WorldWideScience

Sample records for total energy potential

  1. Projection potentials and angular momentum convergence of total energies in the full-potential Korringa–Kohn–Rostoker method

    International Nuclear Information System (INIS)

    Zeller, Rudolf

    2013-01-01

    Although the full-potential Korringa–Kohn–Rostoker Green function method yields accurate results for many physical properties, the convergence of calculated total energies with respect to the angular momentum cutoff is usually considered to be less satisfactory. This is surprising because accurate single-particle energies are expected if they are calculated by Lloyd’s formula and because accurate densities and hence accurate double-counting energies should result from the total energy variational principle. It is shown how the concept of projection potentials can be used as a tool to analyse the convergence behaviour. The key factor blocking fast convergence is identified and it is illustrated how total energies can be improved with only a modest increase of computing time. (paper)

  2. Relativistic total energy and chemical potential of heavy atoms and positive ions

    International Nuclear Information System (INIS)

    Hill, S.H.; Grout, P.J.; March, N.H.

    1984-01-01

    The relativistic Thomas-Fermi theory, with a finite nucleus, is used to study the variation of the chemical potential μ with atomic number Z and number of electrons N (N <= Z). The difference between the total energy of positive ions and that of the corresponding neutral atom has been obtained. The scaling predictions are confirmed by numerical calculations. The first principles calculation of the relativistic Thomas-Fermi total energy of neutral atoms is also studied. (author)

  3. Biomass energy in Jordan, and its potential contribution towards the total energy mix of the Kingdom

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.

    1994-04-01

    An evaluation of Jordan's bio-energy status was carried out. Available sources and the viability of exploitation were studied in order to identify the size of contribution that bio-energy could provide to the total energy mix of the Kingdom. The advantages of biogas technology were discussed, and a general description of Jordan's experience in this field was presented. Data on Jordan' animal, municipal, and agricultural wastes that are available as a potential source of bio-energy was tabulated. The report ascertained the economic feasibility of biogas utilization in Jordan, and concluded that the annual energy production potential from biogas, with only animal wastes being utilized, would amount to 80,000 ton oil equivalent. This amount of energy is equivalent to 2% of Jordan's total energy consumption in 1992. The utilization of biogas from municipal wastes would produce an additional 2.5% of the total energy consumption of Jordan. The annual value of utilizing animal and municipal wastes would reach 23 million Jordanian Dinars (JD). This value would increase to 61.5 million JD with the utilization of human wastes. The investment required for the utilization of bio-energy sources in Amman and its suburbs on the scale of family unit fermenters was estimated to be in the order of a million JD. The size of investment for industrial scale utilization for power generation with an electricity feed to the national grid, would range from 3 to 4 million JD. (A.M.H.). 8 refs., 4 tabs

  4. Real-space formulation of the electrostatic potential and total energy of solids

    International Nuclear Information System (INIS)

    Pask, J E; Sterne, P A

    2004-01-01

    We develop expressions for the electrostatic potential and total energy of crystalline solids which are amenable to direct evaluation in real space. Unlike conventional reciprocal space formulations, no Fourier transforms or reciprocal lattice summations are required, and the formulation is well suited for large-scale, parallel computations. The need for reciprocal space expressions is eliminated by replacing long-range potentials by equivalent localized charge distributions and incorporating long-range interactions into boundary conditions on the unit cell. In so doing, a simplification of the conventional reciprocal space formalism is obtained. The equivalence of the real- and reciprocal space formalisms is demonstrated by direct comparison in self-consistent density-functional calculations

  5. Priority listing of industrial processes by total energy consumption and potential for savings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Streb, A.J.

    1977-01-01

    A survey of eight of the most energy-intensive segments of the U.S. industry is made to quantify the energy consumed in the principal process units, to identify areas in which significant improvement appear possible, and to rank the process units in terms of total energy consumption and the potential for improvement. Data on the steel, paper, aluminum, textile, cement, and glass industries, petroleum refineries, and olefins and derivative products industries were compiled to help plan the development of new energy sources and to provide targets for energy conservation activities. (MCW)

  6. Statistical properties of kinetic and total energy densities in reverberant spaces

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Molares, Alfonso Rodriguez

    2010-01-01

    Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on determining the total sound energy in a reverberation room. The total energy is usually approximated by measuring the mean-square pressure (i.e., the potential energy density) at a number of discrete....... With the advent of a three-dimensional particle velocity transducer, it has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the ensemble statistics of kinetic and total sound energy densities in reverberant enclosures theoretically...... positions. The idea of measuring the total energy density instead of the potential energy density on the assumption that the former quantity varies less with position than the latter goes back to the 1930s. However, the phenomenon was not analyzed until the late 1970s and then only for the region of high...

  7. Atomic resonances above the total ionization energy

    International Nuclear Information System (INIS)

    Doolen, G.

    1975-01-01

    A rigorous result obtained using the theory associated with dilatation analytic potentials is that by performing a complex coordinate rotation, r/subj/ → r/subj/e/subi//sup theta/, on a Hamiltonian whose potential involves only pairwise Coulombic interactions, one can show that when theta = π/2, no complex eigenvalues (resonances) appear whose energies have a real part greater than the total ionization energy of the atomic system. This appears to conflict with experimental results of Walton, Peart, and Dolder, who find resonance behavior above the total ionization energy of the H -- system and also the theoretical stabilization results of Taylor and Thomas for the same system. A possible resolution of this apparent conflict is discussed and a calculation to check its validity is proposed

  8. Total energy and potential enstrophy conserving schemes for the shallow water equations using Hamiltonian methods - Part 1: Derivation and properties

    Science.gov (United States)

    Eldred, Christopher; Randall, David

    2017-02-01

    The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar characteristics: conservation laws, inertia-gravity and Rossby waves, and a (quasi-) balanced state. In order to obtain realistic simulation results, it is desirable that numerical models have discrete analogues of these properties. Two prototypical examples of such schemes are the 1981 Arakawa and Lamb (AL81) C-grid total energy and potential enstrophy conserving scheme, and the 2007 Salmon (S07) Z-grid total energy and potential enstrophy conserving scheme. Unfortunately, the AL81 scheme is restricted to logically square, orthogonal grids, and the S07 scheme is restricted to uniform square grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids and the S07 scheme to arbitrary orthogonal spherical polygonal grids in a manner that allows for both total energy and potential enstrophy conservation, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos, and others) and discrete exterior calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp, and others). Detailed results of the schemes applied to standard test cases are deferred to part 2 of this series of papers.

  9. Absence of a Scott correction for the total binding energy of noninteracting fermions in a smooth potential well

    International Nuclear Information System (INIS)

    Huxtable, B.D.

    1988-01-01

    It is shown, for V in a particular class of smooth functions, that the total binding energy, E(Z), of Z noninteracting Fermions in the potential well Z 4/3 V(Z 1/3 X) obeys E(Z) = c TF (V)Z 7/3 + O(Z 5/3 ) as Z → ∞. Here c TF (V) is the coefficient predicted by Thomas-Fermi theory. This result is consistent with the conjectured Scott correction, which occurs at order Z 2 , to the total binding energy of an atomic number Z. This correction is thought to arise only because V(x)∼ - |x| -1 near x = 0 in the atomic problem, and so V is not a smooth function

  10. Modelling piezoelectric energy harvesting potential in an educational building

    International Nuclear Information System (INIS)

    Li, Xiaofeng; Strezov, Vladimir

    2014-01-01

    Highlights: • Energy harvesting potential of commercialized piezoelectric tiles is analyzed. • The parameters which will affect the energy harvesting efficiency are determined. • The potential could cover 0.5% of the total energy usage of the library building. • A simplified evaluation indicator is proposed to test the considered paving area. - Abstract: In this paper, potential application of a commercial piezoelectric energy harvester in a central hub building at Macquarie University in Sydney, Australia is examined and discussed. Optimization of the piezoelectric tile deployment is presented according to the frequency of pedestrian mobility and a model is developed where 3.1% of the total floor area with the highest pedestrian mobility is paved with piezoelectric tiles. The modelling results indicate that the total annual energy harvesting potential for the proposed optimized tile pavement model is estimated at 1.1 MW h/year. This potential energy generation may be further increased to 9.9 MW h/year with a possible improvement in piezoelectric energy conversion efficiency integrated into the system. This energy harvesting potential would be sufficient to meet close to 0.5% of the annual energy needs of the building. The study confirms that locating high traffic areas is critical for optimization of the energy harvesting efficiency, as well as the orientation of the tile pavement significantly affects the total amount of the harvested energy. A Density Flow evaluation is recommended in this study to qualitatively evaluate the piezoelectric power harvesting potential of the considered area based on the number of pedestrian crossings per unit time

  11. Review of Turkey's renewable energy potential

    International Nuclear Information System (INIS)

    Ozgur, M. Arif

    2008-01-01

    The use of renewable energy has a long history. Biomass, for instance, has been used for heating and cooking, while wind has been used in the irrigation of fields and to drive windmills for centuries. Although Turkey has many energy resources, all of these with the exception of coal and hydropower, cannot meet the total energy demand. Turkey has been importing resources to meet this deficit. These resources have become increasingly expensive and also have undesirably high emissions ratings. Turkey has an extensive shoreline and mountains and is rich in renewable energy potential. The share of renewables on total electricity generation is 29.63% while that of natural gas is 45% for the year 2006. The projection prepared for the period between 2006 and 2020 aims an annual growth of 8% for the total electricity generation. According to this projection, it is expected that renewables will have a share about 23.68% with a decrease of 5.95% while natural gas will have a share about 33.38% for 2020. This paper presents the present state of world renewable energy sources and then looks in detail at the potential resources available in Turkey. Energy politics are also considered. (author)

  12. Energy audit: potential of energy - conservation in Jordanian ceramic industry

    International Nuclear Information System (INIS)

    Adas, H.; Taher, A.

    2005-01-01

    This paper represents the findings of the preliminary energy-audits performed by the Rational Use of Energy Division at the National Energy Research Center (NERC), as well as the findings of a detailed energy-audit carried out in the largest Ceramic plant in Jordan (Jordan Ceramic industries).These studies were preceded by a survey of the ceramic factories in Jordan. The survey was carried out in 1997. The performed preliminary energy-audits showed that an average saving-potential in most of theses plants is about 25 % of the total energy-bills in these plants, which constitutes a considerable portion of the total production-cost. This fact was verified through the detailed energy-audit performed by NERC team for the largest Ceramic Plant in Jordan in June 2003, which showed an energy-saving potential of about 30 %. This saving can be achieved by some no-cost or low-cost measures, in addition to some measures that need reasonable investments with an average pay-back period of about two years. This detailed energy-audit covered electrical systems, refrigeration systems, compressed-air systems, and kilns. The results of the detailed energy-audit can be disseminated to other Ceramic plant, because of the similarity in the production process between these plants and the plant where the detailed energy-audit was carried out. (author)

  13. 6,7Li + 28Si total reaction cross sections at near barrier energies

    International Nuclear Information System (INIS)

    Pakou, A.; Musumarra, A.; Pierroutsakou, D.; Alamanos, N.; Assimakopoulos, P.A.; Divis, N.; Doukelis, G.; Gillibert, A.; Harissopulos, S.; Kalyva, G.; Kokkoris, M.; Lagoyannis, A.; Mertzimekis, T.J.; Nicolis, N.G.; Papachristodoulou, C.; Perdikakis, G.; Roubos, D.; Rusek, K.; Spyrou, S.; Zarkadas, Ch.

    2007-01-01

    Total reaction cross section measurements for the 6,7 Li + 28 Si systems have been performed at near-barrier energies. The results indicate that, with respect to the potential anomaly at barrier, 6 Li and 7 Li on light targets exhibit similar energy dependence on the imaginary potential. Comparisons are made with 6,7 Li cross sections on light and heavy targets, extracted via previous elastic scattering measurements and also with CDCC calculations. Energy dependent parametrisations are also obtained for total reaction cross sections of 6,7 Li on Si, as well as on any target, at near barrier energies

  14. Estimating the energy saving potential of telecom operators in China

    International Nuclear Information System (INIS)

    Yang, Tian-Jian; Zhang, Yue-Jun; Huang, Jin; Peng, Ruo-Hong

    2013-01-01

    A set of models are employed to estimate the potential of total energy saved of productions and segmented energy saving for telecom operators in China. During the estimation, the total energy saving is divided into that by technology and management, which are derived from technical reform and progress, and management control measures and even marketing respectively, and the estimating methodologies for energy saving potential of each segment are elaborated. Empirical results from China Mobile indicate that, first, the technical advance in communications technology accounts for the largest proportion (70%–80%) of the total energy saved of productions in telecom sector of China. Second, technical reform brings about 20%–30% of the total energy saving. Third, the proportions of energy saving brought by marketing and control measures appear relatively smaller, just less than 3%. Therefore, China's telecom operators should seize the opportunity of the revolution of communications network techniques in recent years to create an advanced network with lower energy consumption

  15. The wind energy potential in Argentina

    International Nuclear Information System (INIS)

    Alvarez, P

    2005-01-01

    The wind energy are increasing its contribution to large scale electricity generation in many countries.The high technical maturity reached by modern wind turbines returns it viable and competitive in many regions, specially in those where a suitable legal framework stimulates the generation from renewable sources of energy.As this regard, the objective of this report is to demonstrate that, far from being limited to provide energy to remote, dispersed or geographically isolated sites not served by conventional networks, the wind energy has fully potential to supply a pretty relevant part of the electrical consumption of the great urban centers located in those zones of the country favored with this resource.For it, two preliminary estimations has done: the total 'windy' surface area in geographic proximity of the high voltage lines and electrical substations of the Argentine System of Interconnection (SADI) able 'to be seeded' with wind turbines, and the total electrical energy feasible of being generated from them.The paper supposes the exclusion of important non apt areas by virtue of strictly geographic, economic or environmental considerations.Even so, the result of the final calculation is extraordinarily high and promissory: if only 4% of the total surface of the contiguous land areas (in a maximum radius of 62 km) to the high voltage transmission system (in which the annual mean wind speed surpasses the 5.55 m/s) would be filled with power wind turbines, the annual average energy produced by them would be equivalent to 89% of the estimated national electrical consumption for year 2013.The usable wind potential in favorable technical conditions for commercial generation rounds this way around 40,000 MW, that would report an annual average energy of 100,000 GWh, occupying an area near 5000 km 2 .The total wind energy potential is (of course) considerably greater. Anyway, given the random nature of the wind and the consequent characteristics of not firm power

  16. The total energy policy in Flanders

    International Nuclear Information System (INIS)

    Bouma, J.W.J.

    1994-01-01

    The policy of the Flemish region (Belgium) with regard to the total energy principle are presented. An overview of the main policy instruments to support energy saving and environmental-friendly investments as well as the development of new technologies is given. The total energy policy of the Flanders Region forms part of the general Flemish (energy) policy. (A.S.)

  17. Total-factor energy efficiency in developing countries

    International Nuclear Information System (INIS)

    Zhang Xingping; Cheng Xiaomei; Yuan Jiahai; Gao Xiaojun

    2011-01-01

    This paper uses a total-factor framework to investigate energy efficiency in 23 developing countries during the period of 1980-2005. We explore the total-factor energy efficiency and change trends by applying data envelopment analysis (DEA) window, which is capable of measuring efficiency in cross-sectional and time-varying data. The empirical results indicate that Botswana, Mexico and Panama perform the best in terms of energy efficiency, whereas Kenya, Sri Lanka, Syria and the Philippines perform the worst during the entire research period. Seven countries show little change in energy efficiency over time. Eleven countries experienced continuous decreases in energy efficiency. Among five countries witnessing continuous increase in total-factor energy efficiency, China experienced the most rapid rise. Practice in China indicates that effective energy policies play a crucial role in improving energy efficiency. Tobit regression analysis indicates that a U-shaped relationship exists between total-factor energy efficiency and income per capita. - Research Highlights: → To measure the total-factor energy efficiency using DEA window analysis. → Focus on an application area of developing countries in the period of 1980-2005. → A U-shaped relationship was found between total-factor energy efficiency and income.

  18. Total energy calculations from self-energy models

    International Nuclear Information System (INIS)

    Sanchez-Friera, P.

    2001-06-01

    Density-functional theory is a powerful method to calculate total energies of large systems of interacting electrons. The usefulness of this method, however, is limited by the fact that an approximation is required for the exchange-correlation energy. Currently used approximations (LDA and GGA) are not sufficiently accurate in many physical problems, as for instance the study of chemical reactions. It has been shown that exchange-correlation effects can be accurately described via the self-energy operator in the context of many-body perturbation theory. This is, however, a computationally very demanding approach. In this thesis a new scheme for calculating total energies is proposed, which combines elements from many-body perturbation theory and density-functional theory. The exchange-correlation energy functional is built from a simplified model of the self-energy, that nevertheless retains the main features of the exact operator. The model is built in such way that the computational effort is not significantly increased with respect to that required in a typical density-functional theory calculation. (author)

  19. Total energy system in the future

    International Nuclear Information System (INIS)

    Hijikata, K.

    1994-01-01

    The possibility of improving the thermal efficiency of energy systems from an exergy point of view is discussed. In total energy systems, we should employ multi-pass recycling consisting of thermal and chemical energies. The recycling system is supported by electrical energy, which is provided by a renewable energy source or by excess commercial electric power. This total energy system should be considered not only in one country, but all around the globe. (author). 6 figs., 4 tabs., 8 refs

  20. Innovative Basis of Research of Energy-Efficient Potential and Effectiveness of Renewable Energy Sources

    OpenAIRE

    Hasanov Seymur Latif oglu; Hasanov Elnur Latif oglu

    2018-01-01

    In recent years, countries of the world have been trying to attract new energy sources (wind, sun, biogas, waves, drainage, non-conventional energy sources such as hydroelectric power of small rivers) in their fuel-energy balance. Azerbaijan has renewable natural resources, favorable for its energy-efficient potential, according to the amount of sunny and windy days. In this article was given total information about renewable energy potential of Azerbaijan Republic. In this article we use inf...

  1. Argon intermolecular potential from a measurement of the total scattering cross-section

    International Nuclear Information System (INIS)

    Wong, Y.W.

    1975-01-01

    An inversion method to obtain accurate intermolecular potentials from experimental total cross section measurements is presented. This method is based on the high energy Massey--Smith approximation. The attractive portion of the potential is represented by a multi-parameter spline function and the repulsive part by a Morse function. The best fit potential is obtained by a least squares minimization based on comparison of experimental cross sections with those obtained by a Fourier transform of the reduced Massey--Smith phase shift curve. An experimental method was developed to obtain the total cross sections needed for the above inversion procedure. In this technique, integral cross sections are measured at various resolutions and the total cross section is obtained by extrapolating to infinite resolution. Experimental results obtained for the Ar--Ar system are in excellent agreement with total cross sections calculated using the Barker-Fisher-Watts potential. Inversion of the data to obtain a potential distinguishable from the BFW-potential requires an extension of the method based on the Massey--Smith approximation to permit use of JWKB phase shifts and was not attempted

  2. Steam systems in industry: Energy use and energy efficiency improvement potentials

    International Nuclear Information System (INIS)

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-01-01

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO(sub 2) emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO(sub 2) emissions equivalent to 12-13 MtC

  3. Natural gas decompression energy recovery: Energy savings potential in Italy

    International Nuclear Information System (INIS)

    Piatti, A.; Piemonte, C.; Rampini, E.; Vatrano, F.; Techint SpA, Milan; ENEA, Rome

    1992-01-01

    This paper surveyed the natural gas distribution systems employed in the Italian civil, industrial and thermoelectric sectors to identify those installations which can make use of gas decompression energy recovery systems (consisting of turbo-expanders or alternative expanders) to economically generate electric power. Estimates were then made of the total amount of potential energy savings. The study considered as eligible for energy savings interventions only those plants with a greater than 5,000 standard cubic meter per hour plant capacity. It was evaluated that, with suitable decompression equipment installed at 50 key installations (33 civil, 15 industrial), about 200 GWh of power could be produced annually, representing potential savings of about 22,000 petroleum equivalent tonnes of energy. A comparative analysis was done on three investment alternatives involving inputs of varying amounts of Government financial assistance

  4. Potential for reducing paper mill energy use and carbon dioxide emissions through plant-wide energy audits: A case study in China

    International Nuclear Information System (INIS)

    Kong, Lingbo; Price, Lynn; Hasanbeigi, Ali; Liu, Huanbin; Li, Jigeng

    2013-01-01

    Highlights: ► We audited a paper mill in China to reduce its energy use and CO 2 emissions. ► The energy use and CO 2 emissions of the mill and each paper machine are presented. ► The energy saving potential for the paper machine is estimated at 8–37%. ► The energy saving potential is 967.8 TJ, equal to 14.4% of the mill’s energy use. ► The CO 2 reduction potential is 93,453 tonnes CO 2 for the studied paper mill. -- Abstract: The pulp and paper industry is one of the most energy-intensive industries worldwide. In 2007, it accounted for 5% of total global industrial energy consumption and 2% of direct industrial carbon dioxide (CO 2 ) emissions. An energy audit is a primary step toward improving energy efficiency at the facility level. This paper describes a plant-wide energy audit aimed at identifying energy conservation and CO 2 mitigation opportunities at a paper mill in Guangdong province, China. We describe the energy audit methods, relevant Chinese standards, methods of calculating energy and carbon indicators, baseline energy consumption and CO 2 emissions of the audited paper mill, and nine energy-efficiency improvement opportunities identified by the audit. For each of the nine options, we evaluate the energy conservation and associated CO 2 mitigation potential. The total technical energy conservation potential for these nine opportunities is 967.8 terajoules (TJ), and the total CO 2 mitigation potential is equal to 93,453 tonnes CO 2 annually, representing 14.4% and 14.7%, respectively, of the mill’s total energy consumption and CO 2 emissions during the audit period.

  5. An evaluation of domestic solar energy potential in Taiwan incorporating land use analysis

    International Nuclear Information System (INIS)

    Yue, Cheng-Dar; Huang, Guo-Rong

    2011-01-01

    Solar energy is widely regarded as a major renewable energy source, which in future energy systems will be able to contribute to the security of energy supply and the reduction of CO 2 emissions. This study combined an evaluation of solar energy resources in Taiwan with land use analysis, which allows the potentials and restrictions of solar energy exploitation resulting from local land use conditions to be considered. The findings unveiled in this study indicate that photovoltaic electricity generation and solar water heating have the potential of producing 36.1 and 10.2 TWh of electricity and thermal energy annually in Taiwan, accounting for 16.3% and 127.5% of the total domestic consumption of electricity and energy for household water heating in 2009, respectively. However, the exploited solar photovoltaic power generation in 2009 accounted for only 0.02% of total potential in Taiwan, while the exploited solar water heating accounted for 11.6% of total potential. Market price and investment incentive are the dominant factors that affect market acceptance of solar energy installation in Taiwan. The administrative barriers to the purchase and transmission of electricity generated from renewable energy sources have to be removed before the potential contribution of solar energy can be realized. - Highlights: ► Solar PV and solar water heating have a vital energy potential. ► Solar PV has an essential potential in CO 2 reduction. ► Investment incentives dominate market acceptance of solar energy. ► Appropriate urban building bulk facilitates energy autonomy using solar energy. ► Land use analysis is a viable tool to evaluate solar energy potential.

  6. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    Science.gov (United States)

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  7. Warm body temperature facilitates energy efficient cortical action potentials.

    Directory of Open Access Journals (Sweden)

    Yuguo Yu

    Full Text Available The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+ channel inactivation, resulting in a marked reduction in overlap of the inward Na(+, and outward K(+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.

  8. Energy potential of the wind and possibility for construction of big energy systems

    International Nuclear Information System (INIS)

    Gruevski, Trpe

    2004-01-01

    In this paper a brief theoretical survey is given on the wind as a clean and renewable energy source.The wind energy potential is analyzed as well as the power limits that could be obtained as a result of the wind kinetic energy.The total generating costs for wind turbine systems are determined by total investments costs, the life time, the operating and maintenance costs, the wind regime, the efficiency and availability of the wind turbine. The optimum size of a wind turbine depends on the wind speed, the wind turbine costs, the construction costs, the environmental impact and the social costs. The value of wind energy depends on the application that is made of the energy generated and on the costs of alternatives

  9. Unravelling the potential of energy efficiency in the Colombian oil industry

    NARCIS (Netherlands)

    Yanez Angarita, Edgar Eduardo; Ramirez, Andrea; Uribe, Ariel; Castillo, Edgar; Faaij, Adrianus

    2018-01-01

    The oil and gas sector represents 39% of the world's total industrial final energy consumption, and contributes to around 37% of total greenhouse gas (GHG) emissions. This study investigates the potential for improvements in energy efficiency, and their implications for CO2 abatement, in the

  10. DWBA differential and total pair production cross sections for intermediate energy photons

    International Nuclear Information System (INIS)

    Selvaraju, C.; Bhullar, A.S.; Sud, K.K.

    2001-01-01

    We present in this communication the theoretical differential and total cross section for electron-positron pair creation by intermediate energy photons (5.0-10.0 MeV) on different targets (Z=1, 30, 50, 68, 82 and 92). The computed cross sections are in distorted wave Born approximation (DWBA) in point Coulomb potential. The database of the differential and total pair production cross sections is presented in tabulated as well as in graphical form and the interpolation of differential cross sections for different atomic numbers, positron and photon energies is discussed

  11. Energy conservation potential in Taiwanese textile industry

    International Nuclear Information System (INIS)

    Hong, Gui-Bing; Su, Te-Li; Lee, Jenq-Daw; Hsu, Tsung-Chi; Chen, Hua-Wei

    2010-01-01

    Since Taiwan lacks sufficient self-produced energy, increasing energy efficiency and energy savings are essential aspects of Taiwan's energy policy. This work summarizes the energy savings implemented by 303 firms in Taiwan's textile industry from the on-line Energy Declaration System in 2008. It was found that the total implemented energy savings amounted to 46,074 ton of oil equivalent (TOE). The energy saving was equivalent to 94,614 MWh of electricity, 23,686 kl of fuel oil and 4887 ton of fuel coal. It represented a potential reduction of 143,669 ton in carbon dioxide emissions, equivalent to the annual carbon dioxide absorption capacity of a 3848 ha plantation forest. This study summarizes energy-saving measures for energy users and identifies the areas for making energy saving to provide an energy efficiency baseline.

  12. Fission fragment mass and total kinetic energy distributions of spontaneously fissioning plutonium isotopes

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with A = 236-246. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energy distributions are found in good agreement with the data.

  13. Exploring the potential of wind energy for a coastal state

    International Nuclear Information System (INIS)

    Yue, C.-D.; Yang, M.-H.

    2009-01-01

    Adequate recognition of the wind energy potential of coastal states may have far-reaching effects on the development of the energy systems of these countries. This study evaluates wind energy resources in Taiwan with the aid of a geographic information system (GIS), which allows local potentials and restrictions such as climate conditions, land uses, and ecological environments to be considered. The findings unveiled in this study suggest a significant role for offshore wind energy resources, which may constitute between 94% and 98% of overall wind resources in Taiwan. Total power yield from wind energy could reach between 150 and 165 TWh, which would have, respectively, accounted for between 62% and 68% of Taiwan's total power generation of 243 TWh in 2007. Based on the Taiwan's current emission factor of electricity, wind energy has the potential to reduce CO 2 emissions by between 94 and 102 million ton per year in Taiwan, which is, respectively, equivalent to 28% and 31% of the national net equivalent CO 2 emissions released in 2002. However, the challenge of managing the variability of wind power has to be addressed before the considerable contribution of wind energy to domestic energy supply and CO 2 reduction can be realized.

  14. Use of total cross sections for obtaining the anisotropic interaction potential in atom--diatom system

    International Nuclear Information System (INIS)

    Eccles, J.; Secrest, D.

    1977-01-01

    A study is made of the ''conservation of the total cross section'' and the ''equivalence of the total cross section'' rules for scattering from H 2 . It is shown that these rules are a better approximation than the random phase approximation would indicate. Cross section formulas are given for scattering atoms from m/sub j/ state selected molecules and it is shown that total cross sections for state selected molecules depend on the anisotropic part of the interaction potential, while the spin-averaged total cross section often depends only on the spherically symmetric part of the interaction potential. The total spin-averaged cross section is thus independent of the initial rotation state of the molecule and depends only on the relative collision energy. It is further demonstrated that isotopic substitution, which shifts the center of mass changing the symmetric part of the interaction potential, has too small an effect on the total cross section to be useful as a means of determining the anisotropy of the potential

  15. Total-factor energy efficiency of regions in China

    International Nuclear Information System (INIS)

    Hu, J.-L.; Wang, S.-C.

    2006-01-01

    This paper analyzes energy efficiencies of 29 administrative regions in China for the period 1995-2002 with a newly introduced index. Most existing studies of regional productivity and efficiency neglect energy inputs. We use the data envelopment analysis (DEA) to find the target energy input of each region in China at each particular year. The index of total-factor energy efficiency (TFEE) then divides the target energy input by the actual energy input. In our DEA model, labor, capital stock, energy consumption, and total sown area of farm crops used as a proxy of biomass energy are the four inputs and real GDP is the single output. The conventional energy productivity ratio regarded as a partial-factor energy efficiency index is computed for comparison in contrast to TFEE; our index is found fitting better to the real case. According to the TFEE index rankings, the central area of China has the worst energy efficiency and its total adjustmentof energy consumption amount is over half of China's total. Regional TFEE in China generally improved during the research period except for the western area. A U-shape relation between the area's TFEE and per capita income in the areas of China is found, confirming the scenario that energy efficiency eventually improves with economic growth

  16. Finite energy for a gravitational potential falling slower than 1/r

    International Nuclear Information System (INIS)

    Comelli, Denis; Crisostomi, Marco; Pilo, Luigi; Nesti, Fabrizio

    2011-01-01

    The total energy of any acceptable self-gravitating physical system has to be finite. In GR, the static gravitational potential of a self-gravitating body goes as 1/r at large distances and any slower decrease leads to infinite energy. In this work we show that in modified gravity theories the situation can be much different. We show that there exist spherically symmetric solutions with finite total energy, featuring an asymptotic behavior slower than 1/r and generically of the form r γ . This suggests that configurations with nonstandard asymptotics may well turn out to be physical. The effect is due to an extra field coupled only gravitationally, which allows for modifications of the static potential generated by matter, while counterbalancing the apparently infinite energy budget.

  17. Overview of direct air free cooling and thermal energy storage potential energy savings in data centres

    International Nuclear Information System (INIS)

    Oró, Eduard; Depoorter, Victor; Pflugradt, Noah; Salom, Jaume

    2015-01-01

    In the last years the total energy demand of data centres has experienced a dramatic increase which is expected to continue. This is why data centres industry and researchers are working on implementing energy efficiency measures and integrating renewable energy to overcome energy dependence and to reduce operational costs and CO 2 emissions. The cooling system of these unique infrastructures can account for 40% of the total energy consumption. To reduce the energy consumption, free cooling strategies are used more and more, but so far there has been little research about the potential of thermal energy storage (TES) solutions to match energy demand and energy availability. Hence, this work intends to provide an overview of the potential of the integration of direct air free cooling strategy and TES systems into data centres located at different European locations. For each location, the benefit of using direct air free cooling is evaluated energetically and economically for a data centre of 1250 kW. The use of direct air free cooling is shown to be feasible. This does not apply the TES systems by itself. But when using TES in combination with an off-peak electricity tariff the operational cooling cost can be drastically reduced. - Highlights: • The total annual hours for direct air free cooling in data centres are calculated. • The potential of TES integration in data centres is evaluated. • The implementation of TES to store the ambient air cold is not recommended. • TES is feasible if combined with redundant chillers and off-peak electricity price. • The cooling electricity cost is being reduced up to 51%, depending on the location

  18. Research on the decomposition model for China’s National Renewable Energy total target

    International Nuclear Information System (INIS)

    Liu, Zhen; Shi, Yuren; Yan, Jianming; Ou, Xunmin; Lieu, Jenny

    2012-01-01

    It is crucial that China’s renewable energy national target in 2020 is effectively decomposed into respective period targets at the provincial level. In order to resolve problems arising from combining the national and local renewable energy development plan, a total target and period target decomposition model of renewable energy is proposed which considers the resource distribution and energy consumption of different provinces as well as the development characteristics of various renewable energy industries. In the model, the total proposed target is comprised of three shares: basic share, fixed share and floating share target. The target distributed for each province is then determined by the preference relation. That is, when total renewable energy target is distributed, the central government is more concerned about resources potential or energy consumption. Additionally, the growth models for various renewable energy industries are presented, and the period targets of renewable energy in various provinces are proposed in line with regional economic development targets. In order to verify whether the energy target can be achieved, only wind power, solar power, and hydropower are considered in this study. To convenient to assess the performance of local government, the two year period is chosen as an evaluation cycle in the paper. The renewable energy targets per two-year period for each province are calculated based on the overall national renewable energy target, energy requirements and resources distribution. Setting provincial period targets will help policy makers to better implement and supervise the overall renewable energy plan. - Highlights: It is very importance that the national target of renewable energy in 2020 can be effectively decomposed into the stages target of various province. In order to resolve the relation the plan between the national and local renewable energy development planning, a total target and phase target decomposition model

  19. A snapshot of geothermal energy potential and utilization in Turkey

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2009-01-01

    Turkey is one of the countries with significant potential in geothermal energy. It is estimated that if Turkey utilizes all of her geothermal potential, she can meet 14% of her total energy need (heat and electricity) from geothermal sources. Therefore, today geothermal energy is an attractive option in Turkey to replace fossil fuels. Besides, increase in negative effects of fossil fuels on the environment has forced many countries, including Turkey, to use renewable energy sources. Also, Turkey is an energy importing country; more than two-thirds of her energy requirement is supplied by imports. In this context, geothermal energy appears to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Since geothermal energy will be used more and more in the future, its current potential, usage, and assessment in Turkey is the focus of the present study. The paper not only presents a review of the potential and utilization of the geothermal energy in Turkey but also provides some guidelines for policy makers. (author)

  20. Vibration Energy Harvesting Potential for Turbomachinery Applications

    Directory of Open Access Journals (Sweden)

    Adrian STOICESCU

    2018-03-01

    Full Text Available The vibration energy harvesting process represents one of the research directions for increasing power efficiency of electric systems, increasing instrumentation nodes autonomy in hard to reach locations and decreasing total system mass by eliminating cables and higher-power adapters. Research based on the possibility of converting vibration energy into useful electric energy is used to evaluate the potential of its use on turbomachinery applications. Aspects such as the structure and characteristics of piezoelectric generators, harvesting networks, their setup and optimization, are considered. Finally, performance test results are shown using piezoelectric systems on a turbine engine.

  1. Potential of hydrogen production from wind energy in Pakistan

    International Nuclear Information System (INIS)

    Uqaili, M. A.; Harijan, K.; Memon, M.

    2007-01-01

    The transport sector consumes about 34% of the total commercial energy consumption in Pakistan. About 97% of fuel used in this sector is oil and the remaining 3% is CNG and electricity. The indigenous reserves of oil and gas are limited and the country is heavily dependent on the import of oil. The oil import bill is serious strain on the country's economy. The production, transportation and consumption of fossil fuels also degrade the environment. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply in the transport sector. Sindh, the second largest province of Pakistan, has about 250 km long coastline. The estimated average annual wind speed at 50 m height at almost all sites is about 6-7 m/s, indicating that Sindh has the potential to effectively utilize wind energy source for power generation and hydrogen production. A system consisting of wind turbines coupled with electrolyzers is a promising design to produce hydrogen. This paper presents an assessment of the potential of hydrogen production from wind energy in the coastal area of Sindh, Pakistan. The estimated technical potential of wind power is 386 TWh per year. If the wind electricity is used to power electrolyzers, 347.4 TWh hydrogen can be produced annually, which is about 1.2 times the total energy consumption in the transport sector of Pakistan in 2005. The substitution of oil with renewable hydrogen is essential to increase energy independence, improve domestic economies, and reduce greenhouse gas and other harmful emissions

  2. Recognising the potential for renewable energy heating and cooling

    International Nuclear Information System (INIS)

    Seyboth, Kristin; Beurskens, Luuk; Langniss, Ole; Sims, Ralph E.H.

    2008-01-01

    Heating and cooling in the industrial, commercial, and domestic sectors constitute around 40-50% of total global final energy demand. A wide range of renewable energy heating and cooling (REHC) technologies exists but they are presently only used to meet around 2-3% of total world demand (excluding from traditional biomass). Several of these technologies are mature, their markets are growing, and their costs relative to conventional heating and cooling systems continue to decline. However, in most countries, policies developed to encourage the wider deployment of renewable electricity generation, transport biofuels and energy efficiency have over-shadowed policies aimed at REHC technology deployment. This paper, based on the findings of the International Energy Agency publication Renewables for Heating and Cooling-Untapped Potential, outlines the present and future markets and compares the costs of providing heating and cooling services from solar, geothermal and biomass resources. It analyses current policies and experiences and makes recommendations to support enhanced market deployment of REHC technologies to provide greater energy supply security and climate change mitigation. If policies as successfully implemented by the leading countries were to be replicated elsewhere (possibly after modification to better suit local conditions), there would be good potential to significantly increase the share of renewable energy in providing heating and cooling services

  3. Energy balance of chosen crops and their potential to saturate energy consumption in Slovakia

    Directory of Open Access Journals (Sweden)

    Katarína Hrčková

    2016-06-01

    Full Text Available The aim of the present work was to assess and compare energy inputs and outputs of various crop managements in 2011–2012. Two main crops on arable land and three permanent grasslands were investigated. Silage maize (Zea mays L. and winter wheat (Triticum aestivum L. were grown on lowland, whilst two semi-natural grasslands and grassland infested by tufted hair-grass (Deschampsia caespitose (L. P. Beauv were located in mountainous regions of Slovakia. In these crops and grasslands the dry matter yield was measured and subsequently the supplementary energy, energy gain and unifying energy value – tonne of oil equivalent (TOE – were calculated. Silage maize with 233.37 GJ*ha-1 has provided the highest energy gain. In the group of grasslands, grassland infested by tufted hair-grass has offered the highest energy gain (59.77 GJ*ha-1. And this grassland had the lowest requirement on the supplementary energy (3.66 GJ*ha-1, contrary to silage maize with highest one (12.37 GJ*ha-1. The total energy potential of the crop biomasses was confronted with energy consumption in Slovakia. Winter wheat has the biggest energy potential, but it could cover only 19.6% and 11.3% total consumption of electricity or natural gas, respectively. Large area of permanent grasslands and their spatial location make them an important energy reservoir for bioenergy production. But, it is not possible to replace all consumed fossil fuels by bioenergy from these tested renewable energy sources.

  4. Valorization of potentials of wind energy in Montenegro

    Directory of Open Access Journals (Sweden)

    Vujadinović Radoje V.

    2017-01-01

    Full Text Available Investments in energy sector are usually long term processes both in construction and exploitation phase, and therefore require many conditions to be satisfied, mostly from legislative and technical sector. While the legislative can change in accordance with economy activities in the country, technical data (on-site measurements which are the main base for energy facility design, need to be reliable as much as possible. Wind energy has a significant global potential which exceeds the world’s electrical energy consumptions. This paper presents the estimation of wind energy potentials in Montenegro, based on all previous available studies in this field. The wind energy potential in Montenegro is based on a combination of 3-D numerical simulations of wind fields on the entire territory, and comprehensive on-site measurements. The preliminary studies show that there is a potential of areas with high and mean values of a capacity factor about 400 MW, and annual production of 900 GWh of electric energy. The share of wind parks in the total installed power in Montenegro is planned to be about 8%, while an adequate ratio of wind parks in an annual production from renewable sources (large hydro power plants are included here is estimated to be 11.4%. The paper presents the current state of art in the field of building of wind parks in Montenegro. A particular attention was paid to the legislation framework and strategic documents in the energy area in Montenegro.

  5. Technical and Economic Potential of Distributed Energy Storages for the Integration of Renewable Energy

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Trier, Daniel; Hansen, Kenneth

    Very high penetration of fluctuating renewable energy sources can lead to new challenges in balancing energy supply and demand in future energy systems. This work, carried out as a part of Annex 28 of the IEA ECES programme, addresses this. The aim of the study is to identify which role decentral...... indicate that sector coupling along with an intelligent choice of distributed energy storage technologies can enable the integration of large shares of fluctuating renewable energy in an energy efficient and cost-effective way.......Very high penetration of fluctuating renewable energy sources can lead to new challenges in balancing energy supply and demand in future energy systems. This work, carried out as a part of Annex 28 of the IEA ECES programme, addresses this. The aim of the study is to identify which role...... decentralised energy storages (DES) should play in integrating fluctuating renewable energy sources. The technical and economic potential for DES solutions is quantified using energy system modelling, and it is identified which DES technologies have the largest total (technical and economic) potential. For this...

  6. Analysis of the effect and potential of energy conservation in China

    International Nuclear Information System (INIS)

    He Jiankun; Liu Bin; Zhang Aling

    2006-01-01

    In this paper, a quantitative algorithm for direct and indirect energy savings is developed based on the database analysis of China's energy consumption per GDP in the last two decades. The result shows that direct energy savings due to improved energy conversion and end-use utilization efficiencies only account for 26.5% of the total energy savings, and that indirect energy savings due to increased added value of products, product shifts, and structure shifts in industries account for 73.5% of the total energy savings. Factors affecting indirect energy savings are then analyzed, and total energy system efficiencies and direct energy savings in 2020 are quantitatively estimated, which shows that enlarging indirect energy savings is a more crucial task for China's macro-energy conservation in the future. The paper suggests that China should pay more attention to indirect energy savings to improve the energy utilization output benefits by increasing the added value of products, optimizing product and industry structures, and improving production technologies. The potential of indirect energy savings in China is more significant compared with developed countries

  7. Potential for renewable energy jobs in the Middle East

    International Nuclear Information System (INIS)

    Zwaan, Bob van der; Cameron, Lachlan; Kober, Tom

    2013-01-01

    Based on employment factors derived from a recent review of publications investigating opportunities for work associated with the diffusion of renewable energy technology, we here present an analysis of the potential for renewable energy jobs in the Middle East. We use energy system optimisation results from the regionally disaggregated TIAM-ECN model as input to our study. This integrated assessment model is utilised to inspect the energy technology requirements for meeting a stringent global climate policy that achieves a stabilisation of greenhouse gas concentrations in the atmosphere with a maximum additional radiative forcing of 2.9 W/m 2 . This climate control target implies a massive deployment of renewable energy in the Middle East, with wind and solar power accounting for approximately 60% of total electricity supply in 2050: 900 TWh of an overall level of 1525 TWh would be generated from 210 GW of installed renewable energy capacity by the middle of the century. For this pervasive renewables diffusion scenario for the Middle East we estimate a total required local work force of ultimately about 155,000 direct and 115,000 indirect jobs, based on assumptions regarding which components of the respective wind and solar energy technologies can be manufactured in the region itself. All jobs generated through installation and O and M activities are assumed to be domestic. - Highlights: • An analysis of the potential for renewable energy jobs in the Middle East is presented. • With the TIAM-ECN model we inspect the technology requirements for meeting a radiative forcing of 2.9 W/m 2 . • Wind and solar power account for approximately 60% of total electricity supply in 2050. • We estimate a total required local work force of ultimately about 155,000 direct and 115,000 indirect jobs. • Manufacturing jobs are assumed to be partly local, while installation and O and M jobs are all domestic

  8. Reevaluation of Turkey's hydropower potential and electric energy demand

    International Nuclear Information System (INIS)

    Yueksek, Omer

    2008-01-01

    This paper deals with Turkey's hydropower potential and its long-term electric energy demand predictions. In the paper, at first, Turkey's energy sources are briefly reviewed. Then, hydropower potential is analyzed and it has been concluded that Turkey's annual economically feasible hydropower potential is about 188 TWh, nearly 47% greater than the previous estimation figures of 128 TWh. A review on previous prediction models for Turkey's long-term electric energy demand is presented. In order to predict the future demand, new increment ratio scenarios, which depend on both observed data and future predictions of population, energy consumption per capita and total energy consumption, are developed. The results of 11 prediction models are compared and analyzed. It is concluded that Turkey's annual electric energy demand predictions in 2010, 2015 and 2020 vary between 222 and 242 (average 233) TWh; 302 and 356 (average 334) TWh; and 440 and 514 (average 476) TWh, respectively. A discussion on the role of hydropower in meeting long-term demand is also included in the paper and it has been predicted that hydropower can meet 25-35% of Turkey's electric energy demand in 2020

  9. The potential of renewable energy

    International Nuclear Information System (INIS)

    Piot, M.

    2007-01-01

    This article presents and comments on definitions of the potential of renewable forms of energy and, in a second part, takes a look at the potentials mentioned in the energy perspectives published by the Swiss Federal Office of Energy (SFOE). The following potentials are looked at: technical potential, ecological potential, economic potential, exploitable and expected potentials, technical, economic and ecological expansion potentials, potential of particular technologies in Switzerland, exploitable and expected expansion potential. Four scenarios for expansion potential are briefly described

  10. Crop residues as a potential renewable energy source for Malawi's cement industry

    DEFF Research Database (Denmark)

    Gondwe, Kenneth J.; Chiotha, Sosten S.; Mkandawire, Theresa

    2017-01-01

    that the projected total energy demands in 2020, 2025 and 2030 were approximately 177 810 TJ, 184 210 TJ and 194 096 TJ respectively. The highest supply potentials were found to be in the central and southern regions of Malawi, coinciding with the locations of the two clinker plants. Crop residues could meet 45......-57% of the national total energy demand. The demand from the cement industry is only 0.8% of the estimated biomass energy potential. At an annual production of 600 000 t of clinker and 20% biomass co-firing with coal, 18 562 t of coal consumption would be avoided and 46 128 t of carbon dioxide emission reduction...

  11. Total, accessible and reserve wind energy resources in Bulgaria

    International Nuclear Information System (INIS)

    Ivanov, P.; Trifonova, L.

    1996-01-01

    The article is a part of the international project 'Bulgaria Country Study to Address Climate Change Inventory of the Greenhouse Gases Emission and Sinks Alternative Energy Balance and Technology Programs' sponsored by the Department of Energy, US. The 'total' average annual wind resources in Bulgaria determined on the basis wind velocity density for more than 100 meteorological stations are estimated on 125 000 TWh. For the whole territory the theoretical wind power potential is about 14200 GW. The 'accessible' wind resources are estimated on about 62000 TWh. The 'reserve' (or usable) wind resources are determined using 8 velocity intervals for WECS (Wind Energy Conversion Systems) operation, number and disposition of turbines, and the usable (3%) part of the territory. The annual reserve resources are estimated at about 21 - 33 TWh. The 'economically beneficial' wind resources (EBWR) are those part of the reserve resources which could be included in the country energy balance using specific technologies in specific time period. It is foreseen that at year 2010 the EBWR could reach 0.028 TWh. 7 refs., 2 tabs., 1 fig

  12. Ethanol yield and energy potential of stems from a spectrum of sorghum biomass types

    Energy Technology Data Exchange (ETDEWEB)

    McBee, G.G.; Creelman, R.A.; Miller, F.R.

    1988-01-01

    Sorghum biomass is a renewable resource that offers significant potential for energy utilization. Six sorghum cultivars, representing an array of stem types, were evaluated for ethanol yield. Ethanol production was individually obtained for both the total stem and the pith of each type by anaerobic yeast fermentation. Value of the energy contained in the rind was determined by calorimetry. The highest yield of ethanol from total stem fermentation was 3418.3 liters ha/sup -1/ produced from Rio. Fermentation of Rio pith to ethanol and combustion of the rind resulted in the highest total energy value of the cultivars. The least and greatest energy values were 6.3 and 44.3 x 10/sup 6/ kcal ha/sup -1/ for SC0056-14 and Rio, respectively. Conversion ratios of potentially fermentable carbohydrates (within the vegetative biomass) to ethanol produced, averaged 0.438 for the pith and 0.406 for total stems.

  13. Energy savings potential from improved building controls for the US commercial building sector

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin; Xie, Yulong; Zhao, Mingjie

    2017-09-27

    The U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) sponsored a study to determine the potential national savings achievable in the commercial building sector through widespread deployment of best practice controls, elimination of system and component faults, and use of better sensing. Detailed characterization of potential savings was one source of input to set research, development, and deployment (RD&D) goals in the field of building sensors and controls. DOE’s building energy simulation software, EnergyPlus, was employed to estimate the potential savings from 34 measures in 9 building types and across 16 climates representing almost 57% of commercial building sector energy consumption. In addition to estimating savings from individual measures, three packages of measures were created to estimate savings from the packages. These packages represented an 1) efficient building, 2) typical building, and 3) inefficient building. To scale the results from individual measures or a package to the national scale, building weights by building type and climate locations from the Energy Information Administration’s 2012 Commercial Building Energy Consumption Survey (CBECS) were used. The results showed significant potential for energy savings across all building types and climates. The total site potential savings from individual measures by building type and climate location ranged between 0% and 25%. The total site potential savings by building type aggregated across all climates (using the CBECS building weights) for each measure varied between 0% and 16%. The total site potential savings aggregated across all building types and climates for each measure varied between 0% and 11%. Some individual measures had negative savings because correcting underlying operational problems (e.g., inadequate ventilation) resulted in increased energy consumption. When combined into packages, the overall national savings potential is estimated to be 29

  14. Biogas generation potential by anaerobic digestion for sustainable energy development in India

    International Nuclear Information System (INIS)

    Rao, P. Venkateswara; Baral, Saroj S.; Dey, Ranjan; Mutnuri, Srikanth

    2010-01-01

    The potential of biogas generation from anaerobic digestion of different waste biomass in India has been studied. Renewable energy from biomass is one of the most efficient and effective options among the various other alternative sources of energy currently available. The anaerobic digestion of biomass requires less capital investment and per unit production cost as compared to other renewable energy sources such as hydro, solar and wind. Further, renewable energy from biomass is available as a domestic resource in the rural areas, which is not subject to world price fluctuations or the supply uncertainties as of imported and conventional fuels. In India, energy demand from various sectors is increased substantially and the energy supply is not in pace with the demand which resulted in a deficit of 11,436 MW which is equivalent to 12.6% of peak demand in 2006. The total installed capacity of bioenergy generation till 2007 from solid biomass and waste to energy is about 1227 MW against a potential of 25,700 MW. The bioenergy potential from municipal solid waste, crop residue and agricultural waste, wastewater sludge, animal manure, industrial waste which includes distilleries, dairy plants, pulp and paper, poultry, slaughter houses, sugar industries is estimated. The total potential of biogas from all the above sources excluding wastewater has been estimated to be 40,734 Mm 3 /year. (author)

  15. Energy management for cost reduction in the production. TEEM - Total Energy Efficiency Management; Energiemanagement zur Kostensenkung in der Produktion. TEEM - Total Energy Efficiency Management

    Energy Technology Data Exchange (ETDEWEB)

    Westkaemper, Engelbert; Verl, Alexander (eds.)

    2009-07-01

    Within the workshop of the Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Stuttgart, Federal Republic of Germany) at 6th October, 2009, in Stuttgart the following lectures were held: (1) Presentation of Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Engelbert Westkaemper); (2) TEEM - Total Energy Efficiency Management - ''With energy management to an energy efficient production'' (Alexander Schloske); (3) DIN EN 16001 Introduction of an energy management system - utilization and advantages for companies (Sylvia Wahren); (4) Analysis of the energy efficiency with power flow - Support and implementation at factory planning and optimization of production (Klaus Erlach); (5) Total Energy Efficiency Management - Approaches at the company Kaercher in injection moulding for example (Axel Leschtar); (6) Modelling the embodied product energy (Shahin Rahimifard); (7) Acquisition of energy data in the production - Technologies and possibilities (Joachim Neher); (8) Active energy management by means of an ''energy control centre'' - Analysis of the real situation and upgrading measures in the production using coating plants as an example (Wolfgang Klein); (9) Visualisation and simulation of energy values in the digital factory (Carmen Constantinescu, Axel Bruns).

  16. Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)

    International Nuclear Information System (INIS)

    Hackl, Roman; Andersson, Eva; Harvey, Simon

    2011-01-01

    Rising fuel prices, increasing costs associated with emissions of green house gases and the threat of global warming make efficient use of energy more and more important. Industrial clusters have the potential to significantly increase energy efficiency by energy collaboration. In this paper Sweden's largest chemical cluster is analysed using the total site analysis (TSA) method. TSA delivers targets for the amount of utility consumed and generated through excess energy recovery by the different processes. The method enables investigation of opportunities to deliver waste heat from one process to another using a common utility system. The cluster consists of 5 chemical companies producing a variety of products, including polyethylene (PE), polyvinyl chloride (PVC), amines, ethylene, oxygen/nitrogen and plasticisers. The companies already work together by exchanging material streams. In this study the potential for energy collaboration is analysed in order to reach an industrial symbiosis. The overall heating and cooling demands of the site are around 442 MW and 953 MW, respectively. 122 MW of heat is produced in boilers and delivered to the processes. TSA is used to stepwise design a site-wide utility system which improves energy efficiency. It is shown that heat recovery in the cluster can be increased by 129 MW, i.e. the current utility demand could be completely eliminated and further 7 MW excess steam can be made available. The proposed retrofitted utility system involves the introduction of a site-wide hot water circuit, increased recovery of low pressure steam and shifting of heating steam pressure to lower levels in a number heat exchangers when possible. Qualitative evaluation of the suggested measures shows that 60 MW of the savings potential could to be achieved with moderate changes to the process utility system corresponding to 50% of the heat produced from purchased fuel in the boilers of the cluster. Further analysis showed that after implementation

  17. Optimization of stand-alone photovoltaic systems with hydrogen storage for total energy self-sufficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P D [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics

    1991-01-01

    A new method for optimization of stand-alone photovoltaic-hydrogen energy systems is presented. The methodology gives the optimum values for the solar array and hydrogen storage size for any given system configuration and geographical site. Sensitivity analyses have been performed to study the effect of subsystem efficiencies on the total system performance and sizing, and also to identify possibilities for further improvements. Optimum system configurations have also been derived. The results indicate that a solar-hydrogen energy system is a very promising potential alternative for low power applications requiring a total electricity self-sufficiency. (Author).

  18. Potential reduction of energy consumption in public university library

    Science.gov (United States)

    Noranai, Z.; Azman, ADF

    2017-09-01

    Efficient electrical energy usage has been recognized as one of the important factor to reduce cost of electrical energy consumption. Various parties have been emphasized about the importance of using electrical energy efficiently. Inefficient usage of electrical energy usage lead to biggest factor increasing of administration cost in Universiti Tun Hussein Onn Malaysia. With this in view, a project the investigate potential reduction electrical energy consumption in Universiti Tun Hussein Onn Malaysia was carried out. In this project, a case study involving electrical energy consumption of Perpustakaan Tunku Tun Aminah was conducted. The scopes of this project are to identify energy consumption in selected building and to find the factors that contributing to wastage of electrical energy. The MS1525:2001, Malaysian Standard - Code of practice on energy efficiency and use of renewable energy for non-residential buildings was used as reference. From the result, 4 saving measure had been proposed which is change type of the lamp, install sensor, decrease the number of lamp and improve shading coefficient on glass. This saving measure is suggested to improve the efficiency of electrical energy consumption. Improve of human behaviour toward saving energy measure can reduce 10% from the total of saving cost while on building technical measure can reduce 90% from total saving cost.

  19. Energy from waste. Potentials and possibilities for usage; Energie aus Abfall. Potenziale und Nutzungsmoeglichkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Wallmann, Rainer; Fritz, Thomas [Hochschule fuer Angewandte Wissenschaft und Kunst (HAWK), Goettingen (DE). Fachgebiet Nachhaltige Energie- und Umwelttechnik (NEUTec); Fricke, Klaus [Technische Univ. Braunschweig (Germany). Abt. Abfall- und Ressourcenwirtschaft

    2009-05-15

    In the present article the results of appraisal for the determination of the theoretical potential of energy and the current secondary energy supply of waste streams, which are relevant for the power production in Germany are represented. To sum up, the following conclusions arise from the balance: The theoretical primary energy supply potential of the examined waste streams amounts from 540 to 650 PJ/a and corresponds from 3.9 to 4.6% of the total primary energy consumption in Germany. In consideration of the system-dependent efficiencies and steering of flow patterns for materials altogether approx. 53 PJ electricity and 104 PJ (used) heat were produced as secondary energy within the regarded ranges in the year 2006 in Germany. This corresponds approx. to 1.7% of the final energy consumption in Germany. The outcome of the evaluated energy data for 2006 is a middle energy efficiency of approx. 26.5% (approx. 8.9% electrically and approx. 17.6% thermally). Under technically optimized conditions the power efficiency can be raised possibly on approx. 37%, whereby the share of the final energy consumption in Germany would increase to 2,3%. (orig.)

  20. Total energy consumption in Finland increased by one percent

    International Nuclear Information System (INIS)

    Timonen, L.

