WorldWideScience

Sample records for total energy cycle

  1. Energy-analysis of the total nuclear energy cycle based on light water reactors

    International Nuclear Information System (INIS)

    Kistemaker, J.

    1975-01-01

    The energy economy of the total nuclear energy cycle is investigated. Attention is paid to the importance of fossil fuel saving by using nuclear energy. The energy analysis is based on the construction and operation of power plants with an electric output of 1000MWe. Light water moderated reactors with a 2.7 - 3.2% enriched uranium core are considered. Additionally, the whole fuel cycle including ore winning and refining, enrichment and fuel element manufacturing and reprocessing has been taken into account. Neither radioactive waste storage problems nor safety problems related to the nuclear energy cycle and safeguarding have been dealt with, as exhaustive treatments can be found elswhere

  2. Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids

    International Nuclear Information System (INIS)

    Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.

    2008-01-01

    Using the 'total energy cycle' methodology, we compare U.S. near term (to ∼2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO x ), fine particulate (PM2.5) and sulfur oxides (SO x ) values are presented. We also isolate the PHEV emissions contribution from varying k

  3. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 1: technical report

    Energy Technology Data Exchange (ETDEWEB)

    Cuenca, R.; Formento, J.; Gaines, L.; Marr, B.; Santini, D.; Wang, M. [Argonne National Lab., IL (United States); Adelman, S.; Kline, D.; Mark, J.; Ohi, J.; Rau, N. [National Renewable Energy Lab., Golden, CO (United States); Freeman, S.; Humphreys, K.; Placet, M. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume I contains the major results, a discussion of the conceptual framework of the study, and summaries of the vehicle, utility, fuel production, and manufacturing analyses. It also contains summaries of comments provided by external peer reviewers and brief responses to these comments.

  4. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

  5. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

  6. Some Environmental and Economic Aspects of Energy Saving Measures in Houses. An estimation model for total energy consumption and emissions to air from the Norwegian dwelling stock, and a life cycle assessment method for energy saving measures in houses

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, L

    1995-12-01

    Motivated by the need to reduce the total energy consumption and the environmental load from society, this doctoral thesis discusses energy conservation measures on existing houses. Alternative additional thermal insulation measures are assessed using an interdisciplinary life cycle approach. The first task is to develop an interdisciplinary assessment method for building improvement measures, taking account of energy consumption, resource consumption, emissions to air of environmentally harmful gases, and economic costs during the entire life cycle of the building. The second task is to develop an estimation model for the total energy consumption and emissions to air of environmentally harmful gases from the dwelling stock of Norway. Finally, the third task is to assess the total energy saving potential and the total environmental benefits of energy saving measures in houses on a national level, including only life cycle analyses of additional thermal insulation measures on single houses. Chap 2 describes the dwelling stock in Norway. Chaps 3 and 4 present an estimation model for total energy consumption and emissions to air from the dwelling stock, and calculations using the model. Chaps 5 and 6 propose and use a calculation method for the assessment of additional thermal insulation measures, using a ``cradle-to-grave`` approach. Since hydroelectric power is the main energy source in this sector in Norway, estimated payback periods for emissions to air are long. But hydroelectric power saved in this sector may be used to obtain reduction in fossil fuel use in other sectors as discussed in Chap 7. Some of the topics discussed are further elaborated on in appendices. 107 refs., 39 figs, 88 tabs.

  7. Total Product Life Cycle (TPLC)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Total Product Life Cycle (TPLC) database integrates premarket and postmarket data about medical devices. It includes information pulled from CDRH databases...

  8. Cycle energy control of magnetorheological dampers on cables

    International Nuclear Information System (INIS)

    Weber, F; Feltrin, G; Motavalli, M; Distl, H

    2009-01-01

    The dissipated cycle energy of magnetorheological (MR) dampers operated at constant current results from controllable hysteretic damping and from almost current independent, small viscous damping. Thus, the emulation of Coulomb friction and linear viscous damping necessitates current modulation during one vibration cycle and therefore current drivers. To avoid this drawback, a cycle energy control (CEC) approach is presented which controls the hysteretic MR damper part such that the total MR damper energy equals the energy of optimal linear viscous damping by constant current during one cycle. The excited higher modes due to the hysteretic damping part are partially damped by the MR damper viscous part. Simulations show that CEC copes better with damper force dynamics and constraints than emulated linear viscous damping due to the slow control force dynamics of CEC which are given by cable amplitude dynamics. It is demonstrated that CEC of MR dampers with viscosity of approximately 4.65% of the optimal modal viscosity performs better than optimal linear viscous damping. The reason is that this damper viscosity represents an optimal compromise between maximum energy spillover to higher modes due to the controllable hysteretic part which produces more cable damping and maximum viscous damping of these higher modes. Damping tests on a cable with an MR damper validate the CEC approach

  9. Comparative risk assessment of total energy systems

    International Nuclear Information System (INIS)

    Soerensen, B.

    1982-01-01

    The paper discusses a methodology for total impact assessment of energy systems, ideally evaluating all the impacts that a given energy system has on the society in which it is imbedded or into which its introduction is being considered. Impacts from the entire energy conversion chain ('fuel cycle' if the system is fuel-based), including energy storage, transport and transmission, as well as the institutions formed in order to manage the system, should be compared on the basis of the energy service provided. A number of impacts are considered, broadly classified as impacts on satisfaction of biological needs, on health, on environment, on social relations and on the structure of society. Further considerations include impacts related to cost and resilience, and, last but not least, impacts on global relations. The paper discusses a number of published energy studies in the light of the comparative impact assessment methodology outlined above. (author)

  10. Pyroelectric Energy Harvesting: With Thermodynamic-Based Cycles

    OpenAIRE

    Saber Mohammadi; Akram Khodayari

    2012-01-01

    This work deals with energy harvesting from temperature variations using ferroelectric materials as a microgenerator. The previous researches show that direct pyroelectric energy harvesting is not effective, whereas thermodynamic-based cycles give higher energy. Also, at different temperatures some thermodynamic cycles exhibit different behaviours. In this paper pyroelectric energy harvesting using Lenoir and Ericsson thermodynamic cycles has been studied numerically and the two cycles were c...

  11. Life-cycle energy implications of different residential settings: Recognizing buildings, travel, and public infrastructure

    International Nuclear Information System (INIS)

    Nichols, Brice G.; Kockelman, Kara M.

    2014-01-01

    The built environment can be used to influence travel demand, but very few studies consider the relative energy savings of such policies in context of a complex urban system. This analysis quantifies the day-to-day and embodied energy consumption of four different neighborhoods in Austin, Texas, to examine how built environment variations influence various sources of urban energy consumption. A microsimulation combines models for petroleum use (from driving) and residential and commercial power and natural gas use with rigorously measured building stock and infrastructure materials quantities (to arrive at embodied energy). Results indicate that the more suburban neighborhoods, with mostly detached single-family homes, consume up to 320% more embodied energy, 150% more operational energy, and about 160% more total life-cycle energy (per capita) than a densely developed neighborhood with mostly low-rise-apartments and duplexes. Across all neighborhoods, operational energy use comprised 83 to 92% of total energy use, and transportation sources (including personal vehicles and transit, plus street, parking structure, and sidewalk infrastructure) made up 44 to 47% of the life-cycle energy demands tallied. Energy elasticity calculations across the neighborhoods suggest that increased population density and reduced residential unit size offer greatest life-cycle energy savings per capita, by reducing both operational demands from driving and home energy use, and from less embodied energy from construction. These results provide measurable metrics for comparing different neighborhood styles and develop a framework to anticipate energy-savings from changes in the built environment versus household energy efficiency. - Highlights: • Total energy demands (operational and embodied) of 5 Austin settings were studied here. • Suburban settings consume much more energy than densely developed neighborhoods. • Transportation sources make up 44 to 47% of the total energy

  12. Life-cycle energy of residential buildings in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Ries, Robert J.; Wang, Yaowu

    2013-01-01

    In the context of rapid urbanization and new construction in rural China, residential building energy consumption has the potential to increase with the expected increase in demand. A process-based hybrid life-cycle assessment model is used to quantify the life-cycle energy use for both urban and rural residential buildings in China and determine the energy use characteristics of each life cycle phase. An input–output model for the pre-use phases is based on 2007 Chinese economic benchmark data. A process-based life-cycle assessment model for estimating the operation and demolition phases uses historical energy-intensity data. Results show that operation energy in both urban and rural residential buildings is dominant and varies from 75% to 86% of life cycle energy respectively. Gaps in living standards as well as differences in building structure and materials result in a life-cycle energy intensity of urban residential buildings that is 20% higher than that of rural residential buildings. The life-cycle energy of urban residential buildings is most sensitive to the reduction of operational energy intensity excluding heating energy which depends on both the occupants' energy-saving behavior as well as the performance of the building itself. -- Highlights: •We developed a hybrid LCA model to quantify the life-cycle energy for urban and rural residential buildings in China. •Operation energy in urban and rural residential buildings is dominant, varying from 75% to 86% of life cycle energy respectively. •Compared with rural residential buildings, the life-cycle energy intensity of urban residential buildings is 20% higher. •The life-cycle energy of urban residential buildings is most sensitive to the reduction of daily activity energy

  13. An Exploration of the Relationship between Improvements in Energy Efficiency and Life-Cycle Energy and Carbon Emissions using the BIRDS Low-Energy Residential Database.

    Science.gov (United States)

    Kneifel, Joshua; O'Rear, Eric; Webb, David; O'Fallon, Cheyney

    2018-02-01

    To conduct a more complete analysis of low-energy and net-zero energy buildings that considers both the operating and embodied energy/emissions, members of the building community look to life-cycle assessment (LCA) methods. This paper examines differences in the relative impacts of cost-optimal energy efficiency measure combinations depicting residential buildings up to and beyond net-zero energy consumption on operating and embodied flows using data from the Building Industry Reporting and Design for Sustainability (BIRDS) Low-Energy Residential Database. Results indicate that net-zero performance leads to a large increase in embodied flows (over 40%) that offsets some of the reductions in operational flows, but overall life-cycle flows are still reduced by over 60% relative to the state energy code. Overall, building designs beyond net-zero performance can partially offset embodied flows with negative operational flows by replacing traditional electricity generation with solar production, but would require an additional 8.34 kW (18.54 kW in total) of due south facing solar PV to reach net-zero total life-cycle flows. Such a system would meet over 239% of operational consumption of the most energy efficient design considered in this study and over 116% of a state code-compliant building design in its initial year of operation.

  14. Hydrogen production by the iodine-sulphur thermochemical cycle. Total and partial pressure measurements

    International Nuclear Information System (INIS)

    D Doizi; V Dauvois; J L Roujou; V Delanne; P Fauvet; B Larousse; O Hercher; P Carles; C Moulin

    2006-01-01

    The iodine sulphur thermochemical cycle appears to be one of the most promising candidate for the massive production of hydrogen using nuclear energy. The key step in this cycle is the HI distillation section which must be optimized to get a good efficiency of the overall cycle. The concept of reactive versus extractive distillation of HI has been proposed because of its potentiality. The design and the optimization of the reactive distillation column requires the knowledge of the liquid vapour equilibrium over the ternary HI-I 2 -H 2 O mixtures up to 300 C and 100 bars. A general methodology based on three experimental devices imposed by the very corrosive and concentrated media will be described: 1) I1 for the total pressure measurement versus different ternary compositions. 2) I2 for the partial and total pressure measurements around 130 C and 2 bars to validate the choice of the analytical optical 'online' techniques we have proposed. 3) I3 for the partial and total pressures measurements in the process domain. The results obtained on pure samples, binary mixtures HI-H 2 O and ternary mixtures using an experimental design analysis in the experimental device I2 will be discussed. (authors)

  15. Life cycle primary energy analysis of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-02-15

    The space heating demand of residential buildings can be decreased by improved insulation, reduced air leakage and by heat recovery from ventilation air. However, these measures result in an increased use of materials. As the energy for building operation decreases, the relative importance of the energy used in the production phase increases and influences optimization aimed at minimizing the life cycle energy use. The life cycle primary energy use of buildings also depends on the energy supply systems. In this work we analyse primary energy use and CO{sub 2} emission for the production and operation of conventional and low-energy residential buildings. Different types of energy supply systems are included in the analysis. We show that for a conventional and a low-energy building the primary energy use for production can be up to 45% and 60%, respectively, of the total, depending on the energy supply system, and with larger variations for conventional buildings. The primary energy used and the CO{sub 2} emission resulting from production are lower for wood-framed constructions than for concrete-framed constructions. The primary energy use and the CO{sub 2} emission depend strongly on the energy supply, for both conventional and low-energy buildings. For example, a single-family house from the 1970s heated with biomass-based district heating with cogeneration has 70% lower operational primary energy use than if heated with fuel-based electricity. The specific primary energy use with district heating was 40% lower than that of an electrically heated passive row house. (author)

  16. Parking infrastructure: energy, emissions, and automobile life-cycle environmental accounting

    Energy Technology Data Exchange (ETDEWEB)

    Chester, Mikhail; Horvath, Arpad; Madanat, Samer, E-mail: mchester@cal.berkeley.edu, E-mail: horvath@ce.berkeley.edu, E-mail: madanat@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley CA 94720 (United States)

    2010-07-15

    The US parking infrastructure is vast and little is known about its scale and environmental impacts. The few parking space inventories that exist are typically regionalized and no known environmental assessment has been performed to determine the energy and emissions from providing this infrastructure. A better understanding of the scale of US parking is necessary to properly value the total costs of automobile travel. Energy and emissions from constructing and maintaining the parking infrastructure should be considered when assessing the total human health and environmental impacts of vehicle travel. We develop five parking space inventory scenarios and from these estimate the range of infrastructure provided in the US to be between 105 million and 2 billion spaces. Using these estimates, a life-cycle environmental inventory is performed to capture the energy consumption and emissions of greenhouse gases, CO, SO{sub 2}, NO{sub X}, VOC (volatile organic compounds), and PM{sub 10} (PM: particulate matter) from raw material extraction, transport, asphalt and concrete production, and placement (including direct, indirect, and supply chain processes) of space construction and maintenance. The environmental assessment is then evaluated within the life-cycle performance of sedans, SUVs (sports utility vehicles), and pickups. Depending on the scenario and vehicle type, the inclusion of parking within the overall life-cycle inventory increases energy consumption from 3.1 to 4.8 MJ by 0.1-0.3 MJ and greenhouse gas emissions from 230 to 380 g CO{sub 2}e by 6-23 g CO{sub 2}e per passenger kilometer traveled. Life-cycle automobile SO{sub 2} and PM{sub 10} emissions show some of the largest increases, by as much as 24% and 89% from the baseline inventory. The environmental consequences of providing the parking spaces are discussed as well as the uncertainty in allocating paved area between parking and roadways.

  17. Integration of energy-efficient empty fruit bunch drying with gasification/combined cycle systems

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Prawisudha, Pandji; Prabowo, Bayu; Budiman, Bentang Arief

    2015-01-01

    Highlights: • Novel integrated drying, gasification and combined cycle for empty fruit bunch. • Application of enhanced process integration to achieve high total energy efficiency. • The technology covers exergy recovery and process integration. • High overall energy efficiency can be achieved (about 44% including drying). - Abstract: A high-energy-efficient process for empty fruit bunch drying with integration to gasification and combined cycle processes is proposed. The enhancement is due to greater exergy recovery and more efficient process integration. Basically, the energy/heat involved in a single process is recovered as much as possible, leading to minimization of exergy destruction. In addition, the unrecoverable energy/heat is utilized for other processes through process integration. During drying, a fluidized bed dryer with superheated steam is used as the main evaporator. Exergy recovery is performed through exergy elevation via compression and effective heat coupling in a dryer and heat exchangers. The dried empty fruit bunches are gasified in a fluidized bed gasifier using air as the fluidizing gas. Furthermore, the produced syngas is utilized as fuel in the combined cycle module. From process analysis, the proposed integrated processes can achieve a relatively high energy efficiency. Compared to a standalone drying process employing exergy recovery, the proposed integrated drying can reduce consumed energy by about 1/3. In addition, the overall integrated processes can reach a total power generation efficiency of about 44%

  18. Large-scale nuclear energy from the thorium cycle

    International Nuclear Information System (INIS)

    Lewis, W.B.; Duret, M.F.; Craig, D.S.; Veeder, J.I.; Bain, A.S.

    1973-02-01

    The thorium fuel cycle in CANDU (Canada Deuterium Uranium) reactors challenges breeders and fusion as the simplest means of meeting the world's large-scale demands for energy for centuries. Thorium oxide fuel allows high power density with excellent neutron economy. The combination of thorium fuel with organic caloporteur promises easy maintenance and high availability of the whole plant. The total fuelling cost including charges on the inventory is estimated to be attractively low. (author) [fr

  19. Energy-containing beverages: reproductive hormones and ovarian function in the BioCycle Study.

    Science.gov (United States)

    Schliep, Karen C; Schisterman, Enrique F; Mumford, Sunni L; Pollack, Anna Z; Perkins, Neil J; Ye, Aijun; Zhang, Cuilin J; Stanford, Joseph B; Porucznik, Christina A; Hammoud, Ahmad O; Wactawski-Wende, Jean

    2013-03-01

    Energy-containing beverages are widely consumed among premenopausal women, but their association with reproductive hormones is not well understood. The objective was to assess the association of energy-containing beverages, added sugars, and total fructose intake with reproductive hormones among ovulatory cycles and sporadic anovulation in healthy premenopausal women. Women (n = 259) in the BioCycle Study were followed for up to 2 menstrual cycles; they provided fasting blood specimens during up to 8 visits/cycle and four 24-h dietary recalls/cycle. Women who consumed ≥1 cup (1 cup = 237 mL) sweetened soda/d had 16.3% higher estradiol concentrations compared with women who consumed less sweetened soda (86.5 pg/mL compared with 74.4 pg/mL, P = 0.01) after adjustment for age, BMI, race, dietary factors, and physical activity. Similarly elevated estradiol concentrations were found for ≥1 cup cola/d and noncola soda intake. Neither artificially sweetened soda nor fruit juice intake ≥1 cup/d was significantly associated with reproductive hormones. Added sugar above the average US woman's intake (≥73.2 g/d) or above the 66th percentile in total fructose intake (≥41.5 g/d) was associated with significantly elevated estradiol but not consistently across all models. No associations were found between beverages, added sugars, or total fructose intake and anovulation after multivariate adjustment. Even at moderate consumption amounts, sweetened soda is associated with elevated follicular estradiol concentrations among premenopausal women but does not appear to affect ovulatory function. Further research into the mechanism driving the association between energy-containing beverages and reproductive hormones, and its potential implications for women's health, is warranted.

  20. Energy, exergy and economic assessments of a novel integrated biomass based multigeneration energy system with hydrogen production and LNG regasification cycle

    International Nuclear Information System (INIS)

    Taheri, M.H.; Mosaffa, A.H.; Farshi, L. Garousi

    2017-01-01

    In this work, a novel integrated biomass based multigeneration energy system is presented and investigated for power, cooling and hydrogen production. The proposed system consists of a combination of biomass integrated gasifier-gas turbine cycle, a Rankine cycle, a cascade organic Rankine cycle, an absorption refrigeration system and a PEM to produce hydrogen. This system uses cold energy of LNG as a thermal sink. Comprehensive thermodynamic and economic analyses as well as an optimization are performed. The effects of operating parameters on thermodynamic performance and total cost rate are investigated for overall system and subsystems. The results show that the fuel mass flow rate is the dominant factor affecting the variation of energy efficiency and total cost rate. An increase in fuel mass flow rate from 4 kg s"−"1 to 10 kg s"−"1 leads to a decrease of 8.5% and an increase of 122.8% overall energy efficiency and total cost rate, respectively. Also, the largest increase in exergy efficiency occurs when gas turbine inlet temperature increases. The results of optimization showed that the highest net power output, mass flow rate of natural gas delivered to city and the flue gas temperature discharged to the environment are obtained for the exergy efficiency optimal design. - Highlights: • A novel multigeneration system is investigated and optimized thermodynamically and economically. • This system is proposed for power, cooling and hydrogen production. • Proposed system uses LNG cold energy thermal sink that can generate power after vaporization. • The effects of operating parameters on energy and exergy efficiencies and total cost rate are investigated. • An optimization is applied based on the energy, exergy and economic viewpoints.

  1. A comprehensive assessment of the life cycle energy demand of passive houses

    International Nuclear Information System (INIS)

    Stephan, André; Crawford, Robert H.; Myttenaere, Kristel de

    2013-01-01

    Highlights: • The life cycle energy demand of a passive house (PH) is measured over 100 years. • Embodied, operational and user transport energy demand are considered. • Embodied energy represents the highest energy consumption in all variations. • A PH might not save energy compared to a standard house. • A poorly insulated city apartment can use less energy than a best case suburban PH. - Abstract: Certifications such as the Passive House aim to reduce the final space heating energy demand of residential buildings. The latter are responsible for a significant share of final energy consumption in Europe of which nearly 70% is associated with space conditioning, notably heating. The improvement of the energy efficiency of residential buildings, in terms of space heating, can therefore reduce their total energy demand. However, most certifications totally overlook other energy requirements associated with residential buildings. Studies on passive houses do not take into consideration the embodied energy required to manufacture the building materials, especially the large amount of insulation required to achieve high operational efficiencies. At an urban scale, most passive houses are single family detached houses located in low density suburbs with a high car usage, resulting in considerable transport related energy demand. This paper analyses the total life cycle energy demand of a typical Belgian passive house, comprising embodied, operational and transport energy. It relies on a comprehensive technique developed by Stephan et al. [1] and conducts a parametric analysis as well as a comparison to alternative building types. Results show that current building energy efficiency certifications might not ensure a lower energy demand and can, paradoxically result in an increased energy consumption because of their limited scope. More comprehensive system boundaries should be used to make sure that net energy savings do occur. The embodied energy of passive

  2. Life-cycle analysis of renewable energy systems

    DEFF Research Database (Denmark)

    Sørensen, Bent

    1994-01-01

    An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants......An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants...

  3. Springs-neaps cycles in daily total seabed light: Daylength-induced changes

    Science.gov (United States)

    Roberts, E. M.; Bowers, D. G.; Davies, A. J.

    2014-04-01

    In shallow, tidal seas, daily total seabed light is determined largely by the interaction of the solar elevation cycle, the tidal cycle in water depth, and any temporal variability in turbidity. Since tidal range, times of low water, and often turbidity vary in regular ways over the springs-neaps cycle, daily total seabed light exhibits cycles of the same periodicity. Corresponding cycles are likely to be induced in the daily total primary production of benthic algae and plants, particularly those light-limited specimens occupying the lower reaches of a sub-tidal population. Consequently, this effect is an important control on the growth patterns, depth distribution and survival of, for example, macroalgal forests and seagrass meadows. Seasonal changes in daylength exert an important additional control on these cycles, as they alter the fraction of the tidal and turbidity cycles occurring within daylight hours. Bowers et al. (1997) modelled this phenomenon numerically and predicted that for a site with low water at about midday and midnight at neaps tides, 6 am and 6 pm at springs, daily total seabed light peaks at neaps in winter, but the ‘sense' of the cycle ‘switches' so that it peaks at springs in summer - the longer daylength permits the morning and evening low water springs to contribute substantially to the daily total. Observations for such a site in North Wales (UK), presented in this paper, show that no such ‘switch' occurs, and neaps tides host the largest daily totals throughout the year. The predicted ‘switch' is not observed because turbidity increases generally at spring tides, and specifically at low water springs, both of which were not accounted for in the model. Observations at a second site in Brittany (France), diametrically opposite in terms of the times of low water at neaps and at springs, indicate a peak at springs throughout the year. Analytical tools are developed to calculate the percentage of daily total sea surface irradiance

  4. Embodied energy and environmental impacts of a biomass boiler: a life cycle approach

    Directory of Open Access Journals (Sweden)

    Sonia Longo

    2015-05-01

    Full Text Available The 2030 policy framework for climate and energy, proposed by the European Commission, aims towards the reduction of European greenhouse gas emissions by 40% in comparison to the 1990 level and to increase the share of renewable energy of at least the 27% of the European's energy consumption of 2030. The use of biomass as sustainable and renewable energy source may be a viable tool for achieving the above goals. However, renewable energy technologies are not totally clean because they cause energy and environmental impacts during their life cycle, and in particular they are responsible of air pollutant emissions. In this context, the paper assesses the energy and environmental impacts of a 46 kW biomass boiler by applying the Life Cycle Assessment methodology, as regulated by the international standards of series ISO 14040, ISO 21930 and EN 15804. The following life-cycle steps are included in the analysis: raw materials and energy supply, manufacturing, installation, operation, transport, and end-of-life. The results of the analysis, showing a life-cycle primary energy consumption of about 2,622 GJ and emissions of about 21,664 kg CO2eq, can be used as a basis for assessing the real advantages due to the use of biomass boilers for heating and hot water production.

  5. Phase change thermal storage for a solar total energy system

    Science.gov (United States)

    Rice, R. E.; Cohen, B. M.

    1978-01-01

    An analytical and experimental program is being conducted on a one-tenth scale model of a high-temperature (584 K) phase-change thermal energy storage system for installation in a solar total energy test facility at Albuquerque, New Mexico, U.S.A. The thermal storage medium is anhydrous sodium hydroxide with 8% sodium nitrate. The program will produce data on the dynamic response of the system to repeated cycles of charging and discharging simulating those of the test facility. Data will be correlated with a mathematical model which will then be used in the design of the full-scale system.

  6. Life cycle assessment of energy consumption and environmental emissions for cornstalk-based ethyl levulinate

    International Nuclear Information System (INIS)

    Wang, Zhiwei; Li, Zaifeng; Lei, Tingzhou; Yang, Miao; Qi, Tian; Lin, Lu; Xin, Xiaofei; Ajayebi, Atta; Yang, Yantao; He, Xiaofeng; Yan, Xiaoyu

    2016-01-01

    Highlights: • The first LCA of cornstalk-based ethyl levulinate. • Life cycle energy consumption and environmental emissions were evaluated. • Detailed foreground data from a demonstration project in China was used. • Criteria emissions in the combustion stage were based on engine tests. • Sensitivity analysis was performed based on different cornstalk prices. - Abstract: This study analysed the sustainability of fuel-ethyl levulinate (EL) production along with furfural, as a by-product, from cornstalk in China. A life cycle assessment (LCA) was conducted using the SimaPro software to evaluate the energy consumption (EC), greenhouse gas (GHG) and criteria emissions, from cornstalk growth to EL utilisation. The total life cycle EC was found to be 4.54 MJ/MJ EL, of which 94.7% was biomass energy. EC in the EL production stage was the highest, accounting for 96.8% of total EC. Fossil EC in this stage was estimated to be 0.095 MJ/MJ, which also represents the highest fossil EC throughout the life cycle (39.5% of the total). The ratio of biomass to fossil EC over the life cycle was 17.9, indicating good utilisation of renewable energy in cornstalk-based EL production. The net life cycle GHG emissions were 96.6 g CO_2-eq/MJ. The EL production stage demonstrated the highest GHG emissions, representing 53.4% of the total positive amount. Criteria emissions of carbon monoxide (CO) and particulates ⩽10 μm (PM10) showed negative values, of −3.15 and −0.72 g/MJ, respectively. Nitrogen oxides (NO_x) and sulphur dioxide (SO_2) emissions showed positive values of 0.33 and 0.28 g/MJ, respectively, mainly arising from the EL production stage. According to the sensitivity analysis, increasing or removing the cornstalk revenue in the LCA leads to an increase or decrease in the EC and environmental emissions while burning cornstalk directly in the field results in large increases in emissions of NMVOC, CO, NO_x and PM10 but decreases in fossil EC, and SO_2 and GHG

  7. Comparing the Life Cycle Energy Consumption, Global ...

    Science.gov (United States)

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG) emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energyand carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage) centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability

  8. Energy security externalities and fuel cycle comparisons

    International Nuclear Information System (INIS)

    Bohi, D.; Toman, M.

    1994-01-01

    Externalities related to 'energy security' may be one way in which the full social costs of energy use diverge from the market prices of energy commodities. Such divergences need to be included in reckoning the full costs of different fuel cycles. In this paper we critically examine potential externalities related to energy security and issues related to the measurement of 2 these externalities, in the context of fuel cycle comparisons

  9. Energy security externalities and fuel cycle comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Bohi, D; Toman, M

    1994-07-01

    Externalities related to 'energy security' may be one way in which the full social costs of energy use diverge from the market prices of energy commodities. Such divergences need to be included in reckoning the full costs of different fuel cycles. In this paper we critically examine potential externalities related to energy security and issues related to the measurement of 2 these externalities, in the context of fuel cycle comparisons.

  10. Nuclear energy development and Kondratiev cycles

    International Nuclear Information System (INIS)

    Brissaud, I.

    2001-01-01

    Searchers from IIASA (international institute for applied system analysis) have considered the spreading of an idea or an innovation among human societies similar to the evolution of an epidemic. This study shows a correlation between the birth of a major invention and the rise of a new source of energy. The invention of computers and nuclear energy seem to be linked in that way. The time interval between 2 major innovations is about 55 years, this value also corresponds to the length of crisis cycles that were discovered by the soviet economist N.D.Kondratiev in 1926. According to Kondratiev capitalist economies have undergone or will undergo cycles between the following dates: 1830, 1885, 1940, 1995 and 2050. After a period of expansion where jobs, wages and prices increase, a crisis happens where unemployment, social trouble and international conflicts develop. The crisis ends with the surge of innovations that feed the system by creating new markets in a modified social context. We are at the beginning of a new cycle, this cycle will see the expansion of nuclear energy, then its predominance and the emergence of a new source of energy in 50 years. (A.C.)

  11. Effect of cycle coupling-configuration on energy cascade utilization for a new power and cooling cogeneration cycle

    International Nuclear Information System (INIS)

    Jing, Xuye; Zheng, Danxing

    2014-01-01

    Highlights: • A new power and cooling cogeneration cycle was proposed. • The thermophysical properties and the performance of the new cycle were calculated. • Different cycle coupling-configurations were analyzed. • The energy efficiency boosting mechanism of the new cycle was elucidated. - Abstract: To recover mid-low grade heat, a new power/cooling cogeneration cycle was proposed by combining the Kalina cycle and the double-effect ammonia–water absorption refrigeration (DAAR) cycle together, and the equivalent heat-to-power and exergy efficiencies of the cogeneration cycle reached 41.18% and 58.00%, respectively. To determine the effect of cycle coupling-configuration on energy cascade utilization for the new cycle, the cycle coupling-configuration of the Kalina and DAAR cycles were first analyzed, after which the cycle coupling-configuration of the new cycle was analyzed. Analysis results showed that the cycle coupling-configuration of the new cycle enhanced the energy cascade utilization. Furthermore, the energy efficiency boosting mechanism of the new cycle was elucidated

  12. Water conservation implications for decarbonizing non-electric energy supply: A hybrid life-cycle analysis.

    Science.gov (United States)

    Liu, Shiyuan; Wang, Can; Shi, Lei; Cai, Wenjia; Zhang, Lixiao

    2018-08-01

    Low-carbon transition in the non-electric energy sector, which includes transport and heating energy, is necessary for achieving the 2 °C target. Meanwhile, as non-electric energy accounts for over 60% of total water consumption in the energy supply sector, it is vital to understand future water trends in the context of decarbonization. However, few studies have focused on life-cycle water impacts for non-electric energy; besides, applying conventional LCA methodology to assess non-electric energy has limitations. In this paper, a Multi-Regional Hybrid Life-Cycle Assessment (MRHLCA) model is built to assess total CO 2 emissions and water consumption of 6 non-electric energy technologies - transport energy from biofuel and gasoline, heat supply from natural gas, biogas, coal, and residual biomass, within 7 major emitting economies. We find that a shift to natural gas and residual biomass heating can help economies reduce 14-65% CO 2 and save more than 21% water. However, developed and developing economies should take differentiated technical strategies. Then we apply scenarios from IMAGE model to demonstrate that if economies take cost-effective 2 °C pathways, the water conservation synergy for the whole energy supply sector, including electricity, can also be achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Energy-containing beverages: reproductive hormones and ovarian function in the BioCycle Study123

    Science.gov (United States)

    Schliep, Karen C; Mumford, Sunni L; Pollack, Anna Z; Perkins, Neil J; Ye, Aijun; Zhang, Cuilin J; Stanford, Joseph B; Porucznik, Christina A; Hammoud, Ahmad O; Wactawski-Wende, Jean

    2013-01-01

    Background: Energy-containing beverages are widely consumed among premenopausal women, but their association with reproductive hormones is not well understood. Objective: The objective was to assess the association of energy-containing beverages, added sugars, and total fructose intake with reproductive hormones among ovulatory cycles and sporadic anovulation in healthy premenopausal women. Design: Women (n = 259) in the BioCycle Study were followed for up to 2 menstrual cycles; they provided fasting blood specimens during up to 8 visits/cycle and four 24-h dietary recalls/cycle. Results: Women who consumed ≥1 cup (1 cup = 237 mL) sweetened soda/d had 16.3% higher estradiol concentrations compared with women who consumed less sweetened soda (86.5 pg/mL compared with 74.4 pg/mL, P = 0.01) after adjustment for age, BMI, race, dietary factors, and physical activity. Similarly elevated estradiol concentrations were found for ≥1 cup cola/d and noncola soda intake. Neither artificially sweetened soda nor fruit juice intake ≥1 cup/d was significantly associated with reproductive hormones. Added sugar above the average US woman's intake (≥73.2 g/d) or above the 66th percentile in total fructose intake (≥41.5 g/d) was associated with significantly elevated estradiol but not consistently across all models. No associations were found between beverages, added sugars, or total fructose intake and anovulation after multivariate adjustment. Conclusions: Even at moderate consumption amounts, sweetened soda is associated with elevated follicular estradiol concentrations among premenopausal women but does not appear to affect ovulatory function. Further research into the mechanism driving the association between energy-containing beverages and reproductive hormones, and its potential implications for women's health, is warranted. PMID:23364018

  14. Fuel cycle modelling of open cycle thorium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Lindley, B.A.; Parks, G.T.; Nuttall, W.J.; Gregg, R.; Hesketh, K.W.; Kannan, U.; Krishnani, P.D.; Singh, B.; Thakur, A.; Cowper, M.; Talamo, A.

    2014-01-01

    Highlights: • We study three open cycle Th–U-fuelled nuclear energy systems. • Comparison of these systems is made to a reference U-fuelled EPR. • Fuel cycle modelling is performed with UK NNL code “ORION”. • U-fuelled system is economically favourable and needs least separative work per kWh. • Th–U-fuelled systems offer negligible waste and proliferation resistance advantages. - Abstract: In this study, we have sought to determine the advantages, disadvantages, and viability of open cycle thorium–uranium-fuelled (Th–U-fuelled) nuclear energy systems. This has been done by assessing three such systems, each of which requires uranium enriched to ∼20% 235 U, in comparison to a reference uranium-fuelled (U-fuelled) system over various performance indicators, spanning material flows, waste composition, economics, and proliferation resistance. The values of these indicators were determined using the UK National Nuclear Laboratory’s fuel cycle modelling code ORION. This code required the results of lattice-physics calculations to model the neutronics of each nuclear energy system, and these were obtained using various nuclear reactor physics codes and burn-up routines. In summary, all three Th–U-fuelled nuclear energy systems required more separative work capacity than the equivalent benchmark U-fuelled system, with larger levelised fuel cycle costs and larger levelised cost of electricity. Although a reduction of ∼6% in the required uranium ore per kWh was seen for one of the Th–U-fuelled systems compared to the reference U-fuelled system, the other two Th–U-fuelled systems required more uranium ore per kWh than the reference. Negligible advantages and disadvantages were observed for the amount and the properties of the spent nuclear fuel (SNF) generated by the systems considered. Two of the Th–U-fuelled systems showed some benefit in terms of proliferation resistance of the SNF generated. Overall, it appears that there is little

  15. Effect of task familiarisation on distribution of energy during a 2000 m cycling time trial.

    Science.gov (United States)

    Corbett, J; Barwood, M J; Parkhouse, K

    2009-10-01

    To investigate the effect of task familiarisation on the spontaneous pattern of energy expenditure during a series of 2000 m cycling time trials (TTs). Nine trained males completed three 2000 m TTs on a Velotron cycling ergometer. To examine pacing strategy, the data were assigned to 250 m "bins," with the pattern of aerobic and anaerobic energy expenditure calculated from total work accomplished and gas-exchange data. There were no significant differences between trials in performance times (191.4 (SD 4.3), 189.4 (4.6), 190.1 (5.6) s), total aerobic (58.3 (2.7), 58.4 (3.1), 58.0 (3.4) kJ) and total anaerobic energy expenditure (16.4 (3.3), 17.3 (2.8), 16.5 (3.1) kJ). Pacing strategy in the second and third TT differed from the first TT in that a lower power output was adopted during the first 500 m, enabling a higher power output during the final 750 m of the TT. This adjustment in the pattern of energy expenditure was mediated by an alteration in the pattern of anaerobic energy expenditure, which paralleled changes in total energy expenditure. Furthermore, participants retained an anaerobic energy "reserve" enabling an end-spurt during the second and third trials. Small modifications to the pacing strategy are made following a single bout of exercise, primarily by altering the rate of anaerobic energy expenditure. This may have served to prevent critical metabolic disturbances. The alteration in pacing strategy following the first exercise bout is compatible with a complex intelligent regulatory system.

