 79, 81, 85, 92 e 99 dias após o transplante. Posteriormente obteve-se o maior número possível de discos foliares com o auxílio de um calador de 25 mm de diâmetro. Correlações foram realizadas entre a área foliar obtida pelo método dos discos com as dimensões lineares de L e C, o produto entre elas (CL e o quadrado do comprimento multiplicado pela largura (C²L. Análises de regressão para 20 modelos foram obtidas, entre quadráticos, exponenciais, lineares, logarítmicos e de potência, dos quais 12 apresentaram coeficiente de determinação (R² elevado. O modelo quadrático (Y = -5,78+0,4981CL-3,263.10-4CL² e o da potência (Y = 0,4395CL1,0055 apresentaram melhores estimativas, com R² de 0,964 para ambos e RQME de 33,2 e 34,4, respectivamente. Com a medida apenas de uma dimensão foliar, o modelo quadrático (Y = -63,5+10,492L+0,2822L²; R² = 0,937; RQME = 44,1 apresenta-se como alternativa, pouco afetando a precisão da estimativa.

  15. Manutenção da área foliar e produtividade de arroz irrigado com a aplicação de fertilizantes foliares no estádio de emborrachamento Foliar area maintenance and yield with application of foliar fertilizers on booting stage of irrigated rice

    Directory of Open Access Journals (Sweden)

    Edinalvo Rabaioli Camargo

    2008-08-01

    Full Text Available A utilização de fertilizantes foliares, aplicados ao final do ciclo da cultura do arroz irrigado, pode proporcionar complementação nutricional para a planta e proteção contra patógenos com reflexos na produtividade. O objetivo do estudo foi avaliar a utilização de fertilizantes foliares, aplicados no estádio de emborrachamento, sobre a produtividade do arroz irrigado. O experimento foi conduzido no ano agrícola 2005/2006, em área experimental de várzea do Departamento de Fitotecnia da Universidade Federal de Santa Maria. O delineamento experimental utilizado foi o de blocos ao acaso com quatro repetições. Os tratamentos foram compostos por 10 fertilizantes foliares, dois produtos aplicados via sementes, um fungicida e a testemunha. Os fertilizantes não influenciaram qualquer parâmetro avaliado. As condições climáticas e o manejo da adubação anterior à aplicação dos tratamentos foliares propiciaram condições favoráveis para o arroz expressar o seu potencial produtivo, em torno de 10.000kg ha-1. Neste nível de produtividade, os produtos utilizados não aumentaram a produtividade do arroz irrigado.The use of foliar fertilizers applied to the reproductive phase of rice can improve the plant nutrition and protect the field against foliar diseases with gains in yield. The objective of this experiment was to evaluate the use of the foliar fertilizers applied to the booting stage in order to verify the irrigated rice yield. The experiment was carried out in 2005/06 in a lowland area in Santa Maria-RS, Brazil. The treatments, arranged in a randomized block design with four replications, were constituted by 10 foliar fertilizers available in the market, two products applied to seeds, a fungicide, and a check treatment. The treatments presented no effects on any of the variables studied. The suitable climatic conditions and the fertilizer management carried out before the application of the foliar treatments led to the

  16. Contribution of foliar leaching and dry deposition to sulfate in net throughfall below deciduous trees

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Bondietti, E.A.; Lomax, R.D.

    1988-01-01

    Experiments were conducted at Walker Branch Watershed, Tennessee in 1986 with radioactive 35 S to quantify the contribution of foliar leaching and dry deposition to sulfate (SO 4 2- ) in net throughfall (NTF). Two red maple (Acer rubrum) and two yellow poplar (Liriodendron tulipifera) trees (12-15 m tall) were radiolabeled by stem well injection. Total S and 35 S were measured in leaves; 35 S and SO 4 2- were measured in throughfall (THF). The contribution of foliar leaching to SO 4 2- in NTF, THF minus incident precipitation, was estimated by isotope dilution of 35 S in NTF arising from nonradioactive S in dry deposition. The per cent contribution of foliar leaching to SO 4 2- in NTF was greatest during the week following isotope labeling and during the period of autumn leaf fall. During the growing season, foliar leaching accounted for 80% of the SO 4 2- in NTF beneath the study trees. Dry deposition of S to these tree species can be reasonably approximated during summer from the measurement of SO 4 2- flux in NTF. (author)

  17. Modelos para a estimação da área foliar de feijão de porco por dimensões foliares

    Directory of Open Access Journals (Sweden)

    Marcos Toebe

    2012-01-01

    Full Text Available O objetivo deste trabalho foi modelar a área foliar de feijão de porco determinada por fotos digitais em função do comprimento ou da largura e/ou do produto comprimento vezes largura do limbo do folíolo central da folha. Em seis períodos de desenvolvimento da cultura (29, 43, 57, 73, 87 e 101 dias após a emergência foram coletadas, aleatoriamente, 745 folhas. Cada folha é composta pelos folíolos esquerdo, central e direito. Nas 745 folhas foi mensurado o comprimento (CFC e a largura (LFC e calculado o produto do comprimento pela largura (CFC×LFC do limbo do folíolo central. A seguir, determinou-se a área foliar (soma da área dos folíolos esquerdo, central e direito por meio do método de fotos digitais (Y. Do total de folhas, foram separadas, aleatoriamente, 605 folhas para a construção de modelos do tipo quadrático, potência e linear de Y em função do CFC, da LFC, e/ou do CFC×LFC e 140 folhas para a validação dos modelos. Em feijão de porco, o modelo tipo potência (Ŷ=3,7046x1,8747, R²=0,9757 da largura do limbo do folíolo central é adequado para estimar a área foliar obtida por fotos digitais.

  18. The effect of fertilizer level and foliar-applied calcium on seed production and germination of Gerbera hybrida

    DEFF Research Database (Denmark)

    Andreasen, Christian; Kemezys, Andrius Hansen; Müller, Renate

    2014-01-01

    an additional foliar calcium application influenced the same parameters. Subsequently, the effect of the various treatments on the germination of the obtained seeds was explored. Two identical experiments (A and B) were carried out with five concentrations of nutrient solutions corresponding to an electrical...... and seed number, but seed weight and plant biomass were significantly reduced at the highest fertilizer concentration. In both experiments, the seeds germinated slower and less seeds germinated when plants had received the largest amount of fertilizer (6.25 mS·cm-1). In none of the experiments did applied......Gerbera hybrida is an ornamental plant of great commercial interest, which is primarily propagated by seeds. We investigated whether increasing fertilizer concentrations during seed set enhanced plant biomass, number of flower heads, seed set, and seed weight. Furthermore, we studied whether...

  19. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    DEFF Research Database (Denmark)

    Craine, J M; Elmore, A J; Aidar, M P M

    2009-01-01

    Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios (d15N), foliar N concentrations, mycorrhizal type and climate for over 11 00...

  20. Leaf area and foliar biomass relationships in northern hardwood forests located along an 800 km acid deposition gradient

    International Nuclear Information System (INIS)

    Burton, A.J.; Pregitzer, K.S.; Reed, D.D.

    1991-01-01

    The canopies of northern hardwood forests dominated by sugar maple (Acer saccharum Marsh.) were examined at five locations spanning 800 km along an acid deposition and climatic gradient in the Great Lakes region. Leaf area index (LAI) calculated from litterfall ranged from 6.0 to 8.0 in 1988, from 4.9 to 7.9 in 1989, and from 5.3 to 7.8 in 1990. The data suggest that maximum LAI for the sites is between 7 and 8. Insect defoliation and the allocation of assimilates to reproductive parts in large seed years reduced LAI by up to 34%. Allometric equations for leaf area and foliar biomass were not significantly different among sites. They predicted higher LAI values than were estimated from litterfall and could not account for the influences of defoliation and seed production. Canopy transmittance was a viable alternative for estimating LAI. Extinction coefficients (K) of 0.49 to 0.65 were appropriate for solar elevations of 63 degree to 41 degree. Patterns of specific leaf area (SLA) were similar for the sites. Average sugar maple SLA increased from 147 cm 2 g -1 in the upper 5 m of the canopy to 389 cm 2 g -1 in the seeding layer. Litterfall SLA averaged 196 cm 2 g -1 for all species and 192 cm 2 g -1 for sugar maple. Similarity among the sites in allometric relationships, maximum LAI, canopy transmittance, and patterns of SLA suggests these characteristics were controlled primarily by the similar nutrient and moisture availability at the sites. A general increasing trend in litter production along the gradient could not be attributed to N deposition or length of growing season due to year to year variability resulting from insect defoliation and seed production

  1. Morfometria e nervação foliar em procedências de erva-mate (Ilex paraguariensis A. St. Hill. (Aquifoliaceae = Morphometry and foliar venation in origins of maté (Ilex paraguariensis A. St. Hill. (Aquifoliaceae

    Directory of Open Access Journals (Sweden)

    Vânia Helena Techio

    2009-10-01

    Full Text Available O presente trabalho objetivou analisar a morfologia foliar morfometria e nervação foliar de procedências de erva-mate coletadas no Sul do Brasil e Argentina. Analisaram-se 30 folhas de cada procedência, obtendo-se cinco medidas (comprimento total da folha, largura máxima, comprimento desde a base até a largura máxima, comprimento do pecíolo e área e calculando-se dois índices (comprimento total sobre a largura máxima e comprimento desde a base até a largura máxima sobre o comprimento total da folha. Para anervação foliar, as folhas foram clarificadas por meio da técnica de diafanização. Os maiores e menores valores morfométricos foram, respectivamente, 118 e 67 mm para comprimento da folha, 51 e 34 mm para largura máxima, 78 e 42 mm para comprimento desde a base até alargura máxima, 16 e 10 mm para comprimento do pecíolo, 2,3 e 2 mm para comprimento sobre largura máxima e 0,65 e 0,6 para comprimento desde a base até a largura máxima sobre o comprimento da folha. Quanto à nervação foliar, não foram observadas diferenças entre as folhas das distintas procedências, as quais apresentaram nervação primária penada, nervação secundária semicraspedódroma, nervuras terciárias com percurso alternado e sinuoso, nervação quaternária reticulada, constituída por polígonos regulares e nervação de 5ª ordem dicotomizante.The present research aimed to evaluate the foliar morphology(morphometry and leaf venation of origins of maté collected in southern Brazil and Argentina. For the study of the morphometry, thirty leaves/plant were analyzed, and five measurements (leaf total length, maximum width, length from the base until maximum width, area and petiole length and two indices were obtained (total leaf length on maximum width and length from basis until maximum width on total leaf length. The leaves were clarified by the clarificationtechnique and examined in stereomicroscope. The highest and lowest values of leaf

  2. Physiological responses of Tillandsia albida (Bromeliaceae) to long-term foliar metal application

    International Nuclear Information System (INIS)

    Kováčik, Jozef; Klejdus, Bořivoj; Štork, František; Hedbavny, Josef

    2012-01-01

    Highlights: ► Impact of foliar Cd, Ni and Cd + Ni application on Tillandsia albida was studied. ► Cd caused visible damage and enhanced stress parameters in combined treatment. ► Nitrogenous compounds were slightly affected but phenols were up- and down-regulated. ► Mineral nutrients (K, Ca, Na, Mg, Fe, and Zn) were not affected by any of treatments. ► Total Cd or Ni reached ca. 0.04% and Ni was more absorbed than Cd. - Abstract: The impact of 2-month foliar application of cadmium, nickel and their combination (10 μM) on Tillandsia albida was studied. Cadmium caused damage of tissue but assimilation pigments were depressed in Cd + Ni variant only. Stress-related parameters (ROS and peroxidase activities) were elevated by Cd and Cd + Ni while MDA content remained unaffected. Free amino acids accumulated the most in Ni alone but soluble proteins were not influenced. Among phenolic acids, mainly vanillin contributed to increase of their sum in all variants while soluble phenols even decreased in Cd + Ni and flavonols slightly increased in Cd variants. Phenolic enzymes showed negligible responses to almost all treatments. Mineral nutrients (K, Ca, Na, Mg, Fe, and Zn) were not affected by metal application but N content increased. Total Cd or Ni amounts reached over 400 μg g −1 DW and were not affected if metal alone and combined treatment is compared while absorbed content differed (ca. 50% of total Cd was absorbed while almost all Ni was absorbed). These data indicate tolerance of T. albida to foliar metal application and together with strong xerophytic morphology, use for environmental studies is recommended.

  3. Contribuição das ramificações e a evolução do índice de área foliar em cultivares modernas de soja

    Directory of Open Access Journals (Sweden)

    Alencar Junior Zanon

    2015-01-01

    Full Text Available Os objetivos neste trabalho foram quantificar a contribuição das ramificações e a evolução do índice de área foliar em cultivares modernas de soja com diferentes grupos de maturação, tipos de crescimento, semeadas em diferentes épocas e regiões produtoras de soja no Rio Grande do Sul. Experimentos de campo foram conduzidos durante o ano agrícola 2013/2014 em Santa Maria, Júlio de Castilhos e em três lavouras comerciais de soja nos municípios de Restinga Sêca, Tupanciretã e Água Santa. Avaliaram-se (data de ocorrência os estágios reprodutivos e a determinação do índice de área foliar total, máximo, da haste principal e das ramificações em treze cultivares de soja. O índice de área foliar das ramificações contribui com cerca de 31%, 12,3% e 11% do índice de área foliar total nas cultivares determinadas, e com 20,2%, 11,8% e 9% do índice de área foliar total nas cultivares indeterminadas nas semeaduras de setembro, novembro e fevereiro, respectivamente, em Santa Maria. A maioria das cultivares apresentou uma redução no índice de área foliar total, máximo, da haste principal e das ramificações com o atraso da época de semeadura, independentemente do grupo de maturação e tipo de crescimento.

  4. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    Science.gov (United States)

    Joseph M. Craine; Andrew J. Elmore; Marcos P. M. Aidar; Mercedes Bustamante; Todd E. Dawson; Erik A. Hobbie; Ansgar Kahmen; Michelle C. Mack; Kendra K. McLauchlan; Anders Michelsen; Gabriela Nardoto; Linda H. Pardo; Josep Penuelas; Peter B. Reich; Edward A.G. Schuur; William D. Stock; Pamela H. Templer; Ross A. Virginia; Jeffrey M. Welker; Ian J. Wright

    2009-01-01

    Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios, foliar N concentrations, mycorrhizal type and climate for over 11 000 plants worldwide. Global-scale comparisons of other components of the N cycle...

  5. Use of the radioisotopes in foliar fertilizing studies

    International Nuclear Information System (INIS)

    Muraoka, T.; Boaretto, A.E.

    1987-01-01

    The utilization of the radioactive isotopes is studied to evaluate the efficiency of nitrogen in foliar fertilizers. One of the objectives was study the urea absorption via foliar in time function in sugar cane. The nitrogen 15 determination was done by mass spectrometer. (author)

  6. Effect of water stress on total biomass, tuber yield, harvest index and water use efficiency in Jerusalem artichoke

    Science.gov (United States)

    The objectives of this study were to determine the effect of drought on tuber yield, total biomass, harvest index, water use efficiency of tuber yield (WUEt) and water use efficiency of biomass (WUEb), and to evaluate the differential responses of Jerusalem artichoke (JA) varieties under drought str...

  7. Copper Oxide Nanoparticle Foliar Uptake, Phytotoxicity, and Consequences for Sustainable Urban Agriculture.

    Science.gov (United States)

    Xiong, TianTian; Dumat, Camille; Dappe, Vincent; Vezin, Hervé; Schreck, Eva; Shahid, Muhammad; Pierart, Antoine; Sobanska, Sophie

    2017-05-02

    Throughout the world, urban agriculture supplies fresh local vegetables to city populations. However, the increasing anthropogenic uses of metal-containing nanoparticles (NPs) such as CuO-NPs in urban areas may contaminate vegetables through foliar uptake. This study focused on the CuO-NP transfer processes in leafy edible vegetables (i.e., lettuce and cabbage) to assess their potential phytotoxicity. Vegetables were exposed via leaves for 5, 10, or 15 days to various concentrations of CuO-NPs (0, 10, or 250 mg per plant). Biomass and gas exchange values were determined in relation to the Cu uptake rate, localization, and Cu speciation within the plant tissues. High foliar Cu uptake occurred after exposure for 15 days for lettuce [3773 mg (kg of dry weight) -1 ] and cabbage [4448 mg (kg of dry weight) -1 ], along with (i) decreased plant weight, net photosynthesis level, and water content and (ii) necrotic Cu-rich areas near deformed stomata containing CuO-NPs observed by scanning electron microscopy and energy dispersive X-ray microanalysis. Analysis of the CuO-NP transfer rate (7.8-242 μg day -1 ), translocation of Cu from leaves to roots and Cu speciation biotransformation in leaf tissues using electron paramagnetic resonance, suggests the involvement of plant Cu regulation processes. Finally, a potential health risk associated with consumption of vegetables contaminated with CuO-NPs was highlighted.

  8. Alteration of foliar flavonoid chemistry induced by enhanced UV-B radiation in field-grown Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii.

    Science.gov (United States)

    Warren, Jeffrey M; Bassman, John H; Mattinson, D Scott; Fellman, John K; Edwards, Gerald E; Robberecht, Ronald

    2002-03-01

    Chromatographic analyses of foliage from several tree species illustrate the species-specific effects of UV-B radiation on both quantity and composition of foliar flavonoids. Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii were field-grown under modulated ambient (1x) and enhanced (2x) biologically effective UV-B radiation. Foliage was harvested seasonally over a 3-year period, extracted, purified and the flavonoid fraction applied to a mu Bondapak/C(18) column HPLC system sampling at 254 nm. Total flavonoid concentrations in Quercus rubra foliage were more than twice (leaf area basis) that of the other species; Pseudotsuga menziesii foliage had intermediate levels and P. ponderosa had the lowest concentrations of total flavonoids. No statistically significant UV-B radiation-induced effects were found in total foliar flavonoid concentrations for any species; however, concentrations of specific compounds within each species exhibited significant treatment effects. Higher (but statistically insignificant) levels of flavonoids were induced by UV-B irradiation in 1- and 2-year-old P. ponderosa foliage. Total flavonoid concentrations in 2-year-old needles increased by 50% (1x ambient UV-B radiation) or 70% (2x ambient UV-B radiation) from that of 1-year-old tissue. Foliar flavonoids of Q. rubra under enhanced UV-B radiation tended to shift from early-eluting compounds to less polar flavonoids eluting later. There were no clear patterns of UV-B radiation effects on 1-year-old P. menziesii foliage. However, 2-year-old tissue had slightly higher foliar flavonoids under the 2x UV-B radiation treatment compared to ambient levels. Results suggest that enhanced UV-B radiation will alter foliar flavonoid composition and concentrations in forest tree species, which could impact tissue protection, and ultimately, competition, herbivory or litter decomposition.

  9. Effect of the foliar enrichment and herbicides on maize and associated weeds irrigated with drainage water

    Directory of Open Access Journals (Sweden)

    Roshdy M.H. Tagour

    2017-12-01

    Full Text Available A two-year field experiment was conducted during summer seasons of 2013 and 2014, which were irrigated by drainage water which belong to salinity class (C3S1 to C4S2, to study the effect of the foliar enrichment namely (Anti-stress and weed management treatments (some pre and post-emergence herbicides and two-hand hoeing on maize growth, yield, yield components and chemical composition of maize grains and associated weeds (Portulaca oleracea, Amaranthus retroflexus and Echinochloa colonum. The results illustrated that application of the foliar enrichment enhanced the dry weight of weeds and increased maize growth characters, yield and yield components and total crude protein and total oil percentage of grain maize, as compared with untreated treatment. All weed management treatments caused a significant reduction in total dry weight of weeds at 60 and 80 days after sowing in both seasons. Two-hand hoeing treatment exerted the highest decrease in total dry weight of weeds followed by metribuzin, oxadiagyl, fluroxypyr and bentazon, respectively at 60 and 80 days after sowing compared with other weed management treatments. While, the highest values of maize growth, yield, yield components and maize grains' content of protein and oil was obtained with two-hand hoeing followed by metribuzin, oxadiagyl, fluroxypyr and bentazon, respectively. While, two hands hoeing produced the maximum values of leaf area, ear length, the weight of kernels plant−1, but applying of metribuzin treatment gave the highest values of total oil percentage of grain maize when the foliar enrichment was used.

  10. Diagnosing foliar nutrient dynamics of Eucalyptus grandis in ...

    African Journals Online (AJOL)

    Fertilisation is one of the most cost-effective methods of increasing and maintaining the productivity of Eucalyptus grandis plantations in South Africa. This silvicultural practice can be optimised by using the foliar nutrient ratios measured in plants at maximum growth as a guideline for fertiliser application. The foliar nutrient ...

  11. Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data

    Science.gov (United States)

    Chemura, Abel; Mutanga, Onisimo; Odindi, John; Kutywayo, Dumisani

    2018-04-01

    Nitrogen (N) is the most limiting factor to coffee development and productivity. Therefore, development of rapid, spatially explicit and temporal remote sensing-based approaches to determine spatial variability of coffee foliar N are imperative for increasing yields, reducing production costs and mitigating environmental impacts associated with excessive N applications. This study sought to assess the value of Sentinel-2 MSI spectral bands and vegetation indices in empirical estimation of coffee foliar N content at landscape level. Results showed that coffee foliar N is related to Sentinel-2 MSI B4 (R2 = 0.32), B6 (R2 = 0.49), B7 (R2 = 0.42), B8 (R2 = 0.57) and B12 (R2 = 0.24) bands. Vegetation indices were more related to coffee foliar N as shown by the Inverted Red-Edge Chlorophyll Index - IRECI (R2 = 0.66), Relative Normalized Difference Index - RNDVI (R2 = 0.48), CIRE1 (R2 = 0.28), and Normalized Difference Infrared Index - NDII (R2 = 0.37). These variables were also identified by the random forest variable optimisation as the most valuable in coffee foliar N prediction. Modelling coffee foliar N using vegetation indices produced better accuracy (R2 = 0.71 with RMSE = 0.27 for all and R2 = 0.73 with RMSE = 0.25 for optimized variables), compared to using spectral bands (R2 = 0.57 with RMSE = 0.32 for all and R2 = 0.58 with RMSE = 0.32 for optimized variables). Combining optimized bands and vegetation indices produced the best results in coffee foliar N modelling (R2 = 0.78, RMSE = 0.23). All the three best performing models (all vegetation indices, optimized vegetation indices and combining optimal bands and optimal vegetation indices) established that 15.2 ha (4.7%) of the total area under investigation had low foliar N levels (landscape scale.

  12. Physiological responses of Tillandsia albida (Bromeliaceae) to long-term foliar metal application

    Energy Technology Data Exchange (ETDEWEB)

    Kovacik, Jozef, E-mail: jozkovacik@yahoo.com [Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic); CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic); Klejdus, Borivoj [Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic); CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic); Stork, Frantisek [Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Safarik University, Manesova 23, 041 67 Kosice (Slovakia); Hedbavny, Josef [Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Impact of foliar Cd, Ni and Cd + Ni application on Tillandsia albida was studied. Black-Right-Pointing-Pointer Cd caused visible damage and enhanced stress parameters in combined treatment. Black-Right-Pointing-Pointer Nitrogenous compounds were slightly affected but phenols were up- and down-regulated. Black-Right-Pointing-Pointer Mineral nutrients (K, Ca, Na, Mg, Fe, and Zn) were not affected by any of treatments. Black-Right-Pointing-Pointer Total Cd or Ni reached ca. 0.04% and Ni was more absorbed than Cd. - Abstract: The impact of 2-month foliar application of cadmium, nickel and their combination (10 {mu}M) on Tillandsia albida was studied. Cadmium caused damage of tissue but assimilation pigments were depressed in Cd + Ni variant only. Stress-related parameters (ROS and peroxidase activities) were elevated by Cd and Cd + Ni while MDA content remained unaffected. Free amino acids accumulated the most in Ni alone but soluble proteins were not influenced. Among phenolic acids, mainly vanillin contributed to increase of their sum in all variants while soluble phenols even decreased in Cd + Ni and flavonols slightly increased in Cd variants. Phenolic enzymes showed negligible responses to almost all treatments. Mineral nutrients (K, Ca, Na, Mg, Fe, and Zn) were not affected by metal application but N content increased. Total Cd or Ni amounts reached over 400 {mu}g g{sup -1} DW and were not affected if metal alone and combined treatment is compared while absorbed content differed (ca. 50% of total Cd was absorbed while almost all Ni was absorbed). These data indicate tolerance of T. albida to foliar metal application and together with strong xerophytic morphology, use for environmental studies is recommended.

  13. Estimativa da área foliar do girassol por método não destrutivo

    Directory of Open Access Journals (Sweden)

    Leonardo Angelo de Aquino

    2011-01-01

    Full Text Available Métodos de fácil execução, rápidos e não destrutivos, que possibilitem estimar a área foliar com precisão, são importantes para avaliar o crescimento das plantas nas condições de campo. Objetivou-se no presente trabalho, ajustar equações para estimar a área do limbo foliar e a área das folhas do girassol, em função das medidas lineares do limbo e do número de folhas por planta, incluindo a verificação da possibilidade de modelos comuns para as cultivares BR-122 e M-734. Seis plantas de cada cultivar nos estádios de início de florescimento e de florescimento pleno foram coletadas. As áreas dos limbos foliares foram determinadas por método direto. Foram medidos o comprimento ao longo da nervura principal e a largura de forma perpendicular à inserção do limbo no pecíolo. Foram ajustados os modelos linear, quadrático, cúbico, exponencial e potencial. Os modelos potenciais Ŷi = 1,6329Xi1,7164 e Ŷi = 0,5405Xi1,0212 com a utilização, respectivamente, das medidas da largura e do produto largura e comprimento são os mais adequados para estimar a área do limbo foliar do girassol. O modelo Ŷi = 5,1014Xi2,4383 permite estimar com precisão a área foliar total do girassol em função do número de folhas por planta. A precisão das equações ajustadas para as estimativas da área do limbo foliar ou de folhas por planta não é reduzida quando se ajustam modelos comuns às cultivares BR-122 e M-734.

  14. A novel source of biofertilizer from feather biomass for banana cultivation.

    Science.gov (United States)

    Gurav, Ranjit G; Jadhav, Jyoti P

    2013-07-01

    Feather waste is a promising protein biomass available as by-product from poultry processing was found to be rich in peptides, amino acids, and minerals like nitrogen, phosphorus, potassium, calcium, magnesium, iron, manganese, zinc, and copper. Soil and foliar application of these products, besides representing a sustainable solution to the problem of feather disposal, may also represent an effective strategy to tackle the environmental effluence. As a consequence, they were also found to be very attractive in elevating the protein, amino acids, reducing sugar, total chlorophyll, and proline content of plants. On the other side, fertilizing effect enhanced the antioxidant potential of banana fruit which was assessed using 2, 2-diphenyl-1-picrylhydrazyl, ferric reducing/antioxidant power, and N, N-dimethyl-p-phenylendiamine. This was associated with considerably higher antioxidant contents like total phenolics and flavonoids. Therefore, the application of this organic amendment could promote and improve the agro-ecosystem, human health; soil biological activities, and at the same time enhance the production of plant or products rich in bioactive substances.

  15. Phylogenetic Structure of Foliar Spectral Traits in Tropical Forest Canopies

    Directory of Open Access Journals (Sweden)

    Kelly M. McManus

    2016-02-01

    Full Text Available The Spectranomics approach to tropical forest remote sensing has established a link between foliar reflectance spectra and the phylogenetic composition of tropical canopy tree communities vis-à-vis the taxonomic organization of biochemical trait variation. However, a direct relationship between phylogenetic affiliation and foliar reflectance spectra of species has not been established. We sought to develop this relationship by quantifying the extent to which underlying patterns of phylogenetic structure drive interspecific variation among foliar reflectance spectra within three Neotropical canopy tree communities with varying levels of soil fertility. We interpreted the resulting spectral patterns of phylogenetic signal in the context of foliar biochemical traits that may contribute to the spectral-phylogenetic link. We utilized a multi-model ensemble to elucidate trait-spectral relationships, and quantified phylogenetic signal for spectral wavelengths and traits using Pagel’s lambda statistic. Foliar reflectance spectra showed evidence of phylogenetic influence primarily within the visible and shortwave infrared spectral regions. These regions were also selected by the multi-model ensemble as those most important to the quantitative prediction of several foliar biochemical traits. Patterns of phylogenetic organization of spectra and traits varied across sites and with soil fertility, indicative of the complex interactions between the environmental and phylogenetic controls underlying patterns of biodiversity.

  16. Effect of some factors on foliar absorption and mobility of Fe59 in plant

    International Nuclear Information System (INIS)

    Mohamed, F.A.

    1990-01-01

    Three experiments were conducted under greenhouse conditions using Fe 59 and seedlings of guava and orange to study the effect of PH value (3-8), Fe SO 4 concentrations in combination with three values of PH on foliar absorption and mobility of Fe. In addition, a comparative study to evaluate some compounds of iron for foliar spray was achieved. Foliar absorption of Fe 59 by guava leaves and its mobility were considerably influenced by PH value of spray solution. Maximum absorption and translocation were observed at PH 6. However, most of the absorbed iron 'about 90%' was retained in the treated leaves and the portion 'about 10%' acropetally and basipetally translocated. Upward transport of iron was more pronounced than downward one. Total iron in plant derived from applied FeSO 4 was greatly increased, whereas utilization percent of it was reduced by increasing the rate of Fe in spray solution. Generally, FeSO 4 had a good efficiency which ranged from about 25-43%. Specific absorption of iron by orange leaves was higher than that of guava leaves. From plant nutritional point of view, efficiency of FeSo 4 , Fe-metalosate and multi mineral-metalosate as different sources of Fe through foliar application remarkably varied and FeSO 4 was highly efficient one in comparison with metalosate compounds

  17. Variation in Foliar δ13C of Desert Plant Reaumuria soongorica (Pall.) Maxim. among Different Environments in Northwestern China

    Science.gov (United States)

    Ma, J.; Pendall, E.; Chen, F.

    2008-12-01

    Reaumuria soongorica is a dominant desert shrub species in arid regions of northwest China, it playing an important role in the maintenance of the stability and continuity of desert ecosystem. The objectives of this study were to investigate the distribution characteristics of foliar δ13C value in R. soongorica, establish the correlations between foliar characteristics and environmental factors, and identify the major factor controlling the variations of foliar δ13C among different environments. Leaves of R. soongorica were collected from 21 natural populations in its major distribution area in northwestern China, across a range of mean annual precipitation from 27 to 328 mm, at altitudes from 394 to 1987 m above sea level, at latitudes from 36°N to 45°N and at longitudes from 81°E to 107°E. We measured the leaf nitrogen (LN), phosphorus (LP), potassium content (LK), leaf water content (LWC) and foliar δ13C in leaves of 407 individuals, and the soil physicochemical properties including nitrogen (SN), phosphorus (SP), soil organic matter (SOM), soil water contents (SWC) and total dissolved solids (TDS). Mean annual precipitation (MAP), mean annual temperature (MAT), evaporation, mean relative humidity (MRH) and duration of sunshine (DS), were collected from the Cold and Arid Environmental and Engineering Research Institute, Chinese Academy of Sciences. We observed that the foliar δ13C values increased significantly with the decreasing of MAP (r = -0.623, P = 0.003) and MRH(r = -0.702, P = 0.002), and decreased with decreasing DS and evaporation. No significant correlation with MAT was detected in δ13C values of R. soongorica. The correlations between foliar δ13C value and the soil factors demonstrated that the foliar δ13C values in R. soongorica significantly increased with the decreasing SWC (r = - 0.470, P = 0.037) and increasing TDS (r = 0.507, P = 0.022) in soil. There were no significant correlations between the foliar δ13C values and soil pH, total

  18. Foliar leaching, translocation, and biogenic emission of 35S in radiolabeled loblolly pines

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.

    1990-01-01

    Foliar leaching, basipetal (downward) translocation, and biogenic emission of sulfur (S), as traced by 35 S, were examined in a field study of loblolly pines. Four trees were radiolabeled by injection with amounts of 35 S in the 6-8 MBq range, and concentrations in needle fall, stemflow, throughfall, and aboveground biomass were measured over a period of 15-20 wk after injection. The contribution of dry deposition to sulfate-sulfur (SO 4 2- -S) concentrations in net throughfall (throughfall SO 4 2- -S concentration minus that in incident precipitation) beneath all four trees was > 90%. Calculations indicated that about half of the summertime SO 2 dry deposition flux to the loblolly pines was fixed in the canopy and not subsequently leached by rainfall. Based on mass balance calculations, 35 S losses through biogenic emissions from girdled trees were inferred to be 25-28% of the amount injected. Estimates based on chamber methods and mass balance calculations indicated a range in daily biogenic S emission of 0.1-10 μg/g dry needles. Translocation of 35 S to roots in nongirdled trees was estimated to be between 14 and 25% of the injection. It is hypothesized that biogenic emission and basipetal translocation of S (and not foliar leaching) are important mechanisms by which forest trees physiologically adapt to excess S in the environment

  19. Seasonal variability of leaf area index and foliar nitrogen in contrasting dry-mesic tundras

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Lemeur, Raoul

    2009-01-01

    Assimilation and exchange of carbon for arctic ecosystems depend strongly on leaf area index (LAI) and total foliar nitrogen (TFN). For dry-mesic tundras, the seasonality of these characteristics is unexplored. We addressed this knowledge gap by measuring variations of LAI and TFN at five contras...

  20. Sapwood area as an estimator of leaf area and foliar weight in cherrybark oak and green ash

    Science.gov (United States)

    James S. Meadows; John D. Hodges

    2002-01-01

    The relationships between foliar weight/leaf area and four stem dimensions (d.b.h., total stem cross-sectional area, total sapwood area, and current sapwood area at breast height) were investigated in two important bottomland tree species of the Southern United States, cherrybark oak (Quercus falcata var. pagodifolia ...

  1. Evaluation of soil and foliar fertilization on wheat yield and quality

    International Nuclear Information System (INIS)

    Ndiema, A.C.; Maina, M.P.D.; Kamundia, W.J.

    2001-01-01

    Traditionally wheat farmers in Kenya apply basal compound fertilizer like diammonium phosphate (DAP), Triple super phosphate (TSP). Plants require a considerable number of different elements for optimal growth. One way of supplying these micronutrients is through foliar fertilization. However there was an increase of 71.7% for 40kg N/ha plus bayfolan in Njoro over the control, 61.8% for bayfolan alone a foliar fertilizer, which contain a wide range of plant nutrients. In Molo the control out-yielded all the treatments indicating that planting the crop with DAP is sufficient. Foliar fertilizer was applied directly to the plant leaves to enhance crop yield due to their rapid absorption. The potential of improving yields comes as a result of increase in number of seeds. The objective of this study was to evaluate the effects of foliar fertilizer on wheat yield when used alone or in combination with soil-applied fertilizers. Byfolan is a fast acting fertilizer with nutrients rapidly becoming available to the plant. The composition of Bayfolan includes N (11%), P (8%), K (6%), Fe (0.019%), Mn (0.016%). Zn (0.0061% ), Co (0.00035%), Mo (0.00009%), sodium, sulphur, vitamin B 1 and growth hormones. The design was RCBD with nine (9) treatments and three (3) replications. The treatments included control, 20kg N/ha, 40kg N/ha, 80kg N/ha, Bayfolan foliar, 20kg N/ha + Baylon a foliar, 40kg N/ha + Bayfolan foliar, 20kg N/ha urea in solution form, 20kg N/ha urea in solution form + Bayfolan foliar. DAP was applied at the rate of 130kg/ha, as a blanket treatment at planting timeto provide N and P for initial growth. Significant difference in spike density and kernel weight at 5% level was observed at farms in Njoro but not at farms in Molo. (author)

  2. Self-cleaning Foliar Surfaces Characterization using RIMAPS Technique and Variogram Method

    International Nuclear Information System (INIS)

    Rosi, Pablo E.

    2002-01-01

    Along the last ten years many important studies about characterization of self-cleaning foliar surfaces have been done and focused new interest on this kind of surfaces.These studies were possible due to the development of a novel preparation technique for this biological material that let us observe the delicate structures of a foliar surface under scanning electron microscope (S.E.M.).This technique consists of replacing the natural water of the specimen by glycerol. Digital S.E.M. images from both self-cleaning and non-self-cleaning foliar surfaces were obtained and analyzed using RIMAPS technique and Variograms method. Our results revealed the existence of a common and exclusive geometrical pattern that is found in species which present self-cleaning foliar surfaces.This pattern combines at least nine different directions.The results from the Variograms method showed that the stomata play a key role in the determination of foliar surface roughness. In addition, spectra from RIMAPS technique constitute a fingerprint of a foliar surface so they can be used to find evolutionary relationships among species.Further studies will provide more detailed information to fully elucidate the self-cleaning pattern, so it might be possible to reproduce it on an artificial surface and make it self-cleaning

  3. TOTAL HYDROGENATION OF BIOMASS-DERIVED FURFURAL OVER RANEY NICKEL-CLAY NANOCOMPOSITE CATALYSTS

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2013-08-01

    Full Text Available Inexpensive Raney Ni-clay composite (R-Ni/clay catalysts exhibited excellent activity and reusability in the total hydrogenation of biomass-derived furfural into tetrahydrofurfuryl alcohol under mild conditions. For the Raney Ni-bentonite (R-Ni/BNT catalysts, the complete reaction was achieved at 393 K, 180 min giving almost 99% yield of tetrahydrofurfuryl alcohol. The R-Ni/BNT catalyst was found to be reusable without any significant loss of activity and selectivity for at least six consecutive runs.

  4. Estimativa da área foliar de Crambe abyssinica por discos foliares e por fotos digitais Estimate leaf area of Crambe abyssinica for leaf discs and digital photos

    Directory of Open Access Journals (Sweden)

    Marcos Toebe

    2010-02-01

    Full Text Available A área foliar é importante na determinação do crescimento e desenvolvimento das culturas agrícolas. Assim, os objetivos do trabalho foram comparar os métodos de discos foliares e de fotos digitais na estimativa da área foliar de Crambe abyssinica e modelar a área foliar em função do comprimento (C, da largura (L e ou do produto comprimento vezes largura (CxL de diferentes tamanhos de folhas. Para isso, em 308 folhas, foram determinados a área foliar, o comprimento, a largura e o produto comprimento vezes largura por meio dos métodos de discos foliares e de fotos digitais. Em seguida, foram comparados os métodos por meio do coeficiente de correlação linear entre a área foliar. A seguir, em cada método, modelou-se a área foliar (Y em função do C, da L e do CxL, por meio dos modelos: linear, linear simples, quadrático, geométrico e exponencial. Os coeficientes de correlação linear de Pearson e de Spearman entre a área foliar dos métodos de discos foliares e de fotos digitais foram de 0,9917 e 0,9889, respectivamente, o que revela métodos concordantes. Em ambos os métodos, os modelos quadráticos e geométricos apresentaram os melhores coeficientes de determinação da área foliar em função do comprimento e da largura das folhas. A largura da folha é a variável que melhor estima a área foliar. O método de fotos digitais pode ser utilizado para estimar a área foliar de crambe.Leaf area is important in determining the growth and development of agricultural crops. The aim of this study was to compare the methods of leaf discs and digital photos in estimating leaf area of Crambe abyssinica, and model leaf area according to length (C, width (L and/ or the product of length width (CxL for different sizes of leaves. For this, in 308 leaves it was determined the leaf area, length, width and the product of length width using the methods of leaf discs and digital photos. Then the methods were compared using the linear

  5. Absorção e redistribuição do nitrogênio aplicado via foliar em videiras jovens Uptake and redistribution of nitrogen in foliar application in young grapevines

    Directory of Open Access Journals (Sweden)

    Gustavo Brunetto

    2005-04-01

    Full Text Available A aplicação de nitrogênio via foliar antes da senescência das folhas da videira pode ser uma estratégia para aumentar as reservas deste nutriente nas partes perenes, uma vez que as mesmas são disponibilizadas no início do crescimento vegetativo dos órgãos anuais. O objetivo deste trabalho foi de estimar a absorção e a redistribuição do N adicionado via foliar em videiras jovens. O experimento foi instalado em casa de vegetação na EMBRAPA-Uva e Vinho, no município de Bento Gonçalves (RS. Foram utilizadas as variedades Chardonnay e Riesling Itálico com porta-enxerto 101-14 Mgt. Foi cultivada uma planta por vaso contendo 10kg de solo Neossolo Litólico. A aplicação do N via foliar foi parcelada em três vezes, durante três dias sucessivos. Foram aplicados 84,84mg N planta-1 na forma de (15NH42SO4 . As plantas foram colhidas em sete épocas diferentes. Após a colheita, as plantas foram fracionadas em folhas, enxerto, porta-enxerto, raízes grossas (>2mm e raízes finas (The foliar application of nitrogen before the leaves senescence may be a strategy to increase the nutrient reserves in the perennial parts, being available in the beginning of the vegetative growth of the annual parts. The objective of this work was to estimate the uptake and redistribution of N applied by foliar way in young grapevines. The experiment was carried out in a greenhouse at EMBRAPA-Grape and Wine, Bento Gonçalves Southern Brazil. The cultivars used were Chardonnay and Riesling Italic grafted on rootstock 101-14 Mgt. It was cultivated one plant by vase with 10kg of soil Udorthent. The foliar application of N was parceled in three times during three successive days. It was applied 84,84mg N plant-1 using (15NH42SO4 . The plants were collected in seven times, during vegetative growth. The plants were fractionated in leaves, graft, carry-graft, thick roots (>2mm and fine roots (<2mm, oven-dried, weighted, and analyzed N-total and 15N contents. The

  6. Molecular mechanisms of foliar water uptake in a desert tree.

    Science.gov (United States)

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-11-12

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants. Published by Oxford University Press on behalf of the Annals of Botany Company.

  7. Foliar Nutritional Quality Explains Patchy Browsing Damage Caused by an Invasive Mammal.

    Directory of Open Access Journals (Sweden)

    Hannah R Windley

    Full Text Available Introduced herbivores frequently inflict significant, yet patchy damage on native ecosystems through selective browsing. However, there are few instances where the underlying cause of this patchy damage has been revealed. We aimed to determine if the nutritional quality of foliage could predict the browsing preferences of an invasive mammalian herbivore, the common brushtail possum (Trichosurus vulpecula, in a temperate forest in New Zealand. We quantified the spatial and temporal variation in four key aspects of the foliar chemistry (total nitrogen, available nitrogen, in vitro dry matter digestibility and tannin effect of 275 trees representing five native tree species. Simultaneously, we assessed the severity of browsing damage caused by possums on those trees in order to relate selective browsing to foliar nutritional quality. We found significant spatial and temporal variation in nutritional quality among individuals of each tree species examined, as well as among tree species. There was a positive relationship between the available nitrogen concentration of foliage (a measure of in vitro digestible protein and the severity of damage caused by browsing by possums. This study highlights the importance of nutritional quality, specifically, the foliar available nitrogen concentration of individual trees, in predicting the impact of an invasive mammal. Revealing the underlying cause of patchy browsing by an invasive mammal provides new insights for conservation of native forests and targeted control of invasive herbivores in forest ecosystems.

  8. Estimating foliar biochemistry from hyperspectral data in mixed forest canopy

    DEFF Research Database (Denmark)

    Huber Gharib, Silvia; Kneubühler, Mathias; Psomas, Achilleas

    2008-01-01

    data to estimate the foliar concentration of nitrogen, carbon and water in three mixed forest canopies in Switzerland. With multiple linear regression models, continuum-removed and normalized HyMap spectra were related to foliar biochemistry on an individual tree level. The six spectral wavebands used...

  9. Organismic-Scale Remote Sensing of Canopy Foliar Traits in Lowland Tropical Forests

    Directory of Open Access Journals (Sweden)

    K. Dana Chadwick

    2016-01-01

    Full Text Available Airborne high fidelity imaging spectroscopy (HiFIS holds great promise for bridging the gap between field studies of functional diversity, which are spatially limited, and satellite detection of ecosystem properties, which lacks resolution to understand within landscape dynamics. We use Carnegie Airborne Observatory HiFIS data combined with field collected foliar trait data to develop quantitative prediction models of foliar traits at the tree-crown level across over 1000 ha of humid tropical forest. We predicted foliar leaf mass per area (LMA as well as foliar concentrations of nitrogen, phosphorus, calcium, magnesium and potassium for canopy emergent trees (R2: 0.45–0.67, relative RMSE: 11%–14%. Correlations between remotely sensed model coefficients for these foliar traits are similar to those found in laboratory studies, suggesting that the detection of these mineral nutrients is possible through their biochemical stoichiometry. Maps derived from HiFIS provide quantitative foliar trait information across a tropical forest landscape at fine spatial resolution, and along environmental gradients. Multi-nutrient maps implemented at the fine organismic scale will subsequently provide new insight to the functional biogeography and biological diversity of tropical forest ecosystems.

  10. Foliar uptake of cesium from the water column by aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Pinder, J.E. [Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29801 (United States); Hinton, T.G. [Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29801 (United States)]. E-mail: thinton@srel.edu; Whicker, F.W. [Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618 (United States)

    2006-07-01

    The probable occurrence and rate of foliar absorption of stable cesium ({sup 133}Cs) from the water column by aquatic macrophyte species was analyzed following the addition of {sup 133}Cs into a small reservoir near Aiken, South Carolina, USA. An uptake parameter u (10{sup 3} L kg{sup -1} d{sup -1}) and a loss rate parameter k (d{sup -1}) were estimated for each species using time series of {sup 133}Cs concentrations in the water and plant tissues. Foliar uptake, as indicated by rapid increases in plant concentrations following the {sup 133}Cs addition, occurred in two floating-leaf species, Brasenia schreberi and Nymphaea odorata, and two submerged species, Myriophyllum spicatum and Utricularia inflata. These species had values of u {>=} 0.75 x 10{sup 3} L kg{sup -1} d{sup -1}. Less evidence for foliar uptake was observed in three emergent species, including Typha latifolia. Ratios of u to k for B. schreberi, M. spicatum, N. odorata and U. inflata can be used to estimate concentration ratios (CR) at equilibrium, and these estimates were generally within a factor of 2 of the CR for {sup 137}Cs for these species in the same reservoir. This correspondence suggests that foliar uptake of Cs was the principal absorption mechanism for these species. Assessments of: (1) the prevalence of foliar uptake of potassium, rubidium and Cs isotopes by aquatic macrophytes and (2) the possible importance of foliar uptake of Cs in other lentic systems are made from a review of foliar uptake studies and estimation of comparable u and k values from lake studies involving Cs releases.

  11. Improvement of Soybean (Glycine max L. Yield with Urea Foliar Application at Growth Stages

    Directory of Open Access Journals (Sweden)

    Mahmood Tohidi

    2017-07-01

    Full Text Available To investigate the effects of nitrogen foliar application at different growth stages of soybean on the yield and yield components this experiment was performed in Shush, north of Khuzestan, Iran, during growing season of 2014. The experiment was in split plot based on randomized complete block design with three replications. Experimental treatments consisted of four levels of nitrogen fertilizer foliar applications as control (no nitrogen foliar application, 25, 50 and 75 kg/ha pure nitrogen from urea source (46% pure nitrogen assigned to the main plots and spraying times in three levels, at vegetative stage, flowering stage and podding stage to the subplots. Results showed that the effects of nitrogen foliar application on traits measured in this experiment like leaf area index, number of pod per plant, number of seeds per pod, thousand seed weight, seed yield, biologic yield, harvest index, protein percent and protein yield and also interaction of different levels of nitrogen foliar application and different growth stages, were significant. Oil percent and yield were only significant under the effect of nitrogen foliar application treatments at different growth stages while the interaction of different levels of nitrogen foliar application and different growth stages, were not significant. In this experiment nitrogen foliar application increased seed yield. The highest seed yield amounted to 2466 kg/ha when 50kg/ha of foliar nitrogen applied at vegetative growth stage and lowest seed yield amounted to 1295 kg/ha in the control treatment at the stage of podding. In general, results demonstrated that 50 kg/ha treatment could be considered as the best management option of nitrogen foliar application for soybean at vegetative growth stage.

  12. variability in foliar phenolic composition of several quercus species in northern mexico

    International Nuclear Information System (INIS)

    Salazar, J.A.A.; Antuna, E.M.; Abarca, N.A.; Alvarado, E.A.D.

    2015-01-01

    Quantitative and qualitative composition of the foliar phenolic compounds were investigated in 81 individual specimens of several white oak species (Quercus spp.). The trees were growing in twelve locations in Durango, Mexico. The phenol profiles were determined by HPLC-DAD and a Folin-Ciocateuprocedure. The results revealed that: (i) the foliar phenol profiles of all species analysed were complex and formed by 6 to 30 compounds, (ii) the flavonols mostly quercetin glycoside, isorhamnetin glycoside, kaempferol glycoside and phenolic acids were the main identified compounds, (iii) there was a high intra and inter-specific variability in the foliar phenol profiles both at the quantitative and qualitative levels, and (iv) the foliar phenol profiles indicated a slight species-specific tendency for phenols to be accumulated, although this was not clearly distinguished. Significant differences (P < 0.05) in the content and composition of the foliar flavonoids between species were observed due to the large environmental and soil conditions variability between localities. (author)

  13. Effect of Maize Hybrid and Foliar Fungicides on Yield Under Low Foliar Disease Severity Conditions.

    Science.gov (United States)

    Mallowa, Sally O; Esker, Paul D; Paul, Pierce A; Bradley, Carl A; Chapara, Venkata R; Conley, Shawn P; Robertson, Alison E

    2015-08-01

    Foliar fungicide use in the U.S. Corn Belt increased in the last decade; however, questions persist pertaining to its value and sustainability. Multistate field trials were established from 2010 to 2012 in Illinois, Iowa, Ohio, and Wisconsin to examine how hybrid and foliar fungicide influenced disease intensity and yield. The experimental design was in a split-split plot with main plots consisting of hybrids varying in resistance to gray leaf spot (caused by Cercospora zeae-maydis) and northern corn leaf blight (caused by Setosphaera turcica), subplots corresponding to four application timings of the fungicide pyraclostrobin, and sub-subplots represented by inoculations with either C. zeae-maydis, S. turcica, or both at two vegetative growth stages. Fungicide application (VT/R1) significantly reduced total disease severity relative to the control in five of eight site-years (P<0.05). Disease was reduced by approximately 30% at Wisconsin in 2011, 20% at Illinois in 2010, 29% at Iowa in 2010, and 32 and 30% at Ohio in 2010 and 2012, respectively. These disease severities ranged from 0.2 to 0.3% in Wisconsin in 2011 to 16.7 to 22.1% in Illinois in 2010. The untreated control had significantly lower yield (P<0.05) than the fungicide-treated in three site-years. Fungicide application increased the yield by approximately 6% at Ohio in 2010, 5% at Wisconsin in 2010 and 6% in 2011. Yield differences ranged from 8,403 to 8,890 kg/ha in Wisconsin 2011 to 11,362 to 11,919 kg/ha in Wisconsin 2010. Results suggest susceptibility to disease and prevailing environment are important drivers of observed differences. Yield increases as a result of the physiological benefits of plant health benefits under low disease were not consistent.

  14. Foliar pH as a new plant trati: van it explain variation in foliar chemistry and carbon cycling processes among subarctiv plant species and types?

    NARCIS (Netherlands)

    Cornelissen, J.H.C.; Quested, H.M.; van Logtestijn, R.S.P; Perez-Harguindeguy, N.; Gwynn-Jones, D.; Diaz, S.; Callaghan, T.V.; Press, M.C.; Aerts, R.

    2006-01-01

    Plant traits have become popular as predictors of interspecific variation in important ecosystem properties and processes. Here we introduce foliar pH as a possible new plant trait, and tested whether (1) green leaf pH or leaf litter pH correlates with biochemical and structural foliar traits that

  15. Foliar water uptake of Tamarix ramosissima from an atmosphere of high humidity.

    Science.gov (United States)

    Li, Shuang; Xiao, Hong-lang; Zhao, Liang; Zhou, Mao-Xian; Wang, Fang

    2014-01-01

    Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH) was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants.

  16. Foliar Water Uptake of Tamarix ramosissima from an Atmosphere of High Humidity

    Directory of Open Access Journals (Sweden)

    Shuang Li

    2014-01-01

    Full Text Available Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants.

  17. Allometric Scaling and Resource Limitations Model of Total Aboveground Biomass in Forest Stands: Site-scale Test of Model

    Science.gov (United States)

    CHOI, S.; Shi, Y.; Ni, X.; Simard, M.; Myneni, R. B.

    2013-12-01

    Sparseness in in-situ observations has precluded the spatially explicit and accurate mapping of forest biomass. The need for large-scale maps has raised various approaches implementing conjugations between forest biomass and geospatial predictors such as climate, forest type, soil property, and topography. Despite the improved modeling techniques (e.g., machine learning and spatial statistics), a common limitation is that biophysical mechanisms governing tree growth are neglected in these black-box type models. The absence of a priori knowledge may lead to false interpretation of modeled results or unexplainable shifts in outputs due to the inconsistent training samples or study sites. Here, we present a gray-box approach combining known biophysical processes and geospatial predictors through parametric optimizations (inversion of reference measures). Total aboveground biomass in forest stands is estimated by incorporating the Forest Inventory and Analysis (FIA) and Parameter-elevation Regressions on Independent Slopes Model (PRISM). Two main premises of this research are: (a) The Allometric Scaling and Resource Limitations (ASRL) theory can provide a relationship between tree geometry and local resource availability constrained by environmental conditions; and (b) The zeroth order theory (size-frequency distribution) can expand individual tree allometry into total aboveground biomass at the forest stand level. In addition to the FIA estimates, two reference maps from the National Biomass and Carbon Dataset (NBCD) and U.S. Forest Service (USFS) were produced to evaluate the model. This research focuses on a site-scale test of the biomass model to explore the robustness of predictors, and to potentially improve models using additional geospatial predictors such as climatic variables, vegetation indices, soil properties, and lidar-/radar-derived altimetry products (or existing forest canopy height maps). As results, the optimized ASRL estimates satisfactorily

  18. Physiological responses of Tillandsia albida (Bromeliaceae) to long-term foliar metal application.

    Science.gov (United States)

    Kováčik, Jozef; Klejdus, Bořivoj; Stork, František; Hedbavny, Josef

    2012-11-15

    The impact of 2-month foliar application of cadmium, nickel and their combination (10 μM) on Tillandsia albida was studied. Cadmium caused damage of tissue but assimilation pigments were depressed in Cd+Ni variant only. Stress-related parameters (ROS and peroxidase activities) were elevated by Cd and Cd+Ni while MDA content remained unaffected. Free amino acids accumulated the most in Ni alone but soluble proteins were not influenced. Among phenolic acids, mainly vanillin contributed to increase of their sum in all variants while soluble phenols even decreased in Cd+Ni and flavonols slightly increased in Cd variants. Phenolic enzymes showed negligible responses to almost all treatments. Mineral nutrients (K, Ca, Na, Mg, Fe, and Zn) were not affected by metal application but N content increased. Total Cd or Ni amounts reached over 400 μg g(-1) DW and were not affected if metal alone and combined treatment is compared while absorbed content differed (ca. 50% of total Cd was absorbed while almost all Ni was absorbed). These data indicate tolerance of T. albida to foliar metal application and together with strong xerophytic morphology, use for environmental studies is recommended. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Avaliação da biomassa foliar de morangueiro hidropônico em diferentes ambientes protegidos Leaf biomass evaluation of hydroponic strawberry in greenhouses

    Directory of Open Access Journals (Sweden)

    Edilson Costa

    2008-12-01

    Full Text Available Realizaram-se experimentos na Faculdade de Engenharia Agrícola na Universidade Estadual de Campinas, utilizando quatro cultivares de morangueiro [Fragaria x ananassa (Weston Duchesne ex Rozier], quatro sistemas de produção hidropônica (canal de 100mm, canal de 150mm, canal de 150mm, com vaso contendo fibra de coco e tubo vertical contendo casca de arroz carbonizada e três ambientes protegidos (casa-de-vegetação sem resfriamento evaporativo do ar e sem injeção aérea de CO2, casa-de-vegetação com injeção aérea de CO2 e sem resfriamento evaporativo do ar e casa-de-vegetação com injeção aérea de CO2 e resfriamento evaporativo do ar. Foram avaliados os parâmetros foliares massa fresca foliar (MFF e massa seca foliar (MSF em gramas e área foliar (AF em mm², correlacionando à biomassa da planta. O melhor sistema foi o de canais de 150mm com vaso contendo fibra de coco. O melhor ambiente foi o de resfriamento evaporativo do ar e injeção aérea de CO2.Analyses were made in the experimental field of the Agricultural Engineering College at State University of Campinas (Unicamp. Four varieties of strawberry [Fragaria x ananassa (Weston Duchesne ex Rozier] were tested in four hydroponics production systems (100mm and 150mm channels and 150mm channel with a vase containing coconut fiber and a vertical pipe containing carbonized rice rusk. Three greenhouses were tested: i a greenhouse without air evaporative cooling nor CO2 aerial injection, ii a greenhouse with CO2 aerial injection and without air evaporative cooling and iii a greenhouse with CO2 aerial injection and air evaporative cooling. It was analyzed the leaf fresh (MFF and dry mass in gram (MSF and the leaf area in mm² (AF. The best hydroponics system was 150mm channel with a vase containing coconut fiber. The best environment condition was the one with air evaporative cooling and aerial injection of CO2.

  20. Effects of Elevated Carbon Dioxide on the Growth and Foliar Chemistry of Transgenic Bt Cotton

    Institute of Scientific and Technical Information of China (English)

    Gang Wu; Fa-Jun Chen; Feng Ge; Yu-Cheng Sun

    2007-01-01

    A field study was carried out to quantify plant growth and the foliar chemistry of transgenic Bacillus thuringiensis (Bt)cotton (cv. GK-12) exposed to ambient CO2 and elevated (double-ambient) CO2 for different lengths of time (1, 2 and 3 months) in 2004 and 2005. The results indicated that CO2 levels significantly affected plant height, leaf area per plant and leaf chemistry of transgenic Bt cotton. Significantly, higher plant height and leaf area per plant were observed after cotton plants that were grown in elevated CO2 were compared with plants grown in ambient CO2 for 1, 2 and 3 months in the investigation. Simultaneously, significant interaction between CO2 level x investigating year was observed in leaf area per plant. Moreover, foliar total amino acids were increased by 14%, 13%, 11% and 12%, 14%, 10% in transgenic Bt cotton after exposed to elevated CO2 for 1, 2 or 3 months compared with ambient CO2 in 2004 and 2005, respectively. Condensed tannin occurrence increased by 17%, 11%, 9% in 2004 and 12%, 11%, 9% in 2005 in transgenic Bt cotton after being exposed to elevated CO2 for 1, 2 or 3 months compared with ambient CO2 for the same time. However, Bt toxin decreased by 3.0%,2.9%, 3.1% and 2.4%, 2.5%, 2.9% in transgenic Bt cotton after exposed to elevated CO2 for 1, 2 or 3months compared with ambient CO2 for same time in 2004 and 2005, respectively. Furthermore, there was prominent interaction on the foliar total amino acids between the CO2 level and the time of cotton plant being exposed to elevated CO2. It is presumed that elevated CO2 can alter the plant growth and hence ultimately the phenotype allocation to foliar chemistical components of transgenic Bt cotton, which may in turn, affect the plant-herbivore interactions.

  1. Controls over foliar N:P ratios in tropical rain forests.

    Science.gov (United States)

    Townsend, Alan R; Cleveland, Cory C; Asner, Gregory P; Bustamante, Mercedes M C

    2007-01-01

    Correlations between foliar nutrient concentrations and soil nutrient availability have been found in multiple ecosystems. These relationships have led to the use of foliar nutrients as an index of nutrient status and to the prediction of broadscale patterns in ecosystem processes. More recently, a growing interest in ecological stoichiometry has fueled multiple analyses of foliar nitrogen:phosphorus (N:P) ratios within and across ecosystems. These studies have observed that N:P values are generally elevated in tropical forests when compared to higher latitude ecosystems, adding weight to a common belief that tropical forests are generally N rich and P poor. However, while these broad generalizations may have merit, their simplicity masks the enormous environmental heterogeneity that exists within the tropics; such variation includes large ranges in soil fertility and climate, as well as the highest plant species diversity of any biome. Here we present original data on foliar N and P concentrations from 150 mature canopy tree species in Costa Rica and Brazil, and combine those data with a comprehensive new literature synthesis to explore the major sources of variation in foliar N:P values within the tropics. We found no relationship between N:P ratios and either latitude or mean annual precipitation within the tropics alone. There is, however, evidence of seasonal controls; in our Costa Rica sites, foliar N:P values differed by 25% between wet and dry seasons. The N:P ratios do vary with soil P availability and/or soil order, but there is substantial overlap across coarse divisions in soil type, and perhaps the most striking feature of the data set is variation at the species level. Taken as a whole, our results imply that the dominant influence on foliar N:P ratios in the tropics is species variability and that, unlike marine systems and perhaps many other terrestrial biomes, the N:P stoichiometry of tropical forests is not well constrained. Thus any use of N

  2. Ozone air pollution and foliar injury development on native plants of Switzerland

    International Nuclear Information System (INIS)

    Novak, Kristopher; Skelly, John M.; Schaub, Marcus; Kraeuchi, Norbert; Hug, Christian; Landolt, Werner; Bleuler, Peter

    2003-01-01

    Visible ozone-induced foliar injury on native forest species of Switzerland was identified and confirmed under ambient OTC-conditions and related to the current European AOT40 standard. - The objectives of this study were to examine the foliar sensitivity to ozone exposure of 12 tree, shrub, and herbaceous species native to southern Switzerland and determine the seasonal cumulative ozone exposures required to induce visible foliar injury. The study was conducted from the beginning of May through the end of August during 2000 and 2001 using an open-top chamber research facility located within the Lattecaldo Cantonal Forest Nursery in Canton Ticino, southern Switzerland (600 m asl). Plants were examined daily and dates of initial foliar injury were recorded in order to determine the cumulative AOT40 ppb h ozone exposure required to cause visible foliar injury. Plant responses to ozone varied significantly among species; 11 species exhibited visible symptoms typical of exposures to ambient ozone. The symptomatic species (from most to least sensitive) were Populus nigra, Viburnum lantana, Salix alba, Crataegus monogyna, Viburnum opulus, Tilia platyphyllos, Cornus alba, Prunus avium, Fraxinus excelsior, Ribes alpinum, and Tilia cordata; Clematis spp. did not show foliar symptoms. Of the 11 symptomatic species, five showed initial injury below the critical level AOT40 10 ppmh O 3 in the 2001 season

  3. Environmental protection foliar fertilization in areas subject to limitation of fertilizers use

    International Nuclear Information System (INIS)

    Gavriluta, I.; Alexandrescu, A; Budoi, G.; Bireescu, L.; Bireescu, G.