    2000-01-01

    The total energy consumption in Finland increased by less than a percent in 1999. The total energy consumption in 1999 was 1310 PJ corresponding to about 31 million toe. The electric power consumption increased moderately by 1.6%, which is less than the growth of the gross national product (3.5%). The final consumption of energy grew even less, only by 0.5%. Import of electric power increased by 19% in 1999. The import of electric power was due to the availability of low-priced electric power on the Nordic electricity markets. Nuclear power generation increased by 5% and the consumption of wood-based fuels by 3%. The increment of the nuclear power generation increased because of the increased output capacity and good operability of the power plants. Wind power production doubles, but the share of it in the total energy consumption is only about 0.01%. The peat consumption decreased by 12% and the consumption of hydroelectric power by 15%. The decrease in production of hydroelectric power was compensated by an increase import of electric power. The consumption of fossil fuels, coal, oil and natural gas remained nearly the same as in 1998. The gasoline consumption, however, decreased, but the consumption of diesel oil increased due to the increased road transport. The share of the fossil fuels was nearly half of the total energy consumption. The consumption of renewable energy sources remained nearly the same, in 23% if the share of peat is excluded, and in 30% if the share of peat is included. Wood-based fuels are the most significant type of renewable fuels. The share of them in 1999 was over 80% of the total usage of the renewable energy sources. The carbon dioxide emissions in Finland decreased in 1999 by 1.0 million tons. The total carbon dioxide emissions were 56 million tons. The decrease was mainly due to the decrease of the peat consumption. The final consumption of energy increased by 0.5%, being hence about 1019 PJ. Industry is the main consumer of energy

  1. Optimized design of total energy systems: The RETE project

    Science.gov (United States)

    Alia, P.; Dallavalle, F.; Denard, C.; Sanson, F.; Veneziani, S.; Spagni, G.

    1980-05-01

    The RETE (Reggio Emilia Total Energy) project is discussed. The total energy system (TES) was developed to achieve the maximum quality matching on the thermal energy side between plant and user and perform an open scheme on the electrical energy side by connection with the Italian electrical network. The most significant qualitative considerations at the basis of the plant economic energy optimization and the selection of the operating criterion most fitting the user consumption characteristics and the external system constraints are reported. The design methodology described results in a TES that: in energy terms achieves a total efficiency evaluated on a yearly basis to be equal to about 78 percent and a fuel saving of about 28 percent and in economic terms allows a recovery of the investment required as to conventional solutions, in about seven years.

  2. Effective Form of Reproducing the Total Financial Potential of Ukraine

    Directory of Open Access Journals (Sweden)

    Portna Oksana V.

    2015-03-01

    Full Text Available Development of scientific principles of reproducing the total financial potential of the country and its effective form is an urgent problem both in theoretical and practical aspects of the study, the solution of which is intended to ensure the active mobilization and effective use of the total financial potential of Ukraine, and as a result — its expanded reproduction as well, which would contribute to realization of the internal capacities for stabilization of the national economy. The purpose of the article is disclosing the essence of the effective form of reproducing the total financial potential of the country, analyzing the results of reproducing the total financial potential of Ukraine. It has been proved that the basis for the effective form of reproducing the total financial potential of the country is the volume and flow of resources, which are associated with the «real» economy, affect the dynamics of GDP and define it, i.e. resource and process forms of reproducing the total financial potential of Ukraine (which precede the effective one. The analysis of reproducing the total financial potential of Ukraine has shown that in the analyzed period there was an increase in the financial possibilities of the country, but steady dynamics of reduction of the total financial potential was observed. If we consider the amount of resources involved in production, creating a net value added and GDP, it occurs on a restricted basis. Growth of the total financial potential of Ukraine is connected only with extensive quantitative factors rather than intensive qualitative changes.

  3. Exactly solvable energy-dependent potentials

    International Nuclear Information System (INIS)

    Garcia-Martinez, J.; Garcia-Ravelo, J.; Pena, J.J.; Schulze-Halberg, A.

    2009-01-01

    We introduce a method for constructing exactly-solvable Schroedinger equations with energy-dependent potentials. Our method is based on converting a general linear differential equation of second order into a Schroedinger equation with energy-dependent potential. Particular examples presented here include harmonic oscillator, Coulomb and Morse potentials with various types of energy dependence.

  4. Total energy expenditure in burned children using the doubly labeled water technique

    International Nuclear Information System (INIS)

    Goran, M.I.; Peters, E.J.; Herndon, D.N.; Wolfe, R.R.

    1990-01-01

    Total energy expenditure (TEE) was measured in 15 burned children with the doubly labeled water technique. Application of the technique in burned children required evaluation of potential errors resulting from nutritional intake altering background enrichments during studies and from the high rate of water turnover relative to CO2 production. Five studies were discarded because of these potential problems. TEE was 1.33 +/- 0.27 times predicted basal energy expenditure (BEE), and in studies where resting energy expenditure (REE) was simultaneously measured, TEE was 1.18 +/- 0.17 times REE, which in turn was 1.16 +/- 0.10 times predicted BEE. TEE was significantly correlated with measured REE (r2 = 0.92) but not with predicted BEE. These studies substantiate the advantage of measuring REE to predict TEE in severely burned patients as opposed to relying on standardized equations. Therefore we recommend that optimal nutritional support will be achieved in convalescent burned children by multiplying REE by an activity factor of 1.2

  5. New parameter-free polarization potentials in low-energy positron collisions

    Science.gov (United States)

    Jain, Ashok

    1990-01-01

    The polarization potential plays a decisive role in shaping up the cross sections in low energy positron collisions with atoms and molecules. However, its inclusion without involving any adjustable parameter, is still a challenge. Various other techniques employed so far for positron collisions are summarized, and a new, nonadjustable and very simple form of the polarization potential for positron-atom (molecule) collisions below the threshold of positronium formation is discussed. This new recently proposed potential is based on the correlation energy of a single positron in a homogeneous electron gas. The correlation energy was calculated by solving the Schrodinger equation of the positron-electron system and fitted to an analytical form in various ranges of the density parameter. In the outside region, the correlation energy is joined smoothly with the correct asymptotic form. This new positron correlation polarization (PCOP) potential was tested on several atomic and molecular targets such as the Ar, CO, and CH4. The results on the total and differential cross sections on these targets are shown along with the experimental data where available.

  6. On the link between martian total ozone and potential vorticity

    Science.gov (United States)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.

    2017-01-01

    We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable. The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone of the northern polar vortex can potentially be used to determine the origin of potential vorticity filaments.

  7. The Use of Trust Regions in Kohn-Sham Total Energy Minimization

    International Nuclear Information System (INIS)

    Yang, Chao; Meza, Juan C.; Wang, Lin-wang

    2006-01-01

    The Self Consistent Field (SCF) iteration, widely used for computing the ground state energy and the corresponding single particle wave functions associated with a many-electron atomistic system, is viewed in this paper as an optimization procedure that minimizes the Kohn-Sham total energy indirectly by minimizing a sequence of quadratic surrogate functions. We point out the similarity and difference between the total energy and the surrogate, and show how the SCF iteration can fail when the minimizer of the surrogate produces an increase in the KS total energy. A trust region technique is introduced as a way to restrict the update of the wave functions within a small neighborhood of an approximate solution at which the gradient of the total energy agrees with that of the surrogate. The use of trust region in SCF is not new. However, it has been observed that directly applying a trust region based SCF(TRSCF) to the Kohn-Sham total energy often leads to slow convergence. We propose to use TRSCF within a direct constrained minimization(DCM) algorithm we developed in dcm. The key ingredients of the DCM algorithm involve projecting the total energy function into a sequence of subspaces of small dimensions and seeking the minimizer of the total energy function within each subspace. The minimizer of a subspace energy function, which is computed by TRSCF, not only provides a search direction along which the KS total energy function decreases but also gives an optimal 'step-length' that yields a sufficient decrease in total energy. A numerical example is provided to demonstrate that the combination of TRSCF and DCM is more efficient than SCF

  8. Wood energy in Switzerland - State of the art, developments and potential

    International Nuclear Information System (INIS)

    Rutschmann, C.

    2006-01-01

    This article reviews the present-day use of wood as a source of energy and the potential it exhibits as part of a future Swiss energy supply system. The history of the use of wood to provide energy is looked at and its changing share of total energy consumption is commented on. In particular, the use of wood energy during the period 1991-2004 is looked at and its promotion by various programmes examined. Apart from wood-fired heating systems, open fires are commented on as are the changes noted over this period in the types of heating systems installed. The potential of wood-energy and custom-tailored solutions are looked at. The important role played by quality assurance for fast market development is stressed. Finally, the role to be played by wood energy in the future is looked at

  9. Motor systems energy efficiency supply curves: A methodology for assessing the energy efficiency potential of industrial motor systems

    International Nuclear Information System (INIS)

    McKane, Aimee; Hasanbeigi, Ali

    2011-01-01

    Motor-driven equipment accounts for approximately 60% of manufacturing final electricity use worldwide. A major barrier to effective policymaking, and to more global acceptance of the energy efficiency potential in industrial motor systems, is the lack of a transparent methodology for quantifying the magnitude and cost-effectiveness of these energy savings. This paper presents the results of groundbreaking analyses conducted for five countries and one region to begin to address this barrier. Using a combination of expert opinion and available data from the United States, Canada, the European Union, Thailand, Vietnam, and Brazil, bottom-up energy efficiency supply curve models were constructed to estimate the cost-effective electricity efficiency potentials and CO 2 emission reduction for three types of motor systems (compressed air, pumping, and fan) in industry for the selected countries/region. Based on these analyses, the share of cost-effective electricity saving potential of these systems as compared to the total motor system energy use in the base year varies between 27% and 49% for pumping, 21% and 47% for compressed air, and 14% and 46% for fan systems. The total technical saving potential varies between 43% and 57% for pumping, 29% and 56% for compressed air, and 27% and 46% for fan systems. - Highlights: → Development of conservation supply curves for the industrial motor systems. → An innovative approach combining available aggregate country-level data with expert opinion. → Results show both cost-effective and technical potential for energy saving and their costs. → Policy implication of the results are briefly discussed.

  10. Economics of total energy schemes in the liberalised European energy market

    Science.gov (United States)

    Lampret, Peter

    This thesis is concerned with the liberalisation of the European Energy markets and the affects this has had on total energy systems. The work concentrates on a number of case studies all of which are located in the area surrounding Gelsenkirchen - Bottrop - Gladbeck, the centre of the Ruhr region of Germany.The thesis describes briefly how the legislation of the parliament of the extended European Union has been interpreted and enacted into German legislation and its affects on production, transport, sales and customers. Primarily the legislation has been enacted to reduce energy costs by having a competitive market while enabling security of supply. The legislation whose development has accelerated since 1999 can lead to negative effects and these have been highlighted for the case studies chosen.The legislation and technological advances, each of them successful by themselves, do not provide the expected reduction of carbon dioxide emissions when applied to total energy system. The introduction of human behaviour as a missing link makes the problems evident and gives a theoretical basis to overcome these problems. The hypothesis is proven by eight detailed research projects and four concisely described ones.The base of the research is the experience gained on approximately 1,000 operation years of the simplest total energy system, that of centralised heating. This experience is transferred to different solutions for total energy systems and their economics in combination with the changing legislation and observation of human behaviour.The variety of topics of the case studies includes the production of heat by boiler, solar or combined heat and power and the use of fuel cells. Additionally the transfer of heat, at the place of demand is considered, either as an individual boiler in a building or as de-centralised district heating.The various results of these projects come together in a final project which covers four different heating systems in identical

  11. Assessment of the energy recovery potentials of solid waste ...

    African Journals Online (AJOL)

    Otoigiakih

    The main attributes of waste as a fuel are water content, calorific value, and burnable content. The study was conducted to evaluate the energy recovery potential of solid waste generated in. Akosombo. A total of twelve (12) samples were collected from the township in December, 2012 (dry month) and May, 2013 (Wet ...

  12. Energy consumption and CO2 emissions of industrial process technologies. Saving potentials, barriers and instruments

    International Nuclear Information System (INIS)

    Fleiter, Tobias; Schlomann, Barbara; Eichhammer, Wolfgang

    2013-01-01

    Which contribution can the increase of energy efficiency achieve in the industry energy for the energy transition in Germany? To answer this question a model-based analysis of existing energy efficiency potentials of the energy-intensive industries is performed, which account for about 70% of the total energy demand of the industry. Based on this industry for each sector are instruments proposed for the implementation of the calculated potential and to overcome the existing barriers. [de

  13. The potential of the Malaysian oil palm biomass as a renewable energy source

    International Nuclear Information System (INIS)

    Loh, Soh Kheang

    2017-01-01

    Highlights: • An energy resource data for oil palm biomass is generated. • The data encompasses crucial fuel and physicochemical characteristics. • These characteristics guide on biomass behaviors and technology selection. • Oil palm biomass is advantageous in today’s energy competitive markets. • Overall, it is a green alternative for biorefinery establishment. - Abstract: The scarcity of conventional energy such as fossil fuels (which will lead to eventual depletion) and the ever-increasing demand for new energy sources have resulted in the world moving into an era of renewable energy (RE) and energy efficiency. The Malaysian oil palm industry has been one of the largest contributor of lignocellulosic biomass, with more than 90% of the country’s total biomass deriving from 5.4 million ha of oil palms. Recent concerns on accelerating replanting activity, improving oil extraction rate, expanding mill capacity, etc. are expected to further increase the total oil palm biomass availability in Malaysia. This situation has presented a huge opportunity for the utilization of oil palm biomass in various applications including RE. This paper characterizes the various forms of oil palm biomass for their important fuel and other physicochemical properties, and assesses this resource data in totality – concerning energy potential, the related biomass conversion technologies and possible combustion-related problems. Overall, oil palm biomass possesses huge potential as one of the largest alternative energy sources for commercial exploitation.

  14. Preliminary results of total kinetic energy modelling for neutron-induced fission

    International Nuclear Information System (INIS)

    Visan, I.; Giubega, G.; Tudora, A.

    2015-01-01

    The total kinetic energy as a function of fission fragments mass TKE(A) is an important quantity entering in prompt emission calculations. The experimentally distributions of TKE(A) are referring to a limited number of fission systems and incident energies. In the present paper, a preliminary model for TKE calculation in neutron induced fission system is presented. The range of fission fragments is chosen as in the Point by Point treatment. The model needs as input only mass excesses and deformation parameters taken from available nuclear databases being based on the following approximations: total excitation energy of fully accelerated fission fragments TXE is calculated from energy balance of neutron-induced fission systems as sum of the total excitation energy at scission E*sciss and deformation energy Edef. The deformation energy at scission is given by minimizing the potential energy at the scission configuration. At the scission point, the fission system is described by two spheroidal fragments nearly touching by a pre-scission distance or neck caused by the nuclear forces between fragments. Therefore, the Columbian repulsion depending on neck and, consequently, on the fragments deformation at scission, is essentially in TKE determination. An approximation is made based on the fission modes. For the very symmetric fission, the dominant super long channel is characterized by long distance between fragments leading to low TKE values. Due to magic and double-magic shells closure, the dominant S1 fission mode for pairs with heavy fragment mass AH around 130-134 is characterized by spherical heavy fragment shape and easily deformed light fragment. The nearly spherical shape of the complementary fragments are characterized by minimum distance, and consequently to maximum TKE values. The results obtained for TKE(A) are in good agreement with existing experimental data for many neutron induced fission systems, e.g. ''2''3''3&apos

  15. Relativistic gravitational potential and its relation to mass-energy

    International Nuclear Information System (INIS)

    Voracek, P.

    1979-01-01

    From the general theory of relativity a relation is deduced between the mass of a particle and the gravitational field at the position of the particle. For this purpose the fall of a particle of negligible mass in the gravitational field of a massive body is used. After establishing the relativistic potential and its relationship to the rest mass of the particle, we show, assuming conservation of mass-energy, that the difference between two potential-levels depends upon the value of the radial metric coefficient at the position of an observer. Further, it is proved that the relativistic potential is compatible with the general concept of the potential also from the standpoint of kinematics. In the third section it is shown that, although the mass-energy of a body is a function of the distance from it, this does not influence the relativistic potential of the body itself. From this conclusion it follows that the mass-energy of a particle in a gravitational field is anisotropic; isotropic is the mass only. Further, the possibility of an incidental feed-back between two masses is ruled out, and the law of the composition of the relativistic gravitational potentials is deduced. Finally, it is shown, by means of a simple model, that local inhomogeneities in the ideal fluid filling the Universe have negligible influence on the total potential in large regions. (orig.)

  16. The total Hartree-Fock energy-eigenvalue sum relationship in atoms

    International Nuclear Information System (INIS)

    Sen, K.D.

    1979-01-01

    Using the well known relationships for the isoelectronic changes in the total Hartree-Fock energy, nucleus-electron attraction energy and electron-electron repulsion energy in atoms a simple polynomial expansion in Z is obtained for the sum of the eigenvalues which can be used to calculate the total Hartree-Fock energy. Numerical results are presented for 2-10 electron series to show that the present relationship is a better approximation than the other available energy-eigenvalue relationships. (author)

  17. Energy Inputs Uncertainty: Total Amount, Distribution and Correlation Between Different Forms of Energy

    Science.gov (United States)

    Deng, Yue

    2014-01-01

    Describes solar energy inputs contributing to ionospheric and thermospheric weather processes, including total energy amounts, distributions and the correlation between particle precipitation and Poynting flux.

  18. Deformed potential energy of $^{263}Db$ in a generalized liquid drop model

    CERN Document Server

    Chen Bao Qiu; Zhao Yao Lin; 10.1088/0256-307X/20/11/009

    2003-01-01

    The macroscopic deformed potential energy for super-heavy nuclei /sup 263/Db, which governs the entrance and alpha decay channels, is determined within a generalized liquid drop model (GLDM). A quasi- molecular shape is assumed in the GLDM, which includes volume-, surface-, and Coulomb-energies, proximity effects, mass asymmetry, and an accurate nuclear radius. The microscopic single particle energies derived from a shell model in an axially deformed Woods- Saxon potential with a quasi-molecular shape. The shell correction is calculated by the Strutinsky method. The total deformed potential energy of a nucleus can be calculated by the macro-microscopic method as the summation of the liquid-drop energy and the Strutinsky shell correction. The theory is applied to predict the deformed potential energy of the experiment /sup 22/Ne+/sup 241/Am to /sup 263/Db* to /sup 259/Db+4 n, which was performed on the Heavy Ion Accelerator in Lanzhou. It is found that the neck in the quasi-molecular shape is responsible for t...

  19. Development of global medium-energy nucleon-nucleus optical model potentials

    International Nuclear Information System (INIS)

    Madland, D.G.; Sierk, A.J.

    1997-01-01

    The authors report on the development of new global optical model potentials for nucleon-nucleus scattering at medium energies. Using both Schroedinger and Dirac scattering formalisms, the goal is to construct a physically realistic optical potential describing nucleon-nucleus elastic scattering observables for a projectile energy range of (perhaps) 20 meV to (perhaps) 2 GeV and a target mass range of 16 to 209, excluding regions of strong nuclear deformation. They use a phenomenological approach guided by conclusions from recent microscopic studies. The experimental database consists largely of proton-nucleus elastic differential cross sections, analyzing powers, spin-rotation functions, and total reaction cross sections, and neutron-nucleus total cross sections. They will use this database in a nonlinear least-squares adjustment of optical model parameters in both relativistic equivalent Schroedinger (including relativistic kinematics) and Dirac (second-order reduction) formalisms. Isospin will be introduced through the standard Lane model and a relativistic generalization of that model

  20. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Science.gov (United States)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  1. Analysis of Renewable Energy Potential on U. S. National Forest Lands

    Energy Technology Data Exchange (ETDEWEB)

    Zvolanek, E. [Environmental Science Division; Kuiper, J. [Environmental Science Division; Carr, A. [Environmental Science Division; Hlava, K.

    2013-12-13

    In 2005, the National Renewable Energy Laboratory (NREL) completed an assessment of the potential for solar and wind energy development on National Forest System (NFS) public lands managed by the US Department of Agriculture, U.S. Forest Service (USFS). This report provides an update of the analysis in the NREL report, and extends the analysis with additional siting factors for solar and wind energy. It also expands the scope to biomass and geothermal energy resources. Hydropower is acknowledged as another major renewable energy source on NFS lands; however, it was not analyzed in this project primarily because of the substantially different analysis that would be needed to identify suitable locations. Details about each renewable energy production technology included in the study are provided following the report introduction, including how each resource is converted to electrical power, and examples of existing power plants. The analysis approach was to use current and available Geographic Information System (GIS) data to map the distribution of the subject renewable energy resources, major siting factors, and NFS lands. For each major category of renewable energy power production, a set of siting factors were determined, including minimum levels for the renewable energy resources, and details for each of the other siting factors. Phase 1 of the analysis focused on replicating and updating the 2005 NREL analysis, and Phase 2 introduced additional siting factors and energy resources. Source data were converted to a cell-based format that helped create composite maps of locations meeting all the siting criteria. Acreages and potential power production levels for NFS units were tabulated and are presented throughout this report and the accompanying files. NFS units in the southwest United States were found to have the most potentially suitable land for concentrating solar power (CSP), especially in Arizona and New Mexico. In total, about 136,032 acres of NFS lands

  2. Medium properties and total energy coupling in underground explosions

    International Nuclear Information System (INIS)

    Kurtz, S.R.

    1975-01-01

    A phenomenological model is presented that allows the direct calculation of the effects of variations in medium properties on the total energy coupling between the medium and an underground explosion. The model presented is based upon the assumption that the shock wave generated in the medium can be described as a spherical blast wave at early times. The total energy coupled to the medium is then simply the sum of the kinetic and internal energies of this blast wave. Results obtained by use of this model indicate that the energy coupling is more strongly affected by the medium's porosity than by its water content. These results agree well with those obtained by summing the energy deposited by the blast wave as a function of range

  3. Split kinetic energy method for quantum systems with competing potentials

    International Nuclear Information System (INIS)

    Mineo, H.; Chao, Sheng D.

    2012-01-01

    For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such a kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into “unperturbed” and “perturbed” terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double δ-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems. - Highlights: ► A new basis set expansion method is proposed. ► Split kinetic energy method is proposed to solve quantum eigenvalue problems. ► Significant improvement has been obtained in converging to exact results. ► Extension of such methods is promising and discussed.

  4. Potential energy savings and CO2 emissions reduction of China's cement industry

    International Nuclear Information System (INIS)

    Ke, Jing; Zheng, Nina; Fridley, David; Price, Lynn; Zhou, Nan

    2012-01-01

    This study analyzes current energy and carbon dioxide (CO 2 ) emission trends in China's cement industry as the basis for modeling different levels of cement production and rates of efficiency improvement and carbon reduction in 2011–2030. Three cement output projections are developed based on analyses of historical production and physical and macroeconomic drivers. For each of these three production projections, energy savings and CO 2 emission reduction potentials are estimated in a best practice scenario and two continuous improvement scenarios relative to a frozen scenario. The results reveal the potential for cumulative final energy savings of 27.1 to 37.5 exajoules and energy-related direct emission reductions of 3.2 to 4.4 gigatonnes in 2011–2030 under the best practice scenarios. The continuous improvement scenarios produce cumulative final energy savings of 6.0 to 18.9 exajoules and reduce CO 2 emissions by 1.0 to 2.4 gigatonnes. This analysis highlights that increasing energy efficiency is the most important policy measure for reducing the cement industry's energy and emissions intensity, given the current state of the industry and the unlikelihood of significant carbon capture and storage before 2030. In addition, policies to reduce total cement production offer the most direct way of reducing total energy consumption and CO 2 emissions. - Highlights: ► This study models output and efficiency improvements in Chinese cement industry from 2011–2030. ► Energy savings and CO 2 emission reductions estimated for 3 scenarios relative to frozen scenario. ► Results reveal cumulative final energy savings potential of 27.1–37.5 EJ and 3.2–4.4 Gt CO 2 reductions. ► Increasing efficiency is the most important policy for reducing cement energy and emissions intensity.

  5. Potential for renewable energy jobs in the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Van der Zwaan, B.; Cameron, L.; Kober, T. [Energy research Centre of the Netherlands ECN, Policy Studies, Radarweg 60, 1043 NT, Amsterdam (Netherlands)

    2013-09-15

    Based on employment factors derived from a recent review of publications investigating opportunities for work associated with the diffusion of renewable energy technology, we here present an analysis of the potential for renewable energy jobs in the Middle East. We use energy system optimisation results from the regionally disaggregated TIAM-ECN model as input to our study. This integrated assessment model is utilised to inspect the energy technology requirements for meeting a stringent global climate policy that achieves a stabilisation of greenhouse gas concentrations in the atmosphere with a maximum additional radiative forcing of 2.9 W/m{sup 2}. This climate control target implies a massive deployment of renewable energy in the Middle East, with wind and solar power accounting for approximately 60% of total electricity supply in 2050: 900 TWh of an overall level of 1525 TWh would be generated from 210 GW of installed renewable energy capacity by the middle of the century. For this pervasive renewables diffusion scenario for the Middle East we estimate a total required local work force of ultimately about 155,000 direct and 115,000 indirect jobs, based on assumptions regarding which components of the respective wind and solar energy technologies can be manufactured in the region itself. All jobs generated through installation and O and M activities are assumed to be domestic.

  6. A Simulation Study of the Potential Effects of Healthy Food and Beverage Substitutions on Diet Quality and Total Energy Intake in Lower Mississippi Delta Adults1,2,3

    Science.gov (United States)

    Thomson, Jessica L.; Tussing-Humphreys, Lisa M.; Onufrak, Stephen J.; Zoellner, Jamie M.; Connell, Carol L.; Bogle, Margaret L.; Yadrick, Kathy

    2015-01-01

    The majority of adult diets in the United States, particularly the South, are of poor quality, putting these individuals at increased risk for chronic diseases. In this study, simulation modeling was used to determine the effects of substituting familiar, more healthful foods and beverages for less healthy ones on diet quality and total energy intake in Lower Mississippi Delta (LMD) adults. Dietary data collected in 2000 for 1,689 LMD adults who participated in the Foods of Our Delta Study were analyzed. The Healthy Eating Index-2005 (HEI-2005) was used to measure diet quality. The effects of substituting targeted foods and beverages with more healthful items on diet quality were simulated by replacing the targeted items’ nutrient profile with their replacements’ profile. For the single food and beverage groups, 100% replacement of grain desserts with juice-packed fruit cocktail and sugar-sweetened beverages with water resulted in the largest improvements in diet quality (4.0 and 3.8 points, respectively) and greatest decreases in total energy intake (98 and 215 kcal/d, respectively). The 100% substitution of all food and beverage groups combined resulted in a 12.0-point increase in HEI-2005 score and a decrease of 785 kcal/d in total energy intake. Community interventions designed to improve the diet of LMD adults through the use of familiar, healthy food and beverage substitutions have the potential to improve diet quality and decrease energy intake of this health disparate population. PMID:22031664

  7. Renewable energy potential on brownfield sites: A case study of Michigan

    International Nuclear Information System (INIS)

    Adelaja, Soji; Shaw, Judy; Beyea, Wayne; Charles McKeown, J.D.

    2010-01-01

    Federal priorities are increasingly favoring the replacement of conventional sources of energy with renewable energy. With the potential for a federal Renewable Electricity Standard (RES) legislation, many states are seeking to intensify their renewable energy generation. The demand for wind, solar, geothermal and bio-fuels-based energy is likely to be rapidly expressed on the landscape. However, local zoning and NIMBYism constraints slow down the placement of renewable energy projects. One area where land constraints may be lower is brownfields; whose development is currently constrained by diminished housing, commercial, and industrial property demand. Brownfield sites have the potential for rapid renewable energy deployment if state and national interests in this area materialize. This study investigates the application of renewable energy production on brownfield sites using Michigan as a case study. Wind and solar resource maps of Michigan were overlaid with the brownfield locations based on estimates of brownfield land capacity. The total estimated energy potential available on Michigan's brownfield sites is 4320 megawatts (MW) of plate capacity for wind and 1535for solar, equating to 43% of Michigan's residential electricity consumption (using 30% capacity factor). Estimated economic impacts include over $15 billion in investments and 17,500 in construction and long-term jobs.

  8. On the dependence of quasipotential on the total energy of a two-particle system

    International Nuclear Information System (INIS)

    Kapshaj, V.N.; Savrin, V.I.

    1986-01-01

    For a system of two relativistic particles described in the framework of the Logunov-Tavkhelidze one-time approach the dependence is calculated of the one-boson exchange potential on the total energy of the system. It is shown that in spite of a nonlocal form of the quasipotential obtained, three-dimensional equations for the wave function are reduced to one-dimensional ones by means of partial expansion. Influence of the energy dependence of the quasipotential on its behaviour in the coordinate representation is discussed

  9. Wind energy potential in Bulgaria

    International Nuclear Information System (INIS)

    Shtrakov, Stanko Vl.

    2009-01-01

    In this study, wind characteristic and wind energy potential in Bulgaria were analyzed using the wind speed data. The wind energy potential at different sites in Bulgaria has been investigated by compiling data from different sources and analyzing it using a software tool. The wind speed distribution curves were obtained by using the Weibull and Rayleigh probability density functions. The results relating to wind energy potential are given in terms of the monthly average wind speed, wind speed probability density function (PDF), wind speed cumulative density function (CDF), and wind speed duration curve. A technical and economic assessment has been made of electricity generation from three wind turbines having capacity of (60, 200, and 500 kW). The yearly energy output capacity factor and the electrical energy cost of kWh produced by the three different turbines were calculated

  10. Current and potential utilisation of biomass energy in Fiji

    International Nuclear Information System (INIS)

    Prasad, S.

    1990-01-01

    Energy from biomass accounts for an average of 43% of the primary energy used in developing countries, with some countries totally dependent on biomass for all their energy needs. The most common use for biomass for energy is the provision of heat for cooking and heating; other uses include steam and electricity generation and crop and food drying. Fiji, a developing country, uses energy from wood and coconut wastes for cooking and copra drying. Bagasse from sugar mills is used to generate process steam as well as some 15 MW of electricity, for mill consumption and for sale to the national grid. Other, relatively small scale uses for biomass include the generation of steam and electricity for industry. This paper attempts to quantify the amount of biomass, in its various forms, available in Fiji and assesses the current potential utilisation of biomass for energy in Fiji. (author)

  11. [Review of wireless energy transmission system for total artificial heart].

    Science.gov (United States)

    Zhang, Chi; Yang, Ming

    2009-11-01

    This paper sums up the fundamental structure of wireless energy transmission system for total artificial heart, and compares the key parameters and performance of some representative systems. After that, it is discussed that the future development trend of wireless energy transmission system for total artificial heart.

  12. In adolescence a higher 'eveningness in energy intake' is associated with higher total daily energy intake.

    Science.gov (United States)

    Diederichs, Tanja; Perrar, Ines; Roßbach, Sarah; Alexy, Ute; Buyken, Anette E

    2018-05-26

    The present manuscript addressed two hypotheses: (i) As children age, energy intake is shifted from morning (energy intake energy intake >6pm) (ii) A higher 'eveningness in energy intake' (i.e. evening minus morning energy intake) is associated with a higher total daily energy intake. Data were analyzed from 262 DONALD cohort study participants, who had completed at least one 3-day weighed dietary record in the age groups 3/4, 5/6, 7/8, 9/10, 11/12, 13/14, 15/16 and 17/18 years (y). 'Eveningness in energy intake' was compared across age groups and related to total daily energy intake for each age group (multiple cross-sectional analyses). 'Eveningness' increased progressively from age group 3/4y to age group 17/18y. A median surplus of evening energy intake (i.e. when evening intake exceeded morning intake) was firstly observed for age group 11/12y. From age group 11/12y onwards, a higher 'eveningness' was associated with a higher total daily energy intake (all p energy intake between the highest and the lowest tertile of 'eveningness' was largest for age group 17/18y, amounting to an 11% higher intake among adolescents in the highest as compared to those in the lowest tertile. In conclusion, energy intake progressively shifts from morning to evening hours as children age. Once evening energy intake exceeds morning energy intake, a higher 'eveningness in energy intake' is associated with higher total daily energy intake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Total Cross Sections at High Energies An update

    CERN Document Server

    Fazal-e-Aleem, M; Alam, Saeed; Qadee-Afzal, M

    2002-01-01

    Current and Future measurements for the total cross sections at E-811, PP2PP, CSM, FELIX and TOTEM have been analyzed using various models. In the light of this study an attempt has been made to focus on the behavior of total cross section at very high energies.

  14. The potential for energy production from crop residues in Zimbabwe

    Energy Technology Data Exchange (ETDEWEB)

    Jingura, R.M.; Matengaifa, R. [School of Engineering Sciences and Technology, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi (Zimbabwe)

    2008-12-15

    There is increasing interest in Zimbabwe in the use of renewable energy sources as a means of meeting the country's energy requirements. Biomass provides 47% of the gross energy consumption in Zimbabwe. Energy can be derived from various forms of biomass using various available conversion technologies. Crop residues constitute a large part of the biomass available from the country's agriculture-based economy. The potential for energy production of crop residues is examined using data such as estimates of the quantities of the residues and their energy content. The major crops considered are maize, sugarcane, cotton, soyabeans, groundnuts, wheat, sorghum, fruits and forestry plantations. Quantities of residues are estimated from crop yields by using conversion coefficients for the various crops. Long-term crop yields data from 1970 to 1999 were used. Total annual residue yields for crops, fruits and forestry plantations are 7.805 Mt, 378 kt and 3.05 Mt, respectively. The crops, fruits and forestry residues have energy potential of 81.5, 4.9 and 44.3 PJ per year, respectively. This represents about 44% of the gross energy consumption in Zimbabwe. The need to balance use of crop residues for both energy purposes and other purposes such as animal feeding and soil fertility improvement is also highlighted. (author)

  15. Institutional total energy case studies

    Energy Technology Data Exchange (ETDEWEB)

    Wulfinghoff, D.

    1979-07-01

    Profiles of three total energy systems in institutional settings are provided in this report. The plants are those of Franciscan Hospital, a 384-bed facility in Rock Island, Illinois; Franklin Foundation Hospital, a 100-bed hospital in Franklin, Louisiana; and the North American Air Defense Command Cheyenne Mountain Complex, a military installation near Colorado Springs, Colorado. The case studies include descriptions of plant components and configurations, operation and maintenance procedures, reliability, relationships to public utilities, staffing, economic efficiency, and factors contributing to success.

  16. The potential of biogas energy

    International Nuclear Information System (INIS)

    Acaroglu, M.; Hepbasli, A.; Kocar, G.

    2005-01-01

    Biogas technology has been known about for a long time, but in recent years the interest in it has significantly increased, especially due to the higher costs and the rapid depletion of fossil fuels as well as their environmental considerations. The main objective of the present study is to investigate the potential of biogas energy in the 15 European Union (EU) countries and in Turkey, which is seeking admission to the EU and is trying to meet EU environmental standards. Biogas energy potential of the 15 EU countries is estimated to be about 800 PJ. Besides this, Turkey's annual animal waste potential is obtained to be about 11.81 million tons with a biogas energy equivalent of 53.6 PJ. It is expected that this study will be helpful in developing highly applicable and productive planning for energy policies towards the optimum utilization of biogas energy. (author)

  17. Comparative risk assessment of total energy systems

    International Nuclear Information System (INIS)

    Soerensen, B.

    1982-01-01

    The paper discusses a methodology for total impact assessment of energy systems, ideally evaluating all the impacts that a given energy system has on the society in which it is imbedded or into which its introduction is being considered. Impacts from the entire energy conversion chain ('fuel cycle' if the system is fuel-based), including energy storage, transport and transmission, as well as the institutions formed in order to manage the system, should be compared on the basis of the energy service provided. A number of impacts are considered, broadly classified as impacts on satisfaction of biological needs, on health, on environment, on social relations and on the structure of society. Further considerations include impacts related to cost and resilience, and, last but not least, impacts on global relations. The paper discusses a number of published energy studies in the light of the comparative impact assessment methodology outlined above. (author)

  18. A constrained optimization algorithm for total energy minimization in electronic structure calculations

    International Nuclear Information System (INIS)

    Yang Chao; Meza, Juan C.; Wang Linwang

    2006-01-01

    A new direct constrained optimization algorithm for minimizing the Kohn-Sham (KS) total energy functional is presented in this paper. The key ingredients of this algorithm involve projecting the total energy functional into a sequence of subspaces of small dimensions and seeking the minimizer of total energy functional within each subspace. The minimizer of a subspace energy functional not only provides a search direction along which the KS total energy functional decreases but also gives an optimal 'step-length' to move along this search direction. Numerical examples are provided to demonstrate that this new direct constrained optimization algorithm can be more efficient than the self-consistent field (SCF) iteration

  19. The total energy-momentum tensor for electromagnetic fields in a dielectric

    Science.gov (United States)

    Crenshaw, Michael E.

    2017-08-01

    Radiation pressure is an observable consequence of optically induced forces on materials. On cosmic scales, radiation pressure is responsible for the bending of the tails of comets as they pass near the sun. At a much smaller scale, optically induced forces are being investigated as part of a toolkit for micromanipulation and nanofabrication technology [1]. A number of practical applications of the mechanical effects of light-matter interaction are discussed by Qiu, et al. [2]. The promise of the nascent nanophotonic technology for manufacturing small, low-power, high-sensitivity sensors and other devices has likely motivated the substantial current interest in optical manipulation of materials at the nanoscale, see, for example, Ref. [2] and the references therein. While substantial progress toward optical micromanipulation has been achieved, e.g. optical tweezers [1], in this report we limit our consideration to the particular issue of optically induced forces on a transparent dielectric material. As a matter of electromagnetic theory, these forces remain indeterminate and controversial. Due to the potential applications in nanotechnology, the century-old debate regarding these forces, and the associated momentums, has ramped up considerably in the physics community. The energy-momentum tensor is the centerpiece of conservation laws for the unimpeded, inviscid, incompressible flow of non-interacting particles in the continuum limit in an otherwise empty volume. The foundations of the energy-momentum tensor and the associated tensor conservation theory come to electrodynamics from classical continuum dynamics by applying the divergence theorem to a Taylor series expansion of a property density field of a continuous flow in an otherwise empty volume. The dust tensor is a particularly simple example of an energy-momentum tensor that deals with particles of matter in the continuum limit in terms of the mass density ρm, energy density ρmc 2 , and momentum density

  20. Approximation of theoretical energy-saving potentials for the petrochemical industry using energy balances for 68 key processes

    International Nuclear Information System (INIS)

    Neelis, Maarten; Patel, Martin; Blok, Kornelis; Haije, Wim; Bach, Pieter

    2007-01-01

    We prepared energy and carbon balances for 68 petrochemical processes in the petrochemical industry for Western Europe, the Netherlands and the world. We analysed the process energy use in relation to the heat effects of the chemical reactions and quantified in this way the sum of all energy inputs into the processes that do not end up in the useful products of the process, but are lost as waste heat to the environment. We showed that both process energy use and heat effects of reaction contribute significantly to the overall energy loss of the processes studied and recommend addressing reaction effects explicitly in energy-efficiency studies. We estimated the energy loss in Western Europe in the year 2000 at 1620 PJ of final energy and 1936 PJ of primary energy, resulting in a total of 127 Mt CO 2 . The losses identified can be regarded as good approximations of the theoretical energy-saving potentials of the processes analysed. The processes with large energy losses in relative (per tonne of product) and absolute (in PJ per year) terms are recommended for more detailed analysis taking into account further thermodynamic, economic, and practical considerations to identify technical and economic energy-saving potentials

  1. Energy saving potential of natural ventilation in China: The impact of ambient air pollution

    International Nuclear Information System (INIS)

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Liu, Zhu; Freeman, Richard B.

    2016-01-01

    Highlights: • Natural ventilation potential is affected largely by ambient air pollution in China. • NV hours of 76 Chinese cities based on weather and ambient air quality are estimated. • Cooling energy savings and carbon reductions of 35 major Chinese cities are estimated. • 8–78% of the cooling energy usage can be potentially reduced by NV. • Our findings provide guidelines to improve energy policies in China. - Abstract: Natural ventilation (NV) is a key sustainable solution for reducing the energy use in buildings, improving thermal comfort, and maintaining a healthy indoor environment. However, the energy savings and environmental benefits are affected greatly by ambient air pollution in China. Here we estimate the NV potential of all major Chinese cities based on weather, ambient air quality, building configuration, and newly constructed square footage of office buildings in the year of 2015. In general, little NV potential is observed in northern China during the winter and southern China during the summer. Kunming located in the Southwest China is the most weather-favorable city for natural ventilation, and reveals almost no loss due to air pollution. Building Energy Simulation (BES) is conducted to estimate the energy savings of natural ventilation in which ambient air pollution and total square footage at each city must be taken into account. Beijing, the capital city, displays limited per-square-meter saving potential due to the unfavorable weather and air quality for natural ventilation, but its largest total square footage of office buildings makes it become the city with the greatest energy saving opportunity in China. Our analysis shows that the aggregated energy savings potential of office buildings at 35 major Chinese cities is 112 GWh in 2015, even after allowing for a 43 GWh loss due to China’s serious air pollution issue especially in North China. 8–78% of the cooling energy consumption can be potentially reduced by natural

  2. Evaluation of total energy-rate feedback for glidescope tracking in wind shear

    Science.gov (United States)

    Belcastro, C. M.; Ostroff, A. J.

    1986-01-01

    Low-altitude wind shear is recognized as an infrequent but significant hazard to all aircraft during take-off and landing. A total energy-rate sensor, which is potentially applicable to this problem, has been developed for measuring specific total energy-rate of an airplane with respect to the air mass. This paper presents control system designs, with and without energy-rate feedback, for the approach to landing of a transport airplane through severe wind shear and gusts to evaluate application of this sensor. A system model is developed which incorporates wind shear dynamics equations with the airplance equations of motion, thus allowing the control systems to be analyzed under various wind shears. The control systems are designed using optimal output feedback and are analyzed using frequency domain control theory techniques. Control system performance is evaluated using a complete nonlinear simulation of the airplane and a severe wind shear and gust data package. The analysis and simulation results indicate very similar stability and performance characteristics for the two designs. An implementation technique for distributing the velocity gains between airspeed and ground speed in the simulation is also presented, and this technique is shown to improve the performance characteristics of both designs.

  3. Role and potential of renewable energy and energy efficiency for global energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Krewitt, Wolfram; Nienhaus, Kristina [German Aerospace Center e.V. (DLR), Stuttgart (Germany); Klessmann, Corinna; Capone, Carolin; Stricker, Eva [Ecofys Germany GmbH, Berlin (Germany); Graus, Wina; Hoogwijk, Monique [Ecofys Netherlands BV, Utrecht (Netherlands); Supersberger, Nikolaus; Winterfeld, Uta von; Samadi, Sascha [Wuppertal Institute for Climate, Environment and Energy GmbH, Wuppertal (Germany)

    2009-12-15

    The analysis of different global energy scenarios in part I of the report confirms that the exploitation of energy efficiency potentials and the use of renewable energies play a key role in reaching global CO2 reduction targets. An assessment on the basis of a broad literature research in part II shows that the technical potentials of renewable energy technologies are a multiple of today's global final energy consumption. The analysis of cost estimates for renewable electricity generation technologies and even long term cost projections across the key studies in part III demonstrates that assumptions are in reasonable agreement. In part IV it is shown that by implementing technical potentials for energy efficiency improvements in demand and supply sectors by 2050 can be limited to 48% of primary energy supply in IEA's ''Energy Technology Perspectives'' baseline scenario. It was found that a large potential for cost-effective measures exists, equivalent to around 55-60% of energy savings of all included efficiency measures (part V). The results of the analysis on behavioural changes in part VI show that behavioural dimensions are not sufficiently included in energy scenarios. Accordingly major research challenges are revealed. (orig.)

  4. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Patel, D. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Bertram, K. M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  5. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  6. Global dependence of optical potential parameters for alpha particles with energies up to 80 MeV

    International Nuclear Information System (INIS)

    Kuterbekov, K.A.; Zholdybaev, T.K.; Sadykov, B.M.; Mukhambetzhan, A.; Kukhtina, I.N.; Penionzhkevich, Yu.Eh.

    2002-01-01

    Global (energy and mass) dependences of optical potential for α-particles with energies up to 80 MeV have been received. A Woods-Saxon form factor for macroscopic potential has been used. Energy and mass dependences of the semi-microscopic α-particle potential parameters have been investigated for the first time. In general, a good description of elastic and inelastic differential and total reactions cross sections for different nuclei using the revealed global parameters has been received within the framework of macroscopic and semi-microscopic approaches

  7. Potential energy savings and thermal comfort

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Rudbeck, Claus Christian; Schultz, Jørgen Munthe

    1996-01-01

    The simulation results on the energy saving potential and influence on indoor thermal comfort by replacement of common windows with aerogel windows as well as commercial low-energy windows are described and analysed.......The simulation results on the energy saving potential and influence on indoor thermal comfort by replacement of common windows with aerogel windows as well as commercial low-energy windows are described and analysed....

  8. A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Chang, Yi-Lin; Fleiter, Tobias

    2016-01-01

    The cement industry is the second most energy-intensive sector in Taiwan, which underlines the need to understand its potential for energy efficiency improvement. A bottom-up model-based assessment is utilized to conduct a scenario analysis of energy saving opportunities up to the year 2035. The analysis is supported by detailed expert interviews in all cement plants of Taiwan. The simulation results reveal that by 2035, eighteen energy efficient technologies could result in 25% savings for electricity and 9% savings for fuels under the technical diffusion scenario. This potential totally amounts to about 5000 TJ/year, of which 91% can be implemented cost-effectively assuming a discount rate of 10%. Policy makers should support a fast diffusion of these technologies. Additionally, policy makers can tap further saving potentials. First, by decreasing the clinker share, which is currently regulated to a minimum of 95%. Second, by extending the prohibition to build new cement plants by allowing for replacement of existing capacity with new innovative plants in the coming years. Third, by supporting the use of alternative fuels, which is currently still a niche in Taiwan. - Highlights: •We analyze energy efficiency improvement potentials in Taiwan's cement industry. •Eighteen process-specific technologies are analyzed using a bottom-up model. •Our model systematically reflects the diffusion of technologies over time. •We find energy-saving potentials of 25% for electricity and 9% for fuels in 2035. •91% of the energy-saving potentials can be realized cost-effectively.

  9. Centrifugal potential energy : an astounding renewable energy concept

    Energy Technology Data Exchange (ETDEWEB)

    Oduniyi, I.A. [Aled Conglomerate Nigeria Ltd., Lagos (Nigeria)

    2010-07-01

    A new energy concept known as centrifugal potential energy was discussed. This new energy concept is capable of increasing the pressure, temperature and enthalpy of a fluid, without having to apply work or heat transfer to the fluid. It occurs through a change in the centrifugal potential energy of the flowing fluid in a rotating frame of reference or a centrifugal force field, where work is performed internally by the centrifugal weight of the fluid. This energy concept has resulted in new energy equations, such as the Rotational Frame Bernoulli's Equation for liquids and the Rotational Frame Steady-Flow Energy Equation for gases. Applications of these equations have been incorporated into the design of centrifugal field pumps and compressors. Rather than compressing a fluid with a physical load transfer, these devices can compress a fluid via the effect of centrifugal force applied to the object. A large amount of energy is therefore produced when this high pressure compressed working fluid expands in a turbine. When water is used as the working fluid, it could reach renewable energy densities in the range of 25-100 kJ/kg of water. When atmospheric air is used, it could reach energy densities in the range of 500-1,500 kJ/kg of air.

  10. Renewable energy costs, potentials, barriers: Conceptual issues

    International Nuclear Information System (INIS)

    Verbruggen, Aviel; Fischedick, Manfred; Moomaw, William; Weir, Tony; Nadai, Alain; Nilsson, Lars J.; Nyboer, John; Sathaye, Jayant

    2010-01-01

    Renewable energy can become the major energy supply option in low-carbon energy economies. Disruptive transformations in all energy systems are necessary for tapping widely available renewable energy resources. Organizing the energy transition from non-sustainable to renewable energy is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and policies have to be aligned to achieve full renewable energy potentials, and barriers impeding that growth need to be removed. These issues are also covered by IPCC's special report on renewable energy and climate change to be completed in 2010. This article focuses on the interrelations among the drivers. It clarifies definitions of costs and prices, and of barriers. After reviewing how the third and fourth assessment reports of IPCC cover mitigation potentials and commenting on definitions of renewable energy potentials in the literature, we propose a consistent set of potentials of renewable energy supplies.

  11. Energy savings potential from energy-conserving irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  12. Energy potential of agricultural crops in Kosovo

    International Nuclear Information System (INIS)

    Sahiti, Naser; Sfishta, Avni; Gramatikov, Plamen

    2015-01-01

    Primary energy mix in Kosovo with 98 % consisting of lignite and only 2 % of water is far from portfolio of primary energy sources which could contribute to a sustainable and environmental friendly energy supply of the country. In order to improve the situation, government is supporting activities in favor of upgrading of electricity production capacities based on Renewable Energy Sources. Corresponding action plans and feed in tariffs are already in place. However, prior to any investment, one needs specific results on available potential. Current study provides results of the analysis of Kosovo potential for energy production by using of agricultural crops. Study is based on national statistics on available agricultural crops in Kosovo and provides results on biomass potential of crops, corresponding energy potential and an assessment of financial cost of energy produced.

  13. Energy potential of region and its quantitative assessment

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrovna Kovalenko

    2013-09-01

    Full Text Available The purpose of the article is the development of the concept of the energy potential of the region (EPR, the analysis of the existing structure of relationships for the EPR elements in Ukraine and improvement of a quantitative assessment of energy potential of the region (country. The methods of an assessment of the existing condition of energy potential of the territory are the subject matter of the research. As a result of the analysis of concept’s definitions of energy potential of the region, it has further development and included the consumer potential of energy resources and capacity of management. The structure of relationships between elements of energy potential is developed for the Ukraine region. The new economic indicator — the realized energy potential is offered for an EPR assessment. By means of this indicator, the assessment of energy potential for the different countries of the world and a number of Ukraine areas of is performed.

  14. Total energy calculations and bonding at interfaces

    International Nuclear Information System (INIS)

    Louie, S.G.

    1984-08-01

    Some of the concepts and theoretical techniques employed in recent ab initio studies of the electronic and structural properties of surfaces and interfaces are discussed. Results of total energy calculations for the 2 x 1 reconstructed diamond (111) surface and for stacking faults in Si are reviewed. 30 refs., 8 figs

  15. Poynting Theorem, Relativistic Transformation of Total Energy-Momentum and Electromagnetic Energy-Momentum Tensor

    Science.gov (United States)

    Kholmetskii, Alexander; Missevitch, Oleg; Yarman, Tolga

    2016-02-01

    We address to the Poynting theorem for the bound (velocity-dependent) electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy-momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product {\\varvec{j}} \\cdot {\\varvec{E}} (where the current density {\\varvec{j}} and bound electric field {\\varvec{E}} are generated by the same source charge) are exogenously omitted. Implementing a transformation of the Poynting theorem to the form, where the terms of self-interaction are eliminated via Maxwell equations and vector calculus in a mathematically rigorous way (Kholmetskii et al., Phys Scr 83:055406, 2011), we obtained a novel expression for field momentum, which is fully compatible with the Lorentz transformation for total energy-momentum. The results obtained are discussed along with the novel expression for the electromagnetic energy-momentum tensor.

  16. Heating and cooling energy demand in underground buildings : potential for saving in various climates and functions

    NARCIS (Netherlands)

    van Dronkelaar, C.; Costola, D.; Mangkuto, R.A.; Hensen, J.L.M.

    2014-01-01

    Underground buildings are pointed out as alternatives to conventional aboveground buildings for reducing total energy requirements, while alleviating land use and location problems. This paper investigates the potential in reducing the heating and cooling energy demand of underground buildings

  17. Future bio-energy potential under various natural constraints

    International Nuclear Information System (INIS)

    Vuuren, Detlef P. van; Vliet, Jasper van; Stehfest, Elke

    2009-01-01

    Potentials for bio-energy have been estimated earlier on the basis of estimates of potentially available land, excluding certain types of land use or land cover (land required for food production and forests). In this paper, we explore how such estimates may be influenced by other factors such as land degradation, water scarcity and biodiversity concerns. Our analysis indicates that of the original bio-energy potential estimate of 150, 80 EJ occurs in areas classified as from mild to severe land degradation, water stress, or with high biodiversity value. Yield estimates were also found to have a significant impact on potential estimates. A further 12.5% increase in global yields would lead to an increase in bio-energy potential of about 50%. Changes in bio-energy potential are shown to have a direct impact on bio-energy use in the energy model TIMER, although the relevant factor is the bio-energy potential at different cost levels and not the overall potential.

  18. Energy potential through agricultural biomass using geographical information system - A case study of Punjab

    International Nuclear Information System (INIS)

    Singh, Jagtar; Panesar, B.S.; Sharma, S.K.

    2008-01-01

    Agricultural biomass has immense potential for power production in an Indian state like Punjab. A judicious use of biomass energy could potentially play an important role in mitigating environmental impacts of non-renewable energy sources particularly global warming and acid rain. But the availability of agricultural biomass is spatially scattered. The spatial distribution of this resource and the associate costs of collection and transportation are major bottlenecks for the success of biomass energy conversion facilities. Biomass, being scattered and loose, has huge collection and transportation costs, which can be reduced by properly planning and locating the biomass collection centers for biomass-based power plants. Before planning the collection centers, it is necessary to evaluate the biomass, energy and collection cost of biomass in the field. In this paper, an attempt has been made to evaluate the spatial potential of biomass with geographical information system (GIS) and a mathematical model for collection of biomass in the field has been developed. The total amount of unused agricultural biomass is about 13.73 Mt year -1 . The total power generation capacity from unused biomass is approximately 900 MW. The collection cost in the field up to the carrier unit is US$3.90 t -1 . (author)

  19. The Energy Efficiency Potential of Cloud-Based Software: A U.S. Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric [Northwestern Univ., Evanston, IL (United States); Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liang, Jiaqi [Northwestern Univ., Evanston, IL (United States); Ramakrishnan, Lavanya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ma, XiaoHui [Northwestern Univ., Evanston, IL (United States); Hendrix, Valerie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Benjamin [Northwestern Univ., Evanston, IL (United States); Mantha, Pradeep [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-06-03

    The energy use of data centers is a topic that has received much attention, given that data centers currently account for 1-2% of global electricity use. However, cloud computing holds great potential to reduce data center energy demand moving forward, due to both large reductions in total servers through consolidation and large increases in facility efficiencies compared to traditional local data centers. However, analyzing the net energy implications of shifts to the cloud can be very difficult, because data center services can affect many different components of society’s economic and energy systems.

  20. Energy-analysis of the total nuclear energy cycle based on light water reactors

    International Nuclear Information System (INIS)

    Kistemaker, J.

    1975-01-01

    The energy economy of the total nuclear energy cycle is investigated. Attention is paid to the importance of fossil fuel saving by using nuclear energy. The energy analysis is based on the construction and operation of power plants with an electric output of 1000MWe. Light water moderated reactors with a 2.7 - 3.2% enriched uranium core are considered. Additionally, the whole fuel cycle including ore winning and refining, enrichment and fuel element manufacturing and reprocessing has been taken into account. Neither radioactive waste storage problems nor safety problems related to the nuclear energy cycle and safeguarding have been dealt with, as exhaustive treatments can be found elswhere

  1. Potential of renewable and alternative energy sources

    Science.gov (United States)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  2. Recent results in the development of a global medium-energy nucleon-nucleus optical-model potential

    International Nuclear Information System (INIS)

    Madland, D.G.

    1988-02-01

    Initial results are presented for the determination of a global medium-energy nucleon-nucleus phenomenological optical-model potential using a relativistic Schroedinger representation. The starting point for this work is the global phenomenological optical-model potential of Schwandt /ital et al./, which is based on measured elastic scattering cross sections and analyzing power for polarized protons ranging from 80 to 180 MeV. This potential is optimally modified to reproduce experimental proton reaction cross sections as a function of energy, while allowing only minimal deterioration in the fits to the elastic cross sections and analyzing powers. Further modifications in the absorptive potential were found necessary to extrapolate the modified potential to higher energies. The final potential is converted to a neutron-nucleus potential by use of standard Lane model assumptions and by accounting approximately for the Coulomb correction. Comparisons of measured and calculated proton reaction and neutron total cross sections are presented for 27 Al, 56 Fe, and 208 Pb. Medium-energy optical-model potentials for complex projectiles are briefly discussed in an appendix. 7 refs., 20 figs

  3. Energy Choices. Efficient Energy Use - possibilities and barriers; Vaegval Energi. Energieffektivisering - moejligheter och hinder

    Energy Technology Data Exchange (ETDEWEB)

    Jagemar, Lennart (CIT Energy Management AB, Goeteborg (Sweden)); Pettersson, Bertil (Chalmers EnergiCentrum, CEC, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-02-15

    Sweden's total energy supply in 2006 amounted to a total of 624 TWh and was dominated by crude oil, nuclear fuels, biofuels and hydropower. Different types of losses in the system accounts for one third of the energy. The final energy consumption, i.e. delivery minus losses, was divided in the following way: industry 157 TWh, the habitat of 145 TWh (of which 19 TWh relates to Agriculture, Forestry, Fishery and other service and secondary homes) and transport of 101 TWh. For the transport sector, studies show that combinations of various efficiency measures ideally can achieve an reduction in energy use by between 60 and 75 percent. The Governmental Energy Efficiency Inquiry (EnEff - 2008) estimated that the domestic transport techno-economic efficiency potential up to 2016 is 13 TWh (mainly fuel) of the total delivered energy is 87 TWh under EnEff. The potential about 5 TWh is expected to be completed by current instruments. The study assesses that despite the increased need for transport in 2016 the sector's energy use can remain at the same level or even be reduced. Buildings have a large technical and economic energy efficiency potential. According to EnEff's assessment, the streamlining potential is 33 TWh of which 8 TWh can implemented in 2016 with today's instruments. This compares with the total delivered energy is 151 TWh under EnEff. The total energy efficiency potential for buildings by 2020 is considered to be substantially higher, about 41 TWh, and affect the use of district heating, fuel and electricity. New powerful tools must be implemented for the building sector in order to realize the potential energy efficiency measures. Industry's total energy potential is assessed to be around 13 TWh by 2016. Industry's total energy use is 155 TWh according to EnEff. Only 2 TWh can realistically be saved up to 2016 taking into account a reasonable acceptance factor. The beneficiaries of the carbon emissions trade account for about

  4. Fossil energy savings potential of sugar cane bio-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thu Lan T. [Department of Agroecology, Aarhus University, Tjele (Denmark); The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Hermansen, John E. [Department of Agroecology, Aarhus University, Tjele (Denmark); Sagisaka, Masayuki [Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2009-11-15

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts to 15 million barrels of oil a year. Whether the saving benefits could be fully realized, however, depends on how well the potential land use change resulting from an expansion of ethanol production is managed. The results presented serve as a useful guidance to formulate strategies that enable optimum utilization of biomass as an energy source. (author)

  5. Assessment of wind energy potential in China

    Institute of Scientific and Technical Information of China (English)

    Zhu Rong; Zhang De; Wang Yuedong; Xing Xuhuang; Li Zechun

    2009-01-01

    China wind atlas was made by numerical simulation and the wind energy potential in China was calculated. The model system for wind energy resource assessment was set up based on Canadian Wind Energy Simulating Toolkit (WEST) and the simulating method was as follows. First, the weather classes were obtained depend on meteorological data of 30 years. Then, driven by the initial meteorological field produced by each weather class, the meso-scale model ran for the distribution of wind energy resources according each weather class condition one by one. Finally, averaging all the modeling output weighted by the occurrence frequency of each weather class, the annual mean distribution of wind energy resources was worked out. Compared the simulated wind energy potential with other results from several ac-tivities and studies for wind energy resource assessment, it is found that the simulated wind energy potential in mainland of China is 3 times that from the second and the third investigations for wind energy resources by CMA, and is similar to the wind energy potential obtained by NREL in Solar and Wind Energy Resource Assessment (SWERA) project. The simulated offshore wind energy potential of China seems smaller than the true value. According to the simulated results of CMA and considering lots of limited factors to wind energy development, the final conclusion can be obtained that the wind energy availability in China is 700~1 200 GW, in which 600~1 000 GW is in mainland and 100~200 GW is on offshore, and wind power will become the important part of energy composition in future.