  16. Gas fired combined cycle plant in Singapore: energy use, GWP and cost-a life cycle approach

    International Nuclear Information System (INIS)

    Kannan, R.; Leong, K.C.; Osman, Ramli; Ho, H.K.; Tso, C.P.

    2005-01-01

    A life cycle assessment was performed to quantify the non-renewable (fossil) energy use and global warming potential (GWP) in electricity generation from a typical gas fired combined cycle power plant in Singapore. The cost of electricity generation was estimated using a life cycle cost analysis (LCCA) tool. The life cycle assessment (LCA) of a 367.5 MW gas fired combined cycle power plant operating in Singapore revealed that hidden processes consume about 8% additional energy in addition to the fuel embedded energy, and the hidden GWP is about 18%. The natural gas consumed during the operational phase accounted for 82% of the life cycle cost of electricity generation. An empirical relation between plant efficiency and life cycle energy use and GWP in addition to a scenario for electricity cost with varying gas prices and plant efficiency have been established

  17. Life cycle assessment of energy and CO2 emissions for residential buildings in Jakarta, Indonesia

    Science.gov (United States)

    Surahman, U.; Kubota, T.; Wijaya, A.

    2016-04-01

    In order to develop low energy and low carbon residential buildings, it is important to understand their detailed energy profiles. This study provides the results of life cycle assessment of energy and CO2 emissions for residential buildings in Jakarta, Indonesia. A survey was conducted in the city in 2012 to obtain both material inventory and household energy consumption data within the selected residential buildings (n=300), which are classified into three categories, namely simple, medium and luxurious houses. The results showed that the average embodied energy of simple, medium and luxurious houses was 58.5, 201.0, and 559.5 GJ, respectively. It was found that total embodied energy of each house can be explained by its total floor area alone with high accuracy in respective house categories. Meanwhile, it was seen that operational energy usage patterns varied largely among house categories as well as households especially in the simple and medium houses. The energy consumption for cooling was found to be the most significant factor of the increase in operational energy from simple to luxurious houses. Further, in the life cycle energy, the operational energy accounted for much larger proportions of about 86-92% than embodied energy regardless of the house categories. The life cycle CO2 emissions for medium and luxurious houses were larger than that of simple houses by 2 and 6 times on average. In the simple houses, cooking was the largest contributor to the CO2 emissions (25%), while the emissions caused by cooling increased largely with the house category and became the largest contributors in the medium (26%) and luxurious houses (41%).

  18. Institutional applications of solar total-energy systems. Draft final report. Volume 2. Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    The appendices present the analytical basis for the analysis of solar total energy (STE) systems. A regional-climate model and a building-load requirements model are developed, along with fuel-price scenarios. Life-cycle costs are compared for conventional-utility, total energy, and STE systems. Thermal STE system design trade-offs are performed and thermal STE system performance is determined. The sensitivity of STE competitiveness to fuel prices is examined. The selection of the photovoltaic array is briefly discussed. The institutional-sector decision processes are analyzed. Hypothetical regional back-up rates and electrical-energy costs are calculated. The algorithms and equations used in operating the market model are given, and a general methodology is developed for projecting the size of the market for STE systems and applied to each of 8 institutional subsectors. (LEW)

  19. Total life-cycle cost analysis of conventional and alternative fueled vehicles

    International Nuclear Information System (INIS)

    Cardullo, M.W.

    1993-01-01

    Total Life-Cycle Cost (TLCC) Analysis can indicate whether paying higher capital costs for advanced technology with low operating and/or environmental costs is advantageous over paying lower capital costs for conventional technology with higher operating and/or environmental costs. While minimizing total life-cycle cost is an important consideration, the consumer often identifies non-cost-related benefits or drawbacks that make more expensive options appear more attractive. The consumer is also likely to heavily weigh initial capital costs while giving limited consideration to operating and/or societal costs, whereas policy-makers considering external costs, such as those resulting from environmental impacts, may reach significantly different conclusions about which technologies are most advantageous to society. This paper summarizes a TLCC model which was developed to facilitate consideration of the various factors involved in both individual and societal policy decision making. The model was developed as part of a US Department of Energy Contract and has been revised to reflect changes necessary to make the model more realistic. The model considers capital, operating, salvage, and environmental costs for cars, vans, and buses using conventional and alternative fuels. The model has been developed to operate on an IBM or compatible personal computer platform using the commercial spreadsheet program MicroSoft Excell reg-sign Version 4 for Windows reg-sign and can be easily kept current because its modular structure allows straightforward access to embedded data sets for review and update

  20. Analysis of interconnecting energy systems over a synchronized life cycle

    International Nuclear Information System (INIS)

    Nian, Victor

    2016-01-01

    Highlights: • A methodology is developed for evaluating a life cycle of interconnected systems. • A new concept of partial temporal boundary is introduced via quantitative formulation. • The interconnecting systems are synchronized through the partial temporal boundary. • A case study on the life cycle of the coal–uranium system is developed. - Abstract: Life cycle analysis (LCA) using the process chain analysis (PCA) approach has been widely applied to energy systems. When applied to an individual energy system, such as coal or nuclear electricity generation, an LCA–PCA methodology can yield relatively accurate results with its detailed process representation based on engineering data. However, there are fundamental issues when applying conventional LCA–PCA methodology to a more complex life cycle, namely, a synchronized life cycle of interconnected energy systems. A synchronized life cycle of interconnected energy systems is established through direct interconnections among the processes of different energy systems, and all interconnecting systems are bounded within the same timeframe. Under such a life cycle formation, there are some major complications when applying conventional LCA–PCA methodology to evaluate the interconnecting energy systems. Essentially, the conventional system and boundary formulations developed for a life cycle of individual energy system cannot be directly applied to a life cycle of interconnected energy systems. To address these inherent issues, a new LCA–PCA methodology is presented in this paper, in which a new concept of partial temporal boundary is introduced to synchronize the interconnecting energy systems. The importance and advantages of these new developments are demonstrated through a case study on the life cycle of the coal–uranium system.

  1. Fuel Cycle Services The Heart of Nuclear Energy

    International Nuclear Information System (INIS)

    Soedyartomo-Soentono

    2007-01-01

    Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO 2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services world wide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international cooperations are central for proceeding with the utilization of nuclear energy, while this advantagous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically. (author)

  2. Fuel Cycle Services the Heart of Nuclear Energy

    Directory of Open Access Journals (Sweden)

    S. Soentono

    2007-01-01

    Full Text Available Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant, management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services worldwide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international co-operations are central for proceeding with the utilization of nuclear energy, while this advantageous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically.

  3. Life-Cycle Evaluation of Domestic Energy Systems

    Science.gov (United States)

    Bando, Shigeru; Hihara, Eiji

    Among the growing number of environmental issues, the global warming due to the increasing emission of greenhouse gases, such as carbon dioxide CO2, is the most serious one. In order to reduce CO2 emissions in energy use, it is necessary to reduce primary energy consumption, and to replace energy sources with alternatives that emit less CO2.One option of such ideas is to replace fossil gas for water heating with electricity generated by nuclear power, hydraulic power, and other methods with low CO2 emission. It is also important to use energy efficiently and to reduce waste heat. Co-generation system is one of the applications to be able to use waste heat from a generator as much as possible. The CO2 heat pump water heaters, the polymer electrolyte fuel cells, and the micro gas turbines have high potential for domestic energy systems. In the present study, the life-cycle cost, the life-cycle consumption of primary energy and the life-cycle emission of CO2 of these domestic energy systems are compare. The result shows that the CO2 heat pump water heaters have an ability to reduce CO2 emission by 10%, and the co-generation systems also have another ability to reduce primary energy consumption by 20%.

  4. Life cycle assessment of renewable energy sources

    CERN Document Server

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    Governments are setting challenging targets to increase the production of energy and transport fuel from sustainable sources. The emphasis is increasingly on renewable sources including wind, solar, geothermal, biomass based biofuel, photovoltaics or energy recovery from waste. What are the environmental consequences of adopting these other sources? How do these various sources compare to each other? Life Cycle Assessment of Renewable Energy Sources tries to answer these questions based on the universally adopted method of Life Cycle Assessment (LCA). This book introduces the concept and impor

  5. The total energy policy in Flanders

    International Nuclear Information System (INIS)

    Bouma, J.W.J.

    1994-01-01

    The policy of the Flemish region (Belgium) with regard to the total energy principle are presented. An overview of the main policy instruments to support energy saving and environmental-friendly investments as well as the development of new technologies is given. The total energy policy of the Flanders Region forms part of the general Flemish (energy) policy. (A.S.)

  6. Total-factor energy efficiency in developing countries

    International Nuclear Information System (INIS)

    Zhang Xingping; Cheng Xiaomei; Yuan Jiahai; Gao Xiaojun

    2011-01-01

    This paper uses a total-factor framework to investigate energy efficiency in 23 developing countries during the period of 1980-2005. We explore the total-factor energy efficiency and change trends by applying data envelopment analysis (DEA) window, which is capable of measuring efficiency in cross-sectional and time-varying data. The empirical results indicate that Botswana, Mexico and Panama perform the best in terms of energy efficiency, whereas Kenya, Sri Lanka, Syria and the Philippines perform the worst during the entire research period. Seven countries show little change in energy efficiency over time. Eleven countries experienced continuous decreases in energy efficiency. Among five countries witnessing continuous increase in total-factor energy efficiency, China experienced the most rapid rise. Practice in China indicates that effective energy policies play a crucial role in improving energy efficiency. Tobit regression analysis indicates that a U-shaped relationship exists between total-factor energy efficiency and income per capita. - Research Highlights: → To measure the total-factor energy efficiency using DEA window analysis. → Focus on an application area of developing countries in the period of 1980-2005. → A U-shaped relationship was found between total-factor energy efficiency and income.

  7. Total energy analysis of nuclear and fossil fueled power plants

    International Nuclear Information System (INIS)

    Franklin, W.D.; Mutsakis, M.; Ort, R.G.

    1971-01-01

    The overall thermal efficiencies of electrical power generation were determined for Liquid Metal Fast Breeder, High Temperature Gas Cooled, Boiling Water, and Pressurized Water Reactors and for coal-, oil-, and gas-fired systems. All important energy consuming steps from mining through processing, transporting, and reprocessing the fuels were included in the energy balance along with electrical transmission and thermal losses and energy expenditures for pollution abatement. The results of these studies show that the overall fuel cycle efficiency of the light water nuclear fueled reactors is less than the efficiency of modern fossil fuel cycles. However, the nuclear fuel cycle based on the fast breeder reactors should produce power more efficiently than the most modern supercritical fossil fuel cycles. The high temperature gas cooled reactor has a cycle efficiency comparable to the supercritical coal fuel cycle

  8. Total energy calculations from self-energy models

    International Nuclear Information System (INIS)

    Sanchez-Friera, P.

    2001-06-01

    Density-functional theory is a powerful method to calculate total energies of large systems of interacting electrons. The usefulness of this method, however, is limited by the fact that an approximation is required for the exchange-correlation energy. Currently used approximations (LDA and GGA) are not sufficiently accurate in many physical problems, as for instance the study of chemical reactions. It has been shown that exchange-correlation effects can be accurately described via the self-energy operator in the context of many-body perturbation theory. This is, however, a computationally very demanding approach. In this thesis a new scheme for calculating total energies is proposed, which combines elements from many-body perturbation theory and density-functional theory. The exchange-correlation energy functional is built from a simplified model of the self-energy, that nevertheless retains the main features of the exact operator. The model is built in such way that the computational effort is not significantly increased with respect to that required in a typical density-functional theory calculation. (author)

  9. Total Energy Recovery System for Agribusiness: Lake County study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fogleman, S.F.; Fisher, L.A.; Black, A.R.

    1978-04-01

    A brief summary is given of the results of a previously reported study designed to evaluate the costs and viability of combined thermodynamic and biologic cycles in a system known as the Total Energy Recovery System for Agribusiness (TERSA). This conceptual system involved the combined geothermally assisted activities of greenhouse crop and mushroom growing, fish farming, and biogas generation in an integrated biologic system such that the waste or by-products of each subsystem cycle were recovered to service input needs of companion cycles. An updated direct use geothermal system based on TERSA that is viable for implementation in Lake County is presented. Particular consideration is given to: location of geothermal resources, availability of land and irrigation quality water, compatibility of the specific direct use geothermal activities with adjacent and local uses. Private interest and opposition, and institutional factors as identified. Factors relevant to local TERSA implementation are discussed, followed by sites considered, selection criteria, site slection, and the modified system resulting. Particular attention is paid to attempt to make clear the process followed in applying this conceptual design to the specific task of realistic local implementation. Previous publications on geothermal energy and Lake County are referenced where specific details outside the scope of this study may be found. (JGB)

  10. Total energy system in the future

    International Nuclear Information System (INIS)

    Hijikata, K.

    1994-01-01

    The possibility of improving the thermal efficiency of energy systems from an exergy point of view is discussed. In total energy systems, we should employ multi-pass recycling consisting of thermal and chemical energies. The recycling system is supported by electrical energy, which is provided by a renewable energy source or by excess commercial electric power. This total energy system should be considered not only in one country, but all around the globe. (author). 6 figs., 4 tabs., 8 refs

  11. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    International Nuclear Information System (INIS)

    Bhatia, Bikram; Damodaran, Anoop R.; Cho, Hanna; Martin, Lane W.; King, William P.

    2014-01-01

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO 3 film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10 5  kV/cm-s, and temperature change rates as high as 6 × 10 5  K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cycles are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems

  12. Solar power satellite life-cycle energy recovery consideration

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  13. Solar power satellite—Life-cycle energy recovery considerations

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    1995-05-01

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for a cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead of monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power plant components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on Earth (rectenna) requires in the order of 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production, installation and operation, is in the order of two years.

  14. Development of a methodology for life cycle building energy ratings

    International Nuclear Information System (INIS)

    Hernandez, Patxi; Kenny, Paul

    2011-01-01

    Traditionally the majority of building energy use has been linked to its operation (heating, cooling, lighting, etc.), and much attention has been directed to reduce this energy use through technical innovation, regulatory control and assessed through a wide range of rating methods. However buildings generally employ an increasing amount of materials and systems to reduce the energy use in operation, and energy embodied in these can constitute an important part of the building's life cycle energy use. For buildings with 'zero-energy' use in operation the embodied energy is indeed the only life cycle energy use. This is not addressed by current building energy assessment and rating methods. This paper proposes a methodology to extend building energy assessment and rating methods accounting for embodied energy of building components and systems. The methodology is applied to the EU Building Energy Rating method and, as an illustration, as implemented in Irish domestic buildings. A case study dwelling is used to illustrate the importance of embodied energy on life cycle energy performance, particularly relevant when energy use in operation tends to zero. The use of the Net Energy Ratio as an indicator to select appropriate building improvement measures is also presented and discussed. - Highlights: → The definitions for 'zero energy buildings' and current building energy ratings are examined. → There is a need to integrate a life cycle perspective within building energy ratings. → A life cycle building energy rating method (LC-BER), including embodied energy is presented. → Net Energy Ratio is proposed as an indicator to select building energy improvement options.

  15. Electromechanical conversion efficiency for dielectric elastomer generator in different energy harvesting cycles

    Science.gov (United States)

    Cao, Jian-Bo; E, Shi-Ju; Guo, Zhuang; Gao, Zhao; Luo, Han-Pin

    2017-11-01

    In order to improve electromechanical conversion efficiency for dielectric elastomer generators (DEG), on the base of studying DEG energy harvesting cycles of constant voltage, constant charge and constant electric field intensity, a new combined cycle mode and optimization theory in terms of the generating mechanism and electromechanical coupling process have been built. By controlling the switching point to achieve the best energy conversion cycle, the energy loss in the energy conversion process is reduced. DEG generating test bench which was used to carry out comparative experiments has been established. Experimental results show that the collected energy in constant voltage cycle, constant charge cycle and constant electric field intensity energy harvesting cycle decreases in turn. Due to the factors such as internal resistance losses, electrical losses and so on, actual energy values are less than the theoretical values. The electric energy conversion efficiency by combining constant electric field intensity cycle with constant charge cycle is larger than that of constant electric field intensity cycle. The relevant conclusions provide a basis for the further applications of DEG.

  16. Life-cycle assessment in the renewable energy sector

    International Nuclear Information System (INIS)

    Goralczyk, M.

    2003-01-01

    The Polish energy industry is facing challenges regarding energetic safety, competitiveness, improvement of domestic companies and environmental protection. Ecological guidelines concern the elimination of detrimental solutions, and effective energy management, which will form the basis for sustainable development. The Polish power industry is required to systematically increase the share of energy taken from renewable sources in the total energy sold to customers. Besides the economic issues, particular importance is assigned to environmental factors associated with the choice of energy source. That is where life-cycle assessment (LCA) is important. The main purpose of LCA is to identify the environmental impacts of goods and services during the whole life cycle of the product or service. Therefore LCA can be applied to assess the impact on the environment of electricity generation and will allow producers to make better decisions pertaining to environmental protection. The renewable energy sources analysed in this paper include the energy from photovoltaics, wind turbines and hydroelectric power. The goal and scope of the analysis comprise the assessment of environmental impacts of production of 1 GJ of energy from the sources mentioned above. The study will cover the construction, operation and waste disposal at each power plant. Analysis will cover the impact categories, where the environmental influence is the most significant, i.e. resource depletion, global warmth potential, acidification and eutrophication. The LCA results will be shown on the basis of European and Australian research. This analysis will be extended with a comparison between environmental impacts of energy from renewable and conventional sources. This report will conclude with an analysis of possibilities of application of the existing research results and LCA rules in the Polish energy industry with a focus on Poland's future accession to the European Union. Definitions of LCA fundamental

  17. Commercial applications of solar total energy systems. Third quarterly progress report, November 1, 1976--January 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    The application of Solar Total Energy System (STES) to the commercial sector (e.g., office buildings, shopping centers, retail stores, etc.) in the United States is investigated. Candidate solar-thermal and solar-photovoltaic concepts are considered for providing on-site electrical power generation as well as thermal energy for both heating and cooling applications. The solar-thermal concepts include the use of solar concentrators (distributed or central-receiver) for collection of the thermal energy for conversion to electricity by means of a Rankine-cycle or Brayton-cycle power-conversion system. Recoverable waste heat from the power-generation process is utilized to help meet the building thermal-energy demand. Evaluation methodology is identified to allow ranking and/or selection of the most cost-effective concept for commercial-building applications.

  18. Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran

    International Nuclear Information System (INIS)

    Rajaeifar, Mohammad Ali; Akram, Asadolah; Ghobadian, Barat; Rafiee, Shahin; Heidari, Mohammad Davoud

    2014-01-01

    In this study the energy and economic flows and greenhouse gas (GHG) emissions of olive oil production in Iran were investigated in terms of a life cycle assessment with considering four main stages of agricultural olive production, olive transportation, olive oil extraction and its oil transportation to the customer centers. Data was collected from 150 olive growers in Guilan province of Iran. Results revealed that the total energy consumption through the olive oil life cycle was 20 344 MJ ha −1 while the mass-based allocation method results indicated that the total energy consumption was 8035 MJ ha −1 . The total energy output was estimated as 23 568 MJ ha −1 . The total GHG emissions was estimated to 1333 kg ha −1 (CO 2 eq) while the mass-based allocation method results indicated that the total GHG emissions was 525 kg ha −1 (CO 2 eq). The agricultural production stage ranked the first in GHG emissions among the four stages with the share of 93.81% of total GHG emissions. Results of econometric model estimation revealed that the impact of human labor, farmyard manure and electricity on olive oil yield and the impact of electricity and chemical fertilizers on GHG emissions were significantly positive. - Highlights: • Energy and economic flows and GHG emissions of olive oil production in Iran were investigated. • The total energy consumption of olive oil production was calculated as 20 344 MJ ha −1 . • The mass-based allocation showed the energy consumption of olive oil production was 8035 MJ ha −1 . • The total GHG emissions of olive oil production was 1333 kg ha −1 (CO 2 eq). • The mass-based allocation showed the total GHG emissions of olive oil production was 525 kg ha −1 (CO 2 eq)

  19. Energy basis of disasters and the cycles of order and disorder

    International Nuclear Information System (INIS)

    Alexander, J.F. Jr.

    1978-01-01

    A quantitative theory of cycles order and disorder was applied to the earth and evaluated to form an energy basis for the global cycles, surges, and disasters. Energy circuit language was used to diagram the world system and show a common pattern in the order--disorder processes. Storms, floods, forest fires, volcanic eruptions, earthquakes, urban fires, and wars were modeled as the catastrophic release of energy previously converged and stored. Released energy disordered and recycled material available to stimulate a new cycle of growth. Cascading of catastrophic processes of disasters was modeled with a world web. The feedback in the global energy web was provided by the control action of disaster pulses. The global model was presented in both diagrammatic and differential equation form with the energy flows and storages evaluated. Order--disorder models of the atmospheric, oceanic, biological, geological, and urban systems of earth were connected to form an energy convergence network. The global energy model was used to calculate energy quality factors (ratio of energy of one type generating energy of another type) for the earth's major energy transformations. The theory provided suggestions for land-use policy. Energy ratios that provide a quantitative basis for disaster planning can be developed for a local environment of pulsing energy. Possibilities were considered that cycles of order and disorder of the earth are synchronized by cycles of sunspots. Energy quality and pulse amplifier ratios of solar flares may be high enough to control many global cycles

  20. Life cycle water use of energy production and its environmental impacts in China.

    Science.gov (United States)

    Zhang, Chao; Anadon, Laura Diaz

    2013-12-17

    The energy sector is a major user of fresh water resources in China. We investigate the life cycle water withdrawals, consumptive water use, and wastewater discharge of China's energy sectors and their water-consumption-related environmental impacts, using a mixed-unit multiregional input-output (MRIO) model and life cycle impact assessment method (LCIA) based on the Eco-indicator 99 framework. Energy production is responsible for 61.4 billion m(3) water withdrawals, 10.8 billion m(3) water consumption, and 5.0 billion m(3) wastewater discharges in China, which are equivalent to 12.3%, 4.1% and 8.3% of the national totals, respectively. The most important feature of the energy-water nexus in China is the significantly uneven spatial distribution of consumptive water use and its corresponding environmental impacts caused by the geological discrepancy among fossil fuel resources, fresh water resources, and energy demand. More than half of energy-related water withdrawals occur in the east and south coastal regions. However, the arid north and northwest regions have much larger water consumption than the water abundant south region, and bear almost all environmental damages caused by consumptive water use.

  1. Energy analysis of nuclear power plants and their fuel cycle

    International Nuclear Information System (INIS)

    Held, C.; Moraw, G.; Schneeberger, M.; Szeless, A.

    1977-01-01

    Energy analysis has become an increasingly feasible and practical additional method for evaluating the engineering, economic and environmental aspects of power producing systems. Energy analysis compares total direct and indirect energy investment into construction and operation of power plants with their lifetime energy output. Statically we have applied this method to nuclear power producing sytems and their fuel cycles. Results were adapted to countries with various levels of industrialization and resources. With dynamic energy analysis different scenarios have been investigated. For comparison purposes fossil fueled and solar power plants have also been analyzed. By static evaluation it has been shown that for all types of power plants the energy investment for construction is shortly after plant startup being repaid by energy output. Static analyses of nuclear and fossil fuels have indicated values of fuel concentrations below which more energy is required for their utilization than can be obtained from the plants they fuel. In a further step these global results were specifically modified to the economic situations of countries with various levels of industrialization. Also the influence of energy imports upon energy analysis has been discussed. By dynamic energy analyses the cumulative energy requirements for specific power plant construction programs have been compared with their total energy output. Investigations of this sort are extremely valuable not only for economic reasons but especially for their usefulness in showing the advantages and disadvantages of a specific power program with respect to its alternatives. Naturally the impact of these investigations on the fuel requirements is of importance especially because of the today so often cited ''valuable cumulated fossil fuel savings''

  2. The maximum temperature of a thermodynamic cycle effect on weight-dimensional characteristics of the NPP energy blocks with air cooling

    International Nuclear Information System (INIS)

    Bezborodov, Yu.A.; Bubnov, V.P.; Nesterenko, V.B.

    1982-01-01

    The cycle maximum temperature effect on the properties of individual apparatuses and total NPP energy blocks characteristics has been investigated. Air, nitrogen, helium and chemically reacting system N 2 O 4 +2NO+O 2 have been considered as coolants. The conducted investigations have shown that maximum temperature of thermodynamical cycle affects considerably both the weight-dimensional characteristics of individual elements of NPP and total characteristics of NPP energy block. Energy blocks of NPP with air cooling wherein dissociating nitrogen tetroxide is used as working body, have better indexes on the majority of characteristics in comparison with blocks with air, nitrogen and helium cooling. If technical restrictions are to be taken into account (thermal resistance of metals, coolant decomposition under high temperatures, etc.) then dissociating nitrogen tetroxide should be recommended as working body and maximum cycle temperature in the range from 500 up to 600 deg C

  3. Comparison of the dielectric electroactive polymer generator energy harvesting cycles

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2013-01-01

    The Dielectric ElectroActive Polymer (DEAP) generator energy harvesting cycles have been in the spotlight of the scientific interest for the past few years. Indeed, several articles have demonstrated thorough and comprehensive comparisons of the generator fundamental energy harvesting cycles......, namely Constant Charge (CC), Constant Voltage (CV) and Constant E-field (CE), based on averaged theoretical models. Yet, it has not been possible until present to validate the outcome of those comparisons via respective experimental results. In this paper, all three primary energy harvesting cycles...... are experimentally compared, based upon the coupling of a DEAP generator with a bidirectional non-isolated power electronic converter, by means of energy gain, energy harvesting efficiency and energy conversion efficiency....

  4. Life cycle assessment of ocean energy technologies

    OpenAIRE

    UIHLEIN ANDREAS

    2015-01-01

    Purpose Oceans offer a vast amount of renewable energy. Tidal and wave energy devices are currently the most advanced conduits of ocean energy. To date, only a few life cycle assessments for ocean energy have been carried out for ocean energy. This study analyses ocean energy devices, including all technologies currently being proposed, in order to gain a better understanding of their environmental impacts and explore how they can contribute to a more sustainable energy supply. Methods...

  5. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  6. High energy multi-cycle terahertz generation

    International Nuclear Information System (INIS)

    Ahr, Frederike Beate

    2017-10-01

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  7. High energy multi-cycle terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Ahr, Frederike Beate

    2017-10-15

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  8. Performance analysis of humid air turbine cycle with solar energy for methanol decomposition

    International Nuclear Information System (INIS)

    Zhao, Hongbin; Yue, Pengxiu

    2011-01-01

    According to the physical and chemical energy cascade utilization and concept of synthesis integration of variety cycle systems, a new humid air turbine (HAT) cycle with solar energy for methanol decomposition has been proposed in this paper. The solar energy is utilized for methanol decomposing as a heat source in the HAT cycle. The low energy level of solar energy is supposed to convert the high energy level of chemical energy through methanol absorption, realizing the combination of clean energy and normal chemical fuels as compared to the normal chemical recuperative cycle. As a result, the performance of normal chemical fuel thermal cycle can be improved to some extent. Though the energy level of decomposed syngas from methanol is decreased, the cascade utilization of methanol is upgraded. The energy level and exergy losses in the system are graphically displayed with the energy utilization diagrams (EUD). The results show that the cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points under the same operating conditions. In addition, the cycle's thermal efficiency, exergy efficiency and solar thermal efficiency respond to an optimal methanol conversion. -- Highlights: → This paper proposed and studied the humid air turbine (HAT) cycle with methanol through decomposition with solar energy. → The cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points. → It is estimated that the solar heat-work conversion efficiency is about 39%, higher than usual. → There is an optimal methanol conversation for the cycle's thermal efficiency and exergy efficiency at given π and TIT. → Using EUD, the exergy loss is decreased by 8 percentage points compared with the conventional HAT cycle.

  9. Life cycle emissions from renewable energy technologies

    International Nuclear Information System (INIS)

    Bates, J.; Watkiss, P.; Thorpe, T.

    1997-01-01

    This paper presents the methodology used in the ETSU review, together with the detailed results for three of the technologies studied: wind turbines, photovoltaic systems and small, stand-alone solar thermal systems. These emissions are then compared with those calculated for both other renewables and fossil fuel technology on a similar life cycle basis. The life cycle emissions associated with renewable energy technology vary considerably. They are lowest for those technologies where the renewable resource has been concentrated in some way (e.g. over distance in the case of wind and hydro, or over time in the case of energy crops). Wind turbines have amongst the lowest emissions of all renewables and are lower than those for fossil fuel generation, often by over an order of magnitude. Photovoltaics and solar thermal systems have the highest life cycle emissions of all the renewable energy technologies under review. However, their emissions of most pollutants are also much lower than those associated with fossil fuel technologies. In addition, the emissions associated with PV are likely to fall further in the future as the conversion efficiency of PV cells increases and manufacturing technology switches to thin film technologies, which are less energy intensive. Combining the assessments of life cycle emissions of renewables with predictions made by the World Energy Council (WEC) of their future deployment has allowed estimates to be made of amount by which renewables could reduce the future global emissions of carbon dioxide, sulphur dioxide and nitrogen oxides. It estimated that under the WEC's 'Ecologically Driven' scenario, renewables might lead to significant reductions of between 3650 and 8375 Mt in annual CO 2 emissions depending on the fossil fuel technology they are assumed to displace. (author)

  10. Life Cycle Cost optimization of a BOLIG+ Zero Energy Building

    Energy Technology Data Exchange (ETDEWEB)

    Marszal, A.J.

    2011-12-15

    Buildings consume approximately 40% of the world's primary energy use. Considering the total energy consumption throughout the whole life cycle of a building, the energy performance and supply is an important issue in the context of climate change, scarcity of energy resources and reduction of global energy consumption. An energy consuming as well as producing building, labelled as the Zero Energy Building (ZEB) concept, is seen as one of the solutions that could change the picture of energy consumption in the building sector, and thus contribute to the reduction of the global energy use. However, before being fully implemented in the national building codes and international standards, the ZEB concept requires a clear understanding and a uniform definition. The ZEB concept is an energy-conservation solution, whose successful adaptation in real life depends significantly on private building owners' approach to it. For this particular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took the perspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that is balanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition should further specify: (1) the connection or the lack of it to the energy infrastructure, (2) the unit of the balance, (3) the period of the balance, (4) the types of energy use included in the balance, (5) the minimum energy performance requirements (6) the renewable energy supply options, and if applicable (7) the requirements of the building-grid interaction. Moreover, the study revealed that the future ZEB definitions applied in Denmark should mostly be focused on grid

  11. Energy Approach-Based Simulation of Structural Materials High-Cycle Fatigue

    Science.gov (United States)

    Balayev, A. F.; Korolev, A. V.; Kochetkov, A. V.; Sklyarova, A. I.; Zakharov, O. V.

    2016-02-01

    The paper describes the mechanism of micro-cracks development in solid structural materials based on the theory of brittle fracture. A probability function of material cracks energy distribution is obtained using a probabilistic approach. The paper states energy conditions for cracks growth at material high-cycle loading. A formula allowing to calculate the amount of energy absorbed during the cracks growth is given. The paper proposes a high- cycle fatigue evaluation criterion allowing to determine the maximum permissible number of solid body loading cycles, at which micro-cracks start growing rapidly up to destruction.

  12. Life-cycle energy production and emissions mitigation by comprehensive biogas-digestate utilization.

    Science.gov (United States)

    Chen, Shaoqing; Chen, Bin; Song, Dan

    2012-06-01

    In the context of global energy shortages and climate change, developing biogas plants with links to agricultural system has become an important strategy for cleaner rural energy and renewable agriculture. In this study, a life-cycle energy and environmental assessment was performed for a biogas-digestate utilization system in China. The results suggest that biogas utilization (heating, illumination, and fuel) and comprehensive digestate reuse are of equal importance in the total energy production of the system, and they also play an important role in systemic greenhouse gas mitigation. Improvement can be achieved in both energy production and emissions mitigation when the ratio of the current three biogas utilization pathways is adjusted. Regarding digestate reuse, a tradeoff between energy and environmental performance can be obtained by focusing on the substitution for top-dressing, base fertilizers, and the application to seed soaking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Life-cycle analysis of the total Danish energy system. An assessment of the present Danish energy system and selected furture scenarios. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kuemmel, B; Soerensen, B

    1997-01-01

    The promise of life-cycle analysis (LCA) is to enable the incorporation of environmental and social impacts into decision-making processes. The challenge is to do it on the basis of the always incomplete and uncertain data available, in a way that is sufficiently transparent to avoid that the modeller introduces any particular bias into the decision process, by the way of selecting and treating the incomplete data. The life-cycle analysis of the currently existing system is to be seen as a reference, against which alternative solutions to the same problem is weighed. However, as it takes time to introduce new systems, the alternative scenarios are for a future situation, which is chosen as the middle of the 21st century. The reason for using a 30-50 year period is a reflection on the time needed for a smooth transition to an energy system based on sources different from the ones used today, with implied differences all the way through the conversion and end-use system. A scenario will only be selected if it has been identified and if there is social support for it, so construction of more exotic scenarios by the researcher would only be meaningful, if its advantages are so convincing that an interest can be created and the necessary social support be forthcoming. One may say that the energy scenarios based on renewable energy sources are in this category, as they were identified by a minority group (of scientists and other individuals) and successfully brought to the attention of the public debate during 1970ies. In any case it should be kept in mind, that no claim of having identified the optimum solution can be made after assessing a finite number of scenarios. (EG) 88 refs.

  14. Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system

    International Nuclear Information System (INIS)

    Bi, Zicheng; Song, Lingjun; De Kleine, Robert; Mi, Chunting Chris; Keoleian, Gregory A.

    2015-01-01

    Graphical abstract: In this study, plug-in and wireless charging for an all-electric bus system are compared from the life cycle energy and greenhouse gas (GHG) emissions perspectives. The comparison of life cycle GHG emissions is shown in the graph below. The major differences between the two systems, including the charger, battery and use-phase electricity consumption, are modeled separately and compared aggregately. In the base case, the wireless charging system consumes 0.3% less energy and emits 0.5% less greenhouse gases than plug-in charging system in the total life cycle. To further improve the energy and environmental performance of the wireless charging system, key parameters including grid carbon intensity and wireless charging efficiency are analyzed and discussed in this paper. - Highlights: • Compared life cycle energy and GHG emissions of wireless to plug-in charging. • Modeled a transit bus system to compare both charging methods as a case study. • Contrasted tradeoffs of infrastructure burdens with lightweighting benefits. • The wireless battery can be downsized to 27–44% of a plug-in charged battery. • Explored sensitivity of wireless charging efficiency & grid carbon intensity. - Abstract: Wireless charging, as opposed to plug-in charging, is an alternative charging method for electric vehicles (EVs) with rechargeable batteries and can be applicable to EVs with fixed routes, such as transit buses. This study adds to the current research of EV wireless charging by utilizing the Life Cycle Assessment (LCA) to provide a comprehensive framework for comparing the life cycle energy demand and greenhouse gas emissions associated with a stationary wireless charging all-electric bus system to a plug-in charging all-electric bus system. Life cycle inventory analysis of both plug-in and wireless charging hardware was conducted, and battery downsizing, vehicle lightweighting and use-phase energy consumption were modeled. A bus system in Ann Arbor

  15. Waste-to-energy: A review of life cycle assessment and its extension methods.

    Science.gov (United States)

    Zhou, Zhaozhi; Tang, Yuanjun; Chi, Yong; Ni, Mingjiang; Buekens, Alfons

    2018-01-01

    This article proposes a comprehensive review of evaluation tools based on life cycle thinking, as applied to waste-to-energy. Habitually, life cycle assessment is adopted to assess environmental burdens associated with waste-to-energy initiatives. Based on this framework, several extension methods have been developed to focus on specific aspects: Exergetic life cycle assessment for reducing resource depletion, life cycle costing for evaluating its economic burden, and social life cycle assessment for recording its social impacts. Additionally, the environment-energy-economy model integrates both life cycle assessment and life cycle costing methods and judges simultaneously these three features for sustainable waste-to-energy conversion. Life cycle assessment is sufficiently developed on waste-to-energy with concrete data inventory and sensitivity analysis, although the data and model uncertainty are unavoidable. Compared with life cycle assessment, only a few evaluations are conducted to waste-to-energy techniques by using extension methods and its methodology and application need to be further developed. Finally, this article succinctly summarises some recommendations for further research.