    1999-01-01

    Significant increases of plant productivity have been recorded in field experiments conducted between 1991 - 1994 using general purpose complex foliar fertilizers as well as aminoacid containing complex foliar fertilizers. These increases at the same time had positive environmental effects against chemical pollution, especially with nitrates. As a rule, the greater the degree of nutrient efficiency, especially of nitrate, the lower are the losses, which are subject to transfer to the environment. So in the light of environmental protection against chemical pollution using foliar fertilization is certainly beneficial for crops and for all other components of the agricultural environment giving rise to its significant improvement. Both, foliar and soil fertilization in areas with limitation of fertilizer use should be carried out under a continuous and strict analytical check of plant, soil and water. Refs. 14 (author)

  4. Aplicação foliar de fertilizantes organominerais em cultura de alface Foliar application of organic mineral fertilizer in lettuce

    Directory of Open Access Journals (Sweden)

    José Magno Q Luz

    2010-09-01

    Full Text Available A aplicação de fertilizantes organominerais tem permitido respostas positivas em diversas olerícolas. No presente trabalho avaliou-se a produção de mudas e produção comercial de alface, cultivar Vera, em função da aplicação foliar de fertilizantes organominerais líquidos, de outubro de 2005 a janeiro de 2006. A etapa de produção de mudas foi realizada em viveiro especializado na produção de mudas de hortaliças em Uberlândia e a condução da fase de campo foi realizada em área da Universidade Federal de Uberlândia. Analisou-se altura e número de folhas, massa fresca da parte aérea e diâmetro de raízes das mudas, massas fresca da parte aérea e de raízes das plantas na fase de campo. Foram empregados os fertilizantes organominerais Aminoagro Raiz, Aminoagro Folha Top, Aminoagro Mol, Nobrico Star, Aminolom Foliar e Lombrico Mol 75. O primeiro experimento utilizando mudas foi instalado em delineamento inteiramente casualizado com 15 repetições. O segundo experimento instalado a campo, foi feito em blocos ao acaso com 4 repetições. O uso exclusivo dos produtos organominerais líquidos, via aplicação foliar foi superior à testemunha para a maioria das variáveis avaliadas nas fases de muda e campo na alface, cultivar Vera.Biofertilizer application provides positive responses of several vegetable crops. The effect of foliar application of liquid biofertilizers on seedling and on commercial production of lettuce cultivar Vera were evaluated from October 2005 to January 2006. Seedling production was carried out in a nursery specialized in the production of vegetable seedlings, in Uberlandia, Minas Gerais State, Brazil, and the crop growing was carried out at a field of the Universidade Federal de Uberlandia. Plant height, number of leaves, aboveground part fresh weight and root diameter were evaluated on seedlings and fresh weight of the aboveground part and roots were evaluated on plants in the field. Aminoagro Raiz

  5. The influences of CO2 fertilization and land use change on the total aboveground biomass in Amazonian tropical forest

    Science.gov (United States)

    Castanho, A. D.; Zhang, K.; Coe, M. T.; Costa, M. H.; Moorcroft, P. R.

    2012-12-01

    Field observations from undisturbed old-growth Amazonian forest plots have recently reported on the temporal variation of many of the physical and chemical characteristics such as: physiological properties of leaves, above ground live biomass, above ground productivity, mortality and turnover rates. However, although this variation has been measured, it is still not well understood what mechanisms control the observed temporal variability. The observed changes in time are believed to be a result of a combination of increasing atmospheric CO2 concentration, climate variability, recovery from natural disturbance (drought, wind blow, flood), and increase of nutrient availability. The time and spatial variability of the fertilization effect of CO2 on above ground biomass will be explored in more detail in this work. A precise understanding of the CO2 effect on the vegetation is essential for an accurate prediction of the future response of the forest to climate change. To address this issue we simultaneously explore the effects of climate variability, historical CO2 and land-use change on total biomass and productivity using two different Dynamic Global Vegetation Models (DGVM). We use the Integrated Biosphere Simulator (IBIS) and the Ecosystem Demography Model 2.1 (ED2.1). Using land use changes database from 1700 - 2008 we reconstruct the total carbon balance in the Amazonian forest in space and time and present how the models predict the forest as carbon sink or source and explore why the model and field data diverge from each other. From 1970 to 2005 the Amazonian forest has been exposed to an increase of approximately 50 ppm in the atmospheric CO2 concentration. Preliminary analyses with the IBIS and ED2.1 dynamic vegetation model shows the CO2 fertilization effect could account for an increase in above ground biomass of 0.03 and 0.04 kg-C/m2/yr on average for the Amazon basin, respectively. The annual biomass change varies temporally and spatially from about 0

  6. Corn silage from corn treated with foliar fungicide and performance of Holstein cows.

    Science.gov (United States)

    Haerr, K J; Lopes, N M; Pereira, M N; Fellows, G M; Cardoso, F C

    2015-12-01

    Foliar fungicide application to corn plants is used in corn aimed for corn silage in the dairy industry, but questions regarding frequency of application and its effect on corn silage quality and feed conversion when fed to dairy cows remain prevalent. The objective of this study was to evaluate the effects of various foliar fungicide applications to corn on dry matter intake (DMI), milk production, and milk composition when fed to dairy cows. Sixty-four Holstein cows with parity 2.5±1.5, 653±80kg of body weight, and 161±51d in milk were blocked and randomly assigned to 1 of 4 corn silage treatments (total mixed ration with 35% of the dry matter as corn silage). Treatments were as follows: control (CON), corn silage with no applications of foliar fungicide; treatment 1 (1X), corn silage from corn that received 1 application of pyraclostrobin (PYR) foliar fungicide (Headline; BASF Corp.) at corn vegetative stage 5; treatment 2 (2X), corn silage from corn that received the same application as 1X plus another application of a mixture of PYR and metconazole (Headline AMP; BASF Corp.) at corn reproductive stage 1 ("silking"); and treatment 3 (3X), corn silage from corn that received the same applications as 2X as well as a third application of PYR and metconazole at reproductive stage 3 ("milky kernel"). Corn was harvested at about 32% dry matter and 3/4 milk line stage of kernel development and ensiled for 200d. Treatments were fed to cows for 5wk, with the last week being used for statistical inferences. Week -1 was used as a covariate in the statistical analysis. Dry matter intake tended to be lower for cows fed corn silage treated with fungicide than CON (23.8, 23.0, 19.5, and 21.3kg for CON, 1X, 2X, and 3X, respectively). A linear treatment effect for DMI was observed, with DMI decreasing as foliar fungicide applications increased. Treatments CON, 1X, 2X, and 3X did not differ for milk yield (34.5, 34.5, 34.2, and 34.4kg/d, respectively); however, a trend for

  7. Contributing factors in foliar uptake of dissolved inorganic nitrogen at leaf level

    Energy Technology Data Exchange (ETDEWEB)

    Wuyts, Karen, E-mail: karen.wuyts@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Forest and Nature Lab (ForNaLab), Dept. Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode-Melle (Belgium); Adriaenssens, Sandy, E-mail: adriaenssens@irceline.be [Belgian Interregional Environment Agency (IRCEL-CELINE), Kunstlaan 10–11, B-1210 Brussels (Belgium); Staelens, Jeroen, E-mail: jeroen_staelens@yahoo.com [Flemish Environment Agency (VMM), Kronenburgstraat 45, B-2000 Antwerp (Belgium); Wuytack, Tatiana, E-mail: tatiana.wuytack@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van Wittenberghe, Shari, E-mail: shari.vanwittenberghe@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Boeckx, Pascal, E-mail: pascal.boeckx@ugent.be [Isotope Bioscience Laboratory (ISOFYS), Dept. Applied Analytical and Physical Chemistry, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Samson, Roeland, E-mail: roeland.samson@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Verheyen, Kris, E-mail: kris.verheyen@ugent.be [Forest and Nature Lab (ForNaLab), Dept. Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode-Melle (Belgium)

    2015-02-01

    We investigated the influence of leaf traits, rainwater chemistry, and pedospheric nitrogen (N) fertilisation on the aqueous uptake of inorganic N by physiologically active tree leaves. Leaves of juvenile silver birch and European beech trees, supplied with NH{sub 4}NO{sub 3} to the soil at rates from 0 to 200 kg N ha{sup −1} y{sup −1}, were individually exposed to 100 μl of artificial rainwater containing {sup 15}NH{sub 4}{sup +} or {sup 15}NO{sub 3}{sup −} at two concentration levels for one hour. In the next vegetative period, the experiment was repeated with NH{sub 4}{sup +} at the highest concentration only. The N form and the N concentration in the applied rainwater and, to a lesser extent, the pedospheric N treatment and the leaf traits affected the aqueous foliar N uptake. The foliar uptake of NH{sub 4}{sup +} by birch increased when leaves were more wettable. High leaf N concentration and leaf mass per area enhanced the foliar N uptake, and NO{sub 3}{sup −} uptake in particular, by birch. Variation in the foliar N uptake by the beech trees could not be explained by the leaf traits considered. In the first experiment, N fertilisation stimulated the foliar N uptake in both species, which was on average 1.42–1.78 times higher at the highest soil N dose than at the zero dose. However, data variability was high and the effect was not appreciable in the second experiment. Our data suggest that next to rainwater chemistry (N form and concentration) also forest N status could play a role in the partitioning of N entering the ecosystem through the soil and the canopy. Models of canopy uptake of aqueous N at the leaf level should take account of leaf traits such as wettability and N concentration. - Highlights: • Foliar uptake of dissolved inorganic nitrogen (N) by potted trees was studied. • Leaves were individually exposed to rainwater drops containing {sup 15}NH{sub 4}{sup +} or {sup 15}NO{sub 3}{sup −}. • Foliar N uptake efficiency depended on

  8. Predictive modeling of hazardous waste landfill total above-ground biomass using passive optical and LIDAR remotely sensed data

    Science.gov (United States)

    Hadley, Brian Christopher

    This dissertation assessed remotely sensed data and geospatial modeling technique(s) to map the spatial distribution of total above-ground biomass present on the surface of the Savannah River National Laboratory's (SRNL) Mixed Waste Management Facility (MWMF) hazardous waste landfill. Ordinary least squares (OLS) regression, regression kriging, and tree-structured regression were employed to model the empirical relationship between in-situ measured Bahia (Paspalum notatum Flugge) and Centipede [Eremochloa ophiuroides (Munro) Hack.] grass biomass against an assortment of explanatory variables extracted from fine spatial resolution passive optical and LIDAR remotely sensed data. Explanatory variables included: (1) discrete channels of visible, near-infrared (NIR), and short-wave infrared (SWIR) reflectance, (2) spectral vegetation indices (SVI), (3) spectral mixture analysis (SMA) modeled fractions, (4) narrow-band derivative-based vegetation indices, and (5) LIDAR derived topographic variables (i.e. elevation, slope, and aspect). Results showed that a linear combination of the first- (1DZ_DGVI), second- (2DZ_DGVI), and third-derivative of green vegetation indices (3DZ_DGVI) calculated from hyperspectral data recorded over the 400--960 nm wavelengths of the electromagnetic spectrum explained the largest percentage of statistical variation (R2 = 0.5184) in the total above-ground biomass measurements. In general, the topographic variables did not correlate well with the MWMF biomass data, accounting for less than five percent of the statistical variation. It was concluded that tree-structured regression represented the optimum geospatial modeling technique due to a combination of model performance and efficiency/flexibility factors.

  9. Foliar uptake of zinc by vascular plants. Radiometric study

    International Nuclear Information System (INIS)

    Maresova, J.; Remenarova, L.; Hornik, M.; Pipiska, M.; Augustin, J.; Lesny, J.

    2012-01-01

    The aim of this paper was to obtain quantitative data of foliar uptake kinetics and long distance transport of zinc in tobacco (Nicotiana tabacum L.) and hop (Humulus lupulus L.) plants. Zinc was used as a model of microelement and toxic metal, tobacco and hop as a representatives of agriculturally important plants. A tip of leaf blade was immersed in the solution spiked with 65 ZnCl 2 and foliar uptake and translocation to other parts of the plant grown in nutrient solution was measured by gamma-spectrometry and autoradiography. We found that foliar zinc uptake by both plants is dependent on the initial metal concentration within the range C 0 = 10-100 μmol dm -3 ZnCl 2 . Zinc is immobilized mainly in immersed part of the contact leaf and only 0 = 0.1 mmol dm -3 ZnCl 2 concentrations >2.5 mg/g Zn and 4.8 mg/g Zn (dry wt.) in immersed part of tobacco and hop leaf plant, respectively were found after 5 days of exposure. Low mobility of zinc entering the plant via the leaf surface can be attributed to the immobilization of zinc into Zn-ligand complexes with high stability constants log K at pH 6.0-8.0, such as the reaction products of Zn 2+ ions with citric acid, histidine or phosphates. Zinc can be extracted from dried leaves by the solutions of inorganic salts, carboxylic acids, amino acids and synthetic complexing ligands such as EDTA. Anionic (SDS) and non-ionic (Tween 40) surfactants causes the decrease of the Zn foliar uptake, but not translocation of Zn from the contact leaf area. Obtained data are discussed from the point of view of possible limited efficiency of liquid formulations designed for practical applications as Zn foliar fertilizers. (author)

  10. Vegetation Indices for Mapping Canopy Foliar Nitrogen in a Mixed Temperate Forest

    Directory of Open Access Journals (Sweden)

    Zhihui Wang

    2016-06-01

    Full Text Available Hyperspectral remote sensing serves as an effective tool for estimating foliar nitrogen using a variety of techniques. Vegetation indices (VIs are a simple means of retrieving foliar nitrogen. Despite their popularity, few studies have been conducted to examine the utility of VIs for mapping canopy foliar nitrogen in a mixed forest context. In this study, we assessed the performance of 32 vegetation indices derived from HySpex airborne hyperspectral images for estimating canopy mass-based foliar nitrogen concentration (%N in the Bavarian Forest National Park. The partial least squares regression (PLSR was performed for comparison. These vegetation indices were classified into three categories that are mostly correlated to nitrogen, chlorophyll, and structural properties such as leaf area index (LAI. %N was destructively measured in 26 broadleaf, needle leaf, and mixed stand plots to represent the different species and canopy structure. The canopy foliar %N is defined as the plot-level mean foliar %N of all species weighted by species canopy foliar mass fraction. Our results showed that the variance of canopy foliar %N is mainly explained by functional type and species composition. The normalized difference nitrogen index (NDNI produced the most accurate estimation of %N (R2CV = 0.79, RMSECV = 0.26. A comparable estimation of %N was obtained by the chlorophyll index Boochs2 (R2CV = 0.76, RMSECV = 0.27. In addition, the mean NIR reflectance (800–850 nm, representing canopy structural properties, also achieved a good accuracy in %N estimation (R2CV = 0.73, RMSECV = 0.30. The PLSR model provided a less accurate estimation of %N (R2CV = 0.69, RMSECV = 0.32. We argue that the good performance of all three categories of vegetation indices in %N estimation can be attributed to the synergy among plant traits (i.e., canopy structure, leaf chemical and optical properties while these traits may converge across plant species for evolutionary reasons. Our

  11. Equações para a estimativa do índice de área foliar do cafeeiro

    Directory of Open Access Journals (Sweden)

    Favarin José Laércio

    2002-01-01

    Full Text Available Com o objetivo de estudar a variação temporal do índice de área foliar (IAF da cultura de café, utilizando um método simples e não-destrutivo, foi instalado um experimento no Departamento de Produção Vegetal, da Escola Superior de Agricultura Luiz de Queiroz, da Universidade de São Paulo. Utilizou-se a cultivar Mundo Novo IAC 388-17, enxertada sobre a cultivar Apoatã IAC 2258 (de 15 até 35 meses de idade, no espaçamento de 2,5 x 1,0 m. Foram coletadas todas as folhas de duas plantas de café, em intervalos de 60 a 150 dias, para a mensuração da área foliar com o equipamento LI-COR (modelo 3100. Para obter a relação funcional entre IAF e diferentes variáveis de crescimento (altura da planta, número e massa total de folhas e área foliar e arquitetura da copa (área da seção inferior, média e superior do dossel, área lateral do dossel, diâmetro inferior, médio e superior do dossel, volume do dossel da planta e altura do primeiro par de ramos, assumiu-se que a parte aérea do cafeeiro tem a forma cônica. O diâmetro da seção inferior do dossel (primeiro par de ramos e a altura da planta podem ser utilizadas para estimar o índice de área foliar do cafeeiro.

  12. DESEMPENHO DA APLICAÇÃO FOLIAR DE ZINCO EM FEIJOEIRO

    Directory of Open Access Journals (Sweden)

    Hugo Alexandre Coelho

    2010-06-01

    Full Text Available The nutritional requirements of crops, in general, becomes more intense with the beginning of the reproductive phase, being more critical at the time of seed formation, when considerable amounts of nutrients are they translocation, this requirement should be increased to the fact that nutrients are essential to training and development of new bodies of booking. This study aimed to evaluate the agronomic efficiency of foliar application of zinc (zinc oxide Zn 700 g L-1 in bean plant, compared to leaf application of zinc sulphate (ZnSO4 and control (without application of Zn. The experiment was installed in the Faculty of Agricultural Sciences - UNESP / Campus de Botucatu-SP. Was placed in containers with a capacity of 20L of soil and leaf applications encompassing four schemes and two of rain, with 5 replicates per treatment, a total of 40 vessels. The results for the factorial design did not show in general, significantly different answers when evaluated on the simulation of rain or the lack of simulation. The treatment (700g L-1 of ZnO has demonstrated agronomic efficiency as its foliar application, with results equal or exceed the application of ZnSO4 and control when applied at the same dose of Zn.

  13. Foliar and ecosystem respiration in an old-growth tropical rain forest

    Science.gov (United States)

    Molly A. Cavaleri; Steven F. Oberbauer; Michael G. Ryan

    2008-01-01

    Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI).A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (...

  14. Concentração foliar de manganês e zinco em laranjeiras adubadas com óxidos e carbonatos via foliar Leaf concentrations of manganese and zinc in the orange fertilized via foliar application with oxides and carbonates

    Directory of Open Access Journals (Sweden)

    Leandro José Grava de Godoy

    2013-09-01

    Full Text Available Dentre os micronutrientes, o Zn e o Mn limitam a produção dos citros, no Brasil. A aplicação foliar tem sido a forma tradicional de fornecimento, contudo, a eficiência desta adubação depende de uma série de fatores, entre eles o tipo de fertilizante. Foram realizados dois experimentos em pomar com laranjeiras Pêra, enxertadas em limão cravo, com sete anos de idade, em Botucatu, SP. No primeiro experimento foram avaliadas três fontes de Mn via foliar: carbonato de manganês A, carbonato de manganês B e sulfato manganoso, em duas doses para cada fertilizante, correspondente a 250 e 500 g ha-1 de Mn, mais o controle, pulverizado somente com água. No segundo experimento foram testadas três fontes de Zn para aplicação foliar: óxido de zinco A, óxido de zinco B e sulfato de zinco, em duas doses para cada fertilizante, correspondente a 375 e 750 g ha-1 de Zn, mais o controle. As amostragens de folhas foram realizadas mensalmente, iniciando aos 30 dias após aplicação dos tratamentos. A aplicação foliar com carbonato de manganês B, na dose de 500 g ha-1 Mn, e com óxido de zinco B, na dose de 750 g ha-1, proporcionaram, respectivamente, níveis nutricionais adequados de Mn e Zn nas folhas de laranjeira. Na ausência de chuvas, os teores adequados de Mn e Zn no solo, não permitem suprir satisfatoriamente as laranjeiras Pêra enxertadas em limoeiro cravo.Among micronutrients, Zn and Mn limit the production of citrus in Brazil. Foliar application has been the traditional form of supply, however the efficiency of this type of fertilization depends on a number of factors, including the type of fertilizer used. Two experiments were conducted in an orchard of seven year old Pêra orange, grafted onto Rangpur lime, in Botucatu, São Paulo. In the first experiment three sources of Mn, applied via foliar application, were evaluated: manganese carbonate A, manganese carbonate B and manganese sulphate, at two rates per fertilizer

  15. Biomass Maps | Geospatial Data Science | NREL

    Science.gov (United States)

    Biomass Maps Biomass Maps These maps illustrate the biomass resource in the United States by county . Biomass feedstock data are analyzed both statistically and graphically using a geographic information Data Science Team. Solid Biomass Resources Map of Total Biomass Resources in the United States Solid

  16. Selenium supplementation of Portuguese wheat cultivars through foliar treatment in actual field conditions

    International Nuclear Information System (INIS)

    Catarina Galinha; Pacheco, A.M.G.; Maria do Carmo Freitas; Jose Coutinho; Benvindo Macas; Ana Sofia Almeida

    2013-01-01

    Selenium (Se) is a trace element essential to the well-being and health quality of humankind. Plant-derived foodstuffs, namely cereals, are the major dietary sources of Se in most countries throughout the world, even if Se contents are strongly dependent upon the corresponding levels in cereal-growing soils. Therefore, wheat is one of the staple crops that appears as an obvious candidate for Se biofortification, considering its gross-tonnage production and nutritional relevance worldwide. The present paper focuses on the ability of bread and durum wheat-Triticum aestivum L. and Triticum durum Desf., respectively-to accumulate Se after supplementation via a foliar-addition procedure. Two of the most representative wheat cultivars in Portugal - Jordao (bread) and Marialva (durum) - have been selected for supplementation trials, following the same agronomic practices and field schedules as the regular (non-supplemented) crops of those varieties (sowing: November 2010; harvesting: July 2011). Foliar additions were performed at the booting and grain-filling stages, using sodium selenate and sodium selenite solutions at three different Se concentrations-equivalent to field supplementation rates of 4, 20 and 100 g of Se per ha-with and without potassium iodide. Selenium contents in wheat grains obtained under foliar application are compared to data from regular wheat samples (field blanks) grown at the same soil/season, yet devoid of any Se supplementation. Total Se in all field samples was determined by cyclic neutron activation analysis (CNAA), via the short-lived nuclide 77m Se (half-life time: 17.5 s), in the Portuguese Research Reactor (RPI; CTN-IST, Sacavem). Quality control of the analytical procedure was asserted through concurrent analyses of NIST-SRM R 1567a (Wheat Flour). Results show that foliar additions can increase Se contents in mature grains up to 15 and 40 times for Marialva and Jordao, respectively, when compared to non-supplemented crops. Jordao and

  17. Total Protein Content Determination of Microalgal Biomass by Elemental Nitrogen Analysis and a Dedicated Nitrogen-to-Protein Conversion Factor

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Olstad-Thompson, Jessica L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Templeton, David W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-02

    Accurately determining protein content is important in the valorization of algal biomass in food, feed, and fuel markets, where these values are used for component balance calculations. Conversion of elemental nitrogen to protein is a well-accepted and widely practiced method, but depends on developing an applicable nitrogen-to-protein conversion factor. The methodology reported here covers the quantitative assessment of the total nitrogen content of algal biomass and a description of the methodology that underpins the accurate de novo calculation of a dedicated nitrogen-to-protein conversion factor.

  18. Foliar absorption and translocation of 137cs in egyptian olive plants

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Maly, A.I.

    1999-01-01

    Foliar absorption and translocation of 137Cs by olive leaves were studied. Olive seedlings were transferred to the greenhouse in pots containing fine Nile silt.. Two seriies of pot experiments were conducted at the Nuclear Research Center site at Inshas. The treatments were conducted on leaves at the two middle nodes of the selected shoots. The lower surface of the olive leaf absorbed more 137Cs at the studied pH values as compared with the upper surface. The results show that changing the pH from 2 to 3 had no have any effect on the foliar absorption of 137Cs. Further increase of pH value caused the 137Cs foliar absorption to show a minimum at pH 5 then a maximum at pH 7. At pH 8 the foliar absorption of 137Cs started to decrease again. The concentration of translocated 137Cs was found to decrease gradually in the leaves above and below the treated ones. Absorption of 137Cs increased with time in the first 24 hours followed by lower absorption rates till the end of the experiment after 148 hours

  19. Molecular mechanisms of foliar water uptake in a desert tree

    OpenAIRE

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-01-01

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecul...

  20. Effects of Zn, macronutrients, and their interactions through foliar applications on winter wheat grain nutritional quality.

    Directory of Open Access Journals (Sweden)

    Shaoxia Wang

    Full Text Available Although application of Zn combined with macronutrients (K, P, and N can be used to fortify wheat grain with Zn, little is known about their interactions when foliar application is employed or the influences of common soil fertility management practices (e.g. N and straw management on their efficiency. Therefore, the effects of foliar-applied Zn and N, P, or K on grain nutritional quality (especially Zn were investigated in wheat grown under different soil N rates at two sites with (Sanyuan or without (Yangling employing straw return. A 4-year-long field experiment was also conducted to evaluate the environmental stability of the foliar formulations. Across 6 site-years, foliar Zn application alone or combined with N, P, or K fertilizers resulted in 95.7%, 101%, 67.9% and 121% increases in grain Zn concentration, respectively. In terms of increasing grain Zn concentration, foliar-applied Zn positively interacted with N (at Sanyuan and K (at Yangling, but negatively interacted with P at any condition tested, suggesting depressive effects of foliarly-applied P on physiological availability of Zn. Although these interaction effects were the major factor that governing the efficiency of foliar-applied Zn combined with N, P, or K on grain Zn concentration, the magnitude of the increase/decrease in grain Zn (-3.96~5.71 mg kg-1 due to these interactions was much less than the average increases following Zn+K (31.3, Zn+P (18.7, and Zn+N (26.5 mg kg-1 treatments relative to that observed in foliar Zn-only treatment. The combined foliar application of Zn with N, P, or K did not cause any adverse impact on grain yield and other nutritional quality and in some cases slightly increased grain yield and macronutrient concentrations. Grain phytic acid:Zn molar ratios were respectively 52.0%, 53.1%, 43.4% and 63.5% lower in the foliar Zn, Zn+N, Zn+P and Zn+K treatments than in the control treatment. These effects were consistent over four years and across three

  1. Effects of Zn, macronutrients, and their interactions through foliar applications on winter wheat grain nutritional quality.

    Science.gov (United States)

    Wang, Shaoxia; Li, Meng; Liu, Ke; Tian, Xiaohong; Li, Shuo; Chen, Yanlong; Jia, Zhou

    2017-01-01

    Although application of Zn combined with macronutrients (K, P, and N) can be used to fortify wheat grain with Zn, little is known about their interactions when foliar application is employed or the influences of common soil fertility management practices (e.g. N and straw management) on their efficiency. Therefore, the effects of foliar-applied Zn and N, P, or K on grain nutritional quality (especially Zn) were investigated in wheat grown under different soil N rates at two sites with (Sanyuan) or without (Yangling) employing straw return. A 4-year-long field experiment was also conducted to evaluate the environmental stability of the foliar formulations. Across 6 site-years, foliar Zn application alone or combined with N, P, or K fertilizers resulted in 95.7%, 101%, 67.9% and 121% increases in grain Zn concentration, respectively. In terms of increasing grain Zn concentration, foliar-applied Zn positively interacted with N (at Sanyuan) and K (at Yangling), but negatively interacted with P at any condition tested, suggesting depressive effects of foliarly-applied P on physiological availability of Zn. Although these interaction effects were the major factor that governing the efficiency of foliar-applied Zn combined with N, P, or K on grain Zn concentration, the magnitude of the increase/decrease in grain Zn (-3.96~5.71 mg kg-1) due to these interactions was much less than the average increases following Zn+K (31.3), Zn+P (18.7), and Zn+N (26.5 mg kg-1) treatments relative to that observed in foliar Zn-only treatment. The combined foliar application of Zn with N, P, or K did not cause any adverse impact on grain yield and other nutritional quality and in some cases slightly increased grain yield and macronutrient concentrations. Grain phytic acid:Zn molar ratios were respectively 52.0%, 53.1%, 43.4% and 63.5% lower in the foliar Zn, Zn+N, Zn+P and Zn+K treatments than in the control treatment. These effects were consistent over four years and across three soil N

  2. Landsat Time-series for the Masses: Predicting Wood Biomass Growth from Tree-rings Using Departures from Mean Phenology in Google Earth Engine

    Science.gov (United States)

    Foster, J. R.; D'Amato, A. W.; Itter, M.; Reinikainen, M.; Curzon, M.

    2017-12-01

    The terrestrial carbon cycle is perturbed when disturbances remove leaf biomass from the forest canopy during the growing season. Changes in foliar biomass arise from defoliation caused by insects, disease, drought, frost or human management. As ephemeral disturbances, these often go undetected and their significance to models that predict forest growth from climatic drivers remains unknown. Here, we seek to distinguish the roles of weather vs. canopy disturbance on forest growth by using dense Landsat time-series to quantify departures in mean phenology that in turn predict changes in leaf biomass. We estimated a foliar biomass index (FBMI) from 1984-2016, and predict plot-level wood growth over 28 years on 156 tree-ring monitoring plots in Minnesota, USA. We accessed the entire Landsat archive (sensors 4, 5 & 7) to compute FBMI using Google Earth Engine's cloud computing platform (GEE). GEE allows this pixel-level approach to be applied at any location; a feature we demonstrate with published wood-growth data from flux tower sites. Our Bayesian models predicted biomass changes from tree-ring plots as a function of Landsat FBMI and annual climate data. We expected model parameters to vary by tree functional groups defined by differences in xylem anatomy and leaf longevity, two traits with linkages to phenology, as reported in a recent review. We found that Landsat FBMI was a surprisingly strong predictor of aggregate wood-growth, explaining up to 80% of annual growth variation for some deciduous plots. Growth responses to canopy disturbance varied among tree functional groups, and the importance of some seasonal climate metrics diminished or changed sign when FBMI was included (e.g. fall and spring climatic water deficit), while others remained unchanged (current and lagged summer deficit). Insights emerging from these models can clear up sources of persistent uncertainty and open a new frontier for models of forest productivity.

  3. Regional assessment of N saturation using foliar and root δ15N

    Science.gov (United States)

    L.H. Pardo; P.H. Templer; C.L. Goodale; S. Duke; P.M. Groffman; M.B. Adams; P. Boeckx; J. Boggs; J. Campbell; B. Colman; J. Compton; B. Emmett; P. Gundersen; J. Kjonaas; G. Lovett; M. Mack; A. Magill; M. Mbila; M.J. Mitchell; G. McGee; S. McNulty; K. Nadelhoffer; S. Ollinger; D. Ross; H. Rueth; L. Rustad; P. Schaberg; S. Schiff; P. Schleppi; J. Spoelstra; W. Wessel

    2006-01-01

    N saturation induced by atmospheric N deposition can have serious consequences for forest health in many regions. In order to evaluate whether foliar δ15N may be a robust, regional-scale measure of the onset of N saturation in forest ecosystems, we assembled a large dataset on atmospheric N deposition, foliar and root δ

  4. Comparison between Seed and Foliar Treatment as a Tool in Integrated Pest Management.

    Science.gov (United States)

    Matyjaszczyk, Ewa

    2017-08-02

    A study into doses of seed treatments and foliar plant protection products containing an identical active substance registered to control the same pest in the same crops was carried out in the European Union. The results show that, for fungicides, the use of seed treatment is often connected with a significantly lower release of active substance per hectare when compared to foliar treatments. In 11 of 13 cases, the difference was 8-fold or higher. For insecticides, in most of the cases, the consumption of an active substance was several times higher for seed treatment, in one case for foliar application.

  5. Foliar-applied urea modulates nitric oxide synthesis metabolism and glycinebetaine accumulation in drought-stressed maize

    International Nuclear Information System (INIS)

    Zhang, L.; Tian, L.; Lai, J.; Zheng, P.; Liang, Z.; Alva, A

    2014-01-01

    Foliar urea has been proved to play a better positive role in enhancing accumulation of nitric oxide (NO) and glycinebetaine (GB) in maize (Zea mays L.) under drought stress (DS). However, it is unclear how foliar urea affects biosynthetic metabolism of NO and its relationship with GB accumulation. This study was on investigating the effect of foliar- applied urea on seedlings of maize cultivar Zhengdan 958 grown in a hydroponic medium under DS or No DS. Contents of NO and GB and nitric oxide synthase (NOS) activity increased and peaked 12 h after the treatment. Nitrate reductase activity (NRA) followed the similar pattern 6h after the treatment. Under DS foliar urea application increased NR and NOS activity and, thereby, increased NO formation. Therefore, enhancement in activities of both NRA and NOS resulted in an increase of NO accumulation. Foliar- applied urea could induce an increased NO burst by enhanced NO synthesis metabolism as a nitrogen signal, possibly resulting in GB accumulation under DS. (author)

  6. Aplicação foliar de nitrogênio em videira: avaliação do teor na folha e das reservas nitrogenadas e de carboidratos nas gemas dos ramos do ano Nitrogen foliar spraying in grapevine: content in leaves and reserve of nitrogen and carboihydrates in shoots buds

    Directory of Open Access Journals (Sweden)

    Gustavo Brunetto

    2008-12-01

    Full Text Available No Rio Grande do Sul (RS, as aplicações foliares de nitrogênio, quando necessárias, têm sido usadas para complementar a adubação via solo. Entretanto, carece-se de informações dos efeitos da freqüência e da quantidade de N aplicado sobre a sua dinâmica na folha e de reservas nitrogenadas e de carboidratos nas partes perenes da videira, que compõem o objetivo deste trabalho. O trabalho foi conduzido em um vinhedo da cultivar Chenin Blanc, safra 2004/05, na Embrapa Uva e Vinho, em Bento Gonçalves (RS, sobre um Neossolo Litólico. Os tratamentos consistiram de uma, duas e três aplicações foliares de 0 (água; 1,11; 2,23; 3,31 e 4,41g de N planta-1. Após cada aplicação de nitrogênio, foram coletadas folhas inteiras (limbo+pecíolo no terço médio dos ramos do ano, no interior e exterior dos diferentes lados da planta, secas, moídas e preparadas para a análise de N total. Na última época de coleta de folhas, foram coletados três ramos do ano em cada planta, retiradas seis gemas em cada ramo, as quais foram submetidas à análise de amido, carboidratos solúveis totais, carboidratos redutores, aminoácidos totais e proteínas totais. As aplicações foliares de N aumentaram o teor do nutriente na folha inteira, de forma destacada, nas épocas de coletas próximas às aplicações; entretanto, essas aplicações diminuíram os teores de amido e carboidratos solúveis totais nas gemas dos ramos do ano e não afetaram os teores de carboidratos redutores e os totais de aminoácidos e proteínas.Leaf nitrogen application is used in grapevines in Southern Brazil as complement to soil fertilization. On the other hand, there is no information about its affects on nitrogen content in the leaves and nitrogen and carbohydrates reserves in the perennial parts. The experiment was carried out in 2004/2005, with the objective to evaluate the effect of nitrogen foliar spraying on leaves and nitrogen and carbohydrates reserves in shoots buds

  7. Increasing Selenium and Yellow Pigment Concentrations in Foxtail Millet (Setaria italica L.) Grain with Foliar Application of Selenite.

    Science.gov (United States)

    Ning, Na; Yuan, Xiang-Yang; Dong, Shu-Qi; Wen, Yin-Yuan; Gao, Zhen-Pan; Guo, Mei-Jun; Guo, Ping-Yi

    2016-03-01

    Although addition of selenium (Se) is known to increase Se in crops, it is unclear whether exogenous Se is linked to nutritional and functional components in foxtail millet (Setaria italica L.). In this study, we examined the potential of increasing Se and yellow pigment (YP) in foxtail millet grain by foliar application of Se. Field experiments were conducted during the growing season of foxtail millet in 2013 and 2014 to assess the effects of foliar spray of sodium selenite (10-210 g Se ha(-1)) on the yield, Se uptake and accumulation, total YP, and microminerals in the grain. Average grain yields with Se application were 5.60 and 4.53 t ha(-1) in the 2 years, showing no significant differences from the unfertilized control. However, grain Se concentration increased linearly with Se application rate, by 8.92 and 6.09 μg kg(-1) in the 2 years with application of 1 g Se ha(-1) (maximum grain recovery rates of Se fertilizer, 52 and 28 %). Likewise, total grain YP concentration markedly increased by 0.038 and 0.031 mg kg(-1) in the 2 years with application of 1 g Se ha(-1). Grain Mn, Cu, Fe, and Zn concentrations were not significantly affected by Se application. This study indicated that foliar application of Se effectively and reliably increased the concentrations of Se and YP in foxtail millet grain without affecting the yield or mineral micronutrient concentrations. Thus, foliar-applied selenite has a significant potential to increase the concentrations of selenium and YP (putative lutein (Shen, J Cereal Sci 61:86-93, 2015; Abdel-Aal, Cereal Chem 79:455-457, 2002; Abdel-Aal, J Agric Food Chem 55:787-794, 2007)) of foxtail millet and, thus, the health benefits of this crop.

  8. Effect of two doses of urea foliar application on leaves and grape nitrogen composition during two vintages.

    Science.gov (United States)

    Pérez-Álvarez, Eva P; Garde-Cerdán, Teresa; García-Escudero, Enrique; Martínez-Vidaurre, José María

    2017-06-01

    Nitrogen affects grapevine growth and also yeast metabolism, which have a direct influence on fermentation kinetics and the formation of different volatile compounds. Throughout the grapevine cycle, soil nitrogen availability and grape nitrogen composition can vary because of different factors. Nitrogen foliar applications can contribute toward enhancing grapevine nitrogen status and minimize the problem of leaching that traditional nitrogen-soil applications can provoke. The present study aimed to evaluate the influence of urea foliar applications on grapevine nitrogen status and grape amino acid content. Accordingly, two different doses of urea were applied over the leaves of a 'Tempranillo' vineyard. The highest urea doses affected nitrogen content on blade leaf tissues after veraison. Must amino acid profiles were modified by urea application and some of the compounds increased their concentrations. The effect of year on the increase of must total amino acid concentrations was more important than the effect of the doses applied. Urea foliar applications can be an interesting tool for decreasing grapevine nitrogen deficiencies. This method of nitrogen implementation in the vineyard could avoid sluggish fermentation problems during winemaking, enhance must nitrogen composition, and contribute to improving wine quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Pyrolysis of biomass for hydrogen production

    International Nuclear Information System (INIS)

    Constantinescu, Marius; David, Elena; Bucura, Felicia; Sisu, Claudia; Niculescu, Violeta

    2006-01-01

    Biomass processing is a new technology within the area of renewable energies. Current energy supplies in the world are dominated by fossil fuels (some 80% of the total use of over 400 EJ per year). Nevertheless, about 10-15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. On average, in the industrialized countries biomass contributes some 9-13% to the total energy supplies, but in developing countries the proportion is as high as a fifth to one third. In quite a number of countries biomass covers even over 50 to 90% of the total energy demand. Classic application of biomass combustion is heat production for domestic applications. A key issue for bio-energy is that its use should be modernized to fit into a sustainable development path. Especially promising are the production of electricity via advanced conversion concepts (i.e. gasification and state-of-the-art combustion and co-firing) and modern biomass derived fuels like methanol, hydrogen and ethanol from ligno-cellulosic biomass, which can reach competitive cost levels within 1-2 decades (partly depending on price developments with petroleum). (authors)

  10. Biomass resources in California

    Energy Technology Data Exchange (ETDEWEB)

    Tiangco, V.M.; Sethi, P.S. [California Energy Commission, Sacramento, CA (United States)

    1993-12-31

    The biomass resources in California which have potential for energy conversion were assessed and characterized through the project funded by the California Energy Commission and the US Department of Energy`s Western Regional Biomass Energy Program (WRBEP). The results indicate that there is an abundance of biomass resources as yet untouched by the industry due to technical, economic, and environmental problems, and other barriers. These biomass resources include residues from field and seed crops, fruit and nut crops, vegetable crops, and nursery crops; food processing wastes; forest slash; energy crops; lumber mill waste; urban wood waste; urban yard waste; livestock manure; and chaparral. The estimated total potential of these biomass resource is approximately 47 million bone dry tons (BDT), which is equivalent to 780 billion MJ (740 trillion Btu). About 7 million BDT (132 billion MJ or 124 trillion Btu) of biomass residue was used for generating electricity by 66 direct combustion facilities with gross capacity of about 800 MW. This tonnage accounts for only about 15% of the total biomass resource potential identified in this study. The barriers interfering with the biomass utilization both in the on-site harvesting, collection, storage, handling, transportation, and conversion to energy are identified. The question whether these barriers present significant impact to biomass {open_quotes}availability{close_quotes} and {open_quotes}sustainability{close_quotes} remains to be answered.

  11. Effect of foliar fertilizer and fungicidal protection against leaf spot diseases on winter wheat

    Directory of Open Access Journals (Sweden)

    Agnieszka Mączyńska

    2012-12-01

    Full Text Available Field experiments were carried out in the seasons 2000/2001 and 2001/2002 in Plant Protection Institute, Sooenicowice Branch to assess the influence of foliar fertilizers such as Ekolist PK 1, Ekolist Mg, Mikrosol Z and Urea on healthiness of winter wheat. Foliar fertilizers were mixed with fungicides. The fungicides were applied at full or half recommended doses. The effect of the disease on wheat leaves was evaluated three times in each vegetation season. Remaining green leaf area (GLA of leaves was also determined. GLA of the leaves F-1 was not significantly different for each combination with different fertilization and different levels of chemical treatment. The application of foliar fertilizer only had no effect on green leaf area (GLA. The results indicate that foliar fertilization of all experimental plots improved leaf condition and therefore halted the development of wheat leaf diseases. The increases of 1000 grain mass and yield was high for each plot where a fertilizer and a full or half dose of a fungicide was applied. Foliar fertilizing with no chemical control had no proven effect on studied parameters.

  12. Inferring foliar water uptake using stable isotopes of water.

    Science.gov (United States)

    Goldsmith, Gregory R; Lehmann, Marco M; Cernusak, Lucas A; Arend, Matthias; Siegwolf, Rolf T W

    2017-08-01

    A growing number of studies have described the direct absorption of water into leaves, a phenomenon known as foliar water uptake. The resultant increase in the amount of water in the leaf can be important for plant function. Exposing leaves to isotopically enriched or depleted water sources has become a common method for establishing whether or not a plant is capable of carrying out foliar water uptake. However, a careful inspection of our understanding of the fluxes of water isotopes between leaves and the atmosphere under high humidity conditions shows that there can clearly be isotopic exchange between the two pools even in the absence of a change in the mass of water in the leaf. We provide experimental evidence that while leaf water isotope ratios may change following exposure to a fog event using water with a depleted oxygen isotope ratio, leaf mass only changes when leaves are experiencing a water deficit that creates a driving gradient for the uptake of water by the leaf. Studies that rely on stable isotopes of water as a means of studying plant water use, particularly with respect to foliar water uptake, must consider the effects of these isotopic exchange processes.

  13. A two-compartment exposure device for foliar uptake study

    International Nuclear Information System (INIS)

    Zuo, Q.; Lin, H.; Zhang, X.L.; Li, Q.L.; Liu, S.Z.; Tao, S.

    2006-01-01

    An airtight two-chamber exposure devise was designed for investigating foliar uptake of polycyclic aromatic hydrocarbons (PAHs) by plants. The upper and the bottom chambers of the device were air-tightly separated by an aluminum foil and the plant aerial tissues and roots were exposed in the two chambers, respectively. The device was tested using maize exposed to several PAH species. Positive correlations between air and aerial tissue concentrations of the exposed PAH species were revealed. PAHs spiking in the culture solution had no influence on the leaf concentrations. -- A two-compartment gastight exposure device was developed for investigation of foliar uptake of PAHs by plants

  14. Effect of simulated sulfuric acid rain on yield, growth and foliar injury of several crops

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J J; Neely, G E; Perrigan, S C; Grothaus, L C

    1981-01-01

    This study was designed to reveal patterns of response of major United States crops to sulfuric acid rain. Potted plants were grown in field chambers and exposed to simulated sulfuric acid rain (pH 3.0, 3.5 or 4.0) or to a control rain (pH 5.6). At harvest, the weights of the marketable portion, total aboveground portion and roots were determined for 28 crops. Of these, marketable yield production was inhibited for 5 crops (radish, beet, carrot, mustard greens, broccoli), stimulated for 6 crops (tomato, green pepper, strawberry, alfalfa, orchardgrass, timothy), and ambiguously affected for 1 crop (potato). In addition, stem and leaf production of sweet corn was stimulated. Visible injury of tomatoes might have decreased their marketabiity. No statistically significant effects on yield were observed for the other 15 crops. The results suggest that the likelihood of yield being affected by acid depends on the part of the plant utilized, as well as on species. Effects on the aboveground portion of crops and on roots are also presented. Plants were regularly examined for foliar injury associated with acid rain. Of the 35 cultivars examined, the foliage of 31 was injured at pH 3.0, 28 at pH 3.5, and 5 at pH 4.0. Foliar injury was not generally related to effects on yield. However, foliar injury of Swiss chard, mustard greens and spinach was severe enough to adversely affect marketability.

  15. Integrated effect of nutrients from a recirculation aquaponic system and foliar nutrition on the yield of tomatoes Solanum lycopersicum L. and Solanum pimpinellifolium.

    Science.gov (United States)

    Gullian Klanian, Mariel; Delgadillo Diaz, Mariana; Aranda, Javier; Rosales Juárez, Carolina

    2018-04-20

    The objective of this study was to evaluate the potential of tomato plants to efficiently use the nitrogen (N) of a recirculation aquaponic system (RAS) and to evaluate the effects of foliar fertilization as a complement to the water nutrition on the growth of the two tomato cultivars. The significant effect of six macro- and seven micronutrients was evaluated on the plant growth and on the fruit yield. Two experiments were performed in a nutrient film aquaponic unit. The first experiment was designed to study the effects of foliar fertilization on the seedlings of two tomato cultivars Costoluto Genovese (CG) (Solanum lycopersicum L.) and Currant tomato (Ct) (Solanum pimpinellifolium) with 8% of weekly water exchange (WE8%-RAS). The foliar fertilizer was formulated with N restriction in the last 11 weeks (TF1). In the second experiment, two other foliar fertilization treatments (TF2 and TF3) were applied with a concentration of nutrients twice and triple that in TF1, but with a lower proportion of NPK ratio. These treatments were tested on the cultivar CG in a RAS with zero water exchange (WE0%-RAS). The data from the 1st experiment showed a positive effect of the foliar fertilization on the yield of both cultivars. The fertilization markedly influenced the dry matter weight of the CG; however, this effect was not observed in the Ct. The root length of both cultivars was positively influenced by the P content, whereas the plant height was affected by the excess of Co and S. According to the results from the 2nd experiment, the TF2 plants had the highest number of fruits with a high mean weight. The system was efficient in utilizing N from fish tank; the water K favored the yield of the CG fruit and the foliar K favored the growth of the TF2 plants. With a decrease in the foliar N, the CG plants were able to absorb 27.5% of the NO 3 - and 7.06% of total ammonia nitrogen from water. The absolute and relative growth rate of Nile tilapia was not affected by the rate

  16. De-coupling seasonal changes in water content and dry matter to predict live conifer foliar moisture content

    Science.gov (United States)

    W. Matt Jolly; Ann M. Hadlow; Kathleen Huguet

    2014-01-01

    Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples from Pinus contorta for...

  17. Climatic limits on foliar growth during major droughts in the southwestern USA

    Science.gov (United States)

    Weiss, Jeremy L.; Betancourt, Julio L.; Overpeck, Jonathan T.

    2012-09-01

    Pronounced droughts during the 1950s and 2000s in the American Southwest provide an opportunity to compare mesoscale ecosystem responses to anomalously dry conditions before and during the regional warming that started in the late 1970s. This year-round warming has produced fewer cool season freezes, losses in regional snowpack, an 8-10 day advance in spring onset, and hotter summers, all of which should affect vegetation differently across seasons and elevations. Here, we examine indices that represent climatic limits on foliar growth for both drought periods and evaluate these indices for areas that experienced tree mortality during the 2000s drought. Relative to the 1950s drought, warmer conditions during the 2000s drought decreased the occurrence of temperatures too low for foliar growth at lower elevations in winter and higher elevations in summer. Higher vapor pressure deficits (VPDs), largely driven by warmer temperatures in the more recent drought, were more limiting to foliar growth from spring through summer at lower and middle elevations. At many locations where tree mortality occurred during the 2000s drought, low-temperature constraints on foliar growth were extremely unlimiting, whereas VPD constraints were extremely limiting from early spring through late autumn. Our analysis shows that in physiographically complex regions such as the Southwest, seasonality and elevational gradients are important for understanding vegetative responses to warming. It also suggests that continued warming will both increase the degree to which VPD limits foliar growth during future droughts and expand its reach to higher elevations and other seasons.

  18. Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?

    Science.gov (United States)

    Cornelissen, J H C; Quested, H M; van Logtestijn, R S P; Pérez-Harguindeguy, N; Gwynn-Jones, D; Díaz, S; Callaghan, T V; Press, M C; Aerts, R

    2006-03-01

    Plant traits have become popular as predictors of interspecific variation in important ecosystem properties and processes. Here we introduce foliar pH as a possible new plant trait, and tested whether (1) green leaf pH or leaf litter pH correlates with biochemical and structural foliar traits that are linked to biogeochemical cycling; (2) there is consistent variation in green leaf pH or leaf litter pH among plant types as defined by nutrient uptake mode and higher taxonomy; (3) green leaf pH can predict a significant proportion of variation in leaf digestibility among plant species and types; (4) leaf litter pH can predict a significant proportion of variation in leaf litter decomposability among plant species and types. We found some evidence in support of all four hypotheses for a wide range of species in a subarctic flora, although cryptogams (fern allies and a moss) tended to weaken the patterns by showing relatively poor leaf digestibility or litter decomposability at a given pH. Among seed plant species, green leaf pH itself explained only up to a third of the interspecific variation in leaf digestibility and leaf litter up to a quarter of the interspecific variation in leaf litter decomposability. However, foliar pH substantially improved the power of foliar lignin and/or cellulose concentrations as predictors of these processes when added to regression models as a second variable. When species were aggregated into plant types as defined by higher taxonomy and nutrient uptake mode, green-specific leaf area was a more powerful predictor of digestibility or decomposability than any of the biochemical traits including pH. The usefulness of foliar pH as a new predictive trait, whether or not in combination with other traits, remains to be tested across more plant species, types and biomes, and also in relation to other plant or ecosystem traits and processes.

  19. The Effect of Zinc Sulfate Different Amount Soil and Foliar Application on Correlated Grain Characters in Sweet Corn

    Directory of Open Access Journals (Sweden)

    J. Mahmoodi,

    2013-06-01

    Full Text Available This research was conducted to evaluate the effects different concentrations of zinc sulfate applications at different growth stages on sweet corn at the Research Station of Faculty of Agriculture in Islamic Azad University, Tabriz branch in 2012. The study was conducted in split plot experiment based on Randomized Complete Block Design with three replications. Treatments were seven levels of zinc sulfate application methods: (control, soil application, foliar application at 6-8 leaf growth stage, tasseling, grain filling stage, foliar application at three stages, soil application with foliar application at three stages as main plot, three levels of foliar and soil application of zinc sulfate: (0.003, 0.005 and 0.007 for foliar application and 15, 25 and 35 kg/ha for soil application as sub plot. Results showed that the highest grain yield correlated characters were obtained in foliar application at three stages and soil application with foliar application at three stages. In these conditions increasing of dry grain yield and ear were more than 50%. The higher values for grain production were obtained in Zn foliar application with 0.005 concentration (25 kg/ha soil application. Zinc sulfate increased Zn content of grains produced more than 100%. Thus, using Zn not only increases sweet corn grain and ear yield but also increased quality of products.

  20. Herbage Production and Quality of Shrub Indigofera Treated by Different Concentration of Foliar Fertilizer

    Directory of Open Access Journals (Sweden)

    L. Abdullah

    2010-12-01

    Full Text Available A field experiment on fodder legume Indigofera sp. was conducted to investigate the effects of foliar fertilizer concentration on forage yield and quality, and to identify optimum concentrations among the fertilizer treatments on herbage yield, chemical composition (CP, NDF, ADF, minerals, and in vitro dry matter (IVDMD as wll as organic matter (IVOMD digestibility in goat’s rumen. Randomized block design was used for the six concentration of fertilizer treatments; control, 10, 20, 30, 40, and 50 g/10 l with 3 replicates. Leaves were sprayed with foliar fertilizer at 30, 34, 38, and 42 days after harvest. Samples were collected at 2 harvest times with 60 days cutting interval. Application of the foliar fertilizer up to 30 g/10 l significantly increased herbage DM yield, twig numbers, tannin, saponin, Ca and P content, as well as herbage digestibility (IVDMD and IVOMD. The lower and higher concentration of foliar fertilizer resulted in lower value of those parameters, but NDF and ADF contents had the opposite patterns. The optimum level of foliar fertilizer that resulted the highest herbage yield and quality was 30 g/10 l, and the highest in vitro digestibility and Ca concentration was 20 g/10 l.

  1. [Compatible biomass models of natural spruce (Picea asperata)].

    Science.gov (United States)

    Wang, Jin Chi; Deng, Hua Feng; Huang, Guo Sheng; Wang, Xue Jun; Zhang, Lu

    2017-10-01

    By using nonlinear measurement error method, the compatible tree volume and above ground biomass equations were established based on the volume and biomass data of 150 sampling trees of natural spruce (Picea asperata). Two approaches, controlling directly under total aboveground biomass and controlling jointly from level to level, were used to design the compatible system for the total aboveground biomass and the biomass of four components (stem, bark, branch and foliage), and the total ground biomass could be estimated independently or estimated simultaneously in the system. The results showed that the R 2 of the one variable and bivariate compatible tree volume and aboveground biomass equations were all above 0.85, and the maximum value reached 0.99. The prediction effect of the volume equations could be improved significantly when tree height was included as predictor, while it was not significant in biomass estimation. For the compatible biomass systems, the one variable model based on controlling jointly from level to level was better than the model using controlling directly under total above ground biomass, but the bivariate models of the two methods were similar. Comparing the imitative effects of the one variable and bivariate compatible biomass models, the results showed that the increase of explainable variables could significantly improve the fitness of branch and foliage biomass, but had little effect on other components. Besides, there was almost no difference between the two methods of estimation based on the comparison.

  2. Total vs. internal element concentrations in Scots pine needles along a sulphur and metal pollution gradient

    International Nuclear Information System (INIS)

    Rautio, Pasi; Huttunen, Satu

    2003-01-01

    Different methods should be used for foliar analyses of trees used as bioindicators of pollution, than those analyses used in nutritional studies of trees. - Analysis of foliar elements is a commonly used method for studying tree nutrition and for monitoring the impacts of air pollutants on forest ecosystems. Interpretations based on the results of foliar element analysis may, however, be different in nutrition vs. monitoring studies. We studied the impacts of severe sulphur and metal (mainly Cu and Ni) pollution on the element concentrations (Al, Ca, Cu, Fe, K, Mg, Mn, Ni, P, Pb, S and Zn) in Scots pine (Pinus sylvestris L.) foliage along an airborne sulphur and metal pollution gradient. Emphasis was put on determining the contribution of air-borne particles that have accumulated on needle surfaces to the total foliage concentrations. A comparison of two soil extraction methods was carried out in order to obtain a reliable estimate of plant-available element concentrations in the soil. Element concentrations in the soil showed only a weak relationship with internal foliar concentrations. There were no clear differences between the total and internal needle S concentrations along the gradient, whereas at the plot closest to the metal smelter complex the total Cu concentrations in the youngest needles were 1.3-fold and Ni concentrations over 1.6-fold higher than the internal needle concentrations. Chloroform-extracted surface wax was found to have Ni and Cu concentrations of as high as 3000 and 600 μg/g of wax, respectively. Our results suggest that bioindicator studies (e.g. monitoring studies) may require different foliar analysis techniques from those used in studies on the nutritional status of trees

  3. Taxonomic value of foliar characters in Dahlstedtia Malme: Leguminosae, Papilionoideae, Millettieae Valor taxonômico de caracteres foliares em Dahlstedtia Malme: Leguminosae, Papilionoideae, Millettieae

    Directory of Open Access Journals (Sweden)

    Simone de Pádua Teixeira

    2006-06-01

    Full Text Available Dahlstedtia Malme (Leguminosae is a neotropical genus, native to the Brazilian Atlantic Forest, and comprises two species, D. pinnata (Benth. Malme and D. pentaphylla (Taub. Burk., although it has been considered a monotypic genus by some authors. Leaf anatomy was compared to verify the presence of anatomical characters to help delimit species. Foliar primordium, leaflet, petiolule, petiole and pulvinus were collected from cultivated plants (Campinas, SP, Brazil and from natural populations (Picinguaba, Ubatuba and Caraguatatuba, SP, Brazil - D. pinnata; Antonina, PR, Brazil - D. pentaphylla. Studies on leaflet surface assessment (Scanning Electron Microscopy, as well as histology and venation analyses were carried out of dehydrated, fresh and fixed material from two species. Leaflet material was macerated for stomatal counts. Histological sections, obtained by free-hand cut or microtome, were stained with Toluidine Blue, Safranin/Alcian Blue, Ferric Chloride, Acid Phloroglucin. Secretory cavities are present in the lamina, petiolule, petiole, pulvinus and leaf primordium in D. pentaphylla, but not in D. pinnata, and can be considered an important character for species diagnosis. Other leaf characters were uninformative in delimiting Dahlstedtia species. There is cambial activity in the petiolule, petiole and pulvinus. This study, associated with other available data, supports the recognition of two species in Dahlstedtia.Dahlstedtia Malme (Leguminosae é um gênero neotropical, com duas espécies reconhecidas, D. pinnata (Benth. Malme e D. pentaphylla (Taub. Burk., embora tenha sido considerado monotípico por alguns autores. Seus representantes ocorrem na Floresta Atlântica, nos Estados do Sul e Sudeste do Brasil. Neste trabalho, realizamos um estudo comparativo da anatomia foliar, para verificar a presença de caracteres que possam auxiliar a identificação das espécies. Primórdio foliar, lâmina foliar, peciólulo, pecíolo e pulvino

  4. Decoupling Seasonal Changes in Water Content and Dry Matter to Predict Live Conifer Foliar Moisture Content.

    OpenAIRE

    Jolly, W. M.; Hadlow, A. M.; Huguet, K.

    2014-01-01

    Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples fromPinus contorta for two growing seasons and quantified their LFMC, relative water content (RWC) and dry matter chemistry. LFMC quantifies the amou...

  5. Effect of foliar nitrogen and sulphur application on aromatic expression of Vitis vinifera L. cv. Sauvignon blanc

    Directory of Open Access Journals (Sweden)

    Florian Lacroux

    2008-09-01

    Significance and impact of the study: Vine nitrogen deficiency can negatively impact on grape aroma potential. Soil nitrogen application can increase vine nitrogen status, but it has several drawbacks: it increases vigour and enhances Botrytis susceptibility. This study shows that foliar N and foliar N + S applications can improve vine nitrogen status and enhance aroma expression in Sauvignon blanc wines without the negative impact on vigour and Botrytis susceptibility. Although this study was carried out on Sauvignon blanc vines, it is likely that foliar N or foliar N + S applications will have similar effects on other grapevine varieties containing volatile thiols (Colombard, Riesling, Petit Manseng and Sémillon.

  6. Potency of Gamma ray, Electric Current and Elicitor Application, as a Novel Practical Technique, to Improve Biomass Production and Glycoside Quality for Digitalis purpurea L. Grown in Sandy Soil Irrigated with Brackish Water

    International Nuclear Information System (INIS)

    Bosila, H.A.; Afifi, L.M.A.; Ahmed, T.E.S.

    2012-01-01

    Digitalis purpurea L seeds were treated before sowing with gamma ray (G:0, 2.5, 5, 7.5 KR, and electric current (E:O, 100, 150, 200 mA) then grown in sandy soil irrigated with brackish water (900 ppm) , in splite-splite plot design for 3 replicat (R) at two subsequent seasons , through surface drip irrigation system. Plants at 4- month old and monthly until before flowering were foliar sprayed with MnSO 4 as abiotic elicitor (M :O, 3 ppm). Biomass/ Feddan, percentage of total glycosides and percentage of bioactive glycosides, digitoxin and gitoxin were quantitated. Statistical analysis for the obtained data revealed that G, E and M achieved significant in biomass yield and its quality traits. Moreover, interactions ; GE, GM, EM and GEM achieved synergistic and significant increment for this traits. At such G dose the trait was increased by increasing E dose and M concentration. Hence, G 2.5, 5,7.5 KR E200 mA M3 ppm achieved significant increment, as percent over that of control, in biomass production / Feddan by 22, 29, 32%, total glycoside by 27, 40, 30%, digitoxin 27, 40, 30% for both first and second seasons, respectively. Whereas, increment for gitoxin were 27, 41, 30% at first season and 26, 38, 30% at second season, respectively. Overall, these finding strongly confirm the reliability of GEM as a novel practical technique for overproduction biomass/Fed. and quality improvement bioactive cardiac glycosides, digitoxin and gitoxin in Digitalis purpurea L.

  7. Morfo-anatomia foliar de Ocotea gardneri (Meisn. Mez (Lauraceae-Lauroideae

    Directory of Open Access Journals (Sweden)

    Denise F. Coutinho

    Full Text Available Ocotea gardneri (Meisn. Mez é uma espécie arbórea, encontrada no nordeste brasileiro, principalmente nos estados da Paraíba e Pernambuco, conhecida por "louro-branco" e "louro-babão". Neste trabalho realizou-se morfodiagnoses (macroscópica e microscópica de folhas de O. gardneri, com o objetivo de fornecer subsídios à sua caracterização e identificação. Para a morfologia externa, analisaram-se amostras frescas e conservadas em álcool (70º, com auxílio de estereomicroscópio, e observações de campo. Realizaram-se secções transversais em lâminas foliares e pecíolos, e seções paradérmicas nas duas faces de lâminas foliares. Ocotea gardneri possui folhas elípticas a oval-elípticas, margem inteira, levemente ondeada, ápice agudo e base arredondada. A lâmina foliar é hipoestomática com estômatos do tipo paracítico; a epiderme é uniestratificada, com células de paredes retas e espessadas; o mesofilo é isobilateral, aqui referido pela primeira vez para uma espécie de Lauraceae, com células e ductos secretores evidentes e feixes vasculares colaterais envolvidos pela bainha esclerenquimática. Este conjunto de caracteres aliado à morfologia foliar, permitiram o estabelecimento de parâmetros que possibilitarão a caracterização de folhas de Ocotea gardneri em testes de autenticidade, bem como auxiliarão em estudos da taxonomia da espécie estudada.

  8. Response of French Bean (Phaseolus vulgaris L. Cultivars to Foliar Applications of Magnesium

    Directory of Open Access Journals (Sweden)

    Michele Pisante

    2011-02-01

    Full Text Available Magnesium deficiencies have been shown to be particularly dangerous to short cycled crops, both on sandy and clay soils. Such deficiencies may be corrected by foliar fertilisations, but in French bean (Phaseolus vulgaris L. no experimental data may be found to support this hypothesis. Therefore this paper was aimed at studying the effect of foliar Mg-applications (56, 112 and 224 g ha-1 in single application at flowering or splitted half dose at 4-leaf stage and half at flowering alone and with Zn (200 g ha-1 on yield and quality of two French bean genotypes (Bronco, Cadillac. Foliar Mg-applications significantly increased pod yield and, considering the highest rate with respect to the untreated, such an increase was 78% and 32% for Bronco and Cadillac, respectively. Split applications were also more effective, with yield increases of 109% and 50% for the two genotypes. Concerning quality, foliar Mg applications showed a significant effect particularly on sugars, calcium, phosphate, sulphate and Mg contents in pods. On the other hand, a significant effect on the accumulation of nitrates was noted, especially with split applications (144% increase vs. unfertilised and, in some cases, an antagonistic effect on K content (10-20% decrease on average. Foliar Mg fertilisation of French bean seemed to be a promising practice with reference to human health and nutrition, tough some care is needed to avoid the accumulation of nitrates in pods. Split applications seemed to be more effective, while the addition of Zn to the fertiliser mix did not give any relevant effect.

  9. Shifting Foliar N:P Ratios with Experimental Soil Warming in Tussock Tundra

    Science.gov (United States)

    Jasinski, B.; Mack, M. C.; Schuur, E.; Mauritz, M.; Walker, X. J.

    2017-12-01

    Warming temperatures in the Arctic and boreal ecosystems are currently driving widespread permafrost thaw. Thermokarst is one form of thaw, in which a deepening active soil layer and associated hydrologic changes can lead to increased nutrient availability and shifts in plant community composition. Individual plant species often differ in their ability to access nutrients and adapt to new environmental conditions. While nitrogen (N) is often the nutrient most limiting to Arctic plant communities, the extent to which plant available phosphorus (P) from previously frozen mineral soil may increase as the active layer deepens is still uncertain. To understand the changing relationship between species' uptake of N and P in a thermokarst environment, we assessed foliar N:P ratios from 2015 in two species, a tussock sedge (Eriophorum vaginatum) and a dwarf shrub (Rubus chamaemorus), at a moist acidic tussock tundra experimental passive soil warming site. The passive soil warming treatment increased active layer depth in warmed plots by 35.4 cm (+/- 1.1 cm), an 80% increase over the control plots. E.vaginatum demonstrated a 16.9% decrease (p=0.012, 95% CI [-27.99%, -5.94%]) in foliar N:P ratios in warmed plots, driven mostly by an increase in foliar phosphorus. Foliar N:P ratios of R.chamaemorus showed no significant change. However, foliar samples of R.chamaemorus were significantly enriched in the isotope 15N in soil warming plots (9.9% increase (p=0.002, 95% CI [4.45%, 15.39%])), while the sedge E.vaginatum was slightly depleted. These results suggest that (1) in environments with thawing mineral soil plant available phosphorus may increase more quickly than nitrogen, and (2) that species' uptake strategies and responses to increasing N and P will vary, which has implications for future ecological shifts in thawing ecosystems.