  6. Energy dependence of nonlocal optical potentials

    Science.gov (United States)

    Lovell, A. E.; Bacq, P.-L.; Capel, P.; Nunes, F. M.; Titus, L. J.

    2017-11-01

    Recently, a variety of studies have shown the importance of including nonlocality in the description of reactions. The goal of this work is to revisit the phenomenological approach to determining nonlocal optical potentials from elastic scattering. We perform a χ2 analysis of neutron elastic scattering data off 40Ca, 90Zr, and 208Pb at energies E ≈5 -40 MeV, assuming a Perey and Buck [Nucl. Phys. 32, 353 (1962), 10.1016/0029-5582(62)90345-0] or Tian et al. [Int. J. Mod. Phys. E 24, 1550006 (2015), 10.1142/S0218301315500068] nonlocal form for the optical potential. We introduce energy and asymmetry dependencies in the imaginary part of the potential and refit the data to obtain a global parametrization. Independently of the starting point in the minimization procedure, an energy dependence in the imaginary depth is required for a good description of the data across the included energy range. We present two parametrizations, both of which represent an improvement over the original potentials for the fitted nuclei as well as for other nuclei not included in our fit. Our results show that, even when including the standard Gaussian nonlocality in optical potentials, a significant energy dependence is required to describe elastic-scattering data.

  7. The potential role of hydrogen energy in India and Western Europe

    International Nuclear Information System (INIS)

    Ruijven, Bas van; Hari, Lakshmikanth; Vuuren, Detlef P. van; Vries, Bert de

    2008-01-01

    We used the TIMER energy model to explore the potential role of hydrogen in the energy systems of India and Western Europe, looking at the impacts on its main incentives: climate policy, energy security and urban air pollution. We found that hydrogen will not play a major role in both regions without considerable cost reductions, mainly in fuel cell technology. Also, energy taxation policy is essential for hydrogen penetration and India's lower energy taxes limit India's capacity to favour hydrogen. Once available to the (European) energy system, hydrogen can decrease the cost of CO 2 emission reduction by increasing the potential for carbon capture technology. However, climate policy alone is insufficient to speed up the transition. Hydrogen diversifies energy imports; especially for Europe it decreases oil imports, while increasing imports of coal and natural gas. For India, it provides an opportunity to decrease oil imports and use indigenous coal resources in the transport sector. Hydrogen improves urban air quality by shifting emissions from urban transport to hydrogen production facilities. However, for total net emissions we found a sensitive trade-off between lower emissions at end-use (in transport) and higher emissions from hydrogen production, depending on local policy for hydrogen production facilities

  8. Total and elastic electron scattering cross sections from Xe at intermediate and high energies

    International Nuclear Information System (INIS)

    Garcia, G; Pablos, J L de; Blanco, F; Williart, A

    2002-01-01

    Experimental total electron scattering cross sections from Xe in the energy range 300-5000 eV have been obtained with experimental errors of about 3%. The method was based on the measurement of the attenuation of a linear electron beam through a Xe gas cell in combination with an electron spectroscopy technique to analyse the energy of the transmitted electrons. Differential and integral elastic cross sections have been calculated using a scattering potential method which includes relativistic effects. The consistency of our theoretical and experimental results is also discussed in the paper. Finally, analytical formulae depending on two parameters, namely the number of target electrons and the atomic polarizability, are given to reproduce the experimental data for Ne, Ar, Kr and Xe in the energy range 500-10 000 eV

  9. Critical insight into the influence of the potential energy surface on fission dynamics

    International Nuclear Information System (INIS)

    Mazurek, K.; Schmitt, C.; Wieleczko, J. P.; Ademard, G.; Nadtochy, P. N.

    2011-01-01

    The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. When utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.

  10. Energy intensities: Prospects and potential

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the previous chapter, the author described how rising activity levels and structural change are pushing toward higher energy use in many sectors and regions, especially in the developing countries. The extent to which more activity leads to greater energy use will depend on the energy intensity of end-use activities. In this chapter, the author presents an overview of the potential for intensity reductions in each sector over the next 10-20 years. It is not the author's intent to describe in detail the various technologies that could be employed to improve energy efficiency, which has been done by others (see, for example, Lovins ampersand Lovins, 1991; Goldembert et al., 1987). Rather, he discusses the key factors that will shape future energy intensities in different parts of the world, and gives a sense for the changes that could be attained if greater attention were given to accelerate efficiency improvement. The prospects for energy intensities, and the potential for reduction, vary among sectors and parts of the world. In the majority of cases, intensities are tending to decline as new equipment and facilities come into use and improvements are made on existing stocks. The effect of stock turnover will be especially strong in the developing countries, where stocks are growing at a rapid pace, and the Former East Bloc, where much of the existing industrial plant will eventually be retired and replaced with more modern facilities. While reductions in energy intensity are likely in most areas, there is a large divergence between the technical and economic potential for reducing energy intensities and the direction in which present trends are moving. In the next chapter, the author presents scenarios that illustrate where trends are pointing, and what could be achieved if improving energy efficiency were a focus of public policies. 53 refs., 4 figs., 2 tabs

  11. Augmented potential, energy densities, and virial relations in the weak- and strong-interaction limits of DFT

    Science.gov (United States)

    Vuckovic, Stefan; Levy, Mel; Gori-Giorgi, Paola

    2017-12-01

    The augmented potential introduced by Levy and Zahariev [Phys. Rev. Lett. 113, 113002 (2014)] is shifted with respect to the standard exchange-correlation potential of the Kohn-Sham density functional theory by a density-dependent constant that makes the total energy become equal to the sum of the occupied orbital energies. In this work, we analyze several features of this approach, focusing on the limit of infinite coupling strength and studying the shift and the corresponding energy density at different correlation regimes. We present and discuss coordinate scaling properties of the augmented potential, study its connection to the response potential, and use the shift to analyze the classical jellium and uniform gas models. We also study other definitions of the energy densities in relation to the functional construction by local interpolations along the adiabatic connection. Our findings indicate that the energy density that is defined in terms of the electrostatic potential of the exchange-correlation hole is particularly well suited for this purpose.

  12. Data Network Equipment Energy Use and Savings Potential in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.

    2010-06-09

    Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.

  13. Fossil energy savings potential of sugar cane bio-energy systems

    DEFF Research Database (Denmark)

    Nguyen, Thu Lan T; Hermansen, John Erik; Sagisaka, Masayuki

    2009-01-01

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity...... and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while...... proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts...

  14. Energy potential of Finnish peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, K. (Geological Survey of Finland, Kuopio (Finland)); Valpola, S. (Geological Survey of Finland, Kokkola (Finland)), e-mail: kimmo.virtanen@gtk.fi, e-mail: samu.valpola@gtk.fi

    2011-07-01

    One-third of the Finnish land area is covered by mires and peat. GTK has investigated 2.0 million ha of the 9.3 million ha area covered by mires in Finland. According to the EU Commission, the broadly-based Finnish energy economy, with various energy sources, is the best in the EU. As a fuel, peat fulfils the goals of the EU energy policy in Finland well: it is local, its availability is good and the price is stable. The use of peat also enhances national security. At present, peat is used in around one hundred larger applications that co-generate electricity and heat. In Finland, the development of mires has led to several mire complex types and three main types: raised bogs in Southern Finland, aapa mires in Ostrobothnia and Lapland, and palsa mires in Northern Lapland. Peat layers are deepest in southern Finland and partly in the southern Finnish Lake area, the Region of North Karelia and in the area of central Lapland. The mean depth of geological mires is 1.41 m and the thickest drilled peat is 12.3 m. According to peat investigations, the national peat reserve totals 69.3 billion m3 in situ (peatlands larger than 20 hectares). The dry solids of peat are estimated at 6.3 billion tones. Sphagnum peat accounts for 54% and Carex peat for 45% of feasible peat reserves. Peatlands that are technically suitable for the peat industry cover a total area of 1.2 million ha and contain 29.6 billion m3 of peat in situ. Slightly humified peat suitable for horticultural and environmental use totals 5.9 billion m3 in situ. The energy peat reserve is 23.7 billion m3 in situ and its energy content is 12 800 TWh. (orig.)

  15. Nuclear three-body problem and energy-dependent potentials

    International Nuclear Information System (INIS)

    Abdurakhmanov, A.; Akhmadkhodzhaev, B.; Zubarev, A.L.; Irgaziev, B.F.

    1985-01-01

    Energy-dependent potentials in the three-body problem are being considered. Three-particle equations for the case of pairing energy-dependent potentials are generalized and the problems related to this ambiguous generalization are investigated. In terms of the equations obtained the tritium binding energy and vertex coupling constants (Tdn) and (Tdν) are evaluated. The binding energy and, especially, coupling constants are shown to be sensitive to a shape of the energy-dependent potential

  16. Machine Learning methods in fitting first-principles total energies for substitutionally disordered solid

    Science.gov (United States)

    Gao, Qin; Yao, Sanxi; Widom, Michael

    2015-03-01

    Density functional theory (DFT) provides an accurate and first-principles description of solid structures and total energies. However, it is highly time-consuming to calculate structures with hundreds of atoms in the unit cell and almost not possible to calculate thousands of atoms. We apply and adapt machine learning algorithms, including compressive sensing, support vector regression and artificial neural networks to fit the DFT total energies of substitutionally disordered boron carbide. The nonparametric kernel method is also included in our models. Our fitted total energy model reproduces the DFT energies with prediction error of around 1 meV/atom. The assumptions of these machine learning models and applications of the fitted total energies will also be discussed. Financial support from McWilliams Fellowship and the ONR-MURI under the Grant No. N00014-11-1-0678 is gratefully acknowledged.

  17. Energy efficiency: potentials and profits

    International Nuclear Information System (INIS)

    Sigaud, J.B.

    2011-01-01

    In this work, Jean-Marie Bouchereau (ADEME) has presented a review of the energy efficiency profits in France during the last 20 years and the prospects from now to 2020. Then, Geoffrey Woodward (TOTAL) and Sebastien Huchette (AXENS) have recalled the stakes involved in the energy efficiency of the upstream and downstream sectors respectively and presented examples of advances approaches illustrated by concrete cases of applications. (O.M.)

  18. Canadian wind energy technical and market potential

    International Nuclear Information System (INIS)

    Templin, R.J.; Rangli, R.S.

    1992-01-01

    The current status of wind energy technology in Canada is reviewed, the technical potential of wind energy in Canada is estimated, and the economic market potential is assessed under several scenarios over about the next 25 years. The technical potential is seen to be large, with applications to water pumping on farms, the coupling of wind turbines to diesel-electric systems in remote communities where fuel costs are high, and the supply of electricity to main power grids. The main-grid application has greatest technical potential, but it cannot be economically exploited under the present utility buyback rate structure for intermittent power sources. A change in government policy toward market development of renewable energy sources, such as is already taking place in several European countries, would greatly increase market potential, decrease emissions of CO 2 and SO 2 , and benefit the Canadian wind energy industry. 2 figs., 1 tab

  19. Energy performance contracting - energy saving potential of selected energy conservation measures (ECM)

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, M. (Dansk Energi Analyse A/S, Frederiksberg (Denmark)); Langkilde, G.; Olesen, Bjarne W. (Technical Univ. of Denmark, ICIEE, Kgs. Lyngby (Denmark)); Moerck, O. (Cenergia Energy Consultants, Herlev (Denmark)); Sundman, O. (DONG Energy, Copenhagen (Denmark)); Engelund Thomsen, K. (Aalborg Univ., SBi, Hoersholm (Denmark))

    2008-09-15

    This report has been developed under the research project 'Etablering af grundlag for energitjenester i Danmark' (project number: ENS-33031-0185) under the Danish research programme - EFP. The objective of this project has been to contribute to the utilisation of the large potential for energy conservations in the building sector within the public, industry and service sectors through the development of a better basis for decision making for both the Energy Service Companies (ESCOes) and the building owners. The EU directive on Energy Service Contracting points at the buildings as the area where the biggest potential market for energy services and energy efficiency improvements are. The EFP-project has two parts: (1) A Danish part and (2) participation in the international cooperation project 'Holistic Assesment Tool-Kit on Energy Efficient Retrofit Measures for Government Buildings (EnERGo)', Annex 46 under the IEA R and D program 'Energy Conservation In Buildings And Community Systems' (ECBCS). This report describes the Danish contributions to the IEA projects subtask B, which has a primary objective to develop a database of energy conservation measures (ECM) with descriptions and performance characteristics of these. (au)

  20. Energy performance contracting - energy saving potential of selected energy conservation measures (ECM)

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, M [Dansk Energi Analyse A/S, Frederiksberg (Denmark); Langkilde, G; Olesen, Bjarne W [Technical Univ. of Denmark, ICIEE, Kgs. Lyngby (Denmark); Moerck, O [Cenergia Energy Consultants, Herlev (Denmark); Sundman, O [DONG Energy, Copenhagen (Denmark); Engelund Thomsen, K [Aalborg Univ., SBi, Hoersholm (Denmark)

    2008-09-15

    This report has been developed under the research project 'Etablering af grundlag for energitjenester i Danmark' (project number: ENS-33031-0185) under the Danish research programme - EFP. The objective of this project has been to contribute to the utilisation of the large potential for energy conservations in the building sector within the public, industry and service sectors through the development of a better basis for decision making for both the Energy Service Companies (ESCOes) and the building owners. The EU directive on Energy Service Contracting points at the buildings as the area where the biggest potential market for energy services and energy efficiency improvements are. The EFP-project has two parts: (1) A Danish part and (2) participation in the international cooperation project 'Holistic Assesment Tool-Kit on Energy Efficient Retrofit Measures for Government Buildings (EnERGo)', Annex 46 under the IEA R and D program 'Energy Conservation In Buildings And Community Systems' (ECBCS). This report describes the Danish contributions to the IEA projects subtask B, which has a primary objective to develop a database of energy conservation measures (ECM) with descriptions and performance characteristics of these. (au)

  1. Spatial mapping of renewable energy potential

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandra, T.V. [Centre for Sustainable Technologies, Indian Institute of Science, Bangalore (India); Energy Research Group, CES RNO 215, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012 (India); Shruthi, B.V. [Energy Research Group, CES RNO 215, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012 (India)

    2007-09-15

    An energy resource that is renewed by nature and whose supply is not affected by the rate of consumption is often termed as renewable energy. The need to search for renewable, alternate and non-polluting sources of energy assumes top priority for self-reliance in the regional energy supply. This demands an estimation of available energy resources spatially to evolve better management strategies for ensuring sustainability of resources. The spatial mapping of availability and demand of energy resources would help in the integrated regional energy planning through an appropriate energy supply-demand matching. This paper discusses the application of Geographical Information System (GIS) to map the renewable energy potential talukwise in Karnataka State, India. Taluk is an administrative division in the federal set-up in India to implement developmental programmes like dissemination of biogas, improved stoves, etc. Hence, this paper focuses talukwise mapping of renewable energy (solar, wind, bioenergy and small hydroenergy) potential for Karnataka using GIS. GIS helps in spatial and temporal analyses of the resources and demand and also aids as Decision Support System while implementing location-specific renewable energy technologies. Regions suitable for tapping solar energy are mapped based on global solar radiation data, which provides a picture of the potential. Coastal taluks in Uttara Kannada have higher global solar radiation during summer (6.31 kWh/m{sup 2}), monsoon (4.16 kWh/m{sup 2}) and winter (5.48 kWh/m{sup 2}). Mapping of regions suitable for tapping wind energy has been done based on wind velocity data, and it shows that Chikkodi taluk, Belgaum district, has higher potential during summer (6.06 m/s), monsoon (8.27 m/s) and winter (5.19 m/s). Mysore district has the maximum number of small hydropower plants with a capacity of 36 MW. Talukwise computation of bioenergy availability from agricultural residue, forest, horticulture, plantation and livestock

  2. An assessement of global energy resource economic potentials

    International Nuclear Information System (INIS)

    Mercure, Jean-François; Salas, Pablo

    2012-01-01

    This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations using natural resource assessment data. Economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, with strong emphasis on uncertainty, using a consistent methodology that allow direct comparisons to be made. In order to interpolate through available resource assessment data and associated uncertainty, a theoretical framework and a computational methodology are given based on statistical properties of different types of resources, justified empirically by the data, and used throughout. This work aims to provide a global database for natural energy resources ready to integrate into models of energy systems, enabling to introduce at the same time uncertainty over natural resource assessments. The supplementary material provides theoretical details and tables of data and parameters that enable this extensive database to be adapted to a variety of energy systems modelling frameworks. -- Highlights: ► Global energy potentials for all major energy resources are reported. ► Theory and methodology for calculating economic energy potentials is given. ► An uncertainty analysis for all energy economic potentials is carried out.

  3. RUSTEC: Greening Europe's energy supply by developing Russia's renewable energy potential

    International Nuclear Information System (INIS)

    Boute, Anatole; Willems, Patrick

    2012-01-01

    The North-West of Russia is characterized by a large renewable energy resource base in geographic proximity to the EU. At the same time, EU Member States are bound by mandatory renewable energy targets which could prove to be costly to achieve in the current budgetary context and which often face strong local opposition. Directive 2009/28/EC on Renewable Energy makes it possible for Member States to achieve their targets by importing electricity produced from renewable energy sources from non-EU countries. So far, most attention has been on the Mediterranean Solar Plan or Desertec. An EU–Russia Renewable Energy Plan or RUSTEC – being based on onshore wind/biomass/hydro energy and on-land interconnection, rather than solar power and subsea lines – could present a cost-efficient and short-term complement to Desertec. This article examines the political, geopolitical, economic, social and legal challenges and opportunities of exporting “green” energy from Russia to the EU. It argues that EU–Russian cooperation in the renewable energy field would present a win-win situation: Member States could achieve their targets on the basis of Russia's renewable energy potential, while Russia could begin to develop a national renewable energy industry without risking potential price increases for domestic consumers—a concern of great political sensitivity in Russia. - Highlights: ► Russia has a huge renewable energy potential in geographic proximity to the EU. ► This potential could help the EU decarbonize its electricity supply at least cost.► EU–Russia green energy export is a win-win situation but lacks political attention.► RUSTEC could be a short-term and cost-efficient complement to Desertec. ► RUSTEC would diversify EU energy imports/Russian exports and stimulate innovation.

  4. How fast is the growth of Total Cross Section at High Energies?

    CERN Document Server

    Fazal-e-Aleem, M; Sohail-Afzal, Tahir; Ayub-Faridi, M; Qadee-Afzal, M

    2003-01-01

    Relativistic Heavy Ion Collider and Large Hadron Colliders have special agenda for the measurements of the total cross sections at high energies giving us an opportunity to touch cosmic ray energies. Recent analyses of the cosmic ray data together with earlier experimental measurements at ISR and SPS gives us an insight about the behaviour of this important parameter at asymptotic energies. We will study the growth of total cross section at high energies in the light of various theoretical approaches with special reference to measurements at RHIC and LHC.

  5. An assessment of the biomass potential of Cyprus for energy production

    International Nuclear Information System (INIS)

    Kythreotou, Nicoletta; Tassou, Savvas A.; Florides, Georgios

    2012-01-01

    Biodegradable waste in Cyprus predominately consists of the biodegradable fraction of municipal solid waste, sewage sludge, solid and liquid agricultural residues and solid and liquid wastes from food and drink industries. Biodegradable waste is a very important source of biomass. The potential amount of solid and liquid biomass of the specified waste streams was estimated to be 9.2 million tonnes, after collecting data on the waste generation coefficients. Both liquid and solid waste can be used for the production of biogas (BG), which can be combusted for the production of thermal and electrical energy. The potential biogas production was estimated on the basis of Chemical Oxygen Demand (COD) consumption and on the basis of digested mass. The potential biogas production was found to be 114 and 697 million m 3 respectively. Further research is required for the improvement of waste generation coefficients. The results on energy production provide an indication of the importance of promotion of anaerobic digestion for the treatment of biodegradable waste to the energy balance of the country. Anaerobic digestion can provide decentralisation of energy production, and production of energy in areas that are in most cases remote. -- Highlights: ► Waste generation coefficients were estimated according to available data for Cyprus. ► Total solid and liquid biomass from waste was estimated to be 9.2 million tonnes. ► Biogas production was estimated using COD and mass digested. ► Further research is required for the improvement of waste generation coefficients. ► Energy production estimates indicates the importance of anaerobic digestion.

  6. Ecological total-factor energy efficiency of regions in China

    International Nuclear Information System (INIS)

    Li Lanbing; Hu Jinli

    2012-01-01

    Most existing energy efficiency indices are computed without taking into account undesirable outputs such as CO 2 and SO 2 emissions. This paper computes the ecological total-factor energy efficiency (ETFEE) of 30 regions in China for the period 2005–2009 through the slack-based model (SBM) with undesirable outputs. We calculate the ETFEE index by comparing the target energy input obtained from SBM with undesirable outputs to the actual energy input. Findings show that China's regional ETFEE still remains a low level of around 0.600 and regional energy efficiency is overestimated by more than 0.100 when not looking at environmental impacts. China's regional energy efficiency is extremely unbalanced: the east area ranks first with the highest ETFEE of above 0.700, the northeast and central areas follow, and the west area has the lowest ETFEE of less than 0.500. A monotone increasing relation exists between the area's ETFEE and China's per capita GDP. The truncated regression model shows that the ratio of R and D expenditure to GDP and the degree of foreign dependence have positive impacts, whereas the ratio of the secondary industry to GDP and the ratio of government subsidies for industrial pollution treatment to GDP have negative effects, on the ETFEE. - Highlights: ► Most energy efficiency indices ignore undesirable outputs such as CO 2 and SO 2 emissions. ► The ecological total-factor energy efficiency (ETFEE) is computed by slack-based model (SBM). ► The datasets contains 30 regions in China for the period 2005–2009. ► China's regional energy efficiency is extremely unbalanced. ► A monotone increasing relation exists between ETFEE and per capita GDP.

  7. Economic analysis model for total energy and economic systems

    International Nuclear Information System (INIS)

    Shoji, Katsuhiko; Yasukawa, Shigeru; Sato, Osamu

    1980-09-01

    This report describes framing an economic analysis model developed as a tool of total energy systems. To prospect and analyze future energy systems, it is important to analyze the relation between energy system and economic structure. We prepared an economic analysis model which was suited for this purpose. Our model marks that we can analyze in more detail energy related matters than other economic ones, and can forecast long-term economic progress rather than short-term economic fluctuation. From view point of economics, our model is longterm multi-sectoral economic analysis model of open Leontief type. Our model gave us appropriate results for fitting test and forecasting estimation. (author)

  8. The potential of (waste)water as energy carrier

    International Nuclear Information System (INIS)

    Frijns, Jos; Hofman, Jan; Nederlof, Maarten

    2013-01-01

    Graphical abstract: Energy input and potential output of the Dutch communal water cycle. Highlights: ► Municipal wastewater is a large carrier of chemical and thermal energy. ► The recovery of chemical energy from wastewater can be maximised by digestion. ► The potential of thermal energy recovery from wastewater is huge. ► Underground thermal energy storage is a rapidly developing renewable energy source. - Abstract: Next to energy efficiency improvements in the water sector, there is a need for new concepts in which water is viewed as a carrier of energy. Municipal wastewater is a potential source of chemical energy, i.e. organic carbon that can be recovered as biogas in sludge digestion. The recovery of chemical energy can be maximised by up-concentration of organic carbon and maximised sludge digestion or by source separation and anaerobic treatment. Even more so, domestic wastewater is a source of thermal energy. Through warm water conservation and heat recovery, for example with shower heat exchangers, substantial amounts of energy can be saved and recovered from the water cycle. Water can also be an important renewable energy source, i.e. as underground thermal energy storage. These systems are developing rapidly in the Netherlands and their energy potential is large.

  9. Wave Energy Potential in the Latvian EEZ

    Science.gov (United States)

    Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.

    2016-06-01

    The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.

  10. Nuclear energy: potentiality and implications

    International Nuclear Information System (INIS)

    Bahgat, Gawdat

    2008-01-01

    After a discussion about a broad definition of energy security and about the main challenges facing a potential nuclear renaissance, the article analyses how the European Union and the United States have addressed these challenges. There is no doubt that nuclear power will remain an important component of global energy mix, but it should not be seen as a panacea to the flows in the global energy markets [it

  11. Probing potential energy curves of C2- by translational energy spectrometry

    International Nuclear Information System (INIS)

    Gupta, A.K.; Aravind, G.; Krishnamurthy, M.

    2004-01-01

    We present studies on collision induced dissociation of C 2 - with Ar at an impact energy of 15 keV. The C - fragment ion kinetic-energy release (KER) distribution is measured and is used to compute the KER in the center of mass (c.m.) frame (KER c.m. ). We employ the reflection method to deduce an effective repulsive potential-energy curve for the molecular anion that is otherwise difficult to evaluate from quantum computational methods. The nuclear wave packet of the molecular ion in the initial ground state is computed by the semiclassical WKB method using the potential-energy curve of the 2 Σ g + ground electronic state calculated by an ab initio quantum computation method. The ground-state nuclear wave packet is reflected on a parametrized repulsive potential-energy curve where the parameters are determined by fitting the measured KER c.m. with the calculated KER distribution

  12. Map of decentralised energy potential based on renewable energy sources in Croatia

    International Nuclear Information System (INIS)

    Schneider, D. R.; Ban, M.; Duic, N.; Bogdan, Z.

    2005-01-01

    Although the Republic of Croatia is almost completely electrified there are still regions where electricity network is not in place or network capacity is insufficient. These regions usually include areas of special state care (underdeveloped, war-affected or depopulated areas), islands, and mountainous areas. However, they often have good renewable energy potential. Decentralised energy generation based on renewable energy sources (wind power, hydropower, solar energy, biomass) has potential to ensure energy supply to users in remote and often isolated rural areas (off-grid applications). Such applications will primarily be related to tourism business in mountainous, rural and island/coastal regions. Also, agriculture, wood-processing and food-processing industries will potentially be interested in application of decentralised energy generation systems, most likely those using biomass as fuel (for example cogeneration facilities, connected on-grid).(author)

  13. Brazilian waste potential: energy, environmental, social and economic benefits

    International Nuclear Information System (INIS)

    Oliveira, L.B.; Rosa, L.P.

    2003-01-01

    The potential energy that could be produced from solid wastes in Brazil tops 50 TWh. Equivalent to some 17% of the nation's total power consumption at costs that are competitive with more traditional options, this would also reduce greenhouse gases emissions. Moreover, managing wastes for energy generation purposes could well open up thousands of jobs for unskilled workers. Related to power generation and conservation, energy use requires discussions on the feasibility of each energy supply option, and comparison between alternatives available on the market. Power conservation is compared to projects implemented by the Federal Government, while power generation is rated against thermo-power plants fired by natural gas running on a combined cycle system. Although the operating costs of selective garbage collection for energy generation are higher than current levels, the net operating revenues of this scheme reach some US$ 4 billion/year. This underpins the feasibility of garbage management being underwritten by energy uses and avoided environmental costs. The suggested optimization of the technical, economic, social and environmental sustainability of the expansion of Brazil's power sector consists of compatibilizing the use of fossil and renewable fuels, which is particularly relevant for hybrid thermo-power plants with null account on greenhouse gases emissions

  14. Contracting of energy services in Switzerland. Development, effects, market potentials

    International Nuclear Information System (INIS)

    Muggli, C.; Baumgartner, W.; Kohn, L.

    1999-06-01

    The authors of this detailed report first define the contracting of energy services, this new reality of the market place, and analyse its current status in Switzerland. Contracting is mainly to be understood as the delegation of certain energy-related services by a company. The total investment for the operated energy systems considered by the study is about 120 millions USD, with an installed power of 160 MW. This market is highly unhomogeneous and is the answer to various goals. Globally, it brings a more efficient use of energy, including a more frequent involvement of renewable energy sources, along with a lower risk and significant advantages for all contractors. That is the reason for the energy policy authority to recommend contracting. The report goes on with the analysis of the factors leading the chief executives to consider contracting of energy services, or on the contrary to exclude it. The authors estimate the realistic potential market for contracting in Switzerland to 650 millions USD for the period 1999-2004. They conclude by giving recommendations which should result in an acceleration of the contracting's development on the market place

  15. Assessment of the biomass energy potentials and environmental benefits of Jatropha curcas L. in Southwest China

    International Nuclear Information System (INIS)

    Liu, Lei; Zhuang, Dafang; Jiang, Dong; Fu, Jingying

    2013-01-01

    Jatropha curcas L. (JCL) is believed to be the most promising tree species used to produce biodiesel in China. Due to its abundant marginal land resource and good meteorological conditions, Southwest China is the major region to develop JCL. With Southwest China being taken as the study area in this paper, multi-factor comprehensive analysis is used to identify marginal land resources suitable to JCL plantation and make suitability assessment, thus obtaining their spatial distribution, suitability degree and total amount. With life cycle analysis (LCA), the life cycle net energy and greenhouse gas emission reduction capacity of marginal land resources with different suitability degrees used to produce biodiesel are investigated. Based on the research results, the life cycle model is expanded to obtain the potentiality of total net energy production and greenhouse gas emission reduction of large-scale plantation of JCL in southwest China. The results show that the area of land resources suitable and moderately suitable for JCL plantation is 1.99 × 10 6 ha and 5.57 × 10 6 ha, respectively. If all of these land resources are put into use, the maximum net production potential of biodiesel from JCL would be 1.51 × 10 8 GJ/a, and the total greenhouse gas emission reduction capacity 1.59 × 10 7 t/a in Southwest China. -- Highlights: •A LCA based approach for assessing net energy potential of Jatropha curcas L. was presented. •The net production potential of biodiesel from JCL is 1.51 × 10 8 GJ/a in Southwest China. •The total GHG emission reduction capacity from JCL is 1.59 × 10 7 t/a in Southwest China

  16. Thermodynamics of the living organisms. Allometric relationship between the total metabolic energy, chemical energy and body temperature in mammals

    Science.gov (United States)

    Atanasov, Atanas Todorov

    2017-11-01

    The study present relationship between the total metabolic energy (ETME(c), J) derived as a function of body chemical energy (Gchem, J) and absolute temperature (Tb, K) in mammals: ETME(c) =Gchem (Tb/Tn). In formula the temperature Tn =2.73K appears normalization temperature. The calculated total metabolic energy ETME(c) differs negligible from the total metabolic energy ETME(J), received as a product between the basal metabolic rate (Pm, J/s) and the lifespan (Tls, s) of mammals: ETME = Pm×Tls. The physical nature and biological mean of the normalization temperature (Tn, K) is unclear. It is made the hypothesis that the kTn energy (where k= 1.3806×10-23 J/K -Boltzmann constant) presents energy of excitation states (modes) in biomolecules and body structures that could be in equilibrium with chemical energy accumulated in body. This means that the accumulated chemical energy allows trough all body molecules and structures to propagate excitations states with kTn energy with wavelength in the rage of width of biological membranes. The accumulated in biomolecules chemical energy maintains spread of the excited states through biomolecules without loss of energy.

  17. Energy regulation in China: Objective selection, potential assessment and responsibility sharing by partial frontier analysis

    International Nuclear Information System (INIS)

    Xia, X.H.; Chen, Y.B.; Li, J.S.; Tasawar, H.; Alsaedi, A.; Chen, G.Q.

    2014-01-01

    To cope with the excessive growth of energy consumption, the Chinese government has been trying to strengthen the energy regulation system by introducing new initiatives that aim at controlling the total amount of energy consumption. A partial frontier analysis is performed in this paper to make a comparative assessment of the combinations of possible energy conservation objectives, new constraints and regulation strategies. According to the characteristics of the coordination of existing regulation structure and the optimality of regulation strategy, four scenarios are constructed and regional responsibilities are reasonably divided by fully considering the production technology in the economy. The relative importance of output objectives and the total amount controlling is compared and the impacts on the regional economy caused by the changes of regulation strategy are also evaluated for updating regulation policy. - Highlights: • New initiatives to control the total amount of energy consumption are evaluated. • Twenty-four regulation strategies and four scenarios are designed and compared. • Crucial regions for each sector and regional potential are identified. • The national goals of energy abatement are decomposed into regional responsibilities. • The changes of regulation strategy are evaluated for updating regulation policy

  18. Proton optical potential and scattering matrix for tin nuclei at sub-coulomb energies

    International Nuclear Information System (INIS)

    Guzhovskij, B.Ya.; Dzyuba, B.M.

    1981-01-01

    A unified set of parameters of the proton optical potential (OP) for the n nuclei is searched for in the below-Coulomb-barrier energy range. The set must describe well the experimental data on the pn-reaction total cross sections and on the angular distributions of elastically scattered protons at E [ru

  19. Regional energy system optimization - Potential for a regional heat market

    International Nuclear Information System (INIS)

    Karlsson, Magnus; Gebremedhin, Alemayehu; Klugman, Sofia; Henning, Dag; Moshfegh, Bahram

    2009-01-01

    Energy supply companies and industrial plants are likely to face new situations due to, for example, the introduction of new energy legislation, increased fuel prices and increased environmental awareness. These new prerequisites provide companies with new challenges but also new possibilities from which to benefit. Increased energy efficiency within companies and increased cooperation between different operators are two alternatives to meet the new conditions. A region characterized by a high density of energy-intensive processes is used in this study to find the economic potential of connecting three industrial plants and four energy companies, within three local district heating systems, to a regional heat market, in which different operators provide heat to a joint district heating grid. Also, different investment alternatives are studied. The results show that the economical potential for a heat market amounts to between 5 and 26 million EUR/year with payback times ranging from two to eleven years. However, the investment costs and the net benefit for the total system need to be allotted to the different operators, as they benefit economically to different extents from the introduction of a heat market. It is also shown that the emissions of CO 2 from the joint system would decrease compared to separate operation of the systems. However, the valuation of CO 2 emissions from electricity production is important as the difference of emitted CO 2 between the accounting methods exceeds 650 kton/year for some scenarios

  20. Communication: A benchmark-quality, full-dimensional ab initio potential energy surface for Ar-HOCO

    International Nuclear Information System (INIS)

    Conte, Riccardo; Bowman, Joel M.; Houston, Paul L.

    2014-01-01

    A full-dimensional, global ab initio potential energy surface (PES) for the Ar-HOCO system is presented. The PES consists of a previous intramolecular ab initio PES for HOCO [J. Li, C. Xie, J. Ma, Y. Wang, R. Dawes, D. Xie, J. M. Bowman, and H. Guo, J. Phys. Chem. A 116, 5057 (2012)], plus a new permutationally invariant interaction potential based on fitting 12 432 UCCSD(T)-F12a/aVDZ counterpoise-corrected energies. The latter has a total rms fitting error of about 25 cm −1 for fitted interaction energies up to roughly 12 000 cm −1 . Two additional fits are presented. One is a novel very compact permutational invariant representation, which contains terms only involving the Ar-atom distances. The rms fitting error for this fit is 193 cm −1 . The other fit is the widely used pairwise one. The pairwise fit to the entire data set has an rms fitting error of 427 cm −1 . All of these potentials are used in preliminary classical trajectory calculations of energy transfer with a focus on comparisons with the results using the benchmark potential

  1. Communication: A benchmark-quality, full-dimensional ab initio potential energy surface for Ar-HOCO

    Energy Technology Data Exchange (ETDEWEB)

    Conte, Riccardo, E-mail: riccardo.conte@emory.edu, E-mail: jmbowma@emory.edu; Bowman, Joel M., E-mail: riccardo.conte@emory.edu, E-mail: jmbowma@emory.edu [Department of Chemistry and Cherry L. Emerson Center for Scientific Calculation, Emory University, Atlanta, Georgia 30322 (United States); Houston, Paul L., E-mail: paul.houston@cos.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-04-21

    A full-dimensional, global ab initio potential energy surface (PES) for the Ar-HOCO system is presented. The PES consists of a previous intramolecular ab initio PES for HOCO [J. Li, C. Xie, J. Ma, Y. Wang, R. Dawes, D. Xie, J. M. Bowman, and H. Guo, J. Phys. Chem. A 116, 5057 (2012)], plus a new permutationally invariant interaction potential based on fitting 12 432 UCCSD(T)-F12a/aVDZ counterpoise-corrected energies. The latter has a total rms fitting error of about 25 cm{sup −1} for fitted interaction energies up to roughly 12 000 cm{sup −1}. Two additional fits are presented. One is a novel very compact permutational invariant representation, which contains terms only involving the Ar-atom distances. The rms fitting error for this fit is 193 cm{sup −1}. The other fit is the widely used pairwise one. The pairwise fit to the entire data set has an rms fitting error of 427 cm{sup −1}. All of these potentials are used in preliminary classical trajectory calculations of energy transfer with a focus on comparisons with the results using the benchmark potential.

  2. Worldwide potential of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C

    1982-01-01

    A well-documented discussion is presented dealing with the worldwide potential of wind energy as a source of electrical and mechanical power. It is pointed out that 2% of the solar insolation is converted to wind kinetic energy; it is constantly renewed and nondepletable. Efficiency of windmills are discussed (20 to 40%) and payback periods of less than 5 years are cited. Effects of wind velocity and site location are described. Wind pumps are reviewed and the need for wind pumps, particularly in the developing countries is stressed. The generation of electricity by windmills using small turbines is reviewed and appears promising in areas with wind velocities greater than 12 mi/hr. The development of large windmills and groups of windmills (windfarms) for large scale electrical power is discussed, illustrated, and reviewed (offshore sites included). Environmental and safety problems are considered as well as the role of electrical utilities, government support and research activities. It is concluded that the potential contribution of wind energy is immense and that mechanical windmills may become one of the most important renewable technologies. Electrical generating potential is estimated at 20 to 30% of electrical needs. International programs are discussed briefly. 57 references. (MJJ)

  3. From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy.

    Science.gov (United States)

    Amthor, Jeffrey S

    2010-12-01

    The relationship between solar radiation capture and potential plant growth is of theoretical and practical importance. The key processes constraining the transduction of solar radiation into phyto-energy (i.e. free energy in phytomass) were reviewed to estimate potential solar-energy-use efficiency. Specifically, the out-put:input stoichiometries of photosynthesis and photorespiration in C(3) and C(4) systems, mobilization and translocation of photosynthate, and biosynthesis of major plant biochemical constituents were evaluated. The maintenance requirement, an area of important uncertainty, was also considered. For a hypothetical C(3) grain crop with a full canopy at 30°C and 350 ppm atmospheric [CO(2) ], theoretically potential efficiencies (based on extant plant metabolic reactions and pathways) were estimated at c. 0.041 J J(-1) incident total solar radiation, and c. 0.092 J J(-1) absorbed photosynthetically active radiation (PAR). At 20°C, the calculated potential efficiencies increased to 0.053 and 0.118 J J(-1) (incident total radiation and absorbed PAR, respectively). Estimates for a hypothetical C(4) cereal were c. 0.051 and c. 0.114 J J(-1), respectively. These values, which cannot be considered as precise, are less than some previous estimates, and the reasons for the differences are considered. Field-based data indicate that exceptional crops may attain a significant fraction of potential efficiency. © The Author (2010). Journal compilation © New Phytologist Trust (2010).

  4. The potential and need for energy saving in standard family detached and semi-detached wooden houses in arctic Greenland

    DEFF Research Database (Denmark)

    Bjarløv, Søren Peter; Vladyková, Petra

    2011-01-01

    The paper gives an account of the potential and need for energy saving in standard family detached and semi-detached wooden houses in Greenland. It is based on studies of house construction compared with Building Regulation requirements and the spread of buildings over time. In the climatic...... conditions of Greenland, there is considerable potential for energy saving in houses due to their construction, shape and condition. To estimate the total potential for energy saving and thus reducing CO2 emissions, we carried out a detailed investigation of three typical standard semi-detached family houses...

  5. World potential of renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Dessus, B; Devin, B; Pharabod, F

    1991-07-01

    A comprehensive analysis, region by region, of the actually accessible renewable energies at a given horizon, is presented. The same methodology as the one employed to derive ``proven fossil energy reserves`` from ``energy resources`` is adopted, in which resources are defined by quantitative information on physical potential, while reserves take into account technical and economical accessibility. As renewable resources are fluctuating with time and are diluted in space and not readily transportable or storeable, it is necessary to consider the presence of populations or activities near enough to be able to profit by these diluted and volatile energies.

  6. Environment-adjusted total-factor energy efficiency of Taiwan's service sectors

    International Nuclear Information System (INIS)

    Fang, Chin-Yi; Hu, Jin-Li; Lou, Tze-Kai

    2013-01-01

    This study computes the pure technical efficiency (PTE) and energy-saving target of Taiwan's service sectors during 2001–2008 by using the input-oriented data envelopment analysis (DEA) approach with the assumption of a variable returns-to-scale (VRS) situation. This paper further investigates the effects of industry characteristics on the energy-saving target by applying the four-stage DEA proposed by Fried et al. (1999). We also calculate the pre-adjusted and environment-adjusted total-factor energy efficiency (TFEE) scores in these service sectors. There are three inputs (labor, capital stock, and energy consumption) and a single output (real GDP) in the DEA model. The most energy efficient service sector is finance, insurance and real estate, which has an average TFEE of 0.994 and an environment-adjusted TFEE (EATFEE) of 0.807. The study utilizes the panel-data, random-effects Tobit regression model with the energy-saving target (EST) as the dependent variable. Those service industries with a larger GDP output have greater excess use of energy. The capital–labor ratio has a significantly positive effect while the time trend variable has a significantly negative impact on the EST, suggesting that future new capital investment should also be accompanied with energy-saving technology in the service sectors. - Highlights: • The technical efficiency and energy-saving target of service sectors are assessed. • The pre-adjusted and environment-adjusted total-factor energy efficiency scores in services are assessed. • The industrial characteristic differences are examined by the panel-data, random-effects Tobit regression model. • Labor, capital, and energy and an output (GDP) are included in the DEA model. • Future new capital investment should also be accompanied with energy-saving technology in the service sectors

  7. Probing the density dependence of the symmetry potential in intermediate-energy heavy ion collisions

    International Nuclear Information System (INIS)

    Li Qingfeng; Li Zhuxia; Soff, Sven; Gupta, Raj K; Bleicher, Marcus; Stoecker, Horst

    2005-01-01

    Based on the ultrarelativistic quantum molecular dynamics model, the effects of the density-dependent symmetry potential for baryons and of the Coulomb potential for produced mesons are investigated for neutron-rich heavy ion collisions at intermediate energies. The calculated results of the Δ - /Δ ++ and π - /π + production ratios show a clear beam-energy dependence on the density-dependent symmetry potential, which is stronger for the π - /π + ratio close to the pion production threshold. The Coulomb potential of the mesons changes the transverse momentum distribution of the π - /π + ratio significantly, though it alters only slightly the π - and π + total yields. The π - yields, especially at midrapidity or at low transverse momenta and the π - /π + ratios at low transverse momenta are shown to be sensitive probes of the density-dependent symmetry potential in dense nuclear matter. The effect of the density-dependent symmetry potential on the production of both K 0 and K + mesons is also investigated

  8. Potential energy consumption reduction of automotive climate control systems

    International Nuclear Information System (INIS)

    Nielsen, Filip; Uddheim, Åsa; Dalenbäck, Jan-Olof

    2016-01-01

    Highlights: • Twenty-on energy saving measures for vehicle interior climate were evaluated. • Few single energy saving measures could reduce the energy use significantly. • The operation of the system in intermediate conditions determines the energy use. • Required heating/cooling of passenger compartment had small effect on energy use. - Abstract: In recent years fuel consumption of passenger vehicles has received increased attention by customers, the automotive industry, regulatory agencies and academia. One area which affect the fuel consumption is climate control systems. Twenty-one energy saving measures were evaluated regarding the total energy use for vehicle interior climate using simulation. Evaluated properties were heat flow into the passenger compartment, electrical and mechanical work. The simulation model included sub models of the passenger compartment, air-handling unit, Air Conditioning (AC) system, engine and engine cooling system. A real-world representative test cycle, which included tests in cold, intermediate and warm conditions, was used for evaluation. In general, few single energy saving measures could reduce the energy use significantly. The measures with most potential were increased blower efficiency with a reduction of 46% of the electrical work and increased AC-system disengage temperature with a reduction of 27% of the mechanical work. These results show that the operation of the climate control system had a large effect on the energy use, especially compared to the required heating and cooling of the passenger compartment. As a result energy saving measures need to address how heating and cooling is generated before reducing the heat flow into the passenger compartment.

  9. Total Corporate social responsibility report 2004. Sharing our energy; TOTAL rapport societal and environnemental 2004. Notre energie en partage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-05-15

    This document presents the social and environmental activities of the group Total for the year 2004. It provides information on the ethical aspects of the governance, the industrial security, the environmental policy, the public health and the occupational safety, the social liability and the economical and social impact of the group activities in the local development, the contribution to the climatic change fight and the development of other energy sources. (A.L.B.)

  10. Parameterization of α-nucleus total reaction cross section at intermediate energies

    International Nuclear Information System (INIS)

    Alvi, M A; Abdulmomen, M A

    2008-01-01

    Applying a Coulomb correction factor to the Glauber model we have derived a closed expression for α-nucleus total reaction cross section, σ R . Under the approximation of rigid projectile model, the elastic S-matrix element S el (b) is evaluated from the phenomenological N-α amplitude and a Gaussian fit to the Helm's model form factor. Excellent agreements with the experimental data have been achieved by performing two-parameter fits to the α-nucleus σ R data in the energy range about 75 to 193 MeV. One of the parameters was found to be energy independent while the other, as expected, shows the energy dependence similar to that of N-α total cross section.

  11. Comparing energy levels in isotropic and anisotropic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Pikovski, Alexander, E-mail: alexander.pikovski@colorado.edu

    2015-11-06

    Qualitative information about the quantized energy levels of a system can be of great value. We study the relationship between the bound-state energies of an anisotropic potential and those of its spherical average. It is shown that the two ground-state energies satisfy an inequality, and there is a similar inequality for the first excited states. - Highlights: • Quantized energy levels in an arbitrary non-central potential are studied. • We derive inequalities between energies in a potential and its spherical average. • The results hold in three and two dimensions for any ground state and, with additional symmetry requirements for the first excited state.

  12. Comparing energy levels in isotropic and anisotropic potentials

    International Nuclear Information System (INIS)

    Pikovski, Alexander

    2015-01-01

    Qualitative information about the quantized energy levels of a system can be of great value. We study the relationship between the bound-state energies of an anisotropic potential and those of its spherical average. It is shown that the two ground-state energies satisfy an inequality, and there is a similar inequality for the first excited states. - Highlights: • Quantized energy levels in an arbitrary non-central potential are studied. • We derive inequalities between energies in a potential and its spherical average. • The results hold in three and two dimensions for any ground state and, with additional symmetry requirements for the first excited state.

  13. Zeta-function approach to Casimir energy with singular potentials

    International Nuclear Information System (INIS)

    Khusnutdinov, Nail R.

    2006-01-01

    In the framework of zeta-function approach the Casimir energy for three simple model system: single delta potential, step function potential and three delta potentials are analyzed. It is shown that the energy contains contributions which are peculiar to the potentials. It is suggested to renormalize the energy using the condition that the energy of infinitely separated potentials is zero which corresponds to subtraction all terms of asymptotic expansion of zeta-function. The energy obtained in this way obeys all physically reasonable conditions. It is finite in the Dirichlet limit, and it may be attractive or repulsive depending on the strength of potential. The effective action is calculated, and it is shown that the surface contribution appears. The renormalization of the effective action is discussed

  14. The potential of renewable energies

    International Nuclear Information System (INIS)

    Glubrecht, H.

    1998-01-01

    If one compares the progress in research and development of renewable energy applications with the finding which has been granted to these activities during the 23 years after the first oil shock, one cannot but be very impressed. It is indicated in this paper hoe comprehensive the potential of renewable energy is. One should take into account that the methods described form a broad interdisciplinary field in contrast to fossil and nuclear technologies. From technical point of view the present and future energy demand can be met by the broad spectrum of renewable energies in combination with energy conservation. Many of these techniques are already economically competitive: solar architecture, wind energy, hydropower, low temperature heat production, photovoltaic for remote areas, various types of biomass application, geothermal energy although not exactly renewable. The future of renewable energies will depend on opening markets for these techniques

  15. Energy potential, energy ratios, and the amount of net energy in Finnish field crop production; Peltobioenergian tuotanto Suomessa. Potentiaali, energiasuhteet ja nettoenergia

    Energy Technology Data Exchange (ETDEWEB)

    Mikkola, H.

    2012-11-01

    Energy potential, energy ratios, and the amount of net energy in Finnish field crop production were studied in this thesis. Special attention was paid to indirect energy inputs and how to treat them in energy analysis. Manufacturing of machines and agrochemicals and production of seeds are examples of indirect energy inputs.The bioenergy potential of the Finnish field crop production could be as large as 12 - 22 TWh, or 3 - 5% of the total energy consumption in Finland in 2008. The major part of this energy would originate from straw and biomass like reed canary grass cultivated for energy use. However, only 0.5 TWh of the potential is utilized. The output/input energy ratios of the studied field crops varied from 3 to 18, being highest (18) for reed canary grass and second highest (7) for sugar beet and grass cultivated for silage. The energy ratio of cereals and oil seed crops varied from 3 to 5 if only the yield of seeds was considered. If the yield of straw and stems was also taken into account the energy ratios would have been almost twofold. The energy ratios for Finnish wheat and barley were as high as those gained in Italian and Spanish conditions, respectively. However, the energy ratios of maize, elephant grass and giant reed were even over 50 in Central and Southern Europe. Plants that use the C4 photosynthesis pathway and produce high biomass yields thrive best in warm and sunny climate conditions. They use nitrogen and water more sparingly than C3 plants typically thriving in the cooler part of the temperate zone. When evaluating energy ratios for field crops it should be kept in mind that the maximal energy potential of the energy crop is the heating value of the dry matter at the field gate. Transportation of the crop and production of liquid fuels and electricity from biomass lowers the energy ratio. A comparison of field energy crops to a reforested field suggested that fast growing trees, as hybrid aspen and silver birch, would yield almost as

  16. Renewable energy development in China: Resource assessment, technology status, and greenhouse gas mitigation potential

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y.; Renne, O.D. [National Renewable Energy Lab., Golden, CO (United States); Junfeng, Li [Energy Research Institute, Beijing (China)

    1996-12-31

    China, which has pursued aggressive policies to encourage economic development, could experience the world`s fastest growth in energy consumption over the next two decades. China has become the third largest energy user in the world since 1990 when primary energy consumption reached 960 million tons of coal equivalent (tce). Energy use is increasing at an annual rate of 6-7% despite severe infrastructure and capital constraints on energy sector development. Energy consumption in China is heavily dominated by coal, and fossil fuels provide up to 95% of all commercial energy use. Coal currently accounts for 77% of total primary energy use; oil, 16%; hydropower, 5%; and natural gas, 2%. Coal is expected to continue providing close to three-quarters of all energy consumed, and the amount of coal used is expected to triple by year 2020. Currently, renewable energy resources (except for hydropower) account for only a fraction of total energy consumption. However, the estimated growth in greenhouse gas emissions, as well as serious local and regional environmental pollution problems caused by combustion of fossil fuels, provides strong arguments for the development of renewable energy resources. Renewable energy potential in China is significantly greater than that indicated by the current level of use. With a clear policy goal and consistent efforts from the Government of China, renewables can play a far larger role in its future energy supply.

  17. Evaluation of global onshore wind energy potential and generation costs.

    Science.gov (United States)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  18. Global analysis of the techno-economic potential of renewable energy hybrid systems on small islands

    International Nuclear Information System (INIS)

    Blechinger, P.; Cader, C.; Bertheau, P.; Huyskens, H.; Seguin, R.; Breyer, C.

    2016-01-01

    Globally, small islands below 100,000 inhabitants represent a large number of diesel based mini-grids. With volatile fossil fuel costs which are most likely to increase in the long-run and competitive renewable energy technologies the introduction of such sustainable power generation system seems a viable and environmental friendly option. Nevertheless the implementation of renewable energies on small islands is quite low based on high transaction costs and missing knowledge according to the market potential. Our work provides a global overview on the small island landscape showing the respective population, economic activity, energy demand, and fuel costs for almost 1800 islands with approximately 20 million inhabitants currently supplied by 15 GW of diesel plants. Based on these parameters a detailed techno-economic assessment of the potential integration of solar PV, wind power, and battery storage into the power supply system was performed for each island. The focus on solar and wind was set due to the lack of data on hydro and geothermal potential for a global island study. It revealed that almost 7.5 GW of photovoltaic and 14 GW of wind power could be economically installed and operated on these islands reducing the GHG-emissions and fuel consumption by approximately 50%. In total numbers more than 20 million tons of GHG emissions can be reduced by avoiding the burning of 7.8 billion liters of diesel per year. Cost savings of around 9 USDct/kWh occur on average by implementing these capacities combined with 5.8 GWh of battery storage. This detailed techno-economic evaluation of renewable energies enables policy makers and investors to facilitate the implementation of clean energy supply systems on small islands. To accelerate the implementation of this enormous potential we give specific policy recommendations such as the introduction of proper regulations. - Highlights: • GIS analysis has identified approximately 1800 small island energy systems with

  19. Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain repository

    International Nuclear Information System (INIS)

    Atkins, J.E.; Lee, J.H.; Lingineni, S.; Mishra, S.; McNeish, J.A.; Sassani, D.C.; Sevougian, S.D.

    1995-11-01

    The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation's commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives of the US NRC and the US EPA. The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). Total system performance assessments require the explicit quantification of the relevant processes and process interactions. In addition assessments are useful to help define the most significant processes, the information gaps and uncertainties and therefore the additional information required for more robust and defensible assessment of the overall performance. The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993

  20. Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, J.E.; Lee, J.H.; Lingineni, S.; Mishra, S; McNeish, J.A.; Sassani, D.C.; Sevougian, S.D.

    1995-11-01

    The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation`s commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives of the US NRC and the US EPA. The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). Total system performance assessments require the explicit quantification of the relevant processes and process interactions. In addition assessments are useful to help define the most significant processes, the information gaps and uncertainties and therefore the additional information required for more robust and defensible assessment of the overall performance. The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993.

  1. Impact of dietary fiber energy on the calculation of food total energy value in the Brazilian Food Composition Database.

    Science.gov (United States)

    Menezes, Elizabete Wenzel de; Grande, Fernanda; Giuntini, Eliana Bistriche; Lopes, Tássia do Vale Cardoso; Dan, Milana Cara Tanasov; Prado, Samira Bernardino Ramos do; Franco, Bernadette Dora Gombossy de Melo; Charrondière, U Ruth; Lajolo, Franco Maria

    2016-02-15

    Dietary fiber (DF) contributes to the energy value of foods and including it in the calculation of total food energy has been recommended for food composition databases. The present study aimed to investigate the impact of including energy provided by the DF fermentation in the calculation of food energy. Total energy values of 1753 foods from the Brazilian Food Composition Database were calculated with or without the inclusion of DF energy. The energy values were compared, through the use of percentage difference (D%), in individual foods and in daily menus. Appreciable energy D% (⩾10) was observed in 321 foods, mainly in the group of vegetables, legumes and fruits. However, in the Brazilian typical menus containing foods from all groups, only D%foods, when individually considered. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Electricity consumption and energy savings potential of video game consoles in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Hittinger, E.; Mullins, K.A.; Azevedo, I.L. [Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2012-11-15

    Total energy consumption of video game consoles has grown rapidly in the past few decades due to rapid increases in market penetration, power consumption of the devices, and increasing usage driven by new capabilities. Unfortunately, studies investigating the energy impacts of these devices have been limited and potential responses, such as ENERGY STAR requirements, have been difficult to define and implement. We estimate that the total electricity consumption of video game consoles in the US was around 11 TWh in 2007 and 16 TWh in 2010 (approximately 1 % of US residential electricity consumption), an increase of almost 50 % in 3 years. However, any estimate of total game console energy consumption is highly uncertain, and we have determined that the key uncertainty is the unknown consumer behavior with regards to powering down the system after use. Even under this uncertainty, we demonstrate that the most effective energy-saving modification is incorporation of a default auto power down feature, which could reduce electricity consumption of game consoles by 75 % (10 TWh reduction of electricity in 2010), saving consumers over USD 1 billion annually in electricity bills. We conclude that using an auto power down feature for game consoles is at least as effective for reducing energy consumption as implementing a strict set of energy efficiency improvements for the devices, is much easier to implement given the nature of the video game console industry, and could be applied retroactively to currently deployed consoles through firmware updates.