  16. A combined cycle utilizing LNG and low-temperature solar energy

    International Nuclear Information System (INIS)

    Rao, Wen-Ji; Zhao, Liang-Ju; Liu, Chao; Zhang, Mo-Geng

    2013-01-01

    This paper has proposed a combined cycle, in which low-temperature solar energy and cold energy of liquefied natural gas (LNG) can be effectively utilized together. Comparative analysis based on a same net work output between the proposed combined cycle and separated solar ORC and LNG vapor system has been done. The results show that, for the combined cycle, a decrease of nearly 82.2% on the area of solar collector is obtained and the area of heat exchanger decreases by 31.7%. Moreover, exergy efficiency is higher than both two separated systems. This work has also dealt with the thermodynamic analyses for the proposed cycle. The results show that R143a followed by propane and propene emerges as most suitable fluid. Moreover, with a regenerator added in the cycle, performance improvement is obtained for the reduction on area of solar collector and increase on system efficiency and exergy efficiency. -- Highlights: • A combined cycle utilizing low-temperature solar energy and LNG together is proposed. • Five objection functions are used to decide the best working fluids. • Cycle with a regenerator has good performance

  17. Total-factor energy efficiency of regions in China

    International Nuclear Information System (INIS)

    Hu, J.-L.; Wang, S.-C.

    2006-01-01

    This paper analyzes energy efficiencies of 29 administrative regions in China for the period 1995-2002 with a newly introduced index. Most existing studies of regional productivity and efficiency neglect energy inputs. We use the data envelopment analysis (DEA) to find the target energy input of each region in China at each particular year. The index of total-factor energy efficiency (TFEE) then divides the target energy input by the actual energy input. In our DEA model, labor, capital stock, energy consumption, and total sown area of farm crops used as a proxy of biomass energy are the four inputs and real GDP is the single output. The conventional energy productivity ratio regarded as a partial-factor energy efficiency index is computed for comparison in contrast to TFEE; our index is found fitting better to the real case. According to the TFEE index rankings, the central area of China has the worst energy efficiency and its total adjustmentof energy consumption amount is over half of China's total. Regional TFEE in China generally improved during the research period except for the western area. A U-shape relation between the area's TFEE and per capita income in the areas of China is found, confirming the scenario that energy efficiency eventually improves with economic growth

  18. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.

    Science.gov (United States)

    Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

    2011-03-01

    Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas).

  19. Nuclear energy center site survey: fuel cycle studies

    International Nuclear Information System (INIS)

    1976-05-01

    Background information for the Nuclear Regulatory Commission Nuclear Energy Center Site Survey is presented in the following task areas: economics of integrated vs. dispersed nuclear fuel cycle facilities, plutonium fungibility, fuel cycle industry model, production controls and failure contingencies, environmental impact, waste management, emergency response capability, and feasibility evaluations

  20. The use of life-cycle analysis to address energy cycle externality problems

    International Nuclear Information System (INIS)

    Soerensen, B.

    1996-01-01

    Life-cycle analysis is defined and the various impacts from energy systems to be included in such analysis are discussed. A preliminary version of a scenario for a future Danish energy systems based upon a bottom-up energy demand scenario and renewable energy sources. LCAs of wind turbine and Si solar roof-top modules are presented. The various impacts from Danish wind and building-integrated solar power generation are discussed and compared with the impacts from coal-fired power generation. The former electricity generating system looks more favorable. (author). 20 refs, 9 figs

  1. Task Order 20: Supercritical Carbon Dioxide Brayton Cycle Energy Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Paul [AREVA Federal Services, LLC, Charlotte, NC (United States); Lindsay, Edward [AREVA Federal Services, LLC, Charlotte, NC (United States); McDowell, Michael [AREVA Federal Services, LLC, Charlotte, NC (United States); Huang, Megan [AREVA Federal Services, LLC, Charlotte, NC (United States)

    2015-04-23

    AREVA Inc. developed this study for the US Department of Energy (DOE) office of Nuclear Energy (NE) in accordance with Task Order 20 Statement of Work (SOW) covering research and development activities for the Supercritical Carbon Dioxide (sCO2) Brayton Cycle energy conversion. The study addresses the conversion of sCO2 heat energy to electrical output by use of a Brayton Cycle system and focuses on the potential of a net efficiency increase via cycle recuperation and recompression stages. The study also addresses issues and study needed to advance development and implementation of a 10 MWe sCO2 demonstration project.

  2. Research on the decomposition model for China’s National Renewable Energy total target

    International Nuclear Information System (INIS)

    Liu, Zhen; Shi, Yuren; Yan, Jianming; Ou, Xunmin; Lieu, Jenny

    2012-01-01

    It is crucial that China’s renewable energy national target in 2020 is effectively decomposed into respective period targets at the provincial level. In order to resolve problems arising from combining the national and local renewable energy development plan, a total target and period target decomposition model of renewable energy is proposed which considers the resource distribution and energy consumption of different provinces as well as the development characteristics of various renewable energy industries. In the model, the total proposed target is comprised of three shares: basic share, fixed share and floating share target. The target distributed for each province is then determined by the preference relation. That is, when total renewable energy target is distributed, the central government is more concerned about resources potential or energy consumption. Additionally, the growth models for various renewable energy industries are presented, and the period targets of renewable energy in various provinces are proposed in line with regional economic development targets. In order to verify whether the energy target can be achieved, only wind power, solar power, and hydropower are considered in this study. To convenient to assess the performance of local government, the two year period is chosen as an evaluation cycle in the paper. The renewable energy targets per two-year period for each province are calculated based on the overall national renewable energy target, energy requirements and resources distribution. Setting provincial period targets will help policy makers to better implement and supervise the overall renewable energy plan. - Highlights: It is very importance that the national target of renewable energy in 2020 can be effectively decomposed into the stages target of various province. In order to resolve the relation the plan between the national and local renewable energy development planning, a total target and phase target decomposition model

  3. Life Cycle Energy Analysis of Reclaimed Water Reuse Projects in Beijing.

    Science.gov (United States)

    Fan, Yupeng; Guo, Erhui; Zhai, Yuanzheng; Chang, Andrew C; Qiao, Qi; Kang, Peng

    2018-01-01

      To illustrate the benefits of water reuse project, the process-based life cycle analysis (LCA) could be combined with input-output LCA to evaluate the water reuse project. Energy is the only evaluation parameter used in this study. Life cycle assessment of all energy inputs (LCEA) is completed mainly by the life cycle inventory (LCI), taking into account the full life cycle including the construction, the operation, and the demolition phase of the project. Assessment of benefit from water reuse during the life cycle should focus on wastewater discharge reduction and water-saving benefits. The results of LCEA of Beijing water reuse project built in 2014 in a comprehensive way shows that the benefits obtained from the reclaimed water reuse far exceed the life cycle energy consumption. In this paper, the authors apply the LCEA model to estimate the benefits of reclaimed water reuse projects quantitatively.

  4. A Different View of Solar Spectral Irradiance Variations: Modeling Total Energy over Six-Month Intervals.

    Science.gov (United States)

    Woods, Thomas N; Snow, Martin; Harder, Jerald; Chapman, Gary; Cookson, Angela

    A different approach to studying solar spectral irradiance (SSI) variations, without the need for long-term (multi-year) instrument degradation corrections, is examining the total energy of the irradiance variation during 6-month periods. This duration is selected because a solar active region typically appears suddenly and then takes 5 to 7 months to decay and disperse back into the quiet-Sun network. The solar outburst energy, which is defined as the irradiance integrated over the 6-month period and thus includes the energy from all phases of active region evolution, could be considered the primary cause for the irradiance variations. Because solar cycle variation is the consequence of multiple active region outbursts, understanding the energy spectral variation may provide a reasonable estimate of the variations for the 11-year solar activity cycle. The moderate-term (6-month) variations from the Solar Radiation and Climate Experiment (SORCE) instruments can be decomposed into positive (in-phase with solar cycle) and negative (out-of-phase) contributions by modeling the variations using the San Fernando Observatory (SFO) facular excess and sunspot deficit proxies, respectively. These excess and deficit variations are fit over 6-month intervals every 2 months over the mission, and these fitted variations are then integrated over time for the 6-month energy. The dominant component indicates which wavelengths are in-phase and which are out-of-phase with solar activity. The results from this study indicate out-of-phase variations for the 1400 - 1600 nm range, with all other wavelengths having in-phase variations.

  5. Energy and exergy analysis of integrated system of ammonia–water Kalina–Rankine cycle

    International Nuclear Information System (INIS)

    Chen, Yaping; Guo, Zhanwei; Wu, Jiafeng; Zhang, Zhi; Hua, Junye

    2015-01-01

    The integrated system of AWKRC (ammonia–water Kalina–Rankine cycle) is a novel cycle operated on KC (Kalina cycle) for power generation in non-heating seasons and on AWRC (ammonia–water Rankine cycle) for cogeneration of power and heating water in winter. The influences of inlet temperatures of both heat resource and cooling water on system efficiencies were analyzed based on the first law and the second law of thermodynamics. The calculation is based on following conditions that the heat resource temperature keeps 300 °C, the cooling water temperature for the KC or AWRC is respectively 25 °C or 15 °C; and the temperatures of heating water and backwater are respectively 90 °C and 40 °C. The results show that the evaluation indexes of the power recovery efficiency and the exergy efficiency of KC were respectively 18.2% and 41.9%, while the composite power recovery efficiency and the composite exergy efficiency of AWRC are respectively 21.1% and 43.0% accounting both power and equivalent power of cogenerated heating capacity, including 54.5% heating recovery ratio or 12.4% heating water exergy efficiency. The inventory flow diagrams of both energy and exergy gains and losses of the components operating on KC or AWRC are also demonstrated. - Highlights: • An integrated system of AWKRC (ammonia–water Kalina–Rankine cycle) is investigated. • NH_3–H_2O Rankine cycle is operated for cogenerating power and heating-water in winter. • Heating water with 90 °C and capacity of 54% total reclaimed heat load is cogenerated. • Kalina cycle is operated for power generation in other seasons with high efficiency. • Energy and exergy analysis draw similar results in optimizing the system parameters.

  6. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling

    Science.gov (United States)

    Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar

    2017-12-01

    Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.

  7. Storing Renewable Energy in the Hydrogen Cycle.

    Science.gov (United States)

    Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas

    2015-01-01

    An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications.

  8. Energy pathway analysis - a hydrogen fuel cycle framework for system studies

    International Nuclear Information System (INIS)

    Badin, J.S.; Tagore, S.

    1997-01-01

    An analytical framework has been developed that can be used to estimate a range of life-cycle costs and impacts that result from the incremental production, storage, transport, and use of different fuels or energy carriers, such as hydrogen, electricity, natural gas, and gasoline. This information is used in a comparative analysis of energy pathways. The pathways provide the U.S. Department of Energy (DOE) with an indication of near-, mid-, and long-term technologies that have the greatest potential for advancement and can meet the cost goals. The methodology and conceptual issues are discussed. Also presented are results for selected pathways from the E3 (Energy, Economics, Emissions) Pathway Analysis Model. This model will be expanded to consider networks of pathways and to be compatible with a linear programming optimization processor. Scenarios and sets of constraints (energy demands, sources, emissions) will be defined so the effects on energy transformation activities included in the solution and on the total optimized system cost can be investigated. This evaluation will be used as a guide to eliminate technically feasible pathways if they are not cost effective or do not meet the threshold requirements for the market acceptance. (Author)

  9. GLOBALIZATION OF ECONOMY AND GREATER CYCLES OF THE TOTAL REGIONAL PRODUCT, INFLATION AND UNEMPLOYMENT

    Directory of Open Access Journals (Sweden)

    V.A. Belkin

    2009-06-01

    Full Text Available The process of synchronization of greater and small waves of real gross national product of the USA and a total regional product of the Chelyabinsk area is shown on the materials of economic statistics. The conclusion about defining influence of dynamics of real gross national product of the USA on the basic macroeconomic parameters of the Chelyabinsk area owing to high dependence of its economy on export of metal products is done from here. It is evidently shown, that the modern world economic crisis quite keeps within the theory of greater cycles of an economic conjuncture of N.D. Kondratyev. To greater cycles of a total regional product of the Chelyabinsk area there correspond return greater cycles of inflation and unemployment.

  10. Energy storage for tokamak reactor cycles

    International Nuclear Information System (INIS)

    Buchanan, C.H.

    1979-01-01

    The inherent characteristic of a tokamak reactor requiring periodic plasma quench and reignition introduces the problem of energy storage to permit continuous electrical output to the power grid. The cycle under consideration in this paper is a 1000 second burn followed by a 100 second reignition phase. The physical size of a typical toroidal plasma reaction chamber for a tokamak reactor has been described earlier. The thermal energy storage requirements described in this reference will serve as a basis for much of the ensuing discussion

  11. The relationship between house size and life cycle energy demand: Implications for energy efficiency regulations for buildings

    International Nuclear Information System (INIS)

    Stephan, André; Crawford, Robert H.

    2016-01-01

    House size has significantly increased over the recent decades in many countries. Larger houses often have a higher life cycle energy demand due to their increased use of materials and larger area to heat, cool and light. Yet, most energy efficiency regulations for buildings fail to adequately include requirements for addressing the energy demand associated with house size. This study quantifies the effect of house size on life cycle energy demand in order to inform future regulations. It uses a parametric model of a typical detached house in Melbourne, Australia and varies its floor area from 100 to 392 m"2 for four different household sizes. Both initial and recurrent embodied energy requirements are quantified using input-output-based hybrid analysis and operational energy is calculated in primary energy terms over 50 years. Results show that the life cycle energy demand increases at a slower rate compared to house size. Expressing energy efficiency per m"2 therefore favours large houses while these require more energy. Also, embodied energy represents 26–50% across all variations. Building energy efficiency regulations should incorporate embodied energy, correct energy intensity thresholds for house size and use multiple functional units to measure efficiency. These measures may help achieve greater net energy reductions. - Highlights: • The life cycle energy demand (LCE) is calculated for 90 house sizes and 4 household sizes. • The LCE is sublinearly correlated with house size. • Larger houses appear to be more energy efficient per m"2 while they use more energy overall. • Embodied energy (EE) represents up to 52% of the LCE over 50 years. • Building energy efficiency regulations need to consider house size and EE.

  12. Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail

    OpenAIRE

    Chester, Mikhail; Horvath, Arpad

    2009-01-01

    The development of life-cycle energy and emissions factors for passenger transportation modes is critical for understanding the total environmental costs of travel. Previous life-cycle studies have focused on the automobile given its dominating share of passenger travel and have included only few life-cycle components, typically related to the vehicle (i.e., manufacturing, maintenance, end-of-life) or fuel (i.e., extraction, refining, transport). Chester (2009) provides the first comprehensiv...

  13. Life cycle inventory analysis of fossil energies in Japan

    International Nuclear Information System (INIS)

    Yoon Sungyee; Yamada, Tatsuya

    1999-01-01

    Given growing concerns over global warming problems in recent years, a matter of great importance has been to grasp GHG emissions from fossil energy use as accurately as possible by figuring out how much GHGs result from a life cycle (production, transportation and consumption) of various fossil energies. The objective of this study is to make a life cycle inventory (LCI) analysis of major fossil energies (coal, oil, LNG, LPG) consumed in Japan pursuant to ISO 14040. On these fossil energies imported to Japan in 1997, LCI analysis results of GHG emissions (specifically carbon dioxide and methane) put CO 2 intensity during their combustion stage (gross heat value basis) at 100:121:138:179 among LNG:LPG:oil:coal. But, in life cycle terms, the ratios turned to be 100:110:120:154. The world average (gross heat value basis) gained from IPCC data, among others, puts the ratios among LNG:LPG:oil:coal at 100:105:110:151. In comparison, our study that focused on Japan found their corresponding figures at 100:110:120:154. COP 3 set forth country-by-country targets. Yet, global warming, that is a worldwide problem, also requires a more comprehensive assessment based on a life cycle analysis (LCA). The estimation results of our study can be of some help in shaping some criteria when considering energy and environmental policies from a global viewpoint. In addition, our study results suggest the importance of the best energy mix that is endorsed by LCI analysis results, if global warming abatement efforts should successfully be in advance. As specific institutional designs of Kyoto Mechanism are currently under examination, the introduction of LCI method deserves to be considered in discussing the baseline issue of joint implementation and clean development mechanism. In the days ahead, by gathering and analysing detailed-ever data, and through fossil-energy LCA by use, we had better consider supply and demand of the right energies in the right uses. (author)

  14. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    International Nuclear Information System (INIS)

    Lutz, James; Lekov, Alex; Chan, Peter; Whitehead, Camilla Dunham; Meyers, Steve; McMahon, James

    2006-01-01

    In 2001, the US Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered

  15. Free Energy and Internal Combustion Engine Cycles

    OpenAIRE

    Harris, William D.

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  16. Life-cycle energy impacts for adapting an urban water supply system to droughts.

    Science.gov (United States)

    Lam, Ka Leung; Stokes-Draut, Jennifer R; Horvath, Arpad; Lane, Joe L; Kenway, Steven J; Lant, Paul A

    2017-12-15

    In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply

  17. Climate change mitigation by recovery of energy from the water cycle: a new challenge for water management.

    Science.gov (United States)

    van der Hoek, J P

    2012-01-01

    Waternet is responsible for drinking water treatment and distribution, wastewater collection and treatment, and surface water management and control (quality and quantity) in and around Amsterdam. Waternet has the ambition to operate climate neutral in 2020. To realise this ambition, measures are required to compensate for the emission of 53,000 ton CO(2)-eq/year. Energy recovery from the water cycle looks very promising. First, calculations reveal that energy recovery from the water cycle in and around Amsterdam may contribute to a total reduction in greenhouse gas emissions up to 148,000 ton CO(2)-eq/year. The challenge for the coming years is to choose combinations of all the possibilities to fulfil the energy demand as much as possible. Only then the use of fossil fuel can be minimized and inevitable greenhouse gas emissions can be compensated, supporting the target to operate climate neutral in 2020.

  18. Life cycle energy and environmental analysis of a microgrid power pavilion

    International Nuclear Information System (INIS)

    Spitzley, David V.; Keoleian, Gregory A.; Baron, Scott G.

    2006-01-01

    Microgrids - generating systems incorporating multiple distributed generator sets linked together to provide local electricity and heat - are one possible alterative to the existing centralized energy system. Potential advantages of microgrids include flexibility in fuel supply options, the ability to limit emissions of greenhouse gases, and energy efficiency improvements through combined heat and power (CHP) applications. As a case study in microgrid performance, this analysis uses a life cycle assessment approach to evaluate the energy and emissions performance of the NextEnergy microgrid Power Pavilion in Detroit, Michigan and a reference conventional system. The microgrid includes generator sets fueled by solar energy, hydrogen, and natural gas. Hydrogen fuel is sourced from both a natural gas steam reforming operation and as a by-product of a chlorine production operation. The chlorine plant receives electricity exclusively from a hydropower generating station. Results indicate that the use of this microgrid offers a total energy reduction potential of up to 38%, while reductions in non-renewable energy use could reach 51%. Similarly, emissions of CO 2 , a key global warming gas, can be reduced by as much as 60% relative to conventional heat and power systems. Hydrogen fuels are shown to provide a net energy and emissions benefit relative to natural gas only when sourced primarily from the chlorine plant. (Author)

  19. Nitrogen cycling in an integrated biomass for energy system

    International Nuclear Information System (INIS)

    Moorhead, K.K.

    1986-01-01

    A series of experiments was conducted to evaluate N cycling in three components of an integrated biomass for energy system, i.e. water hyacinth production, anaerobic digestion in hyacinth biomass, and recycling of digester effluent and sludge. Plants assimilated 50 to 90% of added N in hyacinth production systems. Up to 28% of the total plant N was contained in hyacinth detritus. Nitrogen loading as plant detritus into hyacinth ponds was 92 to 148 kg N ha -1 yr -1 . Net mineralization of plant organic 15 N during anaerobic digestion was 35 and 70% for water hyacinth plants with low and high N content, respectively. Approximately 20% of the 15 N was recovered in the digested sludge while the remaining 15 N was recovered in the effluent. Water hyacinth growth in digester effluents was affected by electrical conductivity and 15 NH 4 + -N concentration. Addition of water hyacinth biomass to soil resulted in decomposition of 39 to 50% of added C for fresh plant biomass and 19 to 23% of added C for digested biomass sludge. Only 8% of added 15 N in digested sludges was mineralized to 15 NO 3 - -N despite differences in initial N content. In contrast, 3 and 33% of added 15 N in fresh biomass with low and high N content, respectively, was recovered as 15 NO 3 - -N. Total 15 N recovery after anaerobic digestion ranged from 70 to 100% of the initial plant biomass 15 N. Total N recovery by sludge and effluent recycling in the integrated biomass for energy system was 48 to 60% of the initial plant biomass 15 N

  20. Life Cycle Assessment of a Wave Energy Converter

    OpenAIRE

    Gastelum Zepeda, Leonardo

    2017-01-01

    Renewable energies had accomplish to become part of a new era in the energy development area, making people able to stop relying on fossil fuels. Nevertheless the environmental impacts of these new energy sources also require to be quantified in order to review how many benefits these new technologies have for the environment. In this project the use of a Life Cycle Assessment (LCA) will be implemented in order to quantify the environmental impact of wave energy, an LCA is a technique for ass...

  1. Energy management for cost reduction in the production. TEEM - Total Energy Efficiency Management; Energiemanagement zur Kostensenkung in der Produktion. TEEM - Total Energy Efficiency Management

    Energy Technology Data Exchange (ETDEWEB)

    Westkaemper, Engelbert; Verl, Alexander (eds.)

    2009-07-01

    Within the workshop of the Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Stuttgart, Federal Republic of Germany) at 6th October, 2009, in Stuttgart the following lectures were held: (1) Presentation of Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Engelbert Westkaemper); (2) TEEM - Total Energy Efficiency Management - ''With energy management to an energy efficient production'' (Alexander Schloske); (3) DIN EN 16001 Introduction of an energy management system - utilization and advantages for companies (Sylvia Wahren); (4) Analysis of the energy efficiency with power flow - Support and implementation at factory planning and optimization of production (Klaus Erlach); (5) Total Energy Efficiency Management - Approaches at the company Kaercher in injection moulding for example (Axel Leschtar); (6) Modelling the embodied product energy (Shahin Rahimifard); (7) Acquisition of energy data in the production - Technologies and possibilities (Joachim Neher); (8) Active energy management by means of an ''energy control centre'' - Analysis of the real situation and upgrading measures in the production using coating plants as an example (Wolfgang Klein); (9) Visualisation and simulation of energy values in the digital factory (Carmen Constantinescu, Axel Bruns).

  2. Potential pyrolysis pathway assessment for microalgae-based aviation fuel based on energy conversion efficiency and life cycle

    International Nuclear Information System (INIS)

    Guo, Fang; Wang, Xin; Yang, Xiaoyi

    2017-01-01

    Highlights: • High lipid content in microalgae increases energy conversion efficiency. • Indirect pathway has the highest mass ratio, energy ratio and energy efficiency. • The Isochrysis indirect pathway produces most kerosene component precursor. • The Isochrysis indirect pyrolysis pathway shows the best performance in LCA. - Abstract: Although the research of microalgae pyrolysis has been conducted for many years, there is a lack of investigations on energy efficiency and life cycle assessment. In this study, we investigated the biocrude yield and energy efficiency of direct pyrolysis, microalgae residue pyrolysis after lipid extraction (indirect pyrolysis), and different microalgae co-pyrolysis. This research also investigated the life cycle assessment of the three different pyrolysis pathways. A system boundary of Well-to-Wake (WTWa) was defined and included sub-process models, such as feedstock production, fuel production and pump-to-wheels (PTW) stages. The pathway of Isochrysis indirect pyrolysis shows the best performance in the mass ratio and energy ratio, produces the most kerosene component precursor, has the lowest WTWa total energy input, fossil fuel consumption and greenhouse gas emissions, and resultes in the best energy efficiency. All the evidence indicates that Isochrysis R2 pathway is a potential and optimal pyrolysis pathway to liquid biofuels. The mass ratio of pyrolysis biocrude is shown to be the decisive factor for different microalgae species. The sensitivity analysis results also indicates that the life cycle indicators are particularly sensitive to the mass ratio of pyrolysis biocrude for microalgae-based hydrotreated pyrolysis aviation fuel.

  3. Comparative energy analysis on a new regenerative Brayton cycle

    International Nuclear Information System (INIS)

    Goodarzi, M.

    2016-01-01

    Highlights: • New regenerative Brayton cycle has been introduced. • New cycle has higher thermal efficiency and lower exhausted heat per output power. • Regenerator may remain useful in the new cycle even at high pressure ratio. • New regenerative Brayton cycle is suggested for low pressure ratio operations. - Abstract: Gas turbines are frequently used for power generation. Brayton cycle is the basis for gas turbine operation and developing the alternative cycles. Regenerative Brayton cycle is a developed cycle for basic Brayton cycle with higher thermal efficiency at low to moderate pressure ratios. A new regenerative Brayton cycle has been introduced in the present study. Energy analysis has been conducted on ideal cycles to compare them from the first law of thermodynamics viewpoint. Comparative analyses showed that the new regenerative Brayton cycle has higher thermal efficiency than the original one at the same pressure ratio, and also lower heat absorption and exhausted heat per unite output power. Computed results show that new cycle improves thermal efficiency from 12% to 26% relative to the original regenerative Brayton cycle in the range of studied pressure ratios. Contrary to the original regenerative Brayton cycle, regenerator remains useful in the new regenerative Brayton cycle even at higher pressure ratio.

  4. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, J.; Lekov, A.; Chan, P.; Dunham Whitehead, C.; Meyers, S.; McMahon, J. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Environmental Energy Technologies Div.

    2006-03-01

    In 2001, the US Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered. (author)

  5. High-Energy Solar Particle Events in Cycle 24

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Yashiro, S.; Xie, H.; Akiyama, S.; Thakur, N.

    2015-01-01

    The Sun is already in the declining phase of cycle 24, but the paucity of high-energy solar energetic particle (SEP) events continues with only two ground level enhancement (GLE) events as of March 31, 2015. In an attempt to understand this, we considered all the large SEP events of cycle 24 that occurred until the end of 2014. We compared the properties of the associated CMEs with those in cycle 23. We found that the CME speeds in the sky plane were similar, but almost all those cycle-24 CMEs were halos. A significant fraction of (16%) of the frontside SEP events were associated with eruptive prominence events. CMEs associated with filament eruption events accelerate slowly and attain peak speeds beyond the typical GLE release heights. When we considered only western hemispheric events that had good connectivity to the CME nose, there were only 8 events that could be considered as GLE candidates. One turned out to be the first GLE event of cycle 24 (2012 May 17). In two events, the CMEs were very fast (>2000 km/s) but they were launched into a tenuous medium (high Alfven speed). In the remaining five events, the speeds were well below the typical GLE CME speed (2000 km/s). Furthermore, the CMEs attained their peak speeds beyond the typical heights where GLE particles are released. We conclude that several factors contribute to the low rate of high-energy SEP events in cycle 24: (i) reduced efficiency of shock acceleration (weak heliospheric magnetic field), (ii) poor latitudinal and longitudinal connectivity), and (iii) variation in local ambient conditions (e.g., high Alfven speed).

  6. Analysis and performance assessment of a multigenerational system powered by Organic Rankine Cycle for a net zero energy house

    International Nuclear Information System (INIS)

    Hassoun, Anwar; Dincer, Ibrahim

    2015-01-01

    This paper develops a new Organic Rankine Cycle (ORC) based multigenerational system to meet the demands of a net zero energy building and assesses such a system for an application to a net zero energy house in Lebanon. Solar energy is the prime source for the integrated system to achieve multigeneration to supply electricity, fresh and hot water, seasonal heating and cooling. The study starts by optimizing the power system with and without grid connection. Then, a comprehensive thermodynamic analysis through energy and exergy, and a parametric study to assess the sensitivity and improvements of the overall system are conducted. Furthermore, exergoeconomic analysis and a follow-up optimization study for optimizing the total system cost to the overall system efficiency using genetic algorithm to obtain the optimal design or a set of optimal designs (Pareto Front), are carried out. The present results show that the optimum solar energy system for a total connected load to the house of 90 kWh/day using a combination of ORC, batteries, convertor has a total net present cost of US $52,505.00 (based on the prices in 2013) with a renewable energy fraction of 1. Moreover, the optimization for the same connected load with ORC, batteries and converter configuration with grid connection results in a total net present cost of $50,868.00 (2013) with a renewable energy fraction of 0.992 with 169 kg/yr of CO 2 emissions. In addition, exergoeconomic analysis of the overall system yields a cost of $117,700.00 (2013), and the multi-objective optimization provides the overall exergetic efficiency by 14% at a total system cost increase of $10,500.00 (2013). - Highlights: • To develop a new Organic Rankine Cycle (ORC) based multigenerational system to meet the demands of a net zero energy building. • To perform a comprehensive thermodynamic analysis through energy and exergy approaches. • To apply an exergoeconomic model for exergy-based cost accounting. • To undertake

  7. Study on the effect of driving cycles on energy efficiency of electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ji Fenzhu; Xu Licong [School of Transportation Science and Engineering of Beihang Univ., BJ (China); Wu Zhixin [Tianjin Qing Yuan Electric Vehicle Corp. Ltd., TJ (China)

    2009-07-01

    The energy usage efficiency of electric vehicles (EVS) and evaluation index of electromotor efficiency were studied. The idea of ''interval usage percentage of energy efficiency'' and ''exertion degree of energy efficiency'' of electromotor was brought forward. The effect of driving cycles on the distribution of running status of electromotor and its efficiency was investigated. The electromotor efficiency and the variety trend of average driving force at different driving cycles were discussed. Based on several typical domestic and foreign driving cycles, the exertion degree of energy efficiency and the whole efficiency of power train on some types of EVS were analyzed and calculated. The result indicates that there is a difference of 9.64% in exertion degree of energy efficiency of electromotor at different driving cycles. The efficiency distribution of electromotor and control system is different, and the average driving force is different, too. That cause the great variety in driving range. The idiographic reference data are provided to the establishment of driving cycles' criterion of EVS in our country. (orig.)

  8. The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles

    International Nuclear Information System (INIS)

    Raugei, Marco; Fullana-i-Palmer, Pere; Fthenakis, Vasilis

    2012-01-01

    A high energy return on energy investment (EROI) of an energy production process is crucial to its long-term viability. The EROI of conventional thermal electricity from fossil fuels has been viewed as being much higher than those of renewable energy life-cycles, and specifically of photovoltaics (PVs). We show that this is largely a misconception fostered by the use of outdated data and, often, a lack of consistency among calculation methods. We hereby present a thorough review of the methodology, discuss methodological variations and present updated EROI values for a range of modern PV systems, in comparison to conventional fossil-fuel based electricity life-cycles. - Highlights: ► We perform a review of the EROI methodology. ► We provide new calculations for PV compared to oil- and coal-based energy systems. ► If compared consistently, PV sits squarely in the same range of EROI as conventional fossil fuel life cycles.

  9. From Cycling Between Coupled Reactions to the Cross-Bridge Cycle: Mechanical Power Output as an Integral Part of Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Frank Diederichs

    2012-10-01

    Full Text Available ATP delivery and its usage are achieved by cycling of respective intermediates through interconnected coupled reactions. At steady state, cycling between coupled reactions always occurs at zero resistance of the whole cycle without dissipation of free energy. The cross-bridge cycle can also be described by a system of coupled reactions: one energising reaction, which energises myosin heads by coupled ATP splitting, and one de-energising reaction, which transduces free energy from myosin heads to coupled actin movement. The whole cycle of myosin heads via cross-bridge formation and dissociation proceeds at zero resistance. Dissipation of free energy from coupled reactions occurs whenever the input potential overcomes the counteracting output potential. In addition, dissipation is produced by uncoupling. This is brought about by a load dependent shortening of the cross-bridge stroke to zero, which allows isometric force generation without mechanical power output. The occurrence of maximal efficiency is caused by uncoupling. Under coupled conditions, Hill’s equation (velocity as a function of load is fulfilled. In addition, force and shortening velocity both depend on [Ca2+]. Muscular fatigue is triggered when ATP consumption overcomes ATP delivery. As a result, the substrate of the cycle, [MgATP2−], is reduced. This leads to a switch off of cycling and ATP consumption, so that a recovery of [ATP] is possible. In this way a potentially harmful, persistent low energy state of the cell can be avoided.

  10. Energy flow and mineral cycling mechanisms

    International Nuclear Information System (INIS)

    Rogers, L.E.

    1977-01-01

    Analysis of energy flow patterns and mineral cycling mechanisms provides a first step in identifying major transport pathways away from waste management areas. A preliminary food web pattern is described using results from ongoing and completed food habit studies. Biota possessing the greatest potential for introducing radionuclides into food chains leading to man include deer, rabbits, hares, waterfowl, honeybees and upland game birds and are discussed separately

  11. Total energy consumption in Finland increased by one percent

    International Nuclear Information System (INIS)

    Timonen, L.

    2000-01-01

    The total energy consumption in Finland increased by less than a percent in 1999. The total energy consumption in 1999 was 1310 PJ corresponding to about 31 million toe. The electric power consumption increased moderately by 1.6%, which is less than the growth of the gross national product (3.5%). The final consumption of energy grew even less, only by 0.5%. Import of electric power increased by 19% in 1999. The import of electric power was due to the availability of low-priced electric power on the Nordic electricity markets. Nuclear power generation increased by 5% and the consumption of wood-based fuels by 3%. The increment of the nuclear power generation increased because of the increased output capacity and good operability of the power plants. Wind power production doubles, but the share of it in the total energy consumption is only about 0.01%. The peat consumption decreased by 12% and the consumption of hydroelectric power by 15%. The decrease in production of hydroelectric power was compensated by an increase import of electric power. The consumption of fossil fuels, coal, oil and natural gas remained nearly the same as in 1998. The gasoline consumption, however, decreased, but the consumption of diesel oil increased due to the increased road transport. The share of the fossil fuels was nearly half of the total energy consumption. The consumption of renewable energy sources remained nearly the same, in 23% if the share of peat is excluded, and in 30% if the share of peat is included. Wood-based fuels are the most significant type of renewable fuels. The share of them in 1999 was over 80% of the total usage of the renewable energy sources. The carbon dioxide emissions in Finland decreased in 1999 by 1.0 million tons. The total carbon dioxide emissions were 56 million tons. The decrease was mainly due to the decrease of the peat consumption. The final consumption of energy increased by 0.5%, being hence about 1019 PJ. Industry is the main consumer of energy

  12. Optimized design of total energy systems: The RETE project

    Science.gov (United States)

    Alia, P.; Dallavalle, F.; Denard, C.; Sanson, F.; Veneziani, S.; Spagni, G.

    1980-05-01

    The RETE (Reggio Emilia Total Energy) project is discussed. The total energy system (TES) was developed to achieve the maximum quality matching on the thermal energy side between plant and user and perform an open scheme on the electrical energy side by connection with the Italian electrical network. The most significant qualitative considerations at the basis of the plant economic energy optimization and the selection of the operating criterion most fitting the user consumption characteristics and the external system constraints are reported. The design methodology described results in a TES that: in energy terms achieves a total efficiency evaluated on a yearly basis to be equal to about 78 percent and a fuel saving of about 28 percent and in economic terms allows a recovery of the investment required as to conventional solutions, in about seven years.