  10. Erythroneura lawsoni abundance and feeding injury levels are influenced by foliar nutrient status in intensively managed American sycamore.

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David, Robert: Aubrey, Doug, Patric; Bentz, Jo-Ann

    2010-01-01

    Abstract 1 Abundance and feeding injury of the leafhopper Erythroneura lawsoni Robinson was measured in an intensively-managed American sycamore Platanus occidentalis L. plantation. Trees were planted in spring 2000 in a randomized complete block design, and received one of three annual treatments: (i) fertilization (120 kg N/ha/year); (ii) irrigation (3.0 cm/week); (iii) fertilization + irrigation; or (iv) control (no treatment). 2 Foliar nutrient concentrations were significantly influenced by the treatments because only sulphur and manganese levels were not statistically greater in trees receiving fertilization. 3 Over 116 000 E. lawsoni were captured on sticky traps during the study. Leafhopper abundance was highest on nonfertilized trees for the majority of the season, and was positively correlated with foliar nutrient concentrations. Significant temporal variation in E. lawsoni abundance occurred, suggesting five discrete generations in South Carolina. 4 Significant temporal variation occurred in E. lawsoni foliar injury levels, with the highest injury ratings occurring in late June and August. Foliar injury was negatively correlated with foliar nutrient content, and higher levels of injury occurred more frequently on nonfertilized trees. 5 The results obtained in the present study indicated that increased E. lawsoni abundance occurred on trees that did not receive fertilization. Nonfertilized trees experienced greater foliar injury, suggesting that lower foliar nutrient status may have led to increased levels of compensatory feeding.

  11. Foliar moisture content of Pacific Northwest vegetation and its relation to wildland fire behavior.

    Science.gov (United States)

    James K. Agee; Clinton S. Wright; Nathan Williamson; Mark H. Huff

    2002-01-01

    Fotiar moisture was monitored for five conifers and associated understory vegetation in Pacific Northwest forests. Decline in foliar moisture of new foliage occurred over the dry season, while less variation was evident in older foliage. Late season foliar moisture ranged from 130 to 170%. In riparian-upland comparisons, largest differences were found for understory...

  12. Adubação foliar com macro e micronutrientes no crescimento de mudas micropropagadas do abacaxizeiro cv. Gold [Ananas comosus (L. Merrill] em diferentes recipientes Foliar fertilization with macro and micronutrients in the growth of plantlets micropropagated of pineapple cv. Gold [Ananas comosus (L. Merrill] in different containers

    Directory of Open Access Journals (Sweden)

    Izaias dos Santos Bregonci

    2008-06-01

    Full Text Available Objetivou-se com este trabalho avaliar o efeito da adubação foliar com macro e micronutrientes no crescimento das mudas micropropagadas do abacaxizeiro cv. Gold [Ananas comosus (L. Merrill], em diferentes recipientes. O experimento foi em esquema fatorial 8x3, adubação foliar em 8 níveis e recipientes em 3 níveis, através de um delineamento inteiramente casualizado com 5 repetições. As mudas foram padronizadas com altura média de 7,12 cm. As adubações foliares foram feitas com uréia, cloreto de potássio, ácido bórico, um formulado comercial com macro e micronutrientes e testemunha (pulverização com água e os recipientes: bandeja de isopor com 200 células; tubete pequeno de 115 cm³; e tubete grande com 300 cm³. O substrato utilizado foi o plantmax hortaliças®. Avaliaram-se as características área foliar, altura de planta e massa seca da parte aérea e da raiz, aos 140 dias do transplantio. Os adubos foliares proporcionaram maior crescimento em área foliar, altura e massa seca da parte aérea às mudas do abacaxizeiro, embora com resultados diferentes. Os adubos foliares não aumentaram a massa seca do sistema radicular. A bandeja de isopor apresentou as menores médias, com todos os adubos foliares para área foliar, altura e massa seca da parte aérea das mudas do abacaxizeiro. O tubete pequeno e o tubete grande apresentaram resultados semelhantes com a maioria dos adubos foliares utilizados.The objective of this work was to evaluate the effect of the foliar fertilization with macro and micronutrients on the growth of the plantlets micropropagated of pineapple cv. Gold [Ananas comosus (L. Merrill] in different containers. The experiment was mounted in factorial arrangement 8x3, with foliar fertilization in 8 levels and containers in 3 levels, through a completely randomized design with five repetitions. The plantlets were standardized with average height of 7,12 cm. The foliar fertilization was used in the urea

  13. Hydropower and biomass as renewable energy sources in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, K.

    2001-01-01

    When talking about renewable energy sources today, the most important and economical energy sources for Turkey are hydropower and biomass.The present study gives a review of production, consumption, and economics of hydropower and biomass as renewable energy sources in Turkey. Turkey has a total gross hydropower potential of 433 GW, but only 125 GW of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 36% of the economically usable potential of the country could be tapped. On the other hand, biomass (wood and wastes) energy is the second most important renewable energy source for Turkey. However, the biomass energy sources of Turkey are limited. In 1998, the biomass share of the total energy consumption of the country is 10%. In this study, the potential of important biomass energy sources and animal solid wastes of the country were determined. The effects of hydropower and biomass usage on the environment were also discussed. Considering total cereal products and fatty seed plants, approximately 50-60 million tons per year of biomass and 8-10 million tons of solid matter animal waste are produced, and 70% of total biomass is seen as being usable for energy. Some useful suggestions and recommendations are also presented. The present study shows that there is an important potential for hydropower and biomass energy sources in Turkey. (author)

  14. Effect of Nutrient Solution Concentration, Time and Frequency of Foliar Application on Growth of Leaf and Daughter Corms of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    R Khorasani

    2015-07-01

    Full Text Available In order to investigate the effect of different levels of nutrient solution concentration and times and frequencies of foliar applications on dry weight, nitrogen, phosphorus and potassium concentrations of leaf and corm of saffron, a pot experiment was conducted as a completely randomized design with factorial arrangement and three replications under open door conditions in research garden of ferdowsi university, faculty of agriculture. The experimental treatments were included 4 levels of solution concentration (0, 4, 8 and 12 per 1000 and 7 levels of time and frequency of foliar applications (F1: foliar application on 3th February, F2: foliar application on 18th February, F3: foliar application on 5th March, F4: foliar applications on 3th and 18th February, F5: foliar applications on 3th February and 5th March, F6: foliar applications on 18th February and 5th March, F7: foliar applications on 3th and 18th February and 5th March. Results of variance analysis showed that fresh and dry weight of corm and leaf were not influenced by concentration, time and frequency of foliar applications. Also, comparison of nitrogen, phosphorus and potassium concentrations of leaf and corm showed that there was no significant difference between levels of foliar treatments and control. Therefore, it seems that due attention to pattern of leaf and low nutrient demand of saffron, foliar applications in different levels of nutrient solution concentrations and times and frequencies of foliar applications could not increase vegetative growth and consequently, could not improve the growth and nutritional properties of saffron corms.

  15. Importance of Foliar Nitrogen Concentration to Predict Forest Productivity in the Mid-Atlantic Region

    Science.gov (United States)

    Yude Pan; John Hom; Jennifer Jenkins; Richard Birdsey

    2004-01-01

    To assess what difference it might make to include spatially defined estimates of foliar nitrogen in the regional application of a forest ecosystem model (PnET-II), we composed model predictions of wood production from extensive ground-based forest inventory analysis data across the Mid-Atlantic region. Spatial variation in foliar N concentration was assigned based on...

  16. Intraspecific Variation in Wood Anatomical, Hydraulic, and Foliar Traits in Ten European Beech Provenances Differing in Growth Yield

    Science.gov (United States)

    Hajek, Peter; Kurjak, Daniel; von Wühlisch, Georg; Delzon, Sylvain; Schuldt, Bernhard

    2016-01-01

    In angiosperms, many studies have described the inter-specific variability of hydraulic-related traits and little is known at the intra-specific level. This information is however mandatory to assess the adaptive capacities of tree populations in the context of increasing drought frequency and severity. Ten 20-year old European beech (Fagus sylvatica L.) provenances representing the entire distribution range throughout Europe and differing significantly in aboveground biomass increment (ABI) by a factor of up to four were investigated for branch wood anatomical, hydraulic, and foliar traits in a provenance trial located in Northern Europe. We quantified to which extend xylem hydraulic and leaf traits are under genetic control and tested whether the xylem hydraulic properties (hydraulic efficiency and safety) trades off with yield and wood anatomical and leaf traits. Our results showed that only three out of 22 investigated ecophysiological traits showed significant genetic differentiations between provenances, namely vessel density (VD), the xylem pressure causing 88% loss of hydraulic conductance and mean leaf size. Depending of the ecophysiological traits measured, genetic differentiation between populations explained 0–14% of total phenotypic variation, while intra-population variability was higher than inter-population variability. Most wood anatomical traits and some foliar traits were additionally related to the climate of provenance origin. The lumen to sapwood area ratio, vessel diameter, theoretical specific conductivity and theoretical leaf-specific conductivity as well as the C:N-ratio increased with climatic aridity at the place of origin while the carbon isotope signature (δ13C) decreased. Contrary to our assumption, none of the wood anatomical traits were related to embolism resistance but were strong determinants of hydraulic efficiency. Although ABI was associated with both VD and δ13C, both hydraulic efficiency and embolism resistance were

  17. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop

    Science.gov (United States)

    A radio-controlled unmanned helicopter-based LARS (Low-Altitude Remote Sensing) platform was used to acquire quality images of high spatial and temporal resolution, in order to estimate yield and total biomass of a rice crop (Oriza Sativa, L.). Fifteen rice field plots with five N-treatments (0, 33,...

  18. Pipelines : moving biomass and energy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2006-07-01

    Moving biomass and energy through pipelines was presented. Field sourced biomass utilization for fuel was discussed in terms of competing cost factors; economies of scale; and differing fuel plant sizes. The cost versus scale in a bioenergy facility was illustrated in chart format. The transportation cost of biomass was presented as it is a major component of total biomass processing cost and is in the typical range of 25-45 per cent of total processing costs for truck transport of biomass. Issues in large scale biomass utilization, scale effects in transportation, and components of transport cost were identified. Other topics related to transportation issues included approaches to pipeline transport; cost of wood chips in pipeline transport; and distance variable cost of transporting wood chips by pipeline. Practical applications were also offered. In addition, the presentation provided and illustrated a model for an ethanol plant supplied by truck transport as well as a sample configuration for 19 truck based ethanol plants versus one large facility supplied by truck plus 18 pipelines. Last, pipeline transport of bio-oil and pipeline transport of syngas was discussed. It was concluded that pipeline transport can help in reducing congestion issues in large scale biomass utilization and that it can offer a means to achieve large plant size. Some current research at the University of Alberta on pipeline transport of raw biomass, bio-oil and hydrogen production from biomass for oil sands and pipeline transport was also presented. tabs., figs.

  19. Spatial patterns of fish standing biomass across Brazilian reefs.

    Science.gov (United States)

    Morais, R A; Ferreira, C E L; Floeter, S R

    2017-12-01

    A large fish-count dataset from the Brazilian province was used to describe spatial patterns in standing biomass and test if total biomass, taxonomic and functional trophic structure vary across nested spatial scales. Taxonomic and functional structure varied more among localities and sites than among regions. Total biomass was generally higher at oceanic islands and remote or protected localities along the coast. Lower level carnivores comprised a large part of the biomass at almost all localities (mean of 44%), zooplanktivores never attained more than 14% and omnivores were more representative of subtropical reefs and oceanic islands (up to 66% of total biomass). Small and large herbivores and detritivores varied greatly in their contribution to total biomass, with no clear geographical patterns. Macrocarnivores comprised less than 12% of the biomass anywhere, except for two remote localities. Top predators, such as sharks and very large groupers, were rare and restricted to a few reefs, suggesting that their ecological function might have already been lost in many Brazilian reefs. © 2017 The Fisheries Society of the British Isles.

  20. PESO DE HOJAS COMO HERRAMIENTA PARA ESTIMAR EL ÁREA FOLIAR EN SOYA

    Directory of Open Access Journals (Sweden)

    Felipe Rafael Garcés Fiallos

    2011-07-01

    Full Text Available Cuantificaciones del área foliar en plantas son importantes en estudios de daños ocasionados por enfermedades, por lo tanto su determinación requiere el uso de equipamientos que no siempre se encuentran disponibles para todos. La utilización de determinaciones indirectas, como el peso de materia fresca o seca podría ayudar en este proceso. En este trabajo, se evaluó la relación entre el peso de hojas y área foliar, a partir de plantas recolectadas en el estadío R7.1, en 64 parcelas de campo con el cultivar de soja Nidera 5909 RG. El peso fresco fue medido luego de la colecta, el peso seco después de 48 horas de incubación a 65° C y el área foliar a través de un integralizador digital Licor. Fueron obtenidas ecuaciones significativas (p < 0.0001 e R2 de 0.74 a 0.97 para cada estrato y para la planta entera. Para la media de la planta, la relación de área foliar fue de y = 45.53 x + 19.03 para peso fresco e y = 176.17 x – 75.30 para peso seco. Esta herramienta se presenta potencialmente viable para estimar el área foliar de la planta. La utilización del peso seco es mas trabajosa, más no requiere pesaje de las hojas inmediatamente después de su colecta. La utilización futura de esta herramienta requiere estudios adicionales con otros cultivares a fin de verificarse si el comportamiento es similar.

  1. Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae).

    Science.gov (United States)

    Eller, Cleiton B; Lima, Aline L; Oliveira, Rafael S

    2013-07-01

    Foliar water uptake (FWU) is a common water acquisition mechanism for plants inhabiting temperate fog-affected ecosystems, but the prevalence and consequences of this process for the water and carbon balance of tropical cloud forest species are unknown. We performed a series of experiments under field and glasshouse conditions using a combination of methods (sap flow, fluorescent apoplastic tracers and stable isotopes) to trace fog water movement from foliage to belowground components of Drimys brasiliensis. In addition, we measured leaf water potential, leaf gas exchange, leaf water repellency and growth of plants under contrasting soil water availabilities and fog exposure in glasshouse experiments to evaluate FWU effects on the water and carbon balance of D. brasiliensis saplings. Fog water diffused directly through leaf cuticles and contributed up to 42% of total foliar water content. FWU caused reversals in sap flow in stems and roots of up to 26% of daily maximum transpiration. Fog water transported through the xylem reached belowground pools and enhanced leaf water potential, photosynthesis, stomatal conductance and growth relative to plants sheltered from fog. Foliar uptake of fog water is an important water acquisition mechanism that can mitigate the deleterious effects of soil water deficits for D. brasiliensis. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  2. Sustainable biomass production for energy in Sri Lanka

    International Nuclear Information System (INIS)

    Perera, K.K.C.K.; Rathnasiri, P.G.; Sugathapala, A.G.T.

    2003-01-01

    The present study concentrates mainly on the estimation of land availability for biomass production and the estimation of sustainable biomass production potential for energy. The feasible surplus land area available for bioenergy plantation is estimated assuming two land availability scenarios (Scenarios 1 and 2) and three biomass demand scenarios (IBD Scenario, SBD Scenario and FBD Scenario). Scenario 1 assumes that 100% of the surplus area available in base year 1997 will be suitable for plantation without considering population growth and food production and that 75% of this surplus land is feasible for plantation. Scenario 2 assumes that future food requirement will grow by 20% and the potential surplus area will be reduced by that amount. The incremental biomass demand scenario (IBD Scenario) assumes that only the incremental demand for biomass in the year 2010 with respect to the base year 1997 has to be produced from new plantation. The sustainable biomass demand scenario (SBD Scenario) assumes that the total sustainable supply of biomass in 1997 is deducted from the future biomass demand in 2010 and only the balance is to be met by new plantation. The full biomass demand scenario (FBD Scenario) assumes that the entire projected biomass demand of the year 2010 needs to be produced from new plantation. The total feasible land area for the scenarios IBD-1, 1BD-2, SBD-1, SBD-2, FBD-1 and FBD-2 are approximately 0.96, 0.66, 0.80, 0.94, 0.60 and 0.30 Mha, respectively. Biomass production potential is estimated by selecting appropriate plant species, plantation spacing and productivity level. The results show that the total annual biomass production in the country could vary from 2 to 9.9 Mt. With the production option (i.e. 1.5 mx1.5 m spacing plantation with fertilizer application) giving the highest yield, the total biomass production for energy under IBD Scenario would be 9.9 Mt yr -1 for Scenario 1 and 6.7 Mt yr -1 for Scenario 2. Under SBD Scenario, the

  3. Growth analisys and assimilate partitioning in physalis plants under leaf fertilization intervalsAnálise de crescimento e partição de assimilados em plantas de fisalis submetidas a intervalos de adubação foliar

    Directory of Open Access Journals (Sweden)

    Tiago Pedó

    2013-10-01

    Full Text Available The work was conducted in greenhouse and aimed to analyze the growth and partitioning of assimilates in Physalis peruviana subjected in intervals of leaf fertilization. The plants were collected at regular intervals of fourteen days after transplantation until the end of the cycle and determined the dry mass and leaf area. From the primary data analysis was applied to growth analysis and calculated the total dry matter production (Wt, rates of dry matter production (Ct, relative growth (Rw, net assimilation (Ea, leaf area index (L, relative growth of leaf area (Fa and ratios of leaf area and leaf mass (Fw, specific leaf area (Sa and dry matter partitioning between organs. Plants of Physalis peruviana subjected to leaf fertilization biweekly reached higher Wt, Ct, number of fruits and similar dry mass of fruits (Wfr of plants subjected to foliar weekly application and higher Wfr compared to plants without application leaf of fertilization. Thus, the application of leaf fertilization provided benefits of growth and the partition of assimilates in Physalis peruviana plants. O trabalho foi conduzido em casa de vegetação e objetivou analisar o crescimento e a partição de assimilados em Physalis peruviana submetida a intervalos de adubação foliar. As plantas foram coletadas a intervalos regulares de quatorze dias após o transplante até o final do ciclo e foram determinados a massa seca e a área foliar. A partir dos dados primários foi aplicada a análise de crescimento, sendo calculados a massa seca total (Wt, taxas de produção de matéria seca (Ct, crescimento relativo (Rw e assimilatória liquída (Ea, índice de área foliar (L, razões de área foliar (Fa e massa foliar (Fw, área foliar específica (Sa, partição de matéria seca entre órgãos e o número de frutos. Plantas de Physalis peruviana submetidas à adubação foliar quinzenal atingiram maior Wt, Ct, superior número de frutos e semelhante matéria seca de frutos (Wfr a

  4. Foliar micromorphology of Lippia javanica (Burm.F) Spreng ...

    African Journals Online (AJOL)

    Background: Lippia javanica (Burm.F.) Spreng is an aromatic indigenous South African plant with culinary and medicinal values. This study investigated the foliar morphology and elemental composition of the plant because not much data concerning the anatomical and micro-morphological features can be found in ...

  5. Intensive biomass harvesting in forests - what about the carbon balance?

    International Nuclear Information System (INIS)

    Berg, Bjoern; Johansson, Maj-Britt

    1998-08-01

    The use of biofuels is considered to be CO 2 -neutral. This means that the use of forest biomass for fuel does not add more CO 2 to the atmosphere than what has been taken up over a stand age by photosynthesis. However, the biomass that may be harvested only contains part of the CO 2 immobilized through fixation during the growth of the forest stand. A fraction of the produced biomass will always decompose on and in the soil, in part producing humus and in part CO 2 . To this fraction belongs the litter formed during the period of stand growth, e.g. the annual foliar litterfall. The decomposition of both foliar litter and green needles have been shown to follow an asymptotic function, meaning that the decomposition approaches a limit value. This means that recalcitrant remains are left. The decomposition of felling residues have been assumed to follow the same function. The obvious question is how the amount of humus is affected by removal of felling residues. In an investigation of humus storage in five stands of Norway spruce in south Sweden limit values were estimated for the decomposition of local spruce needle litter giving a variation from 63 to 85 per cent. With the use of these limit values and the amount of litterfall the accumulation of humus was estimated. These calculations showed that there is a growth of the humus layer in the period of stand growth. The rate of humus accumulation varied among the stands and on the average a theoretical humus accumulation of about 42 tons per hectare was estimated for a stand age of 60 years. This amount of already accumulated humus is not affected by harvests of remains from thinnings or clearcuts. If, on the other hand the felling residues are not removed that means that the amount of humus should increase. Experiments with soil scarification showed that for litter buried under plowed-up mineral soil the decomposition went further than in soil not scarified. The estimated limit value was on the average about 40 per

  6. Morfologia e distribuição de galhas foliares de Anacardium occidentale L. (Anacardiaceae

    Directory of Open Access Journals (Sweden)

    Claudia Scareli-Santos

    2015-12-01

    Full Text Available Galhas são estruturas que exibem associações específicas entre o indutor e a planta hospedeira, onde são evidenciadas modificações morfológicas, anatômicas e químicas dos tecidos vegetais. Objetivou-se descrever a morfologia e a distribuição de galhas foliares de Anacardium occidentale L. (Anacardiaceae. Foram coletadas 294 folhas, da porção apical dos ramos, de indivíduos localizados na Universidade Federal do Tocantins - Campus Araguaína, TO. Foram realizadas análises morfológicas utilizando microscópio estereoscópico, paquímetro e bibliografia específica. Determinou-se o número de galhas no limbo foliar seguida da análise de regressão linear entre o número de galhas por limbo e o seu comprimento. Foram observadas galhas do tipo cônico atravessando a lâmina foliar, glabras, de coloração verde quando jovens e vermelho alaranjadas quando maduras, com distribuição isolada/agrupada e aderência total; internamente apresentou um lóculo e uma larva do indutor (Cecidomyiidae. A distribuição das galhas no limbo apresentou diferenças significativas (p<0,001, em ordem decrescente foi observado maior número de galhas entre as nervuras (57,1%, sobre a nervura secundária (35,7%, na margem (6,3% e na nervura central (1,2%; a análise de regressão linear apresentou fracamente positiva (r2= 0,03; coeficiente de Pearson= 0,2025, o que sugere que a oviposição está associada, em parte, com o tamanho do limbo e que outras variáveis podem ser determinantes. Estes são os primeiros registros de galhas em A. occidentale no estado do Tocantins.

  7. Estimativa da área foliar de Sida cordifolia e Sida rhombifolia usando dimensões lineares do limbo foliar Estimate of Sida cordifolia and Sida rhombifolia leaf area using leaf blade linear dimensions

    Directory of Open Access Journals (Sweden)

    S. Bianco

    2008-01-01

    Full Text Available A estimativa da área foliar pode auxiliar na compreensão de relações de interferência entre plantas daninhas e cultivadas. Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Sida cordifolia e Sida rhombifolia, estudaram-se as correlações entre área foliar real (Af e parâmetros dimensionais do limbo foliar, como o comprimento (C ao longo da nervura principal e a largura máxima (L perpendicular à nervura principal. Foram analisados 200 limbos foliares de cada espécie, coletados em diferentes agroecossistemas na Universidade Estadual Paulista, campus de Jaboticabal. Os modelos estatísticos utilizados foram linear: Y = a + bx; linear simples: Y = bx; geométrico: Y = ax b; e exponencial: Y = ab x. Todos os modelos analisados podem ser empregados para estimação da área foliar de S. cordifolia e S. rhombifolia. Sugere-se optar pela equação linear simples, envolvendo o produto C*L, considerando-se o coeficiente linear igual a zero, em função da praticidade desta. Desse modo, a estimativa da área foliar de S. cordifolia pode ser obtida pela fórmula Af = 0,7878*(C*L, com coeficiente de determinação de 0,9307, enquanto para S. rhombifolia a estimativa da área foliar pode ser obtida pela fórmula Af = 0,6423*(C*L, com coeficiente de determinação de 0,9711.Leaf area estimate may contribute to understand the relationship of interference between weeds and crops. The objective of this research was to obtain a mathematical equation to estimate Sida cordifolia and Sida rhombifolia leaf area based on linear measures of leaf blade. Correlation studies were conducted between real leaf area (Af and dimensional leaf blade parameters such as leaf length (C and maximum leaf width (L. Around 200 leaf blades of each species were analyzed, collected from several agro-ecosystems at São Paulo State University, in Jaboticabal, SP, Brazil. The statistical

  8. Noise-resistant spectral features for retrieving foliar chemical parameters

    Science.gov (United States)

    Foliar chemical constituents are important indicators for understanding vegetation growing status and ecosystem functionality. Provided the noncontact and nondestructive traits, the hyperspectral analysis is a superior and efficient method for deriving these parameters. In practical implementation o...

  9. Effect of humic acid on the growth, yield, nutrient composition, photosynthetic pigment and total sugar contents of peas (pisum sativum l)

    International Nuclear Information System (INIS)

    Khan, A.; Khan, M.Z.; Hussain, F.; Akhtar, M.E.; Gurmani, A.R.; Khan, S.

    2013-01-01

    Summary: A pot experiment was conducted to evaluate the effects of humic acid (HA) applied as soil and foliar at 15, 30 and 45 ppm on the growth, biochemical content, nutrient concentrations and yield of peas. Soil as well as foliar application of HA increased the plant growth and grain yield of peas; however magnitude of increase was higher in soil application than foliar. Highest plant growth and grain yield was achieved with soil application of 15 ppm HA followed by 30 ppm and foliar application of 45 ppm HA respectively. Percentage increase in dry grain yield due to 15 ppm was 37%, with 30 ppm was 29% and foliar application of 45 ppm was 25%. Nutrient concentrations (P, K, Fe, Zn, Mn and Cu) were increased with soil and foliar application of HA. The concentrations of nutrients were relatively higher in shelf than grain. Maximum concentration of P, K and Fe was obtained with the soil application of HA at 15 ppm. Humic acid applied at 15, 30 as soil as well as foliar application at 45 ppm significantly increased chlorophyll, carotenoid and total sugar content. Our results indicate that soil application of HA at 15 and 30 ppm, while foliar application at 45 ppm can increase growth, nutrients concentration, chlorophyll content and yield of Peas in calcareous soil conditions. (author)

  10. Aplicação foliar de cálcio em pessegueiro na Serra Gaúcha: avaliação do teor de nutrientes na folha, no fruto e produção Foliar application of calcium in peach in Serra Gaúcha: evaluation of content of nutrients in the leaf, fruit and yield

    Directory of Open Access Journals (Sweden)

    Gustavo Brunetto

    2008-06-01

    calcium in Peach tree in the Southern Brasil is used during productive cycle, without any information about calcium content and other nutrients in the leaves, fruits and yield. Two experiments were carried out in 2003/2004 to evaluate the effect of foliar application of different sources of calcium in its content and other nutrients in the leaf, fruit and yield of peach trees, Chimarrita cultivar, at an Haplumbrept soil in Southern Brazil, Pinto Bandeira city. The treatments in the experiment 1 were three foliar applications of calcium chloride, concentrations 0 (water, 0.5, 1.0 and 2.0%.Experiment 2 were three foliar applications of calcium nitrate, concentrations 0 (water, 0.5, 1.0 and 2.0%. A randomized block experimental design was used with three replications and three plants for treatment. Leaves were collected, oven-dried and analyzed total calcium, nitrogen, potassium and magnesium. In the maturation, fruits were collected and determined the mass, yield and total content of calcium, nitrogen, potassium and magnesium. The results showed that foliar applications of calcium in the form of chloride and nitrate in peach tree, increase calcium content in the leaves, but did not affect the content of nitrogen, potassium and magnesium in the leaves, content of calcium, nitrogen, potassium and magnesium in the fruit and yield.

  11. Utilização de Acibenzolar-S-Methyl para controle de doenças foliares da soja Use of Acibenzolar-S-Methyl to control foliar diseases of soybean

    Directory of Open Access Journals (Sweden)

    Leandro Jose Dallagnol

    2006-09-01

    Full Text Available O controle das doenças foliares na cultura da soja pode ser obtido pela utilização de métodos genéticos, culturais e químicos. A utilização de ativadores químicos dos mecanismos de defesa é uma alternativa de controle induzido. Para avaliar o efeito na eficácia com a inclusão de Acibenzolar-S-Methyl (ASM no programa de controle químico das doenças foliares na cultura da soja, um experimento foi instalado com as cultivares IAS 5, CD 201 e RS 10. O efeito do ASM foi avaliada isoladamente e em mistura com Difenoconazole aplicados nos estádios R3, R4 e R5.1 e o Azoxystrobin em R5.1. Os parâmetros avaliados foram a severidade das doenças de final de ciclo (DFC, desfolha, área foliar verde e rendimento de grãos. A inclusão de ASM nos programas de controle químico aumentou, na maioria dos casos, a eficácia dos fungicidas para todos os parâmetros avaliados, porém com variação entre as cultivares. Os melhores resultados foram obtidos com aplicações de Difenoconazole + ASM aplicado em R3 e R4, não sendo verificado efeito na eficácia do Azoxystrobin (R5.1. O incremento no rendimento das cultivares foi influenciado pela tolerância das cultivares as doenças, sendo positivo para as cultivares CD 201 e RS 10 com aplicação de ASM + Difenoconazole em R4.The chemical control of foliar diseases in soybean can be achieved by using genetic, cultural and chemical practices. The use of activators of plant defense mechanisms is an alternative for disease control. An experiment was carried out with the cultivars 'IAS 5', 'CD 201' and 'RS 10' aiming to evaluate the efficacy of the inclusion of Acibenzolar-S-Methyl (ASM to the chemical control program of foliar diseases in soybean. The effect of ASM was evaluated separately and mixture with Difenoconazol sprayed on to plants at the growth stages of R3, R4, R5. 1 Azoxystrobin was sprayed on R5.1. The variables evaluated were diseases severities at the end of the crop, desfoliation, green

  12. Residual effect of sugar cane ratoon of urea nitrogen foliar application to plant cane

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Lara Cabezas, W.A.R.; Coleti, J.T.

    1984-01-01

    The residual effect of urea - N, foliar applied to plant cane, on sugar cane ratoon is studied. Setts grown in drums containing washed sand are used. 180 days from planting, foliar fertilizer (43.5% urea solution) labelled with 3.95 atom % 15 N is applied. The first harvest is made 7 days after application and final harvest of resprouting at 123 days. (M.A.C.) [pt

  13. Above-ground biomass equations for Pinus radiata D. Don in Asturias

    Directory of Open Access Journals (Sweden)

    E. Canga

    2013-12-01

    Full Text Available Aim of the study: The aim of this study was to develop a model for above-ground biomass estimation for Pinus radiata D. Don in Asturias.Area of study: Asturias (NE of Spain.Material and methods: Different models were fitted for the different above-ground components and weighted regression was used to correct heteroscedasticity. Finally, all the models were refitted simultaneously by use of Nonlinear Seemingly Unrelated Regressions (NSUR to ensure the additivity of biomass equations.Research highlights: A system of four biomass equations (wood, bark, crown and total biomass was develop, such that the sum of the estimations of the three biomass components is equal to the estimate of total biomass. Total and stem biomass equations explained more than 92% of observed variability, while crown and bark biomass equations explained 77% and 89% respectively.Keywords: radiata pine; plantations; biomass.

  14. Malabsorption of mineral nutrients and effects of foliar fertilization on continuously cropped capsicum annuum l. var. annuum

    International Nuclear Information System (INIS)

    Ye, X.H.; Zhao, Z.L.; Zhao, Z.L.; Zhao, H.B.

    2014-01-01

    Cayenne pepper (C. annuum var. annuum) cultivar known as line No. 5 was used to establish a reference baseline for fertilization experiments under conditions of continuous cropping versus crop rotation. The effects of continuous cropping on absorption of 11 essential nutrient elements and fruit yield were studied. Concurrently, we also examined the effects of foliar application of urea + KH/sub 2/ PO/sub 4/ and Fe + B + Zn + Mn on nutrient absorption due to continuous cropping. The results showed that, compared with peppers grown in rotation soil, continuous cropping affected the uptake of eight elements (P, K, Mg, Fe, B, Zn, Mn, Cu) and transport of these elements to the aerial parts of the plant, although the element concentrations in continuous cropping soil were not lower than those in rotation soil. Continuous cropping caused a decline in fruit yield. The impact of continuous cropping on the uptake of trace elements was greater than it was for macro elements. Foliar application of urea + KH/sub 2/ PO/sub 4/ significantly improved the P, Mg, Fe, and Mo content of continuously-cropped pepper plants, but did not significantly improve the content of N and K, and there was an antagonistic effect on Zn uptake. Foliar application of Fe + B + Zn + Mn, significantly increased the Fe, B, Zn, Mn, and P content in the plants; Ca uptake in the leaves and fruits was promoted to a certain degree, but there was obvious antagonism toward Mo and Cu uptake in the stems, leaves and fruits. Pepper fruit yields were significantly increased by foliar application of urea + KH/sub 2/ PO/sub 4/ or foliar application of Fe + B + Zn + Mn. However the effects of foliar application of Fe + B + Zn + Mn on increased production were significantly better than the effects of foliar application of urea + KH/sub 2/ PO/sub 4/. (author)

  15. Foliar and soil application of 15N-labelled fertilizers in the cultivation of common bean and soybean

    International Nuclear Information System (INIS)

    Papanicolaou, E.P.; Skarlou, V.D.; Apostolakis, C.G.; Katranis, N.

    1979-01-01

    In two field experiments (one with beans and one with soybeans) during 1977, the influence of soil application of different nitrogen fertilizers and also of foliar application of the Hanway nutrient solution (N-P-K-S) on nitrogen fixation, grain yield and fertilizer utilization was studied. The nodule data for soybeans indicated that urea applied as starter, topdress or foliar spray adversely affected nodule number and weight. Starter (NH 4 ) 2 SO 4 had an effect similar to urea, while starter NH 4 NO 3 had slight or no adverse effect. Use of (NH 4 ) 2 SO 4 or NH 4 NO 3 in the Hanway solution had a strong adverse effect. Yield data of the soybean experiment indicated that urea, applied as starter or starter plus topdress, had no essential effect while foliar spray showed a clear adverse effect on the grain yield of soybean-nod. When (NH 4 ) 2 SO 4 or NH 4 NO 3 were used in the foliar spray, the adverse effect was more evident. Non-nod soybean showed slight yield response to topdress N and significant positive response to Hanway foliar spray. In the bean experiment some evidence of positive response to topdress N plus Hanway foliar spray was observed in the non-nod crop, but it was not significant. The utilization coefficient of the applied fertilizers varied with the treatments. The highest utilization coefficient (50-70%), for both experiments, was observed when urea was applied as foliar spray. Application of urea as starter gave low utilization while topdress application gave high utilization in the soybean experiment and low in that of common bean. Under the experimental conditions starter urea was better utilized than starter ammonium sulphate or nitrate. (author)

  16. Changes in radiocesium contamination from Fukushima in foliar parts of 10 common tree species in Japan between 2011 and 2013

    International Nuclear Information System (INIS)

    Yoshihara, Toshihiro; Matsumura, Hideyuki; Tsuzaki, Masaharu; Wakamatsu, Takashi; Kobayashi, Takuya; Hashida, Shin-nosuke; Nagaoka, Toru; Goto, Fumiyuki

    2014-01-01

    Yearly changes in radiocesium ( 137 Cs) contamination, primarily due to the Fukushima accident of March 2011, were observed in the foliar parts of 10 common woody species in Japan (Chamaecyparis obtusa, Cedrus deodara, Pinus densiflora, Cryptomeria japonica, Phyllostachys pubescens, Cinnamomum camphora, Metasequoia glyptostroboides, Prunus × yedoensis, Acer buergerianum, and Aesculus hippocastanum). The samples were obtained from Abiko (approximately 200 km SSW of the Fukushima Dai-ichi Nuclear Power Plant) during each growing season between 2011 and 2013, and the foliar parts were examined based on their year of expansion and location in each trees. The radiocesium concentrations generally decreased with time; however, the concentrations and rates of decrease varied among species, age of foliar parts, and locations. The radiocesium concentrations in the 2012 current-year foliar parts were 29%–220% of those from 2011, while those from 2013 fell to between 14% and 42% of the 2011 values. The net decontamination in the foliage was higher in evergreen species than in deciduous species. The radiocesium concentrations in the upper foliar parts were higher than those in the lower parts particularly in C. japonica. In addition, the radiocesium concentrations were higher in the current-year foliar parts than in the 1-year-old foliar parts, particularly in 2013. Thus, the influence of the direct deposition of the fallout was reduced with time, and the translocation ability of radiocesium from old to new tissues became more influential. Similar to the behavior of potassium in trees, Cs redistribution probably occurred primarily due to internal nutrient translocation mechanisms. - Highlights: • 137 Cs concentrations of foliar parts expanded in 2013 was 14–42% of those in 2011. • The rates of decrease varied with the species, sampling part, and position. • Newly expanded foliar parts contain higher 137 Cs concentrations than older parts. • 137 Cs translocation

  17. Comportamento da área foliar da videira “Isabel” submetida a diferentes tipos e doses de biofertilizantes

    Directory of Open Access Journals (Sweden)

    Olivânia dos Santos Nascimento

    2014-06-01

    Full Text Available Objetivou-se verificar o efeito da aplicação de diferentes tipos e doses de biofertilizante, na área foliar da videira ‘Isabel’ em cultivo orgânico nas condições edafoclimáticas de Catolé do Rocha-PB. Estudou-se os efeitos de 5 tipos de biofertilizante biofertilizante e 8 doses na área foliar da videira ‘Isabel’ após a primeira poda de produção. O experimento foi conduzido sob condições de campo, em área pertencente à Universidade Estadual da Paraíba, Campus IV. O delineamento adotado foi o de blocos casualizados, com 40 tratamentos, no esquema fatorial 5 x 8, com 4  repetições, totalizando 160 parcelas experimentais, os tratamentos consistiram em aplicações crescentes de diferentes biofertilizante, aplicados de forma independente. O valor da área foliar unitária da videira Isabel aumentou com o incremento da dose do biofertilizante B1 até um limite ótimo de 0,93 L/planta/aplicação; o valor da área foliar unitária diminuiu com o aumento da dose do biofertilizante B1 acima do limite ótimo de 0,93 L/planta/aplicação; a utilização de biofertilizante enriquecido com farinha de rocha e leguminosa (B3 proporcionou maior área foliar unitária e área foliar da planta da videira Isabel.

  18. A doubling of microphytobenthos biomass coincides with a tenfold increase in denitrifier and total bacterial abundances in intertidal sediments of a temperate estuary.

    Directory of Open Access Journals (Sweden)

    Helen Decleyre

    Full Text Available Surface sediments are important systems for the removal of anthropogenically derived inorganic nitrogen in estuaries. They are often characterized by the presence of a microphytobenthos (MPB biofilm, which can impact bacterial communities in underlying sediments for example by secretion of extracellular polymeric substances (EPS and competition for nutrients (including nitrogen. Pyrosequencing and qPCR was performed on two intertidal surface sediments of the Westerschelde estuary characterized by a two-fold difference in MPB biomass but no difference in MPB composition. Doubling of MPB biomass was accompanied by a disproportionately (ten-fold increase in total bacterial abundances while, unexpectedly, no difference in general community structure was observed, despite significantly lower bacterial richness and distinct community membership, mostly for non-abundant taxa. Denitrifier abundances corresponded likewise while community structure, both for nirS and nirK denitrifiers, remained unchanged, suggesting that competition with diatoms for nitrate is negligible at concentrations in the investigated sediments (appr. 1 mg/l NO3-. This study indicates that MPB biomass increase has a general, significantly positive effect on total bacterial and denitrifier abundances, with stimulation or inhibition of specific bacterial groups that however do not result in a re-structured community.

  19. Imaging spectroscopy of foliar biochemistry in forestry environments ...

    African Journals Online (AJOL)

    Remote sensing estimates of leaf biochemicals provide valuable information on ecosystem functioning, vitality and state at local to global spatial scales. This paper aims to give an overview of the state of the art of foliar biochemistry assessment in general and, where possible, attention is given to: (1) Eucalyptus forest ...

  20. Statistical analysis of grapevine mortality associated with esca or Eutypa dieback foliar expression

    Directory of Open Access Journals (Sweden)

    Lucia GUERIN-DUBRANA

    2013-09-01

    Full Text Available Esca and Eutypa dieback are two major wood diseases of grapevine in France. Their widespread distribution in vineyards leads to vine decline and to a loss in productivity. However, little is known either about the temporal dynamics of these diseases at plant level, and equally, the relationships between foliar expression of the diseases and vine death is relatively unknown too.  To investigate this last question, the vines of six vineyards cv. Cabernet Sauvignon in the Bordeaux region were surveyed, by recording foliar symptoms, dead arms and dead plants from 2004 to 2010. In 2008, 2009 and 2010, approximately five percent of the asymptomatic vines died but the percentage of dead vines which had previously expressed esca foliar symptoms was higher, and varied between vineyards. A logistic regression model was used to determine the previous years of symptomatic expression associated with vine mortality. The mortality of esca is always associated with the foliar symptom expression of the year preceding vine death. One or two other earlier years of expression frequently represented additional risk factors. The Eutypa dieback symptom was also a risk factor of death, superior or equal to that of esca. The study of the internal necroses of vines expressing esca or Eutypa dieback is discussed in the light of these statistical results.

  1. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D [VTT Energy, Espoo (Finland)

    1997-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  2. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  3. Soil and Foliar Arthropod Abundance and Diversity in Five Cropping Systems in the Coastal Plains of North Carolina.

    Science.gov (United States)

    Adams, Paul R; Orr, David B; Arellano, Consuelo; Cardoza, Yasmin J

    2017-08-01

    Soil and foliar arthropod populations in agricultural settings respond to environmental disturbance and degradation, impacting functional biodiversity in agroecosystems. The objective of this study was to evaluate system level management effects on soil and foliar arthropod abundance and diversity in corn and soybean. Our field experiment was a completely randomized block design with three replicates for five farming systems which included: Conventional clean till, conventional long rotation, conventional no-till, organic clean till, and organic reduced till. Soil arthropod sampling was accomplished by pitfall trapping. Foliar arthropod sampling was accomplished by scouting corn and sweep netting soybean. Overall soil arthropod abundance was significantly impacted by cropping in corn and for foliar arthropods in soybeans. Conventional long rotation and organic clean till systems were highest in overall soil arthropod abundance for corn while organic reduced till systems exceeded all other systems for overall foliar arthropod abundance in soybeans. Foliar arthropod abundance over sampling weeks was significantly impacted by cropping system and is suspected to be the result of in-field weed and cover crop cultivation practices. This suggests that the sum of management practices within production systems impact soil and foliar arthropod abundance and diversity and that the effects of these systems are dynamic over the cropping season. Changes in diversity may be explained by weed management practices as sources of disturbance and reduced arthropod refuges via weed reduction. Furthermore, our results suggest agricultural systems lower in management intensity, whether due to organic practices or reduced levels of disturbance, foster greater arthropod diversity. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Estimativa do Índice de Área Foliar (IAF) e Biomassa em pastagem no estado de Rondônia, Brasil

    NARCIS (Netherlands)

    Zanchi, F.B.; Waterloo, M.J.; Randow, von C.; Kruijt, B.; Cardoso, F.L.; Manzi, A.O.

    2009-01-01

    Medidas mensais da altura da pastagem, biomassa total, variações de biomassa viva e morta, a área específica foliar (SLA) e o Índice de Área de Folha (IAF) de fevereiro de 1999 a janeiro de 2005 na Fazenda Nossa Senhora (FNS) e em Rolim de Moura (RDM) entre Fevereiro a Março de 1999, Rondônia,

  5. A preliminary survey of foliar sclerenchyma in neotropical Loranthaceae

    NARCIS (Netherlands)

    Kuijt, J.; Lye, D.

    2005-01-01

    The foliar sclerenchyma of all genera of neotropical Loranthaceae is surveyed by means of cleared leaves, using selected species. Three general categories of sclerenchyma are recognized. Fibers may form discontinuous or continuous bundles associated with veins or, more rarely, occur as individual

  6. Effect of foliar application of salicylic acid, hydrogen peroxide

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 42; Issue 2. Effect of foliar application of salicylic acid, hydrogen peroxide and a xyloglucan oligosaccharide on capsiate content and gene expression associatedwith capsinoids synthesis in Capsicum annuum L. AY ZUNUN-PÉREZ T GUEVARA-FIGUEROA SN ...

  7. Foliar biofilms of Burkholderia pyrrocinia FP62 on geraniums

    Science.gov (United States)

    Biofilm formation on foliar surfaces is commonly associated with plants in water-saturated environments (e.g. tropics or modified environments). On most leaf surfaces bacteria are thought to reside in aggregates with limited production of an exopolysaccharide (EPS) matrix. However, the biocontrol ag...

  8. Morfoanatomia foliar de Palicourea longepedunculata Gardiner (Rubiaceae

    Directory of Open Access Journals (Sweden)

    Pereira Zefa Valdivina

    2003-01-01

    Full Text Available O gênero Palicourea - tribo Psychotrieae - compreende cerca de 200 espécies e destaca-se por apresentar alcalóides indólicos muitas vezes tóxicos para bovinos. O objetivo do presente trabalho foi contribuir para o conhecimento da família Rubiaceae, enfatizando os aspectos da morfoanatomia foliar de Palicourea longepedunculata. O material foi coletado na Reserva Florestal Mata do Paraíso (RFMP, município de Viçosa, Minas Gerais, e amostras-testemunha foram depositadas no herbário VIC. Folhas provenientes do quarto nó foram fixadas em FAA50 e conservadas em etanol 70%. Seções transversais e longitudinais do pecíolo e da lâmina foliar foram obtidas em micrótomo de mesa para montagem de lâminas permanentes, conforme metodologia usual. As folhas são simples, opostas, inteiras, ovais lanceoladas, dorsiventrais e hipoestomáticas. A epiderme do pecíolo e da lâmina foliar é uniestratificada, papilosa na face adaxial da folha e recoberta por cutícula delgada. Os estômatos são paracíticos e ocorrem no mesmo nível das demais células epidérmicas. O mesofilo é constituído por uma camada de parênquima paliçádico e de várias de parênquima lacunoso. Na face adaxial e abaxial da nervura mediana e no bordo da lâmina observa-se colênquima subepidérmico. Um feixe vascular do tipo colateral, em forma de "U", distribui-se ao longo do pecíolo e da nervura mediana, acompanhado, invariavelmente, por dois feixes menores localizados lateralmente. No córtex do pecíolo e da nervura mediana observa-se aerênquima. As características anatômicas seguem o padrão descrito para as Rubiaceae, e algumas delas são interpretadas como adaptações a ambientes úmidos e sombreados no qual a espécie ocorre.

  9. Antecipação do período de diagnose foliar em laranjeira 'Pêra' no Amazonas

    Directory of Open Access Journals (Sweden)

    Jairo Rafael Machado Dias

    2013-07-01

    Full Text Available O objetivo deste trabalho foi avaliar a possibilidade de se antecipar o período de realização da diagnose foliar em laranjeira 'Pêra'. Vinte e sete pomares representativos da região produtora de laranja do Estado do Amazonas foram monitorados durante o ano agrícola de 2011/2012. Foram realizadas diagnoses da composição nutricional (CND em amostras foliares retiradas durante a floração e quando a árvore apresentava frutos com três e seis meses de idade (época tradicional para o monitoramento nutricional. Pomares com produtividade superior a 25 Mg ha‑1 foram selecionados para o estabelecimento dos padrões de referência. O estado nutricional da laranja variou com o estádio fenológico no qual se realizou a amostragem foliar, o que fez com que fosse necessário estabelecer normas CND para cada período. Com a antecipação da diagnose para o período de floração, observou-se aumento nas concentrações foliares de N, P, K e Cu diminuição e nas de Ca. A antecipação da diagnose foliar em laranja 'Pêra' depende da geração de padrões nutricionais CND específicos para cada época de amostragem.

  10. Determination of Total Carbohydrates in Algal Biomass: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Van Wychen, Stefanie; Laurens, Lieve M. L.

    2016-01-13

    This procedure uses two-step sulfuric acid hydrolysis to hydrolyze the polymeric forms of carbohydrates in algal biomass into monomeric subunits. The monomers are then quantified by either HPLC or a suitable spectrophotometric method.

  11. Long-term trends of changes in pine and oak foliar nitrogen metabolism in response to chronic nitrogen amendments at Harvard Forest, MA.

    Science.gov (United States)

    Minocha, Rakesh; Turlapati, Swathi A; Long, Stephanie; McDowell, William H; Minocha, Subhash C

    2015-08-01

    We evaluated the long-term (1995-2008) trends in foliar and sapwood metabolism, soil solution chemistry and tree mortality rates in response to chronic nitrogen (N) additions to pine and hardwood stands at the Harvard Forest Long Term Ecological Research (LTER) site. Common stress-related metabolites like polyamines (PAs), free amino acids (AAs) and inorganic elements were analyzed for control, low N (LN, 50 kg NH4NO3 ha(-1) year(-1)) and high N (HN, 150 kg NH4NO3 ha(-1) year(-1)) treatments. In the pine stands, partitioning of excess N into foliar PAs and AAs increased with both N treatments until 2002. By 2005, several of these effects on N metabolites disappeared for HN, and by 2008 they were mostly observed for LN plot. A significant decline in foliar Ca and P was observed mostly with HN for a few years until 2005. However, sapwood data actually showed an increase in Ca, Mg and Mn and no change in PAs in the HN plot for 2008, while AAs data revealed trends that were generally similar to foliage for 2008. Concomitant with these changes, mortality data revealed a large number of dead trees in HN pine plots by 2002; the mortality rate started to decline by 2005. Oak trees in the hardwood plot did not exhibit any major changes in PAs, AAs, nutrients and mortality rate with LN treatment, indicating that oak trees were able to tolerate the yearly doses of 50 kg NH4NO3 ha(-1) year(-1). However, HN trees suffered from physiological and nutritional stress along with increased mortality in 2008. In this case also, foliar data were supported by the sapwood data. Overall, both low and high N applications resulted in greater physiological stress to the pine trees than the oaks. In general, the time course of changes in metabolic data are in agreement with the published reports on changes in soil chemistry and microbial community structure, rates of soil carbon sequestration and production of woody biomass for this chronic N study. This correspondence of selected metabolites

  12. Foliar application of amino acids modulates aroma components of 'FUJI' apple (malus domestica L.)

    International Nuclear Information System (INIS)

    Gou, W.; Zhang, L.; Chen, F.; Cui, Z.; Zhao, Y.; Zheng, P.; Tian, L.; Zhang, L.; Zhang, C.

    2015-01-01

    Volatile flavor compounds play a key role in determining the perception and acceptability as well as enhancing market competitiveness of apple (Malus domestica L.). In our study, we evaluated the effects of foliar-applied four different amino acids, i.e. leucine (Leu), isoleucine (Ile), valine (Val) and alanine (Ala), on aroma components and two key enzymes activities involved in aroma metabolism of Fuji apple. The total amount of aromatic components under Ala treatment was significantly higher than those under other treatments. There was a considerable increase in total aroma content, including hexanal, 2-methyl-butanol, nonanal, (E)-2-hexenal, methyleugenol, ethyl acetate, butanoic acid-pentyl ester, butanoic acid-hexyl ester, butyric acid ethyl ester, acetic acid-2-methyl-butyl ester, treated with spraying amino acids compared with the control. More specifically, hexanal, 2-methyl-butanol, methyleugenol and acetic acid-2-methyl-butyl ester exhibited a greater substantial increase of their contents than those of in other ingredients. However, butanoic acid-2-methyl-2-methyl butyl ester maintained a highest level among all aroma components regardless of different amino acids application. Furthermore, the activities of alcohol dehydrogenase (ADH) and alcohol acyltransferase (AAT) were much higher under Ala treatment than those under other treatments. We concluded that foliar-applied organic nitrogen (N), especially for Ala, can improve aroma metabolism and it could be used in production to enhance fruit quality on a commercial scale. (author)

  13. Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems

    International Nuclear Information System (INIS)

    Huang Wenjuan; Zhou Guoyi; Liu Juxiu; Zhang Deqiang; Xu Zhihong; Liu Shizhong

    2012-01-01

    The effects of elevated carbon dioxide (CO 2 ) and nitrogen (N) addition on foliar N and phosphorus (P) stoichiometry were investigated in five native tree species (four non-N 2 fixers and one N 2 fixer) in open-top chambers in southern China from 2005 to 2009. The high foliar N:P ratios induced by high foliar N and low foliar P indicate that plants may be more limited by P than by N. The changes in foliar N:P ratios were largely determined by P dynamics rather than N under both elevated CO 2 and N addition. Foliar N:P ratios in the non-N 2 fixers showed some negative responses to elevated CO 2 , while N addition reduced foliar N:P ratios in the N 2 fixer. The results suggest that N addition would facilitate the N 2 fixer rather than the non-N 2 fixers to regulate the stoichiometric balance under elevated CO 2 . - Highlights: ► Five native tree species in southern China were more limited by P than by N. ► Shifts in foliar N:P ratios were driven by P dynamic under the global change. ► N addition lowered foliar N:P ratios in the N 2 fixer under elevated CO 2 . - N addition could facilitate the N 2 fixer rather than the non-N 2 fixers to regulate foliar N and P stoichiometry under elevated CO 2 in subtropical forests.

  14. Effect of Foliar Application of Phosphorus and Water Deficit on Yield and Yield Components of Winter Wheat (Cultivar Alvand

    Directory of Open Access Journals (Sweden)

    M. Vafapour

    2011-04-01

    Full Text Available In order to study the effects of foliar application of phosphorus (P and water deficit on yield and yield components of winter wheat (Triticum aestivum L., cv. Alvand, a split-plot experiment, with completely randomized blocks design and three replications, was carried out at the Research Farm of Boyer Ahmad Agricultural and Natural Resources Research Station, 13 km west of Yasouj, in 2008-2009. The main plots were irrigation at three levels (1- full irrigation (control, 2- deficit irrigation from the stem elongation to booting stage, and 3- deficit irrigation from booting stage to the end of growth period and the subplots were five levels of foliar application of P fertilizer (0, 3, 6, 9 and 12 kg/ha KH2PO4. The results showed that the effects of different irrigation regimes and foliar application of P were significant on all traits, and their interaction was significant on plant height, number of grain per spike, grain yield and biological yield. Full irrigation and foliar application of 6 kg/ha P produced the highest grain and biological yield (6000 and 14170 kg/ha, respectively and deficit irrigation from the stem elongation to booting stage without foliar application of P produced the lowest grain and biological yield (2920 and 8219 kg/ha, respectively. Foliar application of P affects significantly the evaluated traits only in drought-stress treatments and its effect was not significant in full irrigation treatment. In general, foliar application of 9 kg/ha P compensated the losses in wheat due to drought stress.

  15. Avaliação de produtos para a nutrição da videira via foliar

    Directory of Open Access Journals (Sweden)

    J. C. Fráguas

    2001-12-01

    Full Text Available A nutrição da videira é fator fundamental para uma produção com qualidade. Muitas vezes, por razões fisiológicas, principalmente nutricionais, ocorrem problemas de baixa brotação, refletindo na produtividade da videira. Com o objetivo de avaliar a eficiência de formulações de macro e micronutrientes via foliar, ativadas com poliexose, na produção de videira com deficiência na brotação, realizou-se um experimento por dois anos, em um vinhedo do cv. Merlot enxertado sobre o porta-enxerto R110, formado no sistema lira, localizado no município de Monte Belo do Sul (RS. Os tratamentos, em número de 11, foram compostos por três programas de nutrição foliar, cada um com três dosagens, um programa denominado tratamento básico (TB e um tratamento-testemunha (sem nutrição foliar chamado de tratamento do produtor (TP. O delineamento foi o de blocos ao acaso, com três repetições. Foram avaliadas as variáveis: produtividade por gema, produtividade por gema brotada, percentagem de gemas brotadas, produção por planta e por área, qualidade das uvas (ºBrix, acidez total e pH, índices de doenças nos cachos, diagnóstico nutricional e relação custo-benefício dos programas. A análise estatística (contrastes ortogonais só registrou efeitos significativos entre as doses 2 e 3, dentro do programa 2, para percentagem de gemas brotadas (1994/95. Na safra de 1995/96, os efeitos significativos foram para adubação foliar contra a testemunha e para as doses 2 e 3, nos programas 1 e 2, para a produtividade por gema e percentagem de gemas brotadas. Houve efeito cumulativo dos programas nas variáveis analisadas. As relações custo-benefício do TB foram superiores às dos demais programas e, em relação à testemunha, alcançaram 1:12,8 e 1:16,0, nas safras de 1994/95 e 1995/96, respectivamente.

  16. Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances.

    Science.gov (United States)

    Du, Baoguo; Kreuzwieser, Jürgen; Dannenmann, Michael; Junker, Laura Verena; Kleiber, Anita; Hess, Moritz; Jansen, Kirstin; Eiblmeier, Monika; Gessler, Arthur; Kohnle, Ulrich; Ensminger, Ingo; Rennenberg, Heinz; Wildhagen, Henning

    2018-01-01

    The coniferous forest tree Douglas-fir (Pseudotsuga menziesii) is native to the pacific North America, and is increasingly planted in temperate regions worldwide. Nitrogen (N) metabolism is of great importance for growth, resistance and resilience of trees. In the present study, foliar N metabolism of adult trees of three coastal and one interior provenance of Douglas-fir grown at two common gardens in southwestern Germany (Wiesloch, W; Schluchsee, S) were characterized in two subsequent years. Both the native North American habitats of the seed sources and the common garden sites in Germany differ in climate conditions. Total and mineral soil N as well as soil water content were higher in S compared to W. We hypothesized that i) provenances differ constitutively in N pool sizes and composition, ii) N pools are affected by environmental conditions, and iii) that effects of environmental factors on N pools differ among interior and coastal provenances. Soil water content strongly affected the concentrations of total N, soluble protein, total amino acids (TAA), arginine and glutamate. Foliar concentrations of total N, soluble protein, structural N and TAA of trees grown at W were much higher than in trees at S. Provenance effects were small but significant for total N and soluble protein content (interior provenance showed lowest concentrations), as well as arginine, asparagine and glutamate. Our data suggest that needle N status of adult Douglas-fir is independent from soil N availability and that low soil water availability induces a re-allocation of N from structural N to metabolic N pools. Small provenance effects on N pools suggest that local adaptation of Douglas-fir is not dominated by N conditions at the native habitats.

  17. Modelo para estimar a área foliar de Combretum leprosum Mart.

    Directory of Open Access Journals (Sweden)

    Willame dos Santos Candido

    2013-01-01

    Full Text Available Combretum leprosum Mart. -Combretaceae es un arbusto utilizado en la medicina popular del noreste de Brasil como antiulceroso, antihemorrágica y antinociceptiva. En este estudio se desarrolló un modelo para el cálculo de área foliar de Combretum leprosum usando mediciones lineales de longitud (C y ancho máximo (L de la hoja. Se recolectaron 200 láminas de hojas de una población de C. leprosum nativo en un área de conservación de la Caatinga en el campus de la Universidad Federal Rural de la Semi árido en Mossoro, Rio Grande do Norte. Las hojas se obtuvieron de árboles adultos y el área foliar se midió utilizando un integrador (LI-3100, LI-COR. El análisis de regresión se hizo con el programa SAEG. Para estimar el área foliar de C. leprosum se puede utilizar la ecuación lineal simple de regresión A = 0.7103 x (C x L, que es equivalente a tomar 71.03% de los productos de la longitud a lo largo de la nervadura central y el ancho máximo, con un coeficiente de determinación de 0.952617.

  18. Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings

    International Nuclear Information System (INIS)

    Zhang Jianwei; Schaub, Marcus; Ferdinand, Jonathan A.; Skelly, John M.; Steiner, Kim C.; Savage, James E.

    2010-01-01

    We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (g wv ), foliar injury, and leaf nitrogen concentration (N L ) to tropospheric ozone (O 3 ) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, g wv , foliar injury, and N L (P 3 treatments. Seedlings in AA showed the highest A and g wv due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, g wv , N L , and higher foliar injury (P wv , and foliar injury to O 3 . Both VPD and N L had a strong influence on leaf gas exchange. Foliar O 3 -induced injury appeared when cumulative O 3 uptake reached 8-12 mmol m -2 , depending on soil water availability. The mechanistic assessment of O 3 -induced injury is a valuable approach for a biologically relevant O 3 risk assessment for forest trees. - Ozone effects on symptom development and leaf gas exchange interacted with leaf age and N-content on black cherry seedlings.

  19. Effects of ozone on the foliar histology of the mastic plant (Pistacia lentiscus L.)

    International Nuclear Information System (INIS)

    Reig-Arminana, J.; Calatayud, V.; Cervero, J.; Garcia-Breijo, F.J.; Ibars, A.; Sanz, M.J.

    2004-01-01

    An open-top chamber study was conducted to investigate the tissue and cellular-level foliar effects of ozone (O 3 ) on a Mediterranean evergreen species, the mastic plant (Pistacia lentiscus L.). Plants were exposed at three different O 3 levels, and leaf samples were collected periodically from the beginning of the exposure. Although no visible foliar injury was evident, alterations of the plastids and vacuoles in the mesophyll were observed. Senescence processes were accelerated with an anomalous stacking of tannin vacuoles, and a reduction in the size and number of the chloroplasts. Overall, most of the modifications induced by O 3 were consistent with previously reported observations on deciduous broadleaf species, with the exception of alterations in the cells covering the secretory channels, reported here as a new finding. Comments on the feasibility of using microscopy to validate O 3 related field observations and subtle foliar injury are also given

  20. Susceptibility to Phytophthora ramorum in California bay laurel, a key foliar host of sudden oak death

    Science.gov (United States)

    Brian L. Anacker; Nathan E. Rank; Daniel Hüberli; Matteo Garbelotto; Sarah Gordon; Rich Whitkus; Tami Harnik; Matthew Meshriy; Lori Miles; Ross K. Meentemeyer

    2008-01-01

    Sudden oak death, caused by the water mold Phytophthora ramorum, is a plant disease responsible for the death of hundreds of thousands of oak and tanoak trees. Some foliar hosts play a major role in the epidemiology of this disease. Upon infection by P. ramorum, these foliar hosts express non-fatal leaf lesions from which large...

  1. A biomass energy flow chart for Kenya

    International Nuclear Information System (INIS)

    Senelwa, K.A.; Hall, D.O.

    1993-01-01

    Terrestrial (above ground) biomass production and its utilization in Kenya was analyzed for the 1980s. Total biomass energy production was estimated at 2574 x 10 6 GJ per year, most of which (86.7%) is produced on land classified as agricultural. Of the total production, agriculture and forrestry operations resulted in the harvesting of 1138 x 10 6 GJ (44.2% of total production), half of which (602 x 10 6 GJ) was harvested for use as fuel. Only 80 x 10 6 GJ was harvested for food and 63 x 10 6 GJ for industrial (agricultural and forestry) plus other miscellaneous purposes. About 85% of Kenya's energy is from biomass, with a per capita consumption of 18.6 GJ (0.44 toe, tonne oil equivalent) compared to less than 0.1 toe of commercial energy. Use of the biomass resource was found to be extensive involving bulk harvesting but with low utilization efficiencies; as a result the overall losses were quite high. Only 534 x 10 6 GJ (46.9% of harvested biomass) was useful energy. 480 x 10 6 GJ was left unused, as residues and dung, all which was either burnt or left to decompose in the fields. 124 x 10 6 GJ was lost during charcoal manufacture. Intensified use of the harvested biomass at higher efficiencies in order to minimize wastes would decrease the stress on the biomass resource base. (Author)

  2. Biomass production in energy plantation of Prosopis juliflora

    Energy Technology Data Exchange (ETDEWEB)

    Gurumurti, K.