  3. Navigating behavioral energy sufficiency. Results from a survey in Swiss cities on potential behavior change.

    Science.gov (United States)

    Seidl, Roman; Moser, Corinne; Blumer, Yann

    2017-01-01

    Many countries have some kind of energy-system transformation either planned or ongoing for various reasons, such as to curb carbon emissions or to compensate for the phasing out of nuclear energy. One important component of these transformations is the overall reduction in energy demand. It is generally acknowledged that the domestic sector represents a large share of total energy consumption in many countries. Increased energy efficiency is one factor that reduces energy demand, but behavioral approaches (known as "sufficiency") and their respective interventions also play important roles. In this paper, we address citizens' heterogeneity regarding both their current behaviors and their willingness to realize their sufficiency potentials-that is, to reduce their energy consumption through behavioral change. We collaborated with three Swiss cities for this study. A survey conducted in the three cities yielded thematic sets of energy-consumption behavior that various groups of participants rated differently. Using this data, we identified four groups of participants with different patterns of both current behaviors and sufficiency potentials. The paper discusses intervention types and addresses citizens' heterogeneity and behaviors from a city-based perspective.

  4. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  5. Energy efficiency improvement: A strong driver for Total operations and R and D

    Energy Technology Data Exchange (ETDEWEB)

    Garnaud, Frederic; Rocher, Anne

    2010-09-15

    Total has implemented an energy efficiency action plan for both producing fields and new projects linked to a dedicated R and D program. The Energy efficiency assessment methodology is described, with an example: base line of the current situation, energy efficiency plan, contribution to best practices at corporate level. A methodology to assess the energy efficiency of a new development has been defined and implemented within Total. This methodology as well as related indicators is presented. Examples of R and D results dedicated to improve energy efficiency in two major areas of future developments are given: sour gas production and deep offshore field architecture.

  6. Energy saving potential of energy services - experimentation on the life cycle of energy conversion equipment

    International Nuclear Information System (INIS)

    Dupont, M.

    2006-12-01

    Energy efficiency services are growing in Europe but their role is still limited. In order to evaluate the potential, we focused first of all on policy, economical and environmental mechanisms that support their development. European natural gas and electricity markets, that are now almost wholly de-regulated, are analysed and compared to their historical structure. By introducing uncertainty on energy prices, this new deal translates better the real energy costs. Energy performance contracts (EPC) limit the impact of these uncertainties on the customer energy bills by guaranteeing a financial result. As a result of the modelling of these contracts, namely operation and maintenance ones, we prove that they transfer technical and financial risks from building owners to energy service companies (ESCO) making energy saving measures easier and less expensive at the same time. These contracts are relatively widespread for heating or compressed-air processes but remain marginal for air-conditioning systems. So new methods were needed to guarantee on the long terms the efficiency of air-conditioning systems demand (1) to master the process and its performances and (2) to be able to determine precisely the energy saving potential and its realisation costs. A detailed energy audit is thus necessary for which we propose a guidance. Conclusions of audits carried out prove that energy saving potential is mainly located in equipment management and control. These optimizations are not always carried out because of a lack of contractual incentive and due to the weaknesses of audit methods. Through the involvement of an independent expert, the mandatory and regular inspection of air-conditioning systems may allow to verify and guide such practices. A three-step analysis procedure has been developed in order to maximize the inspection potential and to get higher benefits from service contracts. (author)

  7. Energy efficiency potential study for New Brunswick

    International Nuclear Information System (INIS)

    1992-05-01

    The economic and environmental impacts associated with economically attractive energy savings identified in each of four sectors in New Brunswick are analyzed. The results are derived through a comparison of two potential future scenarios. The frozen efficiency scenario projects what future energy expenditures would be if no new energy efficiency initiatives are introduced. The economic potential scenario projects what those expenditures would be if all economically attractive energy efficiency improvements were gradually implemented over the next 20 years. Energy related emissions are estimated under scenarios with and without fuel switching. The results show, for example, that New Brunswick's energy related CO 2 emissions would be reduced by ca 5 million tonnes in the year 2000 under the economic potential scenario. If fuel switching is adopted, an additional 1 million tonnes of CO 2 emissions could be saved in the year 2000 and 1.6 million tonnes in 2010. The economic impact analysis is restricted to efficiency options only and does not consider fuel switching. Results show the effect of the economic potential scenario on employment, government revenues, and intra-industry distribution of employment gains and losses. The employment impact is estimated as the equivalent of the creation of 2,424 jobs annually over 1991-2010. Government revenues would increase by ca $24 million annually. The industries benefitting most from energy efficiency improvements would be those related to construction, retail trade, finance, real estate, and food/beverages. Industries adversely affected would be the electric power, oil, and coal sectors. 2 figs., 37 tabs

  8. Embedded piezoelectrics for sensing and energy harvesting in total knee replacement units

    Science.gov (United States)

    Wilson, Brooke E.; Meneghini, Michael; Anton, Steven R.

    2015-04-01

    The knee replacement is the second most common orthopedic surgical intervention in the United States, but currently only 1 in 5 knee replacement patients are satisfied with their level of pain reduction one year after surgery. It is imperative to make the process of knee replacement surgery more objective by developing a data driven approach to ligamentous balance, which increases implant life. In this work, piezoelectric materials are considered for both sensing and energy harvesting applications in total knee replacement implants. This work aims to embed piezoelectric material in the polyethylene bearing of a knee replacement unit to act as self-powered sensors that will aid in the alignment and balance of the knee replacement by providing intraoperative feedback to the surgeon. Postoperatively, the piezoelectric sensors can monitor the structural health of the implant in order to perceive potential problems before they become bothersome to the patient. Specifically, this work will present on the use of finite element modeling coupled with uniaxial compression testing to prove that piezoelectric stacks can be utilized to harvest sufficient energy to power sensors needed for this application.

  9. Market potential of utility-purpose energy storage in Japan up to the year 2050

    International Nuclear Information System (INIS)

    Tanaka, T.; Kurihara, I.

    1998-01-01

    The market potential of future energy storage in power network systems in Japan is estimated by using the linear programming method under two main scenarios for the years 2030 and 2050. One is a base scenario in which the power demand and associated performances are simply extrapolated from the present to the future year of interest. The other is a modified scenario under which they are influenced by foreseeable changes in social structure and introduction of demand-side energy storage. This estimation indicates that the optimum capacity of energy storage will be about 10 to 15% of the total generation capacity. (author)

  10. Austria's wind energy potential – A participatory modeling approach to assess socio-political and market acceptance

    International Nuclear Information System (INIS)

    Höltinger, Stefan; Salak, Boris; Schauppenlehner, Thomas; Scherhaufer, Patrick; Schmidt, Johannes

    2016-01-01

    Techno-economic assessments confirm the potential of wind energy to contribute to a low carbon bioeconomy. The increasing diffusion of wind energy, however, has turned wind energy acceptance into a significant barrier with respect to the deployment of wind turbines. This article assesses whether, and at what cost, Austrian renewable energy targets can be met under different expansion scenarios considering the socio-political and market acceptance of wind energy. Land-use scenarios have been defined in a participatory modeling approach with stakeholders from various interest groups. We calculated the levelized cost of electricity (LCOE) for all of the potential wind turbine sites, which we used to generate wind energy supply curves. The results show that wind energy production could be expanded to 20% of the final end energy demand in three out of four scenarios. However, more restrictive criteria increase LCOE by up to 20%. In contrast to common views that see local opposition against wind projects as the main barrier for wind power expansion, our participatory modeling approach indicates that even on the level of key stakeholders, the future possible contribution of wind energy to Austrian renewable energy targets reaches from almost no further expansion to very high shares of wind energy. - Highlights: • Including social barriers could reduce Austria’s wind potential from 92.78 to 3.89 TWh • Costs for attaining a 20% wind energy share vary by 20% between the scenarios • Socially acceptable wind area potential ranges from 0.1 to 3.9% of Austria’s total area • Excluding forest areas lowers the maximum wind energy potential by 45%

  11. Wind energy potential analysis in Al-Fattaih-Darnah

    Energy Technology Data Exchange (ETDEWEB)

    Tjahjana, Dominicus Danardono Dwi Prija, E-mail: danar1405@gmail.com; Salem, Abdelkarim Ali, E-mail: keemsalem@gmail.com; Himawanto, Dwi Aries, E-mail: dwiarieshimawanto@gmail.com [University of Sebelas Maret, Jl. Ir. Sutami No. 36 A, Surakarta, Indonesia 57126 (Indonesia)

    2016-03-29

    In this paper the wind energy potential in Al-Fattaih-Darnah, Libya, had been studied. Wind energy is very attractive because it can provide a clean and renewable energy. Due mostly to the uncertainty caused by the chaotic characteristics of wind near the earth’s surface, wind energy characteristic need to be investigated carefully in order to get consistent power generation. This investigation was based on one year wind data measured in 2003. As a result of the analysis, wind speed profile and wind energy potential have been developed. The wind energy potential of the location is looked very promising to generate electricity. The annual wind speed of the site is 8.21 m/s and the wind speed carrying maximum energy is 7.97 m/s. The annual power density of the site is classified into class 3. The Polaris P50-500 wind turbine can produce 768.39 M Wh/year and has capacity factor of 17.54%.

  12. Free-energy coarse-grained potential for C60

    International Nuclear Information System (INIS)

    Edmunds, D. M.; Tangney, P.; Vvedensky, D. D.; Foulkes, W. M. C.

    2015-01-01

    We propose a new deformable free energy method for generating a free-energy coarse-graining potential for C 60 . Potentials generated from this approach exhibit a strong temperature dependence and produce excellent agreement with benchmark fully atomistic molecular dynamics simulations. Parameter sets for analytical fits to this potential are provided at four different temperatures

  13. Renewable energy potential from biomass residues in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Said, N.; Zamorano, M. [Civil Engineering Dept., Univ. of Granada, Campus de Fuentenueva, Granada (Spain); El-Shatoury, S.A. [Botany Dept., Faculty of Sciences, Suez Canal Univ., Ismailia (Egypt)

    2012-11-01

    Egypt has been one of the developing countries following successful programs for the development of renewable energy resources, with special emphasis on solar, wind and biomass. Utilization of biomass as a source of energy is important from energetic as well as environmental viewpoint. Furthermore, Egypt produces millions of biomass waste every year causing pollution and health problems. So, the incorporation of biomass with other renewable energy will increase the impact of solving energy and environmental problem. There is a good potential for the utilization of biomass energy resources in Egypt. Four main types of biomass energy sources are included in this study: agricultural residues, municipal solid wastes, animal wastes and sewage sludge. Analysis of the potential biomass resource quantity and its theoretical energy content has been computed according to literature review. The agriculture crop residue represents the main source of biomass waste with a high considerable amount of the theoretical potential energy in Egypt. Rice straw is considered one of the most important of such residue due to its high amount and its produced energy through different conversion techniques represent a suitable candidate for crop energy production in Egypt.

  14. China's energy saving potential from the perspective of energy efficiency advantages of foreign-invested enterprises

    International Nuclear Information System (INIS)

    Jiang, Xuemei; Zhu, Kunfu; Green, Christopher

    2015-01-01

    The paper investigates the energy saving potential associated with firm ownership-related differences in energy efficiency such as those between domestically and foreign-owned firms. Because of a gap in official statistics this topic has barely been touched upon in the scholarly literature. This paper employs a new energy input–output table that distinguishes firm ownership (Chinese owned enterprises, COEs; and foreign-invested enterprises, FIEs) and trade mode (export processing and normal goods production) to analyze the energy efficiency advantage of FIEs in China in 2007. The results show that the total energy intensities of COEs in the industrial sector are generally 5%–35% higher than that of FIEs across industry groups. At an aggregate level, China could save up to 20.3% of its energy use, if industrial COEs could duplicate the energy use efficiency and production technology of FIEs. This gain would require major technology upgrades among COEs. - Highlights: • A new input–output table distinguishing firm ownership and trade mode is employed. • The foreign-invested enterprises are 5%–35% energy efficient than Chinese enterprises in 2007. • China could save 20.3% of energy use if industrial COEs could duplicate the technologies of FIEs

  15. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  16. Calculation of molecular free energies in classical potentials

    International Nuclear Information System (INIS)

    Farhi, Asaf; Singh, Bipin

    2016-01-01

    Free energies of molecules can be calculated by quantum chemistry computations or by normal mode classical calculations. However, the first can be computationally impractical for large molecules and the second is based on the assumption of harmonic dynamics. We present a novel, accurate and complete calculation of molecular free energies in standard classical potentials. In this method we transform the molecule by relaxing potential terms which depend on the coordinates of a group of atoms in that molecule and calculate the free energy difference associated with the transformation. Then, since the transformed molecule can be treated as non-interacting systems, the free energy associated with these atoms is analytically or numerically calculated. This two-step calculation can be applied to calculate free energies of molecules or free energy difference between (possibly large) molecules in a general environment. We demonstrate the method in free energy calculations for methanethiol and butane molecules in vacuum and solvent. We suggest the potential application of free energy calculation of chemical reactions in classical molecular simulations. (paper)

  17. Energy consumption and total factor productivity growth in Iranian agriculture

    Directory of Open Access Journals (Sweden)

    Reza Moghaddasi

    2016-11-01

    Full Text Available In this study we investigated the relation between energy consumption and growth of total factor productivity (TFP of agriculture in Iran from 1974 to 2012 using Solow residual method. The results from estimated aggregate Cobb–Douglas production function showed that one percent change in the value of labor, capital and energy will lead to 4.07, 0.09 and 0.49 percent change in agriculture value added, respectively. Also in a long term, based on the Johansen cointegration test, there is a negative relation between TFP growth and energy consumption in Iranian agriculture which might be due to cheap and inefficient energy use in this sector. Gradual liberalization of energy price and use of so called green box support policies is recommended.

  18. Woody biomass energy potential in 2050

    International Nuclear Information System (INIS)

    Lauri, Pekka; Havlík, Petr; Kindermann, Georg; Forsell, Nicklas; Böttcher, Hannes; Obersteiner, Michael

    2014-01-01

    From a biophysical perspective, woody biomass resources are large enough to cover a substantial share of the world's primary energy consumption in 2050. However, these resources have alternative uses and their accessibility is limited, which tends to decrease their competitiveness with respect to other forms of energy. Hence, the key question of woody biomass use for energy is not the amount of resources, but rather their price. In this study we consider the question from the perspective of energy wood supply curves, which display the available amount of woody biomass for large-scale energy production at various hypothetical energy wood prices. These curves are estimated by the Global Biosphere Management Model (GLOBIOM), which is a global partial equilibrium model of forest and agricultural sectors. The global energy wood supply is estimated to be 0–23 Gm 3 /year (0–165 EJ/year) when energy wood prices vary in a range of 0–30$/GJ (0–216$/m 3 ). If we add household fuelwood to energy wood, then woody biomass could satisfy 2–18% of world primary energy consumption in 2050. If primary forests are excluded from wood supply then the potential decreases up to 25%. - highlights: • We examine woody biomass energy potential by partial equilibrium model of forest and agriculture sectors. • It is possible to satisfy 18% (or 14% if primary forests are excluded) of the world's primary energy consumption in 2050 by woody biomass. • To achieve this would require an extensive subsidy/tax policy and would lead to substantial higher woody biomass prices compared to their current level

  19. Total Energy Expenditure, Energy Intake, and Body Composition in Endurance Athletes Across the Training Season: A Systematic Review.

    Science.gov (United States)

    Heydenreich, Juliane; Kayser, Bengt; Schutz, Yves; Melzer, Katarina

    2017-12-01

    Endurance athletes perform periodized training in order to prepare for main competitions and maximize performance. However, the coupling between alterations of total energy expenditure (TEE), energy intake, and body composition during different seasonal training phases is unclear. So far, no systematic review has assessed fluctuations in TEE, energy intake, and/or body composition in endurance athletes across the training season. The purpose of this study was to (1) systematically analyze TEE, energy intake, and body composition in highly trained athletes of various endurance disciplines and of both sexes and (2) analyze fluctuations in these parameters across the training season. An electronic database search was conducted on the SPORTDiscus and MEDLINE (January 1990-31 January 2015) databases using a combination of relevant keywords. Two independent reviewers identified potentially relevant studies. Where a consensus was not reached, a third reviewer was consulted. Original research articles that examined TEE, energy intake, and/or body composition in 18-40-year-old endurance athletes and reported the seasonal training phases of data assessment were included in the review. Articles were excluded if body composition was assessed by skinfold measurements, TEE was assessed by questionnaires, or data could not be split between the sexes. Two reviewers assessed the quality of studies independently. Data on subject characteristics, TEE, energy intake, and/or body composition were extracted from the included studies. Subjects were categorized according to their sex and endurance discipline and each study allocated a weight within categories based on the number of subjects assessed. Extracted data were used to calculate weighted means and standard deviations for parameters of TEE, energy intake, and/or body composition. From 3589 citations, 321 articles were identified as potentially relevant, with 82 meeting all of the inclusion criteria. TEE of endurance athletes was

  20. Achievement report for fiscal 1981 on Sunshine Program-entrusted research and development. Research on hydrogen energy total system; 1981 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    In this research, studies are conducted relative to the time point, form, and magnitude of the introduction of hydrogen into Japan's total energy system. The research aims to construct a hydrogen energy total system consisting of hydrogen energy subsystems to be available in the future and to clearly define the stage at which transfer to the target system will be carried out. In the research for fiscal 1981, studies continue about the feasibility of hydrogen as automobile and aviation fuels and as a material for use in chemical engineering, about conversion into each other of hydrogen and various synthetic fuels and electric power with which hydrogen will have to compete in the domain into which it will be supplied, and about technologies of their utilization for comparison between such energies in the search for their interchangeability. Surveys are conducted on technical data about local energies. The Yakushima island is chosen, for instance, and a conceptual hydrogen energy base is constructed there and the cost for the construction is estimated. At the last part, the feasibility of the introduction of hydrogen into Japan's energy system in the future is discussed for assessment. (NEDO)

  1. Low-energy positron-argon collisions by using parameter-free positron correlation polarization potentials

    International Nuclear Information System (INIS)

    Jain, A.

    1990-01-01

    We report differential, integral, and momentum-transfer cross sections and the scattering length (A 0 ) for positron (e + )-argon scattering at low energies below the positronium formation threshold. An optical-potential approach is employed in which the repulsive Coulombic interaction is calculated exactly at the Hartree-Fock level and the attractive polarization and correlation effects are included approximately via a parameter-free positron correlation polarization (PCP) potential recently proposed by us. The PCP model is based on the correlation energy var-epsilon corr of one positron in a homogeneous electron gas; in the outside region, the var-epsilon corr is joined smoothly with the correct asymptotic form of the polarization interaction (-α 0 /2r 4 , where α 0 is the target polarizability) where they cross each other for the first time. The total optical potential of the e + -argon system is treated exactly in a partial-wave analysis to extract the scattering parameters. It is found that the PCP potential gives much better qualitative results, particularly for the differential cross sections and the scattering length, than the corresponding results obtained from an electron polarization potential used as such for the positron case. We also discuss the ''critical'' points (representing the minima in the differential scattering) in the low-energy e + -Ar scattering. The present results involve no fitting procedure

  2. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  3. Assessing the Potential for Renewable Energy on Public Lands

    Energy Technology Data Exchange (ETDEWEB)

    2003-02-01

    This report represents an initial activity of the Bureau of Land Managements (BLM) proposed National Energy Policy Implementation Plan: identify and evaluate renewable energy resources on federal lands and any limitations on accessing them. Ultimately, BLM will prioritize land-use planning activities to increase industrys development of renewable energy resources. These resources include solar, biomass, geothermal, water, and wind energy. To accomplish this, BLM and the Department of Energys National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of renewable energy resources on BLM lands in the western United States. The objective of this collaboration was to identify BLM planning units in the western states with the highest potential for private-sector development of renewable resources. The assessment resulted in the following findings: (1) 63 BLM planning units in nine western states have high potential for one or more renewable energy technologies; and (2) 20 BLM planning units in seven western states have high potential for power production from three or more renewable energy sources. This assessment report provides BLM with information needed to prioritize land-use planning activities on the basis of potential for the development of energy from renewable resources.

  4. Energy potential of the modified excess sludge

    Science.gov (United States)

    Zawieja, Iwona

    2017-11-01

    On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4), it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.

  5. Energy potential of the modified excess sludge

    Directory of Open Access Journals (Sweden)

    Zawieja Iwona

    2017-01-01

    Full Text Available On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4, it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.

  6. Geothermal Energy Potential in Western United States

    Science.gov (United States)

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  7. Potential energy curves for the interaction of a low-energy positron with matter: The case He+e{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Mohallem, Jose R. [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O. Box 702, 30123-970 Belo Horizonte, MG (Brazil)]. E-mail: rachid@fisica.ufmg.br; Rolim, Flavia [Departamento de Quimica, Universidade de Coimbra, FCT, 3004-535 Coimbra (Portugal)

    2007-02-15

    In this introductory exploration of the title theme, we treat a positron as a light nucleus and work within the quasi-molecule approximation to obtain, for the first time, adiabatic potential energy curves for its scattering by the He atom. We then show that different elastic and inelastic processes that contribute to the total scattering cross section can be rationalized in molecular terms as dissociation and non-adiabatic couplings. Particularly, some new insights on positronium yielding are presented.

  8. Defining The Energy Saving Potential of Architectural Design

    DEFF Research Database (Denmark)

    Naboni, Emanuele; Malcangi, Antonio; Zhang, Yi

    2015-01-01

    Designers, in response to codes or voluntary " green building " programs, are increasingly concerned with building energy demand reduction, but they are not fully aware of the energy saving potential of architectural design. According to literature, building form, construction and material choices...... on sustainable design: " Design With Climate " by Olgyay (1963), which discussed strategies for climate-adapted architecture, and Lechner´s " Heating, Cooling and Lighting " (1991), on how to reduce building energy needs by as much as 60 – 80 percent with proper architectural design decisions. Both books used...... behaviour. The research shows the best solution for each of the climates and compares them with Olgyay´s findings. Finally, for each climate the energy saving potential is defined and then compared to Lechner's conclusions. Defining The Energy Saving Potential of Architectural Design (PDF Download Available...

  9. Elastic scattering and total cross section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.; Sanguinetti, G.

    1985-01-01

    The aim of this review is to summarize the recent progress in the field of elastic scattering and total cross section in this new energy domain. In Section 2 a survey of the experimental situation is outlined. The most significant data are presented, with emphasis on the interpretation, not the specific details or technicalities. This section is therefore intended to give a self-contained look at the field, especially for the nonspecialist. In Section 3, hadron scattering at high energy is described in an impact parameter picture, which provides a model-independent intuitive geometrical representation. The diffractive character of elastic scattering, seen as the shadow of inelastic absorption, is presented as a consequence of unitarity in the s-channel. Spins are neglected throughout this review, inasmuch as the asymptotic behavior in the very high-energy limit is the main concern here. In Section 4 some relevant theorems are recalled on the limiting behavior of hadron-scattering amplitudes at infinite energy. There is also a brief discussion on how asymptotically rising total cross sections imply scaling properties in the elastic differential cross sections. A quick survey of eikonal models is presented and their predictions are compared with ISR and SPS Collider data

  10. Total-Factor Energy Efficiency in BRI Countries: An Estimation Based on Three-Stage DEA Model

    Directory of Open Access Journals (Sweden)

    Changhong Zhao

    2018-01-01

    Full Text Available The Belt and Road Initiative (BRI is showing its great influence and leadership on the international energy cooperation. Based on the three-stage DEA model, total-factor energy efficiency (TFEE in 35 BRI countries in 2015 was measured in this article. It shows that the three-stage DEA model could eliminate errors of environment variable and random, which made the result better than traditional DEA model. When environment variable errors and random errors were eliminated, the mean value of TFEE was declined. It demonstrated that TFEE of the whole sample group was overestimated because of external environment impacts and random errors. The TFEE indicators of high-income countries like South Korea, Singapore, Israel and Turkey are 1, which is in the efficiency frontier. The TFEE indicators of Russia, Saudi Arabia, Poland and China are over 0.8. And the indicators of Uzbekistan, Ukraine, South Africa and Bulgaria are in a low level. The potential of energy-saving and emissions reduction is great in countries with low TFEE indicators. Because of the gap in energy efficiency, it is necessary to distinguish different countries in the energy technology options, development planning and regulation in BRI countries.

  11. Potential and barrier study. Energy efficiency in Norwegian vocational buildings; Potensial- og barrierestudie. Energieffektivisering i norske yrkesbygg

    Energy Technology Data Exchange (ETDEWEB)

    Boehn, Trond Ivar; Palm, Linn Therese; Bakken, Line; Nossum, Aase; Jordell, Hanne

    2012-07-01

    On behalf of Enova SF, Multiconsult AS and Analyse og Strategi AS conducted an analysis to identify potential and barriers related to commercial buildings energy performance. The aim of this study was to determine what is the potential for energy efficiency for Norwegian vocational buildings that distinguishes between theoretical, technical, financial and real potential. Technical potential is the percentage of the theoretical potential that is technically feasible. Economic potential is the proportion of technical potential that is economically profitable to implement. Economic potential varies with the energy price. Build a small part of the total potential in 2020. In the calculation of the real potential is taken into account induced potential in terms of that, each year, a percentage actually implementing energy conservation measures (energy efficiency ratio 2%), a percentage rehabilitating / upgrading existing buildings (rehab rate 1.5%), and that a proportion of new buildings built better than regulatory requirements (rate 10%). In real potential for energy efficiency is the proportion of the economic potential that is not natural triggered but which is limited by various barriers. In real potential also varies with energy price. Respondents in our study is particularly concerned with the economic barriers, and least concerned the technical barriers. Attitudes and knowledge barriers are also very important. Lack of knowledge the effects and benefits of energy efficiency means that negative attitudes persist and that myths about the lack of profitability continues to exist. Many believe this is due to lack the knowledge and can be the cause of other types of barriers such as economic barriers. It has been analyzed which part of the real potential bounded by the barriers, and which type of institutions in society that can reduce these barriers with various categories of instrument. Main barriers for existing buildings practical barriers, economic barriers and

  12. Managing total corporate electricity/energy market risks

    International Nuclear Information System (INIS)

    Henney, A.; Keers, G.

    1998-01-01

    The banking industry has developed a tool kit of very useful value at risk techniques for hedging risk, but these techniques must be adapted to the special complexities of the electricity market. This paper starts with a short history of the use of value-at-risk (VAR) techniques in banking risk management and then examines the specific and, in many instances, complex risk management challenges faced by electric companies from the behavior of prices in electricity markets and from the character of generation and electric retailing risks. The third section describes the main methods for making VAR calculations along with an analysis of their suitability for analyzing the risks of electricity portfolios and the case for using profit at risk and downside risk as measures of risk. The final section draws the threads together and explains how to look at managing total corporate electricity market risk, which is a big step toward managing total corporate energy market risk

  13. Economic Energy Savings Potential in Federal Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  14. Measurements of effective total macroscopic cross sections and effective energy of continuum beam

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hisao [Rikkyo Univ., Yokosuka, Kanagawa (Japan). Inst. for Atomic Energy

    1998-03-01

    Two practically useful quantities are introduced in this study to characterize a continuum neutron beam and to describe transmission phenomena of the beam in field of quantitative neutron radiography: an effective energy instead of a peak energy or a mean energy of the spectrum and an effective total macroscopic (ETM) cross section instead of a total macroscopic (TM) cross section defined at the monochromatic energy. The effective energy was evaluated by means of energy dependence of ETM cross section. To realize the method a beam quality indicator (BQI) has been proposed recently. Several effective energies were measured for non-filtered, filtered neutron beams, and outputs of neutron guide tubes in world by the BQI. A thermal neutron beam and three beams modulated by Pb filters with different thicknesses are studied to measure ETM cross sections for various materials and summarized in a table. Validity of the effective energy determined by the BQI is discussed relating with ETM cross sections of materials. (author)

  15. Measurements of Daily Energy Intake and Total Energy Expenditure in People with Dementia in Care Homes: The Use of Wearable Technology.

    Science.gov (United States)

    Murphy, J; Holmes, J; Brooks, C

    2017-01-01

    To estimate daily total energy expenditure (TEE) using a physical activity monitor, combined with dietary assessment of energy intake to assess the relationship between daily energy expenditure and patterns of activity with energy intake in people with dementia living in care homes. A cross-sectional study in care homes in the UK. Twenty residents with confirmed dementia diagnosis were recruited from two care homes that specialised in dementia care. A physical activity monitor (SensewearTM Armband, Body Media, Pittsburgh, PA) was employed to objectively determine total energy expenditure, sleep duration and physical activity. The armband was placed around the left upper triceps for up to 7 days. Energy intake was determined by weighing all food and drink items over 4 days (3 weekdays and 1 weekend day) including measurements of food wastage. The mean age was 78.7 (SD ± 11.8) years, Body Mass Index (BMI) 23.0 (SD ± 4.2) kg/m2; 50% were women. Energy intake (mean 7.4; SD ± 2.6) MJ/d) was correlated with TEE (mean 7.6; SD ± 1.8 MJ/d; r=0.49, p<0.05). Duration of sleeping ranged from 0.4-12.5 (mean 6.1) hrs/d and time spent lying down was 1.3-16.0 (8.3) hrs/d. On average residents spent 17.9 (6.3-23.4) hrs/d undertaking sedentary activity. TEE was correlated with BMI (r=0.52, p<0.05) and body weight (r=0.81, p<0.001) but inversely related to sleep duration (r=-0.59, p<0.01) and time lying down (r=-0.62, p<0.01). Multiple linear regression analysis revealed that after taking BMI, sleep duration and time spent lying down into account, TEE was no longer correlated with energy intake. The results show the extent to which body mass, variable activity and sleep patterns may be contributing to TEE and together with reduced energy intake, energy requirements were not satisfied. Thus wearable technology has the potential to offer real-time monitoring to provide appropriate nutrition management that is more person-centred to prevent weight loss in dementia.

  16. Microscopic optical potential at medium energies

    International Nuclear Information System (INIS)

    Malecki, A.

    1979-01-01

    The problems concerning a microscopic optical model for the elastic nuclear collisions at medium energies are discussed. We describe the method for constructing the optical potential which makes use of the particular properties of quantum scattering in the eikonal limit. The resulting potential is expressed in terms of the nuclear wave functions and the nucleon-nucleon scattering amplitudes. This potential has a dynamic character since by including the effects of multiple scattering it allows for the possibility of intermediate excitations of the projectile and target nuclei. The use of the potential in the exact wave equation accounts for the most important mechanisms present in the collisions between composite particles. The microscopic optical model was successfully applied in the analysis of elastic scattering of protons and α-particles on atomic nuclei in the energy range of 300-1000 MeV/nucleon. The dynamic optical potential in this case represents a considerable improvement over the eikonal Glauber model and the static optical potential of Watson. The possibilities to extend the microscopic description of the proton-nucleus interaction by considering the spin dependence of the elementary amplitude and the Majorana exchange effects were investigated. (author)

  17. Energy development potential: An analysis of Brazil

    International Nuclear Information System (INIS)

    Perobelli, Fernando Salgueiro; Oliveira, Caio Cézar Calheiros de

    2013-01-01

    This paper develops an indicator for the energy development potential (EDP) of 27 Brazilian states. This indicator uses data on a state's infrastructure and its supply of and demand for energy. The indicator measures the data for three periods: the first part of the 1990s, which is a period of low economic growth; the first part of the 2000s, which is a period of high economic growth but with a historical crisis in the Brazilian energy sector; and 2009–2011, which is a period of economic growth after the energy crisis. Using a factor analysis, we are able to identify three factors for EDP. They are the demand for energy, the supply of renewable energy, and the supply of nonrenewable energy. We use these factors to classify the Brazilian states according to their EDP and to perform an exploratory spatial data analysis (ESDA) by using the Moran indicators and the local indicators of spatial association (LISA). - Highlights: • This paper deals with the spatial dimension of the Brazilian energy sector. • We construct an index of the energy development potential for Brazilian states. • Energy issues are defined over time and space, thus have spatial dimensions. • The spatial results show that there are two well-defined spatial patterns

  18. Assessment of renewable energy potential and policy in Turkey – Toward the acquisition period in European Union

    International Nuclear Information System (INIS)

    Basaran, Senem Teksoy; Dogru, A. Ozgur; Balcik, Filiz Bektas; Ulugtekin, N. Necla; Goksel, Cigdem; Sozen, Seval

    2015-01-01

    Highlights: • Turkey has a geographical advantage increasing its potential on renewable energy sources. • Turkey targets at least 30% of total electricity from renewables by 2023. • Turkey's 2023 targets include putting 3000 MW solar and 20,000 MW wind power capacity in operation. • The main policy priority relies on the support of local wind terminal and solar panel production. • Turkey aims to make the energy available to consumers in a cost efficient, timely manner meeting the demand. - Abstract: This paper aims to assess the renewable energy capacity of Turkey in order to consider main priorities in the energy policy of Turkey. In this paper, renewable energy potential and regulatory conditions are discussed in Turkey in comparison with European Union. The results of the study implemented within the framework of EnviroGRIDS project indicated a promising yet very susceptible future for the implementation of renewable energy power plants in Turkey. The forecasts have shown that the solar power potential utilization is becoming more significant after 2020. The projections for 2050 indicate that electricity consumption from small and medium renewable energy sources including solar and wind will constitute 15% of the total, whereas the solar thermal will constitute around 16%. Geothermal and other renewables will remain around 3%. According to the high demand scenario, in 2050 the share of hydropower in overall electricity generation will be 12%, followed by solar power at 7% and wind power at 3%. Additionally, renewable energy policy and regulations in Turkey and in EU are overviewed in this study. On the contrary to EU, the constant feed-in tariff amount does not consider capital investments of specific energy sources in Turkey that brings disadvantage to the implementation. However, new regulations published and currently applied should be accepted as milestones in acquisition period of Turkey in EU

  19. Mapping the Green Infrastructure potential - and it's water-energy impacts on New York City roof Tops

    Science.gov (United States)

    Engström, Rebecka; Destouni, Georgia; Howells, Mark

    2017-04-01

    Green Roofs have the potential to provide multiple services in cities. Besides acting as carbon sinks, providing noise reduction and decreasing air pollution - without requiring any additional "land-use" in a city (only roof-use), green roofs have a quantifiable potential to reduce direct and indirect energy and water use. They enhance the insulating capacity of a conventional residential roof and thereby decrease both cooling demands in summer and heating demands in winter. The former is further mitigated by the cooling effect of evapotranspiration from the roofs In New York City green roofs are additionally a valuable component of reducing "combined sewer overflows", as these roofs can retain storm water. This can improve water quality in the city's rivers as well as decrease the total volume of water treated in the city's wastewater treatment plants, thereby indirectly reduce energy demands. The impacts of green roofs on NYC's water-energy nexus has been initially studied (Engström et. al, forthcoming). The present study expands that work to more comprehensively investigate the potential of this type of nature-based solution in a dense city. By employing Geographical Information Systems analysis, the roof top area of New York City is analysed and roof space suitable for green roofs of varying types (ranging from extensive to intensive) are mapped and quantified. The total green roof area is then connected with estimates of potential water-energy benefits (and costs) of each type of green roof. The results indicate where green roofs can be beneficially installed throughout the city, and quantifies the related impacts on both water and energy use. These outputs can provide policy makers with valuable support when facing investment decisions in green infrastructure, in a city where there is great interest for these types of nature-based solutions.

  20. Energy-harvesting potential of automobile suspension

    Science.gov (United States)

    Múčka, Peter

    2016-12-01

    This study is aimed quantify dissipated power in a damper of automobile suspension to predict energy harvesting potential of a passenger car more accurately. Field measurements of power dissipation in a regenerative damper are still rare. The novelty is in using the broad database of real road profiles, a 9 degrees-of-freedom full-car model with real parameters, and a tyre-enveloping contact model. Results were presented as a function of road surface type, velocity and road roughness characterised by International Roughness Index. Results were calculated for 1600 test sections of a total length about 253.5 km. Root mean square of a dissipated power was calculated from 19 to 46 W for all four suspension dampers and velocity 60 km/h and from 24 to 58 W for velocity 90 km/h. Results were compared for a full-car model with a tyre-enveloping road contact, full-car and quarter-car models with a tyre-road point contact. Mean difference among three models in calculated power was a few per cent.

  1. Modeling and simulation to determine the potential energy savings by implementing cold thermal energy storage system in office buildings

    International Nuclear Information System (INIS)

    Rismanchi, B.; Saidur, R.; Masjuki, H.H.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • Simulating the CTES system behavior based on Malaysian climate. • Almost 65% of power is used for cooling for cooling the office buildings, every day. • The baseline shows an acceptable match with real data from the fieldwork. • Overall, the energy used for full load storage is much than the conventional system. • The load levelling storage strategy has 3.7% lower energy demand. - Abstract: In Malaysia, air conditioning (AC) systems are considered as the major energy consumers in office buildings with almost 57% share. During the past decade, cold thermal energy storage (CTES) systems have been widely used for their significant economic benefits. However, there were always doubts about their energy saving possibilities. The main objective of the present work is to develop a computer model to determine the potential energy savings of implementing CTES systems in Malaysia. A case study building has been selected to determine the energy consumption pattern of an office building. In the first step the building baseline model was developed and validated with the recorded data from the fieldwork. Once the simulation results reach an acceptable accuracy, different CTES system configuration was added to the model to predict their energy consumption pattern. It was found that the overall energy used by the full load storage strategy is considerably more than the conventional system. However, by applying the load leveling storage strategy, and considering its benefits to reduce the air handling unit size and reducing the pumping power, the overall energy usage was almost 4% lower than the non-storage system. Although utilizing CTES systems cannot reduce the total energy consumption considerably, but it has several outstanding benefits such as cost saving, bringing balance in the grid system, reducing the overall fuel consumption in the power plants and consequently reducing to total carbon footprint

  2. Morse potential, symmetric Morse potential and bracketed bound-state energies

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2016-01-01

    Roč. 31, č. 14 (2016), s. 1650088 ISSN 0217-7323 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum bound states * special functions * Morse potential * symmetrized Morse potential * upper and lower energy estimates * computer-assisted symbolic manipulations Subject RIV: BE - Theoretical Physics Impact factor: 1.165, year: 2016

  3. Some Environmental and Economic Aspects of Energy Saving Measures in Houses. An estimation model for total energy consumption and emissions to air from the Norwegian dwelling stock, and a life cycle assessment method for energy saving measures in houses

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, L

    1995-12-01

    Motivated by the need to reduce the total energy consumption and the environmental load from society, this doctoral thesis discusses energy conservation measures on existing houses. Alternative additional thermal insulation measures are assessed using an interdisciplinary life cycle approach. The first task is to develop an interdisciplinary assessment method for building improvement measures, taking account of energy consumption, resource consumption, emissions to air of environmentally harmful gases, and economic costs during the entire life cycle of the building. The second task is to develop an estimation model for the total energy consumption and emissions to air of environmentally harmful gases from the dwelling stock of Norway. Finally, the third task is to assess the total energy saving potential and the total environmental benefits of energy saving measures in houses on a national level, including only life cycle analyses of additional thermal insulation measures on single houses. Chap 2 describes the dwelling stock in Norway. Chaps 3 and 4 present an estimation model for total energy consumption and emissions to air from the dwelling stock, and calculations using the model. Chaps 5 and 6 propose and use a calculation method for the assessment of additional thermal insulation measures, using a ``cradle-to-grave`` approach. Since hydroelectric power is the main energy source in this sector in Norway, estimated payback periods for emissions to air are long. But hydroelectric power saved in this sector may be used to obtain reduction in fossil fuel use in other sectors as discussed in Chap 7. Some of the topics discussed are further elaborated on in appendices. 107 refs., 39 figs, 88 tabs.

  4. The radial shapes of intermediate energy microscopic optical potentials

    International Nuclear Information System (INIS)

    Shen Qingbiao; Wang Chang; Tian Ye; Zhuo Yizhong

    1984-01-01

    The radial shapes of intermediate energy proton microscopic optical potentials of 40 Ca are calculated with nuclear matter approach by Skyrme interactions. The calculated results show that the real central potential in central region of nucleus changes from attractive to repulsive when the energy of incident nucleon is above 150 MeV and appears apparently a 'wine-bottle-bottom' shape in the transition energy region (from 150 MeV to 300 MeV). This tendency is consistent with empirical optical potential obtained through fitting experiments and microscopic optical potential calculated with relativistic mean field theory as well as with the BHF theory. The calculated imaginary part of the microscopic optical potential changes from the dominant surface absorption into the volume absorption and its absolute value become larger as energy increases. The effects of Skyrme force parameters to the radial shape of the calculated microscopic optical potential are analysed in detail

  5. Assessment and Decomposition of Total Factor Energy Efficiency: An Evidence Based on Energy Shadow Price in China

    Directory of Open Access Journals (Sweden)

    Peihao Lai

    2016-04-01

    Full Text Available By adopting an energy-input based directional distance function, we calculated the shadow price of four types of energy (i.e., coal, oil, gas and electricity among 30 areas in China from 1998 to 2012. Moreover, a macro-energy efficiency index in China was estimated and divided into intra-provincial technical efficiency, allocation efficiency of energy input structure and inter-provincial energy allocation efficiency. It shows that total energy efficiency has decreased in recent years, where intra-provincial energy technical efficiency drops markedly and extensive mode of energy consumption rises. However, energy structure and allocation improves slowly. Meanwhile, lacking an integrated energy market leads to the loss of energy efficiency. Further improvement of market allocation and structure adjustment play a pivotal role in the increase of energy efficiency.

  6. The K + - Nucleus Microscopic Optical Potential and Calculations of the Corresponding Differential Elastic and Total Reaction Cross Sections

    International Nuclear Information System (INIS)

    Zemlyanaya, E.V.; Lukyanov, K.V.; Lukyanov, V.K.; Hanna, K.M.

    2009-01-01

    The microscopic optical potential (OP) is calculated for the K+-meson scattering on the 12 C and 40 Ca nuclei at intermediate energies. This potential has no free parameters and based on the known kaon-nucleon amplitude and nuclear density distribution functions. Then, the Klein-Gordon equation is written in the form of the relativistic Schrodinger equation where terms quadratic in the potential was estimated can be neglected. The latter equations adapted to the considered task and solved numerically. The effect of revitalization is shown to play a significant role. A good agreement with the experimental data on differential elastic cross sections is obtained. However, to explain the data on total reaction cross sections the additional surface term of OP was introduced to account for influence of the peripheral nuclear reaction channels

  7. Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China's building sector to 2030

    International Nuclear Information System (INIS)

    Xiao, He; Wei, Qingpeng; Wang, Hailin

    2014-01-01

    China achieved an energy savings of 67.5 Mtce in the building sector at the end of the 11th Five-Year Plan and set a new target of 116 Mtce by the end of the 12th Five-Year Plan. In this paper, an improved bottom-up model is developed to assess the carbon abatement potential and marginal abatement cost (MAC) of 34 selected energy-saving technologies/measures for China's building sector. The total reduction potential is 499.8 million t-CO 2 by 2030. 4.8 Gt-CO 2 potential will be achieved cumulatively to 2030. By 2030, total primary energy consumption of Chinese building sector will rise continuously to 1343 Mtce in the reference scenario and 1114 Mtce in the carbon reduction scenario. Total carbon dioxide emission will rise to 2.39 Gt-CO 2 and 1.9 Gt-CO 2 in two scenarios separately. The average carbon abatement cost of the aforementioned technologies is 19.5 $/t-CO 2 . The analysis reveals that strengthening successfully energy-saving technologies is important, especially for the residential building sector. The central government's direct investments in such technologies should be reduced without imposing significant negative effects. - Highlights: • MAC of 34 energy-saving technologies of China's building sector is calculated. • Energy use and CO 2 emission of China's building sector by 2030 is forecasted. • The reference and the carbon reduction scenarios are compared

  8. Potential contribution of biomass to the sustainable energy development

    International Nuclear Information System (INIS)

    Demirbas, M. Fatih; Balat, Mustafa; Balat, Havva

    2009-01-01

    Biomass is a renewable energy source and its importance will increase as national energy policy and strategy focuses more heavily on renewable sources and conservation. Biomass is considered the renewable energy source with the highest potential to contribute to the energy needs of modern society for both the industrialized and developing countries worldwide. The most important biomass energy sources are wood and wood wastes, agricultural crops and their waste byproducts, municipal solid waste, animal wastes, waste from food processing, and aquatic plants and algae. Biomass is one potential source of renewable energy and the conversion of plant material into a suitable form of energy, usually electricity or as a fuel for an internal combustion engine, can be achieved using a number of different routes, each with specific pros and cons. Currently, much research has been focused on sustainable and environmental friendly energy from biomass to replace conventional fossil fuels. The main objective of the present study is to investigate global potential and use of biomass energy and its contribution to the sustainable energy development by presenting its historical development.

  9. Ab initio intermolecular potential energy surface and thermophysical properties of hydrogen sulfide.

    Science.gov (United States)

    Hellmann, Robert; Bich, Eckard; Vogel, Eckhard; Vesovic, Velisa

    2011-08-14

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid hydrogen sulfide molecules was determined from high-level quantum-mechanical ab initio computations. A total of 4016 points for 405 different angular orientations of two molecules were calculated utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory and extrapolating the calculated interaction energies to the complete basis set limit. An analytical site-site potential function with eleven sites per hydrogen sulfide molecule was fitted to the interaction energies. The PES has been validated by computing the second pressure virial coefficient, shear viscosity, thermal conductivity and comparing with the available experimental data. The calculated values of volume viscosity were not used to validate the potential as the low accuracy of the available data precluded such an approach. The second pressure virial coefficient was evaluated by means of the Takahashi and Imada approach, while the transport properties, in the dilute limit, were evaluated by utilizing the classical trajectory method. In general, the agreement with the primary experimental data is within the experimental error for temperatures higher than 300 K. For lower temperatures the lack of reliable data indicates that the values of the second pressure virial coefficient and of the transport properties calculated in this work are currently the most accurate estimates for the thermophysical properties of hydrogen sulfide.

  10. Correlation energy generating potentials for molecular hydrogen

    International Nuclear Information System (INIS)

    Sharma, B.S.; Thakkar, A.J.

    1985-01-01

    A variety of local correlation energy functionals are currently in use. All of them depend, to some extent, on modeling the correlation energy of a homogeneous electron fluid. Since atomic and molecular charge densities are neither uniform nor slowly varying, it is important to attempt to use known high accuracy wave functions to learn about correlation energy functionals appropriate to such systems. We have extended the definition of the correlation energy generating potentials V/sub c/ introduced by Ros. A charge density response to correlation has been allowed for by inclusion of an electron--nuclear component V/sup e/n/sub c/ in addition to the electron--electron component V/sup e/e/sub c/. Two different definitions of V/sup e/n/sub c/ are given. We present the first calculations of V/sub c/ for a molecular system: H 2 . The results show that V/sup e/n/sub c/, in either definition, is by no means negligible. Moreover, V/sup e/e/sub c/ and both forms of V/sup e/n/sub c/ show significant nonlocal dependence on the charge density. Calculations with ten different model correlation energy functionals show that none of them is particularly sensitive to the charge density. However, they are quite sensitive to the parametrization of the electron fluid correlation energy. The schemes which include self-interaction corrections (SIC) are found to be superior to those of Kohn--Sham type. The correlation energy generating potentials implied by the SIC type and empirical correlation energy functionals are found to correspond roughly to averages of one of the accurate potentials

  11. Tangible and fungible energy: Hybrid energy market and currency system for total energy management. A Masdar City case study

    International Nuclear Information System (INIS)

    Sgouridis, Sgouris; Kennedy, Scott

    2010-01-01

    We propose the introduction of an energy-based parallel currency as a means to ease the transition to energy-conscious living. Abundant fossil energy resources mask the internal and external energy costs for casual energy consumers. This situation is challenging communities that draw a significant fraction of their primary energy consumption from renewable energy sources. The Masdar Energy Credit (MEC) system is a way of translating the fundamental aspects behind energy generation and usage into a tangible reality for all users with built-in fungibility to incentivize collectively sustainable behavior. The energy credit currency (ergo) corresponds with a chosen unit of energy so that the total amount of ergos issued equals the energy supply of the community. Ergos are distributed to users (residents, commercial entities, employees, and visitors) on a subscription basis and can be surrendered in exchange for the energy content of a service. A spot market pricing mechanism is introduced to relate ergos to 'fiat' currency using a continuously variable exchange rate to prevent depletion of the sustainable energy resource. The MEC system is intended to: (i) meet the sustainable energy balance targets of a community (ii) support peak shaving or load shifting goals, and (iii) raise energy awareness.

  12. Energy efficiency improvement potentials for the cement industry in Ethiopia

    International Nuclear Information System (INIS)

    Tesema, Gudise; Worrell, Ernst

    2015-01-01

    The cement sector is one of the fast growing economic sectors in Ethiopia. In 2010, it consumed 7 PJ of primary energy. We evaluate the potential for energy savings and CO_2 emission reductions. We start by benchmarking the energy performance of 8 operating plants in 2010, and 12 plants under construction. The benchmarking shows that the energy intensity of local cement facilities is high, when compared to the international best practice, indicating a significant potential for energy efficiency improvement. The average electricity intensity and fuel intensity of the operating plants is 34% and 36% higher. For plants under construction, electricity use is 36% and fuel use 27% higher. We identified 26 energy efficiency measures. By constructing energy conservation supply curves, the energy-efficiency improvement potential is assessed. For the 8 operating plants in 2010, the cost-effective energy savings equal 11 GWh electricity and 1.2 PJ fuel, resulting in 0.1 Mt CO_2 emissions reduction. For the 20 cement plants expected to be in operation by 2020, the cost-effective energy saving potentials is 159 GWh for electricity and 7.2 PJ for fuel, reducing CO_2 emissions by about 0.6 Mt. We discuss key barriers and recommendations to realize energy savings. - Highlights: • The cement sector in Ethiopia is growing rapidly, using mainly imported fuels. • Benchmarking demonstrates a significant potential for energy efficiency improvement. • A large part of the energy efficiency potential can be achieved cost-effectively. • Ethiopia should ban the construction of obsolete vertical shaft kilns.

  13. High resolution measurements of the He-He total scattering cross section for reduced collision energies between 0.2 and 200

    International Nuclear Information System (INIS)

    Feltgen, R.; Koehler, K.A.; Pauly, H.; Torello, F.; Vehmeyer, H.

    1974-01-01

    The energy dependence of the total scattering cross section is measured for the isotopic systems He 4 -He 4 and He 3 -He 3 using a velocity selected He primary beam and a He target in a scattering chamber maintained at 1.57 deg K. In the low energy region both systems show a pronounced atomic Ramsauer-Townsend effect. At higher energies 13 backward glory extrema in the case of He 4 -He 4 and 10 extrema for He 3 -He 3 are observed. From these extrema the energy dependence of the s-phase shift can be derived. Applying the semiclassical inversion method proposed by Miller it is possible to compute the repulsive potential in the energy range of the measurement

  14. U.S. Building-Sector Energy Efficiency Potential

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  15. Wind energy potential in India

    International Nuclear Information System (INIS)

    Rangarajan, S.

    1995-01-01

    Though located in the tropics, India is endowed with substantial wind resources because of its unique geographical location which gets fully exposed to both the south-west and north-east monsoon winds. The westerly winds of the south-west monsoons provide bulk of the wind potential. Areas with mean annual wind speed exceeding 18 k mph and areas with mean annual power density greater than 140 W/m 2 have been identified using the wind data collected by the wind monitoring project funded by the Ministry of Non-conventional Energy Sources (MNES). Seasonal variations in wind speed at selected locations are discussed as also the frequency distribution of hourly wind speed. Annual capacity factors for 250 kW wind electric generators have been calculated for several typical locations. A good linear correlation has been found between mean annual wind speed and mean annual capacity factor. A method is described for assessing wind potential over an extended region where adequate data is available. It is shown that the combined wind energy potential over five selected areas of limited extent in Gujarat, Andhra Pradesh and Tamil Nadu alone amounts to 22,000 MW under the assumption of 20 per cent land availability for installing wind farms. For a higher percentage of land availability, the potential will be correspondingly higher. (author). 12 refs., 6 figs., 3 tabs

  16. Global phenomenological optical model potential for nucleon-actinide reactions at energies up to 300 MeV

    International Nuclear Information System (INIS)

    Han Yinlu; Liang Haiying; Guo Hairui; Shen Qingbiao; Xu Yongli

    2010-01-01

    A set of new global phenomenological optical model potential parameters for the actinide region with incident nucleon energies from 1 keV up to 300 MeV is obtained. They are based on a smooth, unique functional form for the energy dependence of the potential depths and on physically constrained geometry parameters. The available experimental data including the neutron total cross sections, nonelastic cross sections, elastic scattering cross sections, elastic scattering angular distributions, and proton reaction cross sections and elastic scattering angular distributions of 232 Th and 238 U are used. The new nucleon global optical model potential parameters obtained are analyzed and used to analyze the experimental data of nucleon-actinide reactions. It is found that the present form of the global optical model potential could reproduce both the neutron and the proton experimental data.

  17. Total-energy global optimizations using nonorthogonal localized orbitals

    International Nuclear Information System (INIS)

    Kim, J.; Mauri, F.; Galli, G.

    1995-01-01

    An energy functional for orbital-based O(N) calculations is proposed, which depends on a number of nonorthogonal, localized orbitals larger than the number of occupied states in the system, and on a parameter, the electronic chemical potential, determining the number of electrons. We show that the minimization of the functional with respect to overlapping localized orbitals can be performed so as to attain directly the ground-state energy, without being trapped at local minima. The present approach overcomes the multiple-minima problem present within the original formulation of orbital-based O(N) methods; it therefore makes it possible to perform O(N) calculations for an arbitrary system, without including any information about the system bonding properties in the construction of the input wave functions. Furthermore, while retaining the same computational cost as the original approach, our formulation allows one to improve the variational estimate of the ground-state energy, and the energy conservation during a molecular dynamics run. Several numerical examples for surfaces, bulk systems, and clusters are presented and discussed

  18. Research on potential user identification model for electric energy substitution

    Science.gov (United States)

    Xia, Huaijian; Chen, Meiling; Lin, Haiying; Yang, Shuo; Miao, Bo; Zhu, Xinzhi

    2018-01-01

    The implementation of energy substitution plays an important role in promoting the development of energy conservation and emission reduction in china. Energy service management platform of alternative energy users based on the data in the enterprise production value, product output, coal and other energy consumption as a potential evaluation index, using principal component analysis model to simplify the formation of characteristic index, comprehensive index contains the original variables, and using fuzzy clustering model for the same industry user’s flexible classification. The comprehensive index number and user clustering classification based on constructed particle optimization neural network classification model based on the user, user can replace electric potential prediction. The results of an example show that the model can effectively predict the potential of users’ energy potential.

  19. Total-factor energy efficiency of regions in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Honma, Satoshi [Faculty of Economics, Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503 (Japan); Hu, Jin-Li [Institute of Business and Management, National Chiao Tung University (China)

    2008-02-15

    This study computes the regional total-factor energy efficiency (TFEE) in Japan by employing the data envelopment analysis (DEA). A dataset of 47 prefectures in Japan for the period 1993-2003 is constructed. There are 14 inputs, including three production factors (labor employment, private, and public capital stocks) and 11 energy sources (electric power for commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke). GDP is the sole output. Following Fukao and Yue [2000. Regional factor inputs and convergence in Japan - how much can we apply closed economy neoclassical growth models? Economic Review 51, 136-151 (in Japanese)], data on private and public capital stocks are extended. All the nominal variables are transformed into real variables, taking into consideration the 1995 price level. For kerosene, gas oil, heavy oil, butane gas, coal, and coke, there are a few prefectures with TFEEs less than 0.7. The five most inefficient prefectures are Niigata, Wakayama, Hyogo, Chiba, and Yamaguchi. Inland regions and most regions along the Sea of Japan are efficient in energy use. Most of the inefficient prefectures that are developing mainly upon energy-intensive industries are located along the Pacific Belt Zone. A U-shaped relation similar to the environmental Kuznets curve (EKC) is discovered between energy efficiency and per capita income for the regions in Japan. (author)

  20. Total-factor energy efficiency of regions in Japan

    International Nuclear Information System (INIS)

    Honma, Satoshi; Hu, Jin-Li

    2008-01-01

    This study computes the regional total-factor energy efficiency (TFEE) in Japan by employing the data envelopment analysis (DEA). A dataset of 47 prefectures in Japan for the period 1993-2003 is constructed. There are 14 inputs, including three production factors (labor employment, private, and public capital stocks) and 11 energy sources (electric power for commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke). GDP is the sole output. Following Fukao and Yue [2000. Regional factor inputs and convergence in Japan-how much can we apply closed economy neoclassical growth models? Economic Review 51, 136-151 (in Japanese)], data on private and public capital stocks are extended. All the nominal variables are transformed into real variables, taking into consideration the 1995 price level. For kerosene, gas oil, heavy oil, butane gas, coal, and coke, there are a few prefectures with TFEEs less than 0.7. The five most inefficient prefectures are Niigata, Wakayama, Hyogo, Chiba, and Yamaguchi. Inland regions and most regions along the Sea of Japan are efficient in energy use. Most of the inefficient prefectures that are developing mainly upon energy-intensive industries are located along the Pacific Belt Zone. A U-shaped relation similar to the environmental Kuznets curve (EKC) is discovered between energy efficiency and per capita income for the regions in Japan

  1. Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials

    Science.gov (United States)

    Antonelli, Paolo; Michelangeli, Alessandro; Scandone, Raffaele

    2018-04-01

    We prove the existence of weak solutions in the space of energy for a class of nonlinear Schrödinger equations in the presence of a external, rough, time-dependent magnetic potential. Under our assumptions, it is not possible to study the problem by means of usual arguments like resolvent techniques or Fourier integral operators, for example. We use a parabolic regularisation, and we solve the approximating Cauchy problem. This is achieved by obtaining suitable smoothing estimates for the dissipative evolution. The total mass and energy bounds allow to extend the solution globally in time. We then infer sufficient compactness properties in order to produce a global-in-time finite energy weak solution to our original problem.