  13. Cycling efficiency and energy cost of walking in young and older adults.

    Science.gov (United States)

    Gaesser, Glenn A; Tucker, Wesley J; Sawyer, Brandon J; Bhammar, Dharini M; Angadi, Siddhartha S

    2018-02-01

    To determine whether age affects cycling efficiency and the energy cost of walking (Cw), 190 healthy adults, ages 18-81 yr, cycled on an ergometer at 50 W and walked on a treadmill at 1.34 m/s. Ventilation and gas exchange at rest and during exercise were used to calculate net Cw and net efficiency of cycling. Compared with the 18-40 yr age group (2.17 ± 0.33 J·kg -1 ·m -1 ), net Cw was not different in the 60-64 yr (2.20 ± 0.40 J·kg -1 ·m -1 ) and 65-69 yr (2.20 ± 0.28 J·kg -1 ·m -1 ) age groups, but was significantly ( P 60 yr, net Cw was significantly correlated with age ( R 2  = 0.123; P = 0.002). Cycling net efficiency was not different between 18-40 yr (23.5 ± 2.9%), 60-64 yr (24.5 ± 3.6%), 65-69 yr (23.3 ± 3.6%) and ≥70 yr (24.7 ± 2.7%) age groups. Repeat tests on a subset of subjects (walking, n = 43; cycling, n = 37) demonstrated high test-retest reliability [intraclass correlation coefficients (ICC), 0.74-0.86] for all energy outcome measures except cycling net energy expenditure (ICC = 0.54) and net efficiency (ICC = 0.50). Coefficients of variation for all variables ranged from 3.1 to 7.7%. Considerable individual variation in Cw and efficiency was evident, with a ~2-fold difference between the least and most economical/efficient subjects. We conclude that, between 18 and 81 yr, net Cw was only higher for ages ≥70 yr, and that cycling net efficiency was not different across age groups. NEW & NOTEWORTHY This study illustrates that the higher energy cost of walking in older adults is only evident for ages ≥70 yr. For older adults ages 60-69 yr, the energy cost of walking is similar to that of young adults. Cycling efficiency, by contrast, is not different across age groups. Considerable individual variation (∼2-fold) in cycling efficiency and energy cost of walking is observed in young and older adults.

  14. Atomic resonances above the total ionization energy

    International Nuclear Information System (INIS)

    Doolen, G.

    1975-01-01

    A rigorous result obtained using the theory associated with dilatation analytic potentials is that by performing a complex coordinate rotation, r/subj/ → r/subj/e/subi//sup theta/, on a Hamiltonian whose potential involves only pairwise Coulombic interactions, one can show that when theta = π/2, no complex eigenvalues (resonances) appear whose energies have a real part greater than the total ionization energy of the atomic system. This appears to conflict with experimental results of Walton, Peart, and Dolder, who find resonance behavior above the total ionization energy of the H -- system and also the theoretical stabilization results of Taylor and Thomas for the same system. A possible resolution of this apparent conflict is discussed and a calculation to check its validity is proposed

  15. 77 FR 32307 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Washers

    Science.gov (United States)

    2012-05-31

    ... energy conservation standards for various consumer products and certain commercial and industrial... Efficiency Levels 5. Proprietary Designs 6. Reverse Engineering D. Markups Analysis E. Energy and Water Use... per-cycle hot water energy consumption; (2) the total weighted per-cycle machine electrical energy...

  16. GEWEX: The Global Energy and Water Cycle Experiment

    Science.gov (United States)

    Chahine, M.; Vane, D.

    1994-01-01

    GEWEX is one of the world's largest global change research programs. Its purpose is to observe and understand the hydrological cycle and energy fluxes in the atmosphere, at land surfaces and in the upper oceans.

  17. Energy systems. Tome 3: advanced cycles, low environmental impact innovative systems

    International Nuclear Information System (INIS)

    Gicquel, R.

    2009-01-01

    This third tome about energy systems completes the two previous ones by showing up advanced thermodynamical cycles, in particular having a low environmental impact, and by dealing with two other questions linked with the study of systems with a changing regime operation: - the time management of energy, with the use of thermal and pneumatic storage systems and time simulation (schedule for instance) of systems (solar energy type in particular); - the technological dimensioning and non-nominal regime operation studies. Because this last topic is particularly complex, new functionalities have been implemented mainly by using the external classes mechanism, which allows the user to freely personalize his models. This tome is illustrated with about 50 examples of cycles modelled with Thermoptim software. Content: foreword; 1 - generic external classes; 2 - advanced gas turbine cycles; 3 - evaporation-concentration, mechanical steam compression, desalination, hot gas drying; 4 - cryogenic cycles; 5 - electrochemical converters; 6 - global warming, CO 2 capture and sequestration; 7 - future nuclear reactors (coupled to Hirn and Brayton cycles); 8 - thermodynamic solar cycles; 10 - pneumatic and thermal storage; 11 - calculation of thermodynamic solar facilities; 12 - problem of technological dimensioning and non-nominal regime; 13 - exchangers modeling and parameterizing for the dimensioning and the non-nominal regime; 14 - modeling and parameterizing of volumetric compressors; 15 - modeling and parameterizing of turbo-compressors and turbines; 16 - identification methodology of component parameters; 17 - case studies. (J.S.)

  18. Energy and entropy analysis of closed adiabatic expansion based trilateral cycles

    International Nuclear Information System (INIS)

    Garcia, Ramon Ferreiro; Carril, Jose Carbia; Gomez, Javier Romero; Gomez, Manuel Romero

    2016-01-01

    Highlights: • The adiabatic expansion based TC surpass Carnot factor at low temperatures. • The fact of surpassing Carnot factor doesn’t violate the 2nd law. • An entropy analysis is applied to verify the fulfilment of the second law. • Correction of the exergy transfer associated with heat transferred to a cycle. - Abstract: A vast amount of heat energy is available at low cost within the range of medium and low temperatures. Existing thermal cycles cannot make efficient use of such available low grade heat because they are mainly based on conventional organic Rankine cycles which are limited by Carnot constraints. However, recent developments related to the performance of thermal cycles composed of closed processes have led to the exceeding of the Carnot factor. Consequently, once the viability of closed process based thermal cycles that surpass the Carnot factor operating at low and medium temperatures is globally accepted, research work will aim at looking into the consequences that lead from surpassing the Carnot factor while fulfilling the 2nd law, its impact on the 2nd law efficiency definition as well as the impact on the exergy transfer from thermal power sources to any heat consumer, including thermal cycles. The methodology used to meet the proposed objectives involves the analysis of energy and entropy on trilateral closed process based thermal cycles. Thus, such energy and entropy analysis is carried out upon non-condensing mode trilateral thermal cycles (TCs) characterised by the conversion of low grade heat into mechanical work undergoing closed adiabatic path functions: isochoric heat absorption, adiabatic heat to mechanical work conversion and isobaric heat rejection. Firstly, cycle energy analysis is performed to determine the range of some relevant cycle parameters, such as the operating temperatures and their associated pressures, entropies, internal energies and specific volumes. In this way, the ranges of temperatures within which

  19. Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Bourg, S.; Ouvrier, N.; Combernoux, N.; Rostaing, C.; Vargas-Gonzalez, M.; Bruno, J.

    2014-01-01

    Energy perspectives for the current century are dominated by the anticipated significant increase of energy needs. Particularly, electricity consumption is anticipated to increase by a factor higher than two before 2050. Energy choices are considered as structuring political choices that implies a long-standing and stable policy based on objective criteria. LCA (life cycle analysis) is a structured basis for deriving relevant indicators which can allow the comparison of a wide range of impacts of different energy sources. Among the energy-mix, nuclear power is anticipated to have very low GHG-emissions. However, its viability is severely addressed by the public opinion after the Fukushima accident. Therefore, a global LCA of the French nuclear fuel cycle was performed as a reference model. Results were compared in terms of impact with other energy sources. It emphasized that the French nuclear energy is one of the less impacting energy, comparable with renewable energy. In a second, part, the French scenario was compared with an equivalent open fuel cycle scenario. It demonstrates that an open fuel cycle would require about 16% more natural uranium, would have a bigger environmental footprint on the “non radioactive indicators” and would produce a higher volume of high level radioactive waste. - Highlights: • A life cycle analysis of the French close nuclear fuel cycle is performed. • The French nuclear energy is one of the less environmental impacting energy. • The French close fuel cycle is compared to an equivalent open fuel cycle. • An open fuel cycle would have a bigger environmental impact than the French fuel cycle. • Spent nuclear fuel recycling has a positive impact on the environmental footprint

  20. The use of gas based energy conversion cycles for sodium fast reactors

    International Nuclear Information System (INIS)

    Saez, M.; Haubensack, D.; Alpy, N.; Gerber, A.; Daid, F.

    2008-01-01

    In the frame of Sodium Fast Reactors, CEA, AREVA and EDF are involved in a substantial effort providing both significant expertise and original work in order to investigate the interest to use a gas based energy conversion cycle as an alternative to the classical steam cycle. These gas cycles consist in different versions of the Brayton cycle, various types of gas being considered (helium, nitrogen, argon, separately or mixed, sub or supercritical carbon dioxide) as well as various cycle arrangements (indirect, indirect / combined cycles). The interest of such cycles is analysed in details by thermodynamic calculations and cycle optimisations. The objective of this paper is to provide a comparison between gas based energy conversion cycles from the viewpoint of the overall plant efficiency. Key factors affecting the Brayton cycle efficiency include the turbine inlet temperature, compressors and turbine efficiencies, recuperator effectiveness and cycle pressure losses. A nitrogen Brayton cycle at high pressure (between 100 and 180 bar) could appear as a potential near-term solution of classical gas power conversion system for maximizing the plant efficiency. At long-term, supercritical carbon dioxide Brayton cycle appears very promising for Sodium Fast Reactors, with a potential of high efficiency using even at a core outlet temperature of 545 deg. C. (authors)

  1. An experimental study on defrosting heat supplies and energy consumptions during a reverse cycle defrost operation for an air source heat pump

    International Nuclear Information System (INIS)

    Dong Jiankai; Deng Shiming; Jiang Yiqiang; Xia Liang; Yao Yang

    2012-01-01

    For a space heating air source heat pump (ASHP) unit, when its outdoor coil surface temperature is below both the air dew point temperature and the freezing point of water, frost will form on its outdoor coil surface. Frosting affects its operational performance and energy efficiency. Therefore, periodic defrosting is necessary. Currently, the most widely used standard defrosting method for ASHP units is reverse cycle defrost. The energy that should have been used for space heating is used to melt frost, vaporize the melted frost off outdoor coil surface and heat ambient air during defrosting. It is therefore necessary to study the sources of heat supplies and the end-uses of the heat supplied during a reverse cycle defrost operation. In this paper, firstly, an experimental setup is described and experimental procedures are detailed. This is followed by reporting the experimental results and the evaluation of defrosting efficiency for the experimental ASHP unit. Finally, an evaluation of defrosting heat supplies and energy consumptions during a revere cycle defrost operation for the experimental ASHP unit is presented. The experimental and evaluation results indicated that the heat supply from indoor air contributed to 71.8% of the total heat supplied for defrosting and 59.4% of the supplied energy was used for melting frost. The maximum defrosting efficiency could be up to 60.1%. - Highlights: ► Heat supply and consumption during reverse cycle defrost was experimentally studied. ► Indoor air contributed to >70% of total heat supply when indoor fan was turned on. ► ∼60% of the supplied energy was used for melting frost. ► Alternate heat supply other than indoor air should be explored.

  2. Methods of modeling TCO residential real estate in the life cycles of buildings as a promising energy efficiency management tool

    Directory of Open Access Journals (Sweden)

    Kulakov Kirill

    2017-01-01

    Full Text Available Building and developing an affordable housing market is a huge challenge for Russia’s national economy. Today, the housing construction industry finds itself in a situation torn by a conflict caused by the simultaneous needs to minimize the housing construction costs in order to make housing more affordable for Russians and to increase the energy efficiency of the housing projects, which is associated with additional costs for developers. To find solutions to this contradictory situation, one needs new theoretical and practical approaches and economic tools. The global economic trend of managing goods and services on the basis of the value of goods and services over the life cycle is also manifested in the construction industry in Russia. The problem of forming a new economic thinking in the housing sector predetermines the perception of the value of housing not only as the price of purchased real estate, but as the equivalent of the total cost of ownership of real estate throughout its life cycle. This approach allows to compensate the initial rise in the cost of construction resulting from the introduction of energy-efficient technologies by savings in the operational phase of the life cycle of the property. In this regard, management of the total cost of real estate ownership based on energy modeling is of high research and practical relevance.

  3. NASA Contributions to Improve Understanding of Extreme Events in the Global Energy and Water Cycle

    Science.gov (United States)

    Lapenta, William M.

    2008-01-01

    The U.S. Climate Change Science Program (CCSP) has established the water cycle goals of the Nation's climate change program. Accomplishing these goals will require, in part, an accurate accounting of the key reservoirs and fluxes associated with the global water and energy cycle, including their spatial and temporal variability. through integration of all necessary observations and research tools, To this end, in conjunction with NASA's Earth science research strategy, the overarching long-term NASA Energy and Water Cycle Study (NEWS) grand challenge can he summarized as documenting and enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. This challenge requires documenting and predicting trends in the rate of the Earth's water and energy cycling that corresponds to climate change and changes in the frequency and intensity of naturally occurring related meteorological and hydrologic events, which may vary as climate may vary in the future. The cycling of water and energy has obvious and significant implications for the health and prosperity of our society. The importance of documenting and predicting water and energy cycle variations and extremes is necessary to accomplish this benefit to society.

  4. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W

    2007-12-15

    This report contains the description of the S-CO{sub 2} Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO{sub 2} Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO{sub 2} turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO{sub 2} Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO{sub 2} boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO{sub 2} gas. The long term behavior of a Na/CO{sub 2} boundary failure event and its consequences which lead to a system pressure transient were evaluated.

  5. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W.

    2007-12-01

    This report contains the description of the S-CO 2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO 2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO 2 turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO 2 Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO 2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO 2 gas. The long term behavior of a Na/CO 2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  6. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria.

    Science.gov (United States)

    Su, Yu-Bin; Peng, Bo; Li, Hui; Cheng, Zhi-Xue; Zhang, Tian-Tuo; Zhu, Jia-Xin; Li, Dan; Li, Min-Yi; Ye, Jin-Zhou; Du, Chao-Chao; Zhang, Song; Zhao, Xian-Liang; Yang, Man-Jun; Peng, Xuan-Xian

    2018-02-13

    The emergence and ongoing spread of multidrug-resistant bacteria puts humans and other species at risk for potentially lethal infections. Thus, novel antibiotics or alternative approaches are needed to target drug-resistant bacteria, and metabolic modulation has been documented to improve antibiotic efficacy, but the relevant metabolic mechanisms require more studies. Here, we show that glutamate potentiates aminoglycoside antibiotics, resulting in improved elimination of antibiotic-resistant pathogens. When exploring the metabolic flux of glutamate, it was found that the enzymes that link the phosphoenolpyruvate (PEP)-pyruvate-AcCoA pathway to the TCA cycle were key players in this increased efficacy. Together, the PEP-pyruvate-AcCoA pathway and TCA cycle can be considered the pyruvate cycle (P cycle). Our results show that inhibition or gene depletion of the enzymes in the P cycle shut down the TCA cycle even in the presence of excess carbon sources, and that the P cycle operates routinely as a general mechanism for energy production and regulation in Escherichia coli and Edwardsiella tarda These findings address metabolic mechanisms of metabolite-induced potentiation and fundamental questions about bacterial biochemistry and energy metabolism.

  7. High exergetic modified Brayton cycle with thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Yazawa, Kazuaki; Fisher, Timothy S.; Groll, Eckhard A.; Shakouri, Ali

    2017-01-01

    Highlights: • Modified Brayton cycle with thermoelectric generators. • 1 kW power output scale hybrid gas turbine for residential applications. • Low profile TEGs are embedded in combustor/recuperator/heat-exchangers. • Analytical primary energy efficiency achieves more than 40%. - Abstract: A novel concept using thermoelectric direct power generators (TEGs) integrated into a 1 kW scale miniature Brayton cycle is investigated based on an analytical study. The work considers a residential scale application aiming to achieve 40% primary energy efficiency in contrast to the state-of-the-art miniature gas turbine alone, which can only achieve <16%. A topping cycle TEG for a hot gas temperature at 1600–1700 °C is embedded in the combustor scale of a kitchen stove. This TEG converts a fraction of the heat into electricity, while all the remaining thermal energy proceeds to the Brayton cycle. Turbine-inlet gas temperature regulates to 800–1100 °C by optimizing the air mixture. A second TEG is built in the recuperator; hence, the associated temperature is similar to that of a vehicle exhaust. A third TEG is used for waste heat recovery from flue gas, and then the downstream heat flow is used by a combined-heat-power system. By taking advantage of low-profile modules, the TEG embedded heat exchanges can be compact and low-cost at 0.2–0.3 $/W. The figure-of-merit of the thermoelectric materials considers ZT 1.0–1.8. Assuming that all advanced components are utilized, the primary energy efficiency predicts 42% with power output 720 W from the alternator and 325 W from the TEGs out of 0.456 g/s of a pipeline natural gas input.

  8. The Use of Trust Regions in Kohn-Sham Total Energy Minimization

    International Nuclear Information System (INIS)

    Yang, Chao; Meza, Juan C.; Wang, Lin-wang

    2006-01-01

    The Self Consistent Field (SCF) iteration, widely used for computing the ground state energy and the corresponding single particle wave functions associated with a many-electron atomistic system, is viewed in this paper as an optimization procedure that minimizes the Kohn-Sham total energy indirectly by minimizing a sequence of quadratic surrogate functions. We point out the similarity and difference between the total energy and the surrogate, and show how the SCF iteration can fail when the minimizer of the surrogate produces an increase in the KS total energy. A trust region technique is introduced as a way to restrict the update of the wave functions within a small neighborhood of an approximate solution at which the gradient of the total energy agrees with that of the surrogate. The use of trust region in SCF is not new. However, it has been observed that directly applying a trust region based SCF(TRSCF) to the Kohn-Sham total energy often leads to slow convergence. We propose to use TRSCF within a direct constrained minimization(DCM) algorithm we developed in dcm. The key ingredients of the DCM algorithm involve projecting the total energy function into a sequence of subspaces of small dimensions and seeking the minimizer of the total energy function within each subspace. The minimizer of a subspace energy function, which is computed by TRSCF, not only provides a search direction along which the KS total energy function decreases but also gives an optimal 'step-length' that yields a sufficient decrease in total energy. A numerical example is provided to demonstrate that the combination of TRSCF and DCM is more efficient than SCF

  9. Life cycle assessment of hydrogen energy pattern

    International Nuclear Information System (INIS)

    Aissani, Lynda; Bourgois, Jacques; Rousseaux, Patrick; Jabouille, Florent; Loget, Sebastien; Perier Camby, Laurent; Sessiecq, Philippe

    2007-01-01

    In the last decades transportation sector is a priority for environmental research. Indeed, it is the most impacting sector because it involves greenhouse emissions and fossil resources exhaustion. The Group of 'Ecole des Mines' (GEM), in France, carries out studies concerning clean and renewable energies for this sector with the 'H2-PAC' project. The GEM with four teams performs studies concerning energy systems for transportation sector and more particularly the hydrogen system. The four teams of the GEM work each one on a process of this system. More precisely, the team of Albi studies biomass gasification in order to produce synthesis gas. The team of Nantes studies purification of this gas to obtain pure hydrogen and hydrogen storage on activated carbon. The team of Paris studies fuel cell use and especially Polymer Exchange Membrane Fuel Cell. Finally, the team of St Etienne evaluates this system along its life cycle from an environmental point of view. This paper presents this environmental evaluation witch is realized according to Life Cycle Assessment (LCA) methodology. (authors)

  10. Economics of total energy schemes in the liberalised European energy market

    Science.gov (United States)

    Lampret, Peter

    This thesis is concerned with the liberalisation of the European Energy markets and the affects this has had on total energy systems. The work concentrates on a number of case studies all of which are located in the area surrounding Gelsenkirchen - Bottrop - Gladbeck, the centre of the Ruhr region of Germany.The thesis describes briefly how the legislation of the parliament of the extended European Union has been interpreted and enacted into German legislation and its affects on production, transport, sales and customers. Primarily the legislation has been enacted to reduce energy costs by having a competitive market while enabling security of supply. The legislation whose development has accelerated since 1999 can lead to negative effects and these have been highlighted for the case studies chosen.The legislation and technological advances, each of them successful by themselves, do not provide the expected reduction of carbon dioxide emissions when applied to total energy system. The introduction of human behaviour as a missing link makes the problems evident and gives a theoretical basis to overcome these problems. The hypothesis is proven by eight detailed research projects and four concisely described ones.The base of the research is the experience gained on approximately 1,000 operation years of the simplest total energy system, that of centralised heating. This experience is transferred to different solutions for total energy systems and their economics in combination with the changing legislation and observation of human behaviour.The variety of topics of the case studies includes the production of heat by boiler, solar or combined heat and power and the use of fuel cells. Additionally the transfer of heat, at the place of demand is considered, either as an individual boiler in a building or as de-centralised district heating.The various results of these projects come together in a final project which covers four different heating systems in identical

  11. A Hybrid Life-Cycle Assessment of Nonrenewable Energy and Greenhouse-Gas Emissions of a Village-Level Biomass Gasification Project in China

    Directory of Open Access Journals (Sweden)

    Mingyue Pang

    2012-07-01

    Full Text Available Small-scale bio-energy projects have been launched in rural areas of China and are considered as alternatives to fossil-fuel energy. However, energetic and environmental evaluation of these projects has rarely been carried out, though it is necessary for their long-term development. A village-level biomass gasification project provides an example. A hybrid life-cycle assessment (LCA of its total nonrenewable energy (NE cost and associated greenhouse gas (GHG emissions is presented in this paper. The results show that the total energy cost for one joule of biomass gas output from the project is 2.93 J, of which 0.89 J is from nonrenewable energy, and the related GHG emission cost is 1.17 × 10−4 g CO2-eq over its designed life cycle of 20 years. To provide equivalent effective calorific value for cooking work, the utilization of one joule of biomass gas will lead to more life cycle NE cost by 0.07 J and more GHG emissions by 8.92 × 10−5 g CO2-eq compared to natural gas taking into consideration of the difference in combustion efficiency and calorific value. The small-scale bio-energy project has fallen into dilemma, i.e., struggling for survival, and for a more successful future development of village-level gasification projects, much effort is needed to tide over the plight of its development, such as high cost and low efficiency caused by decentralized construction, technical shortcomings and low utilization rate of by-products.

  12. A Biologically Inspired Energy-Efficient Duty Cycle Design Method for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jie Zhou

    2017-01-01

    Full Text Available The recent success of emerging wireless sensor networks technology has encouraged researchers to develop new energy-efficient duty cycle design algorithm in this field. The energy-efficient duty cycle design problem is a typical NP-hard combinatorial optimization problem. In this paper, we investigate an improved elite immune evolutionary algorithm (IEIEA strategy to optimize energy-efficient duty cycle design scheme and monitored area jointly to enhance the network lifetimes. Simulation results show that the network lifetime of the proposed IEIEA method increased compared to the other two methods, which means that the proposed method improves the full coverage constraints.

  13. Statistical properties of kinetic and total energy densities in reverberant spaces

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Molares, Alfonso Rodriguez

    2010-01-01

    Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on determining the total sound energy in a reverberation room. The total energy is usually approximated by measuring the mean-square pressure (i.e., the potential energy density) at a number of discrete....... With the advent of a three-dimensional particle velocity transducer, it has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the ensemble statistics of kinetic and total sound energy densities in reverberant enclosures theoretically...... positions. The idea of measuring the total energy density instead of the potential energy density on the assumption that the former quantity varies less with position than the latter goes back to the 1930s. However, the phenomenon was not analyzed until the late 1970s and then only for the region of high...

  14. Ocean Thermal Energy Conversion Using Double-Stage Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Yasuyuki Ikegami

    2018-03-01

    Full Text Available Ocean Thermal Energy Conversion (OTEC using non-azeotropic mixtures such as ammonia/water as working fluid and the multistage cycle has been investigated in order to improve the thermal efficiency of the cycle because of small ocean temperature differences. The performance and effectiveness of the multistage cycle are barely understood. In addition, previous evaluation methods of heat exchange process cannot clearly indicate the influence of the thermophysical characteristics of the working fluid on the power output. Consequently, this study investigated the influence of reduction of the irreversible losses in the heat exchange process on the system performance in double-stage Rankine cycle using pure working fluid. Single Rankine, double-stage Rankine and Kalina cycles were analyzed to ascertain the system characteristics. The simple evaluation method of the temperature difference between the working fluid and the seawater is applied to this analysis. From the results of the parametric performance analysis it can be considered that double-stage Rankine cycle using pure working fluid can reduce the irreversible losses in the heat exchange process as with the Kalina cycle using an ammonia/water mixture. Considering the maximum power efficiency obtained in the study, double-stage Rankine and Kalina cycles can improve the power output by reducing the irreversible losses in the cycle.

  15. Dynamic life cycle assessment (LCA) of renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Pehnt, M. [Institut for Energy and Environmental Research, Heidelberg (Germany)

    2006-01-01

    Before new technologies enter the market, their environmental superiority over competing options must be asserted based on a life cycle approach. However, when applying the prevailing status-quo Life Cycle Assessment (LCA) approach to future renewable energy systems, one does not distinguish between impacts which are 'imported' into the system due to the 'background system' (e.g. due to supply of materials or final energy for the production of the energy system), and what is the improvement potential of these technologies compared to competitors (e.g. due to process and system innovations or diffusion effects). This paper investigates a dynamic approach towards the LCA of renewable energy technologies and proves that for all renewable energy chains, the inputs of finite energy resources and emissions of greenhouse gases are extremely low compared with the conventional system. With regard to the other environmental impacts the findings do not reveal any clear verdict for or against renewable energies. Future development will enable a further reduction of environmental impacts of renewable energy systems. Different factors are responsible for this development, such as progress with respect to technical parameters of energy converters, in particular, improved efficiency; emissions characteristics; increased lifetime, etc.; advances with regard to the production process of energy converters and fuels; and advances with regard to 'external' services originating from conventional energy and transport systems, for instance, improved electricity or process heat supply for system production and ecologically optimized transport systems for fuel transportation. The application of renewable energy sources might modify not only the background system, but also further downstream aspects, such as consumer behavior. This effect is, however, strongly context and technology dependent. (author)

  16. The total Hartree-Fock energy-eigenvalue sum relationship in atoms

    International Nuclear Information System (INIS)

    Sen, K.D.

    1979-01-01

    Using the well known relationships for the isoelectronic changes in the total Hartree-Fock energy, nucleus-electron attraction energy and electron-electron repulsion energy in atoms a simple polynomial expansion in Z is obtained for the sum of the eigenvalues which can be used to calculate the total Hartree-Fock energy. Numerical results are presented for 2-10 electron series to show that the present relationship is a better approximation than the other available energy-eigenvalue relationships. (author)

  17. Energy Inputs Uncertainty: Total Amount, Distribution and Correlation Between Different Forms of Energy

    Science.gov (United States)

    Deng, Yue

    2014-01-01

    Describes solar energy inputs contributing to ionospheric and thermospheric weather processes, including total energy amounts, distributions and the correlation between particle precipitation and Poynting flux.

  18. CANDU advanced fuel cycles: key to energy sustainability

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.; Meneley, D.A.

    1996-01-01

    In the fast-growing economies of the Pacific Basin region, sustainability is an important requisite for new energy development. Many countries in this region have seen, and continue to see, very large increases in energy and electricity demand. The investment in any nuclear technology is large. Countries making that investment want to ensure that the technology can be sustained and that it can evolve in an ever-changing environment. Three key aspects in ensuring a sustainable energy future, are technological sustainability, economic sustainability, and environmental sustainability (including resource utilization). The fuel-cycle flexibility of the CANDU reactor provides a ready path to sustainable energy development in both the short and long term. (author)

  19. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    Science.gov (United States)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  20. Energy-exergy analysis of compressor pressure ratio effects on thermodynamic performance of ammonia water combined cycle

    International Nuclear Information System (INIS)

    Mohtaram, Soheil; Chen, Wen; Zargar, T.; Lin, Ji

    2017-01-01

    Highlights: • Energy exergy analysis is conducted to find the effects of RP. • EES software is utilized to perform the detailed energy-exergy analyses. • Effects investigated through energy and exergy destruction, enthalpy, yields, etc. • Detailed results are reported showing the performance of gas and combined cycle. - Abstract: The purpose of this study is to investigate the effect of compressor pressure ratio (RP) on the thermodynamic performances of ammonia-water combined cycle through energy and exergy destruction, enthalpy temperature, yields, and flow velocity. The energy-exergy analysis is conducted on the ammonia water combined cycle and the Rankine cycle, respectively. Engineering Equation Solver (EES) software is utilized to perform the detailed analyses. Values and ratios regarding heat drop and exergy loss are presented in separate tables for different equipments. The results obtained by the energy-exergy analysis indicate that by increasing the pressure ratio compressor, exergy destruction of high-pressure compressors, intercooler, gas turbine and the special produced work of gas turbine cycle constantly increase and the exergy destruction of recuperator, in contrast, decreases continuously. In addition, the least amount of input fuel into the combined cycle is observed when the pressure ratio is no less than 7.5. Subsequently, the efficiency of the cycle in gas turbine and combined cycle is reduced because the fuel input into the combined cycle is increased.

  1. Life-cycle impacts from novel thorium–uranium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Fenner, R.A.; Nuttall, W.J.; Parks, G.T.

    2015-01-01

    Highlights: • LCA performed for three open cycle Th–U-fuelled nuclear energy systems. • LCA for open cycle U-fuelled nuclear energy system (Areva’s EPR) used as benchmark. • U-fuelled EPR had lowest emissions per kWh over all systems studied in this work. • LCA model developed for thorium recovered from monazitic beach sands. • LCA model developed for the production of heavy water. - Abstract: Electricity generated from nuclear power plants is generally associated with low emissions per kWh generated, an aspect that feeds into the wider debate surrounding nuclear power. This paper seeks to investigate how life-cycle emissions would be affected by including thorium in the nuclear fuel cycle, and in particular its inclusion in technologies that could prospectively operate open Th–U-based nuclear fuel cycles. Three potential Th–U-based systems operating with open nuclear fuel cycles are considered: AREVA’s European Pressurised Reactor; India’s Advanced Heavy Water Reactor; and General Atomics’ Gas-Turbine Modular Helium Reactor. These technologies are compared to a reference U-fuelled European Pressurised Reactor. A life-cycle analysis is performed that considers the construction, operation, and decommissioning of each of the reactor technologies and all of the other associated facilities in the open nuclear fuel cycle. This includes the development of life-cycle analysis models to describe the extraction of thorium from monazitic beach sands and for the production of heavy water. The results of the life-cycle impact analysis highlight that the reference U-fuelled system has the lowest overall emissions per kWh generated, predominantly due to having the second-lowest uranium ore requirement per kWh generated. The results highlight that the requirement for mined or recovered uranium (and thorium) ore is the greatest overall contributor to emissions, with the possible exception of nuclear energy systems that require heavy water. In terms of like

  2. A synthesis/design optimization algorithm for Rankine cycle based energy systems

    International Nuclear Information System (INIS)

    Toffolo, Andrea

    2014-01-01

    The algorithm presented in this work has been developed to search for the optimal topology and design parameters of a set of Rankine cycles forming an energy system that absorbs/releases heat at different temperature levels and converts part of the absorbed heat into electricity. This algorithm can deal with several applications in the field of energy engineering: e.g., steam cycles or bottoming cycles in combined/cogenerative plants, steam networks, low temperature organic Rankine cycles. The main purpose of this algorithm is to overcome the limitations of the search space introduced by the traditional mixed-integer programming techniques, which assume that possible solutions are derived from a single superstructure embedding them all. The algorithm presented in this work is a hybrid evolutionary/traditional optimization algorithm organized in two levels. A complex original codification of the topology and the intensive design parameters of the system is managed by the upper level evolutionary algorithm according to the criteria set by the HEATSEP method, which are used for the first time to automatically synthesize a “basic” system configuration from a set of elementary thermodynamic cycles. The lower SQP (sequential quadratic programming) algorithm optimizes the objective function(s) with respect to cycle mass flow rates only, taking into account the heat transfer feasibility constraint within the undefined heat transfer section. A challenging example of application is also presented to show the capabilities of the algorithm. - Highlights: • Energy systems based on Rankine cycles are used in many applications. • A hybrid algorithm is proposed to optimize the synthesis/design of such systems. • The topology of the candidate solutions is not limited by a superstructure. • Topology is managed by the genetic operators of the upper level algorithm. • The effectiveness of the algorithm is proved in a complex test case

  3. Energy policy and externalities: the life cycle analysis approach

    International Nuclear Information System (INIS)

    Virdis, M.R.

    2002-01-01

    In the energy sector, getting the prices right is a prerequisite for market mechanisms to work effectively towards sustainable development. However, energy production and use creates 'costs' external to traditional accounting practices, such as damages to human health and the environment resulting from residual emissions or risks associated with dependence on foreign suppliers. Energy market prices do not fully reflect those external costs. For example, the costs of climate change are not internalized and, therefore, consumers do not get the right price signals leading them to make choices that are optimised from a societal viewpoint. Economic theory has developed approaches to assessing and internalizing external costs that can be applied to the energy sector and, in principle, provide means to quantify and integrate relevant information in a comprehensive framework. The tools developed for addressing these issues are generally aimed at monetary valuation of impacts and damages and integration of the valued 'external costs' in total cost of the product, e.g. electricity. The approach of Life Cycle Analysis (LCA) provides a conceptual framework for a detailed and comprehensive comparative evaluation of energy supply options. This paper offers a summary of the LCA methodology and an overview of some of its limitations. It then illustrates, through a few examples, how the methodology can be used to inform or correct policy making and to orient investment decisions. Difficulties and issues emerging at various stages in the application and use of LCA results are discussed, although in such a short note, it is impossible to address all issues related to LCA. Therefore, as part of the concluding section, some issues are left open - and areas in which further analytical work may be needed are described. (author)

  4. EASETECH Energy: Life Cycle Assessment of current and future Danish power systems

    DEFF Research Database (Denmark)

    Turconi, Roberto; Damgaard, Anders; Bisinella, Valentina

    A new life cycle assessment (LCA) model software has been developed by DTU Environment, to facilitate detailed LCA of energy technologies. The model, EASETECH Energy, is dedicated to the specific technologies needed to assess energy production and energy systems and provides an unprecedented...

  5. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Science.gov (United States)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  6. Medium properties and total energy coupling in underground explosions

    International Nuclear Information System (INIS)

    Kurtz, S.R.

    1975-01-01

    A phenomenological model is presented that allows the direct calculation of the effects of variations in medium properties on the total energy coupling between the medium and an underground explosion. The model presented is based upon the assumption that the shock wave generated in the medium can be described as a spherical blast wave at early times. The total energy coupled to the medium is then simply the sum of the kinetic and internal energies of this blast wave. Results obtained by use of this model indicate that the energy coupling is more strongly affected by the medium's porosity than by its water content. These results agree well with those obtained by summing the energy deposited by the blast wave as a function of range

  7. Assessment of the external costs of the coal fuel cycle and the wind energy cycle in Spain

    International Nuclear Information System (INIS)

    Linares, P.; Montes, J.; Saez, R.M.

    1995-09-01

    This study is part of the ExternE Project, a joint effort of the European Commission and the US Dept. of Energy to assess the externalities of different fuel cycles, and quantify them in monetary terms, as kWh price adders. For Spain, this assessment has been carried out for a coal plant hypothetically sited in Valdecaballeros, in Southwestern Spain, and for an existing farm in Cabo Villano, in the Northwestern corner. In this first stage, only environmental externalities have been assessed. The first section contains a description of the methodology used in the European project, based mostly on a damage function approach, and its adaptation to Spanish conditions. In the last section, this methodology has been applied to the fuel cycles mentioned. The impacts assessed have been, for the coal fuel cycle, health effects, agricultural and forest production losses, and global warming. For wind energy, the main impacts considered have been noise, loss of visual amenity, accidents and global warning. The results obtained can only be considered as underestimates, as there are still impacts that have not been assessed or quantified, specially for the coal fuel cycle. Thus, further research is needed for a complete assessment

  8. Engine Load Effects on the Energy and Exergy Performance of a Medium Cycle/Organic Rankine Cycle for Exhaust Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2018-02-01

    Full Text Available The Organic Rankine Cycle (ORC has been proved a promising technique to exploit waste heat from Internal Combustion Engines (ICEs. Waste heat recovery systems have usually been designed based on engine rated working conditions, while engines often operate under part load conditions. Hence, it is quite important to analyze the off-design performance of ORC systems under different engine loads. This paper presents an off-design Medium Cycle/Organic Rankine Cycle (MC/ORC system model by interconnecting the component models, which allows the prediction of system off-design behavior. The sliding pressure control method is applied to balance the variation of system parameters and evaporating pressure is chosen as the operational variable. The effect of operational variable and engine load on system performance is analyzed from the aspects of energy and exergy. The results show that with the drop of engine load, the MC/ORC system can always effectively recover waste heat, whereas the maximum net power output, thermal efficiency and exergy efficiency decrease linearly. Considering the contributions of components to total exergy destruction, the proportions of the gas-oil exchanger and turbine increase, while the proportions of the evaporator and condenser decrease with the drop of engine load.