    1984-09-01

    Studies on time trends of biomass production by means of age series in energy plantations (spacing 1.3 x 1.3 m) of Prosopis juliflora is presented. The component biomass production at the age of 18, 24, 30, 36 and 48 months was determined. The results show considerable variation among the population of trees. However, distinct linear relationship between girth at breast height (GBH) and total height was discernible. The total biomass produced at 18, 24, 30, 36 and 48 months of age was 19.69, 41.39, 69.11, 114.62 and 148.63 dry tonnes per hectare, respectively. The corresponding figures for utilizable biomass (wood, bark and branch) were 14.63, 32.17, 50.59, 88.87 and 113.25 dry tonnes per hectare. At all the periods of study, branch component formed the major portion of total biomass being around 50 to 55%. Utilizable biomass was three-fourths of total biomass at all ages. The solar energy conversion efficiency ranged from 0.59% at 18 months to 1.68% at 48 months of age, the peak value being 1.87% at the age of 36 months. It is shown that the variables diameter and height can be used to reliably predict the biomass production in Prosopis juliflora with the help of the regression equations developed in the present study. It is concluded that Prosopis juliflora is an ideal candidate for energy plantations in semi arid and marginal lands, not only to meet the fuelwood demands but also to improve the soil fertility, for, this plant is a fast growing and nitrogen fixing leguminous tree.

  3. [Foliar water use efficiency of Platycladus orientalis sapling under different soil water contents].

    Science.gov (United States)

    Zhang, Yong E; Yu, Xin Xiao; Chen, Li Hua; Jia, Guo Dong; Zhao, Na; Li, Han Zhi; Chang, Xiao Min

    2017-07-18

    The determination of plant foliar water use efficiency will be of great value to improve our understanding about mechanism of plant water consumption and provide important basis of regional forest ecosystem management and maintenance, thus, laboratory controlled experiments were carried out to obtain Platycladus orientalis sapling foliar water use efficiency under five different soil water contents, including instantaneous water use efficiency (WUE gs ) derived from gas exchange and short-term water use efficiency (WUE cp ) caculated using carbon isotope model. The results showed that, controlled by stomatal conductance (g s ), foliar net photosynthesis rate (P n ) and transpiration rate (T r ) increased as soil water content increased, which both reached maximum va-lues at soil water content of 70%-80% field capacity (FC), while WUE gs reached a maximum of 7.26 mmol·m -2 ·s -1 at the lowest soil water content (35%-45% FC). Both δ 13 C of water-soluble leaf and twig phloem material achieved maximum values at the lowest soil water content (35%-45% FC). Besides, δ 13 C values of leaf water-soluble compounds were significantly greater than that of phloem exudates, indicating that there was depletion in 13 C in twig phloem compared with leaf water-soluble compounds and no obvious fractionation in the process of water-soluble material transportation from leaf to twig. Foliar WUE cp also reached a maximum of 7.26 mmol·m -2 ·s -1 at the lowest soil water content (35%-45% FC). There was some difference between foliar WUE gs and WUE cp under the same condition, and the average difference was 0.52 mmol·m -2 ·s -1 . The WUE gs had great space-time variability, by contrast, WUE cp was more representative. It was concluded that P. orientalis sapling adapted to drought condition by increasing water use efficiency and decreasing physiological activity.

  4. PHYSIOLOGICAL MATURATION IN SEEDS OF SWEET SOGHUM FOR FOLIAR FERTILISATION WITH SILICATE

    Directory of Open Access Journals (Sweden)

    BRUNO FRANÇA DA TRINDADE LESSA

    2017-01-01

    Full Text Available The aim of this study was to evaluate physiological quality in seeds of sweet sorghum grown under semi-arid conditions, and to determine the age of physiological maturity of the seeds as a function of the foliar application of potassium silicate. The experiment was carried out at the Curu Valley Experimental Farm, in Pentecoste in the state of Ceará, during the rainy seasons of 2014 and 2015. The BRS 506 and BRS 511 varieties were used, under foliar fertilisation with potassium silicate at doses of 500, 1000 and 1500 mL.ha -1, in addition to the control lots (with no application; harvesting was at four periods, 30, 37, 44 and 51 days after full bloom (DAB. The percentage and speed of germination were evaluated, together with the accelerated ageing test and seedling growth. The seeds presented greater than 90% germination from 37 DAB, reaching high seedling vigour at 51 DAB. Foliar fertilisation with potassium silicate under the conditions of the experiment resulted in an increase in the physiological quality of the seeds. The BRS 506 and BRS 511 cultivars displayed the highest physiological quality between 49 and 53 DAF.

  5. Effects of Foliar Application of Nitrogen, Zinc and Manganese on Yield, Yield Components and Grain Quality of Chickpea in Two Growing Seasons

    Directory of Open Access Journals (Sweden)

    B. Shirani

    2015-09-01

    Full Text Available To study the effects of foliar application of zinc, manganese and nitrogen on yield, yield components and grain quality of chickpea (Cicer arientinum L. two experiments, one in autumn and the other in spring were conducted at Research Farm, Shahrekord University in 2009-2010 growing season each as a randomized complete block design with three replications. The treatments were foliar application of zinc sulfate, manganese sulfate zinc sulfate and manganese sulfate mixture, nitrogen and distilled water (as control. The results showed that planting season had a significant effect on plant height, 100-seed weight and seed yield. All measured traits, except plant height, increased in winter compared to spring growing season. This increase was more than 12% for grain yield. Foliar application of nutrients significantly affected seed yield and seed yield components. Foliar application of nitrogen, presumably, through significant increase in number of pods per plant, number of seeds per plant and 100-seed weight, increased the grain yield by 6.2% compared to control. Foliar application × planting season interactions were significant for plant height and number of pods per plant. Foliar application of nitrogen caused a significant increase in grain yield and protein content. Foliar application of zinc sulphate significantly increased Zn content of grains however it did not affect seed yield. In conclusion, foliar application of nitrogen could be suggested for increasing protein and grain yield in chickpea under similar conditions to that of the present study.

  6. PERFORMANCE DE FERTILIZANTES FOLIARES E CORRELAÇÕES LINEARES EM COMPONENTES DO RENDIMENTO DA SOJA

    Directory of Open Access Journals (Sweden)

    Vinícius Jardel Szareski

    2017-01-01

    Full Text Available O objetivo foi avaliar a resposta de diferentes fertilizantes foliares aplicados na cultura da soja e as associações lineares entre os componentes do rendimento de grãos, nas condições edafoclimáticas da Região do Alto Uruguai, RS. O experimento foi conduzido em delineamento de blocos casualizados, com três repetições. Os tratamentos testados foram: T1: sem aplicação de bioestimulantes; T2: aplicação de NITAMIN®; T3: aplicação de BIOZIME®; T4: aplicação de Bioamino Extra®; T5: Aplicação de NIPHOKAN®, onde avaliou-se os componentes do rendimento de grãos da soja. A aplicação de micronutrientes e bioestimulantes via foliar não acarreta em aumento no rendimento de grãos da soja, para as condições edafoclimáticas da Região do Alto Uruguai. O rendimento de grãos apresenta correlação positiva com o número de ramificações, número de legumes nas ramificações, número total de legumes, número de grãos por planta e massa de mil grãos.

  7. Foliar fertilizations with boron and growth regulators on lettuce (Lactuca sativa L.) cv floresta culture

    International Nuclear Information System (INIS)

    Masunaga, S.I.; Chueire, F.B.; Teixeira, N.T.

    1989-01-01

    The experiment was realized to verify the possibility of applying Boron as foliar fertilization with growth regulators: indol acetic acid, giberellic acid, ethephon and cycocel. The other objective was to compare the foliar and soil fertilization, with Boron, on the lettuce culture. The results showed that there wasn't difference of production between the treatments. Meanwhile the application of growth regulator modified the Boron grade in the leaves. (author) [pt

  8. Evaluación de fertilizantes foliares sobre la producción en café (Coffea arabica L.)

    OpenAIRE

    Omar A. Sosa-M.; Alveiro Salamanca-J.

    2011-01-01

    En  la subestación experimental Paraguaicito de Cenicafé, ubicada en el municipio de Buenavista, departamento del Quindío,  se  realizó un ensayo con  fertilizantes  foliares, en café variedad Colombia de 24 meses de edad, con una distancia de siembra de 2 x 1 m. Las aplicaciones foliares se realizaron 58 ý 88 días después del pico de floración principal, con el fin de evaluar su efecto sobre la producción, el factor de conversión y el rendimiento en  trilla. Los  fertilizantes  foliares util...

  9. Effects of Vermi-compost Fertilizer Application and Foliar Spraying on Yield and Yield Component of Isabgol (Plantago ovate L. Medicinal Plant

    Directory of Open Access Journals (Sweden)

    Asghar Rahimi

    2017-12-01

    which were soaked in water for 24 hours under aerated condition using air pump. For preparation of tea compost, 500 g of vermi-compost, 25 cc humic acid, 5 g yeast, 25 cc seaweed extract, 25 cc sugar beet molasses were hanging in a fine lace fabric in 50-liter plastic water container for 24 hours while the air was flowing to container and the liquid extract separated as compost tea with fine lace fabric. Results and Discussion Analyze of variance showed that the effect of different levels of vermi-compost and foliar application on the spike number, mucilage yield and seed yield were significant but their interaction have no significant effect. Seed number, mucilage percent and SPAD number significantly affected by foliar application treatments but the vermi-compost treatments and their interactions had no significant effect on them. Also different levels of vermi-compost, foliar application and their interaction have significantly effect on leaf area and dry weight. Vermi-compost have available plant nutrient solution which increase leaf area indices compared with none use vermi-compost treatment. Arancon et al. (2004 reported that using 5 and 10 t.ha-1 vermi-compost significantly increased leaf area and shoot dry matter in strawberry. Conclusion The results of this research showed that the highest dry weight, spike number, harvest index, mucilage yield and seed yield observed in 16 t.ha-1 application of vermi-compost whit no significant difference related to 8 and 12 t.ha-1 vermi-compost. It is also resulted that foliar application of tea compost significantly affected SPAD, leaf area, shoot dry weight, spike number, seed and mucilage yield. Totally, it seems that using biological fertilizer (vermi-compost in amount of 8 t.ha-1 with foliar application of tea compost economically would be suitable for increasing seed yield and yield component of isabgol.

  10. Importance of biomass energy sources for Turkey

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    Various agricultural residues such as grain dust, crop residues and fruit tree residues are available in Turkey as the sources of biomass energy. Among the biomass energy sources, fuelwood seems to be one of the most interesting because its share of the total energy production of Turkey is high at 21% and the techniques for converting it to useful energy are not necessarily sophisticated. Selection of a particular biomass for energy requirements is influenced by its availability, source and transportation cost, competing uses and prevalent fossil fuel prices. Utilization of biomass is a very attractive energy resource, particularly for developing countries since biomass uses local feedstocks and labor. Like many developing countries, Turkey relies on biomass to provide much of its energy requirement. More efficient use of biomass in producing energy, both electrical and thermal, may allow Turkey to reduce petroleum imports, thus affecting its balance of payments dramatically. Turkey has always been one of the major agricultural countries in the world. The importance of agriculture is increasing due to biomass energy being one of the major resources in Turkey. Biomass waste materials can be used in Turkey to provide centralized, medium- and large-scale production of process heat for electricity production. Turkey's first biomass power project is under development in Adana province, at an installed capacity of 45 MW. Two others, at a total capacity of 30 MW, are at the feasibility study stage in Mersin and Tarsus provinces. Electricity production from biomass has been found to be a promising method in the nearest future in Turkey

  11. Effects of soil and foliar applications of iron and zinc on flowering and essential oil of chamomile at greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Yousef NASIRI

    2015-11-01

    Full Text Available In order to study the effects of soil and foliar applications of iron (Fe and zinc (Zn on flowering, flower yield and essential oil production of German chamomile a pot experiment was conducted under greenhouse conditions at the Faculty of Agriculture, University of Tabriz, Iran in 2012. The experiment was arranged as completely randomized design with 12 treatments and three replications. Treatments were as follow: T1: control – without Fe or Zn fertilizers, T2: 30 mg FeSO4.7H2O kg-1 dry soil, T3: 22 mg ZnSO4.7H2O kg-1 dry soil, T4: 30 mg FeSO4.7H2O + 22 mg ZnSO4.7H2O kg-1 dry soil, T5: foliar spraying of FeSO4.7H2O (3.5 g L-1, T6: foliar spraying of FeSO4.7H2O (7.0 g L-1, T7: foliar spraying of ZnSO4.7H2O (2.5 g L-1, T8: foliar spraying of ZnSO4.7H2O (5.0 g L-1, T9: T5+T7, T10: T5+T8, T11: T6+T7, T12: T6+T8. The foliar spraying was done two times during the growing period. The results revealed that the flower number, flower yield, essential oil content and essential oil yield were significantly increased by soil and foliar applications of Fe + Zn, compared with the control (untreated. The highest flower number (477 plant-1, flower yield (11.6 g pot-1, essential oil content (0.88 % and essential oil yield (119 mg pot-1 were recorded for the soil application of Fe + Zn (T4 by 58, 68, 21.4 and 105 % increment compared to the control, respectively. Foliar application of Fe + Zn (T12 was placed at the next rank; however this treatment had no significant difference with the soil application of Fe + Zn (T4. Other treatments did not show significant differences with the control. Generally, the results showed that soil or foliar application of Fe + Zn can be effective on increase or improve of quantity and quality of chamomile yield. Moreover, use of foliar application as a low cost method especially in areas with alkaline or calcareous soils can be recommended.

  12. New substrate containing agroindustrial carnauba residue for production of papaya under foliar fertilization

    Directory of Open Access Journals (Sweden)

    Francisca G. Albano

    Full Text Available ABSTRACT The use of organic waste in the composition of substrates for seedlings constitutes an alternative to the recycling of these materials. Thus, an experiment was conducted with the objective to evaluate the production of ‘Formosa’ papaya seedlings in substrate containing carnauba wax residue, under foliar fertilization. The experimental design was completely randomized with five replicates, with treatments distributed in a 5 x 2 factorial scheme, corresponding to five materials used as substrates, in the presence and absence of foliar fertilization. The materials used were: earthworm humus, carnauba residue + fresh rice husk; carnauba residue in powder; carnauba residue semi-decomposed and mixture of carnauba residues: carnauba residue + fresh rice husk + carnauba residue semi-decomposed + carnauba residue in powder, at the proportion 1:1:1. The agroindustrial residue of carnauba wax semi-decomposed can be used as substrates in the production of ‘Formosa’ papaya seedlings. The foliar fertilization increases the quality of papaya seedlings, leading to increment in leaf area, root volume and sulfur content in the leaves, thus becoming a necessary practice.

  13. An Approach for Foliar Trait Retrieval from Airborne Imaging Spectroscopy of Tropical Forests

    Directory of Open Access Journals (Sweden)

    Roberta E. Martin

    2018-01-01

    Full Text Available Spatial information on forest functional composition is needed to inform management and conservation efforts, yet this information is lacking, particularly in tropical regions. Canopy foliar traits underpin the functional biodiversity of forests, and have been shown to be remotely measurable using airborne 350–2510 nm imaging spectrometers. We used newly acquired imaging spectroscopy data constrained with concurrent light detection and ranging (LiDAR measurements from the Carnegie Airborne Observatory (CAO, and field measurements, to test the performance of the Spectranomics approach for foliar trait retrieval. The method was previously developed in Neotropical forests, and was tested here in the humid tropical forests of Malaysian Borneo. Multiple foliar chemical traits, as well as leaf mass per area (LMA, were estimated with demonstrable precision and accuracy. The results were similar to those observed for Neotropical forests, suggesting a more general use of the Spectranomics approach for mapping canopy traits in tropical forests. Future mapping studies using this approach can advance scientific investigations and applications based on imaging spectroscopy.

  14. Zinc complexed chitosan/TPP nanoparticles: A promising micronutrient nanocarrier suited for foliar application.

    Science.gov (United States)

    Deshpande, Paresh; Dapkekar, Ashwin; Oak, Manoj D; Paknikar, Kishore M; Rajwade, Jyutika M

    2017-06-01

    Cultivation of cereals in zinc deficient soils leads to declined nutritional quality of grain. Zinc deficiency in humans is a consequence of consumption of micronutrient deficient cereals as staple food. To achieve an increase in zinc density in grain, we evaluated zinc complexed chitosan nanoparticles (Zn-CNP) as a potential 'nanocarrier' suited for foliar fertilization. Zn-CNP were synthesized using tri-polyphosphate as a cross-linker. Spherical Zn-CNP (diameter 250-300nm) were positively charged (zeta potential, +42.34mV) and contained ∼20mg Zn/g (w/w). Plant growth in zinc deficient sand media, followed by foliar application of Zn-CNP (twice-a-week, for 5 weeks) after anthesis resulted in 27 and 42% increase in grain zinc content of MACS 3125 and UC1114 (durum wheat cultivars) respectively. Translocation of zinc ions from foliar applied Zn-CNP into the leaf and seed tissue was demonstrated using zinquin and dithizone stains, respectively. The study indicates the suitability of chitosan-based nanocarriers in agronomic biofortification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Foliar flavonoids of nine species of Bauhinia

    OpenAIRE

    SALATINO, ANTONIO; BLATT, CECÍLIA T.T.; SANTOS, DÉBORAH Y.A.C. DOS; VAZ, ANGELA M.S.F.

    1999-01-01

    Foliar flavonoids of nine species of Bauhinia were isolated and identified. All the compounds correspond to glycosides derived from kaempferol, quercetin, isorhamnetin and myricetin. Derivatives of the latter aglyconhe seem to be rare in Bauhinia. Derivatives of isorhamnetin are commonly found in species of subgenus Bauhinia and were not detected in the two species of subgenus Phanera. Flavonoid patterns of species of the former subgenus are in general more complex than those of the latter. ...

  16. Foliar fungi of Scots pine (Pinus sylvestris)

    OpenAIRE

    Millberg, Hanna

    2015-01-01

    Scots pine (Pinus sylvestris) is an ecologically and economically important tree species in Fennoscandia. Scots pine needles host a variety of fungi, some with the potential to profoundly influence their host. These fungi can have beneficial or detrimental effects with important implications for both forest health and primary production. In this thesis, the foliar fungi of Scots pine needles were investigated with the aim of exploring spatial and temporal patterns, and development with needle...

  17. Mapping Loci That Control Tuber and Foliar Symptoms Caused by PVY in Autotetraploid Potato (Solanum tuberosum L.).

    Science.gov (United States)

    da Silva, Washington L; Ingram, Jason; Hackett, Christine A; Coombs, Joseph J; Douches, David; Bryan, Glenn J; De Jong, Walter; Gray, Stewart

    2017-11-06

    Potato tuber necrotic ringspot disease (PTNRD) is a tuber deformity associated with infection by the tuber necrotic strain of Potato virus Y (PVY NTN ). PTNRD negatively impacts tuber quality and marketability, and poses a serious threat to seed and commercial potato production worldwide. PVY NTN symptoms differ in the cultivars Waneta and Pike: Waneta expresses severe PTNRD and foliar mosaic with vein and leaf necrosis, whereas Pike does not express PTNRD and mosaic is the only foliar symptom. To map loci that influence tuber and foliar symptoms, 236 F 1 progeny of a cross between Waneta and Pike were inoculated with PVY NTN isolate NY090029 and genotyped using 12,808 potato SNPs. Foliar symptom type and severity were monitored for 10 wk, while tubers were evaluated for PTNRD expression at harvest and again after 60 d in storage. Pairwise correlation analyses indicate a strong association between PTNRD and vein necrosis (τ = 0.4195). QTL analyses revealed major-effect QTL on chromosomes 4 and 5 for mosaic, 4 for PTNRD, and 5 for foliar necrosis symptoms. Locating QTL associated with PVY-related symptoms provides a foundation for breeders to develop markers that can be used to eliminate potato clones with undesirable phenotypes, e.g. , those likely to develop PTNRD or to be symptomless carriers of PVY. Copyright © 2017 Silva et al.

  18. Modelling tree biomasses in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Repola, J.

    2013-06-01

    Biomass equations for above- and below-ground tree components of Scots pine (Pinus sylvestris L), Norway spruce (Picea abies [L.] Karst) and birch (Betula pendula Roth and Betula pubescens Ehrh.) were compiled using empirical material from a total of 102 stands. These stands (44 Scots pine, 34 Norway spruce and 24 birch stands) were located mainly on mineral soil sites representing a large part of Finland. The biomass models were based on data measured from 1648 sample trees, comprising 908 pine, 613 spruce and 127 birch trees. Biomass equations were derived for the total above-ground biomass and for the individual tree components: stem wood, stem bark, living and dead branches, needles, stump, and roots, as dependent variables. Three multivariate models with different numbers of independent variables for above-ground biomass and one for below-ground biomass were constructed. Variables that are normally measured in forest inventories were used as independent variables. The simplest model formulations, multivariate models (1) were mainly based on tree diameter and height as independent variables. In more elaborated multivariate models, (2) and (3), additional commonly measured tree variables such as age, crown length, bark thickness and radial growth rate were added. Tree biomass modelling includes consecutive phases, which cause unreliability in the prediction of biomass. First, biomasses of sample trees should be determined reliably to decrease the statistical errors caused by sub-sampling. In this study, methods to improve the accuracy of stem biomass estimates of the sample trees were developed. In addition, the reliability of the method applied to estimate sample-tree crown biomass was tested, and no systematic error was detected. Second, the whole information content of data should be utilized in order to achieve reliable parameter estimates and applicable and flexible model structure. In the modelling approach, the basic assumption was that the biomasses of

  19. Adubação foliar com níquel e molibdênio no feijoeiro comum cv. Ouro Vermelho

    Directory of Open Access Journals (Sweden)

    José Francisco Lopes

    2014-04-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da aplicação foliar de níquel (Ni e molibdênio (Mo sobre componentes de rendimento, crescimento e composição mineral do feijoeiro comum Ouro Vermelho. O delineamento experimental foi o de blocos casualizados, com quatro repetições e arranjo fatorial 5 x 2, constituído de doses de Ni (0, 15, 30, 45 e 60 g ha-1 e de Mo (0 e 80 g ha-1, aplicadas por via foliar, aos 25 dias após a semeadura, na forma de cloreto de níquel hexaidratado e de molibdato de amônio, respectivamente. As doses de Ni não influenciaram os teores foliares de N, P, K, Fe, Mo e Ni, aumentaram, porém, os teores de N, Ni e de proteína bruta na semente. A aplicação foliar de Mo reduziu os teores foliares de P, Fe e Ni, aumentou, no entanto, o teor foliar de Mo e o teor de N, Mo e de proteína bruta na semente. Observou-se que as doses de Ni e de Mo não afetaram a massa de sementes, o número de sementes por vagem, o número de vagens por planta e a massa seca de raiz do feijoeiro. A aplicação de Mo aumentou em 21,62% o número de nódulos.

  20. Foliar nitrogen application in Cabernet Sauvignon vines: Effects on wine flavonoid and amino acid content.

    Science.gov (United States)

    Gutiérrez-Gamboa, Gastón; Garde-Cerdán, Teresa; Portu, Javier; Moreno-Simunovic, Yerko; Martínez-Gil, Ana M

    2017-06-01

    Wine quality greatly depends on its chemical composition. Among the most important wine chemical compounds, flavonoids are the major contributors to wine organoleptic properties while amino acids have a huge impact on fermentation development and wine volatile profile. Likewise, nitrogen applications are known to have an impact on wine composition. Therefore, the aim of this work was to study the effects of foliar nitrogen applications on wine flavonoid and amino acid composition. The experiment involved five foliar nitrogen applications at veraison time: urea (Ur), urea plus sulphur (Ur+S), arginine (Arg), and two commercial fertilizers Nutrimyr Thiols (NT) and Basfoliar Algae (BA). The results showed that nitrogen foliar treatments decreased wine flavonoid content although the effect varied according to each treatment. This could be related to a low vine nitrogen requirement, since must yeast assimilable nitrogen (YAN) was above acceptable threshold values for all samples. With regard to wine amino acid content, all treatments except for Ur increased its values after the applications. Finally, foliar nitrogen treatments greatly influenced wine composition. Among them, urea seemed to exert the most negative effect on both phenolics and amino acids. In addition, an inverse relationship between wine amino acid content and flavonol concentration was exhibited. Copyright © 2017. Published by Elsevier Ltd.

  1. Effects of ozone on the foliar histology of the mastic plant (Pistacia lentiscus L.)

    Energy Technology Data Exchange (ETDEWEB)

    Reig-Arminana, J.; Calatayud, V.; Cervero, J.; Garcia-Breijo, F.J.; Ibars, A.; Sanz, M.J

    2004-11-01

    An open-top chamber study was conducted to investigate the tissue and cellular-level foliar effects of ozone (O{sub 3}) on a Mediterranean evergreen species, the mastic plant (Pistacia lentiscus L.). Plants were exposed at three different O{sub 3} levels, and leaf samples were collected periodically from the beginning of the exposure. Although no visible foliar injury was evident, alterations of the plastids and vacuoles in the mesophyll were observed. Senescence processes were accelerated with an anomalous stacking of tannin vacuoles, and a reduction in the size and number of the chloroplasts. Overall, most of the modifications induced by O{sub 3} were consistent with previously reported observations on deciduous broadleaf species, with the exception of alterations in the cells covering the secretory channels, reported here as a new finding. Comments on the feasibility of using microscopy to validate O{sub 3} related field observations and subtle foliar injury are also given.

  2. Phosphorus fractions, microbial biomass and enzyme activities in ...

    African Journals Online (AJOL)

    Potohar, northern Punjab, Pakistan in September, 2008 and analysed for P fractions and microbial parameters including microbial biomass C, microbial biomass N, microbial biomass P, and activities of dehydrogenase and alkaline phosphatase enzymes. The average size of different P fractions (% of total P) in the soils ...

  3. Teores foliares de nutrientes em mudas do abacaxizeiro ‘smooth cayenne’ em resposta à adubação Leaf nutrient contents on ´smooth cayenne´ planting material as response to fertilization

    Directory of Open Access Journals (Sweden)

    Ruimário Inácio Coelho

    2010-12-01

    Full Text Available Mudas do abacaxizeiro ‘Smooth Cayenne’ obtidas por seccionamento de caule foram submetidas à adubação foliar com soluções em diferentes concentrações de uréia, KCl e H3BO3, em pulverizações semanais, num total de vinte e seis para a uréia e o KCl e aplicações mensais num total de quatro, para o H3BO3. Todos os tratamentos foram iniciados na nona semana após o plantio das secções. O delineamento utilizado foi fatorial fracionado do tipo (1/553, com três tipos de adubo (uréia, KCl e H3BO3 e cinco concentrações num total de 25 tratamentos. Cada parcela constituiu-se de 50 secções. Os tratamentos consistiram nas combinações das seguintes concentrações em g L-1: 0; 2,5; 5; 7,5 e 10 para a uréia e o KCl, e 0; 0,5; 1; 1,5 e 2,0 de H3BO3. Análises das amostras de folhas “D” revelam efeitos da uréia e H3BO3 sobre os teores foliares de S, Cl e B e efeito do KCL sobre K e Cl foliar. A uréia não apresentou efeito sobre o teor de N foliar, porém influencia significativamente o conteúdo de N nas mudas.‘Smooth Cayenne’ planting material obtained through stem sectioning were trea-ted with foliar fertilization with different concentrations of urea, KCl, in weekly pulverizations, and H3BO4, totalizing twenty-six for urea and KCL pulverizations and four for H3BO3, which was applied monthly The treatments were began nine weeks after planting thestem sections. The experimental scheme was a fractionated factorial (1/55³ with three types of fertilizers (urea, KCl and H3BO3 and five concentrations in a total of 25 treatments. There were 50 sections per plot. Treatments were a combination of concentrations in g L-1: 0, 2.5, 5.0, 7.5 and 10 of urea and KCl, and 0, 0.5, 1.0, 1.5 and 2,0 of H3BO3. Sample analyses of ‘D’ leaves showed urea and H3BO3 effect on S, Cl and B leaf contents whereas KCL affected leaf K and Cl contents. Urea did not affect N leaf content, however it strongly influenced N content in planting material.

  4. Weed infestation of a winter wheat canopy under the conditions of application of different herbicide doses and foliar fertilization

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The present study was carried out in the years 2006-2008 in the Bezek Experimental Farm (University of Life Sciences in Lublin. A two-factor field experiment was set up according to a randomized block design, in three replications. The experimental field was situated on medium heavy mixed rendzina developed from chalk rock with medium dusty loam granulometric composition. The soil was characterised by neutral pH, a very high content of P (342.1 and K (278.9 along with a very low level of magnesium (16.0 mg × kg-1 of soil and organic carbon (over 3.5%. The aim of this research was to compare the effect of three herbicide doses and two foliar fertilizers applied in a winter wheat canopy on weed infestation. The herbicides Mustang 306 SE 0.4 l × ha-1 and Attribut 70 WG 60 g × ha-1 were applied at full recommended doses as well as at doses reduced to 75% and 50%. Foliar fertilizers Insol 3 (1 1 × ha-1 and FoliCare (20 kg × ha-1 were applied at full recommended doses twice in the growing season BBCH* development stage 23-25* and 33-35*. The control was not treated with the herbicides and foliar fertilizers. The weed infestation level was determined by means of the quantitative gravimetric method at two dates: the first one 6 weeks after herbicide application and the second one - before harvest. The number of weed individuals was counted; species composition and air-dry biomass of aboveground parts were estimated from randomly selected areas of 1 m × 0.25 m at four sites on each plot. Galium aparine and Apera spica-venti plants were sampled for molecular analysis 6 weeks after herbicide application (the treatments with the full herbicide dose, a 50% dose and the control without herbicides. The density of weeds and weed air-dry weight were statistically analysed by means of variance analysis, and the mean values were estimated with Tukey's confidence intervals (p=0.05. It was found that the number of weeds and air-dry weight of weeds in the

  5. Effect of foliar application of amino acid and calcium chelate on some quality and quantity of Golden Delicious and Granny Smith apples

    Directory of Open Access Journals (Sweden)

    M. Arabloo

    2017-03-01

    Full Text Available In order to investigate the effects of foliar application of amino acid and calcium chelate on „Golden Delicious‟ and „Granny smith‟ apple trees, a randomized complete block design with four repetitions was conducted. Apple trees were sprayed with (0, 2, 4 mg L-1 of amino acid and (0, 2, 4 mg L-1 calcium chelate and their combination. Fruit weight, fruit firmness, total soluble solids, titretable acidity and calcium content of fruits were determined. All the applied treatments significantly increased quality and quantity traits compared to the control trees in both cultivars. The combination of amino acid and calcium chelate increased weight of both cultivars. Thus, in this study combination of amino acid and calcium chelate foliar spray treatment could be recommended from results as they significantly increased quality and quantity traits of „Golden delicious‟ and „Granny smith‟ apple trees.

  6. Effect of foliar applied (Zn, Fe, Cu and Mn) in citrus production

    International Nuclear Information System (INIS)

    Khurshid, F.; Sarwar, S.; Khattak, R.A.

    2008-01-01

    A study was conducted to evaluate the impact of micronutrients (Zn, Fe, Cu and Mn) on sweet orange (Citrus Sinensis L.), blood red var., on farmer's orchard at Khanpur, district Haripur, NWFP, during 2002-03. Micronutrients were applied in foliar sprays over the canopy of each tree. The main effects and interactions of Zinc sulphate (Zn), iron sulphate (Fe), Copper Sulphate (Cu) and Manganese Sulphate (Mn) were studied in factorial combinations. A basal dose of nitrogen, phosphorus and potassium was applied at the rate 1.5, 1 and 1 kg tree/sup -1/. Zn, Fe, Cu and Mn were applied alone and in various combinations at the rate 0.115, 0.057, 0.05 and 0.13 kg in 100 liters of water. Application of micronutrients significantly increased Zn, Fe, Cu and Mn concentrations in leaves, compared with control. Zn treatments significantly increased the yield, number of fruit and total sugar. Manganese treatments significantly increased the total soluble solids and reduced the acidity of fruit juice. Other quality parameters, including fruit size, percent peel, percent pulp, sugar as well as total soluble solids, were improved with the application of Zn, Fe, Cu and Mn. (author)

  7. Electricity from biomass in the European Union - with or without biomass import

    DEFF Research Database (Denmark)

    Skytte, K.; Meibom, P.; Henriksen, T.C.

    2006-01-01

    The European Union has set up indicative targets for its 15 Member States to supply 22.1% of their total electricity consumption using renewable energy resources by 2010. This paper compares two ways to achieve target compliance-either with import of biomass from countries outside the EU or without...... is that increased imports of low-cost biomass will significantly reduce the cost of target compliance, but would hamper the use of energy crops and further development of wind power within the EU. Despite this, increased importation of biomass can be the cost-reducing factor making the target realisable, which...... would justify promotion of such trade. (c) 2005 Elsevier Ltd. All rights reserved....

  8. Biomass thermo-conversion. Research trends

    International Nuclear Information System (INIS)

    Rodriguez Machin, Lizet; Perez Bermudez, Raul; Quintana Perez, Candido Enrique; Ocanna Guevara, Victor Samuel; Duffus Scott, Alejandro

    2011-01-01

    In this paper is studied the state of the art in order to identify the main trends of the processes of thermo conversion of biomass into fuels and other chemicals. In Cuba, from total supply of biomass, wood is the 19% and sugar cane bagasse and straw the 80%, is why research in the country, should be directed primarily toward these. The methods for energy production from biomass can be group into two classes: thermo-chemical and biological conversion routes. The technology of thermo-chemical conversion includes three subclasses: pyrolysis, gasification, and direct liquefaction. Although pyrolysis is still under development, in the current energy scenario, has received special attention, because can convert directly biomass into solid, liquid and gaseous by thermal decomposition in absence of oxygen. The gasification of biomass is a thermal treatment, where great quantities of gaseous products and small quantities of char and ash are produced. In Cuba, studies of biomass thermo-conversion studies are limited to slow pyrolysis and gasification; but gas fuels, by biomass, are mainly obtained by digestion (biogas). (author)

  9. European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties

    Science.gov (United States)

    Abdullah, Haidi; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Groen, Thomas A.; Heurich, Marco

    2018-02-01

    The European spruce bark beetle Ips typographus, L. (hereafter bark beetle), causes major economic loss to the forest industry in Europe, especially in Norway Spruce (Picea abies). To minimise economic loss and preclude a mass outbreak, early detection of bark beetle infestation (so-called ;green attack; stage - a period at which trees are yet to show visual signs of infestation stress) is, therefore, a crucial step in the management of Norway spruce stands. It is expected that a bark beetle infestation at the green attack stage affects a tree's physiological and chemical status. However, the concurrent effect on key foliar biochemical such as foliar nitrogen and chlorophyll as well as spectral responses are not well documented in the literature. Therefore, in this study, the early detection of bark beetle green attacks is investigated by examining foliar biochemical and spectral properties (400-2000 nm). We also assessed whether bark beetle infestation affects the estimation accuracy of foliar biochemicals. An extensive field survey was conducted in the Bavarian Forest National Park (BFNP), Germany, in the early summer of 2015 to collect leaf samples from 120 healthy and green attacked trees. The spectra of the leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. Significant differences (p < 0.05) between healthy and infested needle samples were found in the mean reflectance spectra, with the most pronounced differences being observed in the NIR and SWIR regions between 730 and 1370 nm. Furthermore, significant differences (p < 0.05) were found in the biochemical compositions (chlorophyll and nitrogen concentration) of healthy versus green attacked samples. Our results further demonstrate that the estimation accuracy of foliar chlorophyll and nitrogen concentrations, utilising partial least square regression model, was lower for the infested compared to the healthy trees. We show that early stage of infestation reduces not only

  10. [Effects of different soil types on the foliar δ13C values of common local plant species in karst rocky desertification area in central Guizhou Province].

    Science.gov (United States)

    Du, Xue-lian; Wang, Shi-jie; Luo, Xu-qiang

    2014-09-01

    By measuring the foliar δ13C values of common local plant species grown in different soil types in Wangjiazhai catchments, a typical karst desertification area in Qingzhen City, Central Guizhou, we studied the impact of soil type and rocky desertification grade on the foliar δ13C values. The results showed that the foliar δ13C values were more negative in yellow soil area than those in black calcareous area and there was no obvious difference in foliar δ13C values between these two soil types. The distribution interval of foliar δ13C values in yellow soil area was narrower than those in black calcareous area and the variation coefficient of foliar δ13C values in yellow soil area were smaller than those in black calcareous area. With increasing degree of karst rocky desertification, the foliar δ13C values of plant community in black calcareous area increased, whereas those in yellow soil area first increased and then decreased. The result of multiple comparison showed that the difference in foliar δ13C values of plant community among rocky desertification grade was not obvious in yellow soil area, but it was obvious in black calcareous area. Correlation analysis between the foliar δ13C values of plant species and the main environmental factors indicated that slope and soil thickness were the main factors which affected the foliar δ13C values of plants in yellow soil area and soil water contant was the main factor in black calcareous area. The impact of soil on the foliar δ13C values was realized by adjusting the soil moisture in study area.

  11. Changes in radiocesium contamination from Fukushima in foliar parts of 10 common tree species in Japan between 2011 and 2013.

    Science.gov (United States)

    Yoshihara, Toshihiro; Matsumura, Hideyuki; Tsuzaki, Masaharu; Wakamatsu, Takashi; Kobayashi, Takuya; Hashida, Shin-Nosuke; Nagaoka, Toru; Goto, Fumiyuki

    2014-12-01

    Yearly changes in radiocesium ((137)Cs) contamination, primarily due to the Fukushima accident of March 2011, were observed in the foliar parts of 10 common woody species in Japan (Chamaecyparis obtusa, Cedrus deodara, Pinus densiflora, Cryptomeria japonica, Phyllostachys pubescens, Cinnamomum camphora, Metasequoia glyptostroboides, Prunus × yedoensis, Acer buergerianum, and Aesculus hippocastanum). The samples were obtained from Abiko (approximately 200 km SSW of the Fukushima Dai-ichi Nuclear Power Plant) during each growing season between 2011 and 2013, and the foliar parts were examined based on their year of expansion and location in each trees. The radiocesium concentrations generally decreased with time; however, the concentrations and rates of decrease varied among species, age of foliar parts, and locations. The radiocesium concentrations in the 2012 current-year foliar parts were 29%-220% of those from 2011, while those from 2013 fell to between 14% and 42% of the 2011 values. The net decontamination in the foliage was higher in evergreen species than in deciduous species. The radiocesium concentrations in the upper foliar parts were higher than those in the lower parts particularly in C. japonica. In addition, the radiocesium concentrations were higher in the current-year foliar parts than in the 1-year-old foliar parts, particularly in 2013. Thus, the influence of the direct deposition of the fallout was reduced with time, and the translocation ability of radiocesium from old to new tissues became more influential. Similar to the behavior of potassium in trees, Cs redistribution probably occurred primarily due to internal nutrient translocation mechanisms. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Relação entre a temperatura e o molhamento foliar no monocíclo da Sigatoka-negra

    Directory of Open Access Journals (Sweden)

    Cleilson do Nascimento Uchôa

    2012-06-01

    Full Text Available A influência da temperatura (21, 24, 27 e 30 °C e da duração do tempo de molhamento foliar (0, 12, 24, 48 e 72 horas na penetração do agente causal da Sigatoka-negra (Mycosphaerella fijiensis foi quantificada em ambiente controlado. A área abaixo da curva do progresso da doença (AACPD e a incidência foram influenciadas pela temperatura e pela duração do tempo de molhamento foliar. Foram constatadas diferenças significativas (P=0,05 nos valores da AACPD para as diferentes temperaturas, bem como verificada a interação significativa (P=0,05 entre temperaturas e o molhamento foliar. Em todas as temperaturas foi possível a observação de sintomas, entretanto, a maior AACPD foi observada em folhas inoculadas que permaneceram na temperatura de 24 e 27°C, a partir de 48 horas de molhamento foliar. Nas temperaturas de 21ºC e 30°C a incidência de Sigatoka-negra foi menor. O período de molhamento foliar mínimo para o progresso da doença foi de 24 horas. Não foram observados sintomas de Sigatoka-negra em folhas inoculados com o molhamento foliar de 0 hora e 12 horas em todas as temperaturas. As folhas assintomáticas, após 5 dias em câmara úmida apresentavam sintomas característicos de Sigatoka-negra, demonstrando que os conídios inoculados nas folhas permaneceram viáveis por um período na ausência de água livre na folha.

  13. Foliar nutrition in apple production | Murtic | African Journal of ...

    African Journals Online (AJOL)

    The objective of this study was to provide a comprehensive review of research papers dealing with the effect of foliar feeding on development parameters in apple trees in an attempt to obtain a more thorough insight into the advantages and disadvantages of this fertilization type and facilitate the potential use of this practice ...

  14. Evaluation of sampling strategies to estimate crown biomass

    Science.gov (United States)

    Krishna P Poudel; Hailemariam Temesgen; Andrew N Gray

    2015-01-01

    Depending on tree and site characteristics crown biomass accounts for a significant portion of the total aboveground biomass in the tree. Crown biomass estimation is useful for different purposes including evaluating the economic feasibility of crown utilization for energy production or forest products, fuel load assessments and fire management strategies, and wildfire...

  15. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)

    Energy Technology Data Exchange (ETDEWEB)

    Bondada, Bhaskar R.; Tu, Shuxin; Ma, Lena Q

    2004-10-01

    The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and time of application on the absorption of foliar-applied arsenic by the brake fern; also examined were the effects of foliar sprays on surface ultrastructure and arsenic speciation in the frond following absorption. Foliar sprays of different arsenic concentrations (0, 50, 100, 200, and 400 ppm) were applied to young and fertile fronds. A positive linear relationship existed between arsenic concentration and absorption; the arsenic concentration of fronds increased from 50 to 200 ppm. Time-course analysis with excised pinnae indicated an initial linear increase followed by a plateau at 48 h. The young fronds with immature sori absorbed more arsenic (3100 ppm) than the fertile mature fronds (890 ppm). In the frond, the arsenic absorption was greatest in the lamina of the pinnae followed by the sori and the rachis. Applying arsenic during night (20:00-22:00 h) or afternoon (12:00-14:00 h) resulted in greater absorption of arsenic than the application in the morning (08:00-10:00 h). The arsenic absorption was greater through abaxial surfaces than through adaxial surfaces. The brake fern absorbed more arsenic when it was applied in the form of arsenite. Regardless of the form of arsenic and the surface it was applied to, arsenic occurred as arsenite, the reduced and the most toxic form of arsenic, after having been absorbed by the fronds. Scanning electron microscopy revealed no surface morphological alterations following all arsenic sprays. The study unequivocally illustrated that the Chinese brake fern absorbed foliar-applied arsenic with great efficiency. Consequently, the

  16. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)

    International Nuclear Information System (INIS)

    Bondada, Bhaskar R.; Tu, Shuxin; Ma, Lena Q.

    2004-01-01

    The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and time of application on the absorption of foliar-applied arsenic by the brake fern; also examined were the effects of foliar sprays on surface ultrastructure and arsenic speciation in the frond following absorption. Foliar sprays of different arsenic concentrations (0, 50, 100, 200, and 400 ppm) were applied to young and fertile fronds. A positive linear relationship existed between arsenic concentration and absorption; the arsenic concentration of fronds increased from 50 to 200 ppm. Time-course analysis with excised pinnae indicated an initial linear increase followed by a plateau at 48 h. The young fronds with immature sori absorbed more arsenic (3100 ppm) than the fertile mature fronds (890 ppm). In the frond, the arsenic absorption was greatest in the lamina of the pinnae followed by the sori and the rachis. Applying arsenic during night (20:00-22:00 h) or afternoon (12:00-14:00 h) resulted in greater absorption of arsenic than the application in the morning (08:00-10:00 h). The arsenic absorption was greater through abaxial surfaces than through adaxial surfaces. The brake fern absorbed more arsenic when it was applied in the form of arsenite. Regardless of the form of arsenic and the surface it was applied to, arsenic occurred as arsenite, the reduced and the most toxic form of arsenic, after having been absorbed by the fronds. Scanning electron microscopy revealed no surface morphological alterations following all arsenic sprays. The study unequivocally illustrated that the Chinese brake fern absorbed foliar-applied arsenic with great efficiency. Consequently, the

  17. Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jianwei, E-mail: jianweizhang@fs.fed.u [Environmental Resources Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); School of Forest Resources, Pennsylvania State University, University Park, PA 16802 (United States); Schaub, Marcus; Ferdinand, Jonathan A. [Environmental Resources Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Skelly, John M. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States); Steiner, Kim C. [School of Forest Resources, Pennsylvania State University, University Park, PA 16802 (United States); Savage, James E. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-08-15

    We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (g{sub wv}), foliar injury, and leaf nitrogen concentration (N{sub L}) to tropospheric ozone (O{sub 3}) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, g{sub wv}, foliar injury, and N{sub L} (P < 0.05) among O{sub 3} treatments. Seedlings in AA showed the highest A and g{sub wv} due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, g{sub wv}, N{sub L}, and higher foliar injury (P < 0.001) than younger leaves. Leaf age affected the response of A, g{sub wv}, and foliar injury to O{sub 3}. Both VPD and N{sub L} had a strong influence on leaf gas exchange. Foliar O{sub 3}-induced injury appeared when cumulative O{sub 3} uptake reached 8-12 mmol m{sup -2}, depending on soil water availability. The mechanistic assessment of O{sub 3}-induced injury is a valuable approach for a biologically relevant O{sub 3} risk assessment for forest trees. - Ozone effects on symptom development and leaf gas exchange interacted with leaf age and N-content on black cherry seedlings.

  18. Estimativa de área foliar da videira 'Niagara Rosada' conduzida em sistema de latada, região norte fluminense

    Directory of Open Access Journals (Sweden)

    Miquéias Permanhani

    2014-12-01

    Full Text Available Com o objetivo de estabelecer um modelo matemático para estimar de forma precisa a área foliar da videira 'Niagara Rosada' na região de Cardoso Moreira-RJ, realizou-se este trabalho em vinhedo particular do sítio pioneiro, implantado no ano de 2002, em sistema de latada. Foram coletadas aleatoriamente, no ciclo de produção iniciado em 2011, 70 folhas de diversos tamanhos, completamente expandidas e sem danos aparentes para determinar a relação entre a área foliar (AF e a área do círculo (AC, considerando seu diâmetro igual à largura da folha. Por meio da análise de regressão, obteve-se a equação linear (AFes = 0,82*AC + 16,12 que, juntamente com mais outras duas, foram utilizadas para comparar a área foliar estimada com a área foliar medida em 30 folhas do ciclo de produção posterior (Março de 2012. Constatou-se que as equações apresentadas permitem estimar de forma precisa a área foliar da videira 'Niagara Rosada/IAC 572' conduzida em sistema de latada, na região de Cardoso Moreira-RJ, com apenas uma dimensão foliar: a largura da folha, sendo que o modelo de regressão obtido (AFes = 0,82*AC + 16,12 foi o que menos subestimou a área da folha comparada (coeficiente angular = 0,99, seguido pelo modelo indicado por Pedro Jr. et al. (1986.

  19. Variation in foliar water content and hyperspectral reflectance of ...

    African Journals Online (AJOL)

    Sirex noctilio, the Eurasian wood wasp, is one of the major pests responsible for declining forest health in pine forests located in KwaZulu-Natal, South Africa. Researchers have shown that stress induced by S. noctilio causes a rapid decrease in foliar water content, with the foliage of the tree changing from a dark green to a ...

  20. SE-ENRICHMENT OF CARROT AND ONION VIA FOLIAR APPLICATION

    OpenAIRE

    Kapolna, Emese; Laursen, Kristian H.; Hillestrøm, Peter; Husted, Søren; Larsen, Erik H.

    2008-01-01

    The aim of this work was to study the selenium accumulation in carrot and onion plants using foliar application by sodium selenite and sodium selenate. Furthermore, we aimed at identifying the Se species biosynthesised by onion and carrot plants. The results were used to prepare for production of 77Se enriched plants for an ongoing human absorption study.

  1. The Effects Foliar Application of Methanol at Different Growth Stages on Kernel Related Traits in Chickpea var. ILC 482

    Directory of Open Access Journals (Sweden)

    N. Naeimi,

    2013-12-01

    Full Text Available This research was conducted to evaluate the effects of foliar application of methanol on certain kernel related traits at different growth stages of pea var. ILC482 at the Research Station of Faculty of Agriculture in Islamic Azad University, Tabriz Branch in 2011. The study was conducted in split plot experiment based on Randomized Complete Block Design with three replications. Treatments were three levels methanol foliar application at different growth stages (vegetative, reproductive and foliar application at both two stages which considered as main factor, six levels of foliar application of methanol concentrations: (0 [control], 5, 10, 15, 20, 25, 30% as sub factor. Results showed that the interactions of methanol applications growth stages and its concentrations on grain number per plant, 100 kernel weight, grain yield, grain filing rate and harvest index were significantly different. Foliar application of methanol at reproductive stage decrease kernel related traits, but this application at both growth stages had positive effect on grain production and kernel related traits. This positive effect on number and 100 kernel weight were significant. The highest grain yield (2460 kg/ha was obtained by 20% concentration of methanol at both growth stages that increased grain yield above 13.5% compared to the control condition.

  2. Development of biomass energy lacks a clear direction

    International Nuclear Information System (INIS)

    1998-01-01

    By the year 2020, 4.4% of total energy consumption in the Netherlands must be generated from biomass. That means that biomass will be the most important form of renewable energy for this country. But, with 20 years to go, there is still no generally accepted strategy for the technological and economical development of bio-energy. The most important questions are discussed: is biomass sustainable or not, is it better to burn biomass or to gasify, must one built large-scale or small-scale biomass conversion plants, should the Netherlands import or biomass or cultivate biomass themselves, should biomass wastes be incinerated or recycled, must the emission standard for SO2 be 40 or 200 mg, and, finally, is bio-energy economically feasible?

  3. Biomass energy, forests and global warming

    International Nuclear Information System (INIS)

    Rosillo-Calle, Frank; Hall, D.O.

    1992-01-01

    Biomass in all its forms currently provides about 14% of the world's energy, equivalent to 25 million bbl oil/day; in developing countries where it is the major energy source, biomass supplies 35% of total energy use. Although biomass energy use affects the flux of carbon to the atmosphere, the main carbon emission problem is caused by fossil fuels and land clearance for agriculture. Biomass fuels make no net contribution to atmospheric CO 2 if used sustainably. A major global revegetation and reforestation effort is a possible strategy to reduce CO 2 emissions and to slow the pace of climatic change. However, a more attractive alternative strategy might be to substitute fossil fuels, especially coal, with biomass grown specifically for this purpose producing modern fuels such as electricity, liquids and gases. This paper examines biomass energy use, devegetation, biomass burning, the implications for global warming and the ability of biomass to sequester CO 2 and substitute for fossil fuels. It also discusses some socioeconomic and political issues. (author)

  4. Effect of Nitrogen Foliar Application on Canola Yield (Brassica napus L. and Nitrogen Efficiency across Different Sowing Dates

    Directory of Open Access Journals (Sweden)

    S Doori

    2016-12-01

    Full Text Available Introduction Between oil seeds, from the quality, quantity and nutrition index point of view, canola has the top level . Because of the solubility of N fertilizers, the time of urea application, is very important and one of the main reasons of the reduction in N application efficiency is utilization of urea in an inappropriate time. By precisely foliar application of nitrogen, the efficiency of nitrogen transformation to the grain will be very high because in this method the leaf is considered the main organ of nitrogen uptake and a low amount of absorbed nitrogen was transferred to the root and entered the soil. The more division of N application in growth stages and in accordance with plant need and foliar application result in increasing nitrogen use efficiency. The delay in sowing will result in the reduction of yield and this is due to low LAI, and thus low radiation absorb in vegetable phase and shorter reproductive phase with high temperature in flowering and subsequent stages that result in low prolific silique and make disorder in transferring stored material to grain. In this experiment using N foliar application to decrease the adverse effect of delay in sowing is objective. Materials and Methods The experiment was conducted in 2013-2014 in Ramin Agriculture and Natural Resource University of Khuzestan. Experiment was conducted as split plots in a randomized complete blocks design with three replications. In this experiment sowing date]optimum sowing (27 November, 17 December and late sowing (30 December [were assigned to main plots and several time of N-foliar application with 5 percent density from urea (20 liter per ha, ]TO (control, T1 (foliar N application in rosette stage, T2 (foliar N application in budding stage, T3 (foliar N application in flowering stage[ were placed in sub-plots in randomized way. Fertilizing was based on the results of soil examination. Therefore, 162 kg ha-1 of pure nitrogen (from resource urea in the way

  5. Improving Tolerance of Faba Bean during Early Growth Stages to Salinity through Micronutrients Foliar Spray

    Directory of Open Access Journals (Sweden)

    Mohamed M. EL FOULY

    2010-06-01

    Full Text Available Salinity, either of soil or of irrigation water, causes disturbances in plant growth and nutrient balance. Previous work indicates that applying nutrients by foliar application increases tolerance to salinity. A pot experiment with three replicates was carried out in the green house of NRC, Cairo, Egypt, to study the effect of micronutrients foliar application on salt tolerance of faba bean. Two concentrations of a micronutrient compound (0.1% and 0.15% were sprayed in two different treatments prior to or after the salinity treatments. Levels of NaCl (0.00-1000-2000-5000 ppm were supplied to irrigation water. Results indicated that 2000 and 5000 ppm NaCl inhibited growth and nutrient uptake. Spraying micronutrients could restore the negative effect of salinity on dry weight and nutrients uptake, when sprayed either before or after the salinity treatments. It is suggested that micronutrient foliar sprays could be used to improve plant tolerance to salinity.

  6. Improving North American forest biomass estimates from literature synthesis and meta-analysis of existing biomass equations

    Science.gov (United States)

    David C. Chojnacky; Jennifer C. Jenkins; Amanda K. Holland

    2009-01-01

    Thousands of published equations purport to estimate biomass of individual trees. These equations are often based on very small samples, however, and can provide widely different estimates for trees of the same species. We addressed this issue in a previous study by devising 10 new equations that estimated total aboveground biomass for all species in North America (...

  7. Foliar injury responses of eleven plant species to ozone/sulfur dioxide mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, D T; Reinert, R A; Dunning, J A; Heck, W W

    1973-01-01

    Eleven plant species were exposed to ozone and/or sulfur dioxide to determine if a mixture of the two gases enhanced foliar injury. Tobacco, radish, and alfalfa developed more injury that the additive injury of the single gases. In other species, such as cabbage, broccoli, and tomato, the foliar injury from mixed-gas exposures was additive or less than additive. Leaf injury from the ozone/sulfur dioxide mixture appeared as upper surface flecking, stipple, bifacial necrosis, and lower surface glazing and, in general, appeared similar to injury from oxidant or ozone. The concentrations of ozone and sulfur dioxide that caused plant injury were similar to those found in urban areas. These concentrations may result in yield losses to plants grown under field conditions.

  8. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    International Nuclear Information System (INIS)

    Novak, K.; Schaub, M.; Fuhrer, J.; Skelly, J.M.; Hug, C.; Landolt, W.; Bleuler, P.; Kraeuchi, N.

    2005-01-01

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures

  9. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    Energy Technology Data Exchange (ETDEWEB)

    Novak, K. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)]. E-mail: kristopher.novak@wsl.ch; Schaub, M. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Fuhrer, J. [Swiss Federal Research Station for Agroecology and Agriculture FAL, 8046 Zurich (Switzerland); Skelly, J.M. [Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802 (United States); Hug, C. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Landolt, W. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bleuler, P. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Kraeuchi, N. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2005-07-15

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures.

  10. Complementary Evaluation of Iron Deficiency Root Responses to Assess the Effectiveness of Different Iron Foliar Applications for Chlorosis Remediation

    Directory of Open Access Journals (Sweden)

    Marta Fuentes

    2018-03-01

    Full Text Available Iron deficiency in plants is caused by a low availability of iron in the soil, and its main visual symptom is leaf yellowing due to a decrease in chlorophyll content, along with a reduction in plant growth and fruit quality. Foliar sprays with Fe compounds are an economic alternative to the treatment with expensive synthetic Fe-chelates applied to the soil, although the efficacy of foliar treatments is rather limited. Generally, plant response to Fe-foliar treatments is monitored by measuring chlorophyll content (or related parameters as SPAD index. However, different studies have shown that foliar Fe sprays cause a local regreening and that translocation of the applied Fe within the plant is quite low. In this context, the aim of this study was to assess the effects of foliar applications of different Fe compounds [FeSO4, Fe(III-EDTA, and Fe(III-heptagluconate] on Fe-deficient cucumber plants, by studying the main physiological plant root responses to Fe deficiency [root Fe(III chelate reductase (FCR activity; acidification of the nutrient solution; and expression of the Fe deficiency responsive genes encoding FCR, CsFRO1, Fe(II root transporter CsIRT1, and two plasma membrane H+-ATPases, CsHA1 and CsHA2], along with SPAD index, plant growth and Fe content. The results showed that the overall assessment of Fe-deficiency root responses improved the evaluation of the efficacy of the Fe-foliar treatments compared to just monitoring SPAD indexes. Thus, FCR activity and expression of Fe-deficiency response genes, especially CsFRO1 and CsHA1, preceded the trend of SPAD index and acted as indicators of whether the plant was sensing or not metabolically active Fe due to the treatments. Principal component analysis of the data also provided a graphical tool to evaluate the evolution of plant responses to foliar Fe treatments with time.

  11. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The primary energy production from solid biomass in the European Union reached 79.3 Mtoe in 2010 which implies a growth rate of 8% between 2009 and 2010. The trend, which was driven deeper by Europe's particularly cold winter of 2009-2010, demonstrates that the economic down-turn failed to weaken the member states' efforts to structure the solid biomass sector. Heat consumption rose sharply: the volume of heat sold by heating networks increased by 18% and reached 6.7 Mtoe and if we consider the total heat consumption (it means with and without recovery via heating networks) the figure is 66 Mtoe in 2010, which amounts to 10.1% growth. The growth of electricity production continued through 2010 (8.3% up on 2009) and rose to 67 TWh but at a slower pace than in 2009 (when it rose by 11.3% on 2008). The situation of the main producer countries: Sweden, Finland, Germany and France is reviewed. It appears that cogeneration unit manufacturers and biomass power plant constructors are the main beneficiaries of the current biomass energy sector boom. There is a trend to replace coal-fired plants that are either obsolete or near their end of life with biomass or multi-fuel plants. These opportunities will enable the industry to develop and further exploit new technologies such as gasification, pyrolysis and torrefaction which will enable biomass to be turned into bio-coal. (A.C.)

  12. Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes

    International Nuclear Information System (INIS)

    Weih, Martin; Nordh, N.-E.

    2002-01-01

    Fourteen clones of willow (Salix spp.) were characterised in terms of growth, nitrogen and water-use efficiency under different irrigation and fertilisation treatments. Cuttings of willow clones, some commercially introduced and others new material, were pot-grown outdoors in Central Sweden under four experimental treatments in a full-factorial design. The experiment covered the period from bud-break until leaf abscission and the experimental conditions included two irrigation and two fertilisation regimes. The growth of the clones was evaluated in terms of relative growth rate and total biomass production of whole plants and shoots. Nitrogen (N) economy was studied by means of N productivity, N accumulation and N losses by leaf abscission. Water economy was analysed with respect to intrinsic water-use efficiency (foliar carbon isotope ratio; δ 13 C) and the capacity of leaves to retain water (relative water content). Significant differences between clones were found in nearly all parameters measured and the clones varied in the responses to the experimental treatments (clone x factor interaction effects). Thus, clone ranking often changed depending on the experimental treatment. The results are discussed with respect to clone selection for different willow applications such as biomass production and phytoremediation, and willow growth performance under different water and nutrient availabilities. The growth-physiological characterisation of young willows in the short term (several months) is regarded as a suitable approach for pre-selection of promising clones prior to extensive field evaluation

  13. Some metals in aboveground biomass of Scots pine in Lithuania

    DEFF Research Database (Denmark)

    Varnagiryte-Kabašinskiene, Iveta; Armolaitis, Kestutis; Stupak, Inge

    2014-01-01

    with stemwood and living branches. However, metal export with aboveground biomass represented relatively small proportion of metals in mineral sandy soil. The annual inputs of Fe and Zn with atmospheric deposition were over 10 times higher than the mean annual removals with total aboveground biomass....... The content of metals in forest biomass fuel ash was relatively small to compare with their total removals. The findings of this study have an important implications for future practice, i.e. the recommended maximum forest biomass fuel ash dose for the compensating fertilising could be increased with respect...... to balanced output - input in Lithuania....

  14. FOLIAR NUTRIENT CONTENTS AND FRUIT YIELD IN CUSTARD APPLE PROGENIES

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2009-01-01

    Full Text Available Foliar nutrient contents are evaluated in several fruit trees with many objectives. Leaf analysis constitutes a way of evaluating the nutritional requirements of crops. Due to the positive impact that fertilizers have on crop yields, researchers frequently try to evaluate the correlations between yield and foliar nutrient contents. This work's objective was to present fruit yields from the 4th to the 6th cropping seasons, evaluate foliar nutrient contents (on the 5th cropping season, and estimate the correlations between these two groups of traits for 20 half-sibling custard apple tree progenies. The progenies were evaluated in a random block design with five replicates and four plants per plot. One hundred leaves were collected from the middle third of the canopy (in height of each of four plants in each plot. The leaves were collected haphazardly, i.e., in a random manner, but without using a drawing mechanism. In the analysis of variance, the nutrient concentrations in the leaves from plants of each plot were represented by the average of four plants in the plot. Fruit yield in the various progenies did not depend on cropping season; progeny A4 was the most productive. No Spearman correlation was found between leaf nutrient concentrations and fruit yield. Increased nutrient concentrations in the leaves were progeny-dependent, i.e., with regard to Na (progenies FE5 and JG1, Ca (progeny A4, Mg (progeny SM7, N (progeny A3, P (progeny M, and K contents (progeny JG3. Spearman's correlation was negative between Na-Mg, Na-Ca, and Mg-P contents, and positive between Mg-Ca and N-K contents.