  2. Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation`s commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives set forward by the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Environmental Protection Agency (EPA). The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. As additional site and design information is generated, performance assessment analyses can be revised to become more representative of the expected conditions and remove some of the conservative assumptions necessitated by the incompleteness of site and design data. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993. These analyses have been documented in Barnard, Eslinger, Wilson and Andrews.

  3. Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    1995-11-01

    The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation's commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives set forward by the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Environmental Protection Agency (EPA). The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. As additional site and design information is generated, performance assessment analyses can be revised to become more representative of the expected conditions and remove some of the conservative assumptions necessitated by the incompleteness of site and design data. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993. These analyses have been documented in Barnard, Eslinger, Wilson and Andrews

  4. Biomass energy potential in Brazil. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, J [Biomass Users Network-Brazil Regional Office, Sao Paulo (Brazil)

    1995-12-01

    The present paper was prepared as a country study about the biomass potential for energy production in Brazil. Information and analysis of the most relevant biomass energy sources and their potential are presented in six chapters. Ethanol fuel, sugar-cane bagasse, charcoal, vegetable oil, firewood and other biomass-derived fuels are the objects of a historical review, in addition to the presentation of state-of-the-art technologies, economic analysis and discussion of relevant social and environmental issues related to their production and use. Wherever possible, an evaluation, from the available sources of information and based on the author`s knowledge, is performed to access future perspectives of each biomass energy source. Brazil is a country where more than half of the energy consumed is provided from renewable sources of energy, and biomass provides 28% of the primary energy consumption. Its large extension, almost all located in the tropical and rainy region, provides an excellent site for large-scale biomass production, which is a necessity if biomass is to be used to supply a significant part of future energy demand. Even so, deforestation has occurred and is occurring in the country, and the issue is discussed and explained as mainly the result of non-energy causes or the use of old and outdated technologies for energy production. (author) 115 refs, figs, tabs

  5. Biomass energy potential in Brazil. Country study

    International Nuclear Information System (INIS)

    Moreira, J.

    1995-01-01

    The present paper was prepared as a country study about the biomass potential for energy production in Brazil. Information and analysis of the most relevant biomass energy sources and their potential are presented in six chapters. Ethanol fuel, sugar-cane bagasse, charcoal, vegetable oil, firewood and other biomass-derived fuels are the objects of a historical review, in addition to the presentation of state-of-the-art technologies, economic analysis and discussion of relevant social and environmental issues related to their production and use. Wherever possible, an evaluation, from the available sources of information and based on the author's knowledge, is performed to access future perspectives of each biomass energy source. Brazil is a country where more than half of the energy consumed is provided from renewable sources of energy, and biomass provides 28% of the primary energy consumption. Its large extension, almost all located in the tropical and rainy region, provides an excellent site for large-scale biomass production, which is a necessity if biomass is to be used to supply a significant part of future energy demand. Even so, deforestation has occurred and is occurring in the country, and the issue is discussed and explained as mainly the result of non-energy causes or the use of old and outdated technologies for energy production. (author)

  6. Demonstration of the potential for energy conservation in two Midwestern pork processing plants. Final report, December 15, 1977-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.; Okos, M.

    1981-01-19

    Two Midwestern pork processing plants were studied to quantify present energy consumption and to determine potential energy savings with modification of existing processing equipment or adoption of alternative equipment. Process energy consumption was measured in each plant at each processing step or at each unit operation and pertinent costs obtained. Energy utilized was categorized by type such as gas, electricity, steam, etc. Process conditions such as temperature, pressure, flow rates, etc., were also measured so that they could be related to energy consumption. Through measurement of operating parameters and the calculation of material and energy balances, patterns of energy loss in the major unit operations were determined. The total yearly steam and gas energy consumed by the processes studied in Plant A amounted to 133.6 billion Btu's and 207.8 billion Btu's in Plant B. Of that total, Plant A uses approximately 15.5% and Plant B uses 7.5% for sanitation and cleaning. The remaining energy is used to operate the various unit operations. The energy used in the major unit operations can be broken down into lost energy and recoverable energy. Lost energy is that energy that will not effect production if eliminated. For the processes studied in Plant A, non-productive energy amounts to 48% of the energy supplied. The nonproductive energy in Plant B amounted to 60.6% of the total process energy. On the other hand, recoverable energy is that energy that was used for some productive purpose but still has value upon completion of the process. For the processes studied in Plant A, a recoverable energy amounts to 40% of the energy supplied. The potentially recoverable energy for Plant B is 35.8% of the process energy supplied.

  7. Renewable energy potential in Southern Africa: conference proceedings

    International Nuclear Information System (INIS)

    1986-01-01

    This conference, held in Cape Town from 8-10 September 1986, consist of many papers discussing the renewalble energy potential in Southern Africa. The papers delivered at the conference include topics such as wind energy, ocean energy, hydroelectric resources, solar resources, wave energy, agroforestry, fuelwood, hydrogen energy and the production of energy from biomass. Several papers were delivered on solar water heating and one on nuclear vs renewable energy

  8. Intermolecular potential energy surface and thermophysical properties of the CH4-N2 system.

    Science.gov (United States)

    Hellmann, Robert; Bich, Eckard; Vogel, Eckhard; Vesovic, Velisa

    2014-12-14

    A five-dimensional potential energy surface (PES) for the interaction of a rigid methane molecule with a rigid nitrogen molecule was determined from quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the CCSD(T) level of theory was utilized to compute a total of 743 points on the PES. The interaction energies were calculated using basis sets of up to quadruple-zeta quality with bond functions and were extrapolated to the complete basis set limit. An analytical site-site potential function with nine sites for methane and five sites for nitrogen was fitted to the interaction energies. The PES was validated by calculating the cross second virial coefficient as well as the shear viscosity and binary diffusion coefficient in the dilute-gas limit for CH4-N2 mixtures. An improved PES was obtained by adjusting a single parameter of the analytical potential function in such a way that quantitative agreement with the most accurate experimental values of the cross second virial coefficient was achieved. The transport property values obtained with the adjusted PES are in good agreement with the best experimental data.

  9. Properties of Augmented Kohn-Sham Potential for Energy as Simple Sum of Orbital Energies.

    Science.gov (United States)

    Zahariev, Federico; Levy, Mel

    2017-01-12

    A recent modification to the traditional Kohn-Sham method ( Levy , M. ; Zahariev , F. Phys. Rev. Lett. 2014 , 113 , 113002 ; Levy , M. ; Zahariev , F. Mol. Phys. 2016 , 114 , 1162 - 1164 ), which gives the ground-state energy as a direct sum of the occupied orbital energies, is discussed and its properties are numerically illustrated on representative atoms and ions. It is observed that current approximate density functionals tend to give surprisingly small errors for the highest occupied orbital energies that are obtained with the augmented potential. The appropriately shifted Kohn-Sham potential is the basic object within this direct-energy Kohn-Sham method and needs to be approximated. To facilitate approximations, several constraints to the augmented Kohn-Sham potential are presented.

  10. Estimation of energy potential of agricultural enterprise biomass

    Directory of Open Access Journals (Sweden)

    Lypchuk Vasyl

    2017-01-01

    Full Text Available Bioenergetics (obtaining of energy from biomass is one of innovative directions in energy branch of Ukraine. Correct and reliable estimation of biomass potential is essential for efficient use of it. The article reveals the issue of estimation of potential of biomass, obtained from byproducts of crop production and animal breeding, which can be used for power supply of agricultural enterprises. The given analysis was carried with application of common methodological fundamentals, revealed in the estimation of production structure of agricultural enterprises, structure of land employment, efficiency of crops growing, indicators of output of main and by-products, as well as normative (standard parameters of power output of energy raw material in relation to the chosen technology of its utilization. Results of the research prove high energy potential of byproducts of crop production and animal breeding at all of the studied enterprises, which should force its practical use.

  11. The potential of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    On June 27 and 28, 1989, the US Department of Energy (DOE) national laboratories were convened to discuss plans for the development of a National Energy Strategy (NES) and, in particular, the analytic needs in support of NES that could be addressed by the laboratories. As a result of that meeting, interlaboratory teams were formed to produce analytic white papers on key topics, and a lead laboratory was designated for each core laboratory team. The broad-ranging renewables assignment is summarized by the following issue statement from the Office of Policy, Planning and Analysis: to what extent can renewable energy technologies contribute to diversifying sources of energy supply What are the major barriers to greater renewable energy use and what is the potential timing of widespread commercialization for various categories of applications This report presents the results of the intensive activity initiated by the June 1989 meeting to produce a white paper on renewable energy. Scores of scientists, analysts, and engineers in the five core laboratories gave generously of their time over the past eight months to produce this document. Their generous, constructive efforts are hereby gratefully acknowledged. 126 refs., 44 figs., 32 tabs.

  12. Assessment of renewable energy potential. Calculation model “AREP-LP”

    International Nuclear Information System (INIS)

    Penchev, Alexander

    2011-01-01

    Introduction Bulgaria is a country rich in renewable energy sources. There are all types of RES including: solar, geothermal, biomass, wind energy and hydropower. Per capita it ranks among the top in Europe. Bulgaria's target for 2020 is 16% of final consumption of electricity should be from renewable energy. To achieve this goal, the first and most important task is assessing the potential of renewable energy and its geographical distribution. Creating a database of renewable energy is essential for implementation of investment projects in this area. Key words: Renewable Energy (RES), Renewable Technologies (RET), Theoretical Potential, Technical Potential, Municipalities, Regions, Energy Planning(EP), Emission Reduction (EmR), Market Assessment (MA), Data base(DB)

  13. EPA RE-Powering Mapper: Alternative Energy Potential at Cleanup Sites

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management??s (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.

  14. Accurate double many-body expansion potential energy surface of HS2A2A′) by scaling the external correlation

    International Nuclear Information System (INIS)

    Zhang Lu-Lu; Song Yu-Zhi; Gao Shou-Bao; Zhang Yuan; Meng Qing-Tian

    2016-01-01

    A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS 2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pV Q Z basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal·mol −1 . The topographical features of the HS 2 (A 2 A′) global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS 2 (A 2 A′) can be used as a building block for constructing the global potential energy surfaces of larger S/H molecular systems and recommended for dynamic studies on the title molecular system. (paper)

  15. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas, representing 52% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity

  16. Decentralized energy: technology assessment and systems description. [Potential for implementation for years 2000 and 2025

    Energy Technology Data Exchange (ETDEWEB)

    Reckard, M K

    1979-06-01

    Decentralized energy systems and their characteristic features are examined in the report. These systems have been divided into six groups for the purpose of analysis: solar, wind, hydro, biomass, geothermal, and coproduction (total energy). The technical and economic potential for the implementation of these systems is discussed for the years 2000 and 2025. The results of a comparison of base-case and decentralized scenarios for the year 2000, using a computer systems model, are presented. Social and institutional factors are also addressed, both as motivations for and results of energy system decentralization. Appendices are included with more detailed technical information on each of the systems groups.

  17. Achievement report on research and development in the Sunshine Project in fiscal 1978. Studies on a hydrogen energy total system; 1978 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    Analysis was made on timing, patterns and scales of introducing hydrogen energy into the Japan's total energy system, and case studies were made on transfer of the comprehensive systems that can be realized in the years of 1985, 2000 and 2025. The basic conception for the analytic method employed a method to analyze and present theoretically the conditions in which prerequisites or results of the estimation can be established, rather than intending elucidation of the estimation itself. An energy model was used for the theoretical means thereof. The objective function to be optimized was assumed to maximize (estimate over the planned period of time) the total effectiveness of the hydrogen energy system converted into the present value being given appropriate discount. The economic performance measures for different secondary energies working as the comparison measures are the limiting production cost of each energy. A consideration was given to the point that the electrolytic hydrogen cannot compete with that made by using the thermo-chemical method (if developed successfully) using heat from high-temperature gas reactor if the fossil fuel price rises sharply. Considerations are also required in replaceability of hydrogen energy with other energies, and hydrogen utilization in petroleum refining. (NEDO)

  18. Inversion of the total cross sections for electron-molecule and electron-atom scattering

    International Nuclear Information System (INIS)

    Lun, D.R.; Amos, K.; Allen, L.J.

    1994-01-01

    Inverse scattering theory has been applied to construct the interaction potentials from total cross sections as a function of energy for electrons scattered off of atoms and molecules. The underlying potentials are assumed to be real and energy independent and are evaluated using the Eikonal approximation and with real phase shifts determined from the total cross sections. The inversion potentials have been determined using either a high energy limit approximation or by using a fixed energy inversion method at select energies. These procedures have been used to analyse e - - CH 4 , e - - SiH 4 , e - -Kr and e - -Xe scattering data in particular. 14 refs., 1 tabs., 3 figs

  19. Density Profiles, Energy, and Oscillation Strength of a Quantum Dot in Two Dimensions with a Harmonic Oscillator External Potential using an Orbital-free Energy Functional Based on Thomas–Fermi Theory

    Directory of Open Access Journals (Sweden)

    Suhufa Alfarisa

    2016-03-01

    Full Text Available This research aims i to determine the density profile and calculate the ground state energy of a quantum dot in two dimensions (2D with a harmonic oscillator potential using orbital-free density functional theory, and ii to understand the effect of the harmonic oscillator potential strength on the electron density profiles in the quantum dot. This study determines the total energy functional of the quantum dot that is a functional of the density that depends only on spatial variables. The total energy functional consists of three terms. The first term is the kinetic energy functional, which is the Thomas–Fermi approximation in this case. The second term is the external potential. The harmonic oscillator potential is used in this study. The last term is the electron–electron interactions described by the Coulomb interaction. The functional is formally solved to obtain the electron density as a function of spatial variables. This equation cannot be solved analytically, and thus a numerical method is used to determine the profile of the electron density. Using the electron density profiles, the ground state energy of the quantum dot in 2D can be calculated. The ground state energies obtained are 2.464, 22.26, 90.1957, 252.437, and 496.658 au for 2, 6, 12, 20, and 56 electrons, respectively. The highest electron density is localized close to the middle of the quantum dot. The density profiles decrease with the increasing distance, and the lowest density is at the edge of the quantum dot. Generally, increasing the harmonic oscillator potential strength reduces the density profiles around the center of the quantum dot.

  20. Total Energy of Charged Black Holes in Einstein-Maxwell-Dilaton-Axion Theory

    Directory of Open Access Journals (Sweden)

    Murat Korunur

    2012-01-01

    Full Text Available We focus on the energy content (including matter and fields of the Møller energy-momentum complex in the framework of Einstein-Maxwell-Dilaton-Axion (EMDA theory using teleparallel gravity. We perform the required calculations for some specific charged black hole models, and we find that total energy distributions associated with asymptotically flat black holes are proportional to the gravitational mass. On the other hand, we see that the energy of the asymptotically nonflat black holes diverge in a limiting case.

  1. The Dilemmas of Energy: Essential energy services and potentially fatal risks

    Science.gov (United States)

    Perkins, J. H.

    2018-01-01

    During their evolution, humans have made three energy transitions, each marked by the adoption of new ways of procuring energy with attendant changes in lifestyle. Modern civilization arose in the Third Energy Transition, and its major sources of energy come from coal, oil, gas, uranium, and hydropower. Unfortunately, despite its incalculable benefits, the Third Transition can’t provide sustainable energy services for the indefinite future. Climate change is the most serious problem. Criteria and standards for each of the currently available, nine primary energy sources indicate the potential feasibility of replacing most or all uses of coal, oil, gas, and uranium with hydropower, solar, wind, biomass, and geothermal. This is the Fourth Energy Transition, promotion of which is strongly supported by considerations of sustainability.

  2. The potential of new renewable energy sources in Switzerland

    International Nuclear Information System (INIS)

    Dietrich, P.; Kaiser, T.; Wokaun, A.

    2010-01-01

    This article presents and discusses the results of an evaluation made by the so-called 'Swiss Energy Trialogue' ETS on the potential offered by new renewable energy sources in Switzerland. The evaluation forecasts an important contribution to Swiss energy supply by renewable energy sources by the year 2050. The authors are of the opinion that, in spite of a considerable increase in the offers of renewable energy and the full use of energy saving potential, a discrepancy will exist between estimates of energy needs and the actual energy available from renewable resources if large-scale power generation facilities are not built. Activities proposed by the Swiss government are discussed and analysed. In particular, possible contributions to be made by renewable energy sources are examined. Suggestions made by ETS concerning possible courses of action are discussed

  3. Energy strategy and mitigation potential in energy sector of the Russian federation

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, A.F.; Petrov, V.N.; Chupyatov, V.P.

    1996-12-31

    This paper describes the mitigation potential in the Russian energy sector and presents CO{sub 2} - emission scenarios. Based on the Russian energy strategy, energy conservation potential has been estimated and three groups of energy conservation measures have been pointed out. Taking into account the economic development scenarios and the scenarios of energy consumption and energy conservation, future CO{sub 2} emission scenarios for 2000 and 2010 have been prepared. Some important characteristics of these scenarios have been presented and discussed. For the period 2000-2010 annual growth rates for CO{sub 2} emission in the Russian energy sector will not exceed 0.9-1.3 %, and emission levels in 2000 make up - 75-78 %, and in 2010 - 81-88 % of the 1990 level. For the probable scenario the CO{sub 2} emission reducing will make up about 6% and 25% (for the optimistic scenario about 16% and 31%) of CO{sub 2} emission for reference scenario in 2000 and 2010 respectively. Additional CO{sub 2} emission reducing (3-5% of domestic CO{sub 2} emission) will result from increasing share of natural gas consumption.

  4. Relation between total shock energy and mortality in patients with implantable cardioverter-defibrillator.

    Science.gov (United States)

    Tenma, Taro; Yokoshiki, Hisashi; Mitsuyama, Hirofumi; Watanabe, Masaya; Mizukami, Kazuya; Kamada, Rui; Takahashi, Masayuki; Sasaki, Ryo; Maeno, Motoki; Okamoto, Kaori; Chiba, Yuki; Anzai, Toshihisa

    2018-05-15

    Implantable Cardioverter-Defibrillator (ICD) shocks have been associated with mortality. However, no study has examined the relation between total shock energy and mortality. The aim of this study is to assess the association of total shock energy with mortality, and to determine the patients who are at risk of this association. Data from 316 consecutive patients who underwent initial ICD implantation in our hospital between 2000 and 2011 were retrospectively studied. We collected shock energy for 3 years from the ICD implantation, and determined the relation of shock energy on mortality after adjusting confounding factors. Eighty-seven ICD recipients experienced shock(s) within 3 years from ICD implantation and 43 patients had died during the follow-up. The amount of shock energy was significantly associated with all-cause death [adjusted hazard ratio (HR) 1.26 (per 100 joule increase), p energy accumulation (≥182 joule) was lower (p energy accumulation (energy accumulation and all-cause death was remarkable in the patients with low left ventricular ejection fraction (LVEF ≤40%) or atrial fibrillation (AF). Increase of shock energy was related to mortality in ICD recipients. This relation was evident in patients with low LVEF or AF. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A multisite interaction expansion of the total energy in metals

    International Nuclear Information System (INIS)

    Sowa, E.C.; Gonis, A.

    1994-01-01

    The local-density approximation provides a proper setting for the decomposition of total energy into many-body (many-atom) contributions. Multiple scattering theory in turn provides a convenient framework for carrying out this process. We illustrate this concept with calculations on a linear chain of atoms in bulk copper

  6. The total flow concept for geothermal energy conversion

    Science.gov (United States)

    Austin, A. L.

    1974-01-01

    A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.

  7. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Iron and Steel Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Keith Jamison, Caroline Kramer, Sabine Brueske, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas and select subareas, representing 82% of sector-wide energy consumption. Energy savings opportunities for individual processes and subareas are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  8. Assessment of triton potential energy

    International Nuclear Information System (INIS)

    Friar, J.L.; Payne, G.L.

    1995-01-01

    An assessment is made of the dominant features contributing to the triton potential energy, with the objective of understanding qualitatively their origins and sensitivities. Relativistic effects, short-range repulsion, and OPEP dominance are discussed. A determination of the importance of various regions of nucleon-nucleon separation is made numerically. (author)

  9. Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis

    International Nuclear Information System (INIS)

    Honma, Satoshi; Hu, Jin-Li

    2014-01-01

    Highlights: • This study compares Japan with other developed countries for energy efficiency at the industry level. • We compute the total-factor energy efficiency (TFEE) for industries in 14 developed countries in 1995–2005. • Energy conservation can be further optimized in Japan’s industry sector. • Japan experienced a slight decrease in the weighted TFEE from 0.986 in 1995 to 0.927 in 2005. • Japan should adapt energy conservation technologies from the primary benchmark countries: Germany, UK, and USA. - Abstract: Japan’s energy security is more vulnerable today than it was before the Fukushima Daiichi nuclear power plant accident in March 2011. To alleviate its energy vulnerability, Japan has no choice but to improve energy efficiency. To aid in this improvement, this study compares Japan’s energy efficiency at the industry level with that of other developed countries. We compute the total-factor energy efficiency (TFEE) of industries in 14 developed countries for 1995–2005 using data envelopment analysis. We use four inputs: labor, capital stock, energy, and non-energy intermediate inputs. Value added is the only relevant output. Results indicate that Japan can further optimize energy conservation because it experienced only a marginal decrease in the weighted TFEE, from 0.986 in 1995 to 0.927 in 2005. To improve inefficient industries, Japan should adapt energy conservation technologies from benchmark countries such as Germany, the United Kingdom, and the United States

  10. Small Modular Reactors: Nuclear Energy Market Potential for Near-term Deployment

    International Nuclear Information System (INIS)

    Lokhov, Alexey; Sozoniuk, Vladislav; Rothwell, Geoffrey; ); Cometto, Marco; Paillere, Henri; ); Crozat, Matt; Genoa, Paul; Joon Kim, Tae; McGough, Mike; Ingersoll, Dan; Rickman, Robin; Stout, Dan; Halnon, Greg; Chenais, Jacques; Briffod, Francois-Xavier; Perrier, Sylvain; Shahrokhi, Farshid; Kaufer, Barry; Wasylyk, Andrew; Shropshire, David; ); Danrong, Song; Swinburn, Richard

    2016-01-01

    Recent interest in small modular reactors (SMRs) is being driven by a desire to reduce the total capital costs associated with nuclear power plants and to provide power to small grid systems. According to estimates available today, if all the competitive advantages of SMRs were realised, including serial production, optimised supply chains and smaller financing costs, SMRs could be expected to have lower absolute and specific (per-kWe) construction costs than large reactors. Although the economic parameters of SMRs are not yet fully determined, a potential market exists for this technology, particularly in energy mixes with large shares of renewables. This report assesses the size of the market for SMRs that are currently being developed and that have the potential to broaden the ways of deploying nuclear power in different parts of the world. The study focuses on light water SMRs that are expected to be constructed in the coming decades and that strongly rely on serial, factory-based production of reactor modules. In a high-case scenario, up to 21 GWe of SMRs could be added globally by 2035, representing approximately 3% of total installed nuclear capacity. (authors)

  11. An evaluation of energy potential by biogas, in Alcala County - Valley of Cauca (Colombia)

    International Nuclear Information System (INIS)

    González Salcedo, Luis Octavio; Romo López, Liesely Karina

    2017-01-01

    Due to the increase in consumption of pork meat, pig accommodations have had to grow to meet this demand, and in turn increase organic waste becoming a big problem for the environment. The need to implement new alternatives to mitigate environmental impacts at the same time benefit the farms of this activity, using bio-digesters. The objective of this work is to evaluate the biogas potential of six farms in the Alcala County – Valley of Cauca (Colombia). The results for the total capacity of the farms show an interesting contribution to the energy component of the region, both in the production of biogas and in its energy equivalent. Various examples of energy use are made, including economic benefits. (author)

  12. Resonance capture reactions with a total energy detector

    International Nuclear Information System (INIS)

    Macklin, R.L.

    1978-01-01

    The determination of nuclear reaction rates is considered; the Moxon--Rae detector and pulse height weighting are reviewed. This method has been especially useful in measuring (n,γ) cross sections. Strength functions and level spacing can be derived from (n,γ) yields. The relevance of neutron capture data to astrophysical nucleosynthesis is pointed out. The total gamma energy detection method has been applied successfully to radiative neutron capture cross section measurements. A bibliography of most of the published papers reporting neutron capture cross sections measured by the pulse height weighting technique is included. 55 references

  13. Timing of potential and metabolic brain energy

    DEFF Research Database (Denmark)

    Korf, Jakob; Gramsbergen, Jan Bert

    2007-01-01

    functions. We introduce the concepts of potential and metabolic brain energy to distinguish trans-membrane gradients of ions or neurotransmitters and the capacity to generate energy from intra- or extra-cerebral substrates, respectively. Higher brain functions, such as memory retrieval, speaking......The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho......-physiological tasks within 50 to 200 ms, and perception of conscious experience requires 0.5 to 2 s. Activation of cerebral oxygen consumption starts after at least 100 ms and increases of local blood flow become maximal after about 1 s. Current imaging technologies are unable to detect rapid physiological brain...

  14. Accurate Valence Ionization Energies from Kohn-Sham Eigenvalues with the Help of Potential Adjustors.

    Science.gov (United States)

    Thierbach, Adrian; Neiss, Christian; Gallandi, Lukas; Marom, Noa; Körzdörfer, Thomas; Görling, Andreas

    2017-10-10

    An accurate yet computationally very efficient and formally well justified approach to calculate molecular ionization potentials is presented and tested. The first as well as higher ionization potentials are obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting the eigenvalues by a recently [ Görling Phys. Rev. B 2015 , 91 , 245120 ] introduced potential adjustor for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-Sham calculation of the neutral molecule, only a second Kohn-Sham calculation of the cation is required. The eigenvalue spectrum of the neutral molecule is shifted such that the negative of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total electronic energies of the cation minus the neutral molecule. For the first ionization potential this simply amounts to a ΔSCF calculation. Then, the higher ionization potentials are obtained as the negatives of the correspondingly shifted Kohn-Sham eigenvalues. Importantly, this shift of the Kohn-Sham eigenvalue spectrum is not just ad hoc. In fact, it is formally necessary for the physically correct energetic adjustment of the eigenvalue spectrum as it results from ensemble density-functional theory. An analogous approach for electron affinities is equally well obtained and justified. To illustrate the practical benefits of the approach, we calculate the valence ionization energies of test sets of small- and medium-sized molecules and photoelectron spectra of medium-sized electron acceptor molecules using a typical semilocal (PBE) and two typical global hybrid functionals (B3LYP and PBE0). The potential adjusted B3LYP and PBE0 eigenvalues yield valence ionization potentials that are in very good agreement with experimental values, reaching an accuracy that is as good as the best G 0 W 0 methods, however, at much lower computational costs. The potential adjusted PBE eigenvalues result in

  15. Potential energy surfaces for nucleon exchanging in dinuclear systems

    International Nuclear Information System (INIS)

    Li Jianfeng; Xu Hushan; Li Wenfei; Zuo Wei; Li Junqing; Wang Nan; Zhao Enguang

    2003-01-01

    The experimental measurements have provided the evidence that the suppression of fusion cross-section caused by quasi-fission is very important for the synthesis of super-heavy nuclei by heavy ion collisions. The potential energy surface due to the nucleon transfer in the collision process is the driven potential, which governs the nucleon transfer, so that governs the competition between the fusion and quasi-fission. The dinuclear system potential energy surface also gives the information about the optimum projectile-target combination, as well as the optimum excitation energy for the synthesis of super-heavy nuclei by heavy ion collisions

  16. Dark energy exponential potential models as curvature quintessence

    International Nuclear Information System (INIS)

    Capozziello, S; Cardone, V F; Piedipalumbo, E; Rubano, C

    2006-01-01

    It has been recently shown that, under some general conditions, it is always possible to find a fourth-order gravity theory capable of reproducing the same dynamics as a given dark energy model. Here, we discuss this approach for a dark energy model with a scalar field evolving under the action of an exponential potential. In the absence of matter, such a potential can be recovered from a fourth-order theory via a conformal transformation. Including the matter term, the function f(R) entering the generalized gravity Lagrangian can be reconstructed according to the dark energy model

  17. The use of green waste from tourist attractions for renewable energy production: The potential and policy implications

    International Nuclear Information System (INIS)

    Shi, Yan; Du, Yuanyuan; Yang, Guofu; Tang, Yuli; Fan, Likun; Zhang, Jun; Lu, Yijun; Ge, Ying; Chang, Jie

    2013-01-01

    Quantifying potential renewable energy sources from tourist attractions is a pivotal initial step in developing energy policies and strategies for low-carbon tourist industry development. Although solar energy and wind power have been in use for providing power for tourist attractions, the value of using waste biomass for energy production is still poorly understood. Here we advocate a promising approach that produces energy from green waste created by tourism attractions currently existing in large numbers and is still increasing dramatically. Using the Yangtze River Delta (YRD) of China as an example, we evaluated the potential of utilizing green waste to produce energy from 385 tourist attractions in 16 cities of this region. Our results showed that the total potential energy production using the green waste biomass was estimated at 6740 TJ/yr (1 TJ=10 12 J) with an average of 137 GJ/ha/yr (1 GJ=10 9 J), accounting for 6% (the average of the Yangtze River Delta, some scenic areas up to 93%) of YRD′s tourism industry′s energy consumption in 2008. The use of green waste for energy production is possible using current technology and could result in a win–win approach by reducing waste and increasing the renewable energy yields. -- Highlights: •Green waste from tourist attractions could help offset the tourist′s fossil fuel consumption. •Economic, technical, and social feasibility analysis of green waste for energy production. •Puts forward policy recommendations, from management regulations, public support etc

  18. Realizing the potential of nuclear energy

    International Nuclear Information System (INIS)

    Walske, C.

    1982-01-01

    The future of nuclear power, just as the future of America, can be viewed with optimism. There is hope in America's record of overcoming obstacles, but growth is essential for that hope to be realized. Despite the downturn in energy demand made possible by conservation, we will need a 35% growth in total energy for new workers and production. Electricity generated by nuclear or coal can make US production more cost-competitive, and it can power mass-transit systems, electric heat pumps, and communications and information systems. Changes in electricity and gross national product (GNP) have been more closely in step since 1973 than have total energy and GNP. The nuclear power units now under construction will add 80,000 megawatts to the 56,000 now on line. It is important to note that, while utilities are cancelling plans for nuclear plants, they aren't ordering new coal plants, which shows the impact of the high cost of money. Interest rates must come down and public-relations efforts to sell electricity must improve to change the situation. Although capital shortages are real, waste disposal is a problem of perception that was politically induced because the government failed to provide a demonstration of safety as the French are doing. Streamlined regulatory and insurance procedures can help to justify optimism in the nuclear option. 4 figures

  19. The potential energy conservation of the Dutch industrial, business and service sector

    International Nuclear Information System (INIS)

    Van der Werff, R.L.; Opschoor, J.B.

    1992-01-01

    The database ICARUS has been used as a starting point to estimate the economical potential for energy conservation in different sectors of the Dutch society. ICARUS is based on research on real energy consuming processes and applications in a number of sub-sectors of the Dutch economy. The present energy conservation potential in the Netherlands is based on energy conservation studies in the Netherlands and other countries. For this article the economical efficient energy conservation potentials in 1992 have been investigated for the Dutch sectors, which do not supply energy. The potentials are determined on the basis of the technical energy conservation potentials for the year 2000, according to the database ICARUS. Two methods were used to extract the economic potential from the technical potential: the method of the Net Market Value and the method of the payback period. From the ICARUS analysis it appears that the technical potential for energy conservation is 479 PJ, which is 28.8% of the primary energy consumption of 1664 PJ in 1985. The economic energy conservation potential is 262 PJ for a payback period of less than five years, which is 17% of the 1985 primary energy consumption. Next to the above-mentioned analysis policy-aimed simulations were carried out for three scenarios to determine economical energy conservation potentials. In one scenario doubled energy prices were used in comparison with the 1991 prices. Another scenario uses the Net Market Value method with a 5% discount rate, and the third scenario uses both parameters

  20. Catalyzing the potential of renewable energy in the Great Lakes economy

    International Nuclear Information System (INIS)

    Howland, T.

    2003-01-01

    Vision Quest Windelectric builds, owns and operates wind power plants. Its major activities include wind prospecting, development, production, and product marketing. Currently, the facility operates 68 wind turbines with a total installed capacity of 45.7 MW. A joint venture is currently under construction in southern Alberta where a 114 wind turbine array is being installed for operation in 2003 for a total capacity of 75 MW. It will be Canada's largest wind farm. Wind power offers competitive pricing, positive environmental and economic impact, and an incremental supply growth. Worldwide, wind-generated capacity exceeded 24,000 megawatts in 2002. Industry leaders are Europe, with 4,500 MW installed capacity, followed by the United States and India. In the past 5 years, wind power has seen a growth rate of 32 per cent. In the United States, wind farms are generating approximately 10 billion kWh annually. In Canada, there is more wind energy potential than current electricity use. In 2002, wind was being used as a power source in British Columbia, Alberta, Saskatchewan, Ontario, Quebec, Prince Edward Island and the Yukon, for a total installed capacity of 205 MW. Green power marketing promotes the use of renewable energy sources. Green pricing offers customers the option to support investment in renewables by paying a premium on electricity bills to pay for the additional costs related to the development of renewable energy. There are 12 companies offering green power options in Canada. Premiums range from 2 to 7.5 cents per kWh. In the United States, 40 per cent of the customers have access to green power programs, and worldwide, 2 million customers are buying green power. The demand for green power can be stimulated through policy support such as credit emissions for reductions, financial incentives, government purchases, market access, common certification, and renewable portfolio standards. 6 figs

  1. Energy consumption of agitators in activated sludge tanks - actual state and optimization potential.

    Science.gov (United States)

    Füreder, K; Svardal, K; Frey, W; Kroiss, H; Krampe, J

    2018-02-01

    Depending on design capacity, agitators consume about 5 to 20% of the total energy consumption of a wastewater treatment plant. Based on inhabitant-specific energy consumption (kWh PE 120 -1 a -1 ; PE 120 is population equivalent, assuming 120 g chemical oxygen demand per PE per day), power density (W m -3 ) and volume-specific energy consumption (Wh m -3 d -1 ) as evaluation indicators, this paper provides a sound contribution to understanding energy consumption and energy optimization potentials of agitators. Basically, there are two ways to optimize agitator operation: the reduction of the power density and the reduction of the daily operating time. Energy saving options range from continuous mixing with low power densities of 1 W m -3 to mixing by means of short, intense energy pulses (impulse aeration, impulse stirring). However, the following correlation applies: the shorter the duration of energy input, the higher the power density on the respective volume-specific energy consumption isoline. Under favourable conditions with respect to tank volume, tank geometry, aeration and agitator position, mixing energy can be reduced to 24 Wh m -3 d -1 and below. Additionally, it could be verified that power density of agitators stands in inverse relation to tank volume.

  2. Methodology for estimating biomass energy potential and its application to Colombia

    International Nuclear Information System (INIS)

    Gonzalez-Salazar, Miguel Angel; Morini, Mirko; Pinelli, Michele; Spina, Pier Ruggero; Venturini, Mauro; Finkenrath, Matthias; Poganietz, Witold-Roger

    2014-01-01

    Highlights: • Methodology to estimate the biomass energy potential and its uncertainty at a country level. • Harmonization of approaches and assumptions in existing assessment studies. • The theoretical and technical biomass energy potential in Colombia are estimated in 2010. - Abstract: This paper presents a methodology to estimate the biomass energy potential and its associated uncertainty at a country level when quality and availability of data are limited. The current biomass energy potential in Colombia is assessed following the proposed methodology and results are compared to existing assessment studies. The proposed methodology is a bottom-up resource-focused approach with statistical analysis that uses a Monte Carlo algorithm to stochastically estimate the theoretical and the technical biomass energy potential. The paper also includes a proposed approach to quantify uncertainty combining a probabilistic propagation of uncertainty, a sensitivity analysis and a set of disaggregated sub-models to estimate reliability of predictions and reduce the associated uncertainty. Results predict a theoretical energy potential of 0.744 EJ and a technical potential of 0.059 EJ in 2010, which might account for 1.2% of the annual primary energy production (4.93 EJ)

  3. Phase change thermal storage for a solar total energy system

    Science.gov (United States)

    Rice, R. E.; Cohen, B. M.

    1978-01-01

    An analytical and experimental program is being conducted on a one-tenth scale model of a high-temperature (584 K) phase-change thermal energy storage system for installation in a solar total energy test facility at Albuquerque, New Mexico, U.S.A. The thermal storage medium is anhydrous sodium hydroxide with 8% sodium nitrate. The program will produce data on the dynamic response of the system to repeated cycles of charging and discharging simulating those of the test facility. Data will be correlated with a mathematical model which will then be used in the design of the full-scale system.

  4. AN INVESTIGATION OF WAVE ENERGY POTENTIAL IN WESTERN BLACK SEA REGION

    Directory of Open Access Journals (Sweden)

    İlyas UYGUR

    2006-01-01

    Full Text Available The main energy sources which are natural, clean, environmentally friendly, and renewable are wind power, solar energy, biomass energy, hydro energy, and wave energy. The wave energy has no cost except for the first investment and maintenance. There is also no cost for input energy. Besides these, it has no pollution effect on the environment, it is cheap and there is a huge potential all around the world. Wave energy is a good opportunity to solve the energy problem for Turkey which is surrounded by seas. Concerning all these facts, it has been conducted some studies which included five years of observation in the Western Black Sea Region (Akçakoca. The wave energy potential has also been calculated. From this sutdy results, it can be concluded that the wave energy potential of this region is inefficient. It is believed that by the improvement of the new energy converter devices in future, this low potential can be used more efficiently and as a result this study might be used as a basis for the future researches.

  5. Waste-to-energy potential in the Western Province of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Omar K.M. Ouda

    2017-07-01

    Full Text Available Waste-to-energy (WTE is a viable option for municipal solid waste (MSW management and a renewable energy source. MSW is a chronic problem in Saudi Arabia and more specifically in Saudi Urban areas. The MSW practices in KSA are simply done by collecting the waste and dumping it in open landfill sites. KSA is considering WTE as a potential renewable energy source that can contribute to electricity demand in the Kingdom. This research aims to assess potential contribution of WTE facility to meet electricity demand in the three main cities in the Western Province of Saudi Arabia and to provide an alternative solution to landfills. Three scenarios for WTE utilization were developed: Mass Burn, Mass Burn with recycling, and refused derived fuel (RDF with biomethanation. The Mass Burn scenario implies full waste stream incineration; the Mass Burn with recycling scenario considers segregation of reusable materials and the waste leftover for incineration; while RDF with biomethanation considers segregation of general waste stream into inorganic and organic waste and utilizes organic waste for biomethanation and inorganic for RDF. The analyses were completed for Jeddah, Makkah, and Madina cities; with current total population of about 6.3 million. The results show that Jeddah has the potential to produce about 180 MW of electricity based on incineration scenario; about 11.25 MW based on incineration with recycling scenario; and about 87.3 MW based RDF with biomethanation scenario by the year 2032. These values and other two cities values are based on theoretical ideals and they help in identifying the optimal WTE techniques for each city.

  6. Forward elastic scattering and total cross-section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.

    1985-01-01

    The successful cooling technique of antiproton beams at CERN has recently allowed the acceleration of proton and antiproton bunches simultaneously circulating in opposite directions in the SPS. Hadron-hadron collisions could so be produced at a centre-of-mass energy one order of magnitude higher than previously available, thus opening a new wide range of energies to experimentation. This technique also made it possible to replace one of the two proton beams in the ISR by a beam of antiprotons, allowing a direct precise comparison, by the same detectors, of pp and anti pp processes at the same energies. The recent results are summarized of the forward elastic scattering and total cross-section in this new energy domain. (Mori, K.)

  7. Impact of Weather and Occupancy on Energy Flexibility Potential of a Low-energy Building

    DEFF Research Database (Denmark)

    Zilio, Emanuele; Foteinaki, Kyriaki; Gianniou, Panagiota

    The introduction of renewable energy sources in the energy market leads to instability of the energy system itself; therefore, new solutions to increase its flexibility will become more common in the coming years. In this context the implementation of energy flexibility in buildings is evaluated...... solar radiation and the outdoor temperature appeared to have the larger impact on the thermal flexibility of the building. Specifically, the energy flexibility potential of the examined apartment can ensure its thermal autonomy up to 200 h in a typical sunny winter day......., using heat storage in the building mass. This study focuses on the influence of weather conditions and internal gains on the energy flexibility potential of a nearly-zero-energy building in Denmark. A specific six hours heating program is used to reach the scope. The main findings showed that the direct...

  8. Activities Contributing to Total Energy Expenditure in the United States: Results from the NHAPS Study

    Directory of Open Access Journals (Sweden)

    Block Gladys

    2004-02-01

    Full Text Available Abstract Background Physical activity is increasingly recognized as an important factor influencing health and disease status. Total energy expenditure, both low-intensity and high-intensity, contributes to maintenance of healthy body weight. This paper presents the results of a quantitative approach to determining the activities that contribute to total energy expenditure in the United States. Methods Data from the National Human Activity Pattern Survey (NHAPS were used. In 1992–1994 the NHAPS sampled 4,185 females and 3,330 males, aged 18 years and over, weighted to be representative of the 48 contiguous United States. A detailed report of each activity performed in the previous 24 hours was obtained. A score was created for each activity, by multiplying duration and intensity for each individual and summing across individuals. This score was then used to rank each activity according to its contribution to total population energy expenditure, for the total sample and separately for each gender, race, age, region, and season. Results This analysis reveals our society to be primarily sedentary; leisure time physical activity contributed only approximately 5% of the population's total energy expenditure. Not counting sleeping, the largest contributor to energy expenditure was "Driving a car", followed by "Office work" and "Watching TV". Household activities accounted for 20.1% and 33.3% of energy expenditure for males and females respectively. Conclusion The information presented in this paper may be useful in identifying common activities that could be appropriate targets for behavioral interventions to increase physical activity.

  9. Potential future waste-to-energy systems

    OpenAIRE

    Thorin, Eva; Guziana, Bozena; Song, Han; Jääskeläinen, Ari; Szpadt, Ryszard; Vasilic, Dejan; Ahrens, Thorsten; Anne, Olga; Lõõnik, Jaan

    2012-01-01

    This report discusses potential future systems for waste-to-energy production in the Baltic Sea Region, and especially for the project REMOWE partner regions, the County of Västmanland in Sweden, Northern Savo in Finland, Lower Silesia in Poland, western part of Lithuania and Estonia. The waste-to-energy systems planned for in the partner regions are combustion of municipal solid waste (MSW) and solid recovered fuels from household and industry as well as anaerobic digestion of sewage sludge ...

  10. Calculation of total free energy yield as an alternative approach for predicting the importance of potential chemolithotrophic reactions in geothermal springs.

    Science.gov (United States)

    Dodsworth, Jeremy A; McDonald, Austin I; Hedlund, Brian P

    2012-08-01

    To inform hypotheses regarding the relative importance of chemolithotrophic metabolisms in geothermal environments, we calculated free energy yields of 26 chemical reactions potentially supporting chemolithotrophy in two US Great Basin hot springs, taking into account the effects of changing reactant and product activities on the Gibbs free energy as each reaction progressed. Results ranged from 1.2 × 10(-5) to 3.6 J kg(-1) spring water, or 3.7 × 10(-5) to 11.5 J s(-1) based on measured flow rates, with aerobic oxidation of CH(4) or NH4 + giving the highest average yields. Energy yields calculated without constraining pH were similar to those at constant pH except for reactions where H(+) was consumed, which often had significantly lower yields when pH was unconstrained. In contrast to the commonly used normalization of reaction chemical affinities per mole of electrons transferred, reaction energy yields for a given oxidant varied by several orders of magnitude and were more sensitive to differences in the activities of products and reactants. The high energy yield of aerobic ammonia oxidation is consistent with previous observations of significant ammonia oxidation rates and abundant ammonia-oxidizing archaea in sediments of these springs. This approach offers an additional lens through which to view the thermodynamic landscape of geothermal springs. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Total Corporate social responsibility report 2004. Sharing our energy

    International Nuclear Information System (INIS)

    2005-05-01

    This document presents the social and environmental activities of the group Total for the year 2004. It provides information on the ethical aspects of the governance, the industrial security, the environmental policy, the public health and the occupational safety, the social liability and the economical and social impact of the group activities in the local development, the contribution to the climatic change fight and the development of other energy sources. (A.L.B.)

  12. Mechanical properties of carbynes investigated by ab initio total-energy calculations

    DEFF Research Database (Denmark)

    Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola

    2012-01-01

    As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...

  13. Ternary-fragmentation-driving potential energies of 252Cf

    Science.gov (United States)

    Karthikraj, C.; Ren, Zhongzhou

    2017-12-01

    Within the framework of a simple macroscopic model, the ternary-fragmentation-driving potential energies of 252Cf are studied. In this work, all possible ternary-fragment combinations of 252Cf are generated by the use of atomic mass evaluation-2016 (AME2016) data and these combinations are minimized by using a two-dimensional minimization approach. This minimization process can be done in two ways: (i) with respect to proton numbers (Z1, Z2, Z3) and (ii) with respect to neutron numbers (N1, N2, N3) of the ternary fragments. In this paper, the driving potential energies for the ternary breakup of 252Cf are presented for both the spherical and deformed as well as the proton-minimized and neutron-minimized ternary fragments. From the proton-minimized spherical ternary fragments, we have obtained different possible ternary configurations with a minimum driving potential, in particular, the experimental expectation of Sn + Ni + Ca ternary fragmentation. However, the neutron-minimized ternary fragments exhibit a driving potential minimum in the true-ternary-fission (TTF) region as well. Further, the Q -value energy systematics of the neutron-minimized ternary fragments show larger values for the TTF fragments. From this, we have concluded that the TTF region fragments with the least driving potential and high Q values have a strong possibility in the ternary fragmentation of 252Cf. Further, the role of ground-state deformations (β2, β3, β4, and β6) in the ternary breakup of 252Cf is also studied. The deformed ternary fragmentation, which involves Z3=12 -19 fragments, possesses the driving potential minimum due to the larger oblate deformations. We also found that the ground-state deformations, particularly β2, strongly influence the driving potential energies and play a major role in determining the most probable fragment combinations in the ternary breakup of 252Cf.

  14. Wave energy potential in Galicia (NW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, G.; Lopez, M.; Carballo, R.; Castro, A. [University of Santiago de Compostela, Hydraulic Engineering, E.P.S., Campus Universitario s/n, 27002 Lugo (Spain); Fraguela, J.A. [University of A Coruna, E.P.S., Campus de Esteiro s/n, Ferrol (Spain); Frigaard, P. [University of Aalborg, Sohngaardsholmsvej 57, DK 9000 (Denmark)

    2009-11-15

    Wave power presents significant advantages with regard to other CO{sub 2}-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996-2005. Taking into account the results of this assessment along with other relevant considerations such as the location of ports, navigation routes, and fishing and aquaculture zones, an area is selected for wave energy exploitation. The transformation of the offshore wave field as it propagates into this area is computed by means of a nearshore wave model (SWAN) in order to select the optimum locations for a wave farm. Two zones emerge as those with the highest potential for wave energy exploitation. The large modifications in the available wave power resulting from relatively small changes of position are made apparent in the process. (author)

  15. Analysis on Potential of Electric Energy Market based on Large Industrial Consumer

    Science.gov (United States)

    Lin, Jingyi; Zhu, Xinzhi; Yang, Shuo; Xia, Huaijian; Yang, Di; Li, Hao; Lin, Haiying

    2018-01-01

    The implementation of electric energy substitution by enterprises plays an important role in promoting the development of energy conservation and emission reduction in china. In order to explore alternative energy potential of industrial enterprises, to simulate and analyze the process of industrial enterprises, identify high energy consumption process and equipment, give priority to alternative energy technologies, and determine the enterprise electric energy substitution potential predictive value, this paper constructs the evaluation model of the influence factors of the electric energy substitution potential of industrial enterprises, and uses the combined weight method to determine the weight value of the evaluation factors to calculate the target value of the electric energy substitution potential. Taking the iron and steel industry as an example, this method is used to excavate the potential. The results show that the method can effectively tap the potential of the electric power industry

  16. Eigensolutions, Shannon entropy and information energy for modified Tietz-Hua potential

    Science.gov (United States)

    Onate, C. A.; Onyeaju, M. C.; Ituen, E. E.; Ikot, A. N.; Ebomwonyi, O.; Okoro, J. O.; Dopamu, K. O.

    2018-04-01

    The Tietz-Hua potential is modified by the inclusion of De ( {{Ch - 1}/{1 - C_{h e^{{ - bh ( {r - re } )}} }}} )be^{{ - bh ( {r - re } )}} term to the Tietz-Hua potential model since a potential of such type is very good in the description and vibrational energy levels for diatomic molecules. The energy eigenvalues and the corresponding eigenfunctions are explicitly obtained using the methodology of parametric Nikiforov-Uvarov. By putting the potential parameter b = 0, in the modified Tietz-Hua potential quickly reduces to the Tietz-Hua potential. To show more applications of our work, we have computed the Shannon entropy and Information energy under the modified Tietz-Hua potential. However, the computation of the Shannon entropy and Information energy is an extension of the work of Falaye et al., who computed only the Fisher information under Tietz-Hua potential.

  17. Changes in Energy Cost and Total External Work of Muscles in Elite Race Walkers Walking at Different Speeds

    Directory of Open Access Journals (Sweden)

    Chwała Wiesław

    2014-12-01

    Full Text Available The aim of the study was to assess energy cost and total external work (total energy depending on the speed of race walking. Another objective was to determine the contribution of external work to total energy cost of walking at technical, threshold and racing speed in elite competitive race walkers.

  18. Achievement report for fiscal 1982 on Sunshine Program-entrusted research and development. Research on hydrogen energy total system; 1982 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    In this research on a hydrogen energy total system, studies are conducted on the plan of a hydrogen energy proving pilot base and on hydrogen as fuel for automobiles. It is estimated that the construction of a hydrogen energy proving pilot base will cost 7.125-billion yen in total. The sum includes 6.410-billion yen for the construction of a system on an island named Island A, 500-million yen for structures on an island named Island B, and 215-million yen for the construction of a marine transportation system between the two islands. Large shares will go to a hydroelectric power plant and a hydrogen liquefaction system, the two occupying approximately half of the total sum. In the study of hydrogen as fuel for automobiles, it is concluded that hydrogen is advantageously employed as fuel for automobiles. When comparison is made in terms of heat value, it is found that even a hydrogen engine which is a mere modification of a currently used engine is comparable to the currently used engine in terms of performance. As for abnormal combustion, a hydrogen/air 2-system injection method is contrived, and this solves the problem almost completely. Cryogenic hydrogen is advantageous in both NOx emission and heat efficiency though within certain limitations. From the viewpoint of safety, the recommended automobile fuel structural formula is GH{sub 2}(MH). (NEDO)

  19. Potential energy center site investigations

    International Nuclear Information System (INIS)

    Savage, W.F.

    1977-01-01

    Past studies by the AEC, NRC, NSF and others have indicated that energy centers have certain advantages over dispersed siting. There is the need, however, to investigate such areas as possible weather modifications due to major heat releases, possible changes in Federal/state/local laws and institutional arrangements to facilitate implementation of energy centers, and to assess methods of easing social and economic pressures on a surrounding community due to center construction. All of these areas are under study by ERDA, but there remains the major requirement for the study of a potential site to yield a true assessment of the energy center concept. In this regard the Division of Nuclear Research and Applications of ERDA is supporting studies by the Southern and Western Interstate Nuclear Boards to establish state and utility interest in the concept and to carry out screening studies of possible sites. After selection of a final site for center study , an analysis will be made of the center including technical areas such as heat dissipation methods, water resource management, transmission methods, construction methods and schedules, co-located fuel cycle facilities, possible mix of reactor types, etc. Additionally, studies of safeguards, the interaction of all effected entities in the siting, construction, licensing and regulation of a center, labor force considerations in terms of local impact, social and economic changes, and financing of a center will be conducted. It is estimated that the potential site study will require approximately two years

  20. Quantifying the potential of automated dynamic solar shading in office buildings through integrated simulations of energy and daylight

    DEFF Research Database (Denmark)

    Nielsen, Martin Vraa; Svendsen, Svend; Bjerregaard Jensen, Lotte

    2011-01-01

    The façade design is and should be considered a central issue in the design of energy-efficient buildings. That is why dynamic façade components are increasingly used to adapt to both internal and external impacts, and to cope with a reduction in energy consumption and an increase in occupant...... them with various window heights and orientations. Their performance was evaluated on the basis of the building’s total energy demand, its energy demand for heating, cooling and lighting, and also its daylight factors. Simulation results comparing the three façade alternatives show potential...

  1. A comment on the calculation of the total-factor energy efficiency (TFEE) index

    International Nuclear Information System (INIS)

    Chang, Ming-Chung

    2013-01-01

    This study provides a no-output growth model to conveniently calculate the total-factor energy efficiency (TFEE) index originally proposed by Hu and Wang (2006). The TFEE index serves as a very well-known and popular means of estimating overall energy efficiency. While many previous studies have used the indicator of energy inefficiency, including the indicator of energy intensity (i.e., Energy input/Gross Domestic Product (GDP)) to measure energy efficiency, Hu and Kao (2007) point out that the indicator of energy intensity is not only a partial-factor energy efficiency indicator, but that this partial-factor ratio is also quite inappropriate for analyzing the impact of changing energy use over time. The TFEE index overcomes the disadvantage of the indicator of energy intensity as mentioned above, but five steps are needed to calculate the TFEE score. In this study, we provide a no-output growth model to conveniently calculate the TFEE score. Furthermore, we extend this no-output growth model to an output growth model. This study concludes that the output growth model not only makes it easier to calculate the TFEE index than the model proposed by Hu and Wang (2006) and Hu and Kao (2007), but that it can also obtain better TFEE scores. - Highlights: ► The comment is on the total-factor energy efficiency (TFEE) index. ► Two extension models are no-output growth model and output growth model. ► The model in this study makes it easier to calculate the TFEE index.

  2. Institutional applications of solar total-energy systems. Draft final report. Volume 2. Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    The appendices present the analytical basis for the analysis of solar total energy (STE) systems. A regional-climate model and a building-load requirements model are developed, along with fuel-price scenarios. Life-cycle costs are compared for conventional-utility, total energy, and STE systems. Thermal STE system design trade-offs are performed and thermal STE system performance is determined. The sensitivity of STE competitiveness to fuel prices is examined. The selection of the photovoltaic array is briefly discussed. The institutional-sector decision processes are analyzed. Hypothetical regional back-up rates and electrical-energy costs are calculated. The algorithms and equations used in operating the market model are given, and a general methodology is developed for projecting the size of the market for STE systems and applied to each of 8 institutional subsectors. (LEW)

  3. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-15

    China’s annual cement production (i.e., 1,868 Mt) in 2010 accounted for nearly half of the world’s annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese cement industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 279 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 144 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 161 Mt CO2. The fuel CSC model for the cement industry suggests cumulative cost-effective fuel savings potential of 4,326 PJ which is equivalent to the total technical potential with associated CO2 emission reductions of 406 Mt CO2. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. We also developed a scenario in which instead of only implementing the international technologies in 2010-2030, we implement both international and Chinese domestic technologies during the analysis period and calculate the saving and cost of conserved energy accordingly. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost.