  9. Antifreeze life cycle assessment (LCA

    Directory of Open Access Journals (Sweden)

    Kesić Jelena

    2005-01-01

    Full Text Available Antifreeze based on ethylene glycol is a commonly used commercial product The classification of ethylene glycol as a toxic material increased the disposal costs for used antifreeze and life cycle assessment became a necessity. Life Cycle Assessment (LCA considers the identification and quantification of raw materials and energy inputs and waste outputs during the whole life cycle of the analyzed product. The objectives of LCA are the evaluation of impacts on the environment and improvements of processes in order to reduce and/or eliminate waste. LCA is conducted through a mathematical model derived from mass and energy balances of all the processes included in the life cycle. In all energy processes the part of energy that can be transformed into some other kind of energy is called exergy. The concept of exergy considers the quality of different types of energy and the quality of different materials. It is also a connection between energy and mass transformations. The whole life cycle can be described by the value of the total loss of exergy. The physical meaning of this value is the loss of material and energy that can be used. The results of LCA are very useful for the analyzed products and processes and for the determined conditions under which the analysis was conducted. The results of this study indicate that recycling is the most satisfactory solution for the treatment of used antifreeze regarding material and energy consumption but the re-use of antifreeze should not be neglected as a solution.

  10. Preliminary estimates of the total-system cost for the restructured program: An addendum to the May 1989 analysis of the total-system life cycle cost for the Civilian Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1990-12-01

    The total-system life-cycle cost (TSLCC) analysis for the Department of Energy's (DOE) Civilian Radioactive Waste Management Program is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 - a fee levied on electricity generated and sold by commercial nuclear power plants - is sufficient to cover the cost of the program. This report provides cost estimates for the sixth annual evaluation of the adequacy of the fee. The costs contained in this report represent a preliminary analysis of the cost impacts associated with the Secretary of Energy's Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program issued in November 1989. The major elements of the restructured program announced in this report which pertain to the program's life-cycle costs are: a prioritization of the scientific investigations program at the Yucca Mountain candidate site to focus on identification of potentially adverse conditions, a delay in the start of repository operations until 2010, the start of limited waste acceptance at the monitored retrievable storage (MRS) facility in 1998, and the start of waste acceptance at the full-capability MRS facility in 2,000. Based on the restructured program, the total-system cost for the system with a repository at the candidate site at Yucca Mountain in Nevada, a facility for monitored retrievable storage (MRS), and a transportation system is estimated at $26 billion (expressed in constant 1988 dollars). In the event that a second repository is required and is authorized by the Congress, the total-system cost is estimated at $34 to $35 billion, depending on the quantity of spent fuel and high-level waste (HLW) requiring disposal. 17 figs., 17 tabs

  11. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    International Nuclear Information System (INIS)

    Hongbin Zhao, H.; Yue, P.; Cao, L.

    2009-01-01

    A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT), and solar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  12. Future regional nuclear fuel cycle cooperation in East Asia: Energy security costs and benefits

    International Nuclear Information System (INIS)

    Hippel, David von; Hayes, Peter; Kang, Jungmin; Katsuta, Tadahiro

    2011-01-01

    Economic growth in East Asia has rapidly increased regional energy, and especially, electricity needs. Many of the countries of East Asia have sought or are seeking to diversify their energy sources and bolster their energy supply and/or environmental security by developing nuclear power. Rapid development of nuclear power in East Asia brings with it concerns regarding nuclear weapons proliferation associated with uranium enrichment and spent nuclear fuel management. This article summarizes the development and analysis of four different scenarios of nuclear fuel cycle management in East Asia, including a scenario where each major nuclear power user develops uranium enrichment and reprocessing of spent fuel individually, scenarios featuring cooperation in the full fuel cycle, and a scenario where reprocessing is avoided in favor of dry cask storage of spent fuel. The material inputs and outputs and costs of key fuel cycle elements under each scenario are summarized. - Highlights: → We evaluate four scenarios of regional nuclear fuel cycle cooperation in East Asia and the Pacific. → The scenarios cover fuel supply, enrichment, transport, reprocessing, and waste management. → We evaluate nuclear material flows, energy use, costs, and qualitative energy security impacts. → Regional cooperation on nuclear fuel cycle issues can help to enhance energy security. → A regional scenario in which reprocessing is rapidly phased out shows security and cost advantages.

  13. Energy and Nuclear Fuel Cycle in the Asia Pacific

    International Nuclear Information System (INIS)

    Soentono, S.

    1998-01-01

    Asia in the Asia Pacific region will face a scarcity of energy supply and an environmental pollution in the near future. On the other hand, development demands an increasing standard of living for a large number of, and still growing, population. Nuclear energy utilization is to be one of the logical alterative to overcome those problems. From the economical point of view, Asia has been ready to introduce the nuclear energy utilization. Asia should establish the cooperation in all aspects such as in politics, economics and human resources through multilateral agreement between countries to enable the introduction successfully. Although the beginning of the introduction, the selection of the reactor types and the nuclear fuel cycle utilized are limited, but eventually the nuclear fuel cycle chosen should be the one of a better material usage as well as non proliferation proof. The fuel reprocessing and spent fuel storage may become the main technological and political issues. The radioactive waste management technology however should not be a problem for a country starting the nuclear energy utilization, but a sound convincing waste management programme is indispensable to obtained public acceptance. The operating nuclear power countries can play important roles in various aspects such as problem solving in waste management, disseminating nuclear safety experiences, conducting education and training, developing the advanced nuclear fuel cycle for better utilization of nuclear fuels, and enhancing as well as strengthening the non-proliferation. It has to be remembered that cooperation in human resources necessitates the important of maintaining and improving the safety culture, which has been already practiced during the last 4 decades by nuclear community

  14. World situation of atomic energy and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Szili, G.

    1978-01-01

    At the International Conference organized by the IAEA in May 1976, several sections dealt with problems of the production of atomic energy and of the nuclear fuel cycle. However, the whole spectrum of these problems was discussed including problems of economic policy, politics and ethical problems, too. Reports were presented on trends of the development of atomic energy in developed and developing countries. Besides the systems of nuclear power plants and the trends of their development, the Conference attached prominent importance to the supply of nuclear fuels and to the fuel cycle, respectively. Owing to important factors, the reprocessing of the spent nuclear fuel was emphasized. The problem area of the treatment of radioactive wastes, the protection of workers in immediate contact and of environment against radiations, the possibilities of ensuring nuclear safety, the degrees of hazards and the methods of protection of fast breeder reactors and up-to-date equipments were discussed. In contrast to earlier conferences the complex problem of the correlation of atomic energy to public opinion played an important role, too. (P.J.)

  15. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  16. [Review of wireless energy transmission system for total artificial heart].

    Science.gov (United States)

    Zhang, Chi; Yang, Ming

    2009-11-01

    This paper sums up the fundamental structure of wireless energy transmission system for total artificial heart, and compares the key parameters and performance of some representative systems. After that, it is discussed that the future development trend of wireless energy transmission system for total artificial heart.

  17. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    Directory of Open Access Journals (Sweden)

    Hongbin Zhao

    2009-01-01

    Full Text Available A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT, and sollar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  18. Inability to match energy intake with energy expenditure at sustained near-maximal rates of energy expenditure in older men during a 14-d cycling expedition

    DEFF Research Database (Denmark)

    Rosenkilde Larsen, Mads; Morville, Thomas; Riis Andersen, Peter

    2015-01-01

    BACKGROUND: The upper rates of energy expenditure (EE) and the corresponding regulation of energy intake (EI), as described in younger trained subjects, are not well elucidated in older subjects. OBJECTIVES: The aim was to investigate EE in older men during prolonged cycling and determine whether...... it is sufficiently matched by EI to maintain energy balance. In addition, we investigated appetite ratings and concentrations of appetite-regulating hormones. DESIGN: Six men (mean ± SE age: 61 ± 3 y) completed 2706 km of cycling, from Copenhagen to Nordkapp, in 14 d. EE was measured by using doubly labeled water......, and food and drink intake was recorded by the accompanying scientific staff. Energy balance was calculated as the discrepancy between EI and EE and from changes in body energy stores as derived from deuterium dilution. Fasting hormones were measured before and after cycling, and appetite ratings were...

  19. In adolescence a higher 'eveningness in energy intake' is associated with higher total daily energy intake.

    Science.gov (United States)

    Diederichs, Tanja; Perrar, Ines; Roßbach, Sarah; Alexy, Ute; Buyken, Anette E

    2018-05-26

    The present manuscript addressed two hypotheses: (i) As children age, energy intake is shifted from morning (energy intake energy intake >6pm) (ii) A higher 'eveningness in energy intake' (i.e. evening minus morning energy intake) is associated with a higher total daily energy intake. Data were analyzed from 262 DONALD cohort study participants, who had completed at least one 3-day weighed dietary record in the age groups 3/4, 5/6, 7/8, 9/10, 11/12, 13/14, 15/16 and 17/18 years (y). 'Eveningness in energy intake' was compared across age groups and related to total daily energy intake for each age group (multiple cross-sectional analyses). 'Eveningness' increased progressively from age group 3/4y to age group 17/18y. A median surplus of evening energy intake (i.e. when evening intake exceeded morning intake) was firstly observed for age group 11/12y. From age group 11/12y onwards, a higher 'eveningness' was associated with a higher total daily energy intake (all p energy intake between the highest and the lowest tertile of 'eveningness' was largest for age group 17/18y, amounting to an 11% higher intake among adolescents in the highest as compared to those in the lowest tertile. In conclusion, energy intake progressively shifts from morning to evening hours as children age. Once evening energy intake exceeds morning energy intake, a higher 'eveningness in energy intake' is associated with higher total daily energy intake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Total Cross Sections at High Energies An update

    CERN Document Server

    Fazal-e-Aleem, M; Alam, Saeed; Qadee-Afzal, M

    2002-01-01

    Current and Future measurements for the total cross sections at E-811, PP2PP, CSM, FELIX and TOTEM have been analyzed using various models. In the light of this study an attempt has been made to focus on the behavior of total cross section at very high energies.

  1. Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1989-05-01

    The total-system life-cycle cost (TSLCC) analysis for the Department of Energy's (DOE) Civilian Radioactive Waste Management Program is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 -- a fee levied on electricity generated in commercial nuclear power plants -- is sufficient to cover the cost of the program. This report provides cost estimates for the sixth annual evaluation of the adequacy of the fee and is consistent with the program strategy and plans contained in the DOE's Draft 1988 Mission Plan Amendment. The total-system cost for the system with a repository at Yucca Mountain, Nevada, a facility for monitored retrievable storage (MRS), and a transportation system is estimated at $24 billion (expressed in constant 1988 dollars). In the event that a second repository is required and is authorized by the Congress, the total-system cost is estimated at $31 to $33 billion, depending on the quantity of spent fuel to be disposed of. The $7 billion cost savings for the single-repository system in comparison with the two-repository system is due to the elimination of $3 billion for second-repository development and $7 billion for the second-repository facility. These savings are offset by $2 billion in additional costs at the first repository and $1 billion in combined higher costs for the MRS facility and transportation. 55 refs., 2 figs., 24 tabs

  2. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  3. Energy system analyses of the marginal energy technology in life cycle assessments

    DEFF Research Database (Denmark)

    Mathiesen, B.V.; Münster, Marie; Fruergaard, Thilde

    2007-01-01

    in historical and potential future energy systems. Subsequently, key LCA studies of products and different waste flows are analysed in relation to the recom- mendations in consequential LCA. Finally, a case of increased waste used for incineration is examined using an energy system analysis model......In life cycle assessments consequential LCA is used as the “state-of-the-art” methodology, which focuses on the consequences of decisions made in terms of system boundaries, allocation and selection of data, simple and dynamic marginal technology, etc.(Ekvall & Weidema 2004). In many LCA studies...... marginal technology? How is the marginal technology identified and used today? What is the consequence of not using energy system analy- sis for identifying the marginal energy technologies? The use of the methodology is examined from three angles. First, the marginal electricity technology is identified...

  4. Life cycle greenhouse gases and non-renewable energy benefits of kraft black liquor recovery

    International Nuclear Information System (INIS)

    Gaudreault, Caroline; Malmberg, Barry; Upton, Brad; Miner, Reid

    2012-01-01

    The life cycle greenhouse gas (GHG) and fossil fuel benefits of black liquor recovery are analyzed. These benefits are due to the production of energy that can be used in the pulping process or sold, and the recovery of the pulping chemicals that would otherwise need to be produced from other resources. The fossil GHG emissions and non-renewable energy consumption of using black liquor in the kraft recovery system are approximately 90% lower than those for a comparable fossil fuel-based system. Across all scenarios, the systems relying on black liquor solids achieve a median reduction of approximately 140 kg CO 2 eq./GJ of energy produced, compared to the systems relying on fossil fuels to provide the same energy and pulping chemical production functions. The benefits attributable to the recovery of pulping chemicals vary from 44% to 75% of the total benefit. Applied to the total production of kraft pulp in the U.S., the avoided emissions are equivalent to the total Scopes 1 and 2 emissions from the entire U.S. forest products industry. These results do not depend on the accounting method for biogenic carbon (because biogenic CO 2 emissions are the same for the systems compared) and the results are valid across a range of assumptions about the displaced fossil fuel, the GHG-intensity of the electricity grid, the fossil fuels used in the lime kiln, and the level of cogeneration at pulp and paper mills. The benefits occur without affecting the amount of wood harvested or the amount of chemical pulp produced. -- Highlights: ► Black liquor, a by-product of kraft pulping, represents about half of the energy used in the paper industry. ► The greenhouse gases (GHG) benefits of black liquor recovery compared to an equivalent fossil fuel system were analyzed. ► The GHG emissions of the black liquor system are approximately 90% lower than those for the fossil fuel system. ► The benefits from the recovery of the chemicals vary from 44% to 75% of the total benefit.

  5. Institutional total energy case studies

    Energy Technology Data Exchange (ETDEWEB)

    Wulfinghoff, D.

    1979-07-01

    Profiles of three total energy systems in institutional settings are provided in this report. The plants are those of Franciscan Hospital, a 384-bed facility in Rock Island, Illinois; Franklin Foundation Hospital, a 100-bed hospital in Franklin, Louisiana; and the North American Air Defense Command Cheyenne Mountain Complex, a military installation near Colorado Springs, Colorado. The case studies include descriptions of plant components and configurations, operation and maintenance procedures, reliability, relationships to public utilities, staffing, economic efficiency, and factors contributing to success.

  6. Research on the general analytical method of fossil fuel cycle from a viewpoint of the global environment. 3; Chikyu kankyo kara mita sogoteki kaseki nenryo cycle bunseki hyoka shuho no chosa. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The general analysis/assessment method of a fossil fuel cycle was studied. Seven kinds of power generation plants such as LNG cycle and coal cycle ones, and four kinds of transport and treatment systems of recovered CO2 such as ocean and underground systems were studied as case studies on life cycle analysis. As data necessary for life cycle analysis, the database was constructed which stores the facilities and operational energy required for a total energy system from mining of fossil fuel to treatment of recovered CO2, and the quantity of environmental waste such as CO2 emission. As a result, the decrease rate of energy balance defined as ratio of input energy to power plant output was estimated to be 14-43% and 20-60% in LNG cycle and coal cycle, respectively. Even if the recovery rate of CO2 in power plants reached 80-90%, reduction of total CO2 emission was limited to only 20-40% because of CO2 emission during mining, liquefaction and transport of fuel. 168 refs., 48 figs., 102 tabs.

  7. Life Cycle Assessment of Energy Systems: Closing the Ethical Loophole of Social Sustainability

    OpenAIRE

    Sakellariou, Nikolaos

    2015-01-01

    AbstractLife Cycle Assessment of Energy Systems: Closing the Ethical Loophole of Social SustainabilitybyNikolaos SakellariouDoctor of Philosophy in Environmental Science, Policy, and ManagementUniversity of California, BerkeleyProfessor Alastair T. Iles, ChairThis dissertation investigates the historical and normative bases of what contemporary engineers consider to be the embodiment of sustainability: Life Cycle Assessment (LCA). It explores the interplay among technology ethics, energy syst...

  8. Advanced Fuel Cycle Economic Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Shropshire; Kent Williams; J.D. Smith; Brent Boore

    2006-12-01

    A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

  9. A constrained optimization algorithm for total energy minimization in electronic structure calculations

    International Nuclear Information System (INIS)

    Yang Chao; Meza, Juan C.; Wang Linwang

    2006-01-01

    A new direct constrained optimization algorithm for minimizing the Kohn-Sham (KS) total energy functional is presented in this paper. The key ingredients of this algorithm involve projecting the total energy functional into a sequence of subspaces of small dimensions and seeking the minimizer of total energy functional within each subspace. The minimizer of a subspace energy functional not only provides a search direction along which the KS total energy functional decreases but also gives an optimal 'step-length' to move along this search direction. Numerical examples are provided to demonstrate that this new direct constrained optimization algorithm can be more efficient than the self-consistent field (SCF) iteration

  10. Strategy on energy saving reconstruction of distribution networks based on life cycle cost

    Science.gov (United States)

    Chen, Xiaofei; Qiu, Zejing; Xu, Zhaoyang; Xiao, Chupeng

    2017-08-01

    Because the actual distribution network reconstruction project funds are often limited, the cost-benefit model and the decision-making method are crucial for distribution network energy saving reconstruction project. From the perspective of life cycle cost (LCC), firstly the research life cycle is determined for the energy saving reconstruction of distribution networks with multi-devices. Then, a new life cycle cost-benefit model for energy-saving reconstruction of distribution network is developed, in which the modification schemes include distribution transformers replacement, lines replacement and reactive power compensation. In the operation loss cost and maintenance cost area, the operation cost model considering the influence of load season characteristics and the maintenance cost segmental model of transformers are proposed. Finally, aiming at the highest energy saving profit per LCC, a decision-making method is developed while considering financial and technical constraints as well. The model and method are applied to a real distribution network reconstruction, and the results prove that the model and method are effective.

  11. Energy Harvesting Cycles of Dielectric ElectroActive Polymer Generators

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2012-01-01

    Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics. Their hig......Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics....... Their higher energy density, superior low-speed performance, light-weighted nature as well as their shapely structure have rendered DEAPs candidate solutions for various actuation and energy harvesting applications. In this paper, a thoroughly analysis of all energy harvesting operational cycles of a DEAP...

  12. Few-cycle high energy mid-infrared pulse from Ho:YLF laser

    International Nuclear Information System (INIS)

    Murari, Krishna

    2017-04-01

    Over the past decade, development of high-energy ultrafast laser sources has led to important breakthroughs in attoscience and strong-field physics study in atoms and molecules. Coherent pulse synthesis of few-cycle high-energy laser pulse is a promising tool to generate isolated attosecond pulses via high harmonics generation (HHG). An effective way to extend the HHG cut-off energy to higher values is making use of long mid-infrared (MIR) driver wavelength, as the ponderomotive potential scales quadratically with wavelength. If properly scaled in energy to multi-mJ level and few-cycle duration, such pulses provide a direct path to intriguing attoscience experiments in gases and solids, which even permit the realization of bright coherent table-top HHG sources in the water-window and keV X-ray region. However, the generation of high-intensity long-wavelength MIR pulses has always remained challenging, in particular starting from high-energy picosecond 2-μm laser driver, that is suitable for further energy scaling of the MIR pulses to multi-mJ energies by utilizing optical parametric amplifiers (OPAs). In this thesis, a front-end source for such MIR OPA is presented. In particular, a novel and robust strong-field few-cycle 2-μm laser driver directly from picosecond Ho:YLF laser and utilizing Kagome fiber based compression is presented. We achieved: a 70-fold compression of 140-μJ, 3.3-ps pulses from Ho:YLF amplifier to 48 fs with 11 μJ energy. The work presented in this thesis demonstrates a straightforward path towards generation of few-cycle MIR pulses and we believe that in the future the ultrafast community will benefit from this enabling technology. The results are summarized in mainly four parts: The first part is focused on the development of a 2-μm, high-energy laser source as the front-end. Comparison of available technology in general and promising gain media at MIR wavelength are discussed. Starting from the basics of an OPA, the design criteria

  13. Few-cycle high energy mid-infrared pulse from Ho:YLF laser

    Energy Technology Data Exchange (ETDEWEB)

    Murari, Krishna

    2017-04-15

    Over the past decade, development of high-energy ultrafast laser sources has led to important breakthroughs in attoscience and strong-field physics study in atoms and molecules. Coherent pulse synthesis of few-cycle high-energy laser pulse is a promising tool to generate isolated attosecond pulses via high harmonics generation (HHG). An effective way to extend the HHG cut-off energy to higher values is making use of long mid-infrared (MIR) driver wavelength, as the ponderomotive potential scales quadratically with wavelength. If properly scaled in energy to multi-mJ level and few-cycle duration, such pulses provide a direct path to intriguing attoscience experiments in gases and solids, which even permit the realization of bright coherent table-top HHG sources in the water-window and keV X-ray region. However, the generation of high-intensity long-wavelength MIR pulses has always remained challenging, in particular starting from high-energy picosecond 2-μm laser driver, that is suitable for further energy scaling of the MIR pulses to multi-mJ energies by utilizing optical parametric amplifiers (OPAs). In this thesis, a front-end source for such MIR OPA is presented. In particular, a novel and robust strong-field few-cycle 2-μm laser driver directly from picosecond Ho:YLF laser and utilizing Kagome fiber based compression is presented. We achieved: a 70-fold compression of 140-μJ, 3.3-ps pulses from Ho:YLF amplifier to 48 fs with 11 μJ energy. The work presented in this thesis demonstrates a straightforward path towards generation of few-cycle MIR pulses and we believe that in the future the ultrafast community will benefit from this enabling technology. The results are summarized in mainly four parts: The first part is focused on the development of a 2-μm, high-energy laser source as the front-end. Comparison of available technology in general and promising gain media at MIR wavelength are discussed. Starting from the basics of an OPA, the design criteria

  14. Analysis of temperature difference on the total of energy expenditure during static bicycle exercise

    Science.gov (United States)

    Sugiono

    2016-04-01

    How to manage energy expenditure for cyclist is very crucial part to achieve a good performance. As the tropical situation, the differences of temperature level might be contributed in energy expenditure and durability. The aim of the paper is to estimate and to analysis the configuration of energy expenditure for static cycling activity based on heart rate value in room with air conditioning (AC)/no AC treatment. The research is started with study literatures of climate factors, temperature impact on human body, and definition of energy expenditure. The next step is design the experiment for 5 participants in 2 difference models for 26.80C - 74% relative humidity (room no AC) and 23,80C - 54.8% relative humidity (room with AC). The participants’ heart rate and blood pressure are measured in rest condition and in cycling condition to know the impact of difference temperature in energy expenditure profile. According to the experiment results, the reducing of the temperature has significantly impact on the decreasing of energy expenditure at average 0.3 Kcal/minute for all 5 performers. Finally, the research shows that climate condition (temperature and relative humidity) are very important factors to manage and to reach a higher performance of cycling sport.

  15. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated

  16. Influence of Geographic Factors on the Life Cycle Climate Change Impacts of Renewable Energy Systems

    Science.gov (United States)

    Fortier, M. O. P.

    2017-12-01

    Life cycle assessment (LCA) is a valuable tool to measure the cradle-to-grave climate change impacts of the sustainable energy systems that are planned to replace conventional fossil energy-based systems. The recent inclusion of geographic specificity in bioenergy LCAs has shown that the relative sustainability of these energy sources is often dependent on geographic factors, such as the climate change impact of changing the land cover and local resource availability. However, this development has not yet been implemented to most LCAs of energy systems that do not have biological feedstocks, such as wind, water, and solar-based energy systems. For example, the tidal velocity where tidal rotors are installed can significantly alter the life cycle climate change impacts of electricity generated using the same technology in different locations. For LCAs of solar updraft towers, the albedo change impacts arising from changing the reflectivity of the land that would be converted can be of the same magnitude as other life cycle process climate change impacts. Improvements to determining the life cycle climate change impacts of renewable energy technologies can be made by utilizing GIS and satellite data and by conducting site-specific analyses. This practice can enhance our understanding of the life cycle environmental impacts of technologies that are aimed to reduce the impacts of our current energy systems, and it can improve the siting of new systems to optimize a reduction in climate change impacts.

  17. The total pregnancy potential per oocyte aspiration after assisted reproduction-in how many cycles are biologically competent oocytes available?

    Science.gov (United States)

    Lemmen, J G; Rodríguez, N M; Andreasen, L D; Loft, A; Ziebe, S

    2016-07-01

    While stimulation of women prior to assisted reproduction is associated with increased success rates, the total biological pregnancy potential per stimulation cycle is rarely assessed. Retrospective sequential cohort study of the cumulative live birth rate in 1148 first IVF/ICSI-cycles and 5-year follow up of frozen embryo replacement (FER) cycles were used. Oocyte number, number of embryos transferred, and cryopreserved/thawed and transferred embryos in a FER cycle were registered for all patients. Children per oocyte and per transferred embryo and percentage of cycles with births were calculated. We obtained 9529 oocytes. Embryos (2507) were transferred in either fresh or FER cycles, resulting in 422 births and 474 live born children. Median age of the women was 32.5 years (range 20-41.5 years). In total, 34.3 % of all cycles ended with a live birth while in 65.7 % of the cycles, no oocytes were capable of developing into a child. The average number of oocytes needed per live born child after transfer of fresh and thawed embryos was 20 as only 5.0 % of oocytes aspirated in the first IVF/ICSI cycle had the competence to develop into a child. In our setting, overall 5.0 % of the oocytes in a first cycle were biologically competent and in around 2/3 of all cycles, none of the oocytes had the potential to result in the birth of a child.

  18. Theory and design of an Annual Cycle Energy System (ACES) for residences

    Energy Technology Data Exchange (ETDEWEB)

    Nephew, E.A.; Abbatiello, L.A.; Ballou, M.L.

    1980-05-01

    The basic concept of the Annual Cycle Energy System (ACES) - an integrated system for supplying space heating, hot water, and air conditioning to a building - and the theory underlying its design and operation are described. Practical procedures for designing an ACES for a single-family residence, together with recommended guidelines for the construction and installation of system components, are presented. Methods are discussed for estimating the life-cycle cost, component sizes, and annual energy consumption of the system for residential applications in different climatic regions of the US.

  19. Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna; Sathre, Roger [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, 83125 Oestersund (Sweden)

    2010-02-15

    In this study the life cycle primary energy use and carbon dioxide (CO{sub 2}) emission of an eight-storey wood-framed apartment building are analyzed. All life cycle phases are included, including acquisition and processing of materials, on-site construction, building operation, demolition and materials disposal. The calculated primary energy use includes the entire energy system chains, and carbon flows are tracked including fossil fuel emissions, process emissions, carbon stocks in building materials, and avoided fossil emissions due to biofuel substitution. The results show that building operation uses the largest share of life cycle energy use, becoming increasingly dominant as the life span of the building increases. The type of heating system strongly influences the primary energy use and CO{sub 2} emission; a biomass-based system with cogeneration of district heat and electricity achieves low primary energy use and very low CO{sub 2} emissions. Using biomass residues from the wood products chain to substitute for fossil fuels significantly reduces net CO{sub 2} emission. Excluding household tap water and electricity, a negative life cycle net CO{sub 2} emission can be achieved due to the wood-based construction materials and biomass-based energy supply system. This study shows the importance of using a life cycle perspective when evaluating primary energy and climatic impacts of buildings. (author)

  20. The nuclear power cycle; Le cycle de l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Fifty years after the first nuclear reactor come on-line, nuclear power is fourth among the world's primary energy sources, after oil, coal and gas. In 2002, there were 441 reactors in operation worldwide. The United States led the world with 104 reactors and an installed capacity of 100,000 MWe, or more than one fourth of global capacity. Electricity from nuclear energy represents 78% of the production in France, 57% in Belgium, 46% in Sweden, 40% in Switzerland, 39% in South Korea, 34% in Japan, 30% in Germany, 30% in Finland, 26% in Spain, 22% in Great Britain, 20% in the United States and 16% in Russia. Worldwide, 32 reactors are under construction, including 21 in Asia. This information document presents the Areva activities in the nuclear power cycle: the nuclear fuel, the nuclear reactors, the spent fuel reprocessing and recycling and nuclear cleanup and dismantling. (A.L.B.)

  1. Life cycle optimization model for integrated cogeneration and energy systems applications in buildings

    Science.gov (United States)

    Osman, Ayat E.

    Energy use in commercial buildings constitutes a major proportion of the energy consumption and anthropogenic emissions in the USA. Cogeneration systems offer an opportunity to meet a building's electrical and thermal demands from a single energy source. To answer the question of what is the most beneficial and cost effective energy source(s) that can be used to meet the energy demands of the building, optimizations techniques have been implemented in some studies to find the optimum energy system based on reducing cost and maximizing revenues. Due to the significant environmental impacts that can result from meeting the energy demands in buildings, building design should incorporate environmental criteria in the decision making criteria. The objective of this research is to develop a framework and model to optimize a building's operation by integrating congregation systems and utility systems in order to meet the electrical, heating, and cooling demand by considering the potential life cycle environmental impact that might result from meeting those demands as well as the economical implications. Two LCA Optimization models have been developed within a framework that uses hourly building energy data, life cycle assessment (LCA), and mixed-integer linear programming (MILP). The objective functions that are used in the formulation of the problems include: (1) Minimizing life cycle primary energy consumption, (2) Minimizing global warming potential, (3) Minimizing tropospheric ozone precursor potential, (4) Minimizing acidification potential, (5) Minimizing NOx, SO 2 and CO2, and (6) Minimizing life cycle costs, considering a study period of ten years and the lifetime of equipment. The two LCA optimization models can be used for: (a) long term planning and operational analysis in buildings by analyzing the hourly energy use of a building during a day and (b) design and quick analysis of building operation based on periodic analysis of energy use of a building in a

  2. Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 2. System performance and supporting studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1979-01-01

    The preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas, is presented. System performance analysis and evaluation are described. Feedback of completed performance analyses on current system design and operating philosophy is discussed. The basic computer simulation techniques and assumptions are described and the resulting energy displacement analysis is presented. Supporting technical studies are presented. These include health and safety and reliability assessments; solar collector component evaluation; weather analysis; and a review of selected trade studies which address significant design alternatives. Additional supporting studies which are generally specific to the installation site are reported. These include solar availability analysis; energy load measurements; environmental impact assessment; life cycle cost and economic analysis; heat transfer fluid testing; meteorological/solar station planning; and information dissemination. (WHK)

  3. Energy Harvesting Wireless Sensor Networks: From Characterization to Duty Cycle Dimensioning

    OpenAIRE

    Oueis , Jad; Stanica , Razvan; Valois , Fabrice

    2016-01-01

    International audience; Energy harvesting capabilities are challenging our understanding of wireless sensor networks by adding recharging capacity to sensor nodes. This has a significant impact on the communication paradigm, as networking mechanisms can benefit from these potentially infinite renewable energy sources. In this work, we study the consequences of implementing photovoltaic energy harvesting on the duty cycle of a wireless sensor node, in both outdoor and indoor scenarios. We show...

  4. Revolutions in energy input and material cycling in Earth history and human history

    Science.gov (United States)

    Lenton, Timothy M.; Pichler, Peter-Paul; Weisz, Helga

    2016-04-01

    Major revolutions in energy capture have occurred in both Earth and human history, with each transition resulting in higher energy input, altered material cycles and major consequences for the internal organization of the respective systems. In Earth history, we identify the origin of anoxygenic photosynthesis, the origin of oxygenic photosynthesis, and land colonization by eukaryotic photosynthesizers as step changes in free energy input to the biosphere. In human history we focus on the Palaeolithic use of fire, the Neolithic revolution to farming, and the Industrial revolution as step changes in free energy input to human societies. In each case we try to quantify the resulting increase in energy input, and discuss the consequences for material cycling and for biological and social organization. For most of human history, energy use by humans was but a tiny fraction of the overall energy input to the biosphere, as would be expected for any heterotrophic species. However, the industrial revolution gave humans the capacity to push energy inputs towards planetary scales and by the end of the 20th century human energy use had reached a magnitude comparable to the biosphere. By distinguishing world regions and income brackets we show the unequal distribution in energy and material use among contemporary humans. Looking ahead, a prospective sustainability revolution will require scaling up new renewable and decarbonized energy technologies and the development of much more efficient material recycling systems - thus creating a more autotrophic social metabolism. Such a transition must also anticipate a level of social organization that can implement the changes in energy input and material cycling without losing the large achievements in standard of living and individual liberation associated with industrial societies.

  5. Association of Supergranule Mean Scales with Solar Cycle Strengths and Total Solar Irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sudip; Chatterjee, Subhamoy; Banerjee, Dipankar, E-mail: sudip@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India)

    2017-07-20

    We analyze the long-term behavior of the supergranule scale parameter, in active regions (ARs) and quiet regions (QRs), using the Kodaikanal digitized data archive. This database provides century-long daily full disk observations of the Sun in Ca ii K wavelengths. In this paper, we study the distributions of the supergranular scales, over the whole data duration, which show identical shape in these two regimes. We found that the AR mean scale values are always higher than that of the QR for every solar cycle. The mean scale values are highly correlated with the sunspot number cycle amplitude and also with total solar irradiance (TSI) variations. Such a correlation establishes the cycle-wise mean scale as a potential calibrator for the historical data reconstructions. We also see an upward trend in the mean scales, as has already been reported in TSI. This may provide new input for climate forcing models. These results also give us insight into the different evolutionary scenarios of the supergranules in the presence of strong (AR) and weak (QR) magnetic fields.

  6. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass

    International Nuclear Information System (INIS)

    Xie, X.; Wang, M.; Han, J.

    2011-01-01

    This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

  7. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage

    KAUST Repository

    Pasta, Mauro; Wessells, Colin D.; Huggins, Robert A.; Cui, Yi

    2012-01-01

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles. © 2012 Macmillan Publishers Limited. All rights reserved.

  8. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage

    KAUST Repository

    Pasta, Mauro

    2012-10-23

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles. © 2012 Macmillan Publishers Limited. All rights reserved.

  9. Glutamatergic and GABAergic neurotransmitter cycling and energy metabolism in rat cerebral cortex during postnatal development.

    Science.gov (United States)

    Chowdhury, Golam M I; Patel, Anant B; Mason, Graeme F; Rothman, Douglas L; Behar, Kevin L

    2007-12-01

    The contribution of glutamatergic and gamma-aminobutyric acid (GABA)ergic neurons to oxidative energy metabolism and neurotransmission in the developing brain is not known. Glutamatergic and GABAergic fluxes were assessed in neocortex of postnatal day 10 (P10) and 30 (P30) urethane-anesthetized rats infused intravenously with [1,6-(13)C(2)]glucose for different time intervals (time course) or with [2-(13)C]acetate for 2 to 3 h (steady state). Amino acid levels and (13)C enrichments were determined in tissue extracts ex vivo using (1)H-[(13)C]-NMR spectroscopy. Metabolic fluxes were estimated from the best fits of a three-compartment metabolic model (glutamatergic neurons, GABAergic neurons, and astroglia) to the (13)C-enrichment time courses of amino acids from [1,6-(13)C(2)]glucose, constrained by the ratios of neurotransmitter cycling (V(cyc))-to-tricarboxylic acid (TCA) cycle flux (V(TCAn)) calculated from the steady-state [2-(13)C]acetate enrichment data. From P10 to P30 increases in total neuronal (glutamate plus GABA) TCA cycle flux (3 x ; 0.24+/-0.05 versus 0.71+/-0.07 micromol per g per min, Pcycling flux (3.1 to 5 x ; 0.07 to 0.11 (+/-0.03) versus 0.34+/-0.03 micromol per g per min, Pcycling (DeltaV(cyc(tot))) and neuronal TCA cycle flux (DeltaV(TCAn(tot))) between P10 and P30 were 0.23 to 0.27 and 0.47 micromol per g per min, respectively, similar to the approximately 1:2 relationship previously reported for adult cortex. For the individual neurons, increases in V(TCAn) and V(cyc) were similar in magnitude (glutamatergic neurons, 2.7 x versus 2.8 to 4.6 x ; GABAergic neurons, approximately 5 x versus approximately 7 x), although GABAergic flux changes were larger. The findings show that glutamate and GABA neurons undergo large and approximately proportional increases in neurotransmitter cycling and oxidative energy metabolism during this major postnatal growth spurt.

  10. Life-cycle energy analyses of electric vehicle storage batteries

    Science.gov (United States)

    Sullivan, D.; Morse, T.; Patel, P.; Patel, S.; Bondar, J.; Taylor, L.

    1980-12-01

    Nickel-zinc, lead-acid, nickel-iron, zinc-chlorine, sodium-sulfur (glass electrolyte), sodium-sulfur (ceramic electrolyte), lithium-metal sulfide, and aluminum-air batteries were studied in order to evaluate the energy used to produce the raw materials and to manufacture the battery, the energy consumed by the battery during its operational life, and the energy that could be saved from the recycling of battery materials into new raw materials. The value of the life cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. Battery component materials, the energy requirements for battery production, and credits for recycling are described. The operational energy for an electric vehicle and the procedures used to determine it are discussed.