  15. A study of the wet deposit and foliar uptake of iodine and strontium on rye-grass and clover

    International Nuclear Information System (INIS)

    Angeletti, Livio; Levi, Emilio; Commission of the European Communities, Ispra

    1977-12-01

    Foliar uptake of iodine and strontium by rye-grass and clover was studied as a function of aspersion intensities. At the same time, the contribution of root sorption to foliar uptake was measured. The effective half-lives of radionuclides of standing and harvested grass were also determined together with their uptake under the action of demineralized water aspersion [fr

  16. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, E., E-mail: eva.schreck@ensat.fr [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); Foucault, Y. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); STCM, Societe de Traitements Chimiques des Metaux, 30 Avenue de Fondeyre 31200 Toulouse (France); Sarret, G. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Sobanska, S. [LASIR (UMR CNRS 8516), Universite de Lille 1, Bat. C5, 59655 Villeneuve d' Ascq cedex (France); Cecillon, L. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Castrec-Rouelle, M. [Universite Pierre and Marie Curie (UPMC-Paris 6), Bioemco (Biogeochimie et Ecologie des Milieux Continentaux), Site Jussieu, Tour 56, 4 Place Jussieu, 75252 Paris cedex 05 (France); Uzu, G. [Laboratoire d' Aerologie (UMR 5560), OMP, UPS 14, Avenue Edouard Belin, 31400 Toulouse (France); GET (UMR 5563), IRD, 14, Avenue Edouard Belin, 31400 Toulouse (France); Dumat, C. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France)

    2012-06-15

    Fine and ultrafine metallic particulate matters (PMs) are emitted from metallurgic activities in peri-urban zones into the atmosphere and can be deposited in terrestrial ecosystems. The foliar transfer of metals and metalloids and their fate in plant leaves remain unclear, although this way of penetration may be a major contributor to the transfer of metals into plants. This study focused on the foliar uptake of various metals and metalloids from enriched PM (Cu, Zn, Cd, Sn, Sb, As, and especially lead (Pb)) resulting from the emissions of a battery-recycling factory. Metal and metalloid foliar uptake by various vegetable species, exhibiting different morphologies, use (food or fodder) and life-cycle (lettuce, parsley and rye-grass) were studied. The mechanisms involved in foliar metal transfer from atmospheric particulate matter fallout, using lead (Pb) as a model element was also investigated. Several complementary techniques (micro-X-ray fluorescence, scanning electron microscopy coupled with energy dispersive X-ray microanalysis and time-of-flight secondary ion mass spectrometry) were used to investigate the localization and the speciation of lead in their edible parts, i.e. leaves. The results showed lead-enriched PM on the surface of plant leaves. Biogeochemical transformations occurred on the leaf surfaces with the formation of lead secondary species (PbCO{sub 3} and organic Pb). Some compounds were internalized in their primary form (PbSO{sub 4}) underneath an organic layer. Internalization through the cuticle or penetration through stomata openings are proposed as two major mechanisms involved in foliar uptake of particulate matter. - Graphical abstract: Overall picture of performed observations and mechanisms potentially involved in lead foliar uptake. Highlights: Black-Right-Pointing-Pointer Foliar uptake of metallic particulate matter (PM) is of environmental and health concerns. Black-Right-Pointing-Pointer The leaf morphology influences the adsorption

  17. Ozone sensitivity of Fagus sylvatica and Fraxinus excelsior young trees in relation to leaf structure and foliar ozone uptake

    International Nuclear Information System (INIS)

    Gerosa, Giacomo; Marzuoli, Riccardo; Bussotti, Filippo; Pancrazi, Marica; Ballarin-Denti, Antonio

    2003-01-01

    The difference in ozone sensitivity between Fagus sylvatica and Fraxinus exclesior is explained by their different stomatal ozone uptake and by their different foliar structure. - During the summer of 2001, 2-year-old Fraxinus excelsior and Fagus sylvatica plants were subjected to ozone-rich environmental conditions at the Regional Forest Nursery at Curno (Northern Italy). Atmospheric ozone concentrations and stomatal conductance were measured, in order to calculate the foliar fluxes by means of a one-dimensional model. The foliar structure of both species was examined (thickness of the lamina and of the individual tissues, leaf mass per area, leaf density) and chlorophyll a fluorescence was determined as a response parameter. Stomatal conductance was always greater in Fraxinus excelsior, as was ozone uptake, although the highest absorption peaks did not match the peaks of ozone concentration in the atmosphere. The foliar structure can help explain this phenomenon: Fraxinus excelsior has a thicker mesophyll than Fagus sylvatica (indicating a greater photosynthesis potential) and a reduced foliar density. This last parameter, related to the apoplastic fraction, suggests a greater ability to disseminate the gases within the leaf as well as a greater potential detoxifying capacity. As foliar symptoms spread, the parameters relating to chlorophyll a fluorescence also change. PI (Performance Index, Strasser, A., Srivastava, A., Tsimilli-Michael, M., 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus, M., Pathre, U., Mohanty, P., (Eds.) Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Taylor and Francis, London, UK, pp. 445-483.) has proved to be a more suitable index than Fv/Fm (Quantum Yield Efficiency) to record the onset of stress conditions

  18. Accounting for the effect of temperature in clarifying the response of foliar nitrogen isotope ratios to atmospheric nitrogen deposition.

    Science.gov (United States)

    Chen, Chongjuan; Li, Jiazhu; Wang, Guoan; Shi, Minrui

    2017-12-31

    Atmospheric nitrogen deposition affects nitrogen isotope composition (δ 15 N) in plants. However, both negative effect and positive effect have been reported. The effects of climate on plant δ 15 N have not been corrected for in previous studies, this has impeded discovery of a true effect of atmospheric N deposition on plant δ 15 N. To obtain a more reliable result, it is necessary to correct for the effects of climatic factors. Here, we measured δ 15 N and N contents of plants and soils in Baiwangshan and Mount Dongling, north China. Atmospheric N deposition in Baiwangshan was much higher than Mount Dongling. Generally, however, foliar N contents showed no difference between the two regions and foliar δ 15 N was significantly lower in Baiwangshan than Mount Dongling. The corrected foliar δ 15 N after accounting for a predicted value assumed to vary with temperature was obviously more negative in Baiwangshan than Mount Dongling. Thus, this suggested the necessity of temperature correction in revealing the effect of N deposition on foliar δ 15 N. Temperature, soil N sources and mycorrhizal fungi could not explain the difference in foliar δ 15 N between the two regions, this indicated that atmospheric N deposition had a negative effect on plant δ 15 N. Additionally, this study also showed that the corrected foliar δ 15 N of bulk data set increased with altitude above 1300m in Mount Dongling, this provided an another evidence for the conclusion that atmospheric N deposition could cause 15 N-depletion in plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The fungus gardens of leaf-cutter ants undergo a distinct physiological transition during biomass degradation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Eric L.; Aylward, Frank O.; Kim, Young-Mo; Webb-Robertson, Bobbie-Jo M.; Nicora, Carrie D.; Hu, Zeping; Metz, Thomas O.; Lipton, Mary S.; Smith, Richard D.; Currie, Cameron R.; Burnum-Johnson, Kristin E.

    2014-08-01

    Leaf-cutter ants are dominant herbivores in ecosystems throughout the Neotropics. Rather than directly consuming the fresh foliar biomass they harvest, these ants use it to cultivate specialized fungus gardens. Although recent investigations have shed light on how plant biomass is degraded in fungus gardens, the cycling of nutrients that takes place in these specialized microbial ecosystems is still not well understood. Here, using metametabolomics and metaproteomics techniques, we examine the dynamics of nutrient turnover and biosynthesis in these gardens. Our results reveal that numerous free amino acids and sugars are depleted throughout the process of biomass degradation, indicating that easily accessible nutrients from plant material are readily consumed by microbes in these ecosystems. Accumulation of cellobiose and lignin derivatives near the end of the degradation process is consistent with previous findings of cellulases and laccases produced by Leucoagaricus gongylophorus, the fungus cultivated by leaf-cutter ants. Our results also suggest that ureides may be an important source of nitrogen in fungus gardens, especially during nitrogen-limiting conditions. No free arginine was detected in our metametabolomics experiments despite evidence that the host ants cannot produce this amino acid, suggesting that biosynthesis of this metabolite may be tightly regulated in the fungus garden. These results provide new insights into the dynamics of nutrient cycling that underlie this important ant-fungus symbiosis.

  20. Hydrogen Transfer during Liquefaction of Elbistan Lignite to Biomass; Total Reaction Transformation Approach

    Science.gov (United States)

    Koyunoglu, Cemil; Karaca, Hüseyin

    2017-12-01

    Given the high cost of the tetraline solvent commonly used in liquefaction, the use of manure with EL is an important factor when considering the high cost of using tetraline as a hydrogen transfer source. In addition, due to the another cost factor which is the catalyst prices, red mud (commonly used, produced as a byproduct in the production of aluminium) is reduced cost in the work of liquefaction of coal, biomass, even coal combined biomass, corresponding that making the EL liquefaction an agenda for our country is another important factor. Conditions for liquefaction experiments conducted for hydrogen transfer from manure to coal; Catalyst concentration of 9%, liquid/solid ratio of 3/1, reaction time of 60 min, fertilizer/lignite ratio of 1/3, and the reaction temperature of 400 °C, the stirred speed of 400 rpm and the initial nitrogen pressure of 20 bar was fixed. In order to demonstrate the hydrogen, transfer from manure to coal, coal is used solely, by using tetraline (also known as a hydrogen carrier) and distilled water which is not hydrogen donor as a solvent in the co-liquefaction of experiments, and also the liquefaction conditions are carried out under an inert (N2) gas atmosphere. According to the results of the obtained liquefaction test; using tetraline solvent the total liquid product conversion percentage of the oil + gas conversion was 38.3 %, however, the results of oil+gas conversion obtained using distilled water and EL combined with manure the total liquid product conversion percentage was 7.4 %. According to the results of calorific value and elemental analysis, only the ratio of (H/C)atomic of coal obtained by using tetraline increased with the liquefaction of manure and distilled water. The reason of the increase in the amount of hydrogen due to hydrogen transfer from the manure on the solid surface of the coal, and also on the surface of the inner pore of the coal during the liquefaction, brings about the evaluation of the coal as a

  1. Nitrogen cycling in an integrated biomass for energy system

    International Nuclear Information System (INIS)

    Moorhead, K.K.

    1986-01-01

    A series of experiments was conducted to evaluate N cycling in three components of an integrated biomass for energy system, i.e. water hyacinth production, anaerobic digestion in hyacinth biomass, and recycling of digester effluent and sludge. Plants assimilated 50 to 90% of added N in hyacinth production systems. Up to 28% of the total plant N was contained in hyacinth detritus. Nitrogen loading as plant detritus into hyacinth ponds was 92 to 148 kg N ha -1 yr -1 . Net mineralization of plant organic 15 N during anaerobic digestion was 35 and 70% for water hyacinth plants with low and high N content, respectively. Approximately 20% of the 15 N was recovered in the digested sludge while the remaining 15 N was recovered in the effluent. Water hyacinth growth in digester effluents was affected by electrical conductivity and 15 NH 4 + -N concentration. Addition of water hyacinth biomass to soil resulted in decomposition of 39 to 50% of added C for fresh plant biomass and 19 to 23% of added C for digested biomass sludge. Only 8% of added 15 N in digested sludges was mineralized to 15 NO 3 - -N despite differences in initial N content. In contrast, 3 and 33% of added 15 N in fresh biomass with low and high N content, respectively, was recovered as 15 NO 3 - -N. Total 15 N recovery after anaerobic digestion ranged from 70 to 100% of the initial plant biomass 15 N. Total N recovery by sludge and effluent recycling in the integrated biomass for energy system was 48 to 60% of the initial plant biomass 15 N

  2. Improving growth and yield of cowpea by foliar application of ...

    African Journals Online (AJOL)

    Water stress impaired cowpea plant growth and decreased ion percentage and chlorophyll and carbohydrate concentration in the shoot as well as yield and its quality. Foliar-applied chitosan, in particular 250 mg/l, increased plant growth, yield and its quality as well as physiological constituents in plant shoot under stressed ...

  3. Impact of Potassium Foliar Application in Alleviating the Harmful Effects of Salinity in Spinach

    Directory of Open Access Journals (Sweden)

    Amirhooshang jalali

    2017-02-01

    Full Text Available Introduction: Spinach is an important leafy vegetable in the cold season, and despite the fact that is considered as low-calorie food source contains significant amount of minerals such as iron, and vitamin A and C. According to the University of Utah 3.8 dS m-1 is salinity tolerance threshold for the spinach and yield decrease that have been reported by 10%, 25% and 50% at 5.5, 7 and 8 dS m-1 salinity. The necessity to supply adequate potassium has been demonstrated in salinity conditions. In salt stress conditions, foliar application of K in spinach, reduces the harmful effects of salt and increase the ratio of potassium to sodium (1.61 to 2.72. Foliar application of K with prevent of potassium transfer from root to shoot is causing continuation of photosynthesis and reduce the effects of salinity. Absorption of potassium from the leaves depends on the type of used compound. In this context, characteristics of plant (leaves with a waxy composition, duration of growth and leaf area are important. 100 kg ha-1 of potassium in salt stress conditions by reducing the absorption of sodium, increased salt tolerance on the sunflower. Materials and Methods: In order to evaluate the foliar application of K on the yield and yield components of spinach in salt stress condition, a study was conducted in 2012 by using split plot randomized based on complete block design with four replications at Isfahan Agricultural and Natural Resources Research Station. Three levels of irrigation water salinity consisted of a control (2 dS m-1, well water with salinity (4 dS m-1 and well water with salinity (8dS m-1 arranged in main plots and two levels of control and foliar applications of potassium fertilizer containing potassium oxide solubility in water (2.5 ml per liter arranged in subplots. Statistical analysis was conducted by using SAS software and statistical tests were compared with Duncan at 5 percent. Result and Discussions: The results showed that the yield of

  4. Woody biomass availability for bioethanol conversion in Mississippi

    International Nuclear Information System (INIS)

    Perez-Verdin, Gustavo; Grebner, Donald L.; Sun, Changyou; Munn, Ian A.; Schultz, Emily B.; Matney, Thomas G.

    2009-01-01

    This study evaluated woody biomass from logging residues, small-diameter trees, mill residues, and urban waste as a feedstock for cellulosic ethanol conversion in Mississippi. The focus on Mississippi was to assess in-state regional variations and provide specific information of biomass estimates for those facilities interested in locating in Mississippi. Supply and cost of four woody biomass sources were derived from Forest Inventory Analysis (FIA) information, a recent forest inventory conducted by the Mississippi Institute for Forest Inventory, and primary production costs. According to our analysis, about 4.0 million dry tons of woody biomass are available for production of up to 1.2 billion liters of ethanol each year in Mississippi. The feedstock consists of 69% logging residues, 21% small-diameter trees, 7% urban waste, and 3% mill residues. Of the total, 3.1 million dry tons (930 million liters of ethanol) can be produced for $34 dry ton -1 or less. Woody biomass from small-diameter trees is more expensive than other sources of biomass. Transportation costs accounted for the majority of total production costs. A sensitivity analysis indicates that the largest impacts in production costs of ethanol come from stumpage price of woody biomass and technological efficiency. These results provide a valuable decision support tool for resource managers and industries in identifying parameters that affect resource magnitude, type, and location of woody biomass feedstocks in Mississippi. (author)

  5. Potential impact of mangrove clearance on biomass and biomass size spectra of nematode along the Sudanese Red Sea coast.

    Science.gov (United States)

    Sabeel, Rasha Adam Osman; Vanreusel, Ann

    2015-02-01

    The potential effect of mangrove clearance on nematode assemblage biomass, biomass size spectra (NBSS) and abundance/biomass curves (ABC) was investigated in three sites representing a varying degree of mangrove clearance as well as in three stations established at each sites representing high-, mid- and low-water levels. Results revealed significant differences in sediment and nematode characteristics between the three sites. Although both the cleared and the intact mangrove had comparable biomass values, clear differences in biomass size spectra and abundance biomass curves were observed. The results suggested that the variation in the silt fraction and the food quality positively affected the total biomass. Mangrove clearance has caused a shift from a unimodal to a bimodal biomass size spectrum at all water levels, owing to an increase in smaller-bodied opportunistic non-selective deposit feeding nematodes. The ABC further confirmed the effect of clearance by classifying the cleared mangrove as moderately to grossly disturbed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Área foliar del yacón (Smallanthus sonchifolius (Poep. & Endl. H. Rob. estimada mediante método indirecto.

    Directory of Open Access Journals (Sweden)

    Juan Francisco Seminario-Cunya

    2016-12-01

    Full Text Available El objetivo de este trabajo fue estimar el área foliar de ocho morfotipos de yacón mediante análisis de regresión lineal simple. La investigación se realizó entre los años 2014 y 2015, en el Programa de Raíces y Tubérculos Andinos de la Universidad Nacional de Cajamarca, Perú (7° 10’ 00’’ S, 78° 30’00’’ W, 2650 msnm. Se tomaron cien hojas de cada morfotipo, incluyendo hojas de los estratos basal, medio y terminal de plantas en plena oración. Las siluetas de las hojas frescas se dibujaron en papel y se midió el largo (L y ancho mayor de la lámina (W. El área medida (o real de la lámina se determinó con planímetro digital. Con el área medida (variable dependiente y los valores de largo, ancho, largo al cuadrado, ancho al cuadrado, largo x ancho y largo/ancho (como variables independientes, se realizó el análisis de regresión para cada morfotipo. En todos los morfotipos, excepto en dos, las mejores ecuaciones para estimar el área foliar, fueron aquellas en donde intervino el producto de L x W. La ecuación A= 20,41 + 0,4167 (L x W (r2 = 0,89 permitió estimar el área foliar de los ocho morfotipos en conjunto. El área del peciolo de los morfotipos en estudio signi có 15%, respecto del área total de la hoja.

  7. Effect of foliar fertilization on Ananas comosus L. Merr. cv. `Cayena lisa' acclimatization

    Directory of Open Access Journals (Sweden)

    Ortelio Hurtado

    2015-07-01

    Full Text Available The low survival and slow growth of in vitro pineapple plants (Ananas comosus L. Merr. in acclimatization stage limit the use of biotechnological techniques for it propagation. The aim of this study was to determine the effect of foliar fertilization in the acclimatization of pineapple plants cv. `Smooth Cayenne'. Two variants of foliar fertilization were compared. The first, plants were fertilized daily after the last irrigation with a minimum dose increased until three months of culture. The second included the same fertilizer at maximum dose with daily dose foliar applications after the last irrigation 10 days from planting to three months of cultivation. As a control, unfertilized plants were included. Every 20 days to three months of culture height (cm of plants was measured, the number of leaves per plant was quantified and the length and width of the leaves was measured. It was observed that fertilization had effect under the experimental conditions tested on the plants variables. After 90 days of culture plants obtained in the treatment with daily fertilization at maximun dose (option 2, met the requirements of height, length and width of the leaf for transplantation to field conditions. Key words: pineapple, propagation, zeolite

  8. Effect of Foliar Application of Iron, Zinc and Manganese on Quantitative and Qualitative Characteristics of Two Varieties of Grain Millet

    Directory of Open Access Journals (Sweden)

    H. Javadi

    2016-12-01

    Full Text Available In order to study the effect of foliar application of Fe, Zn and Mn on yield, yield components and protein content of two varieties of grain millet an experiment was conducted as factorial based on randomized complete block design with three replications in research field of Birjand branch, Islamic Azad University at 2010.  In this study two millet varieties including Bastan (Setaria italica and Pishahang (Panicum miliaceum, and six levels of foliar micronutrient fertilizer including control, Fe, Zn, Mn, (Fe+Zn, (Fe+Zn+Mn were investigated. The results indicated that, panicle length, 1000 grain weight and panicle number per m2 were higher in Pishahang than Bastan, but grain yield, number of seeds per panicle, harvest index and protein yield were higher in Bastan. Characteristics such as panicle length, biological yield and harvest index and protein percentage were affected by foliar micronutrient fertilizer but grain yield remained unchanged. Foliar application with (Fe+Zn+Mn increased protein content compared to the control, but it did not affect protein yield. According to the results of this experiment, Bastan millet variety and foliar application of Zn is potent to produce the maximum grain yield, albeit it warrants further studies.

  9. Foliar nectar enhances plant-mite mutualisms: the effect of leaf sugar on the control of powdery mildew by domatia-inhabiting mites.

    Science.gov (United States)

    Weber, Marjorie G; Porturas, Laura D; Taylor, Scott A

    2016-09-01

    Mite domatia are small structures on the underside of plant leaves that provide homes for predacious or fungivorous mites. In turn, mites inhabiting domatia defend the plant by consuming leaf herbivores and pathogens, which can result in a domatia-mediated, plant-mite defence mutualism. Several recent studies have suggested that plants receive enhanced benefits when they provide a foliar food source, such as sugars secreted from extrafloral nectaries, to mite mutualists alongside mite domatia. However, the effect of foliar sugar on reducing leaf pathogen load via domatia-inhabiting mites has not been directly investigated. To fill this gap, the links between foliar sugar addition, domatia-inhabiting mite abundance, and pathogen load were experimentally evaluated in wild grape. Furthermore, because the proposed combined benefits of providing food and housing have been hypothesized to select for the evolutionary correlation of extrafloral nectaries and domatia across plant lineages, a literature survey aimed at determining the overlap of mite domatia and extrafloral nectaries across plant groups was also conducted. It was found that leaves with artificial addition of foliar sugar had 58-80 % more mites than leaves without foliar sugar addition, and that higher mite abundances translated to reduced powdery mildew (Erysiphe necator) loads on leaves. It was found that mite domatia and extrafloral nectaries occur non-randomly in the same clades across Eudicots. Genera with both traits are reported to highlight candidate lineages for future studies. Together, the results demonstrate that foliar sugar can indeed enhance the efficacy of domatia-mediated plant-mite mutualisms, and suggest that this synergism has the potential to influence the co-distribution of foliar nectar and mite domatia across plants. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. A biomass energy flow chart for Sierra Leone

    International Nuclear Information System (INIS)

    Amoo-Gottfried, K.; Hall, D.O.

    1999-01-01

    Terrestrial above-ground biomass production and utilisation in Sierra Leone was analysed for the years 1984/5 to 1990/1. The total production of biomass energy was estimated at an annual average of 131 PJ (39% from agriculture, 51% from forestry and 10% from livestock). Of the 117 PJ produced from agricultural and forestry operations, 37 PJ was harvested as firewood and burnt (10.9 GJ or 0.72 t wood per capita per year, supplying 80% of the country's energy), 12 PJ was harvested for food, 66 PJ was unutilised crop and forestry residues, 3 PJ was harvested crop residues for use directly as fuel, and 2 PJ was harvested and used for industrial purposes and not for fuel. Livestock produced wastes with an energy content of 13 PJ of which only 0.1 PJ was collected and used for fuel. Thus 54 PJ (41%) of the 131 PJ of biomass energy produced annually was actually utilised while 49 PJ remained as unused agricultural residues and dung, and a further 27 PJ was unused forestry residues. The total amount of biomass (fuelwood, residues and dung) used directly to provide energy, mostly in households, was estimated at 40 PJ (11.8 GJ per capita per year of 0.79 t fuelwood equivalent). Direct biomass energy utilisation in agroindustry (0.4 PJ) was negligible in comparison. Two assessments of Sierra Leone's biomass standing stock and MAI (mean annual increment) were examined in order to assess the sustainability of various biomass use scenarios. Large differences were found between the MAI of the two assessments, making it difficult to predict sustainability of biomass production and use. The estimation of total standing stock varied between 227 and 366 Mt and the estimation of MAI varied between 15 and 70 Mt. Analysis of the availability and use of the biomass resource is crucial if biomass energy is to be used on a sustainable basis. A software package has been developed and is available to draft biomass flow charts but further work is needed to incorporate social and economic

  11. Variation in foliar respiration and wood CO2 efflux rates among species and canopy layers in a wet tropical forest.

    Science.gov (United States)

    Asao, Shinichi; Bedoya-Arrieta, Ricardo; Ryan, Michael G

    2015-02-01

    As tropical forests respond to environmental change, autotrophic respiration may consume a greater proportion of carbon fixed in photosynthesis at the expense of growth, potentially turning the forests into a carbon source. Predicting such a response requires that we measure and place autotrophic respiration in a complete carbon budget, but extrapolating measurements of autotrophic respiration from chambers to ecosystem remains a challenge. High plant species diversity and complex canopy structure may cause respiration rates to vary and measurements that do not account for this complexity may introduce bias in extrapolation more detrimental than uncertainty. Using experimental plantations of four native tree species with two canopy layers, we examined whether species and canopy layers vary in foliar respiration and wood CO2 efflux and whether the variation relates to commonly used scalars of mass, nitrogen (N), photosynthetic capacity and wood size. Foliar respiration rate varied threefold between canopy layers, ∼0.74 μmol m(-2) s(-1) in the overstory and ∼0.25 μmol m(-2) s(-1) in the understory, but little among species. Leaf mass per area, N and photosynthetic capacity explained some of the variation, but height explained more. Chamber measurements of foliar respiration thus can be extrapolated to the canopy with rates and leaf area specific to each canopy layer or height class. If area-based rates are sampled across canopy layers, the area-based rate may be regressed against leaf mass per area to derive the slope (per mass rate) to extrapolate to the canopy using the total leaf mass. Wood CO2 efflux varied 1.0-1.6 μmol m(-2) s(-1) for overstory trees and 0.6-0.9 μmol m(-2) s(-1) for understory species. The variation in wood CO2 efflux rate was mostly related to wood size, and little to species, canopy layer or height. Mean wood CO2 efflux rate per surface area, derived by regressing CO2 efflux per mass against the ratio of surface

  12. Foliar urea application affects nitric oxide burst and glycine betaine metabolism in two maize cultivars under drought

    International Nuclear Information System (INIS)

    Zhang, L.; Zhang, X.; Wang, K.; Zhao, Y.; Zhai, Y.; Gao, M.

    2011-01-01

    Foliar urea has been proved to act a better role in alleviation of the negative effects of drought stress (DS). However, the modulation mechanism of foliar urea are not conclusive in view of nitric oxide (NO) burst and glycine betaine metabolism and their relationship. Two maize ( Zea mays L.) cultivars (Zhengdan 958, JD958, Jundan 20, ZD20) were grown in hydroponic medium, which were treated with spraying of urea concentration of 15 g L/sup -1/ and two water regimes (non-stress and DS simulated by the addition of polyethylene glycol (PEG, 15% w/v, MW 6000). The ten-day DS treatment increased betaine aldehyde dehydrogenase (BADH) activity, choline content and nitric oxide (NO) content acted as the key enzyme, initial substrate and a nitrogenous signal substance respectively in GB synthesis metabolism, thus, induced to great GB accumulation. The accumulation of NO reached the summit earlier than that of GB. The more positive/less negative responses were recorded in JD958 as compared with ZD20 to DS. Addition of foliar ur ea could increase accumulation of choline and BADH activity as well as NO content, thereby, increase GB accumulation under DS. These positive effects of urea applying foliarly on all parameters measured were more pronounced in cultivar JD20 than those in ZD958 under drought. It is, therefore, concluded that increases of both BADH activity and choline content possibly resulted in enhancement of GB accumulation. Foliar urea application could provoke better GB accumulation by modulation of GB metabolism, possibly mediating by NO burst as a signal molecule during drought, especially in the drought sensitive maize cultivar. (author)

  13. Improvement of growth and productivity of cotton (Gossypium hirsutum L. through foliar applications of naphthalene acetic acid

    Directory of Open Access Journals (Sweden)

    Shazia Parveen

    2017-05-01

    Full Text Available Plant growth regulators like naphthalene acetic acid (NAA positively affect the growth and yield of crop plants. An experiment was conducted to check the foliar application of NAA on growth and yield components of cotton variety Bt.121 under field condition at research area of agriculture farm near Cholistan Institute of Desert Studies (CIDS, The Islamia University of Bahawalpur, Pakistan. The experiment was comprised of foliar application of NAA (1% viz. T0 (control, T1 (One spray of NAA, T2 (Two sprays of NAA, T3 (Three sprays of NAA, T4 (Four sprays of NAA. The first foliar spray was applied at 45 days after sowing (DAS and later on it was continued with 15 days interval with skilled labour by hand pump sprayer. The experiment was laid out in randomized complete block design and each treatment was replicated three times. Data recorded on growth, chlorophyll contents, yield and yield components showed a significant increase with the application of NAA. Furthermore, earliness index, mean maturity date and production rate index were also influenced with foliar application of NAA. On the basis of growth and yield parameters it can be concluded that four spray of NAA (1% can be applied commercially under field conditions.

  14. Five-minute grid of total marine bird biomass densities surveyed off central California - selected warm water periods, 1980-2001 (CDAS data set AL1_MASS.shp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — AL0_MASS is a polygon shapefile representing 5 minute x 5 minute latitude x longitude cells that house the overall total biomass densities (kg/sq.km.) of 76 species...

  15. Ecophysiological and foliar nitrogen concentration responses of understorey Acacia spp. and Eucalyptus sp. to prescribed burning.

    Science.gov (United States)

    Ma, Ling; Rao, Xingquan; Lu, Ping; Bai, Shahla Hosseini; Xu, Zhihong; Chen, Xiaoyang; Blumfield, Timothy; Xie, Jun

    2015-07-01

    Eucalyptus spp. is a dominant tree genus in Australia and most Eucalyptus spp. are canopy dominant species. In Australian natural forests, Eucalyptus spp. commonly are associated with understorey legumes which play a crucial role for ecological restoration owing to their nitrogen (N) fixing ability for replenishing the soil N lost after frequent prescribed burning. This study aimed to explore to what extent physiological responses of these species differ 7 and 12 years after last fire. Two most common understorey Acacia spp., Acacia leiocalyx and A. disparrima, as well as one non-leguminous Eucalyptus resinifera, were studied due to their dominance in the forest. Both A. leiocalyx and A. disparrima showed higher carbon (C) assimilation capacity, maximum photosynthetic capacity, and moderate foliar C/N ratio compared with E. resinifera. A. leiocalyx showed various advantages compared to A. disparrima such as higher photosynthetic capacity, adaptation to wider light range and higher foliar total N (TNmass). A. leiocalyx also relied on N2-fixing ability for longer time compared to A. disparrima. The results suggested that the two Acacia spp. were more beneficial to C and N cycles for the post burning ecosystem than the non-N2-fixing species E. resinifera. A. leiocalyx had greater contribution to complementing soil N cycle long after burning compared to A. disparrima.

  16. Foliar K application delays leaf senescence of winter rape-seed (Brassica napus L.) under waterlogging

    Institute of Scientific and Technical Information of China (English)

    Lin Wan; Chao Hu; Chang Chen; Liyan Zhang; Ni Ma; Chunlei Zhang

    2017-01-01

    To better understand waterlogging effect on leaf senescence in winter rapseed (Brassica napus L.) during flowering stage, experiments were designed to explore foliar K application influences on adverse effects of waterlogging stress. Winter rapeseed was sprayed with K after waterlogging at initial flowering stage. Results indicated that waterlog-ging significantly decreased leaf net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr). It also declined maximum quantum yield of PS II (Fv/Fm), quantum yield of electron transport (ΦPS II) and pho-tochemical quenching (qP), but increased leaf non-photochemical quenching (NPQ) and minimal fluorescence (Fo). Interestingly, exogenous application of K significantly alleviated waterlogging-induced photosynthesis inhibition. Foliar K application increased RuBisCO activation, chlorophyll and soluble protein contents, while significantly decreased MDA con-tent under waterlogging stress. Moreover, K supplementation improved accumulation of K+, Ca2+, Mg2+, N, Zn2+, Mn2+, Fe2+ in leaves. In general, foliar K application is effective in alleviating deleterious effects of waterlogging stress and delays leaf senescence of winter rapeseed.

  17. Does foliar application of salicylic acid protects nitrate reductase and ...

    African Journals Online (AJOL)

    The present study was conducted to assess whether exogenous applied salicylic acid (SA) as a foliar spray could ameliorate the adverse effects of virus infection in two maize cultivars (maize cv. sabaini and maize cv. Nab El-gamal). The plants were grown under normal field conditions for two weeks in sand clay soil, and ...

  18. Limitations of ATP as a measure of microbial biomass

    African Journals Online (AJOL)

    limits the use of ATP as a measure of microbial biomass. S. AIr. J. Zool. 1982, 17: 93 - 95. Beraming van die totale .... only micro-organisms present in the experimental culture, but these were later succeeded by a large ... a value of 49: I by the last day of the experiment. Estimates of the total living biomass of the heterotro-.

  19. Área foliar de duas trepadeiras infestantes de cana-de-açúcar utilizando dimensões lineares de folhas Foliar area estimate of two sugarcane-infesting weeds using leaf blade linear dimensions

    Directory of Open Access Journals (Sweden)

    N.P. Cardozo

    2009-01-01

    Full Text Available Esta pesquisa teve como objetivo obter uma equação, por meio de medidas lineares dimensionais das folhas, que permitisse a estimativa da área foliar de Momordica charantia e Pyrostegia venusta. Entre maio e dezembro de 2007, foram estudadas as correlações entre a área folia real (Sf e as medidas dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C e a largura máxima (L perpendicular à nervura principal. Todas as equações, exponenciais geométricas ou lineares simples, permitiram boas estimativas da área foliar. Do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando-se o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de Momordica charantia pode ser feita pela fórmula Sf = 0,4963 x (C x L, e a de Pyrostegia venusta, por Sf = 0,6649 x (C x L.The aim of this study was to obtain a mathematical equation to estimate the leaf area of Momordica charantia and Pyrostegia venusta using linear leaf blade measurements. Correlation studies were conducted involving real leaf area (Sf and leaf length (C, maximum leaf width (L and C x L. The linear and geometric equations involving parameter C provided good leaf area estimates. From a practical viewpoint, the simple linear equation of the regression model is suggested using the C x L parameter, i.e., considering the linear coefficient equal to zero. Thus, leaf area estimate of Momordica charantia can be obtained by using the equation Sf = 0.4963 x (C x L, and that of Pyrostegia venusta by using equation Sf = 0.6649 x (C x L.

  20. Response of winter rape (Brassica napus L. ssp. oleifera Metzg., Sinsk to foliar fertilization and different seeding rates

    Directory of Open Access Journals (Sweden)

    Cezary A. Kwiatkowski

    2012-12-01

    Full Text Available A field experiment in growing winter rape was carried out during the period 2009-2011 in a family farm (owned by Mr. M. Bednarczyk located in Jaroszewice (Lublin region, on podzolic soil. Plant biometric features as well as yield and seed qualitative parameters (oil, protein and glucosinolate content were evaluated depending on the following rates of soil NPK fertilizers and on foliar fertilization (autumn spraying with the fertilizer solution: 100% and 75% of NPK as well as urea + nickel chelate + MgSO4H2O; 100% and 75% of NPK as well as urea + Plonvit R + MgSO4H2O. Plots without foliar fertilization (only 100% of NPK were the control treatment. The other experimental factor was the seeding rate (2.5 kg×ha-1 – 30 cm row spacing; 4 kg×ha-1 – 18 cm row spacing. Foliar spraying was done once in the autumn in the second decade of October. Tillage as well as mechanical and chemical control of agricultural pests in the plantation were typical for this plant species and consistent with the recommendations for winter rape protection. A hypothesis was made that the application of foliar fertilizers would have a beneficial effect on winter rape productivity, at the same time maintaining the high quality of raw material. It was also assumed that a reduction in the seeding rate of winter oilseed rape would result in reduced plant lodging and an increased number of siliques per plant; as a consequence, seed and oil productivity would be at a level not lower than that obtained at the higher seeding rate. The present study has proved that foliar fertilization of winter oilseed rape in the autumn period contributes to improved plant winter hardiness and increased productivity. The application of foliar fertilizers also enables the rates of basic mineral NPK fertilizers to be reduced by 25% without detriment to seed yield. Foliar fertilizers have been found to have a weaker effect on changing the chemical composition of rapeseed. The study has shown that

  1. Foliar nutrient status of Pinus ponderosa exposed to ozone and acid rain

    International Nuclear Information System (INIS)

    Anderson, P.D.; Houpis, J.L.J.

    1991-01-01

    A direct effect of foliar exposure to acid rain may be increased leaching of nutrient elements. Ozone exposure, through degradation of the cuticle and cellular membranes, may also result in increased nutrient leaching. To test these hypotheses, the foliar concentrations of 13 nutrient elements were monitored for mature branches of three clones of Pinus ponderosa exposed to ozone and/or acid rain. The three clones represented three distinct levels of phenotypic vigor. Branches were exposed to charcoal filtered, ambient, or 2 x ambient concentrations of ozone and received no acid rain (NAP), pH 5.1 rain (5.1), or pH 3.0 (3.0) rain. Following 10 months of continuous ozone exposure and 3 months of weekly rain applications, the concentrations of P and Mg differed significantly among rain treatments with a ranking of: 5.1 < NAP < 3.0. The S concentration increased with rain application regardless of pH. For the clones of moderate and low vigor, the concentration of N decreased with increasing rain acidity. There was no evidence of significant ozone or ozone x acid rain response. Among the three families, high phenotypic vigor was associated with significantly greater concentrations of N, P, K, Mg, B and An. These results indicate generally negligible leaching as a result of exposure to acid rain and/or ozone for one growing season. Increases in foliar concentrations of S, Mg and P are possibly the result of evaporative surface deposition from the rain solution

  2. Global biomass burning. Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    Levine, J.S.

    1991-01-01

    Biomass burning is a significant source of atmospheric gases and, as such, may contribute to global climate changes. Biomass burning includes burning forests and savanna grasslands for land clearing, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The chapters in this volume include the following topics: remote sensing of biomass burning from space;geographical distribution of burning; combustion products of burning in tropical, temperate and boreal ecosystems; burning as a global source of atmospheric gases and particulates; impacts of biomass burning gases and particulates on global climate; and the role of biomass burning on biodiversity and past global extinctions. A total of 1428 references are cited for the 63 chapters. Individual chapters are indexed separately for the data bases

  3. Biomass models to estimate carbon stocks for hardwood tree species

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Peinado, R.; Montero, G.; Rio, M. del

    2012-11-01

    To estimate forest carbon pools from forest inventories it is necessary to have biomass models or biomass expansion factors. In this study, tree biomass models were developed for the main hardwood forest species in Spain: Alnus glutinosa, Castanea sativa, Ceratonia siliqua, Eucalyptus globulus, Fagus sylvatica, Fraxinus angustifolia, Olea europaea var. sylvestris, Populus x euramericana, Quercus canariensis, Quercus faginea, Quercus ilex, Quercus pyrenaica and Quercus suber. Different tree biomass components were considered: stem with bark, branches of different sizes, above and belowground biomass. For each species, a system of equations was fitted using seemingly unrelated regression, fulfilling the additivity property between biomass components. Diameter and total height were explored as independent variables. All models included tree diameter whereas for the majority of species, total height was only considered in the stem biomass models and in some of the branch models. The comparison of the new biomass models with previous models fitted separately for each tree component indicated an improvement in the accuracy of the models. A mean reduction of 20% in the root mean square error and a mean increase in the model efficiency of 7% in comparison with recently published models. So, the fitted models allow estimating more accurately the biomass stock in hardwood species from the Spanish National Forest Inventory data. (Author) 45 refs.

  4. Estimativa da área foliar de plantas de lima ácida 'Tahiti' usando métodos não-destrutivos Leaf area estimative of young 'Tahiti' lime using non-destructive methods

    Directory of Open Access Journals (Sweden)

    Maurício Antonio Coelho Filho

    2005-04-01

    Full Text Available O objetivo desse estudo foi avaliar métodos não-destrutivos para a determinação da área foliar de plantas jovens de lima ácida 'Tahiti'(Citrus latifolia Tan., em campo. Foram utilizadas informações de variáveis biométricas de 28 plantas jovens (0,07 a 1,44 m² e imagens digitais da área frontal de cada planta (silhueta de copa. Essas variáveis foram correlacionadas com medidas diretas (contagem total de folhas x área foliar média. Como resultado, foi possível estimar a área foliar total das plantas (AFT com base na equação: AFT = 88,936 x DI - 1,4017 (R²=0,75, em que DI representa o diâmetro do caule 5 cm abaixo do ponto em que a copa foi enxertada, e a silhueta da planta em m² (IM: AFT = 2,4951 x IM (R²=0,72. A área foliar dos ramos secundários das plantas (AFR pode ser estimada mediante uma equação exponencial envolvendo o diâmetro do ramo (DR: AFR = 0,0144e277,02 x DR (R²=0,71. Estas metodologias podem ser utilizadas quando o interesse for por um valor médio de área foliar no pomar, não sendo indicadas quando é necessária elevada precisão, pois os erros são elevados.The objective of this study was to evaluate non-destructive methods of estimating total leaf area of young 'Tahiti' lime (Citrus latifolia Tan. plants grown in the field. Information of biometrical variables of 28 young plants (0.07 to 1.44 m² and digitized image of front area of each plant (plant silhouette were used. These variables were correlated to the direct measurements (leaves and average leaf area counting. As a result, it was possible to estimate total plant leaf area (AFT based upon the equation: AFT = 88.936 x DI - 1.4017 (R²=0.75, where DI stands for the trunk diameter taken 5 cm below the graft and the silhouette area in m² (IM: AFT = 2.4951 x IM (R²=0.72. The leaf area of secondary branches (AFR can be estimated by an exponential equation with the branch diameter (DR: AFR = 0.0144e277.02 x DR (R²=0.71. These methodologies can

  5. Influência da nutrição mineral foliar sobre doenças da parte aérea da cultura do trigo

    Directory of Open Access Journals (Sweden)

    Rafael Gustavo Ferreira Morales

    2012-02-01

    Full Text Available A utilização de fungicida para o controle de doenças foliares na cultura do trigo é prática comum entre os triticultores. Contudo, devido ao impacto ambiental provocado pelo seu uso generalizado, buscam-se alternativas para controle dos fitopatógenos. Sendo assim, este trabalho teve como objetivo avaliar o efeito da nutrição mineral foliar sobre as doenças foliares do trigo, bem como seu efeito sobre o desenvolvimento da planta. O delineamento experimental foi em blocos casualizados com quatro repetições e quatro tratamentos: 1- testemunha; 2- adubação foliar aos 30 dias após a emergência (DAE e aos 75 DAE; 3- fungicida aos 30 e 75 DAE; e 4- adubação foliar aos 30 DAE e adubação foliar mais fungicida aos 75 DAE. Foram realizadas nove avaliações da incidência e da severidade do oídio, cujos dados foram utilizados para o cálculo das áreas abaixo das curvas de progresso da doença; três avaliações da severidade da ferrugem e da mancha da gluma; e duas avaliações da mancha amarela. Foram determinadas a massa de matéria fresca e seca da parte aérea e do sistema radicular e a produtividade da cultura. Foi observada redução da incidência e da severidade de oídio em função da adubação foliar, apenas na primeira avaliação de incidência e nas segunda e quinta avaliações de severidade da doença. O efeito complementar dos nutrientes com o fungicida para redução das doenças foi observado apenas para a mancha amarela, com redução de aproximadamente 11,16 % da severidade. Os maiores valores de produtividade foram observados para os tratamentos apenas com fungicida e, com fungicida mais nutrientes. A adubação foliar proporcionou aumento da massa fresca de raízes e massa seca de raízes. Apesar disso, não houve aumento da massa fresca da parte aérea em função da adubação foliar.

  6. Ecosystem, location, and climate effects on foliar secondary metabolites of lodgepole pine populations from central British Columbia.

    Science.gov (United States)

    Wallis, Christopher M; Huber, Dezene P W; Lewis, Kathy J

    2011-06-01

    Lodgepole pines, Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson, are encountering increased abiotic stress and pest activity due to recent increases in temperature and changes in precipitation throughout their range. This tree species counters these threats by producing secondary metabolites, including phenolics and terpenoids. We examined foliar levels of lignin, soluble phenolics, monoterpenoids, sesquiterpenoids, and diterpenoids in 12 stands in British Columbia, Canada. We used these data to assess associations among foliar secondary metabolite levels and ecosystem, geographic, and climatic variables. Regressions were also performed to observe which combinations of variables best explained secondary metabolite variance. Stands of P. c. latifolia in the Coastal Western Hemlock and Interior Cedar/Hemlock biogeoclimatic zones had consistently greater foliar levels of almost all measured secondary metabolites than did other stands. Lignin was present in greater amounts in Boreal White/Black Spruce ecosystem (i.e., northern) stands than in southern stands, suggesting a role for this metabolite in pine survival in the boreal forest. Attempts to develop regression models with geographic and climatic variables to explain foliar secondary metabolite levels resulted in multiple models with similar predictive capability. Since foliar secondary metabolite levels appeared to vary most between stand ecosystem types and not as much due to geographic and climatic variables, metabolic profiles appeared best matched to the stress levels within local environments. It is unknown if differences in secondary metabolite levels are the result of genetic adaptation or phenotypic plasticity, but results from this and other studies suggest that both are important. These results are interpreted in light of ongoing efforts to assist in the migration of certain populations of P. c. latifolia northward in an effort to counter predicted effects of climate change.

  7. Assessment of the status and outlook of biomass energy in Jordan

    International Nuclear Information System (INIS)

    Al-Hamamre, Zayed; Al-Mater, Ali; Sweis, Fawaz; Rawajfeh, Khaled

    2014-01-01

    Highlights: • The potential of utilizing biomass as an energy source in Jordan is investigated. • The biomass thermal energy represents 10.2% of the total primary energy. • Bioenergy production depends on biomass availability, conversion and recovery efficiency. - Abstract: This work investigates the status and potential of utilizing biomass as an energy source in Jordan. The amount of waste and residue is estimated to be 6.680 million tons for the year 2011. Two scenarios were investigated: biogas production and thermal treatment. The amount of biogas that can be produced from various biomass sources in Jordan is estimated at 428 MCM. The equivalent annual power production is estimated at 698.1 GW h. This is equivalent to about 5.09% of the consumed electricity (13,535 GW h) and 39.65% of the imported electricity in 2011. The alternative scenario of thermal treatment was investigated. The total theoretical thermal energy that can be obtained assuming 70% conversion efficiency is equivalent to 779 thousand toe (5.33 million barrels of crude oil) which amounts to 10.2% of the total primary energy consumed in 2011. Due to biomass collection and recovery challenges, the energy availability factor varies for the different resources. Hence, contribution of the different biomass resources can significantly vary

  8. Intercomparison of Remotely Sensed Vegetation Indices, Ground Spectroscopy, and Foliar Chemistry Data from NEON

    Science.gov (United States)

    Hulslander, D.; Warren, J. N.; Weintraub, S. R.

    2017-12-01

    Hyperspectral imaging systems can be used to produce spectral reflectance curves giving rich information about composition, relative abundances of materials, mixes and combinations. Indices based on just a few spectral bands have been used for over 40 years to study vegetation health, mineral abundance, and more. These indices are much simpler to visualize and use than a full hyperspectral data set which may contain over 400 bands. Yet historically, it has been difficult to directly relate remotely sensed spectral indices to quantitative biophysical properties significant to forest ecology such as canopy nitrogen, lignin, and chlorophyll. This linkage is a critical piece in enabling the detection of high value ecological information, usually only available from labor-intensive canopy foliar chemistry sampling, to the geographic and temporal coverage available via remote sensing. Previous studies have shown some promising results linking ground-based data and remotely sensed indices, but are consistently limited in time, geographic extent, and land cover type. Moreover, previous studies are often focused on tuning linkage algorithms for the purpose of achieving good results for only one study site or one type of vegetation, precluding development of more generalized algorithms. The National Ecological Observatory Network (NEON) is a unique system of 47 terrestrial sites covering all of the major eco-climatic domains of the US, including AK, HI, and Puerto Rico. These sites are regularly monitored and sampled using uniform instrumentation and protocols, including both foliar chemistry sampling and remote sensing flights for high resolution hyperspectral, LiDAR, and digital camera data acquisition. In this study we compare the results of foliar chemistry analysis to the remote sensing vegetation indices and investigate possible sources for variance and difference through the use of the larger hyperspectral dataset as well as ground based spectrometer measurements of

  9. Foliar Nutrient Distribution Patterns in Sympatric Maple Species Reflect Contrasting Sensitivity to Excess Manganese.

    Science.gov (United States)

    Fernando, Denise R; Marshall, Alan T; Lynch, Jonathan P

    2016-01-01

    Sugar maple and red maple are closely-related co-occurring tree species significant to the North American forest biome. Plant abiotic stress effects including nutritional imbalance and manganese (Mn) toxicity are well documented within this system, and are implicated in enhanced susceptibility to biotic stresses such as insect attack. Both tree species are known to overaccumulate foliar manganese (Mn) when growing on unbuffered acidified soils, however, sugar maple is Mn-sensitive, while red maple is not. Currently there is no knowledge about the cellular sequestration of Mn and other nutrients in these two species. Here, electron-probe x-ray microanalysis was employed to examine cellular and sub-cellular deposition of excessively accumulated foliar Mn and other mineral nutrients in vivo. For both species, excess foliar Mn was deposited in symplastic cellular compartments. There were striking between-species differences in Mn, magnesium (Mg), sulphur (S) and calcium (Ca) distribution patterns. Unusually, Mn was highly co-localised with Mg in mesophyll cells of red maple only. The known sensitivity of sugar maple to excess Mn is likely linked to Mg deficiency in the leaf mesophyll. There was strong evidence that Mn toxicity in sugar maple is primarily a symplastic process. For each species, leaf-surface damage due to biotic stress including insect herbivory was compared between sites with acidified and non-acidified soils. Although it was greatest overall in red maple, there was no difference in biotic stress damage to red maple leaves between acidified and non-acidified soils. Sugar maple trees on buffered non-acidified soil were less damaged by biotic stress compared to those on unbuffered acidified soil, where they are also affected by Mn toxicity abiotic stress. This study concluded that foliar nutrient distribution in symplastic compartments is a determinant of Mn sensitivity, and that Mn stress hinders plant resistance to biotic stress.

  10. Foliar applications of iron promote flavonoids accumulation in grape berry of Vitis vinifera cv. Merlot grown in the iron deficiency soil.

    Science.gov (United States)

    Shi, Pengbao; Song, Changzheng; Chen, Haiju; Duan, Bingbing; Zhang, Zhenwen; Meng, Jiangfei

    2018-07-01

    Flavonoids are important compounds for grape and wine quality. Foliar fertilization with iron compounds has been reported to have a substantial impact on grape composition in the grapevines growing in calcareous soil. However, much less is known about its real impact on flavonoid composition. In the present study, Ferric ethylenediamine di (O-hydroxyphenylacetic) acid (Fe-EDDHA) was foliar applied to Merlot (Vitis vinifera L.) grapevines growing in calcareous soil over two consecutive vintages in order to study its effect on grape flavonoid composition. Fe-EDDHA foliar supply tended to increase grape sugar, anthocyanin and flavonol content, decrease acid content and enhance the juice pH when compared to the control. Principal component analysis showed that the vintage also had influence on grape quality. The results suggested that Fe-EDDHA foliar application had an enhancement effect on grape secondary metabolism, and the effect increased the nutritional value of the consequent grapes and wines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Vector control and foliar nutrition to maintain economic sustainability of bearing citrus in Florida groves affected by huanglongbing.

    Science.gov (United States)

    Stansly, Philip A; Arevalo, H Alejandro; Qureshi, Jawwad A; Jones, Moneen M; Hendricks, Katherine; Roberts, Pamela D; Roka, Fritz M

    2014-03-01

    Huanglongbing (HLB) or citrus greening is a bacterial disease vectored by the Asian citrus psyllid (ACP) causing tree decline, and yield loss. Vector control and foliar nutrition are used in Florida to slow the spread of HLB and mitigate debilitating effects of the disease. A four year replicated field study was initiated February 2008 in a 5.2-ha commercial block of young 'Valencia' orange trees employing a factorial design to evaluate individual and compound effects of vector management and foliar nutrition. Insecticides were sprayed during tree dormancy and when psyllid populations exceeded a nominal threshold. A mixture consisting primarily of micro- and macro-nutrients was applied three times a year corresponding to the principal foliar flushes. Differences in ACP numbers from five- to 13-fold were maintained in insecticide treated and untreated plots. Incidence of HLB estimated by polymerase chain reaction (PCR), rose from 30% at the beginning of the study to 95% in only 18 months. Highest yields all four years were seen from trees receiving both foliar nutrition and vector control. Production for these trees in the fourth year was close to the pre-HLB regional average for 10 year old 'Valencia' on 'Swingle'. Nevertheless, at current juice prices, the extra revenue generated from the combined insecticide and nutritional treatment did not cover the added treatment costs. This experiment demonstrated that vector control, especially when combined with enhanced foliar nutrition, could significantly increase yields in a citrus orchard with high incidence of HLB. Economic thresholds for both insecticide and nutrient applications are needed under different market and environmental conditions. © 2013 Society of Chemical Industry.

  12. Analysing biomass torrefaction supply chain costs.

    Science.gov (United States)

    Svanberg, Martin; Olofsson, Ingemar; Flodén, Jonas; Nordin, Anders

    2013-08-01

    The objective of the present work was to develop a techno-economic system model to evaluate how logistics and production parameters affect the torrefaction supply chain costs under Swedish conditions. The model consists of four sub-models: (1) supply system, (2) a complete energy and mass balance of drying, torrefaction and densification, (3) investment and operating costs of a green field, stand-alone torrefaction pellet plant, and (4) distribution system to the gate of an end user. The results show that the torrefaction supply chain reaps significant economies of scale up to a plant size of about 150-200 kiloton dry substance per year (ktonDS/year), for which the total supply chain costs accounts to 31.8 euro per megawatt hour based on lower heating value (€/MWhLHV). Important parameters affecting total cost are amount of available biomass, biomass premium, logistics equipment, biomass moisture content, drying technology, torrefaction mass yield and torrefaction plant capital expenditures (CAPEX). Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Rain-Induced Wash-Off of Chemical Warfare Agent (VX) from Foliar Surfaces of Living Plants Maintained in a Surety Hood

    Science.gov (United States)

    2016-09-01

    RAIN-INDUCED WASH-OFF OF CHEMICAL WARFARE AGENT (VX) FROM FOLIAR SURFACES OF LIVING PLANTS MAINTAINED IN A...Final 3. DATES COVERED (From - To) May 2014 – Sep 2015 4. TITLE AND SUBTITLE Rain-Induced Wash-Off of Chemical Warfare Agent (VX) from Foliar...galli Foliage Chemical warfare agent (CWA) O-ethyl-S-(2

  14. Allometric relationships predicting foliar biomass and leaf area:sapwood area ratio from tree height in five Costa Rican rain forest species.

    Science.gov (United States)

    Calvo-Alvarado, J C; McDowell, N G; Waring, R H

    2008-11-01

    We developed allometric equations to predict whole-tree leaf area (A(l)), leaf biomass (M(l)) and leaf area to sapwood area ratio (A(l):A(s)) in five rain forest tree species of Costa Rica: Pentaclethra macroloba (Willd.) Kuntze (Fabaceae/Mim), Carapa guianensis Aubl. (Meliaceae), Vochysia ferru-gi-nea Mart. (Vochysiaceae), Virola koshnii Warb. (Myristicaceae) and Tetragastris panamensis (Engl.) Kuntze (Burseraceae). By destructive analyses (n = 11-14 trees per species), we observed strong nonlinear allometric relationships (r(2) > or = 0.9) for predicting A(l) or M(l) from stem diameters or A(s) measured at breast height. Linear relationships were less accurate. In general, A(l):A(s) at breast height increased linearly with tree height except for Penta-clethra, which showed a negative trend. All species, however, showed increased total A(l) with height. The observation that four of the five species increased in A(l):A(s) with height is consistent with hypotheses about trade--offs between morphological and anatomical adaptations that favor efficient water flow through variation in the amount of leaf area supported by sapwood and those imposed by the need to respond quickly to light gaps in the canopy.

  15. Acclimation of foliar respiration and photosynthesis in response to experimental warming in a temperate steppe in northern China.

    Directory of Open Access Journals (Sweden)

    Yonggang Chi

    Full Text Available BACKGROUND: Thermal acclimation of foliar respiration and photosynthesis is critical for projection of changes in carbon exchange of terrestrial ecosystems under global warming. METHODOLOGY/PRINCIPAL FINDINGS: A field manipulative experiment was conducted to elevate foliar temperature (Tleaf by 2.07°C in a temperate steppe in northern China. Rd/Tleaf curves (responses of dark respiration to Tleaf, An/Tleaf curves (responses of light-saturated net CO2 assimilation rates to Tleaf, responses of biochemical limitations and diffusion limitations in gross CO2 assimilation rates (Ag to Tleaf, and foliar nitrogen (N concentration in Stipa krylovii Roshev. were measured in 2010 (a dry year and 2011 (a wet year. Significant thermal acclimation of Rd to 6-year experimental warming was found. However, An had a limited ability to acclimate to a warmer climate regime. Thermal acclimation of Rd was associated with not only the direct effects of warming, but also the changes in foliar N concentration induced by warming. CONCLUSIONS/SIGNIFICANCE: Warming decreased the temperature sensitivity (Q10 of the response of Rd/Ag ratio to Tleaf. Our findings may have important implications for improving ecosystem models in simulating carbon cycles and advancing understanding on the interactions between climate change and ecosystem functions.

  16. Combined effects of drought stress and npk foliar spray on growth, physiological processes and nutrient uptake in wheat

    International Nuclear Information System (INIS)

    Shabir, R.N.; Waraocj, E.A.

    2015-01-01

    The present study investigated the effects of supplemental foliar nitrogen (N), phosphorous (P) and potassium (K) spray, alone or in various combinations, on physiological processes and nutrients uptake in wheat under water deficit conditions. The study comprised of two phases; during the first phase, ten local wheat (Triticum aestivum L.) genotypes were evaluated for their response to PEG-6000 induced osmotic stress. One drought tolerant (Bhakkar-2002) and sensitive (Shafaq-2006) genotype selected from screening experiments were used in the second phase to determine the individual and combined effects of N, P and K foliar spray on physiological mechanisms in wheat under drought stress. The results revealed that limited water supply significantly reduced germination, growth and uptake of N, P and K. Supplemental foliar fertilisation of these macronutrients alone or in different combinations significantly improved the water relations, gas exchange characteristics and nutrient contents in both the genotypes. Bhakkar-2002 maintained higher turgor, net CO/sub 2/ assimilation rate (Pn), transpiration rate (E), stomatal conductance (gs) and accumulated more N, P and K in shoot than Shafaq-2006. The foliar spray of NPK in combination was effective in improving wheat growth under both well-watered and water-deficit conditions. (author)

  17. Costs and benefits of insecticide and foliar nutrient applications to huanglongbing-infected citrus trees.

    Science.gov (United States)

    Tansey, James A; Vanaclocha, Pilar; Monzo, Cesar; Jones, Moneen; Stansly, Philip A

    2017-05-01

    The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Psyllidae), vectors Candidatus Liberibacter asiaticus, which causes huanglongbing (HLB). In Florida, HLB incidence is approaching 100% statewide. Yields have decreased and production costs have increased since 2005. Despite this, some growers are maintaining a level of production and attribute this in part to aggressive psyllid control and foliar nutrition sprays. However, the value of these practices is debated. A replicated field study was initiated in 2008 in a commercial block of 'Valencia' sweet orange trees to evaluate individual and combined effects of foliar nutrition and ACP control. Results from 2012-2016 are presented. Insecticides consistently reduced ACP populations. However, neither insecticide nor nutrition applications significantly influenced HLB incidence or PCR copy number in mature trees. In reset trees, infection continued to build and reached 100% in all treatments. Greatest yields (kg fruit ha -1 ) and production (kg solids ha -1 ) were obtained from trees receiving both insecticides and foliar nutrition. All treatments resulted in production and financial gains relative to controls. However, material and application costs associated with the nutrition component offset these gains, resulting in lesser benefits than insecticides applied alone. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Air toxic emissions from burning of biomass globally-preliminary results

    International Nuclear Information System (INIS)

    Ward, D.E.; Hao, W.M.

    1992-01-01

    Emissions of trace gases, particles, and air toxic substances in the smoke plumes from biomass fires are of importance to global climate change. The potential impact of the air toxic emissions on the human population of specific regions globally is another major concern. The toxic materials are produced in high concentrations in areas of heavy biomass burning, e.g., Amazon Basin and Central/southern Africa. We provide new estimates of air toxics based on the combustion efficiency (percent of total carbon released as CO 2 ) for fires burning in different ecosystems on a global basis. Estimates of total biomass consumed on a global basis range from 2 to 10 Pg (1 petagram = 10 15 g) per year. We apply emission factors for various air toxics (g of emission released per kg of fuel consumed) to the estimate of global biomass consumption of 6.4 Pg per year. The principal air toxics analyzed in this paper include: Total particulate matter, CO, formaldehyde, acetaldehyde, acrolein, benzene, toluene, o-xylene, m, p-xylene, benzo[a]pyrene, and polycyclic organic material. The total emissions calculated for these materials on a yearly global basis are: 75, 362, 4.9, 1.5, 1.5, 2.1, 2.1, 0.3, 0.6, 0.001, 0.026, Tg (1 teragram = 10 12 g) per year, respectively. Biomass burning in the United States contributes less than 3% to the total global emissions

  19. Five-minute grid of total marine bird biomass densities surveyed off central California - selected cool water temperature periods, 1980-2001 (CDAS data set AL3_MASS.shp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — AL3_MASS is a polygon shapefile representing 5 minute x 5 minute latitude x longitude cells that house the overall total biomass densities (kg/sq km) of up to 76...

  20. The potential of the Malaysian oil palm biomass as a renewable energy source

    International Nuclear Information System (INIS)

    Loh, Soh Kheang

    2017-01-01

    Highlights: • An energy resource data for oil palm biomass is generated. • The data encompasses crucial fuel and physicochemical characteristics. • These characteristics guide on biomass behaviors and technology selection. • Oil palm biomass is advantageous in today’s energy competitive markets. • Overall, it is a green alternative for biorefinery establishment. - Abstract: The scarcity of conventional energy such as fossil fuels (which will lead to eventual depletion) and the ever-increasing demand for new energy sources have resulted in the world moving into an era of renewable energy (RE) and energy efficiency. The Malaysian oil palm industry has been one of the largest contributor of lignocellulosic biomass, with more than 90% of the country’s total biomass deriving from 5.4 million ha of oil palms. Recent concerns on accelerating replanting activity, improving oil extraction rate, expanding mill capacity, etc. are expected to further increase the total oil palm biomass availability in Malaysia. This situation has presented a huge opportunity for the utilization of oil palm biomass in various applications including RE. This paper characterizes the various forms of oil palm biomass for their important fuel and other physicochemical properties, and assesses this resource data in totality – concerning energy potential, the related biomass conversion technologies and possible combustion-related problems. Overall, oil palm biomass possesses huge potential as one of the largest alternative energy sources for commercial exploitation.

  1. Biomass cycles, accumulation rates and nutritional characteristics of ...

    African Journals Online (AJOL)

    Annual biomass cycles, accumulation rates and nutritional characteristics of forage and non-forage species groups were determined in the canopied and open, uncanopied subhabitats of the herbaceous layer in Burkea africana savanna. The total amount of biomass of all species over the season was significantly greater in ...

  2. Anatomía foliar y caulinar de Stemodia hassleriana (Scrophulariaceae, una especie endémica del Paraguay Foliar and caulinar anatomy of Stemodia hassleriana (Scrophulariaceae, a species endemic to Paraguay

    Directory of Open Access Journals (Sweden)

    María de las Mercedes Sosa

    2008-12-01

    Full Text Available Se estudia la anatomía foliar y caulinar de Stemodia hassleriana Chodat, especie endémica del Paraguay. Esta especie se distingue de las restantes Stemodia del Paraguay por presentar el tallo con colénquima y seis costillas notorias. Se describe y compara la estructura anatómica de la hoja y el tallo con la de otras especies del género. Se ilustran algunos caracteres útiles para su reconocimiento.Foliar and caulinar anatomy of Stemodia hassleriana Chodat, a species endemic to Paraguay is studied. This species is distinguished from the remaining species of Stemodia from Paraguay since it presents the stems with collenchyma and six notorious ribs. Stem and leaves anatomical structures are described and compared with other species of the genus. Some useful characters for the recognition of this species are illustrated.

  3. influence of foliar applications of calcium chloride and borax on fruit

    African Journals Online (AJOL)

    Dr. A Rab

    2011-12-16

    Dec 16, 2011 ... The influence of foliar application of calcium chloride and borax calcium on fruit skin strength and cracking incidence in litchi (Litchi chinensis Sonn.) fruit was investigated at 25 days interval and also the evaluation of fruit skin calcium and boron contents, skin strength, ion leakage from skin discs and.

  4. Shorea robusta: A sustainable biomass feedstock

    Directory of Open Access Journals (Sweden)

    Vishal Kumar Singh

    2016-09-01

    Full Text Available The biomass feedstock needs to be available in a manner that is sustainable as well as renewable. However, obtaining reliable and cost effective supplies of biomass feedstock produced in a sustainable manner can prove to be difficult. Traditional biomass, mainly in the form of fallen leaves, fuel wood or dried dung, has long been the renewable and sustainable energy source for cooking and heating. Present study accounts for the biomass of fallen leaves of Shorea robusta, also known as sal, sakhua or shala tree, in the campus of BIT Mesra (Ranchi. These leaves are being gathered and burnt rather than being sold commercially. They contain water to varying degrees which affects their energy content. Hence, measurement of moisture content is critical for its biomass assessment. The leaves were collected, weighed, oven dried at 100oC until constant weight, then dry sample was reweighed to calculate the moisture content that has been driven off. By subtraction of moisture content from the initial weight of leaves, biomass was calculated. Using Differential Scanning Calorimeter (DSC the heat content of the leaves was calculated and the elemental analysis of leaf was done by CHNSO elemental analyser. Further, total biomass and carbon content of Sal tree was calculated using allometric equations so as to make a comparison to the biomass stored in dried fallen leaves

  5. Genetics and physiology of the nuclearly inherited yellow foliar mutants in soybean

    Science.gov (United States)

    Plant photosynthetic pigments are important in harvesting the light energy and transfer of energy during photosynthesis. There are several yellow foliar mutants discovered in soybean and chromosomal locations for about half of them have been deduced. Viable-yellow mutants are capable of surviving wi...