  4. Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China

    International Nuclear Information System (INIS)

    Dai Du; Hu Zhiyuan; Pu Gengqiang; Li He; Wang Chengtao

    2006-01-01

    The Guangxi Zhuang autonomous region has plentiful cassava resources, which is an ideal feedstock for fuel ethanol production. The Guangxi government intends to promote cassava fuel ethanol as a substitute for gasoline. The purpose of this study was to quantify the energy efficiency and potentials of a cassava fuel ethanol project in the Guangxi region based on a 100 thousand ton fuel ethanol demonstration plant at Qinzhou of Guangxi. The net energy value (NEV) and net renewable energy value (NREV) are presented to assess the energy and renewable energy efficiency of the cassava fuel ethanol system during its life cycle. The cassava fuel ethanol system was divided into five subsystems including the cassava plantation/treatment, ethanol conversion, denaturing, refueling and transportation. All the energy and energy related materials inputs to each subsystem were estimated at the primary energy level. The total energy inputs were allocated between the fuel ethanol and its coproducts with market value and replacement value methods. Available lands for a cassava plantation were investigated and estimated. The results showed that the cassava fuel ethanol system was energy and renewable energy efficient as indicated by positive NEV and NREV values that were 7.475 MJ/L and 7.881 MJ/L, respectively. Cassava fuel ethanol production helps to convert the non-liquid fuel into fuel ethanol that can be used for transportation. Through fuel ethanol production, one Joule of petroleum fuel, plus other forms of energy inputs such as coal, can produce 9.8 J of fuel ethanol. Cassava fuel ethanol can substitute for gasoline and reduce oil imports. With the cassava output in 2003, it can substitute for 166.107 million liters of gasoline. With the cassava output potential, it can substitute for 618.162 million liters of gasoline. Cassava fuel ethanol is more energy efficient than gasoline, diesel fuel and corn fuel ethanol but less efficient than biodiesel

  5. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  6. Improving the Energy Performance in Existing Non-residential Buildings in Denmark Using the Total Concept Method

    DEFF Research Database (Denmark)

    Krawczyk, Pawel; Afshari, Alireza; Simonsen, Graves K.

    2016-01-01

    This project is a part of a joint European research project, “Total Concept”, which is a method for improving the energy performance in existing non-Residential buildings. The method focuses on achieving maximum energy savings in a Building within the profitability frames set by a building owner...... was to form a package of measures for an energy performance improvement in the building based on the Total Concept method. This paper presents results from recently analyzed data on two renovated Danish buildings according to the rules of “Total Concept” method. According to the estimation done based...

  7. Studies on nuclear fusion energy potential based on a long-term world energy and environment model

    International Nuclear Information System (INIS)

    Tokimatsu, K.; Fujino, J.; Asaoka, Y.

    2001-01-01

    This study investigates introduction conditions and potential of nuclear fusion energy as energy supply and CO 2 mitigation technologies in the 21st century. Time horizon of the 21st century, 10 regionally allocated world energy/environment model (Linearized Dynamic New Earth 21) is used for this study. Following nuclear fusion technological data are taken into consideration: cost of electricity (COE) in nuclear fusion introduction year, annual COE reduction rates, regional introduction year, and maximum regional plant capacity constraints by maximum plant construction speed. We made simulation under a constraint of atmospheric CO 2 concentration of 550 parts per million by volume (ppmv) targeted at year 2100, assuming that sequestration technologies and unknown innovative technologies for CO 2 reduction are available. The results indicate that under the 550ppm scenario with nuclear fusion within maximum construction speed, 66mill/kWh is required for introducing nuclear fusion in 2050, 92 mill/kWh in 2060, and 106 mill/kWh in 2070. Therefore, tokamak type nuclear fusion reactors of present several reactor cost estimates are expected to be introduced between 2060 and 2070, and electricity generation fraction by nuclear fusion will go around 20% in 2100 if nuclear fusion energy growth is limited only by the maximum construction speed. CO 2 reduction by nuclear fusion introduced in 2050 from business-as-usual (BAU) scenario without nuclear fusion is about 20% of total reduction amount in 2100. In conclusion, nuclear fusion energy is revealed to be one of the candidates of energy supply technologies and CO 2 mitigation technologies. Cost competitiveness and removal of capacity constraint factors are desired for use of nuclear fusion energy in a large scale. (author)

  8. World Energy Needs and Offshore Potential of hydro energy and pump storage

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2008-09-01

    sites in rather desert areas operating between an onshore high reservoir and the sea as low reservoir. - Possibly 50 to 70 TWh from offshore sites operating between a high offshore basin and the sea ('Emerald Lakes'). The relevant total pumping capacity will be in the range of 5.000 GW (40.000 TWh / 8.640 hours). 70% of World future needs of electric power may be renewable at a very acceptable cost. Tidal power was more expensive than oil or gas power in 2000. It will be cost effective in the future in many places. The theoretical Worldwide tidal potential is very high, in the range of 20.000 TWh/year but it is only possible to use a reduced part of it. The future overall Hydropower Investments (2010-2080) will be one per thousand of the future world income. It will be less than 10% of the world investments for energy. In conclusion, renewable (hydro, wind, solar) may supply 60 to 80 % of the world Electricity needs with an acceptable cost and impact. 40 % will be supplied or stored by Hydropower. The hydropower investments may raise from 30 Billion $/year in 2010 up to 200 Billion $/year after 2040. Over half of future hydropower investments will be offshore. These investments will be used a century or more

  9. The total kinetic energy release in the fast neutron-induced fission of {sup 232}Th

    Energy Technology Data Exchange (ETDEWEB)

    King, Jonathan; Yanez, Ricardo; Loveland, Walter; Barrett, J. Spencer; Oscar, Breland [Oregon State University, Dept. of Chemistry, Corvallis, OR (United States); Fotiades, Nikolaos; Tovesson, Fredrik; Young Lee, Hye [Los Alamos National Laboratory, Physics Division, Los Alamos, NM (United States)

    2017-12-15

    The post-emission total kinetic energy release (TKE) in the neutron-induced fission of {sup 232}Th was measured (using white spectrum neutrons from LANSCE) for neutron energies from E{sub n} = 3 to 91 MeV. In this energy range the average post-neutron total kinetic energy release decreases from 162.3 ± 0.3 at E{sub n} = 3 MeV to 154.9 ± 0.3 MeV at E{sub n} = 91 MeV. Analysis of the fission mass distributions indicates that the decrease in TKE with increasing neutron energy is a combination of increasing yields of symmetric fission (which has a lower associated TKE) and a decrease in the TKE release in asymmetric fission. (orig.)

  10. Changes in Intakes of Total and Added Sugar and their Contribution to Energy Intake in the U.S.

    Directory of Open Access Journals (Sweden)

    Won O. Song

    2010-08-01

    Full Text Available This study was designed to document changes in total sugar intake and intake of added sugars, in the context of total energy intake and intake of nutrient categories, between the 1970s and the 1990s, and to identify major food sources contributing to those changes in intake. Data from the NHANES I and III were analyzed to obtain nationally representative information on food consumption for the civilian, non-institutionalized population of the U.S. from 1971 to 1994. In the past three decades, in addition to the increase in mean intakes of total energy, total sugar, added sugars, significant increases in the total intake of carbohydrates and the proportion of carbohydrates to the total energy intake were observed. The contribution of sugars to total carbohydrate intake decreased in both 1–18 y and 19+ y age subgroups, and the contribution of added sugars to the total energy intake did not change. Soft drinks/fluid milk/sugars and cakes, pastries, and pies remained the major food sources for intake of total sugar, total carbohydrates, and total energy during the past three decades. Carbonated soft drinks were the most significant sugar source across the entire three decades. Changes in sugar consumption over the past three decades may be a useful specific area of investigation in examining the effect of dietary patterns on chronic diseases.

  11. Theoretical potential and utilization of renewable energy in Afghanistan

    Directory of Open Access Journals (Sweden)

    Gul Ahmad Ludin

    2016-12-01

    Full Text Available Nowadays, renewable energy is gaining more attention than other resources for electricity generation in the world. For Afghanistan that has limited domestic production of electric power and is more dependent on the unstable imported power from neighboring countries which pave the way to raise the cost of energy and increased different technical and economic problems. The employment of renewable energy would not only contribute to the independence of energy supply but also can achieve the socio-economic benefits for the country which is trying to rebuild its energy sector with a focus on sustainable energy for its population. From a theoretical point of view, there is a considerable potential of renewable energies such as solar energy, wind power, hydropower, biomass and geothermal energy available in the country. However, despite the presence of widespread non-agricultural and non-residential lands, these resources have not been deployed efficiently. This paper assesses the theoretical potential of the aforementioned types of renewable energies in the country. The study indicates that deployment of renewable energies can not only supplement the power demand but also will create other opportunities and will enable a sustainable energy base in Afghanistan.

  12. Estimating energy conservation potential in China's commercial sector

    International Nuclear Information System (INIS)

    Lin, Boqiang; Wang, Ailun

    2015-01-01

    With low energy intensity and great potential for growth, the commercial sector has become one of the key sectors for energy conservation and emission reduction in the context of China's rapid urbanization process. Based on the EIA (Energy Information Administration) statistical methods, this paper calculates the energy consumption of China's commercial sector from 1981 to 2012, specifies the determinants of commercial energy demand, forecasts future energy consumption and estimates the energy conservation potentials using the Johansen co-integration methodology. The results indicate: (i) GDP (Gross Domestic Product) and urbanization have positive effects on the energy consumption of the commercial sector while labor productivity and energy price contribute to reduction in the sector's energy consumption. (ii) Under the basic scenario, energy consumption of the commercial sector will be 317.34 and 469.84 Mtce (million tons of coal equivalent) in 2015 and 2020 respectively. (iii) Under the moderate and advanced scenario, about 187.00 and 531.45 Mtce respectively of the energy consumption of the commercial sector can be conserved from 2013 to 2020. The findings have important implications for policy-makers to enact energy-saving policies. - Highlights: • Calculation of China's commercial energy consumption and saving potential. • Co-integration model is applied to estimate commercial energy efficiency. • Decomposition of driving forces of energy consumption. • Future policies for commercial energy efficiency are discussed

  13. Study of the potential of wave energy in Malaysia

    Science.gov (United States)

    Tan, Wan Ching; Chan, Keng Wai; Ooi, Heivin

    2017-07-01

    Renewable energy is generally defined as energy harnessed from resources which are naturally replenished. It is an alternative to the current conventional energy sources such as natural gas, oil and coal, which are nonrenewable. Besides being nonrenewable, the harnessing of these resources generally produce by-products which could be potentially harmful to the environment. On the contrary, the generation from renewable energy does not pose environmental degradation. Some examples of renewable energy sources are sunlight, wind, tides, waves and geothermal heat. Wave energy is considered as one of the most promising marine renewable resources and is becoming commercially viable quicker than other renewable technologies at an astonishing growth rate. This paper illustrates the working principle of wave energy converter (WEC) and the availability of wave energy in Malaysia oceans. A good understanding of the behaviour of ocean waves is important for designing an efficient WEC as the characteristics of the waves in shallow and deep water are different. Consequently, wave energy converters are categorized into three categories on shore, near shore and offshore. Therefore, the objectives of this study is ought to be carried out by focusing on the formation of waves and wave characteristics in shallow as well as in deep water. The potential sites for implementation of wave energy harvesting technology in Malaysia and the wave energy available in the respective area were analysed. The potential of wave energy in Malaysia were tabulated and presented with theoretical data. The interaction between motion of waves and heave buoys for optimum phase condition by using the mass and diameter as the variables were investigated.

  14. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model

    Science.gov (United States)

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu

    2017-09-01

    Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model—GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.

  15. EFISIENSI ENERGI DAN PRODUKSI PADA USAHATANI PADI DI LAHAN SULFAT MASAM POTENSIAL (Efficiency of Production and Energy on Rice Farming in Acid Sulphate Soil Potential

    Directory of Open Access Journals (Sweden)

    Sudirman Umar

    2016-02-01

    Full Text Available Tidal swamp land is a potential land to overcome in the future national food security as a result of land conversion.  Generally, in farming system, farmer labor in used from land preparation till postharvest.  Experiment was conducted at experimental station of Belandean, Barito Kuala regency, South Kalimantan in April until September 2009.  The object of experiment was to evaluate distribution and consumption of energy for managing farming system on acid sulphate soil potential with introduction technology at dry season.  Energy consumption was analyzed on all steps of production process.  Result of analysis showed that rice cultivation on potential acid sulphate soil utilized physical energy (man power without tractor and power thresher as 253,116.80-195,170.55 k.cal ha-1.  Total energy for managing one hectare of that area was 274.858,90 k.cal ha-1 with introduction technology or 1.41 times more than by farmer technology.  Comparing with total of cost production, cost of man power with introduction technology was 56,92 %.  In production process, by applying input of physical and chemical cost, produced  energy output as 20,799,900 k.cal ha-1 and Rp 14,325,000 of cost output or increased as 48.15 %.  Based those input and output of energy was obtained production efficiency as 9,02% and 9,73 % for introduction and farmer technology. On farming system in potensial tidal swamp the energy input and production increased 1.54 and 1.15 times by addition introduction technology.  Result of evaluation showed that utilization production capital becoming more increase utilization of purun tikus (eleocharis dulcis, ameliorant and one way flow, production technology input increased as 54.31%. Keywords: Energy, acid sulphate land, rice ABSTRAK Lahan rawa pasang surut merupakan lahan alternatif yang potensial untuk mengatasi kekurangan pangan akibat menciutnya lahan subur yang telah beralih fungsi ke penggunaan non pertanian sehingga petani pun

  16. Total reflection coefficients of low-energy photons presented as universal functions

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan

    2010-01-01

    Full Text Available The possibility of expressing the total particle and energy reflection coefficients of low-energy photons in the form of universal functions valid for different shielding materials is investigated in this paper. The analysis is based on the results of Monte Carlo simulations of photon reflection by using MCNP, FOTELP, and PENELOPE codes. The normal incidence of the narrow monoenergetic photon beam of the unit intensity and of initial energies from 20 keV up to 100 keV is considered, and particle and energy reflection coefficients from the plane homogenous targets of water, aluminum, and iron are determined and compared. The representations of albedo coefficients on the initial photon energy, on the probability of large-angle photon scattering, and on the mean number of photon scatterings are examined. It is found out that only the rescaled albedo coefficients dependent on the mean number of photon scatterings have the form of universal functions and these functions are determined by applying the least square method.

  17. Biogas from poultry waste-production and energy potential.

    Science.gov (United States)

    Dornelas, Karoline Carvalho; Schneider, Roselene Maria; do Amaral, Adriana Garcia

    2017-08-01

    The objective of this study was to evaluate the effect of heat treatment on poultry litter with different levels of reutilisation for potential generation of biogas in experimental biodigesters. Chicken litter used was obtained from two small-scale poultry houses where 14 birds m -2 were housed for a period of 42 days per cycle. Litter from aviary 1 received no heat treatment while each batch of litter produced from aviary 2 underwent a fermentation process. For each batch taken, two biodigesters were set for each aviary, with hydraulic retention time of 35 days. The efficiency of the biodigestion process was evaluated by biogas production in relation to total solids (TS) added, as well as the potential for power generation. Quantified volumes ranged from 8.9 to 41.1 L of biogas for aviary 1, and 6.7 to 33.9 L of biogas for aviary 2, with the sixth bed reused from both aviaries registering the largest biogas potential. Average potential biogas in m 3  kg -1 of TS added were 0.022 to 0.034 for aviary 1 and 0.015 to 0.022 for aviary 2. Energy values ​​of biogas produced were calculated based on calorific value and ranged from 0.06 to 0.33 kWh for chicken litter without fermentation and from 0.05 to 0.27 kWh for chicken litter with fermentation. It was concluded that the re-use of poultry litter resulted in an increase in biogas production, and the use of fermentation in the microbiological treatment of poultry litter seems to have negatively influenced production of biogas.

  18. Potential of Solar Energy in Kota Kinabalu, Sabah: An Estimate Using a Photovoltaic System Model

    Science.gov (United States)

    Markos, F. M.; Sentian, J.

    2016-04-01

    Solar energy is becoming popular as an alternative renewable energy to conventional energy source, particularly in the tropics, where duration and intensity of solar radiation are longer. This study is to assess the potential of solar energy generated from solar for Kota Kinabalu, a rapidly developing city in the State of Sabah, Malaysia. A year data of solar radiation was obtained using pyranometer, which was located at Universiti Malaysia Sabah (6.0367° N, 116.1186° E). It was concluded that the annual average solar radiation received in Kota Kinabalu was 182 W/m2. In estimating the potential energy generated from solar for Kota Kinabalu city area, a photovoltaic (PV) system model was used. The results showed that, Kota Kinabalu is estimated to produce 29,794 kWh/m2 of electricity from the solar radiation received in a year. This is equivalent to 0.014 MW of electricity produced just by using one solar panel. Considering the power demand in Sabah by 2020 is 1,331 MW, this model showed that the solar energy can contribute around 4% of energy for power demand, with 1 MW capacity of the PV system. 1 MW of PV system installation will require about 0.0328% from total area of the city. This assessment could suggest that, exploration for solar power energy as an alternative source of renewable energy in the city can be optimised and designed to attain significant higher percentage of contribution to the energy demand in the state.

  19. Potential of Solar Energy in Kota Kinabalu, Sabah: An Estimate Using a Photovoltaic System Model

    International Nuclear Information System (INIS)

    Markos, F M; Sentian, J

    2016-01-01

    Solar energy is becoming popular as an alternative renewable energy to conventional energy source, particularly in the tropics, where duration and intensity of solar radiation are longer. This study is to assess the potential of solar energy generated from solar for Kota Kinabalu, a rapidly developing city in the State of Sabah, Malaysia. A year data of solar radiation was obtained using pyranometer, which was located at Universiti Malaysia Sabah (6.0367° N, 116.1186° E). It was concluded that the annual average solar radiation received in Kota Kinabalu was 182 W/m 2 . In estimating the potential energy generated from solar for Kota Kinabalu city area, a photovoltaic (PV) system model was used. The results showed that, Kota Kinabalu is estimated to produce 29,794 kWh/m 2 of electricity from the solar radiation received in a year. This is equivalent to 0.014 MW of electricity produced just by using one solar panel. Considering the power demand in Sabah by 2020 is 1,331 MW, this model showed that the solar energy can contribute around 4% of energy for power demand, with 1 MW capacity of the PV system. 1 MW of PV system installation will require about 0.0328% from total area of the city. This assessment could suggest that, exploration for solar power energy as an alternative source of renewable energy in the city can be optimised and designed to attain significant higher percentage of contribution to the energy demand in the state. (paper)

  20. Potential energy function of CN-

    Czech Academy of Sciences Publication Activity Database

    Špirko, Vladimír; Polák, Rudolf

    2008-01-01

    Roč. 248, č. 1 (2008), s. 77-80 ISSN 0022-2852 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550511; GA AV ČR IAA400400504 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40400503 Keywords : potential energy curve * fundamental transition * spectroscopic constants Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.636, year: 2008

  1. Potential energy landscapes of elemental and heterogeneous chalcogen clusters

    International Nuclear Information System (INIS)

    Mauro, John C.; Loucks, Roger J.; Balakrishnan, Jitendra; Varshneya, Arun K.

    2006-01-01

    We describe the potential energy landscapes of elemental S 8 , Se 8 , and Te 8 clusters using disconnectivity graphs. Inherent structures include both ring and chain configurations, with rings especially dominant in Se 8 . We also map the potential energy landscapes of heterogeneous Se n (S,Te) 8-n clusters, which offer insights into the structure of heterogeneous chalcogen glasses

  2. Comparison of stress and total energy methods for calculation of elastic properties of semiconductors.

    Science.gov (United States)

    Caro, M A; Schulz, S; O'Reilly, E P

    2013-01-16

    We explore the calculation of the elastic properties of zinc-blende and wurtzite semiconductors using two different approaches: one based on stress and the other on total energy as a function of strain. The calculations are carried out within the framework of density functional theory in the local density approximation, with the plane wave-based package VASP. We use AlN as a test system, with some results also shown for selected other materials (C, Si, GaAs and GaN). Differences are found in convergence rate between the two methods, especially in low symmetry cases, where there is a much slower convergence for total energy calculations with respect to the number of plane waves and k points used. The stress method is observed to be more robust than the total energy method with respect to the residual error in the elastic constants calculated for different strain branches in the systems studied.

  3. A new potential energy surface for vibration-vibration coupling in HF-HF collisions. Formulation and quantal scattering calculations

    Science.gov (United States)

    Schwenke, David W.; Truhlar, Donald G.

    1988-04-01

    We present new ab initio calculations of the HF-HF interaction potential for the case where both molecules are simultaneously displaced from their equilibrium internuclear distance. These and previous ab initio calculations are then fit to a new analytic representation which is designed to be efficient to evaluate and to provide an especially faithful account of the forces along the vibrational coordinates. We use the new potential for two sets of quantal scattering calculations for collisions in three dimensions with total angular momentum zero. First we test that the angular harmonic representation of the anisotropy is adequate by comparing quantal rigid rotator calculations to those carried out for potentials involving higher angular harmonics and for which the expansion in angular harmonics is systematically increased to convergence. Then we carry out large-scale quantal calculations of vibration-vibration energy transfer including the coupling of both sets of vibrational and rotational coordinates. These calculations indicate that significant rotational energy transfer accompanies the vibration-to-vibration energy transfer process.

  4. Discovering the energy, economic and environmental potentials of urban wastes: An input–output model for a metropolis case

    International Nuclear Information System (INIS)

    Song, Junnian; Yang, Wei; Li, Zhaoling; Higano, Yoshiro; Wang, Xian’en

    2016-01-01

    Highlights: • A waste-to-energy system is constructed incorporating various urban wastes and technologies. • Waste-to-energy industries are formed and introduced into current socioeconomic system. • A novel input–output simulation model is developed and applied to a metropolis. • Complete energy, economic and environmental potentials of urban wastes are discovered. - Abstract: Tremendous amounts of wastes are generated in urban areas due to accelerating industrialization and urbanization. The current unreasonable waste disposal patterns and potential energy value of urban wastes necessitates the promotion of waste-to-energy implementation. This study is intent on discovering the complete energy, economic and environmental potentials of urban wastes taking municipal solid wastes, waste oil, organic wastewater and livestock manure into consideration. A waste-to-energy system is constructed incorporating these wastes and five waste-to-energy technologies. A novel input–output simulation model is developed and applied to a metropolis to introduce the waste-to-energy system into the current socioeconomic system and form five waste-to-energy industries. The trends in waste generation and energy recovery potential, economic benefits and greenhouse gas mitigation contribution for the study area are estimated and explored from 2011 to 2025. By 2025, biodiesel production and power generation could amount to 72.11 thousand t and 1.59 billion kW h respectively. Due to the highest energy recovery and the most subsidies, the organic wastewater biogas industry has the highest output and net profit, followed by the waste incineration power generation industry. In total 17.97 million t (carbon dioxide-equivalent) accumulative greenhouse gas emission could be mitigated. The organic wastewater biogas industry and waste incineration power generation industry are more advantageous for the study area in terms of better energy, economic and environmental performances. The

  5. Regional total factor energy efficiency: An empirical analysis of industrial sector in China

    International Nuclear Information System (INIS)

    Wang, Zhao-Hua; Zeng, Hua-Lin; Wei, Yi-Ming; Zhang, Yi-Xiang

    2012-01-01

    Highlights: ► We evaluate energy efficiency under framework of total factor energy efficiency. ► We focus on industry sector of China. ► We use statistical data of industrial enterprises above designated size. ► Energy efficiencies among regions in China are obvious because of technological differences. ► Large scale of investment should be stopped especially in central and western regions. -- Abstract: The rapid growth of the Chinese economy has resulted in great pressure on energy consumption, especially the energy intensive sector – the industrial sector. To achieve sustainable development, China has to consider how to promote energy efficiency to meet the demand of Chinese rapid economic growth, as the energy efficiency of China is relatively low. Meanwhile, the appeal of energy saving and emission reduction has been made by the Chinese central government. Therefore, it is important to evaluate the energy efficiency of industrial sector in China and to assess efficiency development probabilities. The framework of total factor energy efficiency index is adopted to determine the discrepancy of energy efficiency in Chinese industrial sector based on the provincial statistical data of industrial enterprises above designated size in 30 provinces from 2005 to 2009, with gross industrial output as the output value and energy consumption, average remaining balance of capital assets and average amount of working force as the input values. Besides, in considerate of the regional divide of China, namely eastern, central, and western, and economic development differences in each region, energy efficiency of each region is also analysed in this paper. The results show that there is room for China to improve its energy efficiency, especially western provinces which have large amount of energy input excess. Generally speaking, insufficient technological investment and fail of reaching best scale of manufacture are two factors preventing China from energy

  6. Biomass energy in organic farming - the potential role of short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Uffe; Dalgaard, Tommy [Danish Inst. of Agricultural Sciences (DIAS), Dept. of Agroecology, Research Centre Foulum, Tjele (Denmark); Kristensen, Erik Steen [Danish Research Centre for Organic Farming (DARCOF), Research Centre Foulum, Tjele (Denmark)

    2005-02-01

    One of the aims of organic farming is to 'reduce the use of non-renewable resources (e.g. fossil fuels) to a minimum'. So far, however, only very little progress has been made to introduce renewable energy in organic farming. This paper presents energy balances of Danish organic farming compared with energy balances of conventional farming. In general, the conversion to organic farming leads to a lower energy use (approximately 10% per unit of product). But the production of energy in organic farming is very low compared with the extensive utilisation of straw from conventional farming in Denmark (energy content of straw used for energy production was equivalent to 18% of total energy input in Danish agriculture in 1996). Biomass is a key energy carrier with a good potential for on-farm development. Apart from utilising farm manure and crop residues for biogas production, the production of nutrient efficient short rotation coppice (SRC) is an option in organic farming. Alder (Alnus spp.) is an interesting crop due to its symbiosis with the actinomycete Frankia, which has the ability to fix up to 185 kg/ha nitrogen (N{sub 2}) from the air. Yields obtained at different European sites are presented and the R and D needed to implement energy cropping in organic farming is discussed. Possible win-win solutions for SRC production in organic farming that may facilitate its implementation are; the protection of ground water quality in intensively farmed areas, utilisation of wastewater for irrigation, or combination with outdoor animal husbandry such as pigs or poultry. (Author)

  7. The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson's disease.

    Science.gov (United States)

    Pissadaki, Eleftheria K; Bolam, J Paul

    2013-01-01

    Dopamine neurons of the substantia nigra pars compacta (SNc) are uniquely sensitive to degeneration in Parkinson's disease (PD) and its models. Although a variety of molecular characteristics have been proposed to underlie this sensitivity, one possible contributory factor is their massive, unmyelinated axonal arbor that is orders of magnitude larger than other neuronal types. We suggest that this puts them under such a high energy demand that any stressor that perturbs energy production leads to energy demand exceeding supply and subsequent cell death. One prediction of this hypothesis is that those dopamine neurons that are selectively vulnerable in PD will have a higher energy cost than those that are less vulnerable. We show here, through the use of a biology-based computational model of the axons of individual dopamine neurons, that the energy cost of axon potential propagation and recovery of the membrane potential increases with the size and complexity of the axonal arbor according to a power law. Thus SNc dopamine neurons, particularly in humans, whose axons we estimate to give rise to more than 1 million synapses and have a total length exceeding 4 m, are at a distinct disadvantage with respect to energy balance which may be a factor in their selective vulnerability in PD.

  8. Energy from streaming current and potential

    NARCIS (Netherlands)

    Olthuis, Wouter; Schippers, Bob; Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    It is investigated how much energy can be delivered by a streaming current source. A streaming current and subsequent streaming potential originate when double layer charge is transported by hydrodynamic flow. Theory and a network model of such a source is presented and initial experimental results

  9. Electron-impact rotationally elastic total cross sections for H2CO and HCOOH over a wide range of incident energy (0.01-2000 eV)

    International Nuclear Information System (INIS)

    Vinodkumar, Minaxi; Bhutadia, Harshad; Antony, Bobby; Mason, Nigel

    2011-01-01

    This paper reports computational results of the total cross sections for electron impact on H 2 CO and HCOOH over a wide range of electron impact energies from 0.01 eV to 2 keV. The total cross section is presented as sum of the elastic and electronic excitation cross sections for incident energies. The calculation uses two different methodologies, below the ionization threshold of the target the cross section is calculated using the UK molecular R-matrix code through the Quantemol-N software package while cross sections at higher energies are evaluated using the spherical complex optical potential formalism. The two methods are found to be consistent at the transition energy (∼15 eV). The present results are, in general, found to be in good agreement with previous experimental and theoretical results (wherever available) and, thus, the present results can serve as a benchmark for the cross section over a wide range of energy.

  10. Energy independent optical potentials: construction and limitations

    International Nuclear Information System (INIS)

    Hussein, M.S.; Moniz, E.J.

    1983-11-01

    Properties of the energy-independent potential U sup(-) which is wave-function-equivalent to the usual optical potential U(E) are constructed and examined. A simple procedure is presented for constructing U sup(-) in the uniform medium, and physical examples are discussed. The general result for finite systems, a recursive expansion in powers of U(E), is used to investigate the multiple scattering expansion of U sup(-); the energy-independent potential is found to have serious short-comings for direct microscopic construction or phenomenological parametrization. The microscopic theory, as exemplified here by the multiple scattering approach, does not lead to a reliable approximation scheme. Phenomenological approaches to U sup(-) are unattractive because the physics does not guide the parametrization effectively: the structure of the nonlocality is not tied directly to the dynamics; Im U sup(-) changes sign; different elements of the physics, separate in U(E), are completely entangled in U sup(-). (Author) [pt

  11. Estimates of the potential for energy conservation in the Chinese steel industry

    International Nuclear Information System (INIS)

    Lin Boqiang; Wu Ya; Zhang Li

    2011-01-01

    The study evaluates the energy saving potential of the Chinese steel industry by studying its potential future energy efficiency gap. In order to predict the future energy efficiency gap, a multivariate regression model combined with risk analysis is developed to estimate future energy intensity of China's steel industry. It is found that R and D intensity, energy saving investment, labor productivity and industry concentration are all important variables that affect energy intensity. We assess the possible measures as to how China's steel industry can narrow the energy efficiency gap with Japan by means of scenario analysis. Using Japan's current energy efficiency level as baseline, the energy saving potential of China's steel industry is more than 200 million ton coal equivalent in 2008, and it would fall to zero in 2020. However, if greater efforts were made to conserve energy, it would be possible to narrow down the energy efficiency gap between China and Japan by around 2015. Finally, using the results of the scenario analysis, future policy priorities for energy conservation in China's steel industry are assessed in this paper. - Highlights: → The energy saving potential of the Chinese steel industry is evaluated. → A multivariate regression model combined with risk analysis is developed. → R and D, energy saving investment, labor, and structure affect energy intensity.→ The energy saving potential of China's steel industry would fall to zero in 2020.→ Future policy for energy conservation in China's steel industry are assessed.

  12. Potential Energy Curve of N2 Revisited

    Czech Academy of Sciences Publication Activity Database

    Špirko, Vladimír; Xiangzhu, L.; Paldus, J.

    2011-01-01

    Roč. 76, č. 4 (2011), s. 327-341 ISSN 0010-0765 R&D Projects: GA MŠk LC512; GA ČR GAP208/11/0436 Institutional research plan: CEZ:AV0Z40550506 Keywords : reduced multireference coupled-cluster method * reduced potential curve method * nitrogen molecule potential energy curves Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.283, year: 2011

  13. Framework for Evaluating the Total Value Proposition of Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Pater, J. E.

    2006-02-01

    Conventional valuation techniques fail to include many of the financial advantages of clean energy technologies. By omitting benefits associated with risk management, emissions reductions, policy incentives, resource use, corporate social responsibility, and societal economic benefits, investors and firms sacrifice opportunities for new revenue streams and avoided costs. In an effort to identify some of these externalities, this analysis develops a total value proposition for clean energy technologies. It incorporates a series of values under each of the above categories, describing the opportunities for recapturing investments throughout the value chain. The framework may be used to create comparable value propositions for clean energy technologies supporting investment decisions, project siting, and marketing strategies. It can also be useful in policy-making decisions.

  14. On the coherence between high-energy total cross-section data when compared with general principles

    International Nuclear Information System (INIS)

    Gauron, P.; Nicolescu, B.; Paris-6 Univ., 75

    1993-12-01

    An essential model is performed - an independent study of the internal coherence between high-energy total cross-section data by using classes of functions satisfying general principles. The study is practically independent of the ρ-parameter values. This general analysis, made without any fit, reveals certain inconsistencies in the existing set of high-energy data. Some of these inconsistencies are eliminated by giving up arbitrary assumptions sometimes made in 'fitology'. It is shown that the ln 2 s increase of total cross-sections at high energies is clearly favoured when compared with other possible behaviours. (authors). 16 refs., 3 figs

  15. Assessing the Potential for Renewable Energy on National Forest System Lands

    Energy Technology Data Exchange (ETDEWEB)

    2005-01-01

    This technical report and CD for the U.S. Department of Agriculture, Forest Service (USFS), evaluates the potential for renewable energy resource development on National Forest System (NFS) lands. USFS can use the report findings to consider potential for development of solar and wind energy resources on NFS lands, in land management decisions. The Geographical Information System (GIS) based analysis resulted in the following findings: (1) Ninety-nine National Forest Units have high potential for power production from one or more of these solar and wind energy sources; and (2) Twenty National Forest Units in nine states have high potential for power production from two or more of these solar and wind energy sources.

  16. Exploring the transition potential of renewable energy communities

    NARCIS (Netherlands)

    Doci, G.; Vasileiadou, E.

    Renewable energy communities are grassroots initiatives that invest in ‘clean energy’ in order to meet consumption needs and environmental goals and thereby – often unwittingly – conduce to the spread of renewables. Our aim in the present study is to explore the potential of renewable energy

  17. Reduction potentials of energy demand and GHG emissions in China's road transport sector

    International Nuclear Information System (INIS)

    Yan Xiaoyu; Crookes, Roy J.

    2009-01-01

    Rapid growth of road vehicles, private vehicles in particular, has resulted in continuing growth in China's oil demand and imports, which has been widely accepted as a major factor effecting future oil availability and prices, and a major contributor to China's GHG emission increase. This paper is intended to analyze the future trends of energy demand and GHG emissions in China's road transport sector and to assess the effectiveness of possible reduction measures. A detailed model has been developed to derive a reliable historical trend of energy demand and GHG emissions in China's road transport sector between 2000 and 2005 and to project future trends. Two scenarios have been designed to describe the future strategies relating to the development of China's road transport sector. The 'Business as Usual' scenario is used as a baseline reference scenario, in which the government is assumed to do nothing to influence the long-term trends of road transport energy demand. The 'Best Case' scenario is considered to be the most optimized case where a series of available reduction measures such as private vehicle control, fuel economy regulation, promoting diesel and gas vehicles, fuel tax and biofuel promotion, are assumed to be implemented. Energy demand and GHG emissions in China's road transport sector up to 2030 are estimated in these two scenarios. The total reduction potentials in the 'Best Case' scenario and the relative reduction potentials of each measure have been estimated

  18. A prospective study of spine fractures diagnosed by total spine computed tomography in high energy trauma patients

    International Nuclear Information System (INIS)

    Takami, Masanari; Nohda, Kazuhiro; Sakanaka, Junya; Nakamura, Masamichi; Yoshida, Munehito

    2011-01-01

    Since it is known to be impossible to identify spinal fractures in high-energy trauma patients the primary trauma evaluation, we have been performing total spine computed tomography (CT) in high-energy trauma cases. We investigated the spinal fractures that it was possible to detect by total spine CT in 179 cases and evaluated the usefulness of total spine CT prospectively. There were 54 (30.2%) spinal fractures among the 179 cases. Six (37.5%) of the 16 cervical spine fractures that were not detected on plain X-ray films were identified by total spine CT. Six (14.0%) of 43 thoracolumbar spine fractures were considered difficult to diagnose based on the clinical findings if total spine CT had not been performed. We therefore concluded that total spine CT is very useful and should be performed during the primary trauma evaluation in high-energy trauma cases. (author)

  19. Renewable Energy in Reunion: Potentials and Outlook

    International Nuclear Information System (INIS)

    Baddour, Julien; Percebois, Jacques

    2011-01-01

    Renewable, environmentally friendly and evenly distributed across the globe, renewable energy (RES for Renewable Energy Resources) is an excellent means of taking up the global energy challenge, i.e. enabling developing countries in the south to make progress without harming the environment. Since it is particularly well suited to an island territory's character and local needs, RE is also an excellent tool that could enable France's overseas Departments and Territories to reduce their energy dependence, preserve their environment and ensure their sustainable development. In Reunion, RES benefit from marked political support and from a very favourable financial and institutional environment, which has allowed the Reunion region to become a national pioneer in the realm of thermal energy and photovoltaics. Nonetheless, RES are not a panacea as they are subject to a number of flaws. It is currently expensive and uncompetitive, intermittent and insufficiently powerful, and not always available to keep up with demand. This explains why RES cannot aspire to be a complete substitute for fossil fuels. The two energy systems complement one another to meet the region's total energy needs. This article also highlights the negative consequences of the support measures for RES (inflated costs and negative prices on the electricity markets) and underscores the need for a complementary energy policy in pricing electricity, as well as effecting energy savings, which must remain our priority. (authors)

  20. The potential of solar energy in the Netherlands

    International Nuclear Information System (INIS)

    Sinke, W.C.; De Geus, A.C.

    1993-01-01

    Solar energy in the Netherlands is not yet a well-known phenomenon. Still, the potential of solar energy to save or generate energy is large. Several forms of solar energy, as well as its possibilities and limitations, are introduced in this article. Attention is paid to active and passive thermal solar energy, and photovoltaic solar energy. Also the involvement of different parties in introducing solar energy is discussed. The next 10-20 years will be characterized by large-scale practical experiments and market introduction. The application of solar energy should be taken into account when planning urban areas. It is expected that ongoing developments in all fields of solar energy will result in a considerable improvement of the price/performance ratio and many new possibilities. 4 figs., 4 ills., 14 refs

  1. Li breakup polarization potential at near barrier energies

    International Nuclear Information System (INIS)

    Lubian, F. J.; Correa, T.; Gomes, P.R.S.; Paes, B; Figueira, J. M.; Abriola, D.; Fernandez, J. O.; Capurro, O. A.; Marti, G.V.; Martinez, D.; Heimann; Negri, A.; Pacheco, A. J.; Padron, I.

    2007-01-01

    Inelastic and one neutron transfer cross sections at energies around the Coulomb barrier were used to derive dynamic polarization potential (DPP) for the 7 Li + 27 Al system. The DPP due to breakup, obtained in a simple way, indicates that its real part is repulsive at nearbarrier energies. (Author)

  2. Total electron scattering cross sections for methanol and ethanol at intermediate energies

    International Nuclear Information System (INIS)

    Silva, D G M; Tejo, T; Lopes, M C A; Muse, J; Romero, D; Khakoo, M A

    2010-01-01

    Absolute total cross section (TCS) measurements of electron scattering from gaseous methanol and ethanol molecules are reported for impact energies from 60 to 500 eV, using the linear transmission method. The attenuation of intensity of a collimated electron beam through the target volume is used to determine the absolute TCS for a given impact energy, using the Beer-Lambert law to first approximation. Besides these experimental measurements, we have also determined TCS using the additivity rule.

  3. Wind energy potential assessment at four typical locations in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Getachew; Palm, Bjoern [Department of Energy Technology, KTH, 10044 Stockholm (Sweden)

    2009-03-15

    The wind energy potential at four different sites in Ethiopia - Addis Ababa (09:02N, 38:42E), Mekele (13:33N, 39:30E), Nazret (08:32N, 39:22E), and Debrezeit (8:44N, 39:02E) - has been investigated by compiling data from different sources and analyzing it using a software tool. The results relating to wind energy potential are given in terms of the monthly average wind speed, wind speed probability density function (PDF), wind speed cumulative density function (CDF), and wind speed duration curve (DC) for all four selected sites. In brief, for measurements taken at a height of 10 m, the results show that for three of the four locations the wind energy potential is reasonable, with average wind speeds of approximately 4 m/s. For the fourth site, the mean wind speed is less than 3 m/s. This study is the first stage in a longer project and will be followed by an analysis of solar energy potential and finally the design of a hybrid standalone electric energy supply system that includes a wind turbine, PV, diesel generator and battery. (author)

  4. Potential for natural evaporation as a reliable renewable energy resource.

    Science.gov (United States)

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  5. Revisiting Renewable Energy Map in Indonesia: Seasonal Hydro and Solar Energy Potential for Rural Off-Grid Electrification (Provincial Level

    Directory of Open Access Journals (Sweden)

    Agung Wahyuono Ruri

    2018-01-01

    Full Text Available Regarding the acceleration of renewable energy diffusion in Indonesia as well as achieving the national energy mix target, renewable energy map is essential to provide useful information to build renewable energy system. This work aims at updating the renewable energy potential map, i.e. hydro and solar energy potential, with a revised model based on the global climate data. The renewable energy map is intended to assist the design off-grid system by hydropower plant or photovoltaic system, particularly for rural electrification. Specifically, the hydro energy map enables the stakeholders to determine the suitable on-site hydro energy technology (from pico-hydro, micro-hydro, mini-hydro to large hydropower plant. Meanwhile, the solar energy map depicts not only seasonal solar energy potential but also estimated energy output from photovoltaic system.

  6. The conditions for total reflection of low-energy atoms from crystal surfaces

    International Nuclear Information System (INIS)

    Hou, M.; Robinson, M.T.

    1978-01-01

    The critical angles for the total reflection of low-energy particles from Cu rows and (001) planes have been investigated, using the binary collision approximation computer simulation code MARLOWE Breakthrough angles were evaluated for H, N, Ne, Ar, Cu, Xe, and Au in the energy range from 0.1 to 7.5 keV. In both the axial and the planar cases, recoiling of the target atoms lowers the energy barrier which the target surface presents to the heavy projectiles. Consequently, the breakthrough angles are reduced for heavy projectiles below the values expected either from observations on light projectiles or from analytical channeling theory. (orig.) [de

  7. Regional prediction of long-term landfill gas to energy potential.

    Science.gov (United States)

    Amini, Hamid R; Reinhart, Debra R

    2011-01-01

    Quantifying landfill gas to energy (LFGTE) potential as a source of renewable energy is difficult due to the challenges involved in modeling landfill gas (LFG) generation. In this paper a methodology is presented to estimate LFGTE potential on a regional scale over a 25-year timeframe with consideration of modeling uncertainties. The methodology was demonstrated for the US state of Florida, as a case study, and showed that Florida could increase the annual LFGTE production by more than threefold by 2035 through installation of LFGTE facilities at all landfills. The estimated electricity production potential from Florida LFG is equivalent to removing some 70 million vehicles from highways or replacing over 800 million barrels of oil consumption during the 2010-2035 timeframe. Diverting food waste could significantly reduce fugitive LFG emissions, while having minimal effect on the LFGTE potential; whereas, achieving high diversion goals through increased recycling will result in reduced uncollected LFG and significant loss of energy production potential which may be offset by energy savings from material recovery and reuse. Estimates showed that the power density for Florida LFGTE production could reach as high as 10 Wm(-2) with optimized landfill operation and energy production practices. The environmental benefits from increased lifetime LFG collection efficiencies magnify the value of LFGTE projects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Anti-tumor potential of total alkaloid extract of Prosopis juliflora DC ...

    African Journals Online (AJOL)

    The total alkaloid extract from Prosopis juliflora DC. leaves was obtained using acid/base modified extraction method. The in vitro anti-tumor potential of the extract was evaluated using MTT (3-(4,5- dimethythiazol-2yl)2,5-diphenyl tetrazolium bromide) based cytotoxicity monitoring after 24, 48 and 72 h exposure of the ...

  9. San Jose, California: Evaluating Local Solar Energy Generation Potential (City Energy: From Data to Decisions)

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-09-29

    This fact sheet "San Jose, California: Evaluating Local Solar Energy Generation Potential" explains how the City of San Jose used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  10. The potentials of biomass as renewable energy

    International Nuclear Information System (INIS)

    Edens, J.J.

    1994-01-01

    Biomass is a term used in the context of energy to define a range of products derived from photosynthesis. Annually large amounts of solar energy is stored in the leaves, stems and branches of plants. Of the various renewable sources of energy, biomass is thus unique in that it represents stored solar energy. In addition it is the only source of carbon, and it may be converted into convenient solid, liquid and gaseous fuels. Biomass, principally in the form of wood, is humankind's oldest form of energy, and has been used to fuel both domestic and industrial activities. Traditional use has been, through direct combustion, a process still used extensively in many parts of the world. Biomass is a renewable and indigenous resource that requires little or no foreign exchange. But it is a dispersed, labor-intensive and land requiring source of energy and may avoid or reduce problems of waste disposal. We'll try to assess the potential contribution of biomass to the future world energy supply. 4 refs., 6 tabs

  11. NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Toxværd, Søren; Heilmann, Ole

    2011-01-01

    that ensures potential-energy and step-length conservation; center-of-mass drift is also eliminated. Analytical arguments confirmed by simulations demonstrate that the modified NVU algorithm is absolutely stable. Finally, we present simulations showing that the NVU algorithm and the standard leap-frog NVE......An algorithm is derived for computer simulation of geodesics on the constant-potential-energy hypersurface of a system of N classical particles. First, a basic time-reversible geodesic algorithm is derived by discretizing the geodesic stationarity condition and implementing the constant......-potential-energy constraint via standard Lagrangian multipliers. The basic NVU algorithm is tested by single-precision computer simulations of the Lennard-Jones liquid. Excellent numerical stability is obtained if the force cutoff is smoothed and the two initial configurations have identical potential energy within machine...

  12. Assessment of potential biomass energy production in China towards 2030 and 2050

    Science.gov (United States)

    Zhao, Guangling

    2018-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass energy productions are estimated to be 18,833 and 24,901 PJ in 2030 and 2050.

  13. Measurement of the total solar energy transmittance (g-value) for conventional glazings

    DEFF Research Database (Denmark)

    Duer, Karsten

    1998-01-01

    Three different glazings have been investigated in the Danish experimental setup METSET. (A device for calorimetric measurement of total solar energy transmittance - g-value).The purpose of the measurements is to increase the confidence in the calorimetric measurements. This is done by comparison...

  14. Hadronic multiplicity and total cross-section: a new scaling in wide energy range

    International Nuclear Information System (INIS)

    Kobylinsky, N.A.; Martynov, E.S.; Shelest, V.P.

    1983-01-01

    The ratio of mean multiplicity to total cross-section is shown to be the same for all the Regge models and to rise with energy as lns which is confirmed by experimental data. Hence, a power of multiplicity growth is unambiguously connected with that of total cross-section. As regards the observed growth, approximately ln 2 s, it tells about a dipole character of pomeron singularity

  15. Synergy potential for oil and geothermal energy exploitation

    DEFF Research Database (Denmark)

    Ziabakhsh-Ganji, Zaman; Nick, Hamidreza M.; Donselaar, Marinus E.

    2018-01-01

    A new solution for harvesting energy simultaneously from two different sources of energy by combining geothermal energy production and thermal enhanced heavy oil recovery is introduced. Numerical simulations are employed to evaluate the feasibility of generating energy from geothermal resources...... and feasibility analyses of the synergy potential of thermally-enhanced oil recovery and geothermal energy production are performed. A series of simulations are carried out to examine the effects of reservoir properties on energy consumption and oil recovery for different injection rates and injection temperature...... the geothermal energy could make the geothermal business case independent and may be a viable option to reduce the overall project cost. Furthermore, the results display that the enhance oil productions are able to reduce the required subsidy for a single doublet geothermal project up to 50%....

  16. Energy storage: potential analysis is still on the way

    International Nuclear Information System (INIS)

    Signoret, Stephane; Dejeu, Mathieu; Deschaseaux, Christelle; De Santis, Audrey; Cygler, Clement; Petitot, Pauline

    2014-01-01

    A set of articles gives an overview of the status and current evolutions of the energy storage sector. The different technologies (flywheel, lithium-ion batteries, NaS or Zebra batteries, compressed air energy storage or CAES, 2. generation CAES, pump storage power plants or PSP) have different applications areas, and also different technological maturity levels. PSPs have probably the best potential nowadays, but investors must be supported. In an interview, a member of the CNRS evokes the main researches, the obstacles in the development of solar thermodynamic plants, technology transfers, and the potential of hydrogen for massive energy storage. An article outlines the need to develop the battery market. Several technological examples and experiments are then presented: Nice Grid (storage at the source level), FlyProd (energy storage by flywheel). An article then addresses the issue of heat storage, notably in a situation of energy co-generation. Researches and prototype development are then presented, the objective of which is to obtain an adiabatic CAES. The last articles address the development of hydrogen to store energy (technologies) and a first technological demonstrator

  17. Saturation wind power potential and its implications for wind energy.

    Science.gov (United States)

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy.

  18. Framework for State-Level Renewable Energy Market Potential Studies

    Energy Technology Data Exchange (ETDEWEB)

    Kreycik, C.; Vimmerstedt, L.; Doris, E.

    2010-01-01

    State-level policymakers are relying on estimates of the market potential for renewable energy resources as they set goals and develop policies to accelerate the development of these resources. Therefore, accuracy of such estimates should be understood and possibly improved to appropriately support these decisions. This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study, including what supporting data are needed and what types of assumptions need to be made. The report distinguishes between goal-oriented studies and other types of studies, and explains the benefits of each.

  19. Total cross section for hadron production by e+e- annihilation at PETRA energies

    International Nuclear Information System (INIS)

    Bartel, W.; Canzler, T.; Cords, D.; Dittmann, P.; Eichler, R.; Felst, R.; Godermann, E.; Haidt, D.; Kawabata, S.; Krehbiel, H.

    1979-10-01

    The cross section for the process e + e - → multihadrons has been measured at the highest PETRA energies. We measure R (the total cross-section in units of the point-like e + e - → μ + μ - cross-section) to be 2.9 +- 0.7, 4.0 +- 0.5, 4.6 +- 0.4 and 4.2 +- 0.6 at √s of 22, 27.7, 30 and 31.6 GeV respectively. The observed average multiplicity, together with existing low energy data, indicate a rapid increase in multiplicity with increasing energy. (orig.)

  20. Total cross sections for electron scattering by CO2 molecules in the energy range 400 endash 5000 eV

    International Nuclear Information System (INIS)

    Garcia, G.; Manero, F.

    1996-01-01

    Total cross sections for electron scattering by CO 2 molecules in the energy range 400 endash 5000 eV have been measured with experimental errors of ∼3%. The present results have been compared with available experimental and theoretical data. The dependence of the total cross sections on electron energy shows an asymptotic behavior with increasing energies, in agreement with the Born-Bethe approximation. In addition, an analytical formula is provided to extrapolate total cross sections to higher energies. copyright 1996 The American Physical Society

  1. World status of geothermal energy use: past and potential

    International Nuclear Information System (INIS)

    Lund, John

    2000-01-01

    The past and potential development of geothermal energy is reviewed, and the use of geothermal energy for power generation and direct heat utilisation is examined. The energy savings that geothermal energy provides in terms of fuel oil and carbon savings are discussed. Worldwide development of geothermal electric power (1940-2000) and direct heat utilisation (1960 to 2000), regional geothermal use in 2000, the national geothermal contributions of geothermal energy, and the installed geothermal electric generating capacities in 2000 are tabulated

  2. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    Science.gov (United States)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and

  3. Industrial energy thrift scheme. Energy use in the soap and detergents industry. Report No. 10

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    An examination was made of how energy is used in the manufacture of soap, detergents, and candles and in the processes of fat splitting and distillation. Twenty-four factories were visited and data are compiled on total amount of energy used, possible energy savings, total amounts of energy purchased, estimated potential savings in space heating energy, and energy savings good housekeeping could yield. (MCW)

  4. Global Potential of Energy Efficiency Standards and Labeling Programs

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie; de la Rue du Can, Stephane

    2008-06-15

    This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds of policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration

  5. Energy spectra and wave function of trigonometric Rosen-Morse potential as an effective quantum chromodynamics potential in D-dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Deta, U. A., E-mail: utamaalan@yahoo.co.id [Theoretical Physics Group, Physics Department of Post Graduate Program, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia and Physics Department, State University of Surabaya, Jl. Ketintang, Surabaya 60231 (Indonesia); Suparmi,; Cari,; Husein, A. S.; Yuliani, H.; Khaled, I. K. A.; Luqman, H.; Supriyanto [Theoretical Physics Group, Physics Department of Post Graduate Program, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126 (Indonesia)

    2014-09-30

    The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ≠ 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectra of system.

  6. Economic Potential of Biomass from Unused Agriculture Land for Energy Use

    DEFF Research Database (Denmark)

    Pfeifer, A.; Dominkovic, Dominik Franjo; Ćosić, B.

    2015-01-01

    In this paper the energy potential of biomass from growing short rotation coppice (SRC) on unused agricultural land in the Republic of Croatia was examined. At present, SRC is not completely recognized in Croatian legislative and considerations in energy strategy and action plans. The paper aspires...... to contribute to better understanding of the role SRC can take in national and local energy planning. The methodology is provided for regional analysis of biomass energy potential on unused agricultural land and for assessing the cost of the biomass at the power plant (PP) location considering transport...... plants and appropriate size of seasonal heat storage is discussed for each case study. Case studies have shown the potential for use of previously unused agricultural land to help achieve national targets for renewable energy sources as well as reducing carbon dioxide emissions, help diversify...

  7. Energy Efficiency Potential in the U.S. Single-Family Housing Stock

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Craig B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Horowitz, Scott G. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Robertson, Joseph J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maguire, Jeffrey B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-19

    Typical approaches for assessing energy efficiency potential in buildings use a limited number of prototypes, and therefore suffer from inadequate resolution when pass-fail cost-effectiveness tests are applied, which can significantly underestimate or overestimate the economic potential of energy efficiency technologies. This analysis applies a new approach to large-scale residential energy analysis, combining the use of large public and private data sources, statistical sampling, detailed building simulations, and high-performance computing to achieve unprecedented granularity - and therefore accuracy - in modeling the diversity of the single-family housing stock. The result is a comprehensive set of maps, tables, and figures showing the technical and economic potential of 50 plus residential energy efficiency upgrades and packages for each state. Policymakers, program designers, and manufacturers can use these results to identify upgrades with the highest potential for cost-effective savings in a particular state or region, as well as help identify customer segments for targeted marketing and deployment. The primary finding of this analysis is that there is significant technical and economic potential to save electricity and on-site fuel use in the single-family housing stock. However, the economic potential is very sensitive to the cost-effectiveness criteria used for analysis. Additionally, the savings of particular energy efficiency upgrades is situation-specific within the housing stock (depending on climate, building vintage, heating fuel type, building physical characteristics, etc.).

  8. Morphing ab initio potential energy curve of beryllium monohydride

    Czech Academy of Sciences Publication Activity Database

    Špirko, Vladimír

    2016-01-01

    Roč. 330, Dec (2016), s. 89-95 ISSN 0022-2852 Institutional support: RVO:61388963 Keywords : beryllium monohydride * potential energy function * reduced potential * homotopic morphing Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.618, year: 2016

  9. New Stream-reach Development: A Comprehensive Assessment of Hydropower Energy Potential in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Shih-Chieh [ORNL; McManamay, Ryan A [ORNL; Stewart, Kevin M [ORNL; Samu, Nicole M [ORNL; Hadjerioua, Boualem [ORNL; DeNeale, Scott T [ORNL; Yeasmin, Dilruba [California State University, Fresno; Pasha, M. Fayzul K. [California State University, Fresno; Oubeidillah, Abdoul A [ORNL; Smith, Brennan T [ORNL

    2014-04-01

    The rapid development of multiple national geospatial datasets related to topography, hydrology, and environmental characteristics in the past decade have provided new opportunities for the refinement of hydropower resource potential from undeveloped stream-reaches. Through 2011 to 2013, the Oak Ridge National Laboratory (ORNL) was tasked by the Department of Energy (DOE) Water Power Program to evaluate the new stream-reach development (NSD) resource potential for more than 3 million US streams. A methodology was designed that contains three main components: (1) identification of stream-reaches with high energy density, (2) topographical analysis of stream-reaches to estimate inundated surface area and reservoir storage, and (3) environmental attribution to spatially join information related to the natural ecological systems, social and cultural settings, policies, management, and legal constraints to stream-reaches of energy potential. An initial report on methodology (Hadjerioua et al., 2013) was later reviewed and revised based on the comments gathered from two peer review workshops. After implementing the assessment across the entire United States, major findings were summarized in this final report. The estimated NSD capacity and generation, including both higher-energy-density (>1 MW per reach) and lower-energy-density (<1 MW per reach) stream-reaches is 84.7 GW, around the same size as the existing US conventional hydropower nameplate capacity (79.5 GW; NHAAP, 2013). In terms of energy, the total undeveloped NSD generation is estimated to be 460 TWh/year, around 169% of average 2002 2011 net annual generation from existing conventional hydropower plants (272 TWh/year; EIA, 2013). Given the run-of-river assumption, NSD stream-reaches have higher capacity factors (53 71%), especially compared with conventional larger-storage peaking-operation projects that usually have capacity factors of around 30%. The highest potential is identified in the Pacific Northwest

  10. Potential for energy-conserving capital equipment in UK industries

    Energy Technology Data Exchange (ETDEWEB)

    Fawkes, S D

    1986-01-01

    A summary is given of recent research into the potential for energy-conserving capital equipment in UK industries. The research had significant findings regarding the feasibility of achieving low-energy scenarios. It also stressed the importance of site specific factors in inhibiting incremental technical change such as that common in energy-conservation investments, developed a soft systems model of energy-management activities and investigated current progress and management styles in the brewing, malting, distilling and dairy sectors.

  11. US land use and energy policy: assessing potential conflicts

    Energy Technology Data Exchange (ETDEWEB)

    Dowall, D E

    1980-03-01

    The author identifies areas of potential conflict between land-use planning and energy policy. Conflicts center on the rate and intensity of land use, location of land-using activities, and the diversity and interaction of these activities. A range of regulations affecting land use and energy planning are presented and areas of policy choice are indicated. Three energy programs (decentralized technologies, energy-conserving land-use planning, and energy facility siting) are used to illustrate land-use-planning issues. The policy research needed for conflict resolution is also outlined. 36 references.