  11. Green energy criteria and life cycle assessment in assessing environmental competitiveness of energy products

    International Nuclear Information System (INIS)

    Maelkki, H.; Hongisto, M.; Turkulainen, T.; Kuisma, J.; Loikkanen, T.

    1999-01-01

    The liberalisation of energy markets has increased the need to enlarge the information base of fuel chains, to evaluate the environmental quality of energy products transparently and to communicate results in a credible way. The preparedness of energy purchasers, producers and sellers to support energy choices of their customers and to meet the information requirements of various stake holders can be strengthened. The environmental impacts related to energy products are turning into a significant dimension of competitiveness. Possibilities to promote market-driven environmental protection mechanisms and to construct incentives, which cover the whole energy production system exist and can be supported. Knowledge of environmental impacts of various energy products can be increased by means of several supplementary instruments like eco-profiles, environmental labels and life cycle assessments of products. Life cycle assessment forms a systematic basis of information, which supports the environmental communications directed to various stake holders. In this study selected public LCA-studies concerning energy production have been compared, criteria of green energy have been charted and their outlook has been assessed. In addition the development of an LCA- based relative environmental performance indicator system, which supports various transparent comparisons, has been outlined. The mapping of methodological differences of published LCA-studies regarding various energy alternatives proves, that there is differences e.g. in allocation principles, system boundaries, and age of source information and in many other details. These discrepancies should be known, because they also affect the results. That is why the use of available LCA studies as a basis for comparative assertions may be problematic. The renewability of an energy source is a threshold requirement in eco-energy criteria formulated and introduced by Finnish, Swedish and Norwegian nature conservation

  12. An assessment of the effectiveness of fuel cycle technologies for the national energy security enhancement in the electricity sector

    International Nuclear Information System (INIS)

    Kim, Hyun Jun; Jun, Eunju; Chang, Soon Heung; Kim, Won Joon

    2009-01-01

    Energy security, in the 21st century, draws significant attention in most countries worldwide, because the national security and sustainable development depend largely on energy security. The anticipated fossil energy depletion and the instability of their supply drive many countries to consider nuclear energy as their alternative energy source for the enhancement of their national energy security. In this study, indicators measuring the level of energy security in the electric power sector are developed and applied for the assessment of the effectiveness of four electric power system schemes which deploy different nuclear fuel cycle technologies, with consideration for the diversification of the energy markets and the vulnerability to economic disruption. Results show that the contribution of the closed fuel cycle scheme is larger than the once-through fuel cycle scheme in the perspective of energy security. In addition, the completely closed fuel cycle with the spent fuel recycling enhances the national energy security to the maximum extent compared to all other fuel cycle schemes. Since a completely closed fuel cycle is hardly affected by the uranium price changes, this scheme is found to be the most favorable scheme, ensuring the stable profit of utilities and stabilizing the electricity tariff. In addition, the completely closed fuel cycle scheme provides the best enhancement of national energy security with respect to energy supply, under reasonable price conditions. The indicators developed in this study can be utilized as a useful instrument for the measurement of the level of the energy security, especially by the countries importing energy resources for the generation of electric power.

  13. Design and analysis of Helium Brayton cycle for energy conversion system of RGTT200K

    International Nuclear Information System (INIS)

    Ignatius Djoko Irianto

    2016-01-01

    The helium Brayton cycle for the design of cogeneration energy conversion system for RGTT200K have been analyzed to obtain the higher thermal efficiency and energy utilization factor. The aim of this research is to analyze the potential of the helium Brayton cycle to be implemented in the design of cogeneration energy conversion system of RGTT200K. Three configuration models of cogeneration energy conversion systems have been investigated. In the first configuration model, an intermediate heat exchanger (IHX) is installed in series with the gas turbine, while in the second configuration model, IHX and gas turbines are installed in parallel. The third configuration model is similar to the first configuration, but with two compressors. Performance analysis of Brayton cycle used for cogeneration energy conversion system of RGTT200K has been done by simulating and calculating using CHEMCAD code. The simulation result shows that the three configuration models of cogeneration energy conversion system give the temperature of thermal energy in the secondary side of IHX more than 800 °C at the reactor coolant mass flow rate of 145 kg/s. Nevertheless, the performance parameters, which include thermal efficiency and energy utilization factor (EUF), are different for each configuration model. By comparing the performance parameter in the three configurations of helium Brayton cycle for cogeneration energy conversion systems RGTT200K, it is found that the energy conversion system with a first configuration has the highest thermal efficiency and energy utilization factor (EUF). Thermal efficiency and energy utilization factor for the first configuration of the reactor coolant mass flow rate of 145 kg/s are 35.82 % and 80.63 %. (author)

  14. Energy systems. Tome 3: advanced cycles, low environmental impact innovative systems; Systeme energetiques, TOME 3: cycles avances, systemes innovants a faible impact environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Gicquel, R

    2009-07-01

    This third tome about energy systems completes the two previous ones by showing up advanced thermodynamical cycles, in particular having a low environmental impact, and by dealing with two other questions linked with the study of systems with a changing regime operation: - the time management of energy, with the use of thermal and pneumatic storage systems and time simulation (schedule for instance) of systems (solar energy type in particular); - the technological dimensioning and non-nominal regime operation studies. Because this last topic is particularly complex, new functionalities have been implemented mainly by using the external classes mechanism, which allows the user to freely personalize his models. This tome is illustrated with about 50 examples of cycles modelled with Thermoptim software. Content: foreword; 1 - generic external classes; 2 - advanced gas turbine cycles; 3 - evaporation-concentration, mechanical steam compression, desalination, hot gas drying; 4 - cryogenic cycles; 5 - electrochemical converters; 6 - global warming, CO{sub 2} capture and sequestration; 7 - future nuclear reactors (coupled to Hirn and Brayton cycles); 8 - thermodynamic solar cycles; 10 - pneumatic and thermal storage; 11 - calculation of thermodynamic solar facilities; 12 - problem of technological dimensioning and non-nominal regime; 13 - exchangers modeling and parameterizing for the dimensioning and the non-nominal regime; 14 - modeling and parameterizing of volumetric compressors; 15 - modeling and parameterizing of turbo-compressors and turbines; 16 - identification methodology of component parameters; 17 - case studies. (J.S.)

  15. Total energy calculations and bonding at interfaces

    International Nuclear Information System (INIS)

    Louie, S.G.

    1984-08-01

    Some of the concepts and theoretical techniques employed in recent ab initio studies of the electronic and structural properties of surfaces and interfaces are discussed. Results of total energy calculations for the 2 x 1 reconstructed diamond (111) surface and for stacking faults in Si are reviewed. 30 refs., 8 figs

  16. Poynting Theorem, Relativistic Transformation of Total Energy-Momentum and Electromagnetic Energy-Momentum Tensor

    Science.gov (United States)

    Kholmetskii, Alexander; Missevitch, Oleg; Yarman, Tolga

    2016-02-01

    We address to the Poynting theorem for the bound (velocity-dependent) electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy-momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product {\\varvec{j}} \\cdot {\\varvec{E}} (where the current density {\\varvec{j}} and bound electric field {\\varvec{E}} are generated by the same source charge) are exogenously omitted. Implementing a transformation of the Poynting theorem to the form, where the terms of self-interaction are eliminated via Maxwell equations and vector calculus in a mathematically rigorous way (Kholmetskii et al., Phys Scr 83:055406, 2011), we obtained a novel expression for field momentum, which is fully compatible with the Lorentz transformation for total energy-momentum. The results obtained are discussed along with the novel expression for the electromagnetic energy-momentum tensor.

  17. Dissipated energy and entropy production for an unconventional heat engine: the stepwise `circular cycle'

    Science.gov (United States)

    di Liberto, Francesco; Pastore, Raffaele; Peruggi, Fulvio

    2011-05-01

    When some entropy is transferred, by means of a reversible engine, from a hot heat source to a colder one, the maximum efficiency occurs, i.e. the maximum available work is obtained. Similarly, a reversible heat pumps transfer entropy from a cold heat source to a hotter one with the minimum expense of energy. In contrast, if we are faced with non-reversible devices, there is some lost work for heat engines, and some extra work for heat pumps. These quantities are both related to entropy production. The lost work, i.e. ? , is also called 'degraded energy' or 'energy unavailable to do work'. The extra work, i.e. ? , is the excess of work performed on the system in the irreversible process with respect to the reversible one (or the excess of heat given to the hotter source in the irreversible process). Both quantities are analysed in detail and are evaluated for a complex process, i.e. the stepwise circular cycle, which is similar to the stepwise Carnot cycle. The stepwise circular cycle is a cycle performed by means of N small weights, dw, which are first added and then removed from the piston of the vessel containing the gas or vice versa. The work performed by the gas can be found as the increase of the potential energy of the dw's. Each single dw is identified and its increase, i.e. its increase in potential energy, evaluated. In such a way it is found how the energy output of the cycle is distributed among the dw's. The size of the dw's affects entropy production and therefore the lost and extra work. The distribution of increases depends on the chosen removal process.

  18. Hydrogen production by thermochemical cycles of water splitting coupled to a solar energy source

    International Nuclear Information System (INIS)

    Charvin, P.

    2007-11-01

    The aim of this work is to identify, to test and to estimate new thermochemical cycles able to efficiently produce hydrogen from concentrated solar energy. In fact, the aim is to propose a hydrogen production way presenting a global energetic yield similar to electrolysis, that is to say 20-25%, electrolysis being at the present time the most advanced current process for a clean hydrogen production from water. After a first chapter dealing with the past and present researches on thermochemical cycles, the first step of this study has consisted on a selection of a limited number of thermochemical cycles able to produce great quantities of hydrogen from concentrated solar energy. It has consisted in particular on a review of the thermochemical cycles present in literature, on a first selection from argued criteria, and on an exergetic and thermodynamic analysis of the retained cycles for a first estimation of their potential. The second step of this study deals with the experimental study of all the chemical reactions occurring in the retained cycles. Two different oxides cycles have been particularly chosen and the aims are to demonstrate the feasibility of the reactions, to identify the optimal experimental conditions, to estimate and optimize the kinetics and the chemical yields. The following part of this work deals with the design, the modeling and the test of a solar reactor. A CFD modeling of a high temperature reactor of cavity type allows to identify the main heat losses of the reactor and to optimize the geometry of the cavity. A dynamic modeling of the reactor gives data on its behaviour in transient regime and under a real solar flux. The results of the preliminary experimental results are presented. The last part of this study deals with a process analysis of the thermochemical cycles from the results of the experimental study (experimental conditions, yields...). The matter and energy balances are established in order to estimate the global energetic

  19. Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China

    International Nuclear Information System (INIS)

    Hou, Guofu; Sun, Honghang; Jiang, Ziying; Pan, Ziqiang; Wang, Yibo; Zhang, Xiaodan; Zhao, Ying; Yao, Qiang

    2016-01-01

    Graphical abstract: Comparison of life cycle GHG emissions of various power sources. - Highlights: • The LCA study of grid-connected PV generation with silicon solar modules in China has been performed. • The energy payback times range from 1.6 to 2.3 years. • The GHG emissions are in the range of 60.1–87.3 g-CO_2,eq/kW h. • The PV manufacturing process occupied about 85% or higher of total energy usage and total GHG emission. • The SoG-Si production process accounted for more than 35% of total energy consumption and GHG emissions. - Abstract: The environmental impacts of grid-connected photovoltaic (PV) power generation from crystalline silicon (c-Si) solar modules in China have been investigated using life cycle assessment (LCA). The life cycle inventory was first analyzed. Then the energy consumption and greenhouse gas (GHG) emission during every process were estimated in detail, and finally the life-cycle value was calculated. The results showed that the energy payback time (T_E_P_B_T) of grid-connected PV power with crystalline silicon solar modules ranges from 1.6 to 2.3 years, while the GHG emissions now range from 60.1 to 87.3 g-CO_2,eq/kW h depending on the installation methods. About 84% or even more of the total energy consumption and total GHG emission occupied during the PV manufacturing process. The solar grade silicon (SoG-Si) production is the most energy-consuming and GHG-emitting process, which accounts for more than 35% of the total energy consumption and the total GHG emission. The results presented in this study are expected to provide useful information to enact reasonable policies, development targets, as well as subsidies for PV technology in China.

  20. Gas--steam turbine combined cycle power plants

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1978-10-01

    The purpose of this technology evaluation is to provide performance and cost characteristics of the combined gas and steam turbine, cycle system applied to an Integrated Community Energy System (ICES). To date, most of the applications of combined cycles have been for electric power generation only. The basic gas--steam turbine combined cycle consists of: (1) a gas turbine-generator set, (2) a waste-heat recovery boiler in the gas turbine exhaust stream designed to produce steam, and (3) a steam turbine acting as a bottoming cycle. Because modification of the standard steam portion of the combined cycle would be necessary to recover waste heat at a useful temperature (> 212/sup 0/F), some sacrifice in the potential conversion efficiency is necessary at this temperature. The total energy efficiency ((electric power + recovered waste heat) divided by input fuel energy) varies from about 65 to 73% at full load to 34 to 49% at 20% rated electric power output. Two major factors that must be considered when installing a gas--steam turbine combines cycle are: the realiability of the gas turbine portion of the cycle, and the availability of liquid and gas fuels or the feasibility of hooking up with a coal gasification/liquefaction process.

  1. Research on the full life cycle management system of smart electric energy meter

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu

    2018-02-01

    At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.

  2. Ecomuseums (on Clean Energy, Cycle Tourism and Civic Crowdfunding: A New Match for Sustainability?

    Directory of Open Access Journals (Sweden)

    Francesca Simeoni

    2018-03-01

    Full Text Available An ecomuseum is an ‘instrument’ to share the interests of a region and protect its cultural, historical and natural heritage. Cycle tourism is a sustainable type of tourism. Civic crowdfunding is a method of raising funds from a community for the fulfilment of civic initiatives. Starting from the literature on the link between cycle tourism and sustainability, the interaction between renewable energy resources and tourism, and finally the place-based dimension of a civic crowdfunding campaign, the purpose of this study is to show that an ecomuseum focused on clean energy has the potential to attract cycle tourists, increase the numbers of funders, as well as attract the interest of the municipality, not-for-profit associations and energy and tourism firms, and thus significantly enhance its beneficial effects on sustainability from economic, social and environmental points of view. This study employed an action research method to gain in-depth knowledge of this issue, as well as a qualitative case study approach to present and discuss the results. The principal result of this study is the identification of a potential way to create sustainability, via the match between an ecomuseum devoted to clean energy, cycle tourism and civic crowdfunding.

  3. Toxic emissions from mobile sources: a total fuel-cycle analysis for conventional and alternative fuel vehicles.

    Science.gov (United States)

    Winebrake, J J; Wang, M Q; He, D

    2001-07-01

    Mobile sources are among the largest contributors of four hazardous air pollutants--benzene, 1,3-butadiene, acetaldehyde, and formaldehyde--in urban areas. At the same time, federal and state governments are promoting the use of alternative fuel vehicles as a means to curb local air pollution. As yet, the impact of this movement toward alternative fuels with respect to toxic emissions has not been well studied. The purpose of this paper is to compare toxic emissions from vehicles operating on a variety of fuels, including reformulated gasoline (RFG), natural gas, ethanol, methanol, liquid petroleum gas (LPG), and electricity. This study uses a version of Argonne National Laboratory's Greenhouse Gas, Regulated Emissions, and Energy Use in Transportation (GREET) model, appropriately modified to estimate toxic emissions. The GREET model conducts a total fuel-cycle analysis that calculates emissions from both downstream (e.g., operation of the vehicle) and upstream (e.g., fuel production and distribution) stages of the fuel cycle. We find that almost all of the fuels studied reduce 1,3-butadiene emissions compared with conventional gasoline (CG). However, the use of ethanol in E85 (fuel made with 85% ethanol) or RFG leads to increased acetaldehyde emissions, and the use of methanol, ethanol, and compressed natural gas (CNG) may result in increased formaldehyde emissions. When the modeling results for the four air toxics are considered together with their cancer risk factors, all the fuels and vehicle technologies show air toxic emission reduction benefits.

  4. Comparing Life-Cycle Costs of ESPCs and Appropriations-Funded Energy Projects: An Update to the 2002 Report

    International Nuclear Information System (INIS)

    Shonder, John A.; Hughes, Patrick; Atkin, Erica

    2006-01-01

    A study was sponsored by FEMP in 2001 - 2002 to develop methods to compare life-cycle costs of federal energy conservation projects carried out through energy savings performance contracts (ESPCs) and projects that are directly funded by appropriations. The study described in this report follows up on the original work, taking advantage of new pricing data on equipment and on $500 million worth of Super ESPC projects awarded since the end of FY 2001. The methods developed to compare life-cycle costs of ESPCs and directly funded energy projects are based on the following tasks: (1) Verify the parity of equipment prices in ESPC vs. directly funded projects; (2) Develop a representative energy conservation project; (3) Determine representative cycle times for both ESPCs and appropriations-funded projects; (4) Model the representative energy project implemented through an ESPC and through appropriations funding; and (5) Calculate the life-cycle costs for each project.

  5. Hybrid Combined Cycles with Biomass and Waste Fired Bottoming Cycle - a Literature Study

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Miroslav P.

    2002-02-01

    Biomass is one of the main natural resources in Sweden. The present low-CO{sub 2} emission characteristics of the Swedish electricity production system (hydro and nuclear) can be retained only by expansion of biofuel applications for energy purposes. Domestic Swedish biomass resources are vast and renewable, but not infinite. They must be utilized as efficiently as possible, in order to make sure that they meet the conditions for sustainability in the future. Application of efficient power generation cycles at low costs is essential for meeting this challenge. This applies also to municipal solid waste incineration with energy extraction, which should be preferred to its dumping in landfills. Hybrid dual-fuel combined cycle units are a simple and affordable way to increase the electric efficiency of biofuel energy utilization, without big investments, uncertainties or loss of reliability arising from complicated technologies. Configurations of such power cycles are very flexible and reliable. Their potential for high electric efficiency in condensing mode, high total efficiency in combined heat and power mode and unrivalled load flexibility is explored in this project. The present report is a literature study that concentrates on certain biomass utilization technologies, in particular the design and performance of hybrid combined cycle power units of various configurations, with gas turbines and internal combustion engines as topping cycles. An overview of published literature and general development trends on the relevant topic is presented. The study is extended to encompass a short overview of biomass utilization as an energy source (focusing on Sweden), history of combined cycles development with reference especially to combined cycles with supplementary firing and coal-fired hybrid combined cycles, repowering of old steam units into hybrid ones and combined cycles for internal combustion engines. The hybrid combined cycle concept for municipal solid waste

  6. Perspective of nuclear fuel cycle for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Fukuda, K.; Bonne, A.; Kagramanian, V.

    2001-01-01

    Nuclear power, on a life-cycle basis, emits about the same level of carbon per unit of electricity generated as wind and solar power. Long-term energy demand and supply analysis projects that global nuclear capacities will expand substantially, i.e. from 350 GW today to more than 1,500 GW by 2050. Uranium supply, spent fuel and waste management, and a non-proliferation nuclear fuel cycle are essential factors for sustainable nuclear power growth. An analysis of the uranium supply up to 2050 indicates that there is no real shortage of potential uranium available if based on the IIASA/WEC scenario on medium nuclear energy growth, although its market price may become more volatile. With regard to spent fuel and waste management, the short term prediction foresees that the amount of spent fuel will increase from the present 145,000 tHM to more than 260,000 tHM in 2015. The IPCC scenarios predicted that the spent fuel quantities accumulated by 2050 will vary between 525 000 tHM and 3 210 000 tHM. Even according to the lowest scenario, it is estimated that spent fuel quantity in 2050 will be double the amount accumulated by 2015. Thus, waste minimization in the nuclear fuel cycle is a central tenet of sustainability. The proliferation risk focusing on separated plutonium and resistant technologies is reviewed. Finally, the IAEA Project INPRO is briefly introduced. (author)

  7. Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program: executive summary

    International Nuclear Information System (INIS)

    1985-04-01

    The total-system life-cycle cost (TSLCC) analysis for the Department of Energy's Civilian Radioactive Waste Management Progrram is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 is sufficient to cover the cost of the program. This report is an input into the third evaluation of the adequacy of the fee. The total-system cost for the reference waste-management program in this analysis is estimated to be 24 to 30 billion (1984) dollars. For the sensitivity cases studied in this report, the costs could be as high as 35 billion dollars and as low as 21 billion dollars. Because factors like repository location, the quantity of waste generated, transportation-cask technology, and repository startup dates exert substantial impacts on total-system costs, there are several tradeoffs between these factors, and these tradeoffs can greatly influence the total cost of the program. The total-system cost for the reference program described in this report is higher by 3 to 5 billion dollars, or 15 to 20%, than the cost for the reference program of the TSLCC analysis of April 1984. More than two-thirds of this increase is in the cost of repository construction and operation. These repository costs have increased because of changing design concepts, different assumptions about the effort required to perform the necessary activities, and a change in the source data on which the earlier analysis was based. Development and evaluation costs have similarly increased because of a net addition to the work content. Transportation costs have increased because of different assumptions about repository locations and several characteristics of the transportation system. It is expected that the estimates of total-system costs will continue to change in response to both an evolving program strategy and better definition of the work required to achieve the program objectives

  8. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand

    International Nuclear Information System (INIS)

    Udomsri, Seksan; Martin, Andrew R.; Fransson, Torsten H.

    2010-01-01

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessment of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO 2 levels by 3% in comparison with current thermal power plants.

  9. A novel microalgal system for energy production with nitrogen cycling

    Energy Technology Data Exchange (ETDEWEB)

    Minowa, T.; Sawayama, S. [National Institute for Resources and Environment, Tsukuba (Japan)

    1999-08-01

    A microalga, Chlorella vulgaris, could grow in the recovered solution from the low temperature catalytic gasification of itself, by which methane rich fuel gas was obtained. All nitrogen in the microalga was converted to ammonia during the gasification, and the recovered solution, in which ammonia was dissolved, could be used as nitrogen nutrient. The result of the energy evaluation indicated that the novel microalgal system for energy production with nitrogen cycling could be created. 9 refs., 3 tabs.

  10. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    To accurately represent how conservation and efficiency policies affect energy demand, both direct and indirect impacts need to be included in the accounting. The indirect impacts are defined here as the resource savings that accrue over the fuel production chain, which when added to the energy consumed at the point of use, constitute the full-fuel- cycle (FFC) energy. This paper uses the accounting framework developed in (Coughlin 2012) to calculate FFC energy metrics as time series for the period 2010-2040. The approach is extended to define FFC metrics for the emissions of greenhouse gases (GHGs) and other air-borne pollutants. The primary focus is the types of energy used in buildings and industrial processes, mainly natural gas and electricity. The analysis includes a discussion of the fuel production chain for coal, which is used extensively for electric power generation, and for diesel and fuel oil, which are used in mining, oil and gas operations, and fuel distribution. Estimates of the energy intensity parameters make use of data and projections from the Energy Information Agency’s National Energy Modeling System, with calculations based on information from the Annual Energy Outlook 2012.

  11. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason R.; Hollomon, Brad; Dillon, Heather E.; Snowden-Swan, Lesley J.

    2013-03-01

    This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and resource impacts in the manufacturing, transport, use, and disposal of light-emitting diode (LED) lighting products in relation to incumbent lighting technologies. All three reports are available on the DOE website (www.ssl.energy.gov/tech_reports.html). • Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent and LED Lamps; • Part 2: LED Manufacturing and Performance; • Part 3: LED Environmental Testing. Parts 1 and 2 were published in February and June 2012, respectively. The Part 1 report included a summary of the life-cycle assessment (LCA) process and methodology, provided a literature review of more than 25 existing LCA studies of various lamp types, and performed a meta-analysis comparing LED lamps with incandescent and compact fluorescent lamps (CFLs). Drawing from the Part 1 findings, Part 2 performed a more detailed assessment of the LED manufacturing process and used these findings to provide a comparative LCA taking into consideration a wider range of environmental impacts. Both reports concluded that the life-cycle environmental impact of a given lamp is dominated by the energy used during lamp operation—the upstream generation of electricity drives the total environmental footprint of the product. However, a more detailed understanding of end-of-life disposal considerations for LED products has become increasingly important as their installation base has grown. The Part 3 study (reported herein) was undertaken to augment the LCA findings with chemical analysis of a variety of LED, CFL, and incandescent lamps using standard testing procedures. A total of 22 samples, representing 11 different models, were tested to determine whether any of 17 elements were present at levels exceeding California or Federal regulatory thresholds for hazardous waste. Key findings include: • The selected

  12. Energy Balance of Nuclear Power Generation. Life Cycle Analyses of Nuclear Power

    International Nuclear Information System (INIS)

    Wallner, A.; Wenisch, A.; Baumann, M.; Renner, S.

    2011-01-01

    The accident at the Japanese nuclear power plant Fukushima in March 2011 triggered a debate about phasing out nuclear energy and the safety of nuclear power plants. Several states are preparing to end nuclear power generation. At the same time the operational life time of many nuclear power plants is reaching its end. Governments and utilities now need to take a decision to replace old nuclear power plants or to use other energy sources. In particular the requirement of reducing greenhouse gas emissions (GHG) is used as an argument for a higher share of nuclear energy. To assess the contribution of nuclear power to climate protection, the complete life cycle needs to be taken into account. Some process steps are connected to high CO2 emissions due to the energy used. While the processes before and after conventional fossil-fuel power stations can contribute up to 25% of direct GHG emission, it is up to 90 % for nuclear power (Weisser 2007). This report aims to produce information about the energy balance of nuclear energy production during its life cycle. The following key issues were examined: How will the forecasted decreasing uranium ore grades influence energy intensity and greenhouse emissions and from which ore grade on will no energy be gained anymore? In which range can nuclear energy deliver excess energy and how high are greenhouse gas emissions? Which factors including ore grade have the strongest impact on excess energy? (author)

  13. Total life cycle cost model for electric power stations

    International Nuclear Information System (INIS)

    Cardullo, M.W.

    1995-01-01

    The Total Life Cycle Cost (TLCC) model for electric power stations was developed to provide a technology screening model. The TLCC analysis involves normalizing cost estimates with respect to performance standards and financial assumptions and preparing a profile of all costs over the service life of the power station. These costs when levelized present a value in terms of a utility electricity rate. Comparison of cost and the pricing of the electricity for a utility shows if a valid project exists. Cost components include both internal and external costs. Internal costs are direct costs associated with the purchase, and operation of the power station and include initial capital costs, operating and maintenance costs. External costs result from societal and/or environmental impacts that are external to the marketplace and can include air quality impacts due to emissions, infrastructure costs, and other impacts. The cost stream is summed (current dollars) or discounted (constant dollars) to some base year to yield a overall TLCC of each power station technology on a common basis. While minimizing life cycle cost is an important consideration, it may not always be a preferred method for some utilities who may prefer minimizing capital costs. Such consideration does not always result in technology penetration in a marketplace such as the utility sector. Under various regulatory climates, the utility is likely to heavily weigh initial capital costs while giving limited consideration to other costs such as societal costs. Policy makers considering external costs, such as those resulting from environmental impacts, may reach significantly different conclusions about which technologies are most advantageous to society. The TLCC analysis model for power stations was developed to facilitate consideration of all perspectives

  14. Energy landscape reveals that the budding yeast cell cycle is a robust and adaptive multi-stage process.

    Directory of Open Access Journals (Sweden)

    Cheng Lv

    2015-03-01

    Full Text Available Quantitatively understanding the robustness, adaptivity and efficiency of cell cycle dynamics under the influence of noise is a fundamental but difficult question to answer for most eukaryotic organisms. Using a simplified budding yeast cell cycle model perturbed by intrinsic noise, we systematically explore these issues from an energy landscape point of view by constructing an energy landscape for the considered system based on large deviation theory. Analysis shows that the cell cycle trajectory is sharply confined by the ambient energy barrier, and the landscape along this trajectory exhibits a generally flat shape. We explain the evolution of the system on this flat path by incorporating its non-gradient nature. Furthermore, we illustrate how this global landscape changes in response to external signals, observing a nice transformation of the landscapes as the excitable system approaches a limit cycle system when nutrients are sufficient, as well as the formation of additional energy wells when the DNA replication checkpoint is activated. By taking into account the finite volume effect, we find additional pits along the flat cycle path in the landscape associated with the checkpoint mechanism of the cell cycle. The difference between the landscapes induced by intrinsic and extrinsic noise is also discussed. In our opinion, this meticulous structure of the energy landscape for our simplified model is of general interest to other cell cycle dynamics, and the proposed methods can be applied to study similar biological systems.

  15. A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation

    International Nuclear Information System (INIS)

    Chan, C.W.; Ling-Chin, J.; Roskilly, A.P.

    2013-01-01

    A major cause of energy inefficiency is a result of the generation of waste heat and the lack of suitable technologies for cost-effective utilisation of low grade heat in particular. The market potential for surplus/waste heat from industrial processes in the UK is between 10 TWh and 40 TWh, representing a significant potential resource which has remained unexploited to date. This paper reviews selected technologies suitable for utilisation of waste heat energy, with specific focus on low grade heat, including: (i) chemical heat pumps, such as adsorption and absorption cycles for cooling and heating; (ii) thermodynamic cycles, such as the organic Rankine cycle (ORC), the supercritical Rankine cycle (SRC) and the trilateral cycle (TLC), to produce electricity, with further focus on expander and zeotropic mixtures, and (iii) thermal energy storage, including sensible and latent thermal energy storages and their corresponding media to improve the performance of low grade heat energy systems. - Highlights: ► The review of various thermal technologies for the utilisation of under exploited low grade heat. ► The analyses of the absorption and adsorption heat pumps possibly with performance enhancement additives. ► The analyses of thermal energy storage technologies (latent and sensible) for heat storage. ► The analyses of low temperature thermodynamic cycles to maximise power production.

  16. Biomass energy in Jordan, and its potential contribution towards the total energy mix of the Kingdom

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.

    1994-04-01

    An evaluation of Jordan's bio-energy status was carried out. Available sources and the viability of exploitation were studied in order to identify the size of contribution that bio-energy could provide to the total energy mix of the Kingdom. The advantages of biogas technology were discussed, and a general description of Jordan's experience in this field was presented. Data on Jordan' animal, municipal, and agricultural wastes that are available as a potential source of bio-energy was tabulated. The report ascertained the economic feasibility of biogas utilization in Jordan, and concluded that the annual energy production potential from biogas, with only animal wastes being utilized, would amount to 80,000 ton oil equivalent. This amount of energy is equivalent to 2% of Jordan's total energy consumption in 1992. The utilization of biogas from municipal wastes would produce an additional 2.5% of the total energy consumption of Jordan. The annual value of utilizing animal and municipal wastes would reach 23 million Jordanian Dinars (JD). This value would increase to 61.5 million JD with the utilization of human wastes. The investment required for the utilization of bio-energy sources in Amman and its suburbs on the scale of family unit fermenters was estimated to be in the order of a million JD. The size of investment for industrial scale utilization for power generation with an electricity feed to the national grid, would range from 3 to 4 million JD. (A.M.H.). 8 refs., 4 tabs

  17. Life cycle energy and greenhouse gas emissions from transportation of Canadian oil sands to future markets

    International Nuclear Information System (INIS)

    Tarnoczi, Tyler

    2013-01-01

    Oil sands transportation diversification is important for preventing discounted crude pricing. Current life cycle assessment (LCA) models that assess greenhouse gas (GHG) emissions from crude oil transportation are linearly-scale and fail to account for project specific details. This research sets out to develop a detailed LCA model to compare the energy inputs and GHG emissions of pipeline and rail transportation for oil sands products. The model is applied to several proposed oils sands transportation routes that may serve as future markets. Comparison between transportation projects suggest that energy inputs and GHG emissions show a high degree of variation. For both rail and pipeline transportation, the distance over which the product is transported has a large impact on total emissions. The regional electricity grid and pump efficiency have the largest impact on pipeline emissions, while train engine efficiency and bitumen blending ratios have the largest impact on rail transportation emissions. LCA-based GHG regulations should refine models to account for the range of product pathways and focus efforts on cost-effective emission reductions. As the climate-change impacts of new oil sands transportation projects are considered, GHG emission boundaries should be defined according to operation control. -- Highlights: •A life cycle model is developed to compare transportation of oil sands products. •The model is applied to several potential future oil sands markets. •Energy inputs and GHG emissions are compared. •Model inputs are explored using sensitivity analysis. •Policy recommendations are provided

  18. Results of the Collaborative Energy and Water Cycle Information Services (CEWIS) Workshop on Heterogeneous Dataset Analysis Preparation

    Science.gov (United States)

    Kempler, Steven; Teng, William; Acker, James; Belvedere, Deborah; Liu, Zhong; Leptoukh, Gregory

    2010-01-01

    In support of the NASA Energy and Water Cycle Study (NEWS), the Collaborative Energy and Water Cycle Information Services (CEWIS), sponsored by NEWS Program Manager Jared Entin, was initiated to develop an evolving set of community-based data and information services that would facilitate users to locate, access, and bring together multiple distributed heterogeneous energy and water cycle datasets. The CEWIS workshop, June 15-16, 2010, at NASA/GSFC, was the initial step of the process, starting with identifying and scoping the issues, as defined by the community.

  19. Energy recovery system using an organic rankine cycle

    Science.gov (United States)

    Ernst, Timothy C

    2013-10-01

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  20. An exergoeconomic assessment of waste heat recovery from a Gas Turbine-Modular Helium Reactor using two transcritical CO_2 cycles

    International Nuclear Information System (INIS)

    Wang, Xurong; Dai, Yiping

    2016-01-01

    Highlights: • A Gas Turbine-Modular Helium Reactor is coupled with two transcritical CO_2 cycles. • Exergoeconomic analysis and optimization of the combined cycle was performed. • The energy efficiency of the cogeneration system was enhanced by 7.92% at 850 °C. • The overall exergoeconomic factor of the system could up to 55.2%. - Abstract: A comprehensive study is performed on an energy conversion system which combines a gas turbine-modular helium reactor (GT-MHR) and two transcritical CO_2 cycles (tCO_2). The aim of this study is to assess the energy, exergy and economic behavior of the proposed system, considering five indicators: the energy efficiency, the exergy efficiency, the total exergy destruction cost rate, the overall exergoeconomic factor and the total cost rate. A parametric study is also conducted to evaluate the influence of key decision variables on the GT-MHR/tCO_2 performance. Finally, the combined cycle is optimized to minimize the total cost rate. The results show that the energy efficiency of GT-MHR/tCO_2 cycle is 7.92% higher than that of the simple GT-MHR cycle at 850 °C. The largest exergy destruction rate takes place in the reactor, and after that in the helium turbine and the recuperator. The components in tCO_2 cycles have less exergy destruction. When the optimization is conducted based on the exergoeconomics, the overall exergoeconomic factor, the total cost rate and the total exergy destruction cost rate are 55.2%, 20,752 $/h and 9292 $/h, respectively.

  1. The nuclear fuel cycle versus the carbon cycle

    International Nuclear Information System (INIS)

    Ewing, R.C.

    2005-01-01

    Nuclear power provides approximately 17% of the world's electricity, which is equivalent to a reduction in carbon emissions of ∼0.5 gigatonnes (Gt) of C/yr. This is a modest reduction as compared with global emissions of carbon, ∼7 Gt C/yr. Most analyses suggest that in order to have a significant and timely impact on carbon emissions, carbon-free sources, such as nuclear power, would have to expand total production of energy by factors of three to ten by 2050. A three-fold increase in nuclear power capacity would result in a projected reduction in carbon emissions of 1 to 2 Gt C/yr, depending on the type of carbon-based energy source that is displaced. This three-fold increase utilizing present nuclear technologies would result in 25,000 metric tonnes (t) of spent nuclear fuel (SNF) per year, containing over 200 t of plutonium. This is compared to a present global inventory of approximately 280,000 t of SNF and >1,700 t of Pu. A nuclear weapon can be fashioned from as little as 5 kg of 239 Pu. However, there is considerable technological flexibility in the nuclear fuel cycle. There are three types of nuclear fuel cycles that might be utilized for the increased production of energy: open, closed, or a symbiotic combination of different types of reactor (such as, thermal and fast neutron reactors). The neutron energy spectrum has a significant effect on the fission product yield, and the consumption of long-lived actinides, by fission, is best achieved by fast neutrons. Within each cycle, the volume and composition of the high-level nuclear waste and fissile material depend on the type of nuclear fuel, the amount of burn-up, the extent of radionuclide separation during reprocessing, and the types of materials used to immobilize different radionuclides. As an example, a 232 Th-based fuel cycle can be used to breed fissile 233 U with minimum production of Pu. In this paper, I will contrast the production of excess carbon in the form of CO 2 from fossil fuels with

  2. A unified model of combined energy systems with different cycle modes and its optimum performance characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yue [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); College of Information Science and Engineering, Huaqiao University, Quanzhou 362021 (China); Hu, Weiqiang [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Ou Congjie [College of Information Science and Engineering, Huaqiao University, Quanzhou 362021 (China); Chen Jincan [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China)], E-mail: jcchen@xmu.edu.cn

    2009-06-15

    A unified model is presented for a class of combined energy systems, in which the systems mainly consist of a heat engine, a combustor and a counter-flow heat exchanger and the heat engine in the systems may have different thermodynamic cycle modes such as the Brayton cycle, Carnot cycle, Stirling cycle, Ericsson cycle, and so on. Not only the irreversibilities of the heat leak and finite-rate heat transfer but also the different cycle modes of the heat engine are considered in the model. On the basis of Newton's law, expressions for the overall efficiency and power output of the combined energy system with an irreversible Brayton cycle are derived. The maximum overall efficiency and power output and other relevant parameters are calculated. The general characteristic curves of the system are presented for some given parameters. Several interesting cases are discussed in detail. The results obtained here are very general and significant and can be used to discuss the optimal performance characteristics of a class of combined energy systems with different cycle modes. Moreover, it is significant to point out that not only the important conclusions obtained in Bejan's first combustor model and Peterson's general combustion driven model but also the optimal performance of a class of solar-driven heat engine systems can be directly derived from the present paper under some limit conditions.