  6. Global biomass burning - Atmospheric, climatic, and biospheric implicati ons [Introduction

    International Nuclear Information System (INIS)

    Zhu, Zhiliang; Teuber, K.B.

    1991-01-01

    On a global scale, the total biomass consumed by annual burning is about 8680 million tons of dry material; the estimated total biomass consumed by the burning of savanna grasslands, at 3690 million tons/year, exceeds all other biomass burning (BMB) components. These components encompass agricultural wastes burning, forest burning, and fuel wood burning. BMB is not restricted to the tropics, and is largely anthropogenic. Satellite measurements indicate significantly increased tropospheric concentrations of CO and ozone associated with BMB. BMB significantly enhances the microbial production and emission of NO(x) from soils, and of methane from wetlands

  7. Promotive role of 5-aminolevulinic acid on chromium-induced morphological, photosynthetic, and oxidative changes in cauliflower (Brassica oleracea botrytis L.).

    Science.gov (United States)

    Ahmad, Rehan; Ali, Shafaqat; Hannan, Fakhir; Rizwan, Muhammad; Iqbal, Muhammad; Hassan, Zaidul; Akram, Nudrat Aisha; Maqbool, Saliha; Abbas, Farhat

    2017-03-01

    Chromium (Cr) is among the most toxic pollutants in the environment that adversely affect the living organisms and physiological processes in different plants. The present study investigated the effect of 15 mg L -1 of 5-aminolevulinic acid (ALA) on morpho-physiological attributes of cauliflower (Brassica oleracea botrytis L.) under different Cr concentrations (0, 10, 100, and 200 μM) in the growth medium. The results showed that Cr stress decreased the growth, biomass, photosynthetic, and gas exchange parameters. Chromium stress enhanced the activities of enzymatic antioxidants, catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) in response to oxidative stress caused by the elevated levels of malondialdehyde (MDA), hydrogen peroxide (H 2 O 2 ), and electrolyte leakage (EL) in both roots and leaves of cauliflower. Chromium concentrations and total Cr uptake were increased in leaves, stems, and roots with increasing Cr levels in the culture medium. Foliar application of ALA increased the plant growth parameters, biomass, gas exchange parameters, and photosynthetic pigments under Cr stress compared to the treatments without ALA. Foliar application ALA decreased the levels of MDA, EL, and H 2 O 2 while further improved the performance of antioxidant in both leaves and roots compared to only Cr-stressed plant. Chromium concentrations and total Cr uptake were decreased by the ALA application compared to treatments without ALA application. The results of the present study indicated that foliar application of ALA might be beneficial in minimizing Cr uptake and its toxic effects in cauliflower.

  8. BROCCOLI Spears Yield Affected By GAMMA Rays Irradiated Seeds And Foliar Application Of Some Growth Regulators

    International Nuclear Information System (INIS)

    ABDALLAH, A.A.; ABO EL-KHEIR, O.H.

    2010-01-01

    Two field experiments were carried out during 2004/2005 and 2005/2006 winter growing seasons at the experimental farm of Nuclear Research Centre, Atomic Energy Authority, Inshas, Egypt.The experiments were conducted to study the effect of pre-sowing broccoli seeds (cv. F1 175) irradiated with different doses of gamma rays (2, 3 and 4 Gy). The plants were sprayed with GA3 at rate of 50 ml/liter/fed and 20 ml/liter/fed for NAA. Main spear fresh and dry weight per plant, total spears fresh and dry weight per plant, total spears yield, ascorbic acid, TSS, carbohydrates, total chlorophyll, NPK and total protein content of spears were evaluated. The results showed that broccoli seeds irradiated with gamma rays up to 4 Gy pre-sowing increased the abovementioned parameters with different magnitudes comparing with the non-irradiated control plants except spears N, P and protein contents showed decrease in their values comparing with un-treated plants.It could be concluded that the foliar application of GA3 and NAA on broccoli spears increased all the abovementioned parameters, except spears N, P and protein contents showed decrease in their values.

  9. The influence of micropropagation on growth and coppicing ability of Eucalyptus polybractea.

    Science.gov (United States)

    Goodger, Jason Q D; Woodrow, Ian E

    2010-02-01

    A micropropagation protocol was recently developed for Eucalyptus polybractea R.T. Baker, a commercially important eucalypt grown in short-rotation coppice cultivation and harvested for its foliar 1,8-cineole oil. Micropropagation of elite E. polybractea trees has resulted in selection gains for foliar oil traits, but decreased above-ground biomass accumulation has been observed in clones compared to related half-sibling families. This study aims to use a greenhouse study to investigate if micropropagation induces somaclonal variation that can account for the reduction in above-ground biomass in E. polybractea clones. Secondly, the study aims to compare the coppicing ability of micropropagated clones with related half-sibling seedlings using de-topped plantation-grown saplings. The results of the greenhouse study suggest that micropropagation of E. polybractea induces somaclonal variation that manifests in more mature leaf morphologies such as increased foliar oil concentrations and lower specific leaf area (SLA), attributable to an isobilateral arrangement of increased palisade mesophyll layers. Lower SLA, rather than differences in root allocation, is likely to be a key contributor to the lower relative growth rates observed in early sapling growth of micropropagated clones. In the field study, all micropropagated and seedling-derived E. polybractea saplings coppiced vigorously in the 12 months after de-topping. The coppice growth was so vigorous in the 12 months after de-topping that total above-ground biomass equalled that of the 27-month-old saplings, irrespective of propagation source. The morphological distinction between leaves of micropropagated and seed-derived plants was no longer evident in the coppice regrowth. The results presented here suggest that the micropropagated leaf morphology and the resultant growth reduction is transient and micropropagated plants coppice just as vigorously as seed-derived plants. Therefore, micropropagation is unlikely to

  10. Fluoride-induced foliar injury in Solanum pseudo-capsicum: its induction in the dark and activation in the light

    Energy Technology Data Exchange (ETDEWEB)

    MacLean, D.C.; Schneider, R.C.; Weinstein, L.H.

    1982-09-01

    The differential responses of plants exposed to hydrogen fluoride (HF) in continuous light or darkness were investigated in Jerusalem cherry Solanum pseudo-capsicum L. Plants exposed to HF in the dark develop few, if any, foliar symptoms by the end of the exposure period, but severe foliar injury develops rapidly upon transfer to the light after exposure. The results suggest that light is required for the expression of responses induced by exposure to HF in the dark.

  11. Comparison of physiological responses of linseed (Linum usitatissimum L. to drought and salt stress and salicylic acid foliar application

    Directory of Open Access Journals (Sweden)

    Mohsen Movahhedi Dehnavi

    2017-11-01

    Full Text Available In order to compare the physiological responses of linseed (Linum usitatissimum L. in drought and salinity stress conditions and salicylic acid foliar application, a greenhouse experiment was conducted based on completly randomized design with three replications in Yasouj university in 2015. Treatments including different levels of salinity and drought with similar osmotic potentials (-2, -4, -7 and -9 bar in 8 levels and a control treatment were applied in Hoagland solution. Second factor was salicylic acid foliar application in 2 levels (0 and 0.5 mM. Salinity and drought applied using sodium chloride and polyethylene glycol 6000, respectively. The results showed that leaf protein content, catalase activity, total chlorophyll and carotenoid significantly decreased compared to control by increasing salinity and drought levels, however salicylic acid could prevent this trend.  Proline soluble sugars and malodealdehide content significantly increased compared to control by increasing salinity and drought. However salicylic acid could not prevent this trend. Shoot and root dry weights significantly decreased in salinity and drought stress treatments, compared to control and salicylic acid could prevent this decrease. Generally regarded to the most of the measured traits, impact of drought was more than salinity and salicylic acid could compensate the stress impacts on linseed.

  12. Foliar application of calcium chloride and borax affects the fruit skin ...

    African Journals Online (AJOL)

    The influence of foliar application of calcium chloride and borax calcium on fruit skin strength and cracking incidence in litchi (Litchi chinensis Sonn.) fruit was investigated at 25 days interval and also the evaluation of fruit skin calcium and boron contents, skin strength, ion leakage from skin discs and fruit cracking in four ...

  13. Biomass production, yield and chemical composition of peppermint essential oil using different organic fertilizer sources Produção de biomassa, rendimento e composição química do óleo essencial de hortelã-pimenta usando diferentes fontes de adubação orgânica

    Directory of Open Access Journals (Sweden)

    Andressa Giovannini Costa

    2013-06-01

    Full Text Available Mentha x piperita L. is an aromatic and medicinal species belonging to the family Lamiaceae that is popularly known as peppermint. The aim of this study was to evaluate the effects of organic fertilizer sources on the biomass production, yield and chemical composition of peppermint (Mentha piperita L. essential oil. The experiment was conducted using a completely randomized design (CRD with a 2 x 5 factorial scheme, two sources of manure (cattle and poultry, five doses (0, 3, 6, 9 and 12 kg m-2 and four replicates. Different doses of cattle and poultry manure significantly affected plant biomass production and the responses of other variables, including leaf area, leaf weight ratio, leaf area ratio, root:shoot ratio, yield and chemical composition. Organic fertilizer doses of 9.0 kg m-2 cattle manure and 8.3 kg m-2 poultry manure to obtain the maximum total dry biomass. The highest yield of essential oil was obtained by applying 11.8 kg m-2 poultry manure. Differences in the chemical composition of the essential oil were observed for only three components (menthone, pulegone and menthyl acetate without significant changes in the menthol content.Mentha x piperita L. é uma planta aromática e medicinal pertencente à família Lamiaceae, popularmente conhecida como hortelã-pimenta. No trabalho, objetivou-se verificar o efeito das fontes de adubação orgânica na produção de biomassa, no rendimento e na composição química do óleo essencial de hortelã-pimenta (Mentha piperita L.. O experimento foi conduzido em DIC, em esquema fatorial 2 x 5, com duas fontes de esterco, bovino e avícola, e cinco doses (0, 3, 6, 9 e 12 kg m-2, com quatro repetições cada. As diferentes doses de estercos bovino e avícola influenciaram significativamente de forma benéfica a produção de biomassa das plantas e também outras variáveis de crescimento como área foliar, razão de peso foliar, razão de área foliar, relação raiz:parte aérea, rendimento e

  14. Northeastern states sharpen biomass focus

    International Nuclear Information System (INIS)

    Lusk, P.D.

    1993-01-01

    Wood energy use in the northeastern region of the USA currently replaces an estimated annual equivalent of 45--50 million barrels of oil. Including municipal wastes and recovered methane emissions for regional landfills, total biomass contribution to the energy economy is over 70 million barrels of oil equivalent annually. A reasonable consensus suggests wood alone could replace the equivalent of over 300 million barrels of oil each year on a sustainable basis over the next two decades. Beyond energy security, over 60,000 total jobs are now provided in the region by the wood energy industry. Over 375,000 total jobs could be generated by the wood energy industry, about 65,000 in the harvesting, transportation, and end-use operations of the wood energy industry. Biomass producers must be committed to sustainable development by necessity. Sound forest management practices that keep residual stand damage from wood harvesting to a minimum can create positive impacts on the region's forest. When combined with a balanced energy policy, the conditional use of wood energy can play a modest, but significant, role in reducing air emissions. Depletion of traditional energy resources creates open-quotes bubbleclose quotes benefits which will be exhausted after a generation. Sustainable development of biomass can create inexhaustible wealth for generations, and does not pose the risk of sudden ecological disruption. While the choice between policy options is not mutually exclusive, the interrelationship between energy security, economic growth and environmental quality clearly favors biomass. The environmental benefits and the economic growth impacts of biobased products produced by the northeastern states are considerable. The 11 states located in the northeastern USA should intensify their efforts to work with industry and investors to expand markets for industrial biobased products, either produced from local feedstocks or manufactured by companies operating in the region

  15. Biomass energy: Sustainable solution for greenhouse gas emission

    Science.gov (United States)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    Biomass is part of the carbon cycle. Carbon dioxide is produced after combustion of biomass. Over a relatively short timescale, carbon dioxide is renewed from atmosphere during next generation of new growth of green vegetation. Contribution of renewable energy including hydropower, solar, biomass and biofuel in total primary energy consumption in world is about 19%. Traditional biomass alone contributes about 13% of total primary energy consumption in the world. The number of traditional biomass energy users expected to rise from 2.5 billion in 2004 to 2.6 billion in 2015 and to 2.7 billion in 2030 for cooking in developing countries. Residential biomass demand in developing countries is projected to rise from 771 Mtoe in 2004 to 818 Mtoe in 2030. The main sources of biomass are wood residues, bagasse, rice husk, agro-residues, animal manure, municipal and industrial waste etc. Dedicated energy crops such as short-rotation coppice, grasses, sugar crops, starch crops and oil crops are gaining importance and market share as source of biomass energy. Global trade in biomass feedstocks and processed bioenergy carriers are growing rapidly. There are some drawbacks of biomass energy utilization compared to fossil fuels viz: heterogeneous and uneven composition, lower calorific value and quality deterioration due to uncontrolled biodegradation. Loose biomass also is not viable for transportation. Pelletization, briquetting, liquefaction and gasification of biomass energy are some options to solve these problems. Wood fuel production is very much steady and little bit increase in trend, however, the forest land is decreasing, means the deforestation is progressive. There is a big challenge for sustainability of biomass resource and environment. Biomass energy can be used to reduce greenhouse emissions. Woody biomass such as briquette and pellet from un-organized biomass waste and residues could be used for alternative to wood fuel, as a result, forest will be saved and

  16. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake

    Science.gov (United States)

    Wang, Wei-Ning; Tarafdar, Jagadish C.; Biswas, Pratim

    2013-01-01

    An aerosol process was developed for synthesis and delivery of nanoparticles for living watermelon plant foliar uptake. This is an efficient technique capable of generating nanoparticles with controllable particle sizes and number concentrations. Aerosolized nanoparticles were easily applied to leaf surfaces and enter the stomata via gas uptake, avoiding direct interaction with soil systems, eliminating potential ecological risks. The uptake and transport of nanoparticles inside the watermelon plants were investigated systematically by various techniques, such as elemental analysis by inductively coupled plasma mass spectrometry and plant anatomy by transmission electron microscopy. The results revealed that certain fractions of nanoparticles ( d p watermelon plants. The particle size and number concentration played an important role in nanoparticle translocation inside the plants. In addition, the nanoparticle application method, working environment, and leaf structure are also important factors to be considered for successful plant foliar uptake.

  17. Anatomía foliar y caulinar en especies de Stemodia (Scrophulariaceae Foliar and caulinar anatomy in species of Stemodia (Scrophulariaceae

    Directory of Open Access Journals (Sweden)

    Maria De Las Mercedes Sosa

    2005-07-01

    Full Text Available Se describe la estructura anatómica foliar y caulinar en el género Stemodia. Son consideradas siete especies: S. ericifolia (Kuntze K. Schum., S. hyptoides Cham. & Schltdl., S. lanceolata Benth., S. lobelioides Lehm., S. palustris A. St.-Hil., S. stricta Cham. & Schltdl. y S. verticillata (Mill. Hassl. Se hallaron diferencias en la epidermis foliar, donde hay variación en el tipo de estomas y de tricomas, y en la forma de las papilas epidérmicas; también en la estructura del mesofilo. Se describen e ilustran cuatro tipos de tricomas considerando si son o no glandulares y el número de células que lo conforman. El estudio de la anatomía caulinar mostró diferencias en cuanto a la presencia de aerénquima cortical y de laguna medular, y el porcentaje de espacios en el aerénquima cortical.Comparative anatomical studies of the leaves and stems on the genus Stemodia are presented. Seven species are considered: S. ericifolia (Kuntze K. Schum., S. hyptoides Cham. & Schltdl., S. lanceolata Benth., S. lobelioides Lehm., S. palustris A. St.-Hil., S. stricta Cham. & Schltdl. and S. verticillata (Mill. Hassl. There are variation in the stomatal and trichome types, form of the papillae and mesophyll structure. Four trichome types are described and illustrated considering if they are glandular or non-glandular and the number of cells. The stems present a quite homogeneous anatomical structure. Some differences in the amount and distribution of the aerenchyma and the size of the intercellular spaces are observed.

  18. Biomass Burning 5x5 degree data in Native Format

    Data.gov (United States)

    National Aeronautics and Space Administration — The BIO_MASS_5X5_HAO_NAT data set contains data representing the geographical and temporal distribution of total amount of biomass burned. The data were collected by...

  19. Physiological characteristics of Plantago major under SO2 exposure as affected by foliar iron spray.

    Science.gov (United States)

    Mohasseli, Vahid; Khoshgoftarmanesh, Amir Hossein; Shariatmadari, Hossein

    2017-08-01

    Sulfur dioxide (SO 2 ) is considered as a main air pollutant in industrialized areas that can damage vegetation. In the present study, we investigated how exposure to SO 2 and foliar application of iron (Fe) would affect certain physiological characteristics of Plantago major. The plant seedlings exposed or unexposed to SO 2 (3900 μg m -3 ) were non-supplemented or supplemented with Fe (3 g L -1 ) as foliar spray. Plants were exposed to SO 2 for 6 weeks in 100 × 70 × 70 cm chambers. Fumigation of plants with SO 2 was performed for 3 h daily for 3 days per week (alternate day). Lower leaf Fe concentration in the plants exposed to SO 2 at no added Fe treatment was accompanied with incidence of chlorosis symptoms and reduced chlorophyll concentration. No visible chlorotic symptoms were observed on the SO 2 -exposed plants supplied with Fe that accumulated higher Fe in their leaves. Both at with and without added Fe treatments, catalase (CAT) and peroxidase (POD) activity was higher in the plants fumigated with SO 2 in comparison with those non-fumigated with SO 2 . Foliar application of Fe was also effective in increasing activity of antioxidant enzymes CAT and POD. Exposure to SO 2 led to reduced cellulose but enhanced lignin content of plant leaf cell wall. The results obtained showed that foliar application of Fe was effective in reducing the effects of exposure to SO 2 on cell wall composition. In contrast to SO 2 , application of Fe increased cellulose while decreased lignin content of the leaf cell wall. This might be due to reduced oxidative stress induced by SO 2 in plants supplied with Fe compared with those unsupplied with Fe.

  20. Effect of foliar application of chitosan and salicylic acid on the growth of soybean (Glycine max (L.) Merr.) varieties

    Science.gov (United States)

    Hasanah, Y.; Sembiring, M.

    2018-02-01

    Elicitors such as chitosan and salicylic acid could be used not only to increase isoflavone concentration of soybean seeds, but also to increase the growth and seed yield. The objective of the present study was to determine the effects of foliar application of elicitor compounds (i.e. chitosan, and salicylic acid)on the growth of two soybean varieties under dry land conditions. Experimental design was a randomized block design with 2 factors and 3 replications. The first factor was soybean varieties (Wilis and Devon). The second factor was foliar application of elicitors consisted of without elicitor; chitosan at V4 (four trifoliate leaves are fully developed); chitosan at R3 (early podding); chitosan at V4 and R3; salicylic acid at V4; salicylic acid at R3 and salicylic acid at V4 and R3. Parameters observed was plant height at 2-7 week after planting (WAP), shoot dry weight and root dry weight. The results suggest that the Wilis variety had higher plant height 7 WAP than Devon. The foliar application of chitosan increased the plant height at 7 WAP, shoot dry weight and root dry weight. The foliar application of chitosan at V4 and R3 on Devon variety increased shoot dry weight.

  1. [Characteristics of foliar delta13C values of common shrub species in various microhabitats with different karst rocky desertification degrees].

    Science.gov (United States)

    Du, Xue-Lian; Wang, Shi-Jie; Rong, Li

    2011-12-01

    By measuring the foliar delta13C values of 5 common shrub species (Rhamnus davurica, Pyracantha fortuneana, Rubus biflorus, Zanthoxylum planispinum, and Viburnum utile) growing in various microhabitats in Wangjiazhai catchment, a typical karst desertification area in Guizhou Province, this paper studied the spatial heterogeneity of plant water use at niche scale and the response of the heterogeneity to different karst rocky desertification degrees. The foliar delta13C values of the shrub species in the microhabitats followed the order of stony surface > stony gully > stony crevice > soil surface, and those of the majority of the species were more negative in the microhabitat soil surface than in the others. The foliar delta13C values decreased in the sequence of V. utile > R. biflorus > Z. planispinum > P. fortuneana > R. davurica, and the mean foliar delta13C value of the shrubs and that of typical species in various microhabitats all increased with increasing karst rocky desertification degree, differed significantly among different microhabitats. It was suggested that with the increasing degree of karst rocky desertification, the structure and functions of karst habitats were impaired, microhabitats differentiated gradually, and drought degree increased.

  2. Effect of Foliar Application of Chitosan on Growth and Biochemical Characteristics of Safflower (Carthamus tinctorius L. under Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    batool mahdavi

    2014-09-01

    Full Text Available In order to study the effects of water deficit stress and foliar application of chitosan in safflower (Carthamus tinctorius L., a pot experiment was conducted in 2009. Experimental design was a randomized complete block in factorial arrangement with three replications. Experimental factors were water deficit levels (unstressed (control and 70% available water depletion from soil (water deficit stress, chitosan concentrations (0, 0.05, 0.1%, all dissolved in 1% acetic acid along with an additional treatment of distilled water and foliar application times (before and during stem elongation. The results showed that water deficit stress reduced plant height, leaf area, shoot and root dry weight, root height and volume. Whereas, foliar application of chitosan increased mentioned traits. In addition, water deficit stress decreased chlorophyll fluorescence, chlorophyll concentration and relative water content. Carotenoid, proline and malondialdehyde (MDA content were increased in response to stress. Foliar application of chitosan increased chlorophyll fluorescence, relative water content (68.77% and chlorophyll b in the water deficit stressed plants, whereas decreased MDA content. The results of the present study indicate that application of chitosan can reduce the harmful effects of water deficit and improve plant growth.

  3. Interpretação de confrontos em perícias de crimes violentos baseados em anatomia foliar

    Directory of Open Access Journals (Sweden)

    Marina Milanello do Amaral

    2016-07-01

    Full Text Available A megadiversidade de plantas no território brasileiro representa um grande potencial forense. No entanto, conhecimentos botânicos estabelecidos há séculos são esporadicamente empregados em procedimentos forenses. A Botânica Forense, em particular o estudo da morfologia externa e interna (anatomia das plantas, possibilita a caracterização de amostras e a identificação da espécie, oferecendo grande auxílio para o embasamento de linhas investigativas e, em alguns casos, configurando-se como importante prova material. Nas perícias de crimes violentos letais intencionais, como homicídio, execução sumária, estupro e roubo seguido de morte, é comum se encontrarem folhas ou fragmentos foliares aderidos a solas de calçado e tapetes de veículos de suspeitos. Confrontar esses vestígios com as amostras de folhas e fragmentos foliares do local de crime pode representar a única alternativa de materialidade, na falta de impressões dígito-papilares, pegadas ou material biológico humano. Neste estudo de caso, apresentamos três exames de confronto de amostras vegetais em investigações de roubo seguido de morte e execução sumária no Estado de São Paulo. Folhas e fragmentos foliares do local de crime foram comparados com folhas e fragmentos foliares de peças associadas ao(s suspeito(s a partir da observação da morfologia externa e da anatomia. Em todos os casos foi possível obter informações sobre a morfologia externa e, principalmente, sobre a anatomia dos fragmentos foliares, permitindo realizar comparações e apresentar como resultados dois confrontos negativos e um confronto parcialmente positivo. A experiência obtida com esses exames revelou que o planejamento das coletas de amostras botânicas nos locais de crime condiciona a interpretação dos resultados.

  4. Microbial biomass in compost during colonization of Agaricus bisporus

    NARCIS (Netherlands)

    Vos, Aurin M.; Heijboer, Amber; Boschker, Henricus T.S.; Bonnet, Barbara; Lugones, Luis G.; Wösten, Han A.B.

    2017-01-01

    Agaricus bisporus mushrooms are commercially produced on a microbe rich compost. Here, fungal and bacterial biomass was quantified in compost with and without colonization by A. bisporus. Chitin content, indicative of total fungal biomass, increased during a 26-day period from 576 to 779 nmol

  5. The Relationship Between Soils and Foliar Nutrition For Planted Royal Paulownia

    Science.gov (United States)

    James E. Johnson; David O. Mitchem; Richard E. Kreh

    2002-01-01

    Royal paulownia is becoming an important hardwood plantation species in the southern U.S. A study was done to investigate two novel site preparation techniques for aiding the establishment of royal paulownia seedlings in the Virginia Piedmont. The effects of these treatments on the foliar nutrition of first year seedlings was determined, as was the relationship...

  6. Effect of polybag size and foliar application of urea on cocoa ...

    African Journals Online (AJOL)

    The effects of different polybag sizes and foliar application of urea on the growth of cocoa seedlings in the nursery were studied at the Cocoa Research Institute of Ghana substation at Afosu in the Eastern Region of Ghana between June 2004 and May 2005. Hybrid cocoa seeds were sown in polybags measuring 17.5 cm ...

  7. Five-minute grid of the total marine bird biomass densities surveyed off central California - selected neutral water temperature periods, 1980-2001 (CDAS data set AL2_MASS.shp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — AL2_MASS is a polygon shapefile representing 5 minute x 5 minute latitude x longitude cells that house the overall total biomass densities (kg/sq.km.) of up to 76...

  8. Variability of total and mobile element contents in ash derived from biomass combustion

    Czech Academy of Sciences Publication Activity Database

    Száková, J.; Ochecová, P.; Hanzlíček, Tomáš; Perná, Ivana; Tlustoš, P.

    2013-01-01

    Roč. 67, č. 11 (2013), s. 1376-1385 ISSN 0366-6352 R&D Projects: GA MZe QI102A207 Institutional support: RVO:67985891 Keywords : biomass combustion * fly ash * bottom ash * element contents Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.193, year: 2013

  9. Método não destrutivo para determinação da área foliar da videira, cultivar BRS-Violeta

    Directory of Open Access Journals (Sweden)

    Gustavo Malagi

    2010-12-01

    Full Text Available Este trabalho teve por objetivo avaliar as combinações entre o comprimento das nervuras secundárias e principal de folhas na estimativa da área foliar da videira cultivar BRS-Violeta. Realizou-se a coleta aleatória de 200 folhas intactas e completamente desenvolvidas, em uma área de cultivo experimental. Determinaram-se a área foliar real (AFR e o comprimento das nervuras secundárias (esquerda - direita e principal. Obtiveram-se três regressões com seus coeficientes de determinação para a identificação da relação mais precisa, considerando o comprimento da nervura principal (CNP, o somatório do comprimento das nervuras secundárias (SCNS e o somatório entre o comprimento das nervuras secundárias e o comprimento da nervura principal (SCNSP, como variáveis independentes. A AFR foi considerada variável dependente nas três regressões. Observou-se que a relação entre AFR x SCNS proporcionou o maior coeficiente de determinação (0,87. A área foliar estimada pela equação obtida pela relação AFR x SCNS garantiu uma precisão de 87%, segundo a relação entre AFR x AFE (área foliar estimada. Portanto, conclui-se que a área foliar da videira cultivar BRS-Violeta pode ser estimada pela equação y = 0,2169 (SCNS² + 5,3642 (SCNS - 34,725, com precisão satisfatória.

  10. Biomass Resource Assessment and Existing Biomass Use in the Madhya Pradesh, Maharashtra, and Tamil Nadu States of India

    Directory of Open Access Journals (Sweden)

    Karthikeyan Natarajan

    2015-05-01

    Full Text Available India is experiencing energy crisis and a widening gap between energy supply and demand. The country is, however, endowed with considerable, commercially and technically available renewable resources, from which surplus agro-biomass is of great importance and a relatively untapped resource. In the policy making process, knowledge of existing biomass use, degree of social reliance, and degree of biomass availability for energy production is unequivocal and pre-conditional. Field observations, documentation, and fill-in sheet tools were used to investigate the potential of biomass resources and the existing domestic, commercial, and industrial uses of biomass in selected Indian states. To do so, a team of field observers/supervisors visited three Indian states namely: Maharashtra (MH, Madhya Pradesh (MP, and Tamil Nadu (TN. Two districts from each state were selected to collect data regarding the use of biomass and the extent of biomass availability for energy production. In total, 471 farmers were interviewed, and approximately 75 farmers with various land holdings have been interviewed in each district. The existing uses of biomass have been documented in this survey study and the results show that the majority of biomass is used as fodder for domestic livestock followed by in-site ploughing, leaving trivial surplus quantities for other productive uses. Biomass for cooking appeared to be insignificant due to the availability and access to Liquefied Petroleum Gas (LPG cylinders in the surveyed districts. Opportunities exist to utilize roadside-dumped biomass, in-site burnt biomass, and a share of biomass used for ploughing. The GIS-based maps show that biomass availability varies considerably across the Taluks of the surveyed districts, and is highly dependent on a number of enviromental and socio-cultural factors. Developing competitive bioenergy market and enhancing and promoting access to more LPG fuel connections seem an appropriate socio

  11. Quebec Centre for Biomass Valorization, annual report 1990/91. Centre quebecois de valorisation de la biomasse, rapport annuel 1990/91

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-01

    The Quebec Centre for Biomass Valorization has the objectives of facilitating research pertaining to that subject while relating that research to industrial and community needs, channelling financial resources into biomass research, encouraging industry participation, and supplying information to prospective investigators for carrying out relevant projects. In 1990/91, this organization received an additional mandate from the provincial government to continue its activities. Of 253 projects proposed in 1991, 83 were related to forest biomass, 73 to agricultural biomass, 25 to aquatic biomass, 34 to peat, and 38 to urban wastes. The products to be derived from this biomass are in the alimentary, biological, chemical/material, energy, and decontamination categories. Total disbursements for the approved projects were about $14.6 million. A summary is provided of the previous 5 years of activity in such areas as wood polymers, fermentation, bioherbicides, peat-based substrates, biofiltration, and waste treatment. Objectives for the next five years are also outlined. Key sectors are identified as the valorization of lignocellulosic and agricultural wastes, municipal biomass, and peat materials. Financial statements are also included. 4 figs., 5 tabs.

  12. Foliar carbon dynamics of piñon and juniper in response to experimental drought and heat

    Science.gov (United States)

    Collins, A.; Ryan, M. G.; Adams, H. D.; Dickman, L. T.; Garcia-Forner, N.; Grossiord, C.; Powers, H. H.; Sevanto, S.; McDowell, N. G.

    2015-12-01

    Plant respiration (R) is generally well-coupled with temperature and in the absence of thermal acclimation, respiration is expected to increase as climate change brings higher temperatures. Increased drought is also predicted for future climate, which could drive respiration higher if the carbon (C) cost to maintain tissues (Rm) or grow increases, or lower if substrate or other factors become limiting. We examined the effects of temperature and drought on R as well as photosynthesis, growth, and carbohydrate storage of mature individuals of two co-dominant tree species. Three mature, in-situ piñon (Pinus edulis) and juniper (Juniperus monosperma) trees were assigned to each of the following treatments: +4.8 °C; 45% reduced precipitation; a combination of both (heat + drought); along with ambient control and treatment controls. Rm measured prior to foliar and twig growth was far more sensitive to drought in piñon, and heat in juniper. Total respiration (Rt, R not partitioned) acclimated to temperature in piñon such that elevated temperature had minimal impacts on Rt; however, juniper exhibited higher Rt with elevated temperature, thus juniper did not display any thermal acclimation. Rt in both species was weakly associated with temperature, but strongly correlated with pre-dawn water potential, photosynthetic assimilation (A) rates, and in piñon, foliar carbohydrates. For both species, heat caused far more days where A-R was negative than did drought. The consequences of drought alone and heat alone in piñon included higher Rt per unit growth, indicating that each abiotic stress forces a greater allocation of Rt to maintenance costs, and both drought + heat in combination results in far fewer days that foliar carbohydrates could sustain R in both species. Notably, the much higher A and R of juniper than piñon is consistent with predicted superior carbon budget regulation of juniper than piñon during drought; however, juniper's lack of temperature acclimation

  13. Biomass decomposition in near critical water

    International Nuclear Information System (INIS)

    Sinag, Ali; Guelbay, Selen; Uskan, Burcin; Canel, Muammer

    2010-01-01

    Conversion of baby food (taken as model biomass for protein and carbohydrate containing biomass) to the valuable chemicals in near critical water (648 K and 24 MPa) in an autoclave is presented in this work. K 2 CO 3 , Nickel on silica and Zeolith (HZSM-5) are selected as catalysts. A detailed characterization of the aqueous phases is performed by High Pressure Liquid Chromatography, UV-Vis Spectroscopy, Total Organic Carbon Analyser. Solid particles recovered by the experiments are also subjected to Scanning Electron Microscopy analysis. This study determines the effect of reaction conditions on the reactivity of the major biomass component. Acetic, formic and glycolic acid, aldehydes (acetaldehyde, formaldehyde), phenol and phenol derivatives, furfural, methyl furfural, hydroxymethyl furfural are the intermediates found in the aqueous phase. Baby food contains mostly carbohydrates, proteins, a variety of salts and minerals, etc. Thus, the results show the effect of these ingredients on the hydrothermal conversion of biomass. It is found that the formation and degradation pathways of the intermediates are influenced by the biomass structure.

  14. Biomass decomposition in near critical water

    Energy Technology Data Exchange (ETDEWEB)

    Sinag, Ali, E-mail: sinag@science.ankara.edu.t [Department of Chemistry, Science Faculty, Ankara University, 06100 Besevler, Ankara (Turkey); Guelbay, Selen; Uskan, Burcin; Canel, Muammer [Department of Chemistry, Science Faculty, Ankara University, 06100 Besevler, Ankara (Turkey)

    2010-03-15

    Conversion of baby food (taken as model biomass for protein and carbohydrate containing biomass) to the valuable chemicals in near critical water (648 K and 24 MPa) in an autoclave is presented in this work. K{sub 2}CO{sub 3}, Nickel on silica and Zeolith (HZSM-5) are selected as catalysts. A detailed characterization of the aqueous phases is performed by High Pressure Liquid Chromatography, UV-Vis Spectroscopy, Total Organic Carbon Analyser. Solid particles recovered by the experiments are also subjected to Scanning Electron Microscopy analysis. This study determines the effect of reaction conditions on the reactivity of the major biomass component. Acetic, formic and glycolic acid, aldehydes (acetaldehyde, formaldehyde), phenol and phenol derivatives, furfural, methyl furfural, hydroxymethyl furfural are the intermediates found in the aqueous phase. Baby food contains mostly carbohydrates, proteins, a variety of salts and minerals, etc. Thus, the results show the effect of these ingredients on the hydrothermal conversion of biomass. It is found that the formation and degradation pathways of the intermediates are influenced by the biomass structure.

  15. Integrated strategic and tactical biomass-biofuel supply chain optimization.

    Science.gov (United States)

    Lin, Tao; Rodríguez, Luis F; Shastri, Yogendra N; Hansen, Alan C; Ting, K C

    2014-03-01

    To ensure effective biomass feedstock provision for large-scale biofuel production, an integrated biomass supply chain optimization model was developed to minimize annual biomass-ethanol production costs by optimizing both strategic and tactical planning decisions simultaneously. The mixed integer linear programming model optimizes the activities range from biomass harvesting, packing, in-field transportation, stacking, transportation, preprocessing, and storage, to ethanol production and distribution. The numbers, locations, and capacities of facilities as well as biomass and ethanol distribution patterns are key strategic decisions; while biomass production, delivery, and operating schedules and inventory monitoring are key tactical decisions. The model was implemented to study Miscanthus-ethanol supply chain in Illinois. The base case results showed unit Miscanthus-ethanol production costs were $0.72L(-1) of ethanol. Biorefinery related costs accounts for 62% of the total costs, followed by biomass procurement costs. Sensitivity analysis showed that a 50% reduction in biomass yield would increase unit production costs by 11%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Seasonal development of ozone-induced foliar injury on tall milkweed (Asclepias exaltata) in Great Smoky Mountains National Park

    International Nuclear Information System (INIS)

    Souza, Lara; Neufeld, Howard S.; Chappelka, Arthur H.; Burkey, Kent O.; Davison, Alan W.

    2006-01-01

    The goals of this study were to document the development of ozone-induced foliar injury, on a leaf-by-leaf basis, and to develop ozone exposure relationships for leaf cohorts and individual tall milkweeds (Asclepias exaltata L.) in Great Smoky Mountains National Park. Plants were classified as either ozone-sensitive or insensitive based on the amount of foliar injury. Sensitive plants developed injury earlier in the season and to a greater extent than insensitive plants. Older leaf cohorts were more likely to belong to high injury classes by the end of each of the two growing seasons. In addition, leaf loss was more likely for older cohorts (2000) and lower leaf positions (2001) than younger cohorts and upper leaves, respectively. Most leaves abscised without prior ozone-like stippling or chlorosis. Failure to take this into account can result in underestimation of the effects of ozone on these plants. - Leaf loss was not necessarily accompanied by symptoms of foliar ozone injury

  17. Seasonal development of ozone-induced foliar injury on tall milkweed (Asclepias exaltata) in Great Smoky Mountains National Park

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Lara [Department of Biology, 572 Rivers Street, Appalachian State University, Boone, NC 28608 (United States)]. E-mail: lsouza@utk.edu; Neufeld, Howard S. [Department of Biology, 572 Rivers Street, Appalachian State University, Boone, NC 28608 (United States); Chappelka, Arthur H. [School of Forestry and Wildlife Sciences, 108 M White-Smith Hall, Auburn University, Auburn, AL 36849 (United States); Burkey, Kent O. [US Department of Agriculture, Agricultural Research Service, Plant Science Research Unit and Department of Crop Science, North Carolina State University, 3908 Inwood Road, Raleigh, NC 26703 (United States); Davison, Alan W. [School of Biology, Ridley Building, University of Newcastle, Newcastle Upon Tyne, NE1 7RU (United Kingdom)

    2006-05-15

    The goals of this study were to document the development of ozone-induced foliar injury, on a leaf-by-leaf basis, and to develop ozone exposure relationships for leaf cohorts and individual tall milkweeds (Asclepias exaltata L.) in Great Smoky Mountains National Park. Plants were classified as either ozone-sensitive or insensitive based on the amount of foliar injury. Sensitive plants developed injury earlier in the season and to a greater extent than insensitive plants. Older leaf cohorts were more likely to belong to high injury classes by the end of each of the two growing seasons. In addition, leaf loss was more likely for older cohorts (2000) and lower leaf positions (2001) than younger cohorts and upper leaves, respectively. Most leaves abscised without prior ozone-like stippling or chlorosis. Failure to take this into account can result in underestimation of the effects of ozone on these plants. - Leaf loss was not necessarily accompanied by symptoms of foliar ozone injury.

  18. Impact of elevated CO2 and nitrogen fertilization on foliar elemental composition in a short rotation poplar plantation

    International Nuclear Information System (INIS)

    Marinari, Sara; Calfapietra, Carlo; De Angelis, Paolo; Mugnozza, Giuseppe Scarascia; Grego, Stefano

    2007-01-01

    The experiment was carried out on a short rotation coppice culture of poplars (POP-EUROFACE, Central Italy), growing in a free air carbon dioxide enriched atmosphere (FACE). The specific objective of this work was to study whether elevated CO 2 and fertilization (two CO 2 treatments, elevated CO 2 and control, two N fertilization treatments, fertilized and unfertilized), as well as the interaction between treatments caused an unbalanced nutritional status of leaves in three poplar species (P. x euramericana, P. nigra and P. alba). Finally, we discuss the ecological implications of a possible change in foliar nutrients concentration. CO 2 enrichment reduced foliar nitrogen and increased the concentration of magnesium; whereas nitrogen fertilization had opposite effects on leaf nitrogen and magnesium concentrations. Moreover, the interaction between elevated CO 2 and N fertilization amplified some element unbalances such as the K/N-ratio. - CO 2 enrichment reduced foliar nitrogen and increased the magnesium concentration in poplar

  19. Biomass - Activities and projects in 2002; Biomasse Aktivitaeten und Projekte 2002. Ueberblicksbericht zum Forschungsprogramm 2002

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D.; Guggisberg, B.

    2003-07-01

    This annual report made for the Swiss Federal Office of Energy reviews the activities carried out under the Biomass Research Programme in 2002 and describes the various projects that were active during the year. The situation concerning energy supply from biomass is discussed and figures are presented on its share in total Swiss energy consumption. Three categories of biomass use are presented - burning, fermentation of wastes and biofuels. >From each of these categories, several pilot and demonstration projects are described that cover a wide range of technologies and research activities, ranging from the pre-processing of biogenic wastes through to the optimisation of biogas-based combined heat and power installations and the operational economics of compact biogas installations. The report is completed with lists of research and development projects and pilot and demonstration projects.

  20. Efeitos do sombreamento na anatomia foliar de Gallesia integrifolia (Spreng Harms e Schinnus terebinthifolius Raddi

    Directory of Open Access Journals (Sweden)

    M.S. Santos

    2014-03-01

    Full Text Available Realizou-se estudo com o objetivo de analisar as alterações na anatomia foliar de Gallesia integrifolia (Spreng Harms e Schinnus terebinthifolius Raddi quando cultivadas em ambientes de sombra moderada ou densa, simulando as condições naturais encontradas em sistemas agroflorestais tradicionais do sul da Bahia, Brasil. Plantas das duas espécies, com aproximadamente um ano de idade, foram cultivadas em casa de vegetação sob quatro níveis de sombreamento (25%, 17%, 10% e 5%. Estudos anatômicos do limbo foliar foram realizados a partir de material incluído em parafina e seccionado em micrótomo rotativo. Os diferentes níveis de sombreamento ocasionaram alterações na estrutura do mesofilo de ambas as espécies, com diferenças significativas na espessura do parênquima paliçádico, limbo foliar, e densidade estomática. Nas condições em que o experimento foi realizado os resultados obtidos indicaram que G. integrifolia apresenta maior capacidade de aclimatação a ambientes de sombra moderada e densa do que S. terebinthifolius, sendo mais indicada para o cultivo em sistemas agroflorestais pré-estabelecidos.

  1. Molybdenum (Mo) increases endogenous phenolics, proline and photosynthetic pigments and the phytoremediation potential of the industrially important plant Ricinus communis L. for removal of cadmium from contaminated soil.

    Science.gov (United States)

    Hadi, Fazal; Ali, Nasir; Fuller, Michael Paul

    2016-10-01

    Cadmium (Cd) in agricultural soil negatively affects crops yield and compromises food safety. Remediation of polluted soil is necessary for the re-establishment of sustainable agriculture and to prevent hazards to human health and environmental pollution. Phytoremediation is a promising technology for decontamination of polluted soil. The present study investigated the effect of molybdenum (Mo) (0.5, 1.0 and 2.0 ppm) on endogenous production of total phenolics and free proline, plant biomass and photosynthetic pigments in Ricinus communis plants grown in Cd (25, 50 and 100 ppm) contaminated soils and the potential for Cd phytoextraction. Mo was applied via seed soaking, soil addition and foliar spray. Foliar sprays significantly increased plant biomass, Cd accumulation and bioconcentration. Phenolic concentrations showed significantly positive correlations with Cd accumulation in roots (R 2  = 0.793, 0.807 and 0.739) and leaves (R 2  = 0.707, 721 and 0.866). Similarly, proline was significantly positively correlated with Cd accumulation in roots (R 2  = 0.668, 0.694 and 0.673) and leaves (R 2  = 0.831, 0.964 and 0.930). Foliar application was found to be the most effective way to deliver Mo in terms of increase in plant growth, Cd accumulation and production of phenolics and proline.

  2. Soil and foliar analysis laboratories in Costa Rica: a report of the Comite de Laboratorios de Analisis de Suelos, Plantas y Aguas

    International Nuclear Information System (INIS)

    Corrales, Marco; Bertsch, Floria; Bejarano, Jose Antonio

    2005-01-01

    The situation of soils and foliar analysis laboratories in Costa Rica is showed in this job. The characteristics and methodologies of each laboratory are described, as well as the results of the National Exchange Programs, which have been implemented among all of them for the last 6 years, and which are denominated as PINAS for soils and PINAF for foliar. For each determination, soil as well as foliar, achievements in homologation of methodologies are stressed, and estimates obtained on intrinsic variability - resulting from processing control samples - are discussed. With the results of control samples that have been analyzed in 15 national laboratories, the internal variability of each one was evaluated, comparisons among them were made, and estimations of the intrinsic variability shown by each determination were made. At PINAS, more than 60 soil control samples have been processed, with 2 extracting solutions (Modified KCl-Olsen and Mehlich 3), and with 3 to 6 replicates per solution; at PINAF, 16 control foliar samples have been processed, also repeated 3 times in each laboratory. In general, the internal variability of the laboratories is low; for soil determinations, variation among laboratories fluctuated 10-20%, and for foliar the fluctuation was even lower (10-15%). The assessment can be made, that having these variations among results from different laboratories is quite acceptable, yet subject to improvement. (author) [es

  3. Changes in the dynamics of foliar N metabolites in oak saplings by drought and air warming depend on species and soil type.

    Directory of Open Access Journals (Sweden)

    Bin Hu

    Full Text Available Climate change poses direct or indirect influences on physiological mechanisms in plants. In particular, long living plants like trees have to cope with the predicted climate changes (i.e. drought and air warming during their life span. The present study aimed to quantify the consequences of simulated climate change for foliar N metabolites over a drought-rewetting-drought course. Saplings of three Central European oak species (i.e. Quercus robur, Q. petraea, Q. pubescens were tested on two different soil types (i.e. acidic and calcareous. Consecutive drought periods increased foliar amino acid-N and soluble protein-N concentrations at the expense of structural N in all three oak species. In addition, transient effects on foliar metabolite dynamics were observed over the drought-rewetting-drought course. The lowest levels of foliar soluble protein-N, amino acid-N and potassium cation with a minor response to drought and air warming were found in the oak species originating from the driest/warmest habitat (Q. pubescens compared to Q. robur and Q. petraea. Higher foliar osmolyte-N and potassium under drought and air warming were observed in all oak species when grown on calcareous versus acidic soil. These results indicate that species-specific differences in physiological mechanisms to compensate drought and elevated temperature are modified by soil acidity.

  4. Maternal biomass smoke exposure and birth weight in Malawi ...

    African Journals Online (AJOL)

    We, therefore, investigated effects of exposure to biomass fuels on reduced birth weight in the Malawian population. Methods: We conducted a cross-sectional analysis using secondary data from the 2010 Malawi Demographic Health Survey with a total of 9124 respondents. Information on exposure to biomass fuels, ...

  5. Biomass and volume yield after 6 years in multiclonal hybrid poplar riparian buffer strips

    Energy Technology Data Exchange (ETDEWEB)

    Fortier, Julien [Centre d' etude de la foret (CEF), Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Institut des sciences de l' environnement, Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Gagnon, Daniel [Centre d' etude de la foret (CEF), Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Institut des sciences de l' environnement, Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Fiducie de recherche sur la foret des Cantons-de-l' Est, 1 rue Principale, St-Benoit-du-Lac, Quebec (Canada); Truax, Benoit; Lambert, France [Fiducie de recherche sur la foret des Cantons-de-l' Est, 1 rue Principale, St-Benoit-du-Lac, Quebec (Canada)

    2010-07-15

    In this paper the potential of five hybrid poplar clones (Populus spp.) to provide biomass and wood volume in the riparian zone is assessed in four agroecosystems of southern Quebec (Canada). For all variables measured, significant Site effects were detected. Survival, biomass yield and volume yield were highest at the Bromptonville site. After 6 years of growth, total aboveground biomass production (stems + branches + leaves) reached 112.8 tDM/ha and total leafless biomass production (stems + branches) reached 101.1 tDM/ha at this site, while stem wood volume attained 237.5 m{sup 3}/ha. Yields as low as 14.2 tDM/ha for total biomass and 24.8 m{sup 3}/ha for total stem volume were also observed at the Magog site. Highest yields were obtained on the most fertile sites, particularly in terms of NO{sub 3} supply rate. Mean stem volume per tree was highly correlated with NO{sub 3} supply rate in soils (R{sup 2} = 0.58, p < 0.001). Clone effects were also detected for most of the variables measured. Total aboveground biomass and total stem volume production were high for clone 3729 (Populus nigra x P. maximowiczii) (73.1 tDM/ha and 134.2 m{sup 3}/ha), although not statistically different from clone 915311 (P. maximowiczii x P. balsamifera). However, mean whole-tree biomass (including leaves) was significantly higher for clone 3729 (38.8 kgDM/tree). Multifunctional agroforestry systems such as hybrid poplar riparian buffer strips are among the most sustainable ways to produce a high amount of biomass and wood in a short time period, while contributing to alleviate environmental problems such as agricultural non-point source pollution. (author)

  6. Kinetic and Modeling Investigation to Provide Design Guidelines for the NREL Dilute-Acid Process Aimed at Total Hydrolysis/Fractionation of Lignocellulosic Biomass: July 1998

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. Y.; Iyer, P.; Xiang, Q.; Hayes, J.

    2004-08-01

    Following up on previous work, subcontractor investigated three aspects of using NREL ''pretreatment'' technology for total hydrolysis (cellulose as well as hemicellulose) of biomass. Whereas historic hydrolysis of biomass used either dilute acid or concentrated acid technology for hydrolysis of both hemicellulose and cellulose, NREL has been pursuing very dilute acid hydrolysis of hemicellulose followed by enzymatic hydrolysis of cellulose. NREL's countercurrent shrinking-bed reactor design for hemicellulose hydrolysis (pretreatment) has, however, shown promise for total hydrolysis. For the first task, subcontractor developed a mathematical model of the countercurrent shrinking bed reactor operation and, using yellow poplar sawdust as a feedstock, analyzed the effect of: initial solid feeding rate, temperature, acid concentration, acid flow rate, Peclet number (a measure of backmixing in liquid flow), and bed shrinking. For the second task, subcontractor used laboratory trials, with yellow poplar sawdust and 0.07 wt% sulfuric acid at various temperatures, to verify the hydrolysis of cellulose to glucose (desired) and decomposition of glucose (undesired) and determine appropriate parameters for use in kinetic models. Unlike cellulose and hemicellulose, lignins, the third major component of biomass, are not carbohydrates that can be broken down into component sugars. They are, however, aromatic complex amorphous phenolic polymers that can likely be converted into low-molecular weight compounds suitable for production of fuels and chemicals. Oxidative degradation is one pathway for such conversion and hydrogen peroxide would be an attractive reagent for this, as it would leave no residuals. For the third task, subcontractor reacted lignin with hydrogen peroxide under various conditions and analyzed the resulting product mix.

  7. Modelo para determinção da área foliar de Kalanchoe blossfeldiana Poelln Model for leaf area determination in Kalanchoe blossfeldiana Poelln

    Directory of Open Access Journals (Sweden)

    Marcia Xavier Peiter

    2006-12-01

    Full Text Available O presente trabalho teve por objetivo a verificação de um procedimento matemático que permita a descrição do crescimento foliar de Kalanchoe (Kalanchoe blossfeldiana Poelln. e possa prever a sua área foliar fotossinteticamente ativa a partir de medidas não destrutivas de folhas. As mudas de Kalanchoe Cv. "Gold Jewel" foram cultivadas para o procedimento experimental em vasos irrigados com doses recomendadas para a cultura. Semanalmente, foram retirados três vasos da estufa e as plantas tiveram suas folhas cortadas, identificadas e submetidas a tomadas de medidas de sua posição na planta, do máximo comprimento longitudinal e do máximo comprimento transversal. Foram realizadas um total de nove coletas semanalmente, desde 04/04/2003 até o início da floração. Em cada coleta, três plantas eram amostradas e a área foliar calculada com a utilização do método de Gauss (GARCIA & PIEDADE, 1944 implementado em Visual Basic especificamente para este objetivo. Foram amostradas um total de 979 folhas e a verificação da possibilidade de uso de um fator de correção médio (FCM para o cálculo da área de uma folha, independentemente de sua posição na planta ou fase do ciclo de crescimento, foi averiguada por análise de regressão entre os valores obtidos pelo método padrão (Gauss e os valores estimados pelo método do FCM. Os resultados experimentais indicam que o valor FCM=1,1134 pode ser utilizado para estimar a área foliar pela multiplicação pelos valores de comprimento e largura de folha em qualquer fase do cultivo e sem qualquer posição da folha na planta.This research was aimed at versifying a mathematical procedure that allows the description of leaf of Kalanchoe (Kalanchoe blossfeldiana Poelln. and the estimation of its photosynthetically active leaf area starting from a non destructive leaf determination. Seedlings of Kalanchoe cv Gold Jewel were cultivated in irrigated vases with recommended doses for the culture

  8. Foliar application of pyraclostrobin fungicide enhances the growth, rhizobial-nodule formation and nitrogenase activity in soybean (var. JS-335).

    Science.gov (United States)

    Joshi, Juhie; Sharma, Sonika; Guruprasad, K N

    2014-09-01

    A field study was conducted to investigate the impact of the fungicide pyraclostrobin (F500 - Headline®; a.i. 20%) on the activity of nitrogenase in soybean (var. JS-335). Pyraclostrobin (F500) was applied on the leaves of soybean plants at 10 and 20 days after emergence (DAE) of seedlings at concentrations ranging from 0.05% to 1%. Leghemoglobin (Lb) content and nitrogenase activity in root nodules were analyzed at 45(th)day after emergence of seedlings indicated a remarkable increase in Lb content and enhanced activity of nitrogenase in the root nodules of pyraclostrobin treated plants. The fungicide also enhanced the number of nodules along with weight of nodules, root biomass and growth of shoot and leaves. Enhanced nitrogen fixation in the root nodules by pyraclostrobin improves the growth of the plant in soybean before flowering and pod formation which ultimately resulted in yield and yield attributes. These results suggest that pyraclostrobin (F500) can be successfully employed as a foliar spray under field conditions to enhance the growth, nitrogen assimilation and hence yield of soybean. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Biomass of Sacrificed Spruce/Aspen (SNF)

    Data.gov (United States)

    National Aeronautics and Space Administration — Dimension analysis (diameter at breast high, tree height, depth of crown), estimated leaf area, and total aboveground biomass for sacrificed spruce and aspens in...

  10. Food and disturbance effects on Arctic benthic biomass and production size spectra

    Science.gov (United States)

    Górska, Barbara; Włodarska-Kowalczuk, Maria

    2017-03-01

    Body size is a fundamental biological unit that is closely coupled to key ecological properties and processes. At the community level, changes in size distributions may influence energy transfer pathways in benthic food webs and ecosystem carbon cycling; nevertheless they remain poorly explored in benthic systems, particularly in the polar regions. Here, we present the first assessment of the patterns of benthic biomass size spectra in Arctic coastal sediments and explore the effects of glacial disturbance and food availability on the partitioning of biomass and secondary productivity among size-defined components of benthic communities. The samples were collected in two Arctic fjords off west Spitsbergen (76 and 79°N), at 6 stations that represent three regimes of varying food availability (indicated by chlorophyll a concentration in the sediments) and glacial sedimentation disturbance intensity (indicated by sediment accumulation rates). The organisms were measured using image analysis to assess the biovolume, biomass and the annual production of each individual. The shape of benthic biomass size spectra at most stations was bimodal, with the location of a trough and peaks similar to those previously reported in lower latitudes. In undisturbed sediments macrofauna comprised 89% of the total benthic biomass and 56% of the total production. The lower availability of food resources seemed to suppress the biomass and secondary production across the whole size spectra (a 6-fold decrease in biomass and a 4-fold decrease in production in total) rather than reshape the spectrum. At locations where poor nutritional conditions were coupled with disturbance, the biomass was strongly reduced in selected macrofaunal size classes (class 10 and 11), while meiofaunal biomass and production were much higher, most likely due to a release from macrofaunal predation and competition pressure. As a result, the partitioning of benthic biomass and production shifted towards meiofauna

  11. Foliar application effects of beet vinasse on rice yield and chemical composition

    International Nuclear Information System (INIS)

    Tejada, M.; Garcia-Martinez, A. M.; Benitez, C.; Gonzalez, J. L.; Bautista, J.; Parrado, J.

    2009-01-01

    This study presents an account of rice (oriza sativa cv. Puntal) yield quality parameters as influenced by the foliar application of an industrial byproduct (beet vinasse). Beet (Beta vulgaris L. Subsp.vurgaris) vinasse is a product of great agricultural interest, because of its organic matter content, N and K concentrations. (Author)

  12. Culture of microalgae biomass for valorization of table olive processing water

    International Nuclear Information System (INIS)

    Contreras, C.G.; Serrano, A.; Ruiz-Filippi, G.; Borja, R.; Fermoso, F.G.

    2016-01-01

    Table olive processing water (TOPW) contains many complex substances, such as phenols, which could be valorized as a substrate for microalgae biomass culture. The aim of this study was to assess the capability of Nannochloropsis gaditana to grow in TOPW at different concentrations (10- 80%) in order to valorize this processing water. Within this range, the highest increment of biomass was determined at percentage of 40% of TOPW, reaching an increment of 0.36 ± 0.05 mg volatile suspended solids (VSS)/L. Components of algal biomass were similar for the experiments at 10-40% of TOPW, where proteins were the major compounds (56-74%). Total phenols were retained in the microalgae biomass (0.020 ± 0.002 g of total phenols/g VSS). Experiments for 80% of TOPW resulted in a low production of microalgae biomass. High organic matter, nitrogen, phosphorus and phenol removal were achieved in all TOPW concentrations. Although high-value products, such as proteins, were obtained and high removal efficiencies of nutrients were determined, microalgae biomass culture should be enhanced to become a suitable integral processing water treatment. [es

  13. Anatomia foliar de quatro espécies do gênero Cattleya Lindl. (Orchidaceae do Planalto Central Brasileiro Foliar anatomy of four species of genus Cattleya Lindl. (Orchidaceae of the Brazilian Central Planalt

    Directory of Open Access Journals (Sweden)

    Rosane Zanenga-Godoy

    2003-03-01

    Full Text Available As espécies analisadas (Cattleya araguaiensis Pabst, C. bicolor Lindl., C. nobilior Rchb. e C. walkeriana Gardn. apresentam epiderme uniestratificada em ambas as faces da lâmina foliar, ocorrendo estômatos na face abaxial; deposição de cera epicuticular em crostas, escamas, flocos e plaquetas; em C. araguaiensis ocorrem estegmatas incrustados nas células epidérmicas; em todas as espécies ocorre hipoderme com células de paredes espessadas; mesofilo bifacial, compacto; células paliçádicas atípicas, com barras de espessamento; feixes vasculares colaterais dispostos alternadamente, acompanhados por bainha de fibras; cordões fibrosos acompanhados por estegmatas ocorrem longitudinalmente na lâmina foliar; presença de ráfides. Os aspectos descritos revelam acentuada xeromorfia, em função de economia de água.The analyzed species (Cattleya araguaiensis Pabst, C. bicolor Lindl., C. nobilior Rchb. e C. walkeriana Gardn. present unistratified epidermis at both surfaces with stomata at abaxial surface; deposition of epicuticular wax in crusts, scales, granules and plates; C. araguaiensis presents stegmata at epidermal cells; others characteristics present at all species are: hypodermis cells with thick walls; bifacial and compact mesophyll; atipic cells ofpalisade parenchyma with thichness bars; collateral vascular bundles alternate accompanied by sheath fibers; cordon fibers accompanied by stegmata in the foliar blade; raphids. The described aspects reveal accentuate xeromorphy for water economy.

  14. Modeling natural regeneration biomass of Pinus stand

    Directory of Open Access Journals (Sweden)

    Rafael Cubas

    2016-09-01

    Full Text Available Reliable biomass data are very important in the evaluation of ecosystems, and help in understanding the contribution of forests in climate change. Variables that describe the size of the tree, like diameter and height are directly associated with biomass, which allows the use of regression models to estimate this element. Therefore, this study aimed to estimate by regression models, the biomass of different compartments of natural regeneration of trees of a Pinus taeda L. stand. The data were obtained through direct destructive method, using 100 randomly selected trees in the understory of a stand of Pinus taeda. We analyzed three arithmetical models, three logarithmic and two models developed by Stepwise process. Logarithmic equations developed by Stepwise procedure showed the best estimates of total and stems biomass. However, for needles and twigs compartments the best adjust was observed with Husch model and for root biomass Berkhout model proved to be the most suitable.

  15. COFIRING BIOMASS WITH LIGNITE COAL

    Energy Technology Data Exchange (ETDEWEB)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  16. Mapping Russian forest biomass with data from satellites and forest inventories

    International Nuclear Information System (INIS)

    Houghton, R A; Butman, D; Bunn, A G; Krankina, O N; Schlesinger, P; Stone, T A

    2007-01-01

    The forests of Russia cover a larger area and hold more carbon than the forests of any other nation and thus have the potential for a major role in global warming. Despite a systematic inventory of these forests, however, estimates of total carbon stocks vary, and spatial variations in the stocks within large aggregated units of land are unknown, thus hampering measurement of sources and sinks of carbon. We mapped the distribution of living forest biomass for the year 2000 by developing a relationship between ground measurements of wood volume at 12 sites throughout the Russian Federation and data from the MODIS satellite bidirectional reflectance distribution function (BRDF) product (MOD43B4). Based on the results of regression-tree analyses, we used the MOD43B4 product to assign biomass values to individual 500 m x 500 m cells in areas identified as forest by two satellite-based maps of land cover. According to the analysis, the total living biomass varied between 46 and 67 Pg, largely because of different estimates of forest area. Although optical data are limited in distinguishing differences in biomass in closed canopy forests, the estimates of total living biomass obtained here varied more in response to different definitions of forest than to saturation of the optical sensing of biomass

  17. Mapping Russian forest biomass with data from satellites and forest inventories

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, R A [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States); Butman, D [Yale School of Forestry and Environmental Science, Yale University, New Haven, CT 06511 (United States); Bunn, A G [Department of Environmental Sciences, Huxley College of the Environment, Western Washington University, 516 High Street, Bellingham, WA 98225-9181 (United States); Krankina, O N [Department of Forest Science, Oregon State University, 202 Richardson Hall, Corvallis, OR 97331-5752 (United States); Schlesinger, P [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States); Stone, T A [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States)

    2007-10-15

    The forests of Russia cover a larger area and hold more carbon than the forests of any other nation and thus have the potential for a major role in global warming. Despite a systematic inventory of these forests, however, estimates of total carbon stocks vary, and spatial variations in the stocks within large aggregated units of land are unknown, thus hampering measurement of sources and sinks of carbon. We mapped the distribution of living forest biomass for the year 2000 by developing a relationship between ground measurements of wood volume at 12 sites throughout the Russian Federation and data from the MODIS satellite bidirectional reflectance distribution function (BRDF) product (MOD43B4). Based on the results of regression-tree analyses, we used the MOD43B4 product to assign biomass values to individual 500 m x 500 m cells in areas identified as forest by two satellite-based maps of land cover. According to the analysis, the total living biomass varied between 46 and 67 Pg, largely because of different estimates of forest area. Although optical data are limited in distinguishing differences in biomass in closed canopy forests, the estimates of total living biomass obtained here varied more in response to different definitions of forest than to saturation of the optical sensing of biomass.