  12. The potential of renewable sources of energy in Austria

    International Nuclear Information System (INIS)

    Faninger, G.

    1991-11-01

    Besides hydropower and biomass, solar energy and biomass are candidates for renewable sources of energy. The demand for biomass, solar energy and ambient heat has been rising in all spheres: from 6.8% in 1983 to about 10% in 1990. The development of the market for solar and heat pump systems is continuing its positive tendency. It is expected, that solar as well as heat pump technologies could provide substantial contribution to the energy supply in Austria. The technical usable potential of renewable sources of energy in Austria is analysed. (author)

  13. Valence bond model potential energy surface for H4

    International Nuclear Information System (INIS)

    Silver, D.M.; Brown, N.J.

    1980-01-01

    Potential energy surfaces for the H 4 system are derived using the valence bond procedure. An ab initio evaluation of the valence bond energy expression is described and some of its numerical properties are given. Next, four semiempirical evaluations of the valence bond energy are defined and parametrized to yield reasonable agreement with various ab initio calculations of H 4 energies. Characteristics of these four H 4 surfaces are described by means of tabulated energy minima and equipotential contour maps for selected geometrical arrangements of the four nuclei

  14. Energy-efficiency potential of water dispensers; Energieeffizienzpotenzial bei Wasser-Dispensern

    Energy Technology Data Exchange (ETDEWEB)

    Grieder, T.

    2003-07-01

    This final report for the Swiss Federal Office of Energy presents the results of study carried out to assess the energy-savings potential available in the operation of water dispensers often found in banks, stores and offices. The energy consumption of three types of dispenser is examined and compared with American 'EnergyStar'-guidelines. The results of measurements made for day and night-time operation are presented and the energy-savings potentials offered by more appropriate operating scenarios are discussed. Recommendations are made to all parties involved, from the dispenser's manufacturer, water-supplier and service organisation through to the end user. For each category, a catalogue of measures that can be taken is presented, including modifications to the dispensers themselves and the installation of timers. Also, the energy consumption of dispensers is compared with that of using traditional mineral water bottles and a small conventional refrigerator.

  15. Estimating potential saving with energy consumption behaviour model in higher education institutions

    Directory of Open Access Journals (Sweden)

    Mohd Hafizal Ishak

    2016-11-01

    Full Text Available Towards sustainable Higher Education Institutions (HEIs, energy consumption behaviour is one of several issues that require an attention by facilities manager. Information from the behavioural aspect would be useful for facilities manager on managing the energy and determining potential energy saving. A lack of information negatively affects this aim. Hence, this paper proposes a methodology for assessing the energy consumption behaviour with the objective determining potential energy saving. The method used energy culture framework as basis and joined with centrographic approach and multiple-regression analysis. A self-administrated survey carried out involving 1400 respondents in selected HEIs. There are four types of energy use among students in HEIs namely, 'high', 'low', ‘medium’ and 'conserve' determined from the centrographic analysis. The energy consumption behaviour model was developed and tested against the holdout sample. Through the model's application, there is a vast potential for energy savings with over 55 kWh daily among the students.

  16. Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids

    International Nuclear Information System (INIS)

    Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.

    2008-01-01

    Using the 'total energy cycle' methodology, we compare U.S. near term (to ∼2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO x ), fine particulate (PM2.5) and sulfur oxides (SO x ) values are presented. We also isolate the PHEV emissions contribution from varying k

  17. Wind energy status in renewable electrical energy production in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2010-01-01

    Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined. (author)

  18. Ab Initio and DFT Potential Energy Surfaces for Cyanuric Chloride Reactions

    National Research Council Canada - National Science Library

    Pai, Sharmila

    1998-01-01

    ... on the potential energy surface were calculated using the 6-31G and 6-311 +Gbasis sets. DFT(B3LYP) geometry optimizations and zero-point corrections for critical points on the potential energy surface were calculated with the 6-31G, 6-311...

  19. Prediction equation for estimating total daily energy requirements of special operations personnel.

    Science.gov (United States)

    Barringer, N D; Pasiakos, S M; McClung, H L; Crombie, A P; Margolis, L M

    2018-01-01

    Special Operations Forces (SOF) engage in a variety of military tasks with many producing high energy expenditures, leading to undesired energy deficits and loss of body mass. Therefore, the ability to accurately estimate daily energy requirements would be useful for accurate logistical planning. Generate a predictive equation estimating energy requirements of SOF. Retrospective analysis of data collected from SOF personnel engaged in 12 different SOF training scenarios. Energy expenditure and total body water were determined using the doubly-labeled water technique. Physical activity level was determined as daily energy expenditure divided by resting metabolic rate. Physical activity level was broken into quartiles (0 = mission prep, 1 = common warrior tasks, 2 = battle drills, 3 = specialized intense activity) to generate a physical activity factor (PAF). Regression analysis was used to construct two predictive equations (Model A; body mass and PAF, Model B; fat-free mass and PAF) estimating daily energy expenditures. Average measured energy expenditure during SOF training was 4468 (range: 3700 to 6300) Kcal·d- 1 . Regression analysis revealed that physical activity level ( r  = 0.91; P  plan appropriate feeding regimens to meet SOF nutritional requirements across their mission profile.

  20. Energy-switching potential energy surface for the water molecule revisited: A highly accurate singled-sheeted form.

    Science.gov (United States)

    Galvão, B R L; Rodrigues, S P J; Varandas, A J C

    2008-07-28

    A global ab initio potential energy surface is proposed for the water molecule by energy-switching/merging a highly accurate isotope-dependent local potential function reported by Polyansky et al. [Science 299, 539 (2003)] with a global form of the many-body expansion type suitably adapted to account explicitly for the dynamical correlation and parametrized from extensive accurate multireference configuration interaction energies extrapolated to the complete basis set limit. The new function mimics also the complicated Sigma/Pi crossing that arises at linear geometries of the water molecule.

  1. Low-dose dual-energy cone-beam CT using a total-variation minimization algorithm

    International Nuclear Information System (INIS)

    Min, Jong Hwan

    2011-02-01

    Dual-energy cone-beam CT is an important imaging modality in diagnostic applications, and may also find its use in other application such as therapeutic image guidance. Despite of its clinical values, relatively high radiation dose of dual-energy scan may pose a challenge to its wide use. In this work, we investigated a low-dose, pre-reconstruction type of dual-energy cone-beam CT (CBCT) using a total-variation minimization algorithm for image reconstruction. An empirical dual-energy calibration method was used to prepare material-specific projection data. Raw data at high and low tube voltages are converted into a set of basis functions which can be linearly combined to produce material-specific data using the coefficients obtained through the calibration process. From much fewer views than are conventionally used, material specific images are reconstructed by use of the total-variation minimization algorithm. An experimental study was performed to demonstrate the feasibility of the proposed method using a micro-CT system. We have reconstructed images of the phantoms from only 90 projections acquired at tube voltages of 40 kVp and 90 kVp each. Aluminum-only and acryl-only images were successfully decomposed. We evaluated the quality of the reconstructed images by use of contrast-to-noise ratio and detectability. A low-dose dual-energy CBCT can be realized via the proposed method by greatly reducing the number of projections

  2. Potential benefits from improved energy efficiency of key electrical products: The case of India

    International Nuclear Information System (INIS)

    McNeil, Michael A.; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie E.; McMahon, James E.

    2008-01-01

    The economy of the world's second most populous country continues to grow rapidly, bringing prosperity to a growing middle class while further straining an energy infrastructure already stretched beyond capacity. At the same time, efficiency policy initiatives have gained a foothold in India, and promise to grow in number over the coming years. This paper considers the maximum cost-effective potential of efficiency improvement for key energy-consuming products in the Indian context. The products considered are: household refrigerators, window air conditioners, motors and distribution transformers. Together, these products account for about 27% of delivered electricity consumption in India. The analysis estimates the minimum Life-Cycle Cost option for each product class, according to use patterns and prevailing customer marginal rates in each sector. This option represents an efficiency improvement ranging between 12% and 60%, depending on product class. If this level of efficiency was achieved starting in 2010, we estimate that total electricity consumption in India could be reduced by 4.7% by 2020, saving over 74 million tons of oil equivalent and over 246 million tons of carbon dioxide emissions. Net present financial savings of this efficiency improvement totals 8.1 billion dollars

  3. Communication: Fitting potential energy surfaces with fundamental invariant neural network

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China. (China)

    2016-08-21

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH{sub 3} and CH{sub 4} were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.

  4. WIND SPEED AND ENERGY POTENTIAL ANALYSES

    Directory of Open Access Journals (Sweden)

    A. TOKGÖZLÜ

    2013-01-01

    Full Text Available This paper provides a case study on application of wavelet techniques to analyze wind speed and energy (renewable and environmental friendly energy. Solar and wind are main sources of energy that allows farmers to have the potential for transferring kinetic energy captured by the wind mill for pumping water, drying crops, heating systems of green houses, rural electrification's or cooking. Larger wind turbines (over 1 MW can pump enough water for small-scale irrigation. This study tried to initiate data gathering process for wavelet analyses, different scale effects and their role on wind speed and direction variations. The wind data gathering system is mounted at latitudes: 37° 50" N; longitude 30° 33" E and height: 1200 m above mean sea level at a hill near Süleyman Demirel University campus. 10 minutes average values of two levels wind speed and direction (10m and 30m above ground level have been recorded by a data logger between July 2001 and February 2002. Wind speed values changed between the range of 0 m/s and 54 m/s. Annual mean speed value is 4.5 m/s at 10 m ground level. Prevalent wind

  5. Potential energy surface of alanine polypeptide chains

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...

  6. Wave energy potential in Galicia (NW Spain)

    DEFF Research Database (Denmark)

    Iglesias, Gregorio; López, Mario; Carballo, Rodrigo

    2009-01-01

    Wave power presents significant advantages with regard to other CO2-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very...... harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996 - 2005. Taking into account the results of this assessment along with other relevant considerations such as the location...

  7. Canada's renewable energy resources: an assessment of potential

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, P; Argue, R; Argue, R; Burrell, T; Hathaway, G

    1976-04-01

    Rising costs of conventional, frontier, and nuclear energy production and the prospect of future shortages have prompted a resurgence of interest in alternative, renewable energy technologies. This study constitutes a preliminary step in determining which sources, technologies, and applications may be appropriate in Canada and when and under what conditions they might be technically and economically viable. Principal sources of renewable energy (solar radiation, wind, and biomass), as well as waves, thermal gradients and, sensible heat sources are reviewed to establish, in general terms, their significance in the Canadian context. Next, the technical characteristics, efficiency, costs, impacts, and state of the art of sixteen harnessing or conversion technologies are presented as an information base upon which to build an assessment of potential. A method of comparing the life cost of a renewable energy system to that of the likely conventional alternative is proposed and applied in cases where adequate technical and economic data are available. A variety of different economic assumptions are also outlined under which the renewable systems would be cost competitive. This costing methodology is applied in detail to four Case Studies: solar space and water heating--residential; photovoltaics--residential; wind generator--200 kW; and anaerobic digestion of livestock wastes. Finally, the potential for renewable energy approaches in Canada is explored and evaluated from three perspectives: technical viability, economic viability, and implementation.

  8. Hydropower and biomass as renewable energy sources in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, K.

    2001-01-01

    When talking about renewable energy sources today, the most important and economical energy sources for Turkey are hydropower and biomass.The present study gives a review of production, consumption, and economics of hydropower and biomass as renewable energy sources in Turkey. Turkey has a total gross hydropower potential of 433 GW, but only 125 GW of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 36% of the economically usable potential of the country could be tapped. On the other hand, biomass (wood and wastes) energy is the second most important renewable energy source for Turkey. However, the biomass energy sources of Turkey are limited. In 1998, the biomass share of the total energy consumption of the country is 10%. In this study, the potential of important biomass energy sources and animal solid wastes of the country were determined. The effects of hydropower and biomass usage on the environment were also discussed. Considering total cereal products and fatty seed plants, approximately 50-60 million tons per year of biomass and 8-10 million tons of solid matter animal waste are produced, and 70% of total biomass is seen as being usable for energy. Some useful suggestions and recommendations are also presented. The present study shows that there is an important potential for hydropower and biomass energy sources in Turkey. (author)

  9. Wind and Solar Energy Potential Assessment for Development of Renewables Energies Applications in Bucaramanga, Colombia

    International Nuclear Information System (INIS)

    Ordóñez, G; Osma, G; Vergara, P; Rey, J

    2014-01-01

    Currently, the trend of micro-grids and small-scale renewable generation systems implementation in urban environments requires to have historical and detailed information about the energy potential resource in site. In Colombia, this information is limited and do not favor the design of these applications; for this reason, must be made detailed studies of the energy potential in their cities. In this paper is presented the wind and solar energy resource assessment for the city of Bucaramanga, based on the monitoring on four strategic points during the years 2010, 2011 and 2012. According to the analysis, is evidenced a significant solar resource throughout the year ascending on average to 1 734 kWh/m 2 , equivalent to 4.8 kWh/m 2 /day. Also, from a wind statistical study based on the Weibull probability distribution and Wind Power Density (WPD) was established the wind potential as Class 1 according to the scale of the Department of Energy of the United States (DOE), since the average speed is near 1.4 m/s. Due this, it is technically unfeasible the using of micro-turbines in the city, even so their potential for natural ventilation of building was analyzed. Finally, is presented a methodology to analyze solar harvesting by sectors in the city, according to the solar motion and shadowing caused by existing structures

  10. Energy consumption and energy-saving potential analysis of pollutant abatement systems in a 1000MW coal-fired power plant.

    Science.gov (United States)

    Yang, Hang; Zhang, Yongxin; Zheng, Chenghang; Wu, Xuecheng; Chen, Linghong; Gao, Xiang; Fu, Joshua S

    2018-05-10

    The pollutant abatement systems are widely applied in the coal-fired power sector and the energy consumption was considered an important part of the auxiliary power. An energy consumption analysis and assessment model of pollutant abatement systems in a power unit was developed based on the dynamic parameters and technology. The energy consumption of pollutant abatement systems in a 1000 MW coal-fired power unit which meet the ultra-low emission limits and the factors of operating parameters including unit load and inlet concentration of pollutants on the operating power were analyzed. The results show that the total power consumption of the pollutant abatement systems accounted for 1.27% of the gross power generation during the monitoring period. The WFGD system consumed 67% of the rate while the SCR and ESP systems consumed 8.9% and 24.1%. The power consumption rate of pollutant abatement systems decreased with the increase of unit load and increased with the increase of the inlet concentration of pollutants. The operation adjustment was also an effective method to increase the energy efficiency. For example, the operation adjustment of slurry circulation pumps could promote the energy-saving operation of WFGD system. Implication Statement The application of pollutant abatement technologies increases the internal energy consumption of the power plant, which will lead to an increase of power generation costs. The real-time energy consumption of the different pollutant abatement systems in a typical power unit is analyzed based on the dynamic operating data. Further, the influence of different operating parameters on the operating power of the system and the possible energy-saving potential are analyzed.

  11. Renewable energy resources in Pakistan: status, potential and information systems

    International Nuclear Information System (INIS)

    Khan, A.M.

    1991-01-01

    This paper provides some details regarding the characteristic properties, potential and assessment of renewable energy compared with other forms of energy sources. It gives status of renewable energy sources in Pakistan. It also lights about the agencies providing technical information regarding renewable energy in Pakistan as well as suggestions and recommendations for the development of these resources, and over view the present status of renewable energy sources. (author)

  12. Potential for unconventional energy sources for the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, L H; Wright, J K; Syrett, J J

    1977-01-01

    The unconventional sources considered are solar energy, wind power, wave and tidal power, and geothermal heat. Their potential contribution to energy supply in the UK is being assessed as part of a wider exercise aimed at formulating a national energy R and D strategy sufficiently robust to be valid for a wide range of possible future conditions. For each of the sources considered, the present state of knowledge of the magnitude of the potential resource base is outlined and the inherent characteristics of each are discussed in terms of environmental impact and of estimated cost relative to conventional technology. With respect to the latter, attention is drawn to the inherent variability of most of the sources, which imposes upon them a cost penalty for back-up plant and/or large scale storage is firm power is to be assured. The progress that has been made in drawing up, for each of the sources, a national R and D program compatible with the assessment of development potential is outlined, and a tentative estimate is made of the maximum credible contribution the sources could make to energy supply in the UK by the end of the century. The concluding paragraphs deal with the prospects for the next century and indicate that the long-term uncertainties on energy supply justify a determined effort to convert the most promising of the unconventional sources into the well-researched technological options that may be needed.

  13. Energy saving analysis and management modeling based on index decomposition analysis integrated energy saving potential method: Application to complex chemical processes

    International Nuclear Information System (INIS)

    Geng, Zhiqiang; Gao, Huachao; Wang, Yanqing; Han, Yongming; Zhu, Qunxiong

    2017-01-01

    Highlights: • The integrated framework that combines IDA with energy-saving potential method is proposed. • Energy saving analysis and management framework of complex chemical processes is obtained. • This proposed method is efficient in energy optimization and carbon emissions of complex chemical processes. - Abstract: Energy saving and management of complex chemical processes play a crucial role in the sustainable development procedure. In order to analyze the effect of the technology, management level, and production structure having on energy efficiency and energy saving potential, this paper proposed a novel integrated framework that combines index decomposition analysis (IDA) with energy saving potential method. The IDA method can obtain the level of energy activity, energy hierarchy and energy intensity effectively based on data-drive to reflect the impact of energy usage. The energy saving potential method can verify the correctness of the improvement direction proposed by the IDA method. Meanwhile, energy efficiency improvement, energy consumption reduction and energy savings can be visually discovered by the proposed framework. The demonstration analysis of ethylene production has verified the practicality of the proposed method. Moreover, we can obtain the corresponding improvement for the ethylene production based on the demonstration analysis. The energy efficiency index and the energy saving potential of these worst months can be increased by 6.7% and 7.4%, respectively. And the carbon emissions can be reduced by 7.4–8.2%.

  14. Assessment of the Total Inflammatory Potential of Bioaerosols by Using a Granulocyte Assay▿

    OpenAIRE

    Timm, Michael; Madsen, Anne Mette; Hansen, Jørgen Vinsløv; Moesby, Lise; Hansen, Erik Wind

    2009-01-01

    Occupational health symptoms related to bioaerosol exposure have been observed in a variety of working environments. Bioaerosols contain microorganisms and microbial components. The aim of this study was to estimate the total inflammatory potential (TIP) of bioaerosols using an in vitro assay based on granulocyte-like cells. A total of 129 bioaerosol samples were collected in the breathing zone of workers during their daily working routine at 22 biofuel plants. The samples were analyzed by tr...

  15. Mode selection of China's urban heating and its potential for reducing energy consumption and CO2 emission

    International Nuclear Information System (INIS)

    Chen, Xia; Wang, Li; Tong, Lige; Sun, Shufeng; Yue, Xianfang; Yin, Shaowu; Zheng, Lifang

    2014-01-01

    China's carbon dioxide (CO 2 ) emission ranks the highest in the world. CO 2 emission from urban central heating, which has an average annual growth rate of 10.3%, is responsible for 4.4% of China's total CO 2 emission. The current policy for improving urban central heating focuses on replacing coal with natural gas. This paper analyzes the existing situation and problems pertaining to urban heating, and evaluates the potential for reducing energy consumption and CO 2 emission by heat pump heating. The results show that the current policy of replacing coal with natural gas for urban central heating decreases energy consumption and CO 2 emission by 16.6% and 63.5%, respectively. On the other hand, replacing coal-based urban central heating with heat pump heating is capable of decreasing energy consumption and CO 2 emission by 57.6% and 81.4%, respectively. Replacing both urban central and decentralized heating with heat pump heating can lead to 67.7% and 85.8% reduction in energy consumption and CO 2 emission, respectively. The decreases in CO 2 emission will account for 24.5% of China's target to reduce total CO 2 emission by 2020. - Highlights: • Existing situation and problems of urban heating in China. • Feasibility of heat pump heating in China. • Potential of energy saving and emission reduction for heat pump heating. • China should adjust urban heating strategy. • Replacing urban central heating and decentralized heating with heat pump heating

  16. Polymer-enhanced energy harvesting from streaming potential

    NARCIS (Netherlands)

    Nguyen, Trieu; Xie, Yanbo; de Vreede, Lennart; van den Berg, Albert; Eijkel, Jan C.T.; Fujii, T.; Hibara, A.; Takeuchi, S.; Fukuba, T.

    2012-01-01

    In this contribution, we present the experimental results of energy conversion from the streaming potential when a polymer, polyacrylic acid (PAA) with concentration from 200 ppm to 4000 ppm in background electrolyte KCl solution was used as the working fluid. The results show that when PAA was

  17. Anomaly transform methods based on total energy and ocean heat content norms for generating ocean dynamic disturbances for ensemble climate forecasts

    Science.gov (United States)

    Romanova, Vanya; Hense, Andreas

    2017-08-01

    In our study we use the anomaly transform, a special case of ensemble transform method, in which a selected set of initial oceanic anomalies in space, time and variables are defined and orthogonalized. The resulting orthogonal perturbation patterns are designed such that they pick up typical balanced anomaly structures in space and time and between variables. The metric used to set up the eigen problem is taken either as the weighted total energy with its zonal, meridional kinetic and available potential energy terms having equal contributions, or the weighted ocean heat content in which a disturbance is applied only to the initial temperature fields. The choices of a reference state for defining the initial anomalies are such that either perturbations on seasonal timescales and or on interannual timescales are constructed. These project a-priori only the slow modes of the ocean physical processes, such that the disturbances grow mainly in the Western Boundary Currents, in the Antarctic Circumpolar Current and the El Nino Southern Oscillation regions. An additional set of initial conditions is designed to fit in a least square sense data from global ocean reanalysis. Applying the AT produced sets of disturbances to oceanic initial conditions initialized by observations of the MPIOM-ESM coupled model on T63L47/GR15 resolution, four ensemble and one hind-cast experiments were performed. The weighted total energy norm is used to monitor the amplitudes and rates of the fastest growing error modes. The results showed minor dependence of the instabilities or error growth on the selected metric but considerable change due to the magnitude of the scaling amplitudes of the perturbation patterns. In contrast to similar atmospheric applications, we find an energy conversion from kinetic to available potential energy, which suggests a different source of uncertainty generation in the ocean than in the atmosphere mainly associated with changes in the density field.

  18. 7Li breakup polarization potential at near barrier energies

    International Nuclear Information System (INIS)

    Lubian, J. . E-mail lubian@if.uff.br; Correa, T.; Paes, B.; Figueira, J.M.; Abriola, D.; Fernandez Niello, J.O.; Arazi, A.; Capurro, O.A.; de Barbara, E.; Marti, G.V.; Martinez Heinmann, D.; Negri, A.E.; Pacheco, A.J.; Padron, I.; Gomes, P.R.S.

    2007-01-01

    Inelastic and one neutron transfer cross sections at energies around the Coulomb barrier were used to derive dynamic polarization potential (DPP) for the 7 Li + 27 Al system. The DPP due to breakup, obtained in a simple way, indicates that its real part is repulsive at near barrier energies

  19. Potential of mediation for resolving environmental disputes related to energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    This study assesses the potential of mediation as a tool for resolving disputes related to the environmental regulation of new energy facilities and identifies possible roles the Federal government might play in promoting the use of mediation. These disputes result when parties challenge an energy project on the basis of its potential environmental impacts. The paper reviews the basic theory of mediation, evaluates specific applications of mediation to recent environmental disputes, discusses the views of environmental public-interest groups towards mediation, and identifies types of energy facility-related disputes where mediation could have a significant impact. Finally, potential avenues for the Federal government to encourage use of this tool are identified.

  20. Spatio-temporal mapping of solar energy potential of Dutse, Jigawa ...

    African Journals Online (AJOL)

    Efficient solar energy harnessing technology is required for sustainability and effective utilization of the resource. In this work, a survey of solar energy potential of Dutse, Jigawa state Nigeria was carried out with the aim of identifying the best location for optimal performance of solar energy power plant. Elevation information ...

  1. Energy Transfer in Scattering by Rotating Potentials

    Indian Academy of Sciences (India)

    Quantum mechanical scattering theory is studied for time-dependent Schrödinger operators, in particular for particles in a rotating potential. Under various assumptions about the decay rate at infinity we show uniform boundedness in time for the kinetic energy of scattering states, existence and completeness of wave ...

  2. Study of heavy quarkonium with energy dependent potential

    International Nuclear Information System (INIS)

    Gupta, Pramila; Mehrotra, I

    2009-01-01

    It is well known that charmonium and bottonium states can be calculated by using a nonrelativistic Schrodinger equation. The basic reasons are: 1) the mass of charm and bottom quarks is much larger than QCD scale, which makes this system free of strong normalization effects and 2) the binding energy is small compared to the mass energy ψ and γ states in terms of nonrelativistic qq system governed by more or less phenomenological potentials. In the present work we have studied mass spectra of charmonium and bottonium using the following energy dependent model in the framework of nonrelativistic Schrodinger equation

  3. Basic project on the cooperation in enhancement of the international energy consumption efficiency. Survey of energy conservation potential by industry; 2000 nendo kokusai energy shohi koritsuka chosa nado kyoryoku kiso jigyo hokokusho. Gyoshubetsu sho energy potential chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of looking for measures to promote the effective energy conservation in China, the potential energy conservation amount in general plants was surveyed and analyzed by industry. Activities were made in the following fields: 1) survey of the actual state of energy in main industries; 2) energy conservation potential in the cement industry in China; 3) energy conservation potential in thermal power plants in China. In 1), survey was made on 8 industries including the iron/steel industry and oil refining industry. In 2), survey was made of the actual state of the Liulihe cement plant and Shitou cement plant. The subjects extracted were the arrangement of instrumentation equipment such as the exhaust gas analyzer needed for combustion management, improvement of the air/fuel ratio of kiln, enhancement of cooling efficiency of clinker cooler, etc. In 3), the actual state of the Qinling power plant was surveyed, and it was made clear that high efficiency of 38% or more can be maintained if the appropriate use/maintenance management is made (coal unit consumption: 383g/kWh in Qinling and 309g/kWh). (NEDO)

  4. Renewable energy. The power and the potential

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In late 1985, the Public Advisory Committees to the Environmental Council of Alberta began working toward a draft conservation strategy for Alberta. A prospectus was published and meetings and workshops held, the goal being a conservation strategy in place by 1992. This report is one of a series of discussion papers on relevant sectors such as agriculture, fish and wildlife, tourism, and energy production. This report focuses on the present and potential economic significance of renewable energy resources, excluding hydro power, and their capability to meet Alberta's demand. Renewable energy sources discussed include solar, wind, geothermal, biomass, and energy from waste, with economic significance and demand projections for each, as well as their interactions with conventional sources. Their use in low-temperature space heating, industrial process heat, liquid fuels, and electricity is also detailed. Current legislative and regulatory requirements for each of the renewables is given, as well as an attempt at policy formulation to deal with the use of renewables as a whole. 4 figs.

  5. Measurements of the total neutron cross-section of cerium and thulium in the energy range from 1.8 MeV to 1.8 eV

    International Nuclear Information System (INIS)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Abu-Elnour, F.; Hamouda, I.

    1979-01-01

    Total neutron cross-section measurements have been carried out for cerium and thulium in the energy range from 1.8 meV to 1.8 eV. The measurements were performed using the time-of-flight spectrometer installed in front of one of the horizontal channels of the ET-RR-1 reactor. The obtained total neutron cross-sections were analyzed using the single level Breit-Wigner formula and the magnetic form factor. The potential scattering cross-section of Ce was found to be (3.14 +- 0.3) barns. Its coherent scattering amplitude was determined from the Bragg reflections observed in the total neutron cross-section of CeO 2 and found to be (4,8 +- 0.2) fm. The potential scattering and absorption cross-sections of Tm, at E = 0.025 eV, were found to be (7.5 +- 0.7) barns and (89.1 +- 4.1) barns respectively. (orig.) [de

  6. Residential energy efficiency: Progress since 1973 and future potential

    Science.gov (United States)

    Rosenfeld, Arthur H.

    1985-11-01

    Today's 85 million U.S. homes use 100 billion of fuel and electricity (1150/home). If their energy intensity (resource energy/ft2) were still frozen at 1973 levels, they would use 18% more. With well-insulated houses, need for space heat is vanishing. Superinsulated Saskatchewan homes spend annually only 270 for space heat, 150 for water heat, and 400 for appliances, yet they cost only 2000±1000 more than conventional new homes. The concept of Cost of Conserved Energy (CCE) is used to rank conservation technologies for existing and new homes and appliances, and to develop supply curves of conserved energy and a least cost scenario. Calculations are calibrated with the BECA and other data bases. By limiting investments in efficiency to those whose CCE is less than current fuel and electricity prices, the potential residential plus commercial energy use in 2000 AD drops to half of that estimated by DOE, and the number of power plants needed drops by 200. For the whole buildings sector, potential savings by 2000 are 8 Mbod (worth 50B/year), at an average CCE of 10/barrel.

  7. Dependence of the quasipotential on the total energy of a two-particle system

    International Nuclear Information System (INIS)

    Kapshai, V.N.; Savrin, V.I.; Skachkov, N.B.

    1987-01-01

    For a system of two relativistic particles described in the Logunov-Tavkhelidze one-time approach the dependence of the quasipotential of one-boson exchange on the total energy of the system is calculated. It is shown that despite the nonlocal form of the obtained quasipotential the three-dimensional equations for the waves function can be reduced by a partial expansion to one-dimensional equations. The influence of the energy dependence of the quasipotential on its behavior in the coordinate representation is discussed

  8. Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties

    International Nuclear Information System (INIS)

    Chen, Hao; Kang, Jia-Ning; Liao, Hua; Tang, Bao-Jun; Wei, Yi-Ming

    2017-01-01

    Energy conservation technologies in the coal-fired power sector are important solutions for the environmental pollution and climate change issues. However, a unified framework for estimating their costs and potentials is still needed due to the wide technology choices, especially considering their economic feasibility under fuel and carbon price uncertainties. Therefore, this study has employed a bottom-up approach to analyze the costs and potentials of 32 key technologies’ new promotions during the 13th Five-Year Plan period (2016–2020), which combines the conservation supply curve (CSC) approach and break-even analysis. Findings show that (1) these 32 technologies have a total coal conservation potential of 275.77 Mt with a cost of 238.82 billion yuan, and their break-even coal price is 866 yuan/ton. (2) steam-water circulation system has the largest energy conservation potential in the coal-fired power industry. (3) considering the co-benefits will facilitate these technologies’ promotions, because their break-even coal prices will decrease by 2.35 yuan/ton when the carbon prices increase by 1 yuan/ton. (4) discount rates have the largest impacts on the technologies’ cost-effectiveness, while the future generation level affect their energy conservation potentials most. - Highlights: • The 32 technologies can save 275.77 Mt coal with a cost of 238.82 billion yuan. • The steam-water circulation system has the largest energy conservation potential. • Considering the co-benefits will facilitate the technology promotions • Discount rates have the largest impacts on the technologies’ cost-effectiveness.

  9. Low-energy neutron-proton analyzing power and the new Bonn potential and Paris potential predictions

    International Nuclear Information System (INIS)

    Tornow, W.; Howell, C.R.; Roberts, M.L.; Felsher, P.D.; Chen, Z.M.; Walter, R.L.; Mertens, G.; Slaus, I.

    1988-01-01

    Instrumental asymmetries recently observed by Haeberli and co-workers, limit the accuracy of neutron-proton analyzing power A/sub y/(θ) data. These instrumental effects are discussed and calculated for previously published n-p A/sub y/(θ) data at 16.9 MeV. To enable these calculations, the analyzing power for the 2 H(d-arrow-right,n) 3 He reaction was measured at small angles. Additional n-p A/sub y/(θ) data at extreme backward angles, obtained via proton recoil detection, are also reported for this energy in this paper. The composite data set is compared to calculations based on the new Bonn NN potential, the Paris NN potential, and to the recent NN phase-shift solution of Arndt. In addition, a detailed comparison between A/sub y/(θ) calculated from the new Bonn and the Paris potentials between 10 and 50 MeV is shown to reveal unexpectedly large relative differences. The experimental data in this energy range are better described by the Paris potential than by the new Bonn potential

  10. Renewable energy resources in Mali : potential and options for a sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Dembele, P. [Mali-Folkecenter, Faladie SEMA, Bamako (Mali)

    2006-07-01

    With a population of approximately 12 million, the per capita energy consumption of Mali is 228 Kilo tons of oil equivalent per inhabitant per year. Household energy consumption accounts for nearly 86 per cent of the total energy consumed with almost 99 per cent coming from wood energy. Energy consumption in the transportation, industrial and agricultural sectors is 10, 3, and 1 per cent respectively. The energy sector in Mali is characterized by the over-exploitation of forestry resources, dependence on imported oil and an under-exploitation of potential renewable energy resources such as solar, wind and biomass. The supply of solar energy is inexhaustible as the country receives almost 12 hours of sunshine with an average daily insolation of 5-7 KWh/m{sup 2}/day. Applications of photovoltaic (PV) technology in Mali concerns the basic needs of the population such as water pumping, lighting, battery charging and refrigeration. In 1994, the Mali government gave preferential fiscal policy on all solar equipment in order to encourage the wide spread use of solar energy, but technical constraints such as low efficiency, appropriate technology transfer methods, and sustainable financing mechanisms remain to be addressed. This paper described several programs that have been initiated to promote the use of renewable energy, protect the fragile environment threatened by the Sahara Desert and to provide access to drinking water. These achievements however, have not yet guaranteed energy sustainability, particularly in rural areas. It was recommended that efforts should be made to strengthen the renewable energy sector, correct inadequacies, introduce a sustainable renewable energy technology transfer process, and consolidate knowledge and experiences to focus on low cost renewable energy technologies. It was suggested that a natural resource map of the country should be made available in order allow for comparative cost and technology sustainability analysis before deciding

  11. Intermolecular potential energy surface and thermophysical properties of propane.

    Science.gov (United States)

    Hellmann, Robert

    2017-03-21

    A six-dimensional potential energy surface (PES) for the interaction of two rigid propane molecules was determined from supermolecular ab initio calculations up to the coupled cluster with single, double, and perturbative triple excitations level of theory for 9452 configurations. An analytical site-site potential function with 14 sites per molecule was fitted to the calculated interaction energies. To validate the analytical PES, the second virial coefficient and the dilute gas shear viscosity and thermal conductivity of propane were computed. The dispersion part of the potential function was slightly adjusted such that quantitative agreement with the most accurate experimental data for the second virial coefficient at room temperature was achieved. The adjusted PES yields values for the three properties that are in very good agreement with the best experimental data at all temperatures.

  12. Incentive of the economic potential of sustainable energy for the Netherlands

    International Nuclear Information System (INIS)

    Van der Slot, A.; Althoff, J.; Van den Berg, W.

    2010-02-01

    An overview is given of the economic potential of renewable energy for the Netherlands and the incentives needed to realize this potential. Answers are given to the following questions: (1) What is the current and future economic value of sustainable energy in the Netherlands?; (2) In what areas the Netherlands has a unique position in terms of knowledge and activities?; and (3) How can renewable energy be promoted and how can renewable energy be compared with other key areas? The scope of the study is limited to renewable energy technologies that actually contribute to CO2 reduction, security of supply and affordability. The focus is on renewable energy technologies that provide new products or services, and thus directly contribute to an increase of economic activity in the Netherlands. [nl

  13. Equivalence between deep energy-dependent and shallow angular momentum dependent potentials

    International Nuclear Information System (INIS)

    Fiedeldey, H.; Sofianos, S.A.; Papastylianos, A.; Amos, K.A.; Allen, L.J.

    1989-01-01

    Recently Baye showed that supersymmetry can be applied to determine a shallow l-dependent potential phase equivalent to a deep potential, assumed to be energy-independent and have Panli forbidden states (PFS), for α-α scattering. The PFS are eliminated by this procedure. Such deep potentials are generated as equivalent local potentials (ELP) to the Resonating Group Model (RGM) and are generally energy-dependent. To eliminate this E-dependence as required for the application of Baye's method, l-dependent, but E-independent, deep local potentials were generated by the exact inversion method of Marchenko. Subsequently, the supersymmetric method was used to eliminate the PFS, ensuring that the generalized Levinson theorem is satisfied. As an example, the method was applied to the simple model of two dineutrons scattering in the RGM, where the deep ELP of Horiuchi has a substantial energy-dependence and one PFS only for l=O. 16 refs., 5 figs

  14. Canada's renewable energy resources. An assessment of potential

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, P; Argue, R; Burrell, T; Hathaway, G

    1976-04-01

    Rising costs of conventional, frontier and nuclear energy production and the prospect of future shortages have prompted a resurgence of interest in alternative, renewable energy technologies. This study constituted a preliminary step in determining which sources, technologies and applications may be appropriate in Canada, and when and under what conditions they might be technically and economically viable. Principal sources of renewable energy (solar radiation, wind and biomass), as well as waves, thermal gradients and sensible heat sources are reviewed to establish, in general terms, their significance in the Canadian context. Next, the technical characteristics, efficiency, costs, impacts and state-of-the-art of sixteen harnessing or conversion technologies are presented as an information base upon which to build an assessment of potential. A method of comparing the life cost of a renewable energy system to that of the likely conventional alternative is proposed and applied in cases where adequate technical and economic data are available. A variety of different economic assumptions are also outlined under which the renewable systems would be cost competitive. This costing methodology is applied in detail to four case studies: residential solar space and water heating, photovoltaics, residential, a 200 kW wind generator, and anaerobic digestion of livestock wastes. Finally, the potential for renewable energy approaches in Canada is explored and evaluated from three perspectives: technical viability, economic viability and implementation. 319 refs., 18 figs., 94 tabs.

  15. Logging potentials and energy wood resources in southern Finland; Potentiaaliset hakkuumahdollisuudet ja energiapuuvarat Etelae- Suomessa

    Energy Technology Data Exchange (ETDEWEB)

    Pesonen, M; Malinen, J [Finnish Forest Research Inst. METLA, Vantaa (Finland)

    1997-12-01

    Development of energy wood resources in Southern Finland over the next 40 years was studied on the basis of four cutting scenarios. Development of energy wood accrual was considered on the production cost levels of FIM 45/MWh and FIM 55/MWh in scenarios describing sustainable cutting potential, long-term cutting plans of forest owners and cutting of industrial mechandable wood over the years of depression. Effects of limitations concerning energy wood harvesting from meagre forest land and bogs on the energy wood accruals of sustainable cutting potential were also studied. The energy wood potential in Southern Finland was estimated at 3.6 million m{sup 3}/a on the production cost level of FIM 45/MWh. The energy wood accrual equal to sustainable cutting potential was 70 % of the energy wood potential. The energy wood potential increased to 8.8 m{sup 3}/a when the production cost level increased to FIM 55/MWh, the energy wood accrual of sustainable cutting potential being 51 %. The energy wood accruals according to felling plans of forest owners and cuttings over the years of depression were smaller than that of sustainable cutting potential, due to smaller loggings. Limitation of energy wood harvesting from meagre forest land and bogs would reduce the energy wood accrual of sustainable cutting potential by 22 %. This would involve a reduction of one million m{sup 3} in the harvesting potential. The energy wood accrual of sustainable cutting potential in Finland was 5.8 million m{sup 3}/a on the production cost level of FIM 55/MWh. This is equal to the aim set by the BIOENERGY Research Programme for the use potential of 1 Mtoe (equivalent oil tonne) on the production cost level of FIM 45/MWh

  16. Using smart meter data to estimate demand response potential, with application to solar energy integration

    International Nuclear Information System (INIS)

    Dyson, Mark E.H.; Borgeson, Samuel D.; Tabone, Michaelangelo D.; Callaway, Duncan S.

    2014-01-01

    This paper presents a new method for estimating the demand response potential of residential air conditioning (A/C), using hourly electricity consumption data (“smart meter” data) from 30,000 customer accounts in Northern California. We apply linear regression and unsupervised classification methods to hourly, whole-home consumption and outdoor air temperature data to determine the hours, if any, that each home's A/C is active, and the temperature dependence of consumption when it is active. When results from our sample are scaled up to the total population, we find a maximum of 270–360 MW (95% c.i.) of demand response potential over a 1-h duration with a 4 °F setpoint change, and up to 3.2–3.8 GW of short-term curtailment potential. The estimated resource correlates well with the evening decline of solar production on hot, summer afternoons, suggesting that demand response could potentially act as reserves for the grid during these periods in the near future with expected higher adoption rates of solar energy. Additionally, the top 5% of homes in the sample represent 40% of the total MW-hours of DR resource, suggesting that policies and programs to take advantage of this resource should target these high users to maximize cost-effectiveness. - Highlights: • We use hourly electricity use data to estimate residential demand response (DR) potential. • The residential cooling DR resource is large and well-matched to solar variability. • Customer heterogeneity is large; programs should target high potential customers

  17. Extraction of potential energy in charge asymmetry coordinate from experimental fission data

    Energy Technology Data Exchange (ETDEWEB)

    Pasca, H. [Joint Institute for Nuclear Research, Dubna (Russian Federation); ' ' Babes-Bolyai' ' Univ., Cluj-Napoca (Romania); Andreev, A.V.; Adamian, G.G. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Tomsk Polytechnic Univ. (Russian Federation). Mathematical Physics Dept.

    2016-12-15

    For fissioning isotopes of Ra, Ac, Th, Pa, and U, the potential energies as a function of the charge asymmetry coordinate are extracted from the experimental charge distributions of the fission fragment and compared with the calculated scission-point driving potentials. The role of the potential energy surfaces in the description of the fission charge distribution is discussed. (orig.)

  18. Storage of energies - Translating potential into actions

    International Nuclear Information System (INIS)

    Signoret, Stephane; Mary, Olivier; Petitot, Pauline; Dejeu, Mathieu; De Santis, Audrey

    2015-01-01

    In this set of articles, a first one evokes issues discussed during a colloquium held in Paris by the European association for storage of energy, the possibilities mentioned about energy storage development in the French bill project for energy transition, and the importance of non-interconnected areas in the development of energy storage. A second article proposes an overview of developments and advances in energy storage in California which adopted suitable laws. The German situation is then briefly described: needs are still to be defined and a road map has been published in 2014, as technologies are expensive and the legal framework is still complex. The next article outlines the conditions of development of the power-to-gas sector (as a process of valorisation of excess electricity). An article gives an overview of technological developments in the field of electrochemical energy storage (batteries). The results of the PEPS study (a study on the potential of energy storage) in Europe are commented. An interview with a member of the French BRGM (Bureau of Mines) outlines the major role which underground storage could play in energy transition. The Seti project for an intelligent thermal energy storage and a better use of renewable energies is then presented. An article comments how to use foodstuff cold to make consumption cut-offs. A last article comments how superconductors could be used in the future for batteries. Few examples are briefly presented: a molten salt-based storage by Areva, a local production of green hydrogen in France, an innovating project of solar energy storage in Switzerland, and the Toucan solar plant in French Guyana

  19. An analysis of cross-sectional variations in total household energy requirements in India using micro survey data

    International Nuclear Information System (INIS)

    Pachauri, Shonali

    2004-01-01

    Using micro level household survey data from India, we analyse the variation in the pattern and quantum of household energy requirements, both direct and indirect, and the factors causing such variation. An econometric analysis using household survey data from India for the year 1993-1994 reveals that household socio-economic, demographic, geographic, family and dwelling attributes influence the total household energy requirements. There are also large variations in the pattern of energy requirements across households belonging to different expenditure classes. Results from the econometric estimation show that total household expenditure or income level is the most important explanatory variable causing variation in energy requirements across households. In addition, the size of the household dwelling and the age of the head of the household are related to higher household energy requirements. In contrast, the number of members in the household and literacy of the head are associated with lower household energy requirements

  20. An analysis of cross-sectional variations in total household energy requirements in India using micro survey data

    Energy Technology Data Exchange (ETDEWEB)

    Pachauri, Shonali E-mail: shonali.pachauri@cepe.mavt.ethz.ch

    2004-10-01

    Using micro level household survey data from India, we analyse the variation in the pattern and quantum of household energy requirements, both direct and indirect, and the factors causing such variation. An econometric analysis using household survey data from India for the year 1993-1994 reveals that household socio-economic, demographic, geographic, family and dwelling attributes influence the total household energy requirements. There are also large variations in the pattern of energy requirements across households belonging to different expenditure classes. Results from the econometric estimation show that total household expenditure or income level is the most important explanatory variable causing variation in energy requirements across households. In addition, the size of the household dwelling and the age of the head of the household are related to higher household energy requirements. In contrast, the number of members in the household and literacy of the head are associated with lower household energy requirements.

  1. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    International Nuclear Information System (INIS)

    Tavares, O.A.P.; Medeiros, E.L.; Morcelle, V.

    2010-06-01

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range 6 Li- 238 U, and 158 projectile nuclei from 2 H up to 84 Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  2. Total Energy. Sustainable cooling and heating in supermarkets; Total Energy. Duurzame koeling en verwarming supermarkten

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-03-15

    In 8 articles attention is paid to different aspects of cooling and heating in supermarkets: new coolants in the food retail sector, the climate plan of the Dutch Food Retail Association (CBL), he Round Table discussion with between CBL and supermarket chains about research results, approach and targets, the use of CO2 refrigeration in supermarkets, leakage of coolants from refrigerators and freezers in Dutch supermarkets, the energy efficient and environment-friendly refrigerator and freezer equipment of the distribution centre of supermarket chain C1000 in Raalte, Netherlands, changes for cooling techniques in the EIA energy list (Energy investment deduction scheme) and finally education options for the refrigeration industry in the Netherlands. [Dutch] In 8 artikelen wordt aandacht geschonken aan verschillende aspecten m.b.t. koeling en verwarming in supermarkten: nieuwe koelmiddelen in de 'food retail sector, het klimaatplan van de brancheorganisatie Centraal Bureau Levensmiddelenhandel (CBL), het Rondetafel overleg met de CBL en supermarktketens over onderzoeksresultaten, aanpak en doelen, de toepassing van CO2 koeling in supermarkten, lekkage van koelmiddelen uit koel- en vriesinstallaties in Nederlandse supermarkten, de energiezuinige en milieuvriendelijke koel-vriesinstallatie van het distributiecentrum van de supermarktketen C1000 in Raalte, wijzigingen voor koeltechniek in de EIA energielijst (Energie Investeringsaftrek subsidieregeling), en tenslotte opleidingsmogelijkheden voor de koeltechnische sector in Nederland.

  3. Quantitative determination of caffeine and alcohol in energy drinks and the potential to produce positive transdermal alcohol concentrations in human subjects.

    Science.gov (United States)

    Ayala, Jessica; Simons, Kelsie; Kerrigan, Sarah

    2009-01-01

    The purpose of this study was to determine whether non-alcoholic energy drinks could result in positive "alcohol alerts" based on transdermal alcohol concentration (TAC) using a commercially available electrochemical monitoring device. Eleven energy drinks were quantitatively assayed for both ethanol and caffeine. Ethanol concentrations for all of the non-alcoholic energy drinks ranged in concentration from 0.03 to 0.230% (w/v) and caffeine content per 8-oz serving ranged from 65 to 126 mg. A total of 15 human subjects participated in the study. Subjects consumed between 6 and 8 energy drinks over an 8-h period. The SCRAM II monitoring device was used to determine TACs every 30 min before, during, and after the study. None of the subjects produced TAC readings that resulted in positive "alcohol alerts". TAC measurements for all subjects before, during and after the energy drink study period (16 h total) were study consumed a quantity of non-alcoholic energy drink that greatly exceeds what would be considered typical. Based on these results, it appears that energy drink consumption is an unlikely explanation for elevated TACs that might be identified as potential drinking episodes or "alcohol alerts" using this device.

  4. Potential utilization of renewable energy sources and the related problems

    International Nuclear Information System (INIS)

    Roos, I.; Selg, V.

    1996-01-01

    Estonia's most promising resource of renewable energy is the natural biomass. In 1994 the use of wood and waste wood formed about 4.9% of the primary energy supply, the available resource will provide for a much higher share of biomass in the future primary energy supply, reaching 9-14%. Along with the biomass, wind energy can be considered the largest resource. On the western and northern coast of Estonia, in particular, on the islands, over several years, the average wind speed has been 5 m/s. Based on the assumption that the wind speed exceeds 6 m/s in the area that forms ca 1.5% of the Estonian territory (the total area of Estonia is about 45,000 km 2 ) and is 5 - 6 m/s on about 15% of the total area, using 0.5 MW/km 2 for the installation density, very approximate estimates permit to state that the maximum hypothetical installed capacity could be 3750 MW. It might be useful to make use of the current maximum 50 MW, which could enable the generation of approximately 70 - 100 GW h of energy per year. Although the solar energy currently has no practical use in Estonia and the resource of hydro power is also insignificant (only ca 1% of the electricity consumption), these two resources of renewable energy hold future promise in view of the use of local resources and that of environmental protection. It is not reasonable to regard renewable energy sources as a substitute for the traditional oil shale-based power engineering in Estonia. But, to some extent, local energy demand can be covered by renewable energy sources. Thus, they can contribute to the reduction of the greenhouse gases emissions in Estonia

  5. The urban wind energy potential for integrated roof wind energy systems based on local building height distributions

    NARCIS (Netherlands)

    Blok, R.; Coers, M.D.

    2017-01-01

    An Integrated Roof Wind Energy System (IRWES) is a roof mounted structure with an internal wind turbine that uses smart aerodynamics to catch and accelerate wind flow. It has been designed for application on (existing) buildings in the urban environment. To estimate the maximum total wind energy

  6. Determination of cost–potential-curves for wind energy in the German federal state of Baden-Württemberg

    International Nuclear Information System (INIS)

    McKenna, R.; Gantenbein, S.; Fichtner, W.

    2013-01-01

    The new federal government in the German federal state of Baden-Württemberg has set a target for 10% of gross electricity generation from wind energy by 2020. Given that currently around 0.1% of the electricity generation comes from wind energy, this paper examines the technical feasibility and economic costs associated with realising this goal. The technical potential for wind energy in Baden-Württemberg is determined, along with the costs of electricity generation, which together lead to the derivation of cost–potential-curves. The technical potential is calculated by identifying the available area with the aid of a geographical information system (GIS) and land use information. With the help of a regional wind atlas, turbine power curves and an assumed wind speed frequency distribution, the spatially distributed electricity generation potential on a district level is estimated. The costs of wind energy are investigated for the year 2010 and projected for the years 2020 and 2030 on the basis of learning curves. The result is a suitable area for wind energy of 2119 km², which amounts to 5.9% of the total area of Baden-Württemberg. Depending on the wind turbine selected, a capacity of 18.5 GW up to 24.5 GW could be installed and depending on the hub height and the turbine, an electricity yield of 29.3 TWh up to 40.7 TWh could be generated. The costs of electricity, depending on the type of turbine and the average wind speed, but lie for 2010 between 3.99 and 21.42 €-cents/kWh, reducing by 2030 to 3.33–17.84 €-cents/kWh. - Highlights: ► Baden-Württemberg has a goal of 10% of electricity from wind energy by 2020. ► This is examined with cost–potential curves on district level. ► The result is a suitable area for wind energy of 2119 km². ► A capacity of 19–25 GW or an electricity yield of 29–41 TWh could be generated. ► The costs of electricity lie for 2010 between 3.99 and 21.42 €-cents/kWh

  7. Offshore wind energy potential in China

    DEFF Research Database (Denmark)

    Hong, Lixuan; Möller, Bernd

    2011-01-01

    and economic costs. However, the influence of tropical cyclone risks on these regions and detailed assessments at regional or local scale are worth of further discussions. Nevertheless, the models and results provide a foundation for a more comprehensive regional planning framework that would address......This paper investigates available offshore wind energy resources in China’s exclusive economic zone (EEZ) with the aid of a Geographical Information System (GIS), which allows the influence of technical, spatial and economic constraints on offshore wind resources being reflected in a continuous...... space. Geospatial supply curves and spatial distribution of levelised production cost (LPC) are developed, which provide information on the available potential of offshore wind energy at or below a given cost, and its corresponding geographical locations. The GIS-based models also reflect the impacts...

  8. Performance-based potential for residential energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Performance-based potential for residential energy efficiency

    2013-01-15

    Energy performance contracts (EPCs) have proven an effective mechanism for increasing energy efficiency in nearly all sectors of the economy since their introduction nearly 30 years ago. In the modern form, activities undertaken as part of an EPC are scoped and implemented by experts with specialized technical knowledge, financed by commercial lenders, and enable a facility owner to limit risk and investment of time and resources while receiving the rewards of improved energy performance. This report provides a review of the experiences of the US with EPCs and discusses the possibilities for the residential sector to utilize EPCs. Notably absent from the EPC market is the residential segment. Historically, research has shown that the residential sector varies in several key ways from markets segments where EPCs have proven successful, including: high degree of heterogeneity of energy use characteristics among and within households, comparatively small quantity of energy consumed per residence, limited access to information about energy consumption and savings potential, and market inefficiencies that constrain the value of efficiency measures. However, the combination of recent technological advances in automated metering infrastructure, flexible financing options, and the expansion of competitive wholesale electricity markets to include energy efficiency as a biddable supply-side resource present an opportunity for EPC-like efforts to successfully engage the residential sector, albeit following a different model than has been used in EPCs traditionally.(Author)

  9. Toward precise potential energy curves for diatomic molecules, derived from experimental line positions

    International Nuclear Information System (INIS)

    Helm, H.

    1984-01-01

    An inverted, first-order perturbation approach is used to derive potential energy curves for diatomic molecules from experimental line positions of molecular bands. The concept adopted here is based on the inverted perturbation analysis (IPA) proposed by Kozman and Hinze, but uses radial eigenfunctions of the trial potential energy curves as basis sets for the perturbation correction. Using molecular linepositions rather than molecular energy levels we circumvent the necessity of defining molecular constants for the molecule prior to the derivation of the potential energy curves. (Author)

  10. Research report of fiscal 1997. Study on total energy and material control (feasibility study on circulating society); 1997 nendo chosa hokokusho. Total energy and material control ni kansuru chosa (junkangata shakai kochiku kanosei chosa) chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In order to construct real sustainable global environment and human society in the 21st century called the century of environment, not only the innovation of manufacturing processes technically supporting such the construction but also the conception including the innovation of the whole society from a wide viewpoint are essential. As a total energy and material control system (TEMCOS) concept, the view of an energy-saving circulating society is attempted which minimizes a total energy and material flow in Japan, and the role and issue of manufacturing industry, in particular, material industry are extracted. As one of the targets of such a concept, the conception of an eco-town is also described. Paying attention on some important material industries including a mass material flow and consuming a large amount of energy such as metal, plastics and automobile industries, the study result on a material flow for every industry is arranged, and some effective issues contributing to minimize a material flow and control energy consumption and CO2 emission are extracted. 80 refs., 67 figs., 30 tabs.

  11. Energy conservation potential in China’s petroleum refining industry: Evidence and policy implications

    International Nuclear Information System (INIS)

    Lin, Boqiang; Xie, Xuan

    2015-01-01

    Highlights: • A long-term equilibrium relationship of energy demand in China’s petroleum refining industry is established. • The sectoral energy conservation potential is evaluated by using scenarios analysis. • Energy prices, enterprise scale, R and D investment and ownership structure affect electricity intensity. • Future policy for energy conservation in China’s petroleum refining industry is suggested. - Abstract: China is currently the second largest petroleum refining country in the world due to rapid growth in recent years. Because the petroleum refining industry is energy-intensive, the rapid growth in petroleum refining and development caused massive energy consumption. China’s urbanization process will guarantee sustained growth of the industry for a long time. Therefore, it is necessary to study the energy conservation potential of the petroleum industry. This paper estimates the energy conservation potential of the industry by applying a cointegration model to investigate the long-run equilibrium relationship between energy consumption and some factors such as energy price, enterprise scale, R and D investment and ownership structure. The results show that R and D investment has the greatest reduction impact on energy intensity, and the growth of market participants (i.e. the decline of the share of state-owned companies) can improve energy efficiency of this industry. Under the advanced energy-saving scenario, the accumulated energy conservation potential will reach 230.18 million tons of coal equivalent (tce). Finally, we provide some targeted policy recommendations for industrial energy conservation

  12. Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide

    International Nuclear Information System (INIS)

    Kelly-Yong, Tau Len; Lee, Keat Teong; Mohamed, Abdul Rahman; Bhatia, Subhash

    2007-01-01

    energy of the millennium) through gasification reaction in supercritical water, as a source of renewable energy to policy-makers. Oil palm topped the ranking as number 1 fruit crops in terms of production for the year 2007 with 36.90 million tonnes produced or 35.90% of the total edible oil in the world. Its potentiality is further enhanced by the fact that oil constitutes only about 10% of the palm production, while the rest 90% is biomass. With a world oil palm biomass production annually of about 184.6 million tons, the maximum theoretical yield of hydrogen potentially produced by oil palm biomass via this method is 2.16 x 10 10 kg H 2 year -1 with an energy content of 2.59 EJ year -1 , meeting almost 50% of the current worldwide hydrogen demand. (author)

  13. Barriers and Potential Solutions for Energy Renovation of Buildings in Denmark

    DEFF Research Database (Denmark)

    Meyer, Niels I; Mathiesen, Brian vad; Hvelplund, Frede

    2014-01-01

    the supply and demand side for heat, electricity and transport. Implementing such Smart Energy Systems requires integrated strategic energy planning on the national and local level. With the fundamental changes in the energy supply technologies expected during the coming years, it is important to synchronize...... investments in energy conservation measures with investments in the supply side, in order to avoid overinvestment in supply systems and thus to minimize the total costs of the transformation to Smart Energy Systems. This paper highlights some of the most important barriers for renovation of existing buildings...