  3. A unified model of combined energy systems with different cycle modes and its optimum performance characteristics

    International Nuclear Information System (INIS)

    Zhang Yue; Hu, Weiqiang; Ou Congjie; Chen Jincan

    2009-01-01

    A unified model is presented for a class of combined energy systems, in which the systems mainly consist of a heat engine, a combustor and a counter-flow heat exchanger and the heat engine in the systems may have different thermodynamic cycle modes such as the Brayton cycle, Carnot cycle, Stirling cycle, Ericsson cycle, and so on. Not only the irreversibilities of the heat leak and finite-rate heat transfer but also the different cycle modes of the heat engine are considered in the model. On the basis of Newton's law, expressions for the overall efficiency and power output of the combined energy system with an irreversible Brayton cycle are derived. The maximum overall efficiency and power output and other relevant parameters are calculated. The general characteristic curves of the system are presented for some given parameters. Several interesting cases are discussed in detail. The results obtained here are very general and significant and can be used to discuss the optimal performance characteristics of a class of combined energy systems with different cycle modes. Moreover, it is significant to point out that not only the important conclusions obtained in Bejan's first combustor model and Peterson's general combustion driven model but also the optimal performance of a class of solar-driven heat engine systems can be directly derived from the present paper under some limit conditions

  4. Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach

    International Nuclear Information System (INIS)

    Shih, Yi-Hsuan; Tseng, Chao-Heng

    2014-01-01

    Highlights: • The energy policy was assessed using the system dynamics approach. • A life table approach was presented to estimate averted loss of life expectancy. • The mortality benefits estimated by VSL and VSLY are found to be similar. • Economic feasibility of the energy policy for climate change mitigation was presented. - Abstract: A novel Air Resource Co-benefits model was developed to estimate the social benefits of a Sustainable Energy Policy, involving both renewable energy (RE) and energy efficiency improvements (EEI). The costs and benefits of the policy during 2010–2030 were quantified. A system dynamics model was constructed to simulate the amount of energy saving under the scenario of promoting both RE and EEI. The life-cycle co-reductions of five criteria pollutants (PM 10 , SO 2 , NOx, CO, and ozone) and greenhouse gas are estimated by assuming coal fired as marginal electricity suppliers. Moreover, a concise life table approach was developed to estimate averted years of life lost (YOLL). The results showed that YOLL totaling 0.11–0.21 years (41–78 days) per capita, or premature deaths totaling 126,507–251,169, is expected to be averted during 2010–2030 under the RE plus EEI scenario. Specifically, because of the higher investment cost, the benefit-cost ratio of 1.9–2.1 under the EEI scenario is lower than the 7.2–7.9 under the RE scenario. This difference reveals that RE is more socially beneficial than EEI. The net benefit of the RE and EEI scenarios during 2010–2030 totaled approximately US$ 5,972–6,893 per person or US$ 170–190 per MW h. To summarize, this study presents a new approach to estimate averted YOLL, and finds that the health benefits can justify the compliance costs associated with the Sustainable Energy Policy

  5. Prospects for energy efficiency improvement and reduction of emissions and life cycle costs for natural gas vehicles

    Science.gov (United States)

    Kozlov, A. V.; Terenchenko, A. S.; Luksho, V. A.; Karpukhin, K. E.

    2017-01-01

    This work is devoted to the experimental investigation of the possibilities to reduce greenhouse gas emissions and to increase energy efficiency of engines that use natural gas as the main fuel and the analysis of economic efficiency of use of dual fuel engines in vehicles compared to conventional diesel. The results of experimental investigation of a 190 kW dual-fuel engine are presented; it is shown that quantitative and qualitative working process control may ensure thermal efficiency at the same level as that of the diesel engine and in certain conditions 5...8% higher. The prospects for reduction of greenhouse gas emissions have been assessed. The technical and economic evaluation of use of dual fuel engines in heavy-duty vehicles has been performed, taking into account the total life cycle. It is shown that it is possible to reduce life cycle costs by two times.

  6. Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3.

    Science.gov (United States)

    Rhodes, Nathan R; Barde, Amey; Randhir, Kelvin; Li, Like; Hahn, David W; Mei, Renwei; Klausner, James F; AuYeung, Nick

    2015-11-01

    Solar thermochemical energy storage has enormous potential for enabling cost-effective concentrated solar power (CSP). A thermochemical storage system based on a SrO/SrCO3 carbonation cycle offers the ability to store and release high temperature (≈1200 °C) heat. The energy density of SrCO3/SrO systems supported by zirconia-based sintering inhibitors was investigated for 15 cycles of exothermic carbonation at 1150 °C followed by decomposition at 1235 °C. A sample with 40 wt % of SrO supported by yttria-stabilized zirconia (YSZ) shows good energy storage stability at 1450 MJ m(-3) over fifteen cycles at the same cycling temperatures. After further testing over 45 cycles, a decrease in energy storage capacity to 1260 MJ m(-3) is observed during the final cycle. The decrease is due to slowing carbonation kinetics, and the original value of energy density may be obtained by lengthening the carbonation steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Machine Learning methods in fitting first-principles total energies for substitutionally disordered solid

    Science.gov (United States)

    Gao, Qin; Yao, Sanxi; Widom, Michael

    2015-03-01

    Density functional theory (DFT) provides an accurate and first-principles description of solid structures and total energies. However, it is highly time-consuming to calculate structures with hundreds of atoms in the unit cell and almost not possible to calculate thousands of atoms. We apply and adapt machine learning algorithms, including compressive sensing, support vector regression and artificial neural networks to fit the DFT total energies of substitutionally disordered boron carbide. The nonparametric kernel method is also included in our models. Our fitted total energy model reproduces the DFT energies with prediction error of around 1 meV/atom. The assumptions of these machine learning models and applications of the fitted total energies will also be discussed. Financial support from McWilliams Fellowship and the ONR-MURI under the Grant No. N00014-11-1-0678 is gratefully acknowledged.

  8. Life cycle energy metrics and CO 2 credit analysis of a hybrid photovoltaic/thermal greenhouse dryer

    OpenAIRE

    P. Barnwal; G. N. Tiwari

    2008-01-01

    In this paper, life cycle energy metrics, such as energy payback time (EPBT), energy production factor (EPF) and life cycle conversion efficiency (LCCE), and mitigation of CO 2 emissions for a hybrid photovoltaic/thermal (PV/T) greenhouse dryer have been analyzed. The hybrid PV/T greenhouse (roof type even span) dryer, designed and constructed at Solar Energy Park, Indian Institute of Technology, New Delhi (28°35′N, 77°12′E, 216 m above MSL), India, has a 2.50 m × 2.60 m floor area, 1.80 m ce...

  9. Radial frequency diagram (sunflower) for the analysis of diurnal cycle parameters: Solar energy application

    International Nuclear Information System (INIS)

    Božnar, Marija Zlata; Grašič, Boštjan; Mlakar, Primož; Soares, Jacyra; Pereira de Oliveira, Amauri; Costa, Tássio Santos

    2015-01-01

    Graphical abstract: A new type of graphical presentation showing diurnal cycle of solar energy forecast. The application is possible for other parameters related to weather and green energy production. - Highlights: • The diurnal cycle of solar energy is important for the management of the electrical grid. • A solar plant’s average production depends on the statistical features of solar radiation. • The new tool – the “sunflower”, is proposed for solar energy availability representation. • The sunflower identifies and quantifies information with a clear diurnal cycle. • The sunflower diagram has been developed from the “wind rose” diagram. - Abstract: Many meteorological parameters present a natural diurnal cycle because they are directly or indirectly dependent on sunshine exposure. The solar radiation diurnal pattern is important to energy production, agriculture, prognostic models, health and general climatology. This article aims at introducing a new type of radial frequency diagram – hereafter called sunflower – for the analysis of solar radiation data in connection with energy production and also for climatological studies. The diagram is based on two-dimensional data sorting. Firstly data are sorted into classes representing hours in a day. Then the data in each hourly class is sorted into classes of the observed variable values. The relative frequencies of the value classes are shown as sections on each hour’s segment in a radial diagram. The radial diagram forms a unique pattern for each analysed dataset. Therefore it enables the quick detection of features and the comparison of several such patterns belonging to the different datasets being analysed. The sunflower diagram enables a quick and comprehensive understanding of the information about diurnal cycle of the solar radiation data. It enables in a graphical form, quick screening and long-term statistics of huge data quantities when searching for their diurnal features and

  10. Nutrient balances in the forest energy cycle

    International Nuclear Information System (INIS)

    Olsson, Bengt

    2006-02-01

    In Sweden, recycling of stabilised wood-ashes to forests is considered to compensate for nutrient removals from whole-tree harvesting (i.e. use of harvest residues - slash - for energy purposes). This study has analysed nutrient fluxes through the complete forest energy cycle and estimated mass balances of nutrients in harvested biomass with those in ashes, to investigate the realism in large-scale nutrient compensation with wood-ash. Expected nutrient fluxes from forests through energy plants were calculated based on nutrient and biomass data of forest stands in the Nordic countries, and from data on nutrient fluxes through CFB-plants. The expected stoichiometric composition of wood-ashes was compared with the composition of CFB-fly ashes from various Swedish energy plants. Nutrient contents for different tree fractions were calculated to express the average nutrient concentrations in slash and stems with bark, respectively. A nutrient budget synthesis of the effects of whole-tree harvesting on base cation turnover in the following stand was presented for two experimental sites. Major conclusions from the study are: In the CFB-scenario, where the bottom ash is deposited and only the fly ash can be applied to forests, the fly ash from the slash do not meet the demands for nutrient compensation for slash harvesting. Stem material (50% wood, 50% bark) must be added at equivalent amounts, as the slash to produce the amounts of fly ash needed for compensation of slash harvesting. In the scenario where more stem material was added (75% of total fuel load), the amounts of fly ashes produced hardly compensated for nutrient removals with both stem and slash harvesting. The level of nutrient compensation was lowest for potassium. The stoichiometric nutrient composition of CFB-fly ashes from Swedish energy plants is not similar with the nutrient composition of tree biomass. The higher Ca/P ratio in ashes is only partly explained by the mixture of fuels (e.g. increasing bark

  11. Environmental physiology: effects of energy-related pollutants on daily cycles of energy metabolism, motor activity, and thermoregulation

    International Nuclear Information System (INIS)

    Sacher, G.A.; Rosenberg, R.S.; Duffy, P.H.; Obermeyer, W.; Russell, J.J.

    1979-01-01

    This section contains a summary of research on the effects of energy-related pollutants on daily cycles of energy metabolism, motor activity, and thermoregulation. So far, mice have been exposed to fast neutron-gamma radiation or to the chemical effluents of an atmospheric pressure experimental fluidized-bed combustor. The physiological parameters measured included: O 2 consumption; CO 2 production; motor activity; and deep body temperatures

  12. Functional unit, technological dynamics, and scaling properties for the life cycle energy of residences.

    Science.gov (United States)

    Frijia, Stephane; Guhathakurta, Subhrajit; Williams, Eric

    2012-02-07

    Prior LCA studies take the operational phase to include all energy use within a residence, implying a functional unit of all household activities, but then exclude related supply chains such as production of food, appliances, and household chemicals. We argue that bounding the functional unit to provision of a climate controlled space better focuses the LCA on the building, rather than activities that occur within a building. The second issue explored in this article is how technological change in the operational phase affects life cycle energy. Heating and cooling equipment is replaced at least several times over the lifetime of a residence; improved efficiency of newer equipment affects life cycle energy use. The third objective is to construct parametric models to describe LCA results for a family of related products. We explore these three issues through a case study of energy use of residences: one-story and two-story detached homes, 1,500-3,500 square feet in area, located in Phoenix, Arizona, built in 2002 and retired in 2051. With a restricted functional unit and accounting for technological progress, approximately 30% of a building's life cycle energy can be attributed to materials and construction, compared to 0.4-11% in previous studies.

  13. An energy harvesting converter to power sensorized total human knee prosthesis

    International Nuclear Information System (INIS)

    Luciano, V; Sardini, E; Serpelloni, M; Baronio, G

    2014-01-01

    Monitoring the internal loads acting in a total knee prosthesis (TKP) is fundamental aspect to improve their design. One of the main benefits of this improvement is the longer duration of the tibial inserts. In this work, an electromagnetic energy harvesting system, which is implantable in a TKP, is presented. This is conceived for powering a future implantable system that is able to monitor the loads (and, possibly, other parameters) that could influence the working conditions of a TKP in real-time. The energy harvesting system (EHS) is composed of two series of NdFeB magnets, positioned into each condyle, and a coil that is placed in a pin of the tibial insert and connected to an implantable power management circuit. The magnetic flux variation and the induced voltage are generated by the knee's motion. A TKP prototype has been realized in order to reproduce the knee mechanics and to test the EHS performance. In the present work, the experimental results are obtained by adopting a resistive load of 2.2 kΩ, in order to simulate a real implanted autonomous system with a current consumption of 850 µA and voltage of 2 V. The tests showed that, after 7 to 30 s of walking with a gait cycle frequency of about 1.0 Hz, the EHS can generate an energy of about 70 μJ, guaranteeing a voltage between 2 and 1.4 V every 7.6 s. With this prototype we can verify that it is possible to power for 16 ms a circuit having a power consumption of 1.7 mW every 7.6 s. The proposed generator is a viable solution to power an implanted electronic system that is conceived for measuring and transmitting the TKP load parameters. (paper)

  14. Energy expenditure, aerodynamics and medical problems in cycling. An update.

    Science.gov (United States)

    Faria, I E

    1992-07-01

    The cyclist's ability to maintain an extremely high rate of energy expenditure for long durations at a high economy of effort is dependent upon such factors as the individual's anaerobic threshold, muscle fibre type, muscle myoglobin concentration, muscle capillary density and certain anthropometric dimensions. Although laboratory tests have had some success predicting cycling potential, their validity has yet to be established for trained cyclists. Even in analysing the forces producing propulsive torque, cycling effectiveness cannot be based solely on the orientation of applied forces. Innovations of shoe and pedal design continue to have a positive influence on the biomechanics of pedalling. Although muscle involvement during a complete pedal revolution may be similar, economical pedalling rate appears to differ significantly between the novice and racing cyclist. This difference emanates, perhaps, from long term adaptation. Air resistance is by far the greatest retarding force affecting cycling. The aerodynamics of the rider and the bicycle and its components are major contributors to cycling economy. Correct body posture and spacing between riders can significantly enhance speed and efficiency. Acute and chronic responses to cycling and training are complex. To protect the safety and health of the cyclist there must be close monitoring and cooperation between the cyclist, coach, exercise scientist and physician.

  15. How fast is the growth of Total Cross Section at High Energies?

    CERN Document Server

    Fazal-e-Aleem, M; Sohail-Afzal, Tahir; Ayub-Faridi, M; Qadee-Afzal, M

    2003-01-01

    Relativistic Heavy Ion Collider and Large Hadron Colliders have special agenda for the measurements of the total cross sections at high energies giving us an opportunity to touch cosmic ray energies. Recent analyses of the cosmic ray data together with earlier experimental measurements at ISR and SPS gives us an insight about the behaviour of this important parameter at asymptotic energies. We will study the growth of total cross section at high energies in the light of various theoretical approaches with special reference to measurements at RHIC and LHC.

  16. Ecological total-factor energy efficiency of regions in China

    International Nuclear Information System (INIS)

    Li Lanbing; Hu Jinli

    2012-01-01

    Most existing energy efficiency indices are computed without taking into account undesirable outputs such as CO 2 and SO 2 emissions. This paper computes the ecological total-factor energy efficiency (ETFEE) of 30 regions in China for the period 2005–2009 through the slack-based model (SBM) with undesirable outputs. We calculate the ETFEE index by comparing the target energy input obtained from SBM with undesirable outputs to the actual energy input. Findings show that China's regional ETFEE still remains a low level of around 0.600 and regional energy efficiency is overestimated by more than 0.100 when not looking at environmental impacts. China's regional energy efficiency is extremely unbalanced: the east area ranks first with the highest ETFEE of above 0.700, the northeast and central areas follow, and the west area has the lowest ETFEE of less than 0.500. A monotone increasing relation exists between the area's ETFEE and China's per capita GDP. The truncated regression model shows that the ratio of R and D expenditure to GDP and the degree of foreign dependence have positive impacts, whereas the ratio of the secondary industry to GDP and the ratio of government subsidies for industrial pollution treatment to GDP have negative effects, on the ETFEE. - Highlights: ► Most energy efficiency indices ignore undesirable outputs such as CO 2 and SO 2 emissions. ► The ecological total-factor energy efficiency (ETFEE) is computed by slack-based model (SBM). ► The datasets contains 30 regions in China for the period 2005–2009. ► China's regional energy efficiency is extremely unbalanced. ► A monotone increasing relation exists between ETFEE and per capita GDP.

  17. Economic analysis model for total energy and economic systems

    International Nuclear Information System (INIS)

    Shoji, Katsuhiko; Yasukawa, Shigeru; Sato, Osamu

    1980-09-01

    This report describes framing an economic analysis model developed as a tool of total energy systems. To prospect and analyze future energy systems, it is important to analyze the relation between energy system and economic structure. We prepared an economic analysis model which was suited for this purpose. Our model marks that we can analyze in more detail energy related matters than other economic ones, and can forecast long-term economic progress rather than short-term economic fluctuation. From view point of economics, our model is longterm multi-sectoral economic analysis model of open Leontief type. Our model gave us appropriate results for fitting test and forecasting estimation. (author)

  18. Improvement in recuperative gas cycles by means of a heat generator partly by-passing the recuperator. Application to open and closed cycles and to various kinds of energy

    International Nuclear Information System (INIS)

    Tilliette, Z.P.; Pierre, B.

    1979-01-01

    A particular arrangement applicable to open or closed recuperative gas cycles and consisting of a heat generator partly by-passing the low pressure side of the recuperator is proven to enhance advantages of gas cycles for energy production. The cogeneration of both power with a high efficiency owing to the recuperator and high temperature process heat becomes possible and economically attractive. Furthermore, additional possibilities appear for power generation by combined gas and steam or ammonia cycles. In any case the overall utilization coefficient of the primary energy is increased and the combined production of low or medium temperature heat can also be improved. The great operation flexibility of the system for combined energy generation is worth being emphasized: the by-pass arrangement involves no significant change in the operation conditions of the main turbocompressor as the heat output varies. Applications of this arrangement are made to: - open and closed gas cycle, power plants; - fossil, nuclear and solar energies. The overall heat conversion efficiency is tentatively estimated in order to appreciate the energy conversion capability of the investigated power plants

  19. Long-term global nuclear energy and fuel cycle strategies

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1997-01-01

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E 3 (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E 3 model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E 3 model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues

  20. Long-term global nuclear energy and fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A. [Los Alamos National Lab., NM (United States). Technology and Safety Assessment Div.

    1997-09-24

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  1. Vehicle lightweighting vs. electrification: Life cycle energy and GHG emissions results for diverse powertrain vehicles

    International Nuclear Information System (INIS)

    Lewis, Anne Marie; Kelly, Jarod C.; Keoleian, Gregory A.

    2014-01-01

    Highlights: • We modeled life cycle energy and greenhouse gas (GHG) emissions from diverse powertrain vehicles. • Lightweight versions of the vehicle models were compared against baseline models. • Maximum energy and GHG emissions occur with aluminum vs. advanced high strength steel. • Design harmonization method shows 0.2–0.3 kg of support required per 1 kg powertrain mass increase. - Abstract: This work assesses the potential of electrified vehicles and mass reduction to reduce life cycle energy and greenhouse gas (GHG) emissions. Life cycle assessment (LCA) is used to account for processes upstream and downstream of the vehicle operation, thereby incorporating regional variation of energy and GHG emissions due to electricity production and distinct energy and GHG emissions due to conventional and lightweight materials. Design harmonization methods developed in previous work are applied to create baseline and lightweight vehicle models of an internal combustion vehicle (ICV), hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV). Thus, each vehicle is designed to be functionally equivalent and incorporate the structural support required for heavier powertrains. Lightweight vehicles are designed using body-in-white (BIW) mass reduction scenarios with aluminum and advanced/high strength steel (A/HSS). For the mass reduction scenarios considered in this work, results indicate that the greatest life cycle energy and GHG emissions reductions occur when steel is replaced by aluminum. However, since A/HSS requires less energy to produce as compared to aluminum, the energy and GHG reductions per unit mass removed is greatest for A/HSS. Results of the design harmonization modeling method show that 0.2–0.3 kg of structural support is required per unit increase in powertrain mass, thus extending previous methods

  2. Life cycle assessment: Existing building retrofit versus replacement

    Science.gov (United States)

    Darabi, Nura

    The embodied energy in building materials constitutes a large part of the total energy required for any building (Thormark 2001, 429). In working to make buildings more energy efficient this needs to be considered. Integrating considerations about life cycle assessment for buildings and materials is one promising way to reduce the amount of energy consumption being used within the building sector and the environmental impacts associated with that energy. A life cycle assessment (LCA) model can be utilized to help evaluate the embodied energy in building materials in comparison to the buildings operational energy. This thesis takes into consideration the potential life cycle reductions in energy and CO2 emissions that can be made through an energy retrofit of an existing building verses demolition and replacement with a new energy efficient building. A 95,000 square foot institutional building built in the 1960`s was used as a case study for a building LCA, along with a calibrated energy model of the existing building created as part of a previous Masters of Building Science thesis. The chosen case study building was compared to 10 possible improvement options of either energy retrofit or replacement of the existing building with a higher energy performing building in order to see the life cycle relationship between embodied energy, operational energy, and C02 emissions. As a result of completing the LCA, it is shown under which scenarios building retrofit saves more energy over the lifespan of the building than replacement with new construction. It was calculated that energy retrofit of the chosen existing institutional building would reduce the amount of energy and C02 emissions associated with that building over its life span.

  3. Exploring nuclear energy scenarios - implications of technology and fuel cycle choices

    International Nuclear Information System (INIS)

    Rayment, Fiona; Mathers, Dan; Gregg, Robert

    2014-01-01

    Nuclear Energy is recognised globally as a mature, reliable low carbon technology with a secure and abundant fuel source. Within the UK, Nuclear Energy is an essential contributor to the energy mix and as such a decision has been made to refresh the current nuclear energy plants to at least replacement of the existing nuclear fleet. This will mean the building of new nuclear power plant to ensure energy production of 16 GWe per annum. However it is also recognised that this may not be enough and as such expansion scenarios ranging from replacement of the existing fleet to 75 GWe nuclear energy capacity are being considered (see appendix). Within these energy scenarios, a variety of options are being evaluated including electricity generation only, electricity generation plus heat, open versus closed fuel cycles, Generation III versus Generation IV systems and combinations of the above. What is clear is that the deciding factor on the type and mix of any energy programme will not be on technology choice alone. Instead a complex mix of Government policy, relative cost of nuclear power, market decisions and public opinion will influence the rate and direction of growth of any future energy programme. The UK National Nuclear Laboratory has supported this work through the use and development of a variety of assessment and modelling techniques. When assessing nuclear energy scenarios, the technology chosen will impact on a number of parameters within each scenario which includes but is not limited to: - Economics, - Nuclear energy demand, - Fuel Supply, - Spent fuel storage / recycle, - Geological repository volumetric and radiological capacity, - Sustainability - effective resource utilisation, - Technology viability and readiness level. A number of assessment and modelling techniques have been developed and are described further. In particular, they examine fuel cycle options for a number of nuclear energy scenarios, whilst exploring key implications for a particular

  4. Life cycle analysis on fossil energy ratio of algal biodiesel: effects of nitrogen deficiency and oil extraction technology.

    Science.gov (United States)

    Jian, Hou; Jing, Yang; Peidong, Zhang

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from "cradle to grave." Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae.

  5. Energy balance calculations and assessment of two thermochemical sulfur cycles

    International Nuclear Information System (INIS)

    Leger, D.; Lessart, P.; Manaud, J.P.; Benizri, R.; Courvoisier, P.

    1978-01-01

    Thermochemical cyclic processes which include the highly endothermal decomposition of sulphuric acid are promising for hydrogen production by water-splitting. Our study is directed toward two cycles of this family, each involving the formation and decomposition of sulphuric acid and including other reactions using iron sulphide for the first and oxides and bromides of copper and magnesium for the second. Thermochemical analyses of the two cycles are undertaken. Thermodynamic studies of the reactions are carried out, taking into account possible side-reactions. The concentration of reactants, products and by-products resulting from simultaneous equilibria are calculated, the problems of separation thoroughly studied and the flow-diagrams of the processes drawn up. Using as heat source the helium leaving a 3000 MWth high temperature nuclear reactor and organizing internal heat exchange the enthalpy diagrams are drawn up and the net energy balances evaluated. The overall thermal efficiencies are about 28%, a value corresponding to non-optimized process schemes. Possible improvements aiming at energy-saving and increased efficiency are indicated

  6. Life cycle assessment of onshore and offshore wind energy-from theory to application

    International Nuclear Information System (INIS)

    Bonou, Alexandra; Laurent, Alexis; Olsen, Stig I.

    2016-01-01

    Highlights: • An LCA of 2 onshore and 2 offshore wind power plants was performed. • Onshore wind power performs better than offshore per kWh delivered to the grid. • Materials are responsible for more than 79% and 70% of climate change impacts onshore and offshore respectively. • The bigger, direct drive turbines perform better than the smaller geared ones. • Climate change is a good KPI for wind power plant hotspot identification. - Abstract: This study aims to assess the environmental impacts related to the provision of 1 kWh to the grid from wind power in Europe and to suggest how life cycle assessment can inform technology development and system planning. Four representative power plants onshore (with 2.3 and 3.2 MW turbines) and offshore (4.0 and 6.0 MW turbines) with 2015 state-of-the-art technology data provided by Siemens Wind Power were assessed. The energy payback time was found to be less than 1 year for all technologies. The emissions of greenhouse gases amounted to less than 7 g CO_2-eq/kWh for onshore and 11 g CO_2-eq/kWh for offshore. Climate change impacts were found to be a good indicator for overall hotspot identification however attention should also be drawn to human toxicity and impacts from respiratory inorganics. The overall higher impact of offshore plants, compared to onshore ones, is mainly due to larger high-impact material requirements for capital infrastructure. In both markets the bigger turbines with more advanced direct drive generator technology is shown to perform better than the smaller geared ones. Capital infrastructure is the most impactful life cycle stage across impacts. It accounts for more than 79% and 70% of climate change impacts onshore and offshore respectively. The end-of-life treatment could lead to significant savings due to recycling, ca. 20–30% for climate change. In the manufacturing stage the impacts due to operations at the case company do not exceed 1% of the total life cycle impacts. This finding

  7. Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Hao, Han; Liu, Feiqi; Liu, Zongwei; Zhao, Fuquan

    2016-01-01

    Highlights: • A process-based, well-to-wheel conceptualized life cycle assessment model is established. • The impacts of using low-octane gasoline on compression ignition engines are examined. • Life cycle energy consumption and GHG emissions reductions are 24.6% and 21.6%. • Significant technical and market barriers are still to be overcome. - Abstract: The use of low-octane gasoline on Gasoline Compression Ignition (GCI) engines is considered as a competitive alternative to the conventional vehicle propulsion technologies. In this study, a process-based, well-to-wheel conceptualized life cycle assessment model is established to estimate the life cycle energy consumption and greenhouse gas (GHG) emissions of the conventional gasoline-Spark Ignition (SI) and low-octane gasoline-GCI pathways. It is found that compared with the conventional pathway, the low-octane gasoline-GCI pathway leads to a 24.6% reduction in energy consumption and a 22.8% reduction in GHG emissions. The removal of the isomerization and catalytic reforming units in the refinery and the higher energy efficiency in the vehicle use phase are the substantial drivers behind the reductions. The results indicate that by promoting the use of low-octane gasoline coupled with the deployment of GCI vehicles, considerable reductions of energy consumption and GHG emissions in the transport sector can be achieved. However, significant technical and market barriers are still to be overcome. The inherent problems of NO_x and PM exhaust emissions associated with GCI engines need to be further addressed with advanced combustion techniques. Besides, the yield of low-octane gasoline needs to be improved through adjusting the refinery configurations.

  8. Energy based study of quasi-static delamination as a low cycle fatigue process

    NARCIS (Netherlands)

    Amaral, L.; Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This work proposes to treat quasi-static mode I delamination growth of CFRP as a low-cycle fatigue process. To this end, mode I quasi-static and fatigue delamination tests were performed. An average physical Strain Energy Release Rate (SERR), derived from an energy balance, is used to characterize

  9. Development of a hybrid energy storage sizing algorithm associated with the evaluation of power management in different driving cycles

    International Nuclear Information System (INIS)

    Masoud, Masih Tehrani; Mohammad Reza, Ha'iri Yazdi; Esfahanian, Vahid; Sagha, Hossein

    2012-01-01

    In this paper, a hybrid energy storage sizing algorithm for electric vehicles is developed to achieve a semi optimum cost effective design. Using the developed algorithm, a driving cycle is divided into its micro-trips and the power and energy demands in each micro trip are determined. The battery size is estimated because the battery fulfills the power demands. Moreover, the ultra capacitor (UC) energy (or the number of UC modules) is assessed because the UC delivers the maximum energy demands of the different micro trips of a driving cycle. Finally, a design factor, which shows the power of the hybrid energy storage control strategy, is utilized to evaluate the newly designed control strategies. Using the developed algorithm, energy saving loss, driver satisfaction criteria, and battery life criteria are calculated using a feed forward dynamic modeling software program and are utilized for comparison among different energy storage candidates. This procedure is applied to the hybrid energy storage sizing of a series hybrid electric city bus in Manhattan and to the Tehran driving cycle. Results show that a higher aggressive driving cycle (Manhattan) requires more expensive energy storage system and more sophisticated energy management strategy

  10. Part I. Alternative fuel-cycle and deployment strategies: their influence on long-term energy supply and resource usage

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Rudolph, R.R.

    1980-01-01

    This report examines the implications of alternative fast breeder fuel cycles and deployment strategies on long-term energy supply and uranium resource utilization. An international-aggregate treatment for nuclear energy demand and resource base assumptions was adopted where specific assumptions were necessary for system analyses, but the primary emphasis was placed on understanding the general relationships between energy demand, uranium resource and breeder deployment option. The fast breeder deployment options studied include the reference Pu/U cycle as well as alternative cycles with varying degrees of thorium utilization

  11. Annual cycle solar energy utilization with seasonal storage. Part 8. Study on periodic steady state of the annual cycle energy system at a practical operation; Kisetsukan chikunetsu ni yoru nenkan cycle taiyo energy riyo system ni kansuru kenkyu. 8

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Okumiya, M [Nagoya University, Nagoya (Japan)

    1997-11-25

    A study was made of the periodic steady state of the annual cycle solar energy system with seasonal heat storage at a practical operation. Cold heat in winter and warm heat in summer are stored in the seasonal storage tank, and these are each used in shift until when demand for cold/warm heat appears. Moreover, gap in quantity of cold/warm heat going in/out of the heat storage tank during a year is filled by natural energy such as solar energy, so that the system can be operated in annual cycles. Studies were conducted of the periodic unsteady term and the problem on lowering of performance during the term such as the periodic unsteady term of water temperature inside the seasonal heat storage tank and temperature of the soil around the storage tank, and the level of lowering of performance during the term, necessity of additional operation/control at the start of operation and aged deterioration of the system. Within the assumption, even if starting operation in any time of the year, the system could show the performance almost expected from the first operation year with no additional system operation and control required only at the start of operation. It is thought that the heat source selection control of heat pump largely contributes to this. 4 refs., 5 figs., 3 tabs.

  12. Energy Management Strategy Based on the Driving Cycle Model for Plugin Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaoling Fu

    2014-01-01

    Full Text Available The energy management strategy (EMS for a plugin hybrid electric vehicle (PHEV is proposed based on the driving cycle model and dynamic programming (DP algorithm. A driving cycle model is constructed by collecting and processing the driving data of a certain school bus. The state of charge (SOC profile can be obtained by the DP algorithm for the whole driving cycle. In order to optimize the energy management strategy in the hybrid power system, the optimal motor torque control sequence can be calculated using the DP algorithm for the segments between the traffic intersections. Compared with the traditional charge depleting-charge sustaining (CDCS strategy, the test results on the ADVISOR platform show a significant improvement in fuel consumption using the EMS proposed in this paper.

  13. Thermodynamics of the living organisms. Allometric relationship between the total metabolic energy, chemical energy and body temperature in mammals

    Science.gov (United States)

    Atanasov, Atanas Todorov

    2017-11-01

    The study present relationship between the total metabolic energy (ETME(c), J) derived as a function of body chemical energy (Gchem, J) and absolute temperature (Tb, K) in mammals: ETME(c) =Gchem (Tb/Tn). In formula the temperature Tn =2.73K appears normalization temperature. The calculated total metabolic energy ETME(c) differs negligible from the total metabolic energy ETME(J), received as a product between the basal metabolic rate (Pm, J/s) and the lifespan (Tls, s) of mammals: ETME = Pm×Tls. The physical nature and biological mean of the normalization temperature (Tn, K) is unclear. It is made the hypothesis that the kTn energy (where k= 1.3806×10-23 J/K -Boltzmann constant) presents energy of excitation states (modes) in biomolecules and body structures that could be in equilibrium with chemical energy accumulated in body. This means that the accumulated chemical energy allows trough all body molecules and structures to propagate excitations states with kTn energy with wavelength in the rage of width of biological membranes. The accumulated in biomolecules chemical energy maintains spread of the excited states through biomolecules without loss of energy.

  14. Instantaneous charging & discharging cycle analysis of a novel supercapacitor based energy harvesting circuit

    Science.gov (United States)

    Khan, MD Shahrukh Adnan; Kuni, Sharsad Kara; Rajkumar, Rajprasad; Syed, Anas; Hawladar, Masum; Rahman, Md. Moshiur

    2017-12-01

    In this paper, an extensive effort has been made to design and develop a prototype in a laboratory setup environment in order to investigate experimentally the response of a novel Supercapacitor based energy harvesting circuit; particularly the phenomena of instantaneous charging and discharging cycle is analysed. To maximize battery lifespan and storage capacity, charging/discharging cycles need to be optimized in such a way, it ultimately enhances the system performances reliably. Keeping this into focus, an Arduino-MOSFET based control system is developed to charge the Supercapacitor from a low wind Vertical Axis Turbine (VAWT) and discharge it through a 6V battery. With a wind speed of 5m/s, the wind turbine requires approximately 8.1 hours to charge the 6V battery through Supercapacitor bank that constitutes 18 cycles in which each cycle consumes 27 minutes. The overall performance of the proposed system was quite convincing in a sense that the efficiency of the developed Energy Harvesting Circuit EHC raises to 19% in comparison to direct charging of the battery from the Vertical wind turbine. At low wind speed, such value of efficiency margin is quite encouraging which essentially validates the system design.