  18. Deashing macroalgae biomass by pulsed electric field treatment.

    Science.gov (United States)

    Robin, Arthur; Sack, Martin; Israel, Alvaro; Frey, Wolfgang; Müller, Georg; Golberg, Alexander

    2018-05-01

    Among all biomass constituents, the ashes are major hurdles for biomass processing. Ashes currently have low market value and can make a non-negligible fraction of the biomass dry weight significantly impacting its further processing by degrading equipment, lowering process yield, inhibiting reactions and decreasing products qualities. However, most of the current treatments for deashing biomass are of poor efficiency or industrial relevance. This work is the first report on the use of Pulsed Electric Field (PEF) to enhance deashing of biomass from a high ash content green marine macroalga, Ulva sp., using hydraulic pressing. By inducing cell permeabilization of the fresh biomass, PEF was able to enhance the ash extraction from 18.4% (non-treated control) to 37.4% of the total ash content in average, significantly enhancing the extraction of five of the major ash elements (K, Mg, Na, P and S) compared to pressing alone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Biomass energy utilisation in Malaysia - prospects and problems

    International Nuclear Information System (INIS)

    Kong, Hoi Why

    1999-01-01

    An assessment of the contribution of biomass fuels in the rubber, palm oil, cocoa, brick and charcoal industries is given with biomass accounting for about 16% of the total power demand; equivalent to about 2.48 MTOE. The use of biomass in Malaysia is by the direct combustion of wood for heat and power and by gasification with power production via a diesel engine. Challenges facing Malaysia include a rapid increase in demand for power, the need for development funding, environmental issues, and increases in the price of rubber wood, the main fuel source. (uk)

  20. Aplicação foliar de tratamentos para o controle do míldio e da podridão-de-escamas de bulbos de cebola Foliar spray of treatments in the control of downy mildew and bulb rot in onion

    Directory of Open Access Journals (Sweden)

    João Américo Wordell Filho

    2007-12-01

    Full Text Available Em experimento de campo, avaliou-se o efeito da aplicação foliar de tratamentos para o controle do míldio (Peronospora destructor e da podridão de bulbos (Burkholderia cepacia de cebola: testemunha, clorotalonil/metalaxyl + clorotalonil, fosfito de potássio, fertilizante foliar (03-00-16, N-P-K, calda bordalesa, calda bordalesa/fosfito de potássio, acibenzolar-S-methyl, pulverizados semanalmente; extrato de alga (Ulva fasciata e ulvana, aplicados a cada 7, 14 e 21 dias. Somente a pulverização semanal com fungicidas sintéticos ou com o fertilizante (03-00-16; 400 mL de p.c./100 L foi capaz de reduzir significativamente a severidade do míldio, em 60 ou 23%, respectivamente, em relação à testemunha não pulverizada, sem aumentar o rendimento de bulbos. O tratamento com fertilizantes ricos em potássio resultou em maior incidência da podridão de bulbos armazenados por cinco meses. O conteúdo de açúcares solúveis e incidência da podridão de bulbos de cebola foram correlacionados significativamente (-0,629, p A field experiment was carried out to evaluate the effect of foliar sprays with the following treatments on the downy mildew (Peronospora destructor and bulb rot (Burkholderia cepacia in onions: non-treated control, fungicide chlorotalonil/metalaxyl + chlorotalonil, potassium phosphite, foliar fertilizer (03-00-16, N-P-K, bordeaux mixture, bordeaux mixture/potassium phosphite, acibenzolar-S-methyl weekly applied; extract of alga Ulva fasciata and ulvan sprayed every 7, 14 and 21 days. Only the weekly spraying of fungicides and fertilizer (03-00-16, 400 mL/100 L significantly reduced the mildew severity by 60 and 23%, respectively, but did not increase the bulb yield. The foliar application of potassium rich fertilizers resulted in a higher incidence of rotten bulbs after 5 months in storage. Soluble sugar content and rot incidence of onion bulbs were significantly correlated (-0,629, p < 0,05.

  1. An empirical, integrated forest biomass monitoring system

    Science.gov (United States)

    Kennedy, Robert E.; Ohmann, Janet; Gregory, Matt; Roberts, Heather; Yang, Zhiqiang; Bell, David M.; Kane, Van; Hughes, M. Joseph; Cohen, Warren B.; Powell, Scott; Neeti, Neeti; Larrue, Tara; Hooper, Sam; Kane, Jonathan; Miller, David L.; Perkins, James; Braaten, Justin; Seidl, Rupert

    2018-02-01

    The fate of live forest biomass is largely controlled by growth and disturbance processes, both natural and anthropogenic. Thus, biomass monitoring strategies must characterize both the biomass of the forests at a given point in time and the dynamic processes that change it. Here, we describe and test an empirical monitoring system designed to meet those needs. Our system uses a mix of field data, statistical modeling, remotely-sensed time-series imagery, and small-footprint lidar data to build and evaluate maps of forest biomass. It ascribes biomass change to specific change agents, and attempts to capture the impact of uncertainty in methodology. We find that: • A common image framework for biomass estimation and for change detection allows for consistent comparison of both state and change processes controlling biomass dynamics. • Regional estimates of total biomass agree well with those from plot data alone. • The system tracks biomass densities up to 450-500 Mg ha-1 with little bias, but begins underestimating true biomass as densities increase further. • Scale considerations are important. Estimates at the 30 m grain size are noisy, but agreement at broad scales is good. Further investigation to determine the appropriate scales is underway. • Uncertainty from methodological choices is evident, but much smaller than uncertainty based on choice of allometric equation used to estimate biomass from tree data. • In this forest-dominated study area, growth and loss processes largely balance in most years, with loss processes dominated by human removal through harvest. In years with substantial fire activity, however, overall biomass loss greatly outpaces growth. Taken together, our methods represent a unique combination of elements foundational to an operational landscape-scale forest biomass monitoring program.

  2. FOLIAR APPLICATION OF SILICON ON YIELD COMPONENTS OF WHEAT CROP

    Directory of Open Access Journals (Sweden)

    THOMAS NEWTON MARTIN

    2017-01-01

    Full Text Available Wheat is a major winter crop in southern Brazil. To maximize its productivity, there should be no biotic or abiotic restrictions that can affect the yield components. Thus, the objective was to evaluate the changes caused in the wheat crop yield components by silicon foliar application. The experiment was conducted in two growing seasons. In the first year, five wheat cultivars (Quartzo, Campo Real, Onix and Fundacep Lineage were assessed and in the second year four were assessed (Mirante, Campo Real, Horizonte and Quartzo. In both years the crops were subjected to three doses of silicon (0, 3 and 6 L of silicon ha -1. The silicon was applied during the tillering, booting and anthesis stages. The yield components assessed were the number of plants, number of ears, number of fertile tillers, dry matter per plant, hectoliter weight, number of spikelets, number of grains per spike, weight of hundred grains, grain yield and harvest index. Most yield components did not respond to the silicon foliar application. The harvest index (first year and the number of tillers (second year however presented a quadratic relationship with the supply of silicon. The remaining differences were attributed to variations among the wheat cultivars.

  3. Energy potential through agricultural biomass using geographical information system - A case study of Punjab

    International Nuclear Information System (INIS)

    Singh, Jagtar; Panesar, B.S.; Sharma, S.K.

    2008-01-01

    Agricultural biomass has immense potential for power production in an Indian state like Punjab. A judicious use of biomass energy could potentially play an important role in mitigating environmental impacts of non-renewable energy sources particularly global warming and acid rain. But the availability of agricultural biomass is spatially scattered. The spatial distribution of this resource and the associate costs of collection and transportation are major bottlenecks for the success of biomass energy conversion facilities. Biomass, being scattered and loose, has huge collection and transportation costs, which can be reduced by properly planning and locating the biomass collection centers for biomass-based power plants. Before planning the collection centers, it is necessary to evaluate the biomass, energy and collection cost of biomass in the field. In this paper, an attempt has been made to evaluate the spatial potential of biomass with geographical information system (GIS) and a mathematical model for collection of biomass in the field has been developed. The total amount of unused agricultural biomass is about 13.73 Mt year -1 . The total power generation capacity from unused biomass is approximately 900 MW. The collection cost in the field up to the carrier unit is US$3.90 t -1 . (author)

  4. DYNAMICS OF ALGAE NUMBER AND BIOMASS OF STEPPE BIOGEOCOENOSES AND AGROCOENOSES IN KHERSON REGION

    Directory of Open Access Journals (Sweden)

    Shcherbina V.V.

    2011-12-01

    Full Text Available Characteristics of daily dynamics of seaweeds abundance and biomass were determined for steppe biogeocoenosis and agrocoenosis of Biosphere reserve “Askaniya-Nova” in spring of 2011. Fluctuation ranges in seaweeds abundance and biomass have been registered.Analyzing the indices of total number and algae biomass in studied biogeocoenoses it should be noted that the maximal values of alga number in virgin soil steppe exceeded minimal in 3,3 times; biomasses - in 2,1. For virgin soil steppe of post-fire-induced development the relation between maximum and minimal value of total number of algae was up to 2,1; biomass - 2,4. For agrocoenosis we noted the largest ranges in variation of number and biomass. In conditions of dry-land arable land the maximum values of total number of alga exceeded minimal in 21,9 times; biomasses - in 8,7; for irrigated arable land - in 12,5 and 5,6 respectively.In soil samples, selected within the limits of virgin soil biogeocoenoses of biosphere reserve “Askania-Nova” and agrocoenosis of dry-land and irrigated arable land in biosphere reserve by direct count, the algae species of Bacillariophyta, Cyanophyta, Chlorophyta, Xanthophyta and Eustigmatophyta have been found. The largest contribution to number and biomass of algae belonged to Bacillariophyta. The number and biomass of agrocoenosis algae is more dynamic feature, than for algae of virgin soil biogeocoenoses.

  5. Review: Assessing the climate mitigation potential of biomass

    Directory of Open Access Journals (Sweden)

    Patrick Moriarty

    2016-12-01

    Full Text Available For many millennia, humans have used biomass for three broad purposes: food for humans and fodder for farm animals; energy; and materials. Food has always been exclusively produced from biomass, and in the year 1800, biomass still accounted for about 95% of all energy. Biomass has also been a major source of materials for construction, implements, clothing, bedding and other uses, but some researchers think that total human uses of biomass will soon reach limits of sustainability. It is thus important to select those biomass uses that will maximise global climate change benefits. With a ‘food first’ policy, it is increasingly recognised that projections of food needs are important for estimating future global bioenergy potential, and that non-food uses of biomass can be increased by both food crop yield improvements and dietary changes. However, few researchers have explicitly included future biomaterials production as a factor in bioenergy potential. Although biomaterials’ share of the materials market has roughly halved over the past quarter-century, we show that per tonne of biomass, biomaterials will usually allow greater greenhouse gas reductions than directly using biomass for bioenergy. particularly since in many cases, biomaterials can be later burnt for energy after their useful life.

  6. Foliar manganese accumulation by Maytenus founieri (Celastraceae) in its native New Caledonian habitats: populational variation and localization by X-ray microanalysis.

    Science.gov (United States)

    Fernando, D R; Woodrow, I E; Jaffré, T; Dumontet, V; Marshall, A T; Baker, A J M

    2008-01-01

    Hyperaccumulation by plants is a rare phenomenon that has potential practical benefits. The majority of manganese (Mn) hyperaccumulators discovered to date occur in New Caledonia, and little is known about their ecophysiology. This study reports on natural populations of one such species, the endemic shrub Maytenus founieri. Mean foliar Mn concentrations of two populations growing on ultramafic substrates with varying soil pHs were obtained. Leaf anatomies were examined by light microscopy, while the spatial distributions of foliar Mn in both populations were examined by qualitative scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). Plants growing on two different substrates were found to have very different mean dry weight (DW) foliar Mn concentrations. Light microscopy showed that the leaves had very distinct thick dermal structures, consisting of multiple layers of large cells in the hypodermis. In vivo X-ray microprobe analyses revealed that, in both populations, Mn sequestration occurred primarily in these dermal tissues. The finding here that foliar Mn is most highly localized in the nonphotosynthetic tissues of M. founieri contrasts with results from similar studies on other woody species that accumulate high Mn concentrations in their shoots.

  7. Effects of magnesium sulfate on the foliar absorption of phosphates at the pumpkin

    International Nuclear Information System (INIS)

    Chamel, A.

    1962-01-01

    The foliar absorption of phosphates labelled with 32 P and applied with or without magnesium sulfate on the first leaf of pumpkin seedlings have been studied. The magnesium sulfate applied with the phosphate reduces plainly the absorption rate of 32 P. (O.M.) [fr

  8. Biomass energy in the making

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Wood, straw, agricultural residues, organic wastes, biomass is everywhere you look. But the efficient use of this source of green electricity - the world's second largest renewable energy source - requires optimization of biomass collection and combustion processes. Biomass is back on the political agenda. In mid-June of this year, the French government gave this renewable energy a boost by selecting twenty-two projects to generate power and heat with biomass. The plants, to be commissioned by 2010, will be located in eleven different regions and will consume energy from organic plant matter. The power generated will be bought at a firm price of 128 euros per megawatt-hour. Most of the fuel will come from forest and paper industry waste, but straw and even grape pomace will be used in some cases. The plants will have a combined generating capacity of 300 MWh, raising France's installed biomass capacity to a total of 700 MWe. A drop of water in the ocean in the overall scheme of France's electricity. It is true that France has long neglected biomass. In 2004, electricity generated from biological resources represented a mere 1.74 TWhe in France, just 0.3% of its power consumption. This will rise to 0.6% once the new plants have come on line. The trend is the same in all of the EU's 27 member states, according to Eurostat, the statistical office of the European Communities: the amount of electricity generated from biomass (including biogas, municipal waste and wood) has practically doubled in six years, rising from 40 to 80 TWhe between 2000 and 2005. This is an improvement, but it still only represents 2.5% of the electricity supplied to Europeans. On a global scale, biomass contributes just 1% of total electric power generation. Yet biomass is an energy resource found all over the world, whether as agricultural waste, wood chips, or dried treatment plant sludge, to name but a few. Biomass power plants have managed to gain a foothold mainly in countries that produce

  9. The Effect of Nitroxin Biofertilizer and Foliar Applicatin of Micronutrients Time Consumption on Yield and Yield Components of New Wheat Cultivars under Khorramabad Climatic Conditions

    Directory of Open Access Journals (Sweden)

    A. Vaez

    2016-02-01

    Full Text Available Introduction In order to study the effects of Nitroxin biofertilizer and foliar application of micronutrients time consumption on yield and yield components of new wheat cultivars (Triticum aestivum & T. durum under Khorramabad climatic conditions, an experiment was conducted as factorial based on a randomized complete block design with three replications at the research farm khorramabad during growing season of 2012-2013. Considering the positive effect of inoculation with bio-fertilizer and foliar Nitroxin micronutrients and reaction of cultivars to this type of fertilizer instead of chemical fertilizers and the importance of wheat as one of the main crops, this study aims to determine the most appropriate time for foliar and Nitroxin application of micronutrients at the different stages of plant growth and bio-fertilizer application on yield and yield components. Materials and Methods The first factor was considered in six levels: N0: The lack of the seed insemination with nitroxin biofertilizer and without the foliar application of micronutrients (control, N1: the seed inoculation with the nitroxin biofertilizer, N2: the foliar application of micronutrients at the jointing stage, N3: the foliar application of micronutrients at the heading stage, N4: the seed insemination with nitroxin biofertilizer and foliar application of micronutrients at the jointing stage, N5: the seed insemination with nitroxin biofertilizer and foliar application of micronutrients at the heading stage. The second factor was considered at two levels, consisting: V1: Parsi cultivar and V2: Dena cultivar. MSTATC Software was used for data analysis and means were compared by Duncan's multiple range test at the 5% level. Results and Discussion In this experiment the grain yield, biological yield, harvest index, 1000- grain weight, spike number per m-2, grain number per spike and spikelet number per spike of wheat were studied. The results of the data variance analysis has

  10. Biomass production and water use efficiency of grassland in ...

    African Journals Online (AJOL)

    Using the results from a long-term grazing trial in the Dry Highland Sourveld of the KwaZulu-Natal province, we prepared a water use efficiency value (the ratio of the increment in annual biomass to total annual evapotranspiration) for this rangeland type. Using seasonal biomass measurements recorded between March ...

  11. Stabilization of Pb(II) accumulated in biomass through phosphate-pretreated pyrolysis at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Saijun; Zhang, Tao; Li, Jianfa, E-mail: ljf@usx.edu.cn; Shi, Lingna; Zhu, Xiaoxiao; Lü, Jinhong; Li, Yimin

    2017-02-15

    Highlights: • Phosphate-pretreated pyrolysis can stabilize Pb(II) accumulated in biomass. • More than 95% of Pb(II) in celery and wood biomass was stabilized. • Pb from biomass was almost totally retained in char. • Most Pb was transformed into phosphates according to XRD and SEM/EDX analyses. - Abstract: The remediation of heavy metal-contaminated soil and water using plant biomass is considered to be a green technological approach, although the harmless disposal of biomass accumulated with heavy metals remains a challenge. A potential solution to this problem explored in this work involves combining phosphate pretreatment with pyrolysis. Pb(II) was accumulated in celery biomass with superior sorption capacity and also in ordinary wood biomass through biosorption. The Pb(II)-impregnated biomass was then pretreated with phosphoric acid or calcium dihydrogen phosphate (CaP) and pyrolyzed at 350 or 450 °C. Pb(II) from biomass was in turn almost totally retained in chars, and the percentage of DTPA-extractable Pb(II) was reduced to less than 5% of total Pb(II) in chars through CaP pretreatment. Pb(II) stabilization was further confirmed through a sequential extraction test, which showed that more than 95% of Pb(II) was converted into stable species composed mainly of lead phosphates according to X-ray diffraction (XRD) and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analyses. Overall, phosphate-pretreated pyrolysis can stabilize both Pb(II) and degradable biomass, so as to control efficiently the hazards of heavy metal-contaminated biomass.

  12. Biomass flow of the tanzânia grass under three defoliation frequencies and two post-grazing residues Fluxo de biomassa em capim-tanzânia sob três frequências de desfolhação e dois resíduos pós-pastejo

    Directory of Open Access Journals (Sweden)

    Hilton Alexandre Vidal Carneiro

    2010-09-01

    Full Text Available The biomass flow were evaluated in tanzania grass under two defoliations frequencies, consisting of three levels of photosynthetically active radiation interception (IRFA 85, 95 and 97% and two post-grazing residues (residual leaf area index, IAFr, 1.0 and 1.8 in an entirely randomized design in a factorial arrangement 3x2, with four replicates. It had effect of photosynthetically active radiation interception and of residual leaf area index under foliate appearance tax (TAlF. There was effect of the interaction IRFA x IAFr under the relationship TAlF1/TAlF2. The steam allonge tax (TAlH suffered effect only of photosynthetically active radiation interception. There was effect of photosynthetically active radiation interception and of IAFr under foliate senescence tax. The photosynthetically active radiation interception of 85% as well as residual leaf area index 1.8 obtained the great values of foliate appearance tax. The Phylochron suffered effect of the interaction IRFA x IAFr. For accumulation forages tax was effect only of the photosynthetically active radiation interception. There was an expressive increase of steam allonge tax along the grazing cycles. The use of moment of the tanzânia grass must not to exceed 95% of interception, being able to use a residual leaf area index of 1,0 and to promote greater losses of forage by senescence.Foi avaliado o fluxo de biomassa do capim-tanzânia sob três frequências de desfolhações (85, 95 e 97% de intercepção da radiação fotossinteticamente ativa, IRFA e dois resíduos pós-pastejo (1,0 e 1,8 de índice de área foliar residual, IAF residual num delineamento inteiramente casualizado em arranjo fatorial 3x2, com quatro repetições (piquetes. Houve efeito da intercepção da radiação fotossinteticamente ativa e do índice de área foliar residual residual sobre a taxa de alongamento foliar (TAlF. Houve efeito da interação IRFA x IAF residual sobre a relação TAlF1/TAlF2. A taxa de

  13. Large mesopelagic fishes biomass and trophic efficiency in the open ocean.

    KAUST Repository

    Irigoien, Xabier; Klevjer, T A; Rø stad, Anders; Martinez, U; Boyra, G; Acuñ a, J L; Bode, A; Echevarria, F; Gonzalez-Gordillo, J I; Hernandez-Leon, S; Agusti, S; Aksnes, D L; Duarte, Carlos M.; Kaartvedt, Stein

    2014-01-01

    With a current estimate of ~1,000 million tons, mesopelagic fishes likely dominate the world total fishes biomass. However, recent acoustic observations show that mesopelagic fishes biomass could be significantly larger than the current estimate

  14. BOREAS RSS-15 SIR-C and Landsat TM Biomass and Landcover Maps of the NSA

    Science.gov (United States)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Ranson, K. Jon

    2000-01-01

    As part of BOREAS, the RSS-15 team conducted an investigation using SIR-C, X-SAR, and Landsat TM data for estimating total above-ground dry biomass for the SSA and NSA modeling grids and component biomass for the SSA. Relationships of backscatter to total biomass and total biomass to foliage, branch, and bole biomass were used to estimate biomass density across the landscape. The procedure involved image classification with SAR and Landsat TM data and development of simple mapping techniques using combinations of SAR channels. For the SSA, the SIR-C data used were acquired on 06-Oct-1994, and the Landsat TM data used were acquired on 02-Sep-1995. The maps of the NSA were developed from SIR-C data acquired on 13-Apr-1994. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  15. Foliar δ13C Showed No Altitudinal Trend in an Arid Region and Atmospheric Pressure Exerted a Negative Effect on Plant δ13C

    Directory of Open Access Journals (Sweden)

    Zixun Chen

    2017-07-01

    Full Text Available Previous studies have suggested foliar δ13C generally increases with altitude. However, some observations reported no changes or even decreased trends in foliar δ13C. We noted that all the studies in which δ13C increased with elevation were conducted in the human regions, whereas those investigations in which δ13C did not vary or decreased were conducted in areas with water stress. Thus, we proposed that the pattern of increasing δ13C with elevation is not a general one, and that δ13C may remain unchanged or decrease in plants grown in arid environments. To test the hypothesis, we sampled plants along altitude gradients on the shady and sunny slopes of Mount Tianshan characterized by arid and semiarid climates. The measurements of foliar δ13C showed no altitudinal trends for the plants grown on either of the slopes. Therefore, this study supported our hypothesis. In addition, the present study addressed the effect of atmospheric pressure on plant δ13C by accounting for the effects of temperature and precipitation on δ13C. This study found that the residual foliar δ13C increased with increasing altitude, suggesting that atmospheric pressure played a negative role in foliar δ13C.

  16. Prospects of biomass energy in Bangladesh: an alternative development

    International Nuclear Information System (INIS)

    Salahuddin, Ahmed

    1998-01-01

    Biomass plays an important and complex role in the lives of the people of rural Bangladesh, where more than 80 per cent of the country's population live. The problems relating to biomass do not have to do merely with the question of supply of wood, or of food or of fuel; the problems are linked to competition in the variegations of land-use and to differing end-uses of by-products that may compete with or complement each other. The paper discusses the present pattern and amount of biomass consumption with a view to assessing the future prospect of biomass supply in meeting various needs. Regarding biomass energy supply, several important conclusions can be drawn: a) the energy consumption pattern in Bangladesh is characterized by heavy dependence on traditional fuel; b) the domestic sector uses 80 per cent of the total biomass fuel and c) in the industrial sector, about 76 per cent of the energy used consists of biomass fuel, mainly for processing agricultural products. Several observations are made pertaining to different sectors of biomass fuel demand. (author)

  17. The weed composition in an orchard as a result of long-term foliar herbicide application

    Directory of Open Access Journals (Sweden)

    Maria Licznar-Małańczuk

    2016-09-01

    Full Text Available The weed composition and the dominance of individual species occurring in an orchard were assessed at the Research Station of the Wrocław University of Environmental and Life Sciences, Poland, during the first 10 years after orchard establishment. ‘Ligol’ apple trees were planted in the spring of 2004 (3.5 × 1.2 m. Foliar herbicides were applied in 1 m wide tree rows twice or three times per each vegetation period. In the inter-row spaces, perennial grass was maintained. Ten years of maintenance of herbicide fallow contributed to a change in the weed composition in the orchard. It changed as a result of different responses of the most important weed species to the foliar herbicides. Total suppression of Elymus repens was observed in the first year after planting the trees. Convolvulus arvensis, Cirsium arvense, and other perennial weeds, completely disappeared in the succeeding periods. The maintenance of herbicide fallow did not affect the abundance of Taraxacum officinale. The percentage of the soil surface covered by Trifolium repens and Epilobium adenocaulon, perennial weeds with considerable tolerance to post-emergence herbicides, increased during the fruit-bearing period of the trees. The abundance of these weeds was significantly reduced only in the rows with the stronger growing trees on the semi-dwarf P 2 rootstock. Stellaria media was the dominant annual weed. Senecio vulgaris, Poa annua, Capsella bursa-pastoris, and Lamium spp. were also frequently observed. A significant increase in the abundance of annual and perennial weeds was found in the tree rows as a result of improved water availability after a period of high precipitation.

  18. Analysis of integrated animal-fish production system under subtropical hill agro ecosystem in India: growth performance of animals, total biomass production and monetary benefit.

    Science.gov (United States)

    Kumaresan, A; Pathak, K A; Bujarbaruah, K M; Vinod, K

    2009-03-01

    The present study assessed the benefits of integration of animals with fish production in optimizing the bio mass production from unit land in subtropical hill agro ecosystem. Hampshire pigs and Khaki Campbell ducks were integrated with composite fish culture. The pig and duck excreta were directly allowed into the pond and no supplementary feed was given to fish during the period of study. The average levels of N, P and K in dried pig and duck manure were 0.9, 0.7 and 0.6 per cent and 1.3, 0.6 and 0.5 per cent, respectively. The average body weight of pig and duck at 11 months age was 90 and 1.74 kg with an average daily weight gain of 333.33 and 6.44 g, respectively. The fish production in pig-fish and duck-fish systems were 2209 and 2964 kg/ha, respectively while the fish productivity in control pond was only 820 kg/ha. The total biomass (animal and fish) production was higher (pfeeding system compared to the traditional system, however the input/output ratio was 1:1.2 and 1:1.55 for commercial and traditional systems, respectively. It was inferred that the total biomass production per unit land was high (pfish were integrated together.

  19. Vine-shoot waste aqueous extract applied as foliar fertilizer to grapevines: Effect on amino acids and fermentative volatile content.

    Science.gov (United States)

    Sánchez-Gómez, R; Garde-Cerdán, T; Zalacain, A; Garcia, R; Cabrita, M J; Salinas, M R

    2016-04-15

    The aim of this work was to study the influence of foliar applications of different wood aqueous extracts on the amino acid content of musts and wines from Airén variety; and to study their relationship with the volatile compounds formed during alcoholic fermentation. For this purpose, the foliar treatments proposed were a vine-shoot aqueous extract applied in one and two times, and an oak extract which was only applied once. Results obtained show the potential of Airén vine-shoot waste aqueous extracts to be used as foliar fertilizer, enhancing the wine amino acid content especially when they were applied once. Similar results were observed with the aqueous oak extract. Regarding wine fermentative volatile compounds, there is a close relationship between musts and their wines amino acid content allowing us to discuss about the role of proline during the alcoholic fermentation and the generation of certain volatiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Controle de verrugose, melanose e leprose em laranja pera, com fungicidas e acaricida em mistura com adubo foliar Control of citrus scab, melanose and leprosis with fungicides and miticide mixed to foliar fertilizer

    Directory of Open Access Journals (Sweden)

    W. Bettiol

    1994-12-01

    Full Text Available Pulverizações com ziram (Rodisan SC, oxicloreto de cobre (Coprantol BR e óxido de fembutatina (Torque 500 SC em dosagens normais e subdosagens, isoladamente ou em mistura com um adubo foliar originário da fermentação glutâmica do melaço, controlaram de forma efetiva a verrugose, melanose e leprose em laranja pera. A aplicação isolada do resíduo da fermentação glutâmica do melaço, base para diversos adubos foliares, nas dosagens de 0,25% e 5% do produto comercial Ajifol, não interferiu na ocorrência de verrugose e melanose. Entretanto, ocasionou um aumento do número de frutos com leprose, do número de lesões de leprose por fruto e do número de ácaros da leprose (Brevipalpus phoenicis Geipsks nas folhas e nos frutos.Normal dosage and tinder-dosage sprays of ziram (Rodisan SC; cooper oxychloride (Coprantol BR and fenbutatin oxide (Torque 500 SC, isolately or in association with Ajifol, a foliar fertilizer from molasses glutamic fermentation, provided efficient control of scab, melanose and leprosis in 'Pera' orange. Sprays of Ajifol at 0.25 and 5% had no effect on the rate of occurrence of scab and melanose, but was correlated with increases in the rates of fruits with symptoms of leprosis, number of leprosis spots per fruit, and the number of leprosis mites (Brevipalpus phoenicis Geijskes on leaves and fruits.

  1. Closed-loop system for growth of aquatic biomass and gasification thereof

    Science.gov (United States)

    Oyler, James R.

    2017-09-19

    Processes, systems, and methods for producing combustible gas from wet biomass are provided. In one aspect, for example, a process for generating a combustible gas from a wet biomass in a closed system is provided. Such a process may include growing a wet biomass in a growth chamber, moving at least a portion of the wet biomass to a reactor, heating the portion of the wet biomass under high pressure in the reactor to gasify the wet biomass into a total gas component, separating the gasified component into a liquid component, a non-combustible gas component, and a combustible gas component, and introducing the liquid component and non-combustible gas component containing carbon dioxide into the growth chamber to stimulate new wet biomass growth.

  2. Biomass energy inventory and mapping system

    Energy Technology Data Exchange (ETDEWEB)

    Kasile, J.D. [Ohio State Univ., Columbus, OH (United States)

    1993-12-31

    A four-stage biomass energy inventory and mapping system was conducted for the entire State of Ohio. The product is a set of maps and an inventory of the State of Ohio. The set of amps and an inventory of the State`s energy biomass resource are to a one kilometer grid square basis on the Universal Transverse Mercator (UTM) system. Each square kilometer is identified and mapped showing total British Thermal Unit (BTU) energy availability. Land cover percentages and BTU values are provided for each of nine biomass strata types for each one kilometer grid square. LANDSAT satellite data was used as the primary stratifier. The second stage sampling was the photointerpretation of randomly selected one kilometer grid squares that exactly corresponded to the LANDSAT one kilometer grid square classification orientation. Field sampling comprised the third stage of the energy biomass inventory system and was combined with the fourth stage sample of laboratory biomass energy analysis using a Bomb calorimeter and was then used to assign BTU values to the photointerpretation and to adjust the LANDSAT classification. The sampling error for the whole system was 3.91%.

  3. Study on new biomass energy systems

    Science.gov (United States)

    1992-03-01

    A biomass energy total system is proposed, and its feasibility is studied. It is the system in which liquid fuel is produced from eucalyptuses planted in the desert area in Australia for production of biomass resource. Eucalyptus tree planting aims at a growth amount of 40 cu m/ha. per year and a practical application area of 45,000ha. CO2 fixation in the biomass plantation becomes 540,000 tons at a 12 ton/ha. rate. Assuming that 0.55 ton of liquid fuel is produced from 1 ton of biomass, a petrochemical plant having a production of 2.5 million bbl/year per unit (equivalent to the fuel used in the 100,000kW class power plant) is needed. Moreover, survey is made on practicality of diesel substitution fuel by esterification of palm oil, and a marked effect of reduction in soot/smoke and particulates in exhaust gas is confirmed. The biomass conversion process technology and the technology for afforestation at the arid land and irrigation are important as future subjects, and the technology development using a bench plant and a pilot plant is needed.

  4. EFFECT OF FOLIAR APPLICATION OF AMINOACIDS ON PLANT YIELD AND PHYSIOLOGICAL PARAMETERS IN FABA BEAN PLANTS IRRIGATED WITH SEAWATER

    Directory of Open Access Journals (Sweden)

    Magdi T. ABDELHAMID

    2015-01-01

    La salinidad disminuye el rendimiento en zonas áridas y semiáridas. Con el aumento de la demanda de agua de riego, se están buscando fuentes alternativas. El agua de mar se consideró previamente inutilizable para irrigación debido a su salinidad. Sin embargo, esta agua puede ser utilizada con éxito en cultivos bajo ciertas condiciones. Los aminoácidos son bioestimulantes bien conocidos por sus efectos positivos sobre el crecimiento y rendimiento, y por mitigar significativamente las lesiones causadas por estrés abióticos. Por lo tanto, en el presente studio se investigó el efecto del tratamiento exógeno con aminoácidos sobre plantas de haba que crecen bajo estrés salino por irrigación con agua de mar. Se evaluó la reducción de daños por salinidad en plantas de haba mediante el uso de una mezcla de aminoácidos para mejorar los parámetros morfológicos y bioquímicos, y por lo tanto elevar el nivel de rendimiento de la planta. Se desarrolló un experimento en macetas para paliar los efectos nocivos de la salinidad del agua de mar en el cv. De haba Giza 843 por aspersion foliar de una mezcla de aminoácidos con diferentes concentraciones (0, 500, 1000 o 1500 mg L-1. El riego de plantas de haba con niveles de agua de mar de 3.13 y 6.25 dS m-1 condujo a reducciones significativas en la altura de planta, número de hojas de la planta, peso fresco y seco de los brotes, y en el contenido foliar de pigmentos fotosintéticos, carbohidratos totales, polisacáridos y ácidos nucleicos (ADN y ARN. La salinidad del agua de mar indujo un mayor contenido de Na+ y Cl- , y una disminución del contenido de K+, K+: Na+, Ca2+, Mg2+ y P3+. El riego de plantas de haba con diferentes niveles de agua de mar redujo el rendimiento de semillas y el peso seco total por planta en comparación con las regadas con agua corriente. Además, el contenido de carbohidratos y proteína total en las semillas disminuyeron con el aumento de los niveles de salinidad del agua de mar. La

  5. Evaluación de fertilizantes foliares sobre la producción en café (Coffea arabica L.

    Directory of Open Access Journals (Sweden)

    Omar A. Sosa-M.

    2011-02-01

    Full Text Available En  la subestación experimental Paraguaicito de Cenicafé, ubicada en el municipio de Buenavista, departamento del Quindío,  se  realizó un ensayo con  fertilizantes  foliares, en café variedad Colombia de 24 meses de edad, con una distancia de siembra de 2 x 1 m. Las aplicaciones foliares se realizaron 58 ý 88 días después del pico de floración principal, con el fin de evaluar su efecto sobre la producción, el factor de conversión y el rendimiento en  trilla. Los  fertilizantes  foliares utilizados  fueron: Úrea, MAP, Nitrato de Calcio  al 1%, KCl, Kelatex Calcio, Kelatex Magnesio al 0,25%, Borosol al 0,3%, Nitrato de potasio al 4%, Kelatex calcio (0,25% + Borosol (0,3% y Úrea  (1% + KCl  (0,25% + MAP  (1%. Los  resultados obtenidos no mostraron diferencias estadísticas sobre la producción de la primera cosecha de 2007, ya que la aplicación foliar de los fertilizantes no influyó sobre el factor de conversión, el cual presentó un valor promedio de 5,17, que se puede considerar aceptable con  respecto al promedio nacional. El  rendimiento en  trilla no presentó diferencias  significativas  entre  tratamientos,  aunque presentó un factor promedio de 88,68kg (cps; valor por debajo  de  la  línea de comercialización  nacional  que actualmente es de 92,8kg (cps.

  6. Aplicações de fertilizantes foliares na nutrição e na produção do pimentão e do tomateiro Foliar fertilizer applications on nutrition and yield of sweet pepper and tomato

    Directory of Open Access Journals (Sweden)

    Hamilton S. Pereira

    2002-12-01

    Full Text Available Avaliou-se a eficiência de fertilizantes foliares, contendo Ca e B, na nutrição e produção do pimentão cv. Mayata e do tomate cv. Carmem, cultivados em estufas. O delineamento experimental foi de blocos ao acaso com seis tratamentos, três e quatro repetições, respectivamente, para o tomateiro e pimentão. Os tratamentos foram a água de retortagem de xisto (100; 78; 3,0; 12,5; 3,0; 12,5; 4,0 e 0,2 g.L-1 de N, K, S, Ca, Mg, B, Mn e Mo, respectivamente a 0,1; 0,25; 0,5 e 1%; os sais ácido bórico (170 g.kg-1 de B a 0,15% mais cloreto de cálcio a 0,15% e o quelato de cálcio (200 g.kg-1 de Ca a 0,1% e boro orgânico (10 g.kg-1 de B a 0,15%. A aplicação de água de retortagem de xisto a 0,5% via foliar aumentou em 27,4% a produção de frutos de pimentão e os teores foliares de Mg e S em relação à aplicação desse fertilizante a 0,1%. Para o tomateiro, as pulverizações com água de retortagem de xisto a 0,5 e 1% elevaram em 60,5 e 93,8% a produção de frutos em comparação à menor dose desse fertilizante. Os maiores teores de B nas folhas de pimentão e de tomate foram obtidos com as aplicações de sais e resultaram em sintomas visuais de toxicidade de B no início do desenvolvimento das culturas.The efficiency of foliar fertilizers was evaluated on nutrition and yield of sweet pepper cv. Mayata and tomato cv. Carmem, cultivated in plastic greenhouse. For the two experiments the experimental design consisted of randomized blocks with three and four replications for tomato and sweet pepper, respectively, and six treatments (schist retortage water 0.1; 0.25; 0.5 and 1%; boric acid 0.15% plus clorate calcium 0.15% and quelate Ca 0.1% plus organic B 0.15%. The foliar application of schist retortage water 0.5% increased 27.4% the sweet pepper fruit yield and foliar concentrations of Mg and S compared to this fertilizer 0.1%. For tomato, the application of schist retortage water 0.5 and 1% increased 60.5 and 93.8% the fruit yield

  7. Biomass and nutrient accumulation in young Prosopis Juliflora at Mombasa, Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Maghembe, J.A.; Kariuki, E.M.; Haller, R.D.

    1983-01-01

    Data are presented for 6-yr old P. juliflora, grown for quarry reclamation on: biomass of stems, large branches, small branches and leaves; height and volume of stems and large branches. All were calculated from regressions on based diameter. Volume was 209 cubic m/ha (stems), 75 cubic m/ha (large branches). Total biomass was 216 t/ha (77% in stems and large branches). Leaves plus small branches (22.6% of biomass) contained over 50% of the pool of nutrients N, P, K and Mg. Implications are discussed for site depletion as a result of total tree use for fuelwood and fodder. 25 references.

  8. Área foliar de Zinnia elegans Jacq. em diferentes épocas de semeadura e sistemas de condução.

    Directory of Open Access Journals (Sweden)

    Ana Christina Rossini Pinto

    1996-05-01

    Full Text Available No presente trabalho, estudaram-se os efeitos de épocas de semeadura e sistemas de condução sobre a área foliar de Zinnia elegans e determinaram-se equações de regressão para a estimativa da área foliar de plantas submetidas a diferentes sistemas de condução. Definiram-se três estádios de desenvolvimento da planta para coleta das folhas: anterior à visualização da gema florífera apical, com gema florífera apical visível e em floração. Em cada estádio, foram coletadas, respectivamente, 45, 50 e 140 folhas por tratamento, num experimento em blocos casualizados com cinco repetições, analisado em esquema fatorial 3 X 3 (3 épocas de semeadura e 3 sistemas de condução. Determinaram-se o comprimento ao longo da nervura principal (C, a largura máxima perpendicular à nervura principal (L e a área foliar real (AFR. Estudaram-se as relações existentes entre a área foliar real e o produto do comprimento pela largura da folha, por meio de modelos de regressão linear. Concluiu-se que a área foliar foi influenciada pela época de semeadura, no estádio anterior à visualização dagema florífera apical e no de gema florífera apical visível, e pela época de semeadura e sistema de condução, no estádio de floração plena. Embora todos os modelos de regressão obtidos fossem adequados para estimar a área foliar real, recomendam-se, pela sua simplicidade, os modelos lineares sem intercepto AFR = 0,808907 CL, para o estádio anterior à visualização da gema florífera apical, AFR = 0,814309 CL, para o estádio de gema florífera apical visível, e AFR = 0,806762 CL, para o estádio de floração plena.

  9. Current and potential utilisation of biomass energy in Fiji

    International Nuclear Information System (INIS)

    Prasad, S.

    1990-01-01

    Energy from biomass accounts for an average of 43% of the primary energy used in developing countries, with some countries totally dependent on biomass for all their energy needs. The most common use for biomass for energy is the provision of heat for cooking and heating; other uses include steam and electricity generation and crop and food drying. Fiji, a developing country, uses energy from wood and coconut wastes for cooking and copra drying. Bagasse from sugar mills is used to generate process steam as well as some 15 MW of electricity, for mill consumption and for sale to the national grid. Other, relatively small scale uses for biomass include the generation of steam and electricity for industry. This paper attempts to quantify the amount of biomass, in its various forms, available in Fiji and assesses the current potential utilisation of biomass for energy in Fiji. (author)

  10. Shrimp pond effluent dominates foliar nitrogen in disturbed mangroves as mapped using hyperspectral imagery

    NARCIS (Netherlands)

    Fauzi, A.; Skidmore, A.K.; van Gils, H.A.M.J.; Schlerf, M.; Heitkonig, I.M.A.

    2013-01-01

    Conversion of mangroves to shrimp ponds creates fragmentation and eutrophication. Detection of the spatial variation of foliar nitrogen is essential for understanding the effect of eutrophication on mangroves. We aim (i) to estimate nitrogen variability across mangrove landscapes of the Mahakam

  11. A comparison of two methods for estimating conifer live foliar moisture content

    Science.gov (United States)

    W. Matt Jolly; Ann M. Hadlow

    2012-01-01

    Foliar moisture content is an important factor regulating how wildland fires ignite in and spread through live fuels but moisture content determination methods are rarely standardised between studies. One such difference lies between the uses of rapid moisture analysers or drying ovens. Both of these methods are commonly used in live fuel research but they have never...

  12. Spatial Analysis of Depots for Advanced Biomass Processing

    Energy Technology Data Exchange (ETDEWEB)

    Hilliard, Michael R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Webb, Erin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sokhansanj, Shahabaddine [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eaton, Laurence M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinez Gonzalez, Maria I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    The objective of this work was to perform a spatial analysis of the total feedstock cost at the conversion reactor for biomass supplied by a conventional system and an advanced system with depots to densify biomass into pellets. From these cost estimates, the conditions (feedstock cost and availability) for which advanced processing depots make it possible to achieve cost and volume targets can be identified.

  13. Sistema integrado de recomendación y diagnosis: una alternativa para la interpretación de resultados del análisis foliar en café Diagnosis and recommendation integrated systems (dris: an alternative for interpretation of results of foliar analysis in coffee

    Directory of Open Access Journals (Sweden)

    Arboleda V. Celso

    1988-12-01

    Full Text Available Con el fin de proveer otras alternativas de interpretación de resultados del análisis foliar en café, diferente a la tabla
    de contenido "normal", se aplicó la metodología SIRD (Sistema Integrado de Recomendación y Oiagnosis5 a la información proveniente de un experimento con N-P-K,
    factorial de 33 realizado en CENICAFE, Colombia. Los nutrimentos incluidos en el análisis foliar y su interpretación fueron N, P, K, Ca, Mg, Mn, Fe y B. Por primera vez, con fines de diaqnóstico , se obtuvo la tabla de normas SIRD para café con base en una producción de 2.750 Kg de c.p.s/ha que
    incluye 1036 análisis foliares, para un total de 28 relaciones binarias de cociente entre los 8 nutrimentos mencionados. SI RO presentó la interpretación de resultados del análisis
    foliar en forma más clara que los elaborados con la Tabla de Contenido "normal", pues agrupó en orden de importancia en las necesidades del cultivo, todos los elementos nutritivos estudiados. Los diagnósticos elaborados mediante SIRD fueron válidos, pues al seguir su recomendación se observó respuesta tanto en la composición interna de la planta como en la producción de café. El calcio, según el enfoque SIRD, se mostró como un elemento potencialmente limitante de la producción en la zona donde se analizó la validez del enfoque. La suma en valor absoluto de los indicadores SIRD, llamados Indice de Balance Nutricional, presentó correlación negativa y altamente significativa para los análisis foliares correspondientes a los meses de mayo.Diagnosis and Recommendation Integrated Systems (DRIS norms were developed for the interpretation of N, P, K, Ca, Mg, Mn, Fe and B contents of coffee (Coffea arabica L. leaves, obtained from a N-P-K factorial experiment at two different locations of the Colombian Coffee Zone. For diagnostic purposes of coffee nutrition this is the first time a DRIS norm is derived. The DRIS approach allows a better
    interpretation

  14. Comportamento da área foliar da videira “Isabel” submetida a diferentes tipos e doses de biofertilizantes

    OpenAIRE

    Olivânia dos Santos Nascimento; Aldair Souza Medeiros; Atos Tavares Gomes; Fábio Itano dos Santos Alves; José Geraldo Rodrigues dos Santos

    2014-01-01

    Objetivou-se verificar o efeito da aplicação de diferentes tipos e doses de biofertilizante, na área foliar da videira ‘Isabel’ em cultivo orgânico nas condições edafoclimáticas de Catolé do Rocha-PB. Estudou-se os efeitos de 5 tipos de biofertilizante biofertilizante e 8 doses na área foliar da videira ‘Isabel’ após a primeira poda de produção. O experimento foi conduzido sob condições de campo, em área pertencente à Universidade Estadual da Paraíba, Campus IV. O delineamento adotado foi o d...

  15. Average stem biomass of Gundelia ( Gundelia tournefortii L.) in ...

    African Journals Online (AJOL)

    We studied Gundelia tournefortii L. to determine its stem biomass characteristics. Data were collected with accidental sampling method (1*1 m) in this area. A total of 15 plots were collected and 75 samples were studied in this study. However, the minimum, maximum and mean stem biomass of this plant was 5.5, 22.6 and ...

  16. Modelos alométricos para estimativa da área foliar de boldo pelo método não destrutivo

    Directory of Open Access Journals (Sweden)

    Samuel Ferreira da Silva

    2017-09-01

    Full Text Available A área foliar é uma das mais importantes medidas de avaliação do crescimento vegetativo, em virtude de estar ligada ao incremento de matéria seca nas plantas. O objetivo deste trabalho foi testar e obter o melhor modelo matemático para estimativa da área foliar do boldo (Plectranthus ornatus em função das suas dimensões alométricas. Utilizou-se um cultivo de boldo localizado na propriedade São Domingos no município de Alegre - ES, onde foram coletadas 80 folhas de 12 arbustos em outubro de 2013. As regressões foram determinadas considerando-se a área foliar real (AFR como variável dependente e o comprimento (C, largura (L e o produto do (C x L de cada folha como variáveis independentes. Com base nos resultados obtidos, conclui-se que a equação exponencial    y = 22033e0,1523x foi o melhor modelo matemático para estimar a área foliar do boldo, com R² de 0,62. Os modelos que utilizaram apenas a largura das folhas mostraram-se mais adequados para estimar a área das folhas do boldo, uma vez que apresentam maior correlação.

  17. Foliar Application of Potassium Fertilizer to Reduce the Effects of Salinity in Potato

    Directory of Open Access Journals (Sweden)

    H Molahoseini

    2017-06-01

    Full Text Available Introduction The potato of commerce (Solanum tuberosum L. is an annual dicot species. It is an autotetraploid with 4x=48 chromosomes. In Iran the consumption per capita of potato is over the 35 kg. Potato production is usually done without reducing yield in the irrigation water salinity 1-2 dS m-1, but 4.2 dS m-1 salinity reduces yield by 26 percent. 10, 25 and 50 percent yield reduction have been reported in soil electrical conductivity 2.5, 3.8 and 5.9 dS m-1, respectively . Between the ability of plant species to maintain potassium levels and their tolerance to salinity is positive correlation and on this basis nutritional irregularity due to increased salinity can be compensated by increasing of potassium fertilizer. In tolerant plant species, during times of increased salinity, selective absorption of potassium increased. The ability of plants to maintain a certain level of K/Na within the cell is essential for salt tolerance and sometimes of these ratios is used as indicators of salinity tolerance. Potato yield in response to salt stress, according to a variety of uses, can be reduced from 20 to 85 percent. Harmful effects of salinity in the beginning stages of tubers and tuber growth stage are important, therefore, tuber number and tuber size are two important components of yield which may reduce in the effect of salinity. Accelerate the aging process of the shoot, unwanted earliness, are of the reasons for the reduction in tuber size. Materials and Methods A field experiment was conducted in the agricultural and natural resources research center (31° 32´ N, 51° 51´ E, Isfahan, Islamic Republic of Iran. According to twenty years statistics, rainfall and temperature means for experiment location were 110 mm and 25 °C, respectively. The experiment was conducted as a factorial in a completely randomized block design with four replications. The treatments were three levels of foliar K application (control, K sulphate 10 ppm, and 2.5 ppm

  18. Biomass energy in Central America

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J M [Biomass Users` Network, Regional Office for Central America and the Caribbean, San Jose (Costa Rica)

    1995-12-01

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  19. Biomass energy in Central America

    International Nuclear Information System (INIS)

    Blanco, J.M.

    1995-01-01

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  20. Performance evaluation of a biomass boiler on the basis of heat loss method and total heat values of steam

    International Nuclear Information System (INIS)

    Munir, A.; Alvi, J.Z.; Ashfaq, S.; Ghafoor, A.

    2014-01-01

    Pakistan being an agricultural country has large resources of biomass in the form of crop residues like wood, wheat straw, rice husk, cotton sticks and bagasse. Power generation using biomass offers an excellent opportunity to overcome current scenario of energy crises. Of the all biomass resources, bagasse is one of the potential energy sources which can be successfully utilized for power generation. During the last decade, bagasse fired boilers attained major importance due to increasing prices of primary energy (e.g. fossil fuels). Performance of a bagasse fired boiler was evaluated at Shakarganj Sugar Mill, Bhone-Jhang having steam generation capacity of 80 tons h/sup -1/at 25 bar working pressure. The unit was forced circulation and bi-drum type water tube boiler which was equipped with all accessories like air heater, economizer and super-heater. Flue gas analyzer and thermocouples were used to record percent composition and temperature of flue gases respectively. Physical analysis of bagasse showed gross calorific value of bagasse as 2326 kCal kg/sup -1/. Ultimate analysis of bagasse was performed and the actual air supplied to the boiler was calculated to be 4.05 kg per kg of bagasse under the available resources of the plant. Performance evaluation of the boiler was carried out and a complete heat balance sheet was prepared to investigate the different sources of heat losses. The efficiency of the boiler was evaluated on the basis of heat losses through boiler and was found to be 56.08%. It was also determined that 2 kg of steam produced from 1 kg of bagasse under existing condition of the boiler. The performance evaluation of the boiler was also done on the basis of total heat values of steam and found to be 55.98%. The results obtained from both the methods were found almost similar. Effects of excess air, stack and ambient temperature on the efficiency of boiler have also been evaluated and presented in the manuscript. (author)

  1. Estimating aboveground tree biomass on forest land in the Pacific Northwest: a comparison of approaches

    Science.gov (United States)

    Xiaoping Zhou; Miles A. Hemstrom

    2009-01-01

    Live tree biomass estimates are essential for carbon accounting, bioenergy feasibility studies, and other analyses. Several models are currently used for estimating tree biomass. Each of these incorporates different calculation methods that may significantly impact the estimates of total aboveground tree biomass, merchantable biomass, and carbon pools. Consequently,...

  2. Foliar and soil chemistry at red spruce sites in the Monongahela National Forest

    Science.gov (United States)

    Stephanie J. Connolly

    2010-01-01

    In 2005, soil and foliar chemistry were sampled from 10 sites in the Monongahela National Forest which support red spruce. Soils were sampled from hand-dug pits, by horizon, from the O-horizon to bedrock or 152 cm, and each pit was described fully. Replicate, archived samples also were collected.

  3. Interactive influence of leaf age, light intensity, and girdling on green ash foliar chemistry and emerald ash borer development.

    Science.gov (United States)

    Chen, Yigen; Poland, Therese M

    2009-07-01

    Biotic and abiotic environmental factors affect plant nutritional quality and defensive compounds that confer plant resistance to herbivory. Influence of leaf age, light availability, and girdling on foliar nutrition and defense of green ash (Fraxinus pennsylvanica Marsh) was examined in this study. Longevity of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), adults reared on green ash foliage subjected to these factors was assayed. Mature leaves generally were more nutritious with greater amino acids and a greater ratio of protein to non-structural carbohydrate (P:C) than young leaves, in particular when trees were grown in shade. On the other hand, mature leaves had lower amounts of trypsin and chymotrypsin inhibitors, and total phenolics compared to young leaves. Lower defense of mature leaves alone, or along with higher nutritional quality may lead to increased survival and longevity of emerald ash borer feeding on mature leaves. Sunlight reduced amino acids and P:C ratio, irrespective of leaf age and girdling, and elevated total protein of young foliage, but not protein of mature leaves. Sunlight also dramatically increased all investigated defensive compounds of young, but not mature leaves. Girdling reduced green ash foliar nutrition, especially, of young leaves grown in shade and of mature leaves grown in sun. However emerald ash borer performance did not differ when fed leaves from trees grown in sun or shade, or from girdled or control trees. One explanation is that emerald ash borer reared on lower nutritional quality food may compensate for nutrient deficiency by increasing its consumption rate. The strong interactions among leaf age, light intensity, and girdling on nutrition and defense highlight the need for caution when interpreting data without considering possible interactions.

  4. Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions

    International Nuclear Information System (INIS)

    Schaub, M.; Skelly, J.M.; Zhang, J.W.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.; Davis, D.D.; Steiner, K.C.

    2005-01-01

    The crowns of five canopy dominant black cherry (Prunus serotina Ehrh.), five white ash (Fraxinus americana L.), and six red maple (Acer rubrum L.) trees on naturally differing environmental conditions were accessed with scaffold towers within a mixed hardwood forest stand in central Pennsylvania. Ambient ozone concentrations, meteorological parameters, leaf gas exchange and leaf water potential were measured at the sites during the growing seasons of 1998 and 1999. Visible ozone-induced foliar injury was assessed on leaves within the upper and lower crown branches of each tree. Ambient ozone exposures were sufficient to induce typical symptoms on cherry (0-5% total affected leaf area, LAA), whereas foliar injury was not observed on ash or maple. There was a positive correlation between increasing cumulative ozone uptake (U) and increasing percent of LAA for cherry grown under drier site conditions. The lower crown leaves of cherry showed more severe foliar injury than the upper crown leaves. No significant differences in predawn leaf water potential (ψ L ) were detected for all three species indicating no differing soil moisture conditions across the sites. Significant variation in stomatal conductance for water vapor (g wv ) was found among species, soil moisture, time of day and sample date. When comparing cumulative ozone uptake and decreased photosynthetic activity (P n ), red maple was the only species to show higher gas exchange under mesic vs. drier soil conditions (P wv and P n demonstrate the strong influence of heterogeneous environmental conditions within forest canopies. - Within the heterogeneous environment of a mature forest, many factors in addition to soil moisture play a significant role in determining exposure/response relationships to ozone

  5. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  6. Estimating forest biomass and volume using airborne laser data

    Science.gov (United States)

    Nelson, Ross; Krabill, William; Tonelli, John

    1988-01-01

    An airborne pulsed laser system was used to obtain canopy height data over a southern pine forest in Georgia in order to predict ground-measured forest biomass and timber volume. Although biomass and volume estimates obtained from the laser data were variable when compared with the corresponding ground measurements site by site, the present models are found to predict mean total tree volume within 2.6 percent of the ground value, and mean biomass within 2.0 percent. The results indicate that species stratification did not consistently improve regression relationships for four southern pine species.

  7. Acid-functionalized nanoparticles for biomass hydrolysis

    Science.gov (United States)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during

  8. Spatial and temporal distribution of tropical biomass burning

    Science.gov (United States)

    Hao, Wei Min; Liu, Mei-Huey

    1994-12-01

    A database for the spatial and temporal distribution of the amount of biomass burned in tropical America, Africa, and Asia during the late 1970s is presented with a resolution of 5° latitude × 5° longitude. The sources of burning in each grid cell have been quantified. Savanna fires, shifting cultivation, deforestation, fuel wood use, and burning of agricultural residues contribute about 50, 24, 10, 11, and 5%, respectively, of total biomass burned in the tropics. Savanna fires dominate in tropical Africa, and forest fires dominate in tropical Asia. A similar amount of biomass is burned from forest and savanna fires in tropical America. The distribution of biomass burned monthly during the dry season has been derived for each grid cell using the seasonal cycles of surface ozone concentrations. Land use changes during the last decade could have a profound impact on the amount of biomass burned and the amount of trace gases and aerosol particles emitted.

  9. Caracterizacion de nueve genotipos de maiz (Zea mays L. en relacion a area foliar y coeficiente de extincion de luz Caracterização de nove genótipos de milho (Zea mays L. en relação à área foliar e coeficiente de extinção de luz Evaluation of nine corn (Zea mays L. genotypes in relation to leaf area and light extinction coefficient

    Directory of Open Access Journals (Sweden)

    R.G. Camacho

    1995-08-01

    Full Text Available Se caracterizaron nueve materiales genéticos de maíz (Arichuna, Baraure, Braquítico, Experimental-2, Foremaíz PB, FM-6, Obregón, Proscca-71 y Tocorón, en relación con área promedio de hoja por planta, área foliar total por planta (AFT, índice de área foliar (IAF, y coeficiente de extinción de luz (K a 0,50 m, 1,00 m, 1,50 m, 2,00 m y 2,50 m de altura de la planta (medidos a partir del suelo. Además, estudios de correlación y regresión simple fueron hechos entre rendimiento (R y IAF. Se encontraron rangos de variación para las diversas variables: Area promedio de hoja por planta(471cm² para Foremaiz PB y 606 cm² para Baraure; AFT ( 5 327cm² en Foremaiz PB y 8 411 cm² para Braquítico; IAF (4,26, Foremaiz PB y 6,67, Braquítico; K (0,23 para Braquítico y 0,42, Arichuna; rendimiento (2 877 kg.ha-1, Braquítico y 4 784 kg.ha-1 en Tocorón. La relación entre rendimiento y IAF no fue significativa(r = 0,07. La asociación de IAF y K file muy bien descrita por la ley de Beer.Foram caracterizados nove materiais genéticos de milho (Arichuna, Baraure, Braquítico, Experimental-2, Foremaíz PB, FM-6, Obregón, Proseca-71 y Tocorón com relação a área foliar média de folhas por planta(AF, área foliar total por planta (AFT, índice de área foliar (IAF e coeficiente de extinção de luz (K a 0,50m, 1,00m, 1,50m, 2,00m e 2,50m de altura (a partir do solo. Foram encontrados os seguintes intervalos de variação para as diversas variáveis: área média de folhas por planta (471 cm² para Foremaíz PB e 606 cm² Baraure; área foliar total por planta: 5 327 cm² (Foremaiz PB e 8 411 cm² (Braquítico, índice de área foliar: 4,26 (Foremaiz PB e 6,67 (Braquítico; coeficiente de extinção de luz: 0,23 (Braquítico e 0,42 (Arichuna; rendimento: 2 877 kg.ha-1 (Braquítico e 4 784 kg.ha-1 (Tocorón. Não foi encontrada relação entre o rendimento e o IAF (r = 0,07, e a associação do IAF e K foi muito bem explicada pela lei de Beer

  10. Bioconcentraciones foliares de elementos minerales en Lippia alba (salvia morada)

    OpenAIRE

    Schroeder, María A; Burgos, Ángela M

    2013-01-01

    Introducción: la salvia morada es un subarbusto aromático, que crece de modo espontáneo en América Central y del Sur. Frecuentemente es cultivada en jardines como ornamental, por su intenso aroma y sus propiedades medicinales y culinarias. No se encontraron estudios sobre parámetros nutricionales en esta especie. Objetivos: determinar las bioconcentraciones foliares de elementos minerales en Lippia alba (Mill.) N. E. Br. ex Britton & P. Wilson que crece naturalmente en el bioambiente del nort...

  11. The contribution of biomass burning to global warming: An integrated assessment

    International Nuclear Information System (INIS)

    Lashof, D.A.

    1991-01-01

    An analysis of studies of emissions form biomass burning suggests that while biomass burning is less significant than fossil fuel combustion on global basis, it is a major contributor to the greenhouse gas buildup, responsible for perhaps 10% to 15% of the total forcing from current emissions. Uncertainties about emissions and the relative impact of different gases are large, yielding a range of 5% to 30%. Nonetheless, biomass burning is probably the dominant source of greenhouse gases in some regions. A comprehensive policy to limit global climate change must, therefore, address biomass burning

  12. Assessment of forest management influences on total live aboveground tree biomass in William B Bankhead National Forest, Alabama

    Science.gov (United States)

    Callie Schweitzer; Dawn Lemke; Wubishet Tadesse; Yong Wang

    2015-01-01

    Forests contain a large amount of carbon (C) stored as tree biomass (above and below ground), detritus, and soil organic material. The aboveground tree biomass is the most rapid change component in this forest C pool. Thus, management of forest resources can influence the net C exchange with the atmosphere by changing the amount of C stored, particularly in landscapes...

  13. ABOVE GROUND BIOMASS MICRONUTRIENTS IN A SEASONAL SUBTROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Hamilton Luiz Munari Vogel

    2015-06-01

    Full Text Available In the above ground biomass of a native forest or plantation are stored large quantities of nutrients, with few studies in the literature, especially concerning micronutrients. The present work aimed to quantify the micronutrients in above ground biomass in a Seasonal Subtropical forest in Itaara-RS, Brazil. For the above ground biomass evaluation, 20 trees of five different diameter classes were felled. The above ground biomass was separated in the following compartments: stem wood, stem bark, branches and leaves. The contents of B, Cu, Fe, Mn and Zn in the biomass samples were determined. The stock of micronutrients in the biomass for each component was obtained based on the estimated dry biomass, multiplied by the nutrient content. The total production of above ground biomass was estimated at 210.0 Mg.ha-1. The branches, stem wood, stem bark and leaves corresponded to 48.8, 43.3, 5.4 and 2.4% of the above ground biomass. The lower levels of B, Cu, Fe and Mn are in stem wood, except for Zn; in the branches and trunk wood are the largest stocks of B, Cu, Fe and Mn. In the branches, leaves and trunk bark are stored most micronutrients, pointing to the importance of these to remain on the soil.

  14. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblobby pine forest ecosystem grown in elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Springer, C. J.; Thomas, R. B.; Delucia, E. H.

    2005-01-01

    The effects of elevated carbon dioxide concentration on the relationship between light-saturated net photosynthesis and area-based foliar nitrogen concentration in the canopy of a loblobby pine forest at the Duke Forest FACE experiment was examined. Two overstory and four understory tree species were examined at their growth carbon dioxide concentrations during the early summer and late summer of 1999, 2001 and 2002. Light-saturated net photosynthesis and foliar nitrogen relationship were compared to determine if the stimulatory effects of elevated carbon dioxide on net photosynthesis had declined. Results at all three sample times showed no difference in either the slopes, or in the y-intercepts of the net photosynthesis-foliar nitrogen relationship when measured at common carbon dioxide concentrations. Net photosynthesis was also unaffected by growth in elevated carbon dioxide, indicating that these overstory and understory trees continued to show strong stimulation of photosynthesis by elevated carbon dioxide. 46 refs., 6 tabs., 3 figs

  15. Estimativa não destrutiva do teor foliar de nitrogênio em cacaueiro utilizando clorofilômetro

    Directory of Open Access Journals (Sweden)

    Paulo Alfredo de Santana Dantas

    2012-09-01

    Full Text Available A substituição do método tradicional de avaliação do teor de nitrogênio (N na planta pelo uso do medidor portátil de clorofilas do tipo SPAD é promissora por se tratar de um aparelho portátil que estabelece um índice de modo não destrutivo, instantâneo e com menor custo. Objetivou-se determinar a capacidade deste aparelho em estimar o teor foliar de N do cacaueiro. A área de abrangência deste estudo envolve as zonas climáticas úmida e úmida a subúmida da região cacaueira da Bahia. Foram selecionadas dez propriedades rurais, em cada zona, com lavoura em sistema agrossilvicultural, que tiveram a área renovada por enxertia de broto basal com clones tolerantes à vassoura-de-bruxa. Em cada propriedade, quatro plantas com idade superior a quatro anos foram selecionadas em condições edáficas e topográficas distintas. Foram coletadas oito folhas sadias por planta e, em cada uma delas, foram feitas seis leituras do índice SPAD. Além disso, determinaram-se o teor e o conteúdo de N na folha, a área foliar (AF e a massa foliar específica (MFE. O índice SPAD correlacionou se, significativa e positivamente com o teor foliar de N (r = 0,74, com a AF (r = 0,62 e negativamente com a MFE (r = -0,57. Não houve correlação entre o conteúdo de N e o índice SPAD. O modelo de regressão linear simples para a predição do teor de N, a partir do índice SPAD, sem a distinção dos ambientes, foi o mais apropriado.