  14. The potential for quantitative sociological research on residential energy consumption in Denmark

    DEFF Research Database (Denmark)

    Hansen, Anders Rhiger

    2013-01-01

    sociological analysis into energy consumption, enabling researchers in Denmark to use information on energy consumption derived from the energy-supply companies. Furthermore, I present a preliminary research design that employs both a quantitative sociological perspective and the newly available data on actual...... energy consumption. The research design contains a descriptive analysis of how energy demand differs between different types of households. In my conclusion, I claim that quantitative sociological research on energy consumption has great potential for obtaining more knowledge on energy consumption......In this paper, I begin with a description of how a sociological perspective can be employed to understand energy consumption while taking into account that energy consumption is embedded in everyday social practices. Next, I describe how newly available data enhances the potential of quantitative...

  15. Total cross sections of hadron interactions at high energies in low constituents number model

    International Nuclear Information System (INIS)

    Abramovskij, V.A.; Radchenko, N.V.

    2009-01-01

    We consider QCD hadrons interaction model in which gluons density is low in initial state wave function in rapidity space and real hadrons are produced from color strings decay. In this model behavior of total cross sections of pp, pp bar, π ± p, K ± p, γp, and γγ interactions is well described. The value of proton-proton total cross section at LHC energy is predicted

  16. Energy potential in the food industry; Store energipotensialer i naeringsmiddelindustrien

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, E; Risberg, T M; Mydske, H J; Helgerud, H E

    2007-07-01

    The food industry is one of the most power consuming industries (excluding the heavy industry) and has large potential for reducing the energy consumption. This report explains the most energy efficient measures and if the injunctions are followed

  17. Potential productivity of the Miscanthus energy crop in the Loess Plateau of China under climate change

    International Nuclear Information System (INIS)

    Liu, Wei; Sang, Tao

    2013-01-01

    With a vast area of marginal land, the Loess Plateau of China is a promising region for large-scale production of second-generation energy crops. However, it remains unknown whether such production is sustainable in the long run, especially under climate change. Using a regional climate change model, PRECIS, we analyzed the impact of climate change on Miscanthus production in the Loess Plateau. Under three emission scenarios, A2, B2, and A1B, both the average yield and total area capable of supporting Miscanthus production would increase continuously in the future period (2011–2099). As a result, the total yield potential in the region would increase by about 20% in this future period from the baseline period (1961–1990). This was explained primarily by predicted increases in temperature and precipitation across the Loess Plateau, which improved the yield of the perennial C4 plants relying exclusively on rainfed production. The areas that are currently too dry or too cold to support Miscanthus production could be turned into energy crop fields, especially along the arid–semiarid transition zone. Thus the Loess Plateau would become increasingly desirable for growing second-generation energy crops in this century, which could in turn contribute to soil improvement and ecological restoration of the region. (letter)

  18. Jerusalem artichoke: what is its potential. [Energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, M.D.

    1979-01-01

    The agronomic potential of Jerusalem artichokes (J.A.) and the economic possibilities of commercial production of these tubers for use in fuel production is discussed. The nutrient content and the composition of reducing sugars in 6 strains of J.A. are given. Energy requirements in terms of energy resource depletion of fossil fuel to produce 1 hectare of J.A. and the theoretical yields of ethanol from J.A., sugar beet, corn, and wheat are tabulated. (DMC)

  19. Energy saving potential in existing industrial compressors

    International Nuclear Information System (INIS)

    Vittorini, Diego; Cipollone, Roberto

    2016-01-01

    The Compressed Air Sector accounts for a mean 10% worldwide electricity consumption, which ensures about its importance, when energy saving and CO_2 emissions reduction are in question. Since the compressors alone account for 15% overall industry electricity consumption, it appears vital to pay attention to machine performances. The paper presents an overview of present compressor technology and focuses on saving directions for screw and sliding vanes machines, according to data provided by the Compressed Air and Gas Institute and PNEUROP. Data were processed to obtain consistency with fixed reference pressures and organized as a function of main operating parameters. Each sub-term, contributing to the overall efficiency (adiabatic, volumetric, mechanical, electric, organic), was considered separately: the analysis showed that the thermodynamic improvement during compression achievable by splitting the compression in two stages, with a lower compression ratio, opens the way to significantly reduce the energy specific consumption. - Highlights: • Compressors technology overview in industrial compressed air systems. • Market compressors efficiency baseline definition. • Energy breakdown and evaluation of main efficiency terms. • Assessment of air cooling-related energy saving potential. • Energy specific consumption reduction through dual stage compression.

  20. Photovoltaic energy potential of Quebec

    International Nuclear Information System (INIS)

    Royer, J.; Thomas, R.

    1993-01-01

    Results are presented from a study concerning the potential of photovoltaic (PV) energy in Quebec to the year 2010. The different PV applications which are or will be economically viable in Quebec for the study period are identified and evaluated in comparison with the conventional energy sources used for these applications. Two penetration scenarios are proposed. One considers little change at the level of policies established for commercialization of PV sources, and the other considers certain measures which accelerate the implementation of PV technology in certain niches. While the off-grid market is already motivated to adopt PV technology for economic reasons, it is forecast that all encouragement from lowering costs would accelerate PV sales, offering a larger purchasing power to all interested parties. Above all, lowered PV costs would open up the network market. Photovoltaics would have access to a much larger market, which will accelerate changes in the very nature of the industry and bring with it new reductions in the costs of producing PV systems. 5 refs., 1 fig., 7 tabs

  1. WKB corrections to the energy splitting in double-well potentials

    OpenAIRE

    Robnik, Marko; Salasnich, Luca

    1997-01-01

    By using the WKB quantization we deduce an analytical formula for the energy splitting in a double-well potential which is the usual Landau formula with additional quantum corrections. Then we analyze the accuracy of our formula for the double square well potential and the parabolic double-well potential.

  2. Total integrated energy system (TIES) feasibility analysis for the downtown redevelopment project, Pasadena, California

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-04-01

    The purpose of this study is to determine the most desirable method of serving the energy needs of a commercial development to be constructed in Pasadena, California. The factors that determine maximum desirability consist of the following: (1) maximum economic benefit to the energy user and to the surrounding community; (2) minimum usage of energy by both the energy user and the surrounding community; and (3) minimum introduction of pollutants into the community. The methods studied were the Total Integrated Energy System (TIES) concept in several configurations. The TIES concept differs from the ''total energy concept'' in the respect that the electric power output of the local power generation plant goes into the utility company distribution grid, rather than to the user. The user is served power from the grid, as with a conventional system, but also receives heating and cooling media produced from power generation by-product heat from the TIES plant. The effect of this concept is that a very large source-sink for electric energy is provided by the utility company grid. This, in turn, permits the plant to operate in response to instantaneous thermal demand, rather than instantaneous power demand. No auxiliary firing is ever required. No waste of unneeded by-product energy to atmosphere ever occurs. Balance is achieved by either delivering excess power into the grid or by withdrawing power production deficiency from the grid. Near-optimum efficiency is achieved during all operating conditions. There is no need whatsoever for the power-generating plant to be sized to meet the power demand, since it seldom, if ever, tracks the power demand. Sizing of the electric generation is solely a function of economics and the demand for waste heat.

  3. An adaptive interpolation scheme for molecular potential energy surfaces

    Science.gov (United States)

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  4. Structure determination of disordered organic molecules on surfaces from the Bragg spots of low-energy electron diffraction and total energy calculations

    International Nuclear Information System (INIS)

    Poon, H.C.; Weinert, M.; Saldin, D.K.; Stacchiola, D.; Zheng, T.; Tysoe, W.T.

    2004-01-01

    We show that an analysis of the intensity versus energy variation of Bragg spots due to low-energy electron diffraction from a disordered overlayer of molecules on a crystal surface allows a much more convenient method of determining the local adsorption geometries of such molecules than previously analyzed weak diffuse diffraction patterns. For the case of methanol on Pd(111), we show that the geometry determined by this means from experimental diffraction data is in excellent agreement with the predictions of density functional total energy calculations

  5. Does energy labelling on residential housing cause energy savings?

    Energy Technology Data Exchange (ETDEWEB)

    Kjaerbye, V.H.

    2009-07-01

    Danish households use more than 30% of the total amount of energy being used in Denmark. More than 80% of this energy is dedicated to space heating. The same relation is seen in many OECD countries. The corresponding energy savings potential was recently estimated at 30% of the energy used in buildings. Energy labelling is seen as an important instrument to target these potential energy savings. This paper evaluates the effects of the Danish Energy Labelling Scheme on energy consumption in existing single-family houses with propensity score matching using real metered natural gas consumption and a very wide range of register data describing the houses and households. The study did not find significant energy savings due to the Danish Energy Labelling Scheme, but more research would be needed to complement this conclusion

  6. Exploring the potential uptake of distributed energy generation

    International Nuclear Information System (INIS)

    Gardner, John; Ashworth, Peta; Carr-Cornish, Simone

    2007-01-01

    Full text: Global warming has been identified as an energy problem (Klare 2007). With a predicted increase in fossil fuel use for many years to come (IEA 2004) there is a need to find a future energy path that will meet our basic requirements for energy but also help to mitigate climate change (CSIRO 2006). Currently there are a range of technological solutions available, with each representing a different value proposition. Distributed Energy (DE) is one such technological solution, which involves the widespread use of small local power generators, located close to the end user. Such generators can be powered by a range of low emission and/or renewable sources. Until now, cheap electricity, existing infrastructure and reluctance for change both at a political and individual level has meant there has been little prospect for DE to be considered in Australia, except in some remote communities. However, with the majority of Australians now rating climate change as an issue of strategic importance to Australia (Ashworth, Pisarski and Littleboy 2006), it can be inferred that Australia's tolerance for generating greenhouse gas emissions has reduced, and that potential support for DE is increasing. It is therefore important to understand what factors might influence the potential adoption of DE. As part of a research project called the Intelligent Grid, CSIRO's Energy Transformed Flagship is aiming to identify the conditions under which Distributed Energy might be effectively implemented in Australia. One component of this project involves social research, which aims to understand the drivers and barriers to the uptake of DE technology by the community. This paper presents findings from two large-scale surveys (one of householders and one of businesses), designed to assess beliefs and knowledge about environmental issues, and about traditional and renewable energy sources. The surveys also assess current energy use, and identify preferences regarding DE technology. The

  7. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

  8. Student reasoning about electrostatic and gravitational potential energy: An exploratory study with interdisciplinary consequences

    Directory of Open Access Journals (Sweden)

    Beth A. Lindsey

    2014-01-01

    Full Text Available This paper describes an investigation into student reasoning about potential energy in the context of introductory electrostatics. Similar incorrect reasoning patterns emerged both in written questions administered after relevant instruction and in one-on-one interviews. These reasoning patterns are also prevalent in responses to questions posed about gravitational potential energy in the context of universal gravitation in introductory mechanics. This finding is relevant for interdisciplinary research, because many courses in multiple disciplines first introduce the concept of electric potential energy in analogy to gravitational potential energy. The results suggest that in introductory courses students do not gain an understanding of potential energy that is sufficiently robust to apply in more advanced physics courses or in disciplines other than physics, in which students must frequently reason with energy in the context of interactions between atoms and molecules.

  9. Beverage Consumption Habits and Association with Total Water and Energy Intakes in the Spanish Population: Findings of the ANIBES Study.

    Science.gov (United States)

    Nissensohn, Mariela; Sánchez-Villegas, Almudena; Ortega, Rosa M; Aranceta-Bartrina, Javier; Gil, Ángel; González-Gross, Marcela; Varela-Moreiras, Gregorio; Serra-Majem, Lluis

    2016-04-20

    Inadequate hydration is a public health issue that imposes a significant economic burden. In Spain, data of total water intake (TWI) are scarce. There is a clear need for a national study that quantifies water and beverage intakes and explores associations between the types of beverages and energy intakes. The Anthropometry, Intake and Energy Balance Study ANIBES is a national survey of diet and nutrition conducted among a representative sample of 2285 healthy participants aged 9-75 years in Spain. Food and beverage intakes were assessed in a food diary over three days. Day and time of beverage consumption were also recorded. On average, TWI was 1.7 L (SE 21.2) for men and 1.6 L (SE 18.9) for women. More than 75% of participants had inadequate TWI, according to European Food Safety Authority (EFSA) recommendations. Mean total energy intake (EI) was 1810 kcal/day (SE 11.1), of which 12% was provided by beverages. Water was the most consumed beverage, followed by milk. The contribution of alcoholic drinks to the EI was near 3%. For caloric soft drinks, a relatively low contribution to the EI was obtained, only 2%. Of eight different types of beverages, the variety score was positively correlated with TWI (r = 0.39) and EI (r = 0.23), suggesting that beverage variety is an indicator of higher consumption of food and drinks. The present study demonstrates that well-conducted surveys such as the ANIBES study have the potential to yield rich contextual value data that can emphasize the need to undertake appropriate health and nutrition policies to increase the total water intake at the population level promoting a healthy Mediterranean hydration pattern.

  10. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on variou...

  11. Renewable Energy Potentials along the Bay of Bengal due to Tidal Water Level Variation

    Directory of Open Access Journals (Sweden)

    Ahmad Myisha

    2018-01-01

    Full Text Available The projected increase in energy demand coupled with concerns regarding present reliance on fossil fuel and associated environmental concerns had led to increased interest in exploiting renewable energy sources. Among different renewable energy sources, tidal energy is unique and most suitable because of its predictable nature and capability to ensure supply security. Tide consists of both kinetic and potential energy which can be converted to electricity using well-proven technology. The potential energy of tides - the principal focus of the study, is stored due to rise and fall of the sea level. Head difference created due to tidal variation between basin side and sea side of a barrage stores potential energy which is converted into fast-moving water that rotates turbine and generates electricity. Bangladesh with its long coastline has promising prospects of tidal energy resource development. The study focuses on tidal energy resource exploration and exploitation along several competent locations of the Bengal coastline. Tidal records of flood and ebb tide of these locations are analyzed to calculate the potential energy. Finally, available potential techniques of energy extraction are evaluated for annually generated energy estimation. This study investigates the prospect and utilization of tidal energy concept and reviews the possibilities and opportunities of employment of the technology for sustainable development and climate change mitigation in context of Bangladesh.

  12. Current situation of energy conservation in high energy-consuming industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, D.Y.-L.; Yang, K.-H.; Hsu, C.-H.; Chien, M.-H.; Hong, G.-B.

    2007-01-01

    Growing concern in Taiwan has arisen about energy consumption and its adverse environmental impact. The current situation of energy conservation in high energy-consuming industries in Taiwan, including the iron and steel, chemical, cement, pulp and paper, textiles and electric/electrical industries has been presented. Since the energy consumption of the top 100 energy users (T100) comprised over 50% of total industry energy consumption, focusing energy consumption reduction efforts on T100 energy users can achieve significant results. This study conducted on-site energy audits of 314 firms in Taiwan during 2000-2004, and identified potential electricity savings of 1,022,656 MWH, fuel oil savings of 174,643 kiloliters (KL), steam coal savings of 98,620 ton, and natural gas (NG) savings of 10,430 kilo cubic meters. The total potential energy saving thus was 489,505 KL of crude oil equivalent (KLOE), representing a reduction of 1,447,841 ton in the carbon dioxide emissions, equivalent to the annual carbon dioxide absorption capacity of a 39,131-ha plantation forest

  13. Potential of Tidal Plants and Offshore Energy Storage in India

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2008-01-01

    After a discussion of the future needs of electric power in India, the author discusses the perspectives offered by different possible sources of electric energy in this country: coal, hydro, nuclear, wind, solar. These two last ones seem very promising. In order to solve the intermittency problem raised by wind and solar energy, the author discusses and assesses the needs, potentials and costs of energy storage. Then, he evokes the opportunities and possible sites for the development of tidal energy, proposes a schedule of investments for energy

  14. Regional energy autarky: Potentials, costs and consequences for an Austrian region

    International Nuclear Information System (INIS)

    Schmidt, J.; Schönhart, M.; Biberacher, M.; Guggenberger, T.; Hausl, S.; Kalt, G.; Leduc, S.; Schardinger, I.; Schmid, E.

    2012-01-01

    Local actors at community level often thrive for energy autarky to decrease the dependence on imported energy resources. We assess the potentials and trade-offs between benefits and costs of increasing levels of energy autarky for a small rural region of around 21,000 inhabitants in Austria. We use a novel modeling approach which couples a regional energy system model with a regional land use optimization model. We have collected and processed data on the spatial distribution of energy demand and potentials of biomass, photovoltaics and solar thermal resources. The impacts of increasing biomass production on the agricultural sector are assessed with a land-use optimization model that allows deriving regional biomass supply curves. An energy system model is subsequently applied to find the least cost solution for supplying the region with energy resources. Model results indicate that fossil fuel use for heating can be replaced at low costs by increasing forestry and agricultural biomass production. However, autarky in the electricity and the heating sector would significantly increase biomass production and require a full use of the potentials of photovoltaics on roof tops. Attaining energy autarky implies high costs to consumers and a decline in the local production of food and feed. - Highlights: ► Energy autarky strong vision for many regional actors. ► Assessment of consequences of energy autarky for a rural region in Austria. ► Novel modeling approach coupling energy system model with land use model. ► Power and heat autarky causes high costs and decline in regional food and feed production. ► Heat autarky achievable at lower costs by utilizing regional forestry and agricultural biomass.

  15. Can renewable energy power the future?

    International Nuclear Information System (INIS)

    Moriarty, Patrick; Honnery, Damon

    2016-01-01

    Fossil fuels face resource depletion, supply security, and climate change problems; renewable energy (RE) may offer the best prospects for their long-term replacement. However, RE sources differ in many important ways from fossil fuels, particularly in that they are energy flows rather than stocks. The most important RE sources, wind and solar energy, are also intermittent, necessitating major energy storage as these sources increase their share of total energy supply. We show that estimates for the technical potential of RE vary by two orders of magnitude, and argue that values at the lower end of the range must be seriously considered, both because their energy return on energy invested falls, and environmental costs rise, with cumulative output. Finally, most future RE output will be electric, necessitating radical reconfiguration of existing grids to function with intermittent RE. - Highlights: •Published estimates for renewable energy (RE) technical potential vary 100-fold. •Intermittent wind and solar energy dominate total RE potential. •We argue it is unlikely that RE can meet existing global energy use. •The need to maintain ecosystem services will reduce global RE potential. •The need for storage of intermittent RE will further reduce net RE potential.

  16. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, O.A.P.; Medeiros, E.L., E-mail: emil@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Morcelle, V. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2010-06-15

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range {sup 6}Li-{sup 238}U, and 158 projectile nuclei from {sup 2}H up to {sup 84}Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  17. An assessment of wind energy potential in Iberia under climate change

    Science.gov (United States)

    Liberato, Margarida L. R.; Santos, João A.; Rochinha, Carlos; Reyers, Mark; Pinto, Joaquim G.

    2015-04-01

    Wind energy potential in Iberia is assessed for recent-past (1961-2000) and future (2041-2070) climates. For recent-past, a COSMO-CLM simulation driven by ERA-40 is used. COSMO-CLM simulations driven by ECHAM5 following the A1B scenario are used for future projections. A 2 MW rated power wind turbine is selected. Mean potentials, inter-annual variability and irregularity are discussed on annual/seasonal scales and on a grid resolution of 20 km. For detailed regional assessments eight target sites are considered. For recent-past conditions, the highest daily mean potentials are found in winter over northern and eastern Iberia, particularly on high-elevation or coastal regions. In northwestern Iberia, daily potentials frequently reach maximum wind energy output (50 MWh day-1), particularly in winter. Southern Andalucía reveals high potentials throughout the year, whereas the Ebro valley and central-western coast show high potentials in summer. The irregularity in annual potentials is moderate (2 MWh day-1). The northward displacement of North Atlantic westerly winds (autumn-spring) and the strengthening of easterly flows (summer) are key drivers of future projections. Santos, J.A.; Rochinha, C.; Liberato, M.L.R.; Reyers, M.; Pinto, J.G. (2015) Projected changes in wind energy potentials over Iberia. Renewable Energy, 75, 1: 68-80. doi: 10.1016/j.renene.2014.09.026 Acknowledgements: This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER-019524 (PTDC/AAC-CLI/121339/2010).

  18. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and

  19. Potential Evaluation of Energy Supply System in Grid Power System, Commercial, and Residential Sectors by Minimizing Energy Cost

    Science.gov (United States)

    Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao

    If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.

  20. About total kinetic energy distribution between fragments of binary fission

    International Nuclear Information System (INIS)

    Khugaev, A.V.; Koblik, Yu.N.; Pikul, V.P.; Ioannou, P.; Dimovasili, E.

    2002-01-01

    At the investigation of binary fission reactions one of the main characteristic of process is total kinetic energy (TKE) of fission fragments and it distribution between them. From the values of these characteristics it is possible to extract the information about structure of fission fragments in the break up point of initial fissionable nuclear system. In our work TKE dependence from the deformation parameters of shape and density distribution of charge in the fission fragments are investigated. In the end of paper some generalizations of obtaining results are carried out and presented in the form of tables and figures

  1. Scenarios of energy demand and efficiency potential for Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Tzvetanov, P.; Ruicheva, M.; Denisiev, M.

    1996-12-31

    The paper presents aggregated results on macroeconomic and final energy demand scenarios developed within the Bulgarian Country Study on Greenhouse Gas Emissions Mitigation, supported by US Country Studies Program. The studies in this area cover 5 main stages: (1) {open_quotes}Baseline{close_quotes} and {open_quotes}Energy Efficiency{close_quotes} socioeconomic and energy policy philosophy; (2) Modeling of macroeconomic and sectoral development till 2020; (3) Expert assessments on the technological options for energy efficiency increase and GHG mitigation in the Production, Transport and Households and Services Sectors; (4) Bottom-up modeling of final energy demand; and (5) Sectoral and overall energy efficiency potential and policy. Within the Bulgarian Country Study, the presented results have served as a basis for the final integration stage {open_quotes}Assessment of the Mitigation Policy and Measures in the Energy System of Bulgaria{close_quotes}.

  2. Total photoabsorption cross section on nuclei measured in energy range 0.5-2.6 GeV

    International Nuclear Information System (INIS)

    Mirazita, M.

    1998-03-01

    The total photoabsorption cross section on several nuclei has been measured in the energy range 0.5 - 2.6 GeV. Nuclear data show a significant reduction of the absorption strength with respect to the free nucleon case suggesting a shadowing effect at low energies

  3. Savings potential of ENERGY STAR (registered trademark) voluntary labeling programs

    International Nuclear Information System (INIS)

    Webber, Carrie A.; Brown, Richard E.

    1998-01-01

    In 1993 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present potential energy, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. Our target market penetration case represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide results under the assumption of 100% market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emission by electricity generators. The potential savings of ENERGY STAR are substantial. If all purchasers chose Energy Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than$100 billion on their energy bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)

  4. Sustainable energy. Economic growth for the Netherlands with green potential

    International Nuclear Information System (INIS)

    Sijbesma, F.; Oudeman, M.

    2010-02-01

    Research of the economic potential and options for enhancing renewable energy in the Netherlands. The following research questions were addressed: What is the current and future economic value of renewable energy in the Netherlands?; What are the areas in which the Netherlands has a unique point of departure with respect to knowledge and activities?; How can the economic potential be optimally deployed? Can the opportunities be increased by making it a key area?; What are other ways are there to enhance the economic development?. [nl

  5. Postprandial appetite ratings are reproducible and moderately related to total day energy intakes, but not ad libitum lunch energy intakes, in healthy young women.

    Science.gov (United States)

    Tucker, Amy J; Heap, Sarah; Ingram, Jessica; Law, Marron; Wright, Amanda J

    2016-04-01

    Reproducibility and validity testing of appetite ratings and energy intakes are needed in experimental and natural settings. Eighteen healthy young women ate a standardized breakfast for 8 days. Days 1 and 8, they rated their appetite (Hunger, Fullness, Desire to Eat, Prospective Food Consumption (PFC)) over a 3.5 h period using visual analogue scales, consumed an ad libitum lunch, left the research center and recorded food intake for the remainder of the day. Days 2-7, participants rated their at-home Hunger at 0 and 30 min post-breakfast and recorded food intake for the day. Total area under the curve (AUC) over the 180 min period before lunch, and energy intakes were calculated. Reproducibility of satiety measures between days was evaluated using coefficients of repeatability (CR), coefficients of variation (CV) and intra-class coefficients (ri). Correlation analysis was used to examine validity between satiety measures. AUCs for Hunger, Desire to Eat and PFC (ri = 0.73-0.78), ad libitum energy intakes (ri = 0.81) and total day energy intakes (ri​ = 0.48) were reproducible; fasted ratings were not. Average AUCs for Hunger, Desire to Eat and PFC, Desire to Eat at nadir and PFC at fasting, nadir and 180 min were correlated to total day energy intakes (r = 0.50-0.77, P < 0.05), but no ratings were correlated to lunch consumption. At-home Hunger ratings were weakly reproducible but not correlated to reported total energy intakes. Satiety ratings did not concur with next meal intake but PFC ratings may be useful predictors of intake. Overall, this study adds to the limited satiety research on women and challenges the accepted measures of satiety in an experimental setting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Relationship of the Williams-Poulios and Manning-Rosen Potential Energy Models for Diatomic Molecules

    Science.gov (United States)

    Jia, Chun-Sheng; Liang, Guang-Chuan; Peng, Xiao-Long; Tang, Hong-Ming; Zhang, Lie-Hui

    2014-06-01

    By employing the dissociation energy and the equilibrium bond length for a diatomic molecule as explicit parameters, we generate an improved form of the Williams-Poulios potential energy model. It is found that the negative Williams-Poulios potential model is equivalent to the Manning-Rosen potential model for diatomic molecules. We observe that the Manning-Rosen potential is superior to the Morse potential in reproducing the interaction potential energy curves for the {{a}3 Σu+} state of the 6Li2 molecule and the {{X}1 sum+} state of the SiF+ molecule.

  7. Potentials and market prospects of wind energy in Vojvodina

    Directory of Open Access Journals (Sweden)

    Katić Vladimir A.

    2012-01-01

    Full Text Available The paper presents an overview of the wind energy potentials, technologies and market prospects in the Autonomous Province of Vojvodina, the region of Serbia with the most suitable location for exploitation of wind energy. The main characteristics of the region have been presented regarding wind energy and electric, road, railway and waterway infrastructure. The wind farm interconnection with the public grid is explained. The most suitable locations for the wind farms are presented, with present situation and future prospects of wind market in Vojvodina.

  8. Testing an excited-state energy density functional and the associated potential with the ionization potential theorem

    International Nuclear Information System (INIS)

    Hemanadhan, M; Shamim, Md; Harbola, Manoj K

    2014-01-01

    The modified local spin density (MLSD) functional and the related local potential for excited states is tested by employing the ionization potential theorem. The exchange functional for an excited state is constructed by splitting k-space. Since its functional derivative cannot be obtained easily, the corresponding exchange potential is given by an analogy to its ground-state counterpart. Further, to calculate the highest occupied orbital energy ϵ max accurately, the potential is corrected for its asymptotic behaviour by employing the van Leeuwen and Baerends (LB) correction to it. ϵ max so obtained is then compared with the ΔSCF ionization energy calculated using the MLSD functional with self-interaction correction for the orbitals involved in the transition. It is shown that the two match quite accurately. The match becomes even better by tuning the LB correction with respect to a parameter in it. (paper)

  9. Solar Water Heating as a Potential Source for Inland Norway Energy Mix

    Directory of Open Access Journals (Sweden)

    Dejene Assefa Hagos

    2014-01-01

    Full Text Available The aim of this paper is to assess solar potential and investigate the possibility of using solar water heating for residential application in Inland Norway. Solar potential based on observation and satellite-derived data for four typical populous locations has been assessed and used to estimate energy yield using two types of solar collectors for a technoeconomic performance comparison. Based on the results, solar energy use for water heating is competitive and viable even in low solar potential areas. In this study it was shown that a typical tubular collector in Inland Norway could supply 62% of annual water heating energy demand for a single residential household, while glazed flat plates of the same size were able to supply 48%. For a given energy demand in Inland Norway, tubular collectors are preferred to flat plate collectors for performance and cost reasons. This was shown by break-even capital cost for a series of collector specifications. Deployment of solar water heating in all detached dwellings in Inland could have the potential to save 182 GWh of electrical energy, equivalent to a reduction of 15,690 tonnes of oil energy and 48.6 ktCO2 emissions, and contributes greatly to Norway 67.5% renewable share target by 2020.

  10. Development potential of wind energy in Turkey

    Directory of Open Access Journals (Sweden)

    İsmet Akova

    2011-07-01

    energy potential, as part of the renewable energy sources of Turkey, are highly important and each of these two sources has the technical potential to cover the electric production in 2008. The recent increase in the number of wind energy power stations can be related to the preparation of Turkish Wind Atlas, the preparation of legal arrangements to support private sector entrepreneurs and the rise in oil prices. Wind energy power stations are active in Marmara, Aegean region and the Mediterreanean region witnessing more constant and strong winds and are anticipated to be founded in other geographical regions as well in the future.

  11. Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    Science.gov (United States)

    Khryachkov, Vitaly; Goverdovskii, Andrei; Ketlerov, Vladimir; Mitrofanov, Vecheslav; Sergachev, Alexei

    2018-03-01

    Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.

  12. In Search of the Wind Energy Potential

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    2017-01-01

    The worldwide advancement of wind energy is putting high demands on a number of underlying technologies such as wind turbine aerodynamics, structural dynamics, gearbox design, electrical grid connections, and so on. As wind is the only fuel for wind power plants, naturally, wind......-meteorology and wind-climatology are essential for any utilization of wind energy. This is what we are concerned about here with a view on what has happened in wind energy potential assessments in the last 25 years where the utilization of wind turbines in national power supply has accelerated and what...... is the perspective for future improvements of the assessment methods. We take as the starting point the methodology of The European Wind Atlas [I. Troen and E. L. Petersen, European Wind Atlas (Risø National Laboratory, Roskilde, Denmark, 1989)]. From there to the global wind atlas methodology [J. Badger et al...

  13. Drisla, Macedonian energy potential capacity, v. 15(58)

    International Nuclear Information System (INIS)

    Dimitrov, Ognen; Armenski, Slave

    2007-01-01

    This study analyzes the possibility of placing an energy plant, to use municipal waste as fuel supply, on location at Drisla-sanitary stock. The energy potential has been defined by analysing the municipal waste capacity stocked at Drisla location. In addition, the quantity of the municipal waste, accumulated around Macedonia (on state level), has been calculated and defined. Furthermore, in compliance with The Low on solid waste stocking, the possibility for utilizing the already pressurized solid waste, transporting it to Drisla and finally using it as a fuel was analyzed. At the same time, an analysis of the influence to additional expenses for this purpose (transportation expenses, gasoline, employees) against the coast of additionally produced energy was conducted. (Author)

  14. Drisla, Macedonian energy potential capacity, v. 15(57)

    International Nuclear Information System (INIS)

    Dimitrov, Ognen; Armenski, Slave

    2007-01-01

    This study analyzes the possibility of placing an energy plant, to use municipal waste as fuel supply, on location at Drisla-sanitary stock. The energy potential has been defined by analysing the municipal waste capacity stocked at Drisla location. In addition, the quantity of the municipal waste, accumulated around Macedonia (on state level), has been calculated and defined. Furthermore, in compliance with The Low on solid waste stocking, the possibility for utilizing the already pressurized solid waste, transporting it to Drisla and finally using it as a fuel was analyzed. At the same time, an analysis of the influence to additional expenses for this purpose (transportation expenses, gasoline, employees) against the coast of additionally produced energy was conducted. (Author)

  15. The Potential of Renewable Energy Sources in Latvia

    Directory of Open Access Journals (Sweden)

    Sakipova S.

    2016-02-01

    Full Text Available The article discusses some aspects of the use of renewable energy sources in the climatic conditions prevailing in most of the territory of Latvia, with relatively low wind speeds and a small number of sunny days a year. The paper gives a brief description of the measurement equipment and technology to determine the parameters of the outer air; the results of the measurements are also analysed. On the basis of the data obtained during the last two years at the meteorological station at the Botanical Garden of the University of Latvia, the energy potential of solar radiation and wind was estimated. The values of the possible and the actual amount of produced energy were determined.

  16. Japan's long-term energy outlook to 2050: Estimation for the potential of massive CO2 mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, Ryoichi

    2010-09-15

    This paper analyzes Japan's energy outlook and CO2 emissions to 2050. Scenario analysis reveals that Japan's CO2 emissions in 2050 could be potentially reduced by 58% from the emissions in 2005. For achieving this massive mitigation, it is required to reduce primary energy supply per GDP by 60% in 2050 from the 2005 level and to expand the share of non-fossil fuel in total supply to 50% by 2050. Concerning power generation mix, nuclear will account for 60%, renewable for 30% in 2050. For massive CO2 abatement, Japan should tackle technological and economic challenges for large-scale deployment of advanced technologies.

  17. Assessment of potential biomass energy production in China towards 2030 and 2050

    OpenAIRE

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources...

  18. Potential of photosynthetically produced organic matter as an energy feedstock. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spedding, C.R.W.; Walsingham, J.M.; McDougall, V.D.; Shiels, L.A.; Carruthers, S.P.

    1982-01-01

    The following aspects of biomass as an energy source are discussed: fuel supplies, land resources, sources of biomass for fuel, utilization processes, energy cost of producing energy, and potential energy savings. Included in an appendix are fossil fuel energy budgets for crops grown in the United Kingdom.

  19. Potential for energy saving and renewable energy in Utrecht, Netherlands. Preliminary validation for the Utrecht municipality; Potentieel energiebesparing en duurzame energie Utrecht. Onderbouwingsnotitie voor de gemeente Utrecht

    Energy Technology Data Exchange (ETDEWEB)

    Benner, J.H.B.; Warringa, G.E.A.

    2012-10-15

    Utrecht has stated its intention to achieve CO2 neutrality of the local energy supply by 2030. Having conducted its own exploratory study into the steps that would need to be taken to achieve this aim, City Hall asked CE Delft to pass judgment on the target and how it is hoped to be achieved. While characterized by both CE Delft and interviewed scientists as very substantial, Utrecht's ambitions are also regarded as a worthy aim to pursue. City Hall's estimates of the reduction potential of the envisaged measures 28% of total projected emission cuts in 2030 via energy efficiency measures and 35% via renewable energy - are deemed realistic by CE Delft. Although the potential reduction via all options was estimated on the basis of the maximum feasible potential, there still remains a substantial policy gap. The analysis makes clear that robust policy choices are required in order to come close to achieving the stated ambitions [Dutch] De gemeente Utrecht heeft zich tot doel gesteld om in 2030 de lokale energievoorziening CO2-neutraal te hebben. Binnen de gemeente is een ambtelijke verkenning uitgevoerd naar de maatregelen om invulling te geven aan deze ambitie. Utrecht heeft CE Delft gevraagd een oordeel te geven over de ambitie en de invulling daarvan. De ambitie van Utrecht wordt zowel door CE Delft als geïnterviewde wetenschappers getypeerd als fors, maar tegelijk als een goed punt aan de horizon om naar toe te werken. De inschattingen van Utrecht rond het reductiepotentieel van de maatregelen worden door CE Delft beoordeeld als realistisch. Dit houdt in dat 28% van de totaal verwachte uitstoot in 2030 wordt gereduceerd door besparingsmaatregelen en 35% met de inzet van duurzame energie. Hoewel bij de inschatting van de mogelijke reductie voor alle opties is gerekend met het maximaal haalbare potentieel resteert er een aanzienlijk beleidsgat. De analyse maakt duidelijk dat echte beleidskeuzen nodig zijn om realisatie van de ambitie te benaderen.

  20. Market Potential for Non-electric Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    Konishi, T.; Kononov, S.; Kupitz, J.; McDonald, A.; Rogner, H.H.; Nisan, S.

    2002-01-01

    The paper presents results of a recent IAEA study to assess the market potential for non-electric applications of nuclear energy in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, energy supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While technical details are covered only briefly, emphasis is placed on economics and other factors that may promote or hinder the penetration of nuclear options in the markets for non-electric energy services. The study makes a distinction between the market size (demand for a given service) and the market potential for nuclear penetration (which may be smaller because of technical or non-technical constraints). Near-term nuclear prospects are assessed on the basis of on-going projects in the final stages of design or under construction. For the long term, use has been made of a qualitative scale ranging from 0 to 2 for five critical areas: market structure, demand pressure, technical basis, economic competitiveness, and public acceptance. The paper presents the resulting evaluation of long-term prospects for nuclear energy entering into non-electric markets. (authors)

  1. Geothermal energy in Yugoslavia, potentials and applications

    International Nuclear Information System (INIS)

    Boreli, F.; Paradjanin, Lj.; Stankovic, Srb.

    2002-01-01

    This paper promotes the use of Geothermal energy (GTE) in Serbia, and argues that while GTE is both a viable and environmentally friendly energy source, as demonstrated elsewhere in the world, there is also a multitude of opportunities in this region, and the local knowledge and capabilities required for implementing the GTE plants. First, a general introduction to GTE in is given. The basis of GTE is the thermal energy accumulated in fluids and rocks masses in the Earth's Crust. The main GTE advantage compared to the traditional energy sources like thermo-electric plants is the absence of environmental deterioration, however GTE also has advantages compared to other NARES, as the GT sources are permanently available and independent of weather conditions. Worldwide energy potential of GTE is huge, as the reduction of Earth Crust temperature for just 0.1 deg. C would give enough Energy to produce Electrical Energy, at the present dissipation level, for the next 15,000 years. An overview of the regions in Yugoslavia which have a high GTE potential is given. There are two distinct regions with higher GTE values in Serbia: the first is a part of the South Panonian basin including Vojvodina, with Macva and Yu-part along Danube and Morava rivers. This is a sedimental part of the Tercier's Panonic Sea 'Parathetis', with partial depression and Backa subsupression, and is well investigated due to oil and gas holeboring. The second region includes Central and Southern part of Serbia, south from the Panonia basin, with pretercier's and tercier's magmatic volcanic intrusions, which produce a very high and stable thermal flux. This Region is rich in GT-warm water springs with stable yields, and includes 217 locations with 970 natural springs with temperature above 20 deg. C. These compare very favorably with international locations where GTE is exploited. GTE can be used for Electric Energy production using corresponding heat pump systems, for house heating and warm water

  2. Total β-decay energies of neutron-rich zinc isotopes, A=75-80

    International Nuclear Information System (INIS)

    Lund, E.; Aleklett, K.; Fogelberg, B.; Sangariyavanish, A.

    1984-01-01

    The present investigation involves improved measurements of the Qsub(β)-values of 75-78 Zn and determinations of the total decay energies of sup(79,80)Zn which are not reported in the literature before. Also 81 Zn was detected but at the time for the experiment the ion-source was not efficient enough to yield sufficient activity for an accurate Qsub(β)-determination. (orig./HSI)

  3. Solar Pond Potential as A New Renewable Energy in South Sulawesi

    Science.gov (United States)

    Fadliah Baso, Nur; Chaerah Gunadin, Indar; Yusran

    2018-03-01

    Renewable energy sources need to be developed to maintain the electric energy availability by utilizing oceanic energy, namely solar pond energy. This energy is highly influenced by several factors including salinity, air temperature and solar radiation. This study was focused on finding the potential of solar pond in South Sulawesi, a region with fairly high solar radiation and abundant salt water raw materials availability. The method used in this study was analyzing the values from the mathematic models of daily horizontal solar radiation, air temperature, wind speed, relative humidity and atmospheric pressure for the last 22 years which were finalized using MATLAB. The findings of this study will show the areas with good potentials to apply solar pond in South Sulawesi that can be utilized in various fields including power generator, industrial heating process, desalination and heating for biomass conversion.

  4. Bohm's quantum potential as an internal energy

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, Glen, E-mail: gdennis502@gmail.com [TPRU, Birkbeck College, University of London, London, WC1E 7HX (United Kingdom); Gosson, Maurice A. de, E-mail: maurice.de.gosson@univie.ac.at [University of Vienna, Faculty of Mathematics, NuHAG, Oskar-Morgenstern-Platz 1, 1090 Vienna (Austria); Hiley, Basil J., E-mail: b.hiley@bbk.ac.uk [TPRU, Birkbeck College, University of London, London, WC1E 7HX (United Kingdom)

    2015-06-26

    Highlights: • The quantum potential is seen as internal energy associated with a phase space region. • Fermi's trick shows that Bohm's particle is an extended structure in phase space. • We associate Bohm's quantum potential with a context-dependent energy redistribution. • A physically motivated derivation of Schrodinger's equation is provided. • We show the Fermi set associated with a 3-D coherent state contains a quantum blob. - Abstract: We pursue our discussion of Fermi's surface initiated by Dennis, de Gosson and Hiley and show that Bohm's quantum potential can be viewed as an internal energy of a quantum system, giving further insight into its role in stationary states. This implies that the ‘particle’ referred to in Bohm's theory is not a classical point-like object but rather has an extended structure in phase space which can be linked to the notion of a symplectic capacity, a topological feature of the underlying symplectic geometry. This structure provides us with a new, physically motivated derivation of Schrödinger's equation provided we interpret Gleason's theorem as a derivation of the Born rule from fundamental assumptions about quantum probabilities.

  5. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  6. Total Water Intake from Beverages and Foods Is Associated with Energy Intake and Eating Behaviors in Korean Adults

    Science.gov (United States)

    Lee, Kyung Won; Shin, Dayeon; Song, Won O.

    2016-01-01

    Water is essential for the proper functioning of the body. Even though a recommendation exists for adequate water intake for Koreans, studies identifying actual water intake from all beverages and foods consumed daily in the Korean population are limited. Thus, we estimated total water intake from both beverages and foods and its association with energy intake and eating behaviors in Korean adults. We used a nationally representative sample of 25,122 Korean adults aged ≥19 years, from the Korean National Health and Nutrition Examination Survey 2008–2012. We performed multiple regression analyses, adjusting for sociodemographic and health-related variables to investigate the contribution of overall energy and dietary intakes and eating behaviors to total water intake. The mean total water intake excluding plain water was 1071 g (398 g from beverages and 673 g from foods) and the estimated plain water intake was 1.3 L. Among Korean adults, 82% consumed beverages (excluding plain water) and these beverages contributed to 10% of daily energy intake and 32% of total water intake from beverages and foods. For every 100 kcal/day in energy intake, water intake consumed through beverages and foods increased by 18 g and 31 g, respectively. Water intake from beverages and foods was positively associated with energy from fat and dietary calcium, but inversely associated with energy density and energy from carbohydrates. When there was a 5% increase in energy intake from snacks and eating outside the home, there was an increase in water intake from beverages of 13 g and 2 g, respectively. Increased daily energy intake, the number of eating episodes, and energy intake from snacks and eating outside the home predicted higher water intake from beverages and foods. Our results provide evidence suggesting that various factors, including sociodemographic status, dietary intakes, and eating behaviors, could be important contributors to the water intake of Korean adults. Findings

  7. Total Water Intake from Beverages and Foods Is Associated with Energy Intake and Eating Behaviors in Korean Adults

    Directory of Open Access Journals (Sweden)

    Kyung Won Lee

    2016-10-01

    Full Text Available Water is essential for the proper functioning of the body. Even though a recommendation exists for adequate water intake for Koreans, studies identifying actual water intake from all beverages and foods consumed daily in the Korean population are limited. Thus, we estimated total water intake from both beverages and foods and its association with energy intake and eating behaviors in Korean adults. We used a nationally representative sample of 25,122 Korean adults aged ≥19 years, from the Korean National Health and Nutrition Examination Survey 2008–2012. We performed multiple regression analyses, adjusting for sociodemographic and health-related variables to investigate the contribution of overall energy and dietary intakes and eating behaviors to total water intake. The mean total water intake excluding plain water was 1071 g (398 g from beverages and 673 g from foods and the estimated plain water intake was 1.3 L. Among Korean adults, 82% consumed beverages (excluding plain water and these beverages contributed to 10% of daily energy intake and 32% of total water intake from beverages and foods. For every 100 kcal/day in energy intake, water intake consumed through beverages and foods increased by 18 g and 31 g, respectively. Water intake from beverages and foods was positively associated with energy from fat and dietary calcium, but inversely associated with energy density and energy from carbohydrates. When there was a 5% increase in energy intake from snacks and eating outside the home, there was an increase in water intake from beverages of 13 g and 2 g, respectively. Increased daily energy intake, the number of eating episodes, and energy intake from snacks and eating outside the home predicted higher water intake from beverages and foods. Our results provide evidence suggesting that various factors, including sociodemographic status, dietary intakes, and eating behaviors, could be important contributors to the water intake of Korean

  8. Total Water Intake from Beverages and Foods Is Associated with Energy Intake and Eating Behaviors in Korean Adults.

    Science.gov (United States)

    Lee, Kyung Won; Shin, Dayeon; Song, Won O

    2016-10-04

    Water is essential for the proper functioning of the body. Even though a recommendation exists for adequate water intake for Koreans, studies identifying actual water intake from all beverages and foods consumed daily in the Korean population are limited. Thus, we estimated total water intake from both beverages and foods and its association with energy intake and eating behaviors in Korean adults. We used a nationally representative sample of 25,122 Korean adults aged ≥19 years, from the Korean National Health and Nutrition Examination Survey 2008-2012. We performed multiple regression analyses, adjusting for sociodemographic and health-related variables to investigate the contribution of overall energy and dietary intakes and eating behaviors to total water intake. The mean total water intake excluding plain water was 1071 g (398 g from beverages and 673 g from foods) and the estimated plain water intake was 1.3 L. Among Korean adults, 82% consumed beverages (excluding plain water) and these beverages contributed to 10% of daily energy intake and 32% of total water intake from beverages and foods. For every 100 kcal/day in energy intake, water intake consumed through beverages and foods increased by 18 g and 31 g, respectively. Water intake from beverages and foods was positively associated with energy from fat and dietary calcium, but inversely associated with energy density and energy from carbohydrates. When there was a 5% increase in energy intake from snacks and eating outside the home, there was an increase in water intake from beverages of 13 g and 2 g, respectively. Increased daily energy intake, the number of eating episodes, and energy intake from snacks and eating outside the home predicted higher water intake from beverages and foods. Our results provide evidence suggesting that various factors, including sociodemographic status, dietary intakes, and eating behaviors, could be important contributors to the water intake of Korean adults. Findings

  9. Energy Savings Potential of Radiative Cooling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  10. Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study

    Directory of Open Access Journals (Sweden)

    Modesto Pérez-Sánchez

    2016-06-01

    Full Text Available Water irrigation systems are required to provide adequate pressure levels in any sort of network. Quite frequently, this requirement is achieved by using pressure reducing valves (PRVs. Nevertheless, the possibility of using hydraulic machines to recover energy instead of PRVs could reduce the energy footprint of the whole system. In this research, a new methodology is proposed to help water managers quantify the potential energy recovering of an irrigation water network with adequate conditions of topographies distribution. EPANET has been used to create a model based on probabilities of irrigation and flow distribution in real networks. Knowledge of the flows and pressures in the network is necessary to perform an analysis of economic viability. Using the proposed methodology, a case study has been analyzed in a typical Mediterranean region and the potential available energy has been estimated. The study quantifies the theoretical energy recoverable if hydraulic machines were installed in the network. Particularly, the maximum energy potentially recovered in the system has been estimated up to 188.23 MWh/year with a potential saving of non-renewable energy resources (coal and gas of CO2 137.4 t/year.

  11. Light and energy and architecture. Potentials in transparent solar cells; Lys og energi og arkitektur. Potentialer i transparente solceller

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Ellen Kathrine; Hilberth, T.R.; Munk, L.

    2008-04-15

    This publication aims to inspire and challenge to: 1) transform energy technology to architectural potentials, 2) introduce visions about daylight's potential into the energy debate, and 3) develop new strategies for interdisciplinary collaboration. In addition to converting solar energy to electricity transparent solar cells can be integrated into glass facades and thereby regulate indoor climate and daylight intake. Furthermore solar cells can contribute new visual dimensions. (BA)

  12. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  13. Comparison greenhouse gas (GHG) emissions and global warming potential (GWP) effect of energy use in different wheat agroecosystems in Iran.

    Science.gov (United States)

    Yousefi, Mohammad; Mahdavi Damghani, Abdolmajid; Khoramivafa, Mahmud

    2016-04-01

    The aims of this study were to determine energy requirement and global warming potential (GWP) in low and high input wheat production systems in western of Iran. For this purpose, data were collected from 120 wheat farms applying questionnaires via face-to-face interviews. Results showed that total energy input and output were 60,000 and 180,000 MJ ha(-1) in high input systems and 14,000 and 56,000 MJ ha(-1) in low input wheat production systems, respectively. The highest share of total input energy in high input systems recorded for electricity power, N fertilizer, and diesel fuel with 36, 18, and 13 %, respectively, while the highest share of input energy in low input systems observed for N fertilizer, diesel fuel, and seed with 32, 31, and 27 %. Energy use efficiency in high input systems (3.03) was lower than of low input systems (3.94). Total CO2, N2O, and CH4 emissions in high input systems were 1981.25, 31.18, and 1.87 kg ha(-1), respectively. These amounts were 699.88, 0.02, and 0.96 kg ha(-1) in low input systems. In high input wheat production systems, total GWP was 11686.63 kg CO2eq ha(-1) wheat. This amount was 725.89 kg CO2eq ha(-1) in low input systems. The results show that 1 ha of high input system will produce greenhouse effect 17 times of low input systems. So, high input production systems need to have an efficient and sustainable management for reducing environmental crises such as change climate.

  14. Scoping study on SADC energy sector carbon market potential; SADC = Southern African Development Community

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-22

    This study shows that, while there is a certain degree of institutional and project development capacity in the region and significant Clean Development Mechanism (CDM) potential, very little of this potential is currently being tapped. National institutional structures are mostly very new, understaffed, and working in isolation from each other. There are ongoing national CDM capacity building programmes in several SADC countries that will address barriers and develop projects at a national level, but there are also regional opportunities that these programmes will not address. For some of large scale project opportunities such as landfill gas, industrial energy use, fugitive emission and transport, a national approach is required because these projects depend on local industrial base, regulatory environment, and are also large enough that the carbon revenue can cover the transaction costs. There are a few key areas that should be addressed, however, at a regional level: Energy trade and power development: any low carbon power projects that are developed to serve regional energy needs and displace coal fired power can only receive carbon credits if the baseline is a regional power grid rather than just a national grid. This is also true for large scale energy efficiency projects in countries that have only hydropower - these would not receive any carbon credits unless there is justification for a regional grid definition that includes fossil fuel fired power stations.Small scale projects: While the total potential for small scale renewables may not be large in terms of tonnes of CO{sub 2} mitigated, the local development impacts of distributed renewable energy and energy efficiency projects are very large. For these projects to be implemented at a large enough scale to recoup the transaction costs of project development, a regional approach is critical. The CDM 'Programme of Activities' (PoA) approach is ideally suited for such regional small scale energy

  15. Methodology used for total system performance assessment of the potential nuclear waste repository at yucca mountain (USA)

    International Nuclear Information System (INIS)

    Devonec, E.; Sevougian, S.D.; Mattie, P.D.; Mcneish, J.A.; Mishra, S.

    2001-01-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste from U.S. commercial nuclear plants and U.S. government-owned facilities. The suitability of the potential geologic repository is assessed, based on its performance in isolating the nuclear waste from the environment. Experimental data and models representing the natural and engineered barriers are combined into a Total System Performance Assessment (TSPA) model. Because of the uncertainty in the current data and in the future evolution of the total system, simulations follow a probabilistic approach. Multiple realization simulations using Monte Carlo analysis are conducted over time periods of up to one million years, which estimates a range of possible behaviors of the repository. In addition to the nominal scenario, other exposure scenarios include the possibility of disruptive events such as volcanic eruption or intrusion, or accidental human intrusion. Sensitivity to key uncertain processes is analyzed. The influence of stochastic variables on the TSPA model output is assessed by ''uncertainty importance analysis'', e.g., regression analysis and classification tree analysis. Further investigation of the impact of parameters and assumptions is conducted through ''one-off analysis'', which consists in fixing a parameter at a particular value, using an alternative conceptual model, or in making a different assumption. Finally, robustness analysis evaluates the performance of the repository when various natural or engineered barriers are assumed to be degraded. The objective of these analyses is to evaluate the performance of the potential repository system under conditions ranging from expected to highly unlikely, though physically possible conditions. (author)

  16. Methodology used for total system performance assessment of the potential nuclear waste repository at yucca mountain (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Devonec, E.; Sevougian, S.D.; Mattie, P.D.; Mcneish, J.A. [Duke Engineering and Services, Town Center Drive, Las Vegas (United States); Mishra, S. [Duke Engineering and Services, Austin, TX (United States)

    2001-07-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste from U.S. commercial nuclear plants and U.S. government-owned facilities. The suitability of the potential geologic repository is assessed, based on its performance in isolating the nuclear waste from the environment. Experimental data and models representing the natural and engineered barriers are combined into a Total System Performance Assessment (TSPA) model. Because of the uncertainty in the current data and in the future evolution of the total system, simulations follow a probabilistic approach. Multiple realization simulations using Monte Carlo analysis are conducted over time periods of up to one million years, which estimates a range of possible behaviors of the repository. In addition to the nominal scenario, other exposure scenarios include the possibility of disruptive events such as volcanic eruption or intrusion, or accidental human intrusion. Sensitivity to key uncertain processes is analyzed. The influence of stochastic variables on the TSPA model output is assessed by ''uncertainty importance analysis'', e.g., regression analysis and classification tree analysis. Further investigation of the impact of parameters and assumptions is conducted through ''one-off analysis'', which consists in fixing a parameter at a particular value, using an alternative conceptual model, or in making a different assumption. Finally, robustness analysis evaluates the performance of the repository when various natural or engineered barriers are assumed to be degraded. The objective of these analyses is to evaluate the performance of the potential repository system under conditions ranging from expected to highly unlikely, though physically possible conditions. (author)

  17. Potentials and policy implications of energy and material efficiency improvement

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01

    There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

  18. Energy potential of fruit tree pruned biomass in Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Bilandzija, N.; Voca, N.; Kricka, T.; Martin, A.; Jurisic, V.

    2012-11-01

    The world's most developed countries and the European Union (EU) deem that the renewable energy sources should partly substitute fossil fuels and become a bridge to the utilization of other energy sources of the future. This paper will present the possibility of using pruned biomass from fruit cultivars. It will also present the calculation of potential energy from the mentioned raw materials in order to determine the extent of replacement of non-renewable sources with these types of renewable energy. One of the results of the intensive fruit-growing process, in post pruning stage, is large amount of pruned biomass waste. Based on the calculated biomass (kg ha{sup 1}) from intensively grown woody fruit crops that are most grown in Croatia (apple, pear, apricots, peach and nectarine, sweet cherry, sour cherry, prune, walnut, hazelnut, almond, fig, grapevine, and olive) and the analysis of combustible (carbon 45.55-49.28%, hydrogen 5.91-6.83%, and sulphur 0.18-0.21%) and non-combustible matters (oxygen 43.34-46.6%, nitrogen 0.54-1.05%, moisture 3.65-8.83%, ashes 1.52-5.39%) with impact of lowering the biomass heating value (15.602-17.727 MJ kg{sup 1}), the energy potential of the pruned fruit biomass is calculated at 4.21 PJ. (Author) 31 refs.

  19. Alternative Forms of Energy Production and Political Reconfigurations: The Sociology of Alternative Energies as a Study of Collective Reorganization Potential

    International Nuclear Information System (INIS)

    Rumpala, Yannick

    2013-01-01

    Energy choices that are made in a society are also political choices. This article aims to study the extent to which these choices can be reoriented by technological developments related to renewable energies, thus contributing to a redistribution of possibilities and to social reorganization. Three steps are proposed to show that while the development of alternative energies depends on technological advances, it can, in this process, also reveal political potentials: 1) the first step clarifies the theoretical arguments that can be deployed in favour of an approach in terms of 'technological potentialism'; 2) the second step extends this approach by identifying a set of potentials linked to renewable energies and the model that could take shape through these alternative forms; 3) the third step examines how these potentials could find ways of being updated

  20. Barriers and Potential Solutions for Energy Renovation of Buildings in Denmark

    Directory of Open Access Journals (Sweden)

    Niels I. Meyer

    2014-02-01

    Full Text Available Buildings account for a substantial part of the total energy consumption. In Denmark this number is about 40 % and this is approximately the same in most industrial countries. On this background there is an urgent need to develop strategies for reducing the energy demand in the building sector. Renovation of existing buildings must have high priority as houses often last for 50 to 100 years, while the time perspective for the desired transformation to low-energy houses is less than 30 years in order to mitigate global warming and avoid irreversible tipping-points. The only sustainable energy supply in the perspective of centuries is renewable energy provided by the sun and exploited in the form of solar heat, solar electricity (PVs, wind power, hydropower, wave power, and some types of biomass etc. A future dominating role of intermittent renewable sources requires new integrated systems thinking on both the supply and demand side for heat, electricity and transport. Implementing such Smart Energy Systems requires integrated strategic energy planning on the national and local level. With the fundamental changes in the energy supply technologies expected during the coming years, it is important to synchronize investments in energy conservation measures with investments in the supply side, in order to avoid overinvestment in supply systems and thus to minimize the total costs of the transformation to Smart Energy Systems. This paper highlights some of the most important barriers for renovation of existing buildings in Denmark and points to policies for overcoming these barriers. Some of the policies have been presented in the reports of a recent Danish research project (CEESA