  15. Life cycle energy use and GHG emission assessment of coal-based SNG and power cogeneration technology in China

    International Nuclear Information System (INIS)

    Li, Sheng; Gao, Lin; Jin, Hongguang

    2016-01-01

    Highlights: • Life cycle energy use and GHG emissions are assessed for SNG and power cogeneration. • A model based on a Chinese domestic database is developed for evaluation. • Cogeneration shows lower GHG emissions than coal-power pathway. • Cogeneration has lower life cycle energy use than supercritical coal-power pathway. • Cogeneration is a good option to implement China’s clean coal technologies. - Abstract: Life cycle energy use and GHG emissions are assessed for coal-based synthetic natural gas (SNG) and power cogeneration/polygenereation (PG) technology and its competitive alternatives. Four main SNG applications are considered, including electricity generation, steam production, SNG vehicle and battery electric vehicle (BEV). Analyses show that if SNG is produced from a single product plant, the lower limits of its life cycle energy use and GHG emissions can be comparable to the average levels of coal-power and coal-BEV pathways, but are still higher than supercritical and ultra supercritical (USC) coal-power and coal-BEV pathways. If SNG is coproduced from a PG plant, when it is used for power generation, steam production, and driving BEV car, the life cycle energy uses for PG based pathways are typically lower than supercritical coal-power pathways, but are still 1.6–2.4% higher than USC coal-power pathways, and the average life cycle GHG emissions are lower than those of all coal-power pathways including USC units. If SNG is used to drive vehicle car, the life cycle energy use and GHG emissions of PG-SNGV-power pathway are both much higher than all combined coal-BEV and coal-power pathways, due to much higher energy consumption in a SNG driven car than in a BEV car. The coal-based SNG and power cogeneration technology shows comparable or better energy and environmental performances when compared to other coal-based alternatives, and is a good option to implement China’s clean coal technologies.

  16. 78 FR 63518 - Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National...

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National Enrichment Facility, Eunice, New Mexico... Louisiana Energy Services (LES), LLC, National Enrichment Facility in Eunice, New Mexico, and has authorized...

  17. Entropy generation analysis of an adsorption cooling cycle

    KAUST Repository

    Thu, Kyaw

    2013-05-01

    This paper discusses the analysis of an adsorption (AD) chiller using system entropy generation as a thermodynamic framework for evaluating total dissipative losses that occurred in a batch-operated AD cycle. The study focuses on an adsorption cycle operating at heat source temperatures ranging from 60 to 85 °C, whilst the chilled water inlet temperature is fixed at 12.5 °C,-a temperature of chilled water deemed useful for dehumidification and cooling. The total entropy generation model examines the processes of key components of the AD chiller such as the heat and mass transfer, flushing and de-superheating of liquid refrigerant. The following key findings are observed: (i) The cycle entropy generation increases with the increase in the heat source temperature (10.8 to 46.2 W/K) and the largest share of entropy generation or rate of energy dissipation occurs at the adsorption process, (ii) the second highest energy rate dissipation is the desorption process, (iii) the remaining energy dissipation rates are the evaporation and condensation processes, respectively. Some of the noteworthy highlights from the study are the inevitable but significant dissipative losses found in switching processes of adsorption-desorption and vice versa, as well as the de-superheating of warm condensate that is refluxed at non-thermal equilibrium conditions from the condenser to the evaporator for the completion of the refrigeration cycle. © 2012 Elsevier Ltd. All rights reserved.

  18. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.

    Science.gov (United States)

    Wu, May; Wu, Ye; Wang, Michael

    2006-01-01

    We conducted a mobility chains, or well-to-wheels (WTW), analysis to assess the energy and emission benefits of cellulosic biomass for the U.S. transportation sector in the years 2015-2030. We estimated the life-cycle energy consumption and emissions associated with biofuel production and use in light-duty vehicle (LDV) technologies by using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Analysis of biofuel production was based on ASPEN Plus model simulation of an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity. Our study revealed that cellulosic biofuels as E85 (mixture of 85% ethanol and 15% gasoline by volume), FTD, and DME offer substantial savings in petroleum (66-93%) and fossil energy (65-88%) consumption on a per-mile basis. Decreased fossil fuel use translates to 82-87% reductions in greenhouse gas emissions across all unblended cellulosic biofuels. In urban areas, our study shows net reductions for almost all criteria pollutants, with the exception of carbon monoxide (unchanged), for each of the biofuel production option examined. Conventional and hybrid electric vehicles, when fueled with E85, could reduce total sulfur oxide (SO(x)) emissions to 39-43% of those generated by vehicles fueled with gasoline. By using bio-FTD and bio-DME in place of diesel, SO(x) emissions are reduced to 46-58% of those generated by diesel-fueled vehicles. Six different fuel production options were compared. This study strongly suggests that integrated heat and power co-generation by means of gas turbine combined cycle is a crucial factor in the energy savings and emission reductions.

  19. Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP)

    Science.gov (United States)

    Vane, Deborah

    1993-01-01

    A discussion of the objectives of the Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP) is presented in vugraph form. The objectives of GEWEX are as follows: determine the hydrological cycle by global measurements; model the global hydrological cycle; improve observations and data assimilation; and predict response to environmental change. The objectives of GCIP are as follows: determine the time/space variability of the hydrological cycle over a continental-scale region; develop macro-scale hydrologic models that are coupled to atmospheric models; develop information retrieval schemes; and support regional climate change impact assessment.

  20. Development and applications of GREET 2.7 -- The Transportation Vehicle-Cycle Model

    International Nuclear Information System (INIS)

    Burnham, A.; Wang, M. Q.; Wu, Y.

    2006-01-01

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results

  1. Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.; Wang, M. Q.; Wu, Y.

    2006-12-20

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

  2. Comparing the Life Cycle Energy Consumption, Global Warming and Eutrophication Potentials of Several Water and Waste Service Options

    Directory of Open Access Journals (Sweden)

    Xiaobo Xue

    2016-04-01

    Full Text Available Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energy- and carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability and sensitivity were evaluated, the carbon intensity of the local electricity grid and the efficiency of electricity production by the co-digestion with the energy recovery process were the most important for determining the relative global warming potential results.

  3. Environment-adjusted total-factor energy efficiency of Taiwan's service sectors

    International Nuclear Information System (INIS)

    Fang, Chin-Yi; Hu, Jin-Li; Lou, Tze-Kai

    2013-01-01

    This study computes the pure technical efficiency (PTE) and energy-saving target of Taiwan's service sectors during 2001–2008 by using the input-oriented data envelopment analysis (DEA) approach with the assumption of a variable returns-to-scale (VRS) situation. This paper further investigates the effects of industry characteristics on the energy-saving target by applying the four-stage DEA proposed by Fried et al. (1999). We also calculate the pre-adjusted and environment-adjusted total-factor energy efficiency (TFEE) scores in these service sectors. There are three inputs (labor, capital stock, and energy consumption) and a single output (real GDP) in the DEA model. The most energy efficient service sector is finance, insurance and real estate, which has an average TFEE of 0.994 and an environment-adjusted TFEE (EATFEE) of 0.807. The study utilizes the panel-data, random-effects Tobit regression model with the energy-saving target (EST) as the dependent variable. Those service industries with a larger GDP output have greater excess use of energy. The capital–labor ratio has a significantly positive effect while the time trend variable has a significantly negative impact on the EST, suggesting that future new capital investment should also be accompanied with energy-saving technology in the service sectors. - Highlights: • The technical efficiency and energy-saving target of service sectors are assessed. • The pre-adjusted and environment-adjusted total-factor energy efficiency scores in services are assessed. • The industrial characteristic differences are examined by the panel-data, random-effects Tobit regression model. • Labor, capital, and energy and an output (GDP) are included in the DEA model. • Future new capital investment should also be accompanied with energy-saving technology in the service sectors

  4. Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems

    International Nuclear Information System (INIS)

    Klein, Sharon J.W.; Rubin, Edward S.

    2013-01-01

    Concentrated solar power (CSP) is unique among intermittent renewable energy options because for the past four years, utility-scale plants have been using an energy storage technology that could allow a CSP plant to operate as a baseload renewable energy generator in the future. No study to-date has directly compared the environmental implications of this technology with more conventional CSP backup energy options. This study compares the life cycle greenhouse gas (GHG) emissions, water consumption, and direct, onsite land use associated with one MW h of electricity production from CSP plants with wet and dry cooling and with three energy backup systems: (1) minimal backup (MB), (2) molten salt thermal energy storage (TES), and (3) a natural gas-fired heat transfer fluid heater (NG). Plants with NG had 4–9 times more life cycle GHG emissions than plants with TES. Plants with TES generally had twice as many life cycle GHG emissions as the MB plants. Dry cooling reduced life cycle water consumption by 71–78% compared to wet cooling. Plants with larger backup capacities had greater life cycle water consumption than plants with smaller backup capacities, and plants with NG had lower direct, onsite life cycle land use than plants with MB or TES. - highlights: • We assess life cycle environmental effects of concentrated solar power (CSP). • We compare CSP with three energy backup technologies and two cooling technologies. • We selected solar field area to minimize energy cost for plants with minimal backup and salt storage. • Life cycle greenhouse gas emissions were 4–9 times lower with thermal energy storage than with fossil fuel backup. • Dry cooling reduced life cycle water use by 71–78% compared to wet cooling

  5. A dynamo theory prediction for solar cycle 22: Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1986-01-01

    Using the dynamo theory method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  6. A dynamo theory prediction for solar cycle 22 - Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1984-01-01

    Using the 'dynamo theory' method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  7. Total Corporate social responsibility report 2004. Sharing our energy; TOTAL rapport societal and environnemental 2004. Notre energie en partage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-05-15

    This document presents the social and environmental activities of the group Total for the year 2004. It provides information on the ethical aspects of the governance, the industrial security, the environmental policy, the public health and the occupational safety, the social liability and the economical and social impact of the group activities in the local development, the contribution to the climatic change fight and the development of other energy sources. (A.L.B.)

  8. Parameterization of α-nucleus total reaction cross section at intermediate energies

    International Nuclear Information System (INIS)

    Alvi, M A; Abdulmomen, M A

    2008-01-01

    Applying a Coulomb correction factor to the Glauber model we have derived a closed expression for α-nucleus total reaction cross section, σ R . Under the approximation of rigid projectile model, the elastic S-matrix element S el (b) is evaluated from the phenomenological N-α amplitude and a Gaussian fit to the Helm's model form factor. Excellent agreements with the experimental data have been achieved by performing two-parameter fits to the α-nucleus σ R data in the energy range about 75 to 193 MeV. One of the parameters was found to be energy independent while the other, as expected, shows the energy dependence similar to that of N-α total cross section.

  9. Thermodynamic, economic and thermo-economic optimization of a new proposed organic Rankine cycle for energy production from geothermal resources

    International Nuclear Information System (INIS)

    Kazemi, Neda; Samadi, Fereshteh

    2016-01-01

    Highlights: • A new cycle was designed to improve basic organic Rankine cycle performance. • Peng Robinson equation of state was used to obtain properties of working fluids. • Operating parameters were optimized with three different objective functions. • Efficiency of new organic Rankine cycle is higher than other considered cycles. • Return on investment of new cycle for Iran is more than France and America. - Abstract: The main goal of this study is to propose and investigate a new organic Rankine cycle based on three considered configurations: basic organic Rankine cycle, regenerative organic Rankine cycle and two-stage evaporator organic Rankine cycle in order to increase electricity generation from geothermal sources. To analyze the considered cycles’ performance, thermodynamic (energy and exergy based on the first and second laws of thermodynamics) and economic (specific investment cost) models are investigated. Also, a comparison of cycles modeling results is carried out in optimum conditions according to different optimization which consist thermodynamic, economic and thermo-economic objective functions for maximizing exergy efficiency, minimizing specific investment cost and applying a multi-objective function in order to maximize exergy efficiency and minimize specific investment cost, respectively. Optimized operating parameters of cycles include evaporators and regenerative temperatures, pinch point temperature difference of evaporators and degree of superheat. Furthermore, Peng Robinson equation of state is used to obtain thermodynamic properties of isobutane and R123 which are selected as dry and isentropic working fluids, respectively. The results of optimization indicate that, thermal and exergy efficiencies increase and exergy destruction decrease especially in evaporators for both working fluids in new proposed organic Rankine cycle compared to the basic organic Rankine cycle. Moreover, the amount of specific investment cost in new

  10. Change impact analysis on the life cycle carbon emissions of energy systems – The nuclear example

    International Nuclear Information System (INIS)

    Nian, Victor

    2015-01-01

    Highlights: • This paper evaluates the life cycle carbon emission of nuclear power in a scenario based approach. • It quantifies the impacts to the LCA results from the change in design parameters. • The methodology can give indications towards preferred or favorable designs. • The findings contribute to the life cycle inventories of energy systems. - Abstract: The life cycle carbon emission factor (measured by t-CO 2 /GW h) of nuclear power is much lower than those of fossil fueled power generation technologies. However, the fact of nuclear energy being a low carbon power source comes with many assumptions. These assumptions range from system and process definitions, to input–output definitions, to system boundary and cut-off criteria selections, and life cycle inventory dataset. However, there is a somewhat neglected but critical aspect – the design aspect. This refers to the impacts on the life cycle carbon emissions from the change in design parameters related to nuclear power. The design parameters identified in this paper include: (1) the uranium ore grade, (2) the critical process technologies, represented by the average initial enrichment concentration of 235 U in the reactor fuel, and (3) the size of the nuclear power reactor (measured by the generating capacity). If not properly tested, assumptions in the design aspect can lead to an erroneous estimation on the life cycle carbon emission factor of nuclear power. In this paper, a methodology is developed using the Process Chain Analysis (PCA) approach to quantify the impacts of the changes in the selected design parameters on the life cycle carbon emission factor of nuclear power. The concept of doing so broadens the scope of PCAs on energy systems from “one-off” calculation to analysis towards favorable/preferred designs. The findings from the analyses can serve as addition to the life cycle inventory database for nuclear power as well as provide indications for the sustainability of

  11. High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design

    International Nuclear Information System (INIS)

    Manente, Giovanni

    2016-01-01

    Highlights: • Off-design model of a 390 MW_e three pressure combined cycle developed and validated. • The off-design model is used to evaluate different hybridization schemes with solar. • Power boosting and fuel saving with different design modifications are considered. • Maximum solar share of total electricity is only 1% with the existing equipment. • The maximum incremental solar radiation-to-electrical efficiency approaches 29%. - Abstract: The integration of solar energy into natural gas combined cycles has been successfully demonstrated in several integrated solar combined cycles since the beginning of this decade in many countries. There are many motivations that drive investments on integrated solar combined cycles which are primarily the repowering of existing power plants, the compliance with more severe environmental laws on emissions and the mitigation of risks associated with large solar projects. Integrated solar combined cycles are usually developed as brownfield facilities by retrofitting existing natural gas combined cycles and keeping the existing equipment to minimize costs. In this work a detailed off-design model of a 390 MW_e three pressure level natural gas combined cycle is built to evaluate different integration schemes of solar energy which either keep the equipment of the combined cycle unchanged or include new equipment (steam turbine, heat recovery steam generator). Both power boosting and fuel saving operation strategies are analyzed in the search for the highest annual efficiency and solar share. Results show that the maximum incremental power output from solar at design solar irradiance is limited to 19 MW_e without modifications to the existing equipment. Higher values are attainable only including a larger steam turbine. High solar radiation-to-electrical efficiencies in the range 24–29% can be achieved in the integrated solar combined cycle depending on solar share and extension of tube banks in the heat recovery

  12. Status report: conceptual fuel cycle studies for the Hanford Nuclear Energy Center

    International Nuclear Information System (INIS)

    Merrill, E.T.; Fleischman, R.M.

    1975-07-01

    A summary is presented of the current status of studies to determine the logistics of onsite plutonium recycle and the timing involved in introducing the associated reprocessing and fabrication fuel cycle facilities at the Hanford Nuclear Energy Center

  13. Liquid metal mist cooling and MHD Ericsson cycle for fusion energy conversion

    International Nuclear Information System (INIS)

    Greenspan, E.

    1989-01-01

    The combination of liquid metal mist coolant and a liquid metal MHD (LMMHD) energy conversion system (ECS) based on the Ericsson cycle is being proposed for high temperature fusion reactors. It is shown that the two technologies are highly matchable, both thermodynamically and physically. Thermodynamically, the author enables delivering the fusion energy to the cycle with probably the highest practical average temperature commensurate with a given maximum reactor design constraint. Physically, the mist cooling and LMMHD ECSs can be coupled directly, thus eliminating the need for primary heat exchangers and reheaters. The net result is expected to be a high efficiency, simple and reliable heat transport and ECS. It is concluded that the proposed match could increase the economic viability of fusion reactors, so that a thorough study of the two complementary technologies is recommended. 11 refs., 3 figs

  14. Energy and life-cycle cost analysis of a six-story office building

    Science.gov (United States)

    Turiel, I.

    1981-10-01

    An energy analysis computer program, DOE-2, was used to compute annual energy use for a typical office building as originally designed and with several energy conserving design modifications. The largest energy use reductions were obtained with the incorporation of daylighting techniques, the use of double pane windows, night temperature setback, and the reduction of artificial lighting levels. A life-cycle cost model was developed to assess the cost-effectiveness of the design modifications discussed. The model incorporates such features as inclusion of taxes, depreciation, and financing of conservation investments. The energy conserving strategies are ranked according to economic criteria such as net present benefit, discounted payback period, and benefit to cost ratio.

  15. Discussion on life cycle assessment on automobiles. 2. From a viewpoint of saving energy in the stage of their use; Jidosha no life cycle assessment ni kansuru ichikento. 2. Shiyo dankai no sho energy no shiten kara

    Energy Technology Data Exchange (ETDEWEB)

    Takeishi, T.; Kobayashi, N. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-01-30

    Analysis was made by using the life cycle assessment method for the purpose of saving energy in the use stage of automobiles. Life cycle energy was calculated for cases of adopting direct fuel injection and non-stage transmission (CVT) in the currently used gasoline fueled cars. The calculation was performed with respect to each stage of raw material manufacturing, car fabrication, internal energy manufacturing, driving and disposal. Adoption of direct fuel injection and CVT technologies results in reducing the life cycle energy to about 30% in the use stage and little less than 30% on the whole. Stopping the idling operation will reduce the energy in the use stage by about 40%. Adoption of electric vehicles will result in energy reduction of 30% to 35% as compared with gasoline fueled cars. Since fuel consumption improves with increasing average car speed, energy consumption will be improved by about 30% if the current average car speed in the Tokyo Metropolitan area of 19 km/h is improved to the national average level. Improving the driving environments is important. Driving methods with less often quick starting and quick acceleration can save energy. Combinations of policies are desired, such as improvements in the currently used gasoline fueled vehicles, introduction of substitution fuel driven vehicles, and improvements in driving environments. 4 refs., 10 figs., 3 tabs.

  16. Solar total energy: large scale experiment, Shenandoah, Georgia Site. Annual report, June 1978-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Ney, E.J.

    1979-07-01

    A background summary and a complete description of the progress and current status of activities relative to the Cooperative Agreement for the Solar Total Energy - Large Scale Experiment at the Bleyle Knitwear Plant at Shenandoah, Georgia are presented. A statement of objectives and an abstract of progress to date are included. This is followed by a short introduction containing a project overview, a summary of the participants and their respective roles, a brief description of the Solar Total Energy System (STES) design concept, and a chronological summary of progress to date. A general description of the site is given, a detailed report of progress is reported, and drawings and equipment lists are included. The closed-loop solar energy system planned for Shenandoah begins with circulation of Syltherm 800, a heat transfer fluid of the Dow-Corning Corporation, through the receiver tubes of a parabolic dish solar collector field. As solar energy is focused on the receivers, the heat transfer fluid is heated to approximately 399/sup 0/C (750/sup 0/F) and is pumped to a heat exchanger for immediate use, or to a thermal storage system for later use. Once in the heat exchanger, the fluid heats a working fluid that produces the steam required for operating the turbine. After performing this task, the heat transfer fluid returns to the collectors to repeat the cycle, while the steam turbine-generator system supplies the electrical demands for the knitwear plant and the STES. During STES operation, maximum thermal and electrical requirements of the application are expected to be at 1.08 MWth and 161 kWe, respectively. During the power generation phase, some of the steam is extracted for use as process steam in the knitwear manufacturing process, while exhaust steam from the turbine is passed through a condenser to produce hot water for heating, domestic use, and absorption air conditioning. (WHK)

  17. A combined power cycle utilizing low-temperature waste heat and LNG cold energy

    International Nuclear Information System (INIS)

    Shi Xiaojun; Che Defu

    2009-01-01

    This paper has proposed a combined power system, in which low-temperature waste heat can be efficiently recovered and cold energy of liquefied natural gas (LNG) can be fully utilized as well. This system consists of an ammonia-water mixture Rankine cycle and an LNG power generation cycle, and it is modelled by considering mass, energy and species balances for every component and thermodynamic analyses are conducted. The results show that the proposed combined cycle has good performance, with net electrical efficiency and exergy efficiency of 33% and 48%, respectively, for a typical operating condition. The power output is equal to 1.25 MWh per kg of ammonia-water mixture. About 0.2 MW of electrical power for operating sea water pumps can be saved. Parametric analyses are performed for the proposed combined cycle to evaluate the effects of key factors on the performance of the proposed combined cycle through simulation calculations. Results show that a maximum net electrical efficiency can be obtained as the inlet pressure of ammonia turbine increases and the peak value increases as the ammonia mass fraction increases. Exergy efficiency goes up with the increased ammonia turbine inlet pressure. With the ammonia mass fraction increases, the net electrical efficiency increases, whereas exergy efficiency decreases. For increasing LNG turbine inlet pressure or heat source temperature, there is also a peak of net electrical efficiency and exergy efficiency. With the increase of LNG gas turbine outlet pressure, exergy efficiency increases while net electrical efficiency drops

  18. Bioenergy, the Carbon Cycle, and Carbon Policy

    Science.gov (United States)

    Kammen, D. M.

    2003-12-01

    The evolving energy and land-use policies across North America and Africa provide critical case studies in the relationship between regional development, the management of natural resources, and the carbon cycle. Over 50 EJ of the roughly 430 EJ total global anthropogenic energy budget is currently utilized in the form of direct biomass combustion. In North America 3 - 4 percent of total energy is derived from biomass, largely in combined heat and power (CHP) combustion applications. By contrast Africa, which is a major consumer of 'traditional' forms of biomass, uses far more total bioenergy products, but largely in smaller batches, with quantities of 0.5 - 2 tons/capita at the household level. Several African nations rely on biomass for well over 90 percent of household energy, and in some nations major portions of the industrial energy supply is also derived from biomass. In much of sub-Saharan Africa the direct combustion of biomass in rural areas is exceeded by the conversion of wood to charcoal for transport to the cities for household use there. There are major health, and environmental repercussions of these energy flows. The African, as well as Latin American and Asian charcoal trade has a noticeable signature on the global greenhouse gas cycles. In North America, and notably Scandinavia and India as well, biomass energy and emerging conversion technologies are being actively researched, and provide tremendous opportunities for the evolution of a sustainable, locally based, energy economy for many nations. This talk will examine aspects of these current energy and carbon flows, and the potential that gassification and new silvicultural practices hold for clean energy systems in the 21st century. North America and Africa will be examined in particular as both sources of innovation in this field, and areas with specific promise for application of these energy technologies and biomass/land use practices to further energy and global climate management.

  19. Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas

    International Nuclear Information System (INIS)

    Brady, John; O’Mahony, Margaret

    2016-01-01

    Highlights: • Development of a driving cycle to evaluate energy economy of electric vehicles. • Improves on existing driving cycles by using real world data from electric vehicles. • Driving data from different road types and traffic conditions included. - Abstract: Understanding real-world driving conditions in the form of driving cycles is instrumental in the design of efficient powertrains and energy storage systems for electric vehicles. In addition, driving cycles serve as a standardised measurement procedure for the certification of a vehicle’s fuel economy and driving range. They also facilitate the evaluation of the economic and lifecycle costs of emerging vehicular technologies. However, discrepancies between existing driving cycles and real-world driving conditions exist due to a number of factors such as insufficient data, inadequate driving cycle development methodologies and methods to assess the representativeness of developed driving cycles. The novel aspect of the work presented here is the use of real-world data from electric vehicles, over a six month period, to derive a driving cycle appropriate for their assessment. A stochastic and statistical methodology is used to develop and assess the representativeness of the driving cycle against a separate set of real world electric vehicle driving data and the developed cycle performs well in that comparison. Although direct comparisons with internal combustion engine driving cycles are not that informative or relevant due to the marked differences between how they and electric vehicles operate, some discussion around how the developed electric vehicle cycle relates to them is also included.

  20. Supercritical CO2 Brayton Cycle Energy Conversion System Coupled with SFR

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W.

    2008-12-01

    This report contains the description of the S-CO 2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For a system development, a computer code was developed to calculate heat balance of normal operation condition. Based on the computer code, the S-CO 2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Computer codes were developed to analysis for the S-CO 2 turbomachinery. Based on the design codes, the design parameters were prepared to configure the KALIMER-600 S-CO 2 turbomachinery models. A one-dimensional analysis computer code was developed to evaluate the performance of the previous PCHE heat exchangers and a design data for the typical type PCHE was produced. In parallel with the PCHE-type heat exchanger design, an airfoil shape fin PCHE heat exchanger was newly designed. The new design concept was evaluated by three-dimensional CFD analyses. Possible control schemes for power control in the KALIMER-600 S-CO 2 Brayton cycle were investigated by using the MARS code. The MMS-LMR code was also developed to analyze the transient phenomena in a SFR with a supercritical CO 2 Brayton cycle to develop the control logic. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na-CO 2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO 2 gas. The long term behavior of a Na-CO 2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  1. Impact of dietary fiber energy on the calculation of food total energy value in the Brazilian Food Composition Database.

    Science.gov (United States)

    Menezes, Elizabete Wenzel de; Grande, Fernanda; Giuntini, Eliana Bistriche; Lopes, Tássia do Vale Cardoso; Dan, Milana Cara Tanasov; Prado, Samira Bernardino Ramos do; Franco, Bernadette Dora Gombossy de Melo; Charrondière, U Ruth; Lajolo, Franco Maria

    2016-02-15

    Dietary fiber (DF) contributes to the energy value of foods and including it in the calculation of total food energy has been recommended for food composition databases. The present study aimed to investigate the impact of including energy provided by the DF fermentation in the calculation of food energy. Total energy values of 1753 foods from the Brazilian Food Composition Database were calculated with or without the inclusion of DF energy. The energy values were compared, through the use of percentage difference (D%), in individual foods and in daily menus. Appreciable energy D% (⩾10) was observed in 321 foods, mainly in the group of vegetables, legumes and fruits. However, in the Brazilian typical menus containing foods from all groups, only D%foods, when individually considered. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    Science.gov (United States)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  3. Feasibility of Ericsson type isothermal expansion/compression gas turbine cycle for nuclear energy use

    International Nuclear Information System (INIS)

    Shimizu, Akihiko

    2007-01-01

    A gas turbine with potential demand for the next generation nuclear energy use such as HTGR power plants, a gas cooled FBR, a gas cooled nuclear fusion reactor uses helium as working gas and with a closed cycle. Materials constituting a cycle must be set lower than allowable temperature in terms of mechanical strength and radioactivity containment performance and so expansion inlet temperature is remarkably limited. For thermal efficiency improvement, isothermal expansion/isothermal compression Ericsson type gas turbine cycle should be developed using wet surface of an expansion/compressor casing and a duct between stators without depending on an outside heat exchanger performing multistage re-heat/multistage intermediate cooling. Feasibility of an Ericsson cycle in comparison with a Brayton cycle and multi-stage compression/expansion cycle was studied and technologies to be developed were clarified. (author)

  4. Thermal energy storage for low grade heat in the organic Rankine cycle

    Science.gov (United States)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The

  5. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    C. Saricks; D. Santini; M. Wang

    1999-01-01

    We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O)

  6. Near Zero Energy House (NZEH) Design Optimization to Improve Life Cycle Cost Performance Using Genetic Algorithm

    Science.gov (United States)

    Latief, Y.; Berawi, M. A.; Koesalamwardi, A. B.; Supriadi, L. S. R.

    2018-03-01

    Near Zero Energy House (NZEH) is a housing building that provides energy efficiency by using renewable energy technologies and passive house design. Currently, the costs for NZEH are quite expensive due to the high costs of the equipment and materials for solar panel, insulation, fenestration and other renewable energy technology. Therefore, a study to obtain the optimum design of a NZEH is necessary. The aim of the optimum design is achieving an economical life cycle cost performance of the NZEH. One of the optimization methods that could be utilized is Genetic Algorithm. It provides the method to obtain the optimum design based on the combinations of NZEH variable designs. This paper discusses the study to identify the optimum design of a NZEH that provides an optimum life cycle cost performance using Genetic Algorithm. In this study, an experiment through extensive design simulations of a one-level house model was conducted. As a result, the study provide the optimum design from combinations of NZEH variable designs, which are building orientation, window to wall ratio, and glazing types that would maximize the energy generated by photovoltaic panel. Hence, the design would support an optimum life cycle cost performance of the house.

  7. The NASA Energy and Water Cycle Extreme (NEWSE) Integration Project

    Science.gov (United States)

    House, P. R.; Lapenta, W.; Schiffer, R.

    2008-01-01

    Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are to provide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.).

  8. Energy efficiency improvement: A strong driver for Total operations and R and D

    Energy Technology Data Exchange (ETDEWEB)

    Garnaud, Frederic; Rocher, Anne

    2010-09-15

    Total has implemented an energy efficiency action plan for both producing fields and new projects linked to a dedicated R and D program. The Energy efficiency assessment methodology is described, with an example: base line of the current situation, energy efficiency plan, contribution to best practices at corporate level. A methodology to assess the energy efficiency of a new development has been defined and implemented within Total. This methodology as well as related indicators is presented. Examples of R and D results dedicated to improve energy efficiency in two major areas of future developments are given: sour gas production and deep offshore field architecture.

  9. Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, Janet M. [Wichita State Univ., KS (United States)

    2010-03-01

    The benefits of wind energy had previously been captured in the literature at an overview level with relatively low transparency or ability to understand the basis for that information. This has limited improvement and decision-making to larger questions such as wind versus other electrical sources (such as coal-fired plants). This research project has established a substantially different approach which is to add modular, high granularity life cycle inventory (lci) information that can be used by a wide range of decision-makers, seeking environmental improvement. Results from this project have expanded the understanding and evaluation of the underlying factors that can improve both manufacturing processes and specifically wind generators. The use of life cycle inventory techniques has provided a uniform framework to understand and compare the full range of environmental improvement in manufacturing, hence the concept of green manufacturing. In this project, the focus is on 1. the manufacturing steps that transform materials and chemicals into functioning products 2. the supply chain and end-of-life influences of materials and chemicals used in industry Results have been applied to wind generators, but also impact the larger U.S. product manufacturing base. For chemicals and materials, this project has provided a standard format for each lci that contains an overview and description, a process flow diagram, detailed mass balances, detailed energy of unit processes, and an executive summary. This is suitable for integration into other life cycle databases (such as that at NREL), so that broad use can be achieved. The use of representative processes allows unrestricted use of project results. With the framework refined in this project, information gathering was initiated for chemicals and materials in wind generation. Since manufacturing is one of the most significant parts of the environmental domain for wind generation improvement, this project research has

  10. Effect of the menstrual cycle in ethanol pharmacokinetics.

    Science.gov (United States)

    Haddad, L; Milke, P; Zapata, L; de la Fuente, J R; Vargas-Vorácková, F; Lorenzana-Jiménez, M; Corte, G; Tamayo, J; Kaplan, M; Márquez, M; Kershenobich, D

    1998-01-01

    Differences in ethanol pharmacokinetics within the menstrual cycle have previously been reported and attributed to variations in body composition, hormonal influences and gastric emptying. To establish the role of the menstrual cycle in ethanol pharmacokinetics associated with changes in body composition, ethanol blood concentrations were measured in nine healthy women during the midfollicular (P1, days 8-10) and midluteal (P2, days 22-24) phases of the menstrual cycle after a postprandial oral ethanol dose (0.3 g kg(-1)). Total body water was assessed by dual-energy x-ray densitometry (DEXA) on both occasions. Median total body water did not vary during either phase of the menstrual cycle (P1 = 54.54%, P2 = 54.66%; P = 0.9296). Median area under the ethanol concentration-time curve (AUC) was lower during P1 (215.33 mg.h dl(-1)) than during P2 (231.33 mg.h dl(-1))(P = 0.8253). No significant differences were found on ethanol pharmacokinetics in either phase of the menstrual cycle.

  11. Proposal of a combined heat and power plant hybridized with regeneration organic Rankine cycle: Energy-Exergy evaluation

    International Nuclear Information System (INIS)

    Anvari, Simin; Jafarmadar, Samad; Khalilarya, Shahram

    2016-01-01

    Highlights: • A new thermodynamic cogeneration system is proposed. • Energy and exergy analysis of the considered cycle were performed. • An enhancement of 2.6% in exergy efficiency compared to that of baseline cycle. - Abstract: Among Rankine cycles (simple, reheat and regeneration), regeneration organic Rankine cycle demonstrates higher efficiencies compared to other cases. Consequently, in the present work a regeneration organic Rankine cycle has been utilized to recuperate gas turbine’s heat using heat recovery steam generator. At first, this cogeneration system was subjected to energy and exergy analysis and the obtained results were compared with that of investigated cogeneration found in literature (a cogeneration system in which a reheat organic Rankine cycle for heat recuperation of gas turbine cycle was used with the aid of heat recovery steam generator). Results indicated that the first and second thermodynamic efficiencies in present cycle utilizing regeneration cycle instead of reheat cycle has increased 2.62% and 2.6%, respectively. In addition, the effect of thermodynamic parameters such as combustion chamber’s inlet temperature, gas turbine inlet temperature, evaporator and condenser temperature on the energetic and exergetic efficiencies of gas turbine-heat recovery steam generator cycle and gas turbine-heat recovery steam generator cycle with regeneration organic Rankine cycle was surveyed. Besides, parametric analysis shows that as gas turbine and combustion chamber inlet temperatures increase, energetic and exergetic efficiencies tend to increase. Moreover, once condenser and evaporator temperature raise, a slight decrement in energetic and exergetic efficiency is expected.

  12. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  13. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  14. Toward a sustainable energy supply with reduced environmental burden. Development of metal fuel fast reactor cycle

    International Nuclear Information System (INIS)

    Koyama, Tadafumi; Kobayashi, Hiroaki; Kinoshita, Kensuke

    2009-01-01

    CRIEPI has been studying the metal fuel fast reactor cycle as an outstanding alternative for the future energy sources. In this paper, development of the metal fuel cycle is reviewed in the view point of technological feasibility and material balance. Preliminary estimation of reduction of the waste burden due to introduction of the metal fuel cycle technology is also reported. (author)

  15. Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building

    International Nuclear Information System (INIS)

    Dodoo, Ambrose; Gustavsson, Leif; Sathre, Roger

    2012-01-01

    Highlights: ► The effect of thermal mass on life cycle primary energy balance of concrete and wood building is analyzed. ► A concrete building has slightly lower space heating demand than a wood alternative. ► Still, a wood building has a lower life cycle primary energy use than a concrete alternative. ► The influence of thermal mass on space heating energy use for buildings in Nordic climate is small. -- Abstract: In this study we analyze the effect of thermal mass on space heating energy use and life cycle primary energy balances of a concrete- and a wood-frame building. The analysis includes primary energy use during the production, operation, and end-of-life phases. Based on hour-by-hour dynamic modeling of heat flows in building mass configurations we calculate the energy saving benefits of thermal mass during the operation phase of the buildings. Our results indicate that the energy savings due to thermal mass is small and varies with the climatic location and energy efficiency levels of the buildings. A concrete-frame building has slightly lower space heating demand than a wood-frame alternative, due to the higher thermal mass of concrete-based materials. Still, a wood-frame building has a lower life cycle primary energy balance than a concrete-frame alternative. This is due primarily to the lower production primary energy use and greater bioenergy recovery benefits of the wood-frame buildings. These advantages outweigh the energy saving benefits of thermal mass. We conclude that the influence of thermal mass on space heating energy use for buildings located in Nordic climate is small and that wood-frame buildings with cogeneration based district heating would be an effective means of reducing primary energy use in the built environment.

  16. Towards real energy economics: Energy policy driven by life-cycle carbon emission

    International Nuclear Information System (INIS)

    Kenny, R.; Law, C.; Pearce, J.M.

    2010-01-01

    Alternative energy technologies (AETs) have emerged as a solution to the challenge of simultaneously meeting rising electricity demand while reducing carbon emissions. However, as all AETs are responsible for some greenhouse gas (GHG) emissions during their construction, carbon emission 'Ponzi Schemes' are currently possible, wherein an AET industry expands so quickly that the GHG emissions prevented by a given technology are negated to fabricate the next wave of AET deployment. In an era where there are physical constraints to the GHG emissions the climate can sustain in the short term this may be unacceptable. To provide quantitative solutions to this problem, this paper introduces the concept of dynamic carbon life-cycle analyses, which generate carbon-neutral growth rates. These conceptual tools become increasingly important