  16. COFIRING BIOMASS WITH LIGNITE COAL; FINAL

    International Nuclear Information System (INIS)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy and Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO(sub x) emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a$1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community

  17. Uptake of soil-, foliar-and pod-applied nitrogen and phosphorus by rape (Brassica napus L.)

    International Nuclear Information System (INIS)

    Zhang Qinzheng; Xi Haifu; Lang Xianhua

    1992-01-01

    Uptake of soil-applied and foliar-and pod applied N, P by rape was studied by using 32 P and 15 N labelled fertilizer under pot culture condition. Application of phosphorus fertilizer to purplish clayey paddy soil which was poor in available P had influence on utilization of basal-dressed NH 4 HCO 3 by rape and subsequently on its growth and seed yield. Utilization rate of applied N in whole plant and seeds were 3.66 and 5.13 fold respectively as compared with control when 187.5 kg/ha of superphosphate were applied and increased with increasing application of superphosphate (187.5-562.5 kg/ha). Application of P fertilizer not only increased uptake of N but also promoted transportation of N from vegetative organs to seeds. Rape plant uptook 69.09% of foliar-and pod-applied N in form of 2% solution of urea after flowering and transported the N to seeds in greater proportion than that of soil-applied N. In the same period, 60% of foliar- and pod-applied P in form of 0.2% KH 2 PO 4 was absorbed by rape plant, most of which was in leaves. Uptake of N and P by rape increased 17.89% and 27.78% respectively when urea and phosphate was applied together compared with using urea and phosphate alone. Uptake of basal-dressed P by rape plant was 6% at early growing stage

  18. Non-destructive estimation of Oecophylla smaragdina colony biomass

    DEFF Research Database (Denmark)

    Pinkalski, Christian Alexander Stidsen; Offenberg, Joachim; Jensen, Karl-Martin Vagn

    in mango plantations in Darwin, Australia. The total nest volume of O. smaragdina colonies in a tree was related to the activity of the ants (R2=0.85), estimated as the density of ant trails in the tree. Subsequently, the relation between nest volume and ant biomass (R2=0.70) was added to enable...... a prediction of ant biomass directly from ant activity. With this combined regression the ant biomass in a tree equaled 244.5 g fresh mass*ant activity. Similarly, the number of workers in trees was estimated using the relationship between nest volume and worker numbers (R2=0.84). Based on the model, five O...

  19. Estimación de la biomasa foliar seca de Lippia graveolens Kunth del sureste de Coahuila

    Directory of Open Access Journals (Sweden)

    Eulalia Edith Villavicencio Gutiérrez

    2018-01-01

    Full Text Available El orégano es un recurso forestal no maderable de importancia comercial, considerado como una especie aromática y culinaria que se aprovecha en las zonas semiáridas de Coahuila, con una producción mayor a 700 t anuales, y representa para el sector rural una opción productiva. Con el propósito de cuantificar el recurso y contribuir a regular su aprovechamiento, se determinaron las relaciones alométricas de individuos de orégano recolectados en 20 poblaciones naturales distribuidas en los municipios General Cepeda, Parras de la Fuente y Ramos Arizpe, Coahuila, para seleccionar un modelo que estime la biomasa foliar seca (Bfs de la planta. A partir de un muestreo destructivo, se analizaron 706 plantas, de las cuales se obtuvo su altura total (At, diámetro mayor arbustivo (DM y diámetro menor arbustivo (Dm, diámetro promedio (Dp de la copa y biomasa foliar seca (Bfs. Con la prueba de correlación de Pearson se eligieron las variables más relacionadas con la Bfs , las cuales se emplearon para ajustar 10 modelos de regresión mediante el procedimiento PROC MODEL. El modelo seleccionado fue el de Schumacher-Hall Bfs 0.00599(Dp1.935454(At0.256803por registrar valores superiores de R2aju (0.80 y el menor valor en la raíz del cuadrado medio del error (RCME, 0.304, considerando la significancia de sus parámetros (p≤ 0.0001, a partir de este se elaboró una tabla de doble entrada que estima la Bfs de las plantas.

  20. LCA of domestic and centralized biomass combustion: The case of Lombardy (Italy)

    International Nuclear Information System (INIS)

    Caserini, S.; Livio, S.; Giugliano, M.; Grosso, M.; Rigamonti, L.

    2010-01-01

    This paper analyzes and compares the environmental impacts of biomass combustion in small appliances such as domestic open fireplaces and stoves, and in two types of centralized combined heat and power plants, feeding district heating networks. The analysis is carried out following a Life Cycle Assessment (LCA) approach. The expected savings of GHG (greenhouse gases) emissions due to the substitution of fossil fuels with biomass are quantified, as well as emissions of toxic pollutants and substances responsible for acidification and ozone formation. The LCA results show net savings of GHG emissions when using biomass instead of conventional fuels, varying from 0.08 to 1.08 t of CO 2 eq. per t of dry biomass in the different scenarios. Avoided GHG emissions thanks to biomass combustion in Lombardy are 1.32 Mt year -1 (1.5% of total regional GHG emissions). For the other impact categories, the use of biomass in district heating systems can again cause a consistent reduction of impacts, whereas biomass combustion in residential devices shows higher impacts than fossil fuels with a particular concern for PAH, VOC and particulate matter emissions. For example, in Lombardy, PM10 emissions from domestic devices are about 8100 t year -1 , corresponding to almost one third of the total particulate emissions in 2005. (author)

  1. Ozone uptake (flux) as it relates to ozone-induced foliar symptoms of Prunus serotina and Populus maximowizii x trichocarpa

    International Nuclear Information System (INIS)

    Orendovici-Best, T.; Skelly, J.M.; Davis, D.D.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.

    2008-01-01

    Field studies were conducted during 2003 and 2004 from early June to the end of August, at 20 sites of lower or higher elevation within north-central Pennsylvania, using seedlings of black cherry (Prunus serotina, Ehrh.) and ramets of hybrid poplar (Populus maximowizii x trichocarpa). A linear model was developed to estimate the influence of local environmental conditions on stomatal conductance. The most significant factors explaining stomatal variance were tree species, air temperature, leaf vapor pressure deficit, elevation, and time of day. Overall, environmental factors explained less than 35% of the variation in stomatal conductance. Ozone did not affect gas exchange rates in either poplar or cherry. Ozone-induced foliar injury was positively correlated with cumulative ozone exposures, expressed as SUM40. Overall, the amount of foliar injury was better correlated to a flux-based approach rather than to an exposure-based approach. More severe foliar injuries were observed on plants growing at higher elevations. - Within heterogeneous environments, ozone flux does not completely explain the variation observed in ozone-induced visible injury

  2. Bird communities and biomass yields in potential bioenergy grasslands.

    Directory of Open Access Journals (Sweden)

    Peter J Blank

    Full Text Available Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields, and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.

  3. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation

    Energy Technology Data Exchange (ETDEWEB)

    Larue, Camille, E-mail: camille.larue@rub.de [ISTerre, Université Grenoble 1, CNRS, F-38041 Grenoble (France); Castillo-Michel, Hiram, E-mail: castillo@esrf.fr [ESRF, Beamline ID21, Grenoble (France); Sobanska, Sophie, E-mail: sophie.sobanska@univ-lille1.fr [LASIR, UMR CNRS 8516, Université Lille 1, Bât C5, 59655 Villeneuve d’Ascq Cedex (France); Cécillon, Lauric, E-mail: lauric.cecillon@irstea.fr [ISTerre, Université Grenoble 1, CNRS, F-38041 Grenoble (France); Bureau, Sarah, E-mail: sarah.bureau@ujf-grenoble.fr [ISTerre, Université Grenoble 1, CNRS, F-38041 Grenoble (France); Barthès, Véronique, E-mail: veronique.barthes@cea.fr [CEA/LITEN/DTNM/L2T, CEA Grenoble, 38054 Grenoble Cedex 9 (France); Ouerdane, Laurent, E-mail: laurent.ouerdane@univ-pau.fr [LCABIE/IPREM-UMR 5254, Université de Pau et des Pays de l‘Adour, 64053 Pau Cedex 9 (France); Carrière, Marie, E-mail: marie.carriere@cea.fr [UMR E3 CEA-UJF/LAN, 38054 Grenoble Cedex 9 (France); Sarret, Géraldine, E-mail: geraldine.sarret@ujf-grenoble.fr [ISTerre, Université Grenoble 1, CNRS, F-38041 Grenoble (France)

    2014-01-15

    Highlights: • Ag-NPs are internalized inside lettuce leaves after foliar exposure to a suspension of Ag-NPs. • A classical washing process is inefficient at decreasing significantly Ag content. • Ag-NPs in plants undergo oxidation, and resulting ionic Ag are complexed with organic compounds including thiol-containing molecules. • Foliar exposure to Ag-NPs does not lead to detectable phytotoxicity symptoms. -- Abstract: The impact of engineered nanomaterials on plants, which act as a major point of entry of contaminants into trophic chains, is little documented. The foliar pathway is even less known than the soil-root pathway. However, significant inputs of nanoparticles (NPs) on plant foliage may be expected due to deposition of atmospheric particles or application of NP-containing pesticides. The uptake of Ag-NPs in the crop species Lactuca sativa after foliar exposure and their possible biotransformation and phytotoxic effects were studied. In addition to chemical analyses and ecotoxicological tests, micro X-ray fluorescence, micro X-ray absorption spectroscopy, time of flight secondary ion mass spectrometry and electron microscopy were used to localize and determine the speciation of Ag at sub-micrometer resolution. Although no sign of phytotoxicity was observed, Ag was effectively trapped on lettuce leaves and a thorough washing did not decrease Ag content significantly. We provide first evidence for the entrapment of Ag-NPs by the cuticle and penetration in the leaf tissue through stomata, for the diffusion of Ag in leaf tissues, and oxidation of Ag-NPs and complexation of Ag{sup +} by thiol-containing molecules. Such type of information is crucial for better assessing the risk associated to Ag-NP containing products.

  4. Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for 'new' Mn hyperaccumulators and potential applications in taxonomy.

    Science.gov (United States)

    Fernando, Denise R; Guymer, Gordon; Reeves, Roger D; Woodrow, Ian E; Baker, Alan J; Batianoff, George N

    2009-04-01

    The analysis of herbarium specimens has previously been used to prospect for 'new' hyperaccumulators, while the use of foliar manganese (Mn) concentrations as a taxonomic tool has been suggested. On the basis of their geographic and taxonomic affiliations to known Mn hyperaccumulators, six eastern Australian genera from the Queensland Herbarium collection were sampled for leaf tissue analyses. ICP-OES was used to measure Mn and other elemental concentrations in 47 species within the genera Austromyrtus, Lenwebbia, Gossia (Myrtaceae), Macadamia (Proteaceae), Maytenus and Denhamia (Celastraceae). The resulting data demonstrated (a) up to seven 'new' Mn hyperaccumulators, mostly tropical rainforest species; (b) that one of these 'new' Mn hyperaccumulators also had notably elevated foliar Ni concentrations; (c) evidence of an interrelationship between foliar Mn and Al uptake among the Macadamias; (d) considerable variability of Mn hyperaccumulation within Gossia; and (e) the possibility that Maytenus cunninghamii may include subspecies. Gossia bamagensis, G. fragrantissima, G. sankowsiorum, G. gonoclada and Maytenus cunninghamii were identified as 'new' Mn hyperaccumulators, while Gossia lucida and G. shepherdii are possible 'new' Mn hyperaccumulators. Of the three Myrtaceae genera examined, Mn hyperaccumulation appears restricted to Gossia, supporting its recent taxonomic revision. In the context of this present investigation and existing information, a reassesment of the general definition of Mn hyperaccumulation may be warranted. Morphological variation of Maytenus cunninghamii at two extremities was consistent with variation in Mn accumulation, indicating two possible 'new' subspecies. Although caution should be exercised in interpreting the data, surveying herbarium specimens by chemical analysis has provided an effective means of assessing foliar Mn accumulation. These findings should be followed up by field studies.

  5. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation

    International Nuclear Information System (INIS)

    Larue, Camille; Castillo-Michel, Hiram; Sobanska, Sophie; Cécillon, Lauric; Bureau, Sarah; Barthès, Véronique; Ouerdane, Laurent; Carrière, Marie; Sarret, Géraldine

    2014-01-01

    Highlights: • Ag-NPs are internalized inside lettuce leaves after foliar exposure to a suspension of Ag-NPs. • A classical washing process is inefficient at decreasing significantly Ag content. • Ag-NPs in plants undergo oxidation, and resulting ionic Ag are complexed with organic compounds including thiol-containing molecules. • Foliar exposure to Ag-NPs does not lead to detectable phytotoxicity symptoms. -- Abstract: The impact of engineered nanomaterials on plants, which act as a major point of entry of contaminants into trophic chains, is little documented. The foliar pathway is even less known than the soil-root pathway. However, significant inputs of nanoparticles (NPs) on plant foliage may be expected due to deposition of atmospheric particles or application of NP-containing pesticides. The uptake of Ag-NPs in the crop species Lactuca sativa after foliar exposure and their possible biotransformation and phytotoxic effects were studied. In addition to chemical analyses and ecotoxicological tests, micro X-ray fluorescence, micro X-ray absorption spectroscopy, time of flight secondary ion mass spectrometry and electron microscopy were used to localize and determine the speciation of Ag at sub-micrometer resolution. Although no sign of phytotoxicity was observed, Ag was effectively trapped on lettuce leaves and a thorough washing did not decrease Ag content significantly. We provide first evidence for the entrapment of Ag-NPs by the cuticle and penetration in the leaf tissue through stomata, for the diffusion of Ag in leaf tissues, and oxidation of Ag-NPs and complexation of Ag + by thiol-containing molecules. Such type of information is crucial for better assessing the risk associated to Ag-NP containing products

  6. Behavior of Foliares Applications of Humus Mixed with the NPK in Rice Cultivation (Oryza Sativa L..

    Directory of Open Access Journals (Sweden)

    Rolando Saborit Reyes

    2013-12-01

    Full Text Available Taking into consideration the observation of one green yellowsh clorosis in the plantations of rice, after the cold campaings and the disminishing of the agricultural efficiency of the cerial in areas of Saint Elena Land belonging to the fortified cooperatove of credits and service (FCCS Camilo Cienfuegos in Las Nuevas, La Sierpe, Province of Sancti – Spiritus, were done foliars aplications with mineral fertilizing as, N.P.K to different doses and moments of applications, in order to obtain alternative of nutrition for the cultivation, the work was done on a green yellowish ferralitic ground since 2009 to 2011, using LP-5 cultivation doing the sowing by the method of transplantation, fertilization. It was done mixing 49L. ha-¹ of liquid warm humus with 0.35 Kg. ha-¹ of nitrogen, phosphorus and potassium. The results shown that the use of the foliar fertilization with liquid worm humus mixed with the N.P.K minerals, increased the efficiency, obtaining 5.3t. ha-¹ as an average in different variants used. The economic analysis showed that the treatment with 40% of nitrogen was reduced with seven foliars applications, it was highest to the witness N.P.K in 1.5t . ha-¹ of the grain obtaining a relative benefit of 4264.55 pesos by hectarea.

  7. Foliar uptake of 137Cs from the water column by aquatic macrophytes

    International Nuclear Information System (INIS)

    Kelly, M.S.; Pinder, J.E. III

    1996-01-01

    A transplant experiment was performed to determine the relative importances of root uptake from the sediments and foliar uptake from the water column in determining the accumulation of 137 Cs by aquatic macrophytes. Uncontaminated individuals of three species, Brasenia schreberi, Nymphaea odorata and Nymphoides cordata, were transplanted into pots containing either contaminated sediments (i.e. 1.2 Bq 137 Cs g -1 dry mass) or uncontaminated sediments (i.e. -1 dry mass) and immersed in Pond B, a former reactor cooling pond where 137 Cs concentrations in surface waters range from 0.4 to 0.8 Bq liter -1 . The plants is uncontaminated sediments rapidly accumulated 137 Cs from the water column and after 35 days of immersion had 137 Cs concentrations in leaves that were: (1) not statistically significantly different from those for plants in contaminated sediments; and (2) similar to those for the same species growing naturally in Pond B. The similarity in 137 Cs concentrations between naturally-occurring plants and those in pots with uncontaminated sediments suggests that foliar uptake from the water column is the principal mode of Cs accumulation by these species in Pond B. (author)

  8. Movement of foliar uptake radionuclides in radish. [Raphanus sativus

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, K.; Kamada, H.

    1986-05-01

    The purpose of this investigation was to study the translocation of /sup 60/Co, /sup 54/Mn, and two representative fission products of /sup 85/Sr and /sup 137/Cs in radish (Raphanus sativus) and to provide a translocation rate for a given nuclide. The effect of air humidity on the foliar uptake-translocation was also investigated. Retention of the radionuclides was usually higher in plants grown under conditions of 100% humidity at night as opposed to conditions of a constant humidity of 70%. Results indicate that Co and Cs translocate much more than Mn and Sr in the plant.

  9. Characterization and ethanol potential from giant cassava (Manihot esculenta) stem waste biomass

    Science.gov (United States)

    Septia, E.; Supriadi; Suwinarti, W.; Amirta, R.

    2018-04-01

    Manihot esculenta stem waste biomass is promising material for ethanol production since it is unutilized substance from cassava production. Nowadays, cassava is the most common food in Indonesian society. The aims of this study were to identify availability and characteristic of giant cassava (M. esculenta) stem waste biomass for ethanol feedstock. In term of that, four plots with the size of 5m x 5m were made to calculate the total stem biomass obtained after harvesting process. In this study, various concentrations of alkaline were used to degrade lignin from the substrate. The effects of alkaline pretreatment were investigated using TAPPI method and the ethanol yield was estimated using modified NREL protocol. The results showed that the potential dry stem waste biomass from harvesting of M. esculenta was approximately 10.5 ton/ha. Further, alkaline pretreatment of stem waste biomass with 2% of NaOH coupled with the enzymatic saccharification process using meicelase was showed the highest production of sugar to reach of 38.49 % of total reduction sugar and estimated potentially converted to 2,62 L/ha of ethanol. We suggested M. esculenta stem waste biomass could be used as sustainable feedstock for ethanol production in Indonesia.

  10. The Effects of Foliar Application of Urea, Calcium Nitrate and Boric Acid on Growth and Yield of Greenhouse Cucumber (cv. Khassib

    Directory of Open Access Journals (Sweden)

    Naser Nasrolahzadehasl

    2017-10-01

    traits, after that boric acid and finally urea carried this role; b Among two-way interaction, only U1B1, as foliar application, significantly affected the yield of grade 1 fruit; c Among three-way interactions, only U1C0B0, as foliar application, significantly affected the yield of grade 1 fruit, total fruit and the number of fruit; d There was no a significant change on qualitative features of cucumber using nutrition compared to fosamko. Therefore, cucumber production can be performed by cheaper methods with no change in qualitative characteristics. Finally, due to the fact that cucumber is one of the most important vegetables in Iran, it is suggested that various studies with different fertilizers will be conducted on cucumber.

  11. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake

    International Nuclear Information System (INIS)

    Wang Weining; Tarafdar, Jagadish C.; Biswas, Pratim

    2013-01-01

    An aerosol process was developed for synthesis and delivery of nanoparticles for living watermelon plant foliar uptake. This is an efficient technique capable of generating nanoparticles with controllable particle sizes and number concentrations. Aerosolized nanoparticles were easily applied to leaf surfaces and enter the stomata via gas uptake, avoiding direct interaction with soil systems, eliminating potential ecological risks. The uptake and transport of nanoparticles inside the watermelon plants were investigated systematically by various techniques, such as elemental analysis by inductively coupled plasma mass spectrometry and plant anatomy by transmission electron microscopy. The results revealed that certain fractions of nanoparticles (d p < 100 nm) generated by the aerosol process could enter the leaf following the stomatal pathway, then pass through the stem, and reach the root of the watermelon plants. The particle size and number concentration played an important role in nanoparticle translocation inside the plants. In addition, the nanoparticle application method, working environment, and leaf structure are also important factors to be considered for successful plant foliar uptake.

  12. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake

    Energy Technology Data Exchange (ETDEWEB)

    Wang Weining [Washington University in St. Louis, Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering (United States); Tarafdar, Jagadish C. [Central Arid Zone Research Institute (India); Biswas, Pratim, E-mail: pbiswas@wustl.edu [Washington University in St. Louis, Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering (United States)

    2013-01-15

    An aerosol process was developed for synthesis and delivery of nanoparticles for living watermelon plant foliar uptake. This is an efficient technique capable of generating nanoparticles with controllable particle sizes and number concentrations. Aerosolized nanoparticles were easily applied to leaf surfaces and enter the stomata via gas uptake, avoiding direct interaction with soil systems, eliminating potential ecological risks. The uptake and transport of nanoparticles inside the watermelon plants were investigated systematically by various techniques, such as elemental analysis by inductively coupled plasma mass spectrometry and plant anatomy by transmission electron microscopy. The results revealed that certain fractions of nanoparticles (d{sub p} < 100 nm) generated by the aerosol process could enter the leaf following the stomatal pathway, then pass through the stem, and reach the root of the watermelon plants. The particle size and number concentration played an important role in nanoparticle translocation inside the plants. In addition, the nanoparticle application method, working environment, and leaf structure are also important factors to be considered for successful plant foliar uptake.

  13. Biomass in the Dutch Energy Infrastructure in 2030

    International Nuclear Information System (INIS)

    Rabou, L.P.L.M.; Deurwaarder, E.P.; Elbersen, H.W.; Scott, E.L.

    2006-01-01

    The goal of this study is to evaluate the ambition of the Platform to replace 30% of the fossil energy carriers by biomass in the Netherlands in 2030. Starting points are the total annual consumption of primary energy carriers of 3000 PJ by 2030 and contributions of biomass of 60% in transportation, 25% in electricity production, 20% in raw materials for chemicals, materials and products and 17% in heat production. The study provides a review of the current Dutch energy balance, with the role of different energy carriers, based on data for the year 2000 and estimates for the year 2030. For the situation in 2030, an analysis is made of the possible role of biomass. The study also provides a review of the Dutch import, export and production of biomass in 2000 and an estimation of the developments until 2030.

  14. Biosaline Biomass. Energy for the Netherlands in 2040

    International Nuclear Information System (INIS)

    Hoek, J.

    2004-12-01

    European governments are aiming for a considerable contribution of biomass in their transition towards a sustainable energy society and the replacement of raw materials based on fossil fuels. For the Netherlands, the national goals are set such that the share of biomass should grow to 30% of total energy consumption by the year 2040. Biosaline biomass - produced in saline environments characterized by increased soil and water salinities up to half seawater level - may become an important source of secure and sustainable energy to cover part, or all, of the Dutch biomass energy target. This report assesses the viability of the import of biosaline forestry as a secure, cost-effective, environmentally and socially responsible source of renewable energy for the Netherlands until 2040. The report also defines steps to be taken and investments to be made to realize the biosaline transition path

  15. CORRELATION BETWEEN OZONE EXPOSURE AND VISIBLE FOLIAR INJURY IN PONDEROSA AND JEFFREY PINES. (R825433)

    Science.gov (United States)

    Ozone exposure was related to ozone-induced visible foliar injury in ponderosa and Jeffrey pines growing on the western slopes of the Sierra Nevada Mountains of California. Measurements of ozone exposure, chlorotic mottle and fascicle retention were collected during the years ...

  16. Iron supply to soybean plants through the foliar application of IDHA/Fe3+: effect of plant nutritional status and adjuvants.

    Science.gov (United States)

    Rodríguez-Lucena, Patricia; Ropero, Edgar; Hernández-Apaolaza, Lourdes; Lucena, Juan J

    2010-12-01

    Synthetic Fe chelates are commonly used to overcome Fe deficiencies in crops, but most of them are scarcely biodegradable. Iminodisuccinic acid (IDHA) is a biodegradable chelating agent that is currently being evaluated as an alternative to EDTA. In this work, the efficacy of the foliar application of IDHA/Fe(3+) to soybean chlorotic plants under controlled conditions was studied, testing the influence of the adjuvant used and of the plant nutritional status. When IDHA/Fe(3+) was applied to soybean plants with severe Fe chlorosis and the foliar sprays were the sole source of Fe, this chelate behaved similarly to the EDTA/Fe(3+) and the recovery of the plants was slight in both cases. The same chelates were tested when foliar sprays were an additional source of Fe for mildly chlorotic plants, which were also being supplied with low concentrations of Fe applied to the nutrient solution. Then, plant recovery was appreciable in all cases, and the IDHA/Fe(3+) was as effective as EDTA/Fe(3+). Among the adjuvants studied, a urea-based product was the only one that did not damage the leaf surface and that could improve the efficiency of IDHA/Fe(3+) up tp the level of EDTA/Fe(3+). Thus, it was concluded the foliar application of IDHA/Fe(3+) can be an environmentally friendly alternative to the non-biodegradable chelate EDTA/Fe(3+) when the appropriate adjuvant is used. Copyright © 2010 Society of Chemical Industry.

  17. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol

    OpenAIRE

    Maurya, Devendra Prasad; Singla, Ankit; Negi, Sangeeta

    2015-01-01

    Second-generation bioethanol can be produced from various lignocellulosic biomasses such as wood, agricultural or forest residues. Lignocellulosic biomass is inexpensive, renewable and abundant source for bioethanol production. The conversion of lignocellulosic biomass to bioethanol could be a promising technology though the process has several challenges and limitations such as biomass transport and handling, and efficient pretreatment methods for total delignification of lignocellulosics. P...

  18. Compared sensitivity of two nuclear sites: case of farming production contaminated by foliar way (chronicle release) S.E.N.S.I.B. project

    International Nuclear Information System (INIS)

    Mercat, C.; Vassas, C.

    2005-01-01

    This study joins within the framework of the S.E.N.S.I.B. project. The principle is to set up a step which allows to compare the sensitivity of two sites in case of radioisotopes releases; as illustration the sites of Marcoule and La Hague are considered. We are interested here in the case of the agricultural productions contaminated by foliar way during an atmospheric chronic release. Every site is characterized by specific vegetable and animal productions. The calculations of activities give an information about the sensitivity of products (mass and surface activities) and on the sensitivity of the Communes ( total activities). The contamination is supposed to be only made about foliar transfer. The studied radioisotopes are the cesium 137 , the cobalt 60 , the strontium 90 and the iodine 131 . For the cesium 137 and the cobalt 60 , the agricultural environment of the site of Marcoule seems globally more sensitive than that of La Hague, in the mean where the total activity in becquerels exported by the agricultural productions produced on the zone of 10 km around the site is more important for Marcoule than for La Hague. For the strontium 90 and for the iodine 131 , both agricultural environments are globally equivalent. This study which privileged the consideration of the regional specificities shows that the key factors of sensitivity are respectively the topographic situation for the deposit, the factor of translocation and the farming output for the vegetable productions and the daily food ration and the factor of transfer for the animal productions. (N.C.)

  19. Effect of three sources of nutrients on biomass and pigment production of freshwater microalgae Hyaloraphidium contortum

    Directory of Open Access Journals (Sweden)

    Caña, E.

    2016-05-01

    Full Text Available Multifunctionality of microalgae is becoming increasingly important, hence science develops new techniques to maximize their potential by providing food, sustainable and affordable fuels and innovative environmental solutions. In this study, we analyzed the effect of different nutrient sources (Nitrofoska®, Quimifol® and Guillard and sowing time on the kinetics of growth and pigment production of freshwater microalgae Hyaloraphidium contortum; besides of registering some physical and chemical variables in different growth mediums. Bioassays were performed in batch cultures by quadruplicate, continously maintaining and controlling temperature, ventilation and lighting. Growth was determined by cell count and production of pigments by spectrophotometry. The largest population densities and productivities per volume of culture were obtained in F/2 Guillard (9.7±0.2x107 cel mL-1 and 7.6x108 cel/L/ day and Nitrofoska® (8.7±0.5x107 cel mL-1 and 5.7x108 cel/L/day. The highest average chlorophyll a, chlorophyll b and total carotenoid concentration was achieved with foliar fertilizer Nitrofoska®, on days 18 and 24 (8, 3.29 and 2.2 μg mL-1, respectively, followed by the obtained by Guillard and Quimifol®. We conclude that this microalgae can be grown with commercial agricultural fertilizers as an alternative source of nutrients to produce biomass and pigments with applications in biotechnology and aquaculture industries.

  20. Estimating tree biomass, carbon, and nitrogen in two vegetation control treatments in an 11-year-old Douglas-fir plantation on a highly productive site

    Science.gov (United States)

    Warren D. Devine; Paul W. Footen; Robert B. Harrison; Thomas A. Terry; Constance A. Harrington; Scott M. Holub; Peter J. Gould

    2013-01-01

    We sampled trees grown with and without competing vegetation control in an 11-year-old Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) plantation on a highly productive site in southwestern Washington to create diameter based allometric equations for estimating individual-tree bole, branch, foliar, and total...

  1. Monitoring to assess progress toward meeting the Assabet River, Massachusetts, phosphorus total maximum daily load - Aquatic macrophyte biomass and sediment-phosphorus flux

    Science.gov (United States)

    Zimmerman, Marc J.; Qian, Yu; Yong Q., Tian

    2011-01-01

    In 2004, the Total Maximum Daily Load (TMDL) for Total Phosphorus in the Assabet River, Massachusetts, was approved by the U.S. Environmental Protection Agency. The goal of the TMDL was to decrease the concentrations of the nutrient phosphorus to mitigate some of the instream ecological effects of eutrophication on the river; these effects were, for the most part, direct consequences of the excessive growth of aquatic macrophytes. The primary instrument effecting lower concentrations of phosphorus was to be strict control of phosphorus releases from four major wastewatertreatment plants in Westborough, Marlborough, Hudson, and Maynard, Massachusetts. The improvements to be achieved from implementing this control were lower concentrations of total and dissolved phosphorus in the river, a 50-percent reduction in aquatic-plant biomass, a 30-percent reduction in episodes of dissolved oxygen supersaturation, no low-flow dissolved oxygen concentrations less than 5.0 milligrams per liter, and a 90-percent reduction in sediment releases of phosphorus to the overlying water. In 2007, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated studies to evaluate conditions in the Assabet River prior to the upgrading of wastewater-treatment plants to remove more phosphorus from their effluents. The studies, completed in 2008, implemented a visual monitoring plan to evaluate the extent and biomass of the floating macrophyte Lemna minor (commonly known as lesser duckweed) in five impoundments and evaluated the potential for phosphorus flux from sediments in impounded and free-flowing reaches of the river. Hydrologically, the two study years 2007 and 2008 were quite different. In 2007, summer streamflows, although low, were higher than average, and in 2008, the flows were generally higher than in 2007. Visually, the effects of these streamflow differences on the distribution of Lemna were obvious. In 2007, large amounts of

  2. Metasequoia glyptostroboides and its Utility in Paleoecological Reconstruction of Eocene High Latitude Forests

    Science.gov (United States)

    Williams, C. J.; LePage, B. A.; Vann, D. R.; Johnson, A. H.

    2001-05-01

    . branch diameter (r2 = 0.91) for living Metasequoia and branch diameters of the Eocene trees, branch biomass of the Eocene trees was estimated to be 28 Mg ha-1 dry weight and foliar biomass (and annual foliar production for this deciduous conifer) of fossil Metasequoia was estimated to be 3.5 Mg ha-1 dry weight. Total standing biomass of the fossil forest was estimated to be 591 Mg ha-1 dry weight. On a stand-average basis, the annual ring width of the trees we sampled equaled 1.3 mm. Based on this ring width our preliminary estimate for the aboveground net primary productivity (NPP) of these forests is 5.9 Mg ha-1yr^{-1}$ (foliage production plus wood production). Thus, these were high biomass forests with moderate productivity typical of modern cool temperate forests similar in stature and total biomass to the modern old-growth forests of the Pacific Northwest (USA).

  3. Biomass torrefaction: A promising pretreatment technology for biomass utilization

    Science.gov (United States)

    Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen

    2018-02-01

    Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.

  4. Respuesta de plántulas de café a la fertilización foliar y la aplicación de pulpa de café compostada.

    Directory of Open Access Journals (Sweden)

    Posada Tobón Claudia

    2003-06-01

    Full Text Available El objetivo de este trabajo fue evaluar la respuesta de plántulas de café a la aplicación de fertilizantes foliares y compost de pulpa de café como parte del sustrato de crecimiento. Las plántulas de café (Coffea arabica L c.v. Colombia se transplantaron a bolsas plásticas que contenían suelo (Typic Dystrudept o una mezcla suelo con pulpa (suelo+pulpa en proporción 3:1. Treinta días después del trasplante las plántulas de café recibieron uno de cinco fertilizantes foliares (16-16-2-EM, 18-10-4-EM, 10-4-7-0.5, 12-60-0 y 7.5-0.5-3.5. Las aplicaciones se repitieron cada treinta días durante los siguientes cinco meses. Para ambos sustratos (suelo y suelo+pulpa se incluyeron testigos sin fertilización foliar. Los tratamientos se organizaron en un diseño experimental completamente al azar con cuatro repeticiones por tratamiento. Mensualmente se evaluó el número de hojas y la altura de las plantas. Ciento ochenta días después del trasplante se cosecharon las plántulas y se determinó la masa seca aérea y radical. Los resultados indican que solamente hubo respuesta significativa (P  0.01 de las plántulas de café a la fertilización foliar cuando el sustrato fue suelo+pulpa. El fertilizante foliar 12-60-0 incrementó significativamente el crecimiento de las plantas por encima de los otros fertilizantes. Los resultados son discutidos en términos de los cambios en la fertilidad del suelo debido a la aplicación de la pulpa de café y al balance nutricional que pueden proveer los fertilizantes foliares.

  5. In situ analysis of foliar zinc absorption and short-distance movement in fresh and hydrated leaves of tomato and citrus using synchrotron-based X-ray fluorescence microscopy

    Science.gov (United States)

    Du, Yumei; Kopittke, Peter M.; Noller, Barry N.; James, Simon A.; Harris, Hugh H.; Xu, Zhi Ping; Li, Peng; Mulligan, David R.; Huang, Longbin

    2015-01-01

    Background and Aims Globally, zinc deficiency is one of the most important nutritional factors limiting crop yield and quality. Despite widespread use of foliar-applied zinc fertilizers, much remains unknown regarding the movement of zinc from the foliar surface into the vascular structure for translocation into other tissues and the key factors affecting this diffusion. Methods Using synchrotron-based X-ray fluorescence microscopy (µ-XRF), absorption of foliar-applied zinc nitrate or zinc hydroxide nitrate was examined in fresh leaves of tomato (Solanum lycopersicum) and citrus (Citrus reticulatus). Key Results The foliar absorption of zinc increased concentrations in the underlying tissues by up to 600-fold in tomato but only up to 5-fold in citrus. The magnitude of this absorption was influenced by the form of zinc applied, the zinc status of the treated leaf and the leaf surface to which it was applied (abaxial or adaxial). Once the zinc had moved through the leaf surface it appeared to bind strongly, with limited further redistribution. Regardless of this, in these underlying tissues zinc moved into the lower-order veins, with concentrations 2- to 10-fold higher than in the adjacent tissues. However, even once in higher-order veins, the movement of zinc was still comparatively limited, with concentrations decreasing to levels similar to the background within 1–10 mm. Conclusions The results advance our understanding of the factors that influence the efficacy of foliar zinc fertilizers and demonstrate the merits of an innovative methodology for studying foliar zinc translocation mechanisms. PMID:25399024

  6. Coping with gravity: the foliar water relations of giant sequoia.

    Science.gov (United States)

    Williams, Cameron B; Reese Næsborg, Rikke; Dawson, Todd E

    2017-10-01

    In tall trees, the mechanisms by which foliage maintains sufficient turgor pressure and water content against height-related constraints remain poorly understood. Pressure-volume curves generated from leafy shoots collected crown-wide from 12 large Sequoiadendron giganteum (Lindley) J. Buchholz (giant sequoia) trees provided mechanistic insights into how the components of water potential vary with height in tree and over time. The turgor loss point (TLP) decreased with height at a rate indistinguishable from the gravitational potential gradient and was controlled by changes in tissue osmotica. For all measured shoots, total relative water content at the TLP remained above 75%. This high value has been suggested to help leaves avoid precipitous declines in leaf-level physiological function, and in giant sequoia was controlled by both tissue elasticity and the balance of water between apoplasm and symplasm. Hydraulic capacitance decreased only slightly with height, but importantly this parameter was nearly double in value to that reported for other tree species. Total water storage capacity also decreased with height, but this trend essentially disappeared when considering only water available within the typical range of water potentials experienced by giant sequoia. From summer to fall measurement periods we did not observe osmotic adjustment that would depress the TLP. Instead we observed a proportional shift of water into less mobile apoplastic compartments leading to a reduction in hydraulic capacitance. This collection of foliar traits allows giant sequoia to routinely, but safely, operate close to its TLP, and suggests that gravity plays a major role in the water relations of Earth's largest tree species. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Above-ground biomass of mangrove species. I. Analysis of models

    Science.gov (United States)

    Soares, Mário Luiz Gomes; Schaeffer-Novelli, Yara

    2005-10-01

    This study analyzes the above-ground biomass of Rhizophora mangle and Laguncularia racemosa located in the mangroves of Bertioga (SP) and Guaratiba (RJ), Southeast Brazil. Its purpose is to determine the best regression model to estimate the total above-ground biomass and compartment (leaves, reproductive parts, twigs, branches, trunk and prop roots) biomass, indirectly. To do this, we used structural measurements such as height, diameter at breast-height (DBH), and crown area. A combination of regression types with several compositions of independent variables generated 2.272 models that were later tested. Subsequent analysis of the models indicated that the biomass of reproductive parts, branches, and prop roots yielded great variability, probably because of environmental factors and seasonality (in the case of reproductive parts). It also indicated the superiority of multiple regression to estimate above-ground biomass as it allows researchers to consider several aspects that affect above-ground biomass, specially the influence of environmental factors. This fact has been attested to the models that estimated the biomass of crown compartments.

  8. Ensiling and hydrothermal pretreatment of grass: Consequences for enzymatic biomass conversion and total monosaccharide yields

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten; Johansen, Katja Salomon; Didion, Thomas

    2014-01-01

    Ensiling may act as a pretreatment of fresh grass biomass and increase the enzymatic conversion of structural carbohydrates to fermentable sugars. However, ensiling does not provide sufficient severity to be a standalone pretreatment method. Here, ensiling of grass is combined with hydrothermal...... treatment (HTT) with the aim of improving the enzymatic biomass convertibility and decrease the required temperature of the HTT. Results: Grass silage (Festulolium Hykor) was hydrothermally treated at temperatures of 170, 180, and 190°C for 10 minutes. Relative to HTT treated dry grass, ensiling increased...... convertibility). The effect of ensiling of grass prior to HTT improved the enzymatic conversion of cellulose for HTT at 170 and 180°C, but the increased glucose release did not make up for the loss of water soluble carbohydrates (WSC) during ensiling. Overall, sugar yields (C6 + C5) were similar for HTT of grass...

  9. Response of morphological and physiological growth attributes to foliar application of plant growth regulators in gladiolus 'white prosperity'

    International Nuclear Information System (INIS)

    Sajjad, Y.; Jaskani, M. J.; Qasim, M.

    2014-01-01

    Gladiolus is very popular among ornamental bulbous plants mainly used as cut flower and greatly demanded in the world floral market. Production of inferior quality spikes is one of the major hurdles for their export. The research was conducted under Faisalabad conditions to evaluate the use of plant growth regulators in order to improve the vegetative, floral and physiological attributes. Gladiolus plants were sprayed thrice with different concentrations (0.1, 0.4, 0.7 and 1mM) of gibberellic acid, benzylaminopurine and salicylic acid at three leaf stage, five leaf stage and slipping stage. Foliar application of 1mM gibberellic acid increased the plant height (122.14cm), spike length (58.41cm), florets spike-1 (13.49), corm diameter (4.43cm), corm weight (25.34g) and total cormel weight (20.45g) compared to benzylaminopurine and salicylic acid. Gibberellic acid at 1mM concentration also increased the total chlorophyll content to 7.72mg/g, total carotenoids (1.61mg/g), total soluble sugars (3.68mg/g) followed by application of benzylaminopurine. Salicylic acid application at 1mM concentration decreased the number of days to flower (64.93) compared to 76.12 days in non treated plants. (author)

  10. Renewable energy--traditional biomass vs. modern biomass

    International Nuclear Information System (INIS)

    Goldemberg, Jose; Teixeira Coelho, Suani

    2004-01-01

    Renewable energy is basic to reduce poverty and to allow sustainable development. However, the concept of renewable energy must be carefully established, particularly in the case of biomass. This paper analyses the sustainability of biomass, comparing the so-called 'traditional' and 'modern' biomass, and discusses the need for statistical information, which will allow the elaboration of scenarios relevant to renewable energy targets in the world

  11. FY 2000 Report on survey results. Curtailment of the carbon dioxide emission by effective use of woody biomass system waste; 2000 nendo mokushitsu biomass kei haikibutsu no yuko riyo ni yoru nisanka tanso haishutsu no sakugen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    It is estimated that the woody biomass resources in Japan total 42.70 million t/y on a dry basis (indigenous production: 20.00 million t/y), which corresponds to 18.00 million t/y as oil. This project studies effective utilization of low-quality biomass resources now discarded, e.g., thinning materials and demolition woods, by reference to biomass utilization pursued in European and North American countries. The study activities cover the 3 areas of woody biomass wastes, current status of biomass utilization technologies in the overseas countries, and feasibility of introduction of the utilization technologies, after investigating necessity of abatement of the green-effect gases, current status of energy demands and policies, and woody biomass. Utilization of biomass resources for low-temperature heat purposes, which is the central issue in Japan, is not well established both technologically and politically. Moreover, the biomass resources are not exposed to price competition. Based on these premises, a total of 6 scenarios are proposed to promote utilization of biomass resources, including power/heat co-generation at a wood processing center, and dual firing at existing coal-fired boilers. (NEDO)

  12. Biomass and Swedish energy policy

    International Nuclear Information System (INIS)

    Johansson, Bengt

    2001-01-01

    The use of biomass in Sweden has increased by 44% between 1990 and 1999. In 1999 it was 85 TWh, equivalent to 14% of the total Swedish energy supply. The existence of large forest industry and district heating systems has been an essential condition for this expansion. The tax reform in 1991 seems, however, to have been the most important factor responsible for the rapid bioenergy expansion. Through this reform, the taxation of fossil fuels in district heating systems increased by approximately 30-160%, depending on fuel, whereas bioenergy remained untaxed. Industry is exempted from the energy tax and pays reduced carbon tax. No tax is levied on fossil fuels used for electricity production. Investment grants have existed for biomass-based electricity production but these grants have not been large enough to make biomass-based electricity production economically competitive in a period of falling electricity prices. Despite this, the biomass-based electricity production has increased slightly between 1990 and 1999. A new taxation system aiming at a removal of the tax difference between the industry, district heating and electricity sectors has recently been analysed by the Swedish government. One risk with such a system is that it reduces the competitiveness for biomass in district heating systems as it seems unlikely that the taxes on fossil fuels in the industry and electricity sectors will increase to a level much higher than in other countries. A new system, based on green certificates, for supporting electricity from renewable energy sources has also been proposed by the government.

  13. Above Ground Biomass-carbon Partitioning, Storage and Sequestration in a Rehabilitated Forest, Bintulu, Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Kueh, J.H.R.; Majid, N.M.A.; Seca, G.; Ahmed, O.H.

    2013-01-01

    Forest degradation and deforestation are some of the major global concerns as it can reduce forest carbon storage and sequestration capacity. Forest rehabilitation on degraded forest areas has the potential to improve carbon stock, hence mitigate greenhouse gases emission. However, the carbon storage and sequestration potential in a rehabilitated tropical forest remains unclear due to the lack of information. This paper reports an initiative to estimate biomass-carbon partitioning, storage and sequestration in a rehabilitated forest. The study site was at the UPM-Mitsubishi Corporation Forest Rehabilitation Project, UPM Bintulu Sarawak Campus, Bintulu, Sarawak. A plot of 20 x 20 m 2 was established each in site 1991 (Plot 1991), 1999 (Plot 1999) and 2008 (Plot 2008). An adjacent natural regenerating secondary forest plot (Plot NF) was also established for comparison purposes. The results showed that the contribution of tree component biomass/ carbon to total biomass/ carbon was in the order of main stem > branch > leaf. As most of the trees were concentrated in diameter size class = 10 cm for younger rehabilitated forests, the total above ground biomass/ carbon was from this class. These observations suggest that the forests are in the early successional stage. The total above ground biomass obtained for the rehabilitated forest ranged from 4.3 to 4,192.3 kg compared to natural regenerating secondary forest of 3,942.3 kg while total above ground carbon ranged from 1.9 to 1,927.9 kg and 1,820.4 kg, respectively. The mean total above ground biomass accumulated ranged from 1.3 x 10 -2 to 20.5 kg/ 0.04 ha and mean total carbon storage ranged from 5.9 x 10 -3 to 9.4 kg/ 0.04 ha. The total CO 2 sequestrated in rehabilitated forest ranged from 6.9 to 7,069.1 kg CO 2 / 0.04 ha. After 19 years, the rehabilitated forest had total above ground biomass and carbon storage comparable to the natural regeneration secondary forest. The forest rehabilitated activities have the

  14. Dynamics of Understory Shrub Biomass in Six Young Plantations of Southern Subtropical China

    Directory of Open Access Journals (Sweden)

    Yuanqi Chen

    2017-11-01

    Full Text Available Understory shrubs are an important component of forest ecosystems and drive ecosystem processes, such as ecosystem carbon cycling. However, shrub biomass carbon stocks have rarely been reported, which limits our understanding of ecosystem C stock and cycling. In this study, we evaluated carbon accumulation of shrub species using allometric equations based on height and basal diameter in six subtropical plantations at the age of 1, 3, 4 and 6 years. The results showed that plantation type did not significantly affect the total biomass of shrubs, but it significantly affected the biomass of Rhodomyrtus tomentosa, Ilex asprella, Clerodendrum fortunatum and Baeckea frutescens. The biomass of dominant shrub species R. tomentosa, I. asprella, Gardenia jasminoides and Melastoma candidum increased with stand age, while the biomass of C. fortunatum and B. frutescens decreased. The inconsistent biomass-time patterns of different shrub species may be the primary reason for the altered total shrub biomass in each plantation. Consequently, we proposed that R. tomentosa, I. asprella, G. jasminoides and M. candidum could be preferable for understory carbon accumulation and should be maintained or planted because of their important functions in carbon accumulation and high economic values in the young plantations of southern subtropical China.

  15. Use of GIS for estimating potential and actual forest biomass for continental South and Southeast Asia.

    Science.gov (United States)

    L. R. Iverson; S. Brown; A. Prasad; H. Mitasova; A. J. R. Gillespie; A. E. Lugo

    1994-01-01

    A geographic information system (GIS) was used to estimate total biomass and biomass density of the tropical forest in south and southeast Asia because available data from forest inventories were insufficient to extrapolate biomass-density estimates across the region.

  16. How important is biomass burning in Canada to mercury contamination?

    Science.gov (United States)

    Fraser, Annemarie; Dastoor, Ashu; Ryjkov, Andrei

    2018-05-01

    total biomass burning Hg emissions to be highly variable from year to year and estimate average 2010-2015 total atmospheric biomass burning emissions of Hg in Canada to be between 6 and 14 t during the biomass burning season (i.e. from May to September), which is 3-7 times the mercury emission from anthropogenic sources in Canada for this period. On average, 65 % of the emissions occur in the provinces west of Ontario. We find that while emissions from biomass burning have a small impact on surface air concentrations of GEM averaged over individual provinces/territories, the impact at individual sites can be as high as 95 % during burning events. We estimate average annual mercury deposition from biomass burning in Canada to be between 0.3 and 2.8 t, compared to 0.14 t of mercury deposition from anthropogenic sources during the biomass burning season in Canada. Compared to the biomass burning emissions, the relative impact of fires on mercury deposition is shifted eastward, with on average 54 % percent of the deposition occurring in provinces west of Ontario. While the relative contribution of Canadian biomass burning to the total mercury deposition over each province/territory is no more than 9 % between 2010 and 2015, the local contribution in some locations (including areas downwind of biomass burning) can be as high as 80 % (e.g. northwest of Great Slave Lake in 2014) from May to September. We find that northern Alberta and Saskatchewan, central British Columbia, and the area around Great Slave Lake in the Northwest Territories are at greater risk of mercury contamination from biomass burning. GEM is considered to be the dominant mercury species emitted from biomass burning; however, there remains an uncertainty in the speciation of mercury released from biomass burning. We find that the impact of biomass burning emissions on mercury deposition is significantly affected by the uncertainty in speciation of emitted mercury because PBM is more readily deposited closer

  17. Effect of the available soil water and organic matter on the castor bean foliar area growth; Influencia da agua disponivel e materia organica no crescimento da area foliar da mamoneira

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Rogerio D. de; Almeida, Larissa C.; Guerra, Hugo O. Carvalho; Souza, Cristiana M. de; Batista, Faed R. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)], Emails: rogerio_dl@yahoo.com.br, laris_almeida@yahoo.com.br, hugo_carvallo@hotmail.com, crismsouza@hotmail.com, faedrideiro@hotmail.com

    2010-07-01

    The Brazilian potential for bio fuel production through the cultivation of oil seeds is immeasurable. On the Northeast is possible to cultivate the castor bean, peanuts, sesame, babassu and other species. Just for the castor bean there exist 3.0 millions of hectares able for cultivation. The experiment had as objective to study the effect of available soil water for plants and organic matter on the foliar area production. It was conducted on the field during the period of October 2008 to March 2009 using an experimental design 2 x 4 factorial on a randomized-complete block design, constituted of two soil organic matter contents (5.0 g.kg{sup -1} and 25.0 g.kg{sup -1}) and four soil water contents (100, 90, 80 and 70% of the soil available water for the plants) with 3 replicates. On each 100 m{sup 2} parcel 50 plants were cultivated until 180 days after the sowing, DAS. The analyses of variance allowed to observe that the addition of organic matter increased the foliar areas in 20,7% and the available water produced an increment of 51,5% when were elevated from 70 to 100%. (author)

  18. Root Characteristics of Perennial Warm-Season Grasslands Managed for Grazing and Biomass Production

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2013-07-01

    Full Text Available Minirhizotrons were used to study root growth characteristics in recently established fields dominated by perennial C4-grasses that were managed either for cattle grazing or biomass production for bioenergy in Virginia, USA. Measurements over a 13-month period showed that grazing resulted in smaller total root volumes and root diameters. Under biomass management, root volume was 40% higher (49 vs. 35 mm3 and diameters were 20% larger (0.29 vs. 0.24 mm compared to grazing. While total root length did not differ between grazed and biomass treatments, root distribution was shallower under grazed areas, with 50% of total root length in the top 7 cm of soil, compared to 41% in ungrazed exclosures. These changes (i.e., longer roots and greater root volume in the top 10 cm of soil under grazing but the reverse at 17–28 cm soil depths were likely caused by a shift in plant species composition as grazing reduced C4 grass biomass and allowed invasion of annual unsown species. The data suggest that management of perennial C4 grasslands for either grazing or biomass production can affect root growth in different ways and this, in turn, may have implications for the subsequent carbon sequestration potential of these grasslands.

  19. Foliar copper uptake by maize plants: effects on growth and yield

    Directory of Open Access Journals (Sweden)

    Rogério Hidalgo Barbosa

    2013-09-01

    Full Text Available A slight increase in the levels of a certain nutrient can cause a significant increase in crop yield or can cause phytotoxicity symptoms. Thus, the aim of this study was to evaluate the effect of foliar application of copper (Cu on the growth and yield of DG-501 maize. The experiment was carried out between December 2009 and April 2010 in conventional tillage. When plants were with six to eight leaves, Cu (0, 100, 200, 300, 400, 500 and 600g ha-1 was applied to the leaves. Treatments were arranged in randomized complete block with five replications. When 50% of the plants were in flowering, it was evaluated the plant height, culm diameter, height of the first ear insertion, leaf area, and chlorophyll content. At harvest, it was evaluated diameter and length of the ear, yield and thousand grain weight. There was a linear reduction in the plant height and in the height of the first ear insertion with increasing Cu doses. On the other hand, chlorophyll content, leaf area, diameter and length of ear, thousand grain weight and yield increased at doses up to 100g ha-1 Cu, however, decreased at higher doses. Therefore, foliar Cu application at doses higher than 100g ha-1 has toxic effect in maize plants with losses in growth and yield.

  20. Agrobacterium rhizogenes-dependent production of transformed roots from foliar explants of pepper (Capsicum annuum): a new and efficient tool for functional analysis of genes.

    Science.gov (United States)

    Aarrouf, J; Castro-Quezada, P; Mallard, S; Caromel, B; Lizzi, Y; Lefebvre, V

    2012-02-01

    Pepper is known to be a recalcitrant species to genetic transformation via Agrobacterium tumefaciens. A. rhizogenes-mediated transformation offers an alternative and rapid possibility to study gene functions in roots. In our study, we developed a new and efficient system for A. rhizogenes transformation of the cultivated species Capsicum annuum. Hypocotyls and foliar organs (true leaves and cotyledons) of Yolo Wonder (YW) and Criollo de Morelos 334 (CM334) pepper cultivars were inoculated with the two constructs pBIN-gus and pHKN29-gfp of A. rhizogenes strain A4RS. Foliar explants of both pepper genotypes infected by A4RS-pBIN-gus or A4RS-pHKN29-gfp produced transformed roots. Optimal results were obtained using the combination of the foliar explants with A4RS-pHKN29-gfp. 20.5% of YW foliar explants and 14.6% of CM334 foliar explants inoculated with A4RS-pHKN29-gfp produced at least one root expressing uniform green fluorescent protein. We confirmed by polymerase chain reaction the presence of the rolB and gfp genes in the co-transformed roots ensuring that they integrated both the T-DNA from the Ri plasmid and the reporter gene. We also demonstrated that co-transformed roots of YW and CM334 displayed the same resistance response to Phytophthora capsici than the corresponding untransformed roots. Our novel procedure to produce C. annuum hairy roots will thus support the functional analysis of potential resistance genes involved in pepper P. capsici interaction.

  1. Production costs for SRIC Populus biomass

    International Nuclear Information System (INIS)

    Strauss, C.H.

    1991-01-01

    Production costs for short rotation, intensive culture (SRIC) Populus biomass were developed from commercial-sized plantations under investigation throughout the US. Populus hybrid planted on good quality agricultural sites at a density of 850 cuttings/acre was projected to yield an average of 7 ovendry (OD) tons/acre/year. Discounted cash-flow analysis of multiple rotations showed preharvest production costs of $14/ton (OD). Harvesting and transportation expenses would increase the delivered cost to $35/ton (OD). Although this total cost compared favorably with the regional market price for aspen (Populus tremuloides), future investments in SRIC systems will require the development of biomass energy markets

  2. Surplus biomass through energy efficient kilns

    International Nuclear Information System (INIS)

    Anderson, Jan-Olof; Westerlund, Lars

    2011-01-01

    Highlights: → The magnitude of the national heat demand for drying lumber in kilns is established. → Each part of the total heat consumption is divided and shown between the main drying conditions. → The potential to increase the energy efficiency in kilns with available techniques is presented. → The market demand for the biomass, available with increase kiln energy efficiency, is reviled. -- Abstract: The use of biomass in the European Union has increased since the middle of the 1990s, mostly because of high subsidies and CO 2 emission regulation through the Kyoto protocol. The sawmills are huge biomass suppliers to the market; out of the Swedish annual lumber production of 16.4 Mm 3 , 95% is produced by medium to large-volume sawmills with a lumber quotient of 47%. The remaining part is produced as biomass. An essential part (12%) of the entering timber is used for supply of heat in their production processes, mostly in the substantial drying process. The drying process is the most time and heat consuming process in the sawmill. This study was undertaken to determine the sawmills' national use of energy and potential magnitude of improvements. If the drying process can be made more effective, sawmills' own use of biomass can be decreased and allow a considerably larger supply to the biomass market through processed or unprocessed biomass, heat or electricity production. The national electricity and heat usage when drying the lumber have been analysed by theoretical evaluation and experimental validation at a batch kiln. The main conclusion is that the heat consumption for drying lumber among the Swedish sawmills is 4.9 TW h/year, and with available state-of-the-art techniques it is possible to decrease the national heat consumption by approximately 2.9 TW h. This additional amount of energy corresponds to the market's desire for larger energy supply.

  3. Contrasting nutritional acclimation of sugar maple (Acer saccharum Marsh. and red maple (Acer rubrum L. to increasing conifers and soil acidity as demonstrated by foliar nutrient balances

    Directory of Open Access Journals (Sweden)

    Alexandre Collin

    2016-07-01

    Full Text Available Sugar maple (Acer saccharum Marshall, SM is believed to be more sensitive to acidic and nutrient-poor soils associated with conifer-dominated stands than red maple (Acer rubrum L., RM. Greater foliar nutrient use efficiency (FNUE of RM is likely the cause for this difference. In the context of climate change, this greater FNUE could be key in favouring northward migration of RM over SM. We used the concept of foliar nutrient balances to study the nutrition of SM and RM seedlings along an increasing gradient in forest floor acidity conditioned by increasing proportions of conifers (pH values ranging from 4.39 under hardwoods, to 4.29 under mixed hardwood-conifer stands and 4.05 under conifer-dominated stands. Nutrients were subjected to isometric log-ratio (ilr transformation, which views the leaf as one closed system and considers interactions between nutrients. The ilr method eliminates numerical biases and weak statistical inferences based on raw or operationally’’ log-transformed data. We analyzed foliar nutrients of SM and RM seedlings and found that the [Ca,Mg,K|P,N] and [Ca,Mg|K] balances of SM seedlings were significantly different among soil acidity levels, whereas they did not vary for RM seedlings. For SM seedlings, these differences among soil acidity levels were due to a significant decrease in foliar Ca and Mg concentrations with increasing forest floor acidity. Similar differences in foliar balances were also found between healthy and declining SM stands estimated from literature values. Conversely, foliar balances of RM seedlings did not differ among soil acidity levels, even though untransformed foliar nutrient concentrations were significantly different. This result highlights the importance of using ilr transformation, since it provides more sensitive results than standard testing of untransformed nutrient concentrations. The lower nutrient requirements of RM and its greater capacity to maintain nutrient equilibrium are

  4. Biomass co-firing for Delta Electricity

    International Nuclear Information System (INIS)

    Anon

    2014-01-01

    efficient than coal due to a higher moisture content. 'It is very difficult to guarantee a stable source of biomass, hence the lack of significant capital investment in this technology by the industry,' said Flood. Delta can manage biomass co-firing up to about 2% of its total output without the requirement for major capital investment, but it isn't satisfied with that cap. This is where the company's interest in investigating CBC comes in (see story below). Not only does it deal with the moisture issue with raw biomass, but can make the process more efficient. 'Part of the current focus for Delta Electricity and Crucible is aimed at removing the final hurdles for commercial deployment,' said Flood

  5. Ex Vivo Application of Secreted Metabolites Produced by Soil-Inhabiting Bacillus spp. Efficiently Controls Foliar Diseases Caused by Alternaria spp.

    Science.gov (United States)

    Ali, Gul Shad; El-Sayed, Ashraf S A; Patel, Jaimin S; Green, Kari B; Ali, Mohammad; Brennan, Mary; Norman, David

    2016-01-15

    Bacterial biological control agents (BCAs) are largely used as live products to control plant pathogens. However, due to variable environmental and ecological factors, live BCAs usually fail to produce desirable results against foliar pathogens. In this study, we investigated the potential of cell-free culture filtrates of 12 different bacterial BCAs isolated from flower beds for controlling foliar diseases caused by Alternaria spp. In vitro studies showed that culture filtrates from two isolates belonging to Bacillus subtilis and Bacillus amyloliquefaciens displayed strong efficacy and potencies against Alternaria spp. The antimicrobial activity of the culture filtrate of these two biological control agents was effective over a wider range of pH (3.0 to 9.0) and was not affected by autoclaving or proteolysis. Comparative liquid chromatography-mass spectrometry (LC-MS) analyses showed that a complex mixture of cyclic lipopeptides, primarily of the fengycin A and fengycin B families, was significantly higher in these two BCAs than inactive Bacillus spp. Interaction studies with mixtures of culture filtrates of these two species revealed additive activity, suggesting that they produce similar products, which was confirmed by LC-tandem MS analyses. In in planta pre- and postinoculation trials, foliar application of culture filtrates of B. subtilis reduced lesion sizes and lesion frequencies caused by Alternaria alternata by 68 to 81%. Taken together, our studies suggest that instead of live bacteria, culture filtrates of B. subtilis and B. amyloliquefaciens can be applied either individually or in combination for controlling foliar diseases caused by Alternaria species. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Comparative SEM and LM foliar epidermal and palyno-morphological studies of Amaranthaceae and its taxonomic implications.

    Science.gov (United States)

    Hussain, Amara Noor; Zafar, Muhammad; Ahmad, Mushtaq; Khan, Raees; Yaseen, Ghulam; Khan, Muhammad Saleem; Nazir, Abdul; Khan, Amir Muhammad; Shaheen, Shabnum

    2018-05-01

    Palynological features as well as comparative foliar epidermal using light and scanning electron microscope (SEM) of 17 species (10genera) of Amaranthaceae have been studied for its taxonomic significance. Different foliar and palynological micro-morphological characters were examined to explain their value in resolving the difficulty in identification. All species were amphistomatic but stomata on abaxial surface were more abundant. Taxonomically significant epidermal character including stomata type, trichomes (unicellular, multicellular, and capitate) and epidermal cells shapes (polygonal and irregular) were also observed. Pollens of this family are Polypantoporate, pores large, spheroidal, mesoporous region is sparsely to scabrate, densely psilate, and spinulose. All these characters can be active at species level for identification purpose. This study indicates that at different taxonomic levels, LM and SEM pollen and epidermal morphology is explanatory and significant to identify species and genera. © 2018 Wiley Periodicals, Inc.

  7. Foliar nitrogen and potassium applications improve photosynthetic activities and water relations in sunflower under moisture deficit condition

    International Nuclear Information System (INIS)

    Hussain, R.A.; Ahmad, R.

    2016-01-01

    This study investigated the influence of foliar supplementation of nitrogen (N) potassium (K) and their combination on photosynthetic activities, physiological indices and water relations of two sunflower (Helianthus annuus L.) hybrids Hysen-33 and LG-5551 under water deficit condition. Studies were conducted in a wire-house at Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan. Treatments were two water stress levels [100 (control) and 60% field capacity (water deficit)], six levels of foliar spray (no spray, water spray, 1% N, 1% K, 0.5% N + 0.5% K and 1% N + 1% K) and each treatment was replicated three times. Results showed that water stress reduced the photosynthetic activities: Pn (photosynthetic rate), E (rate of tanspiration) and gs (stomatal conductance) and water relations i.e., pie w (water potential), pie s (osmotic potential) and pie p (turgor potential) . Soil moisture deficit also significantly reduced the plant height, root length, fresh and dry matter which consequently affected the plant height stress tolerance index (PHSI), root length stress tolerance index (RLSI) and dry matter stress tolerance index (DMSI) in both sunflower hybrids. However, foliar supplementation with N and K or N+K improved the photosynthetic activities, water relations and physiological indices of both the sunflower hybrids. The findings of present study suggest that application of N+K is necessary to have high plant productivity. (author)

  8. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    Science.gov (United States)

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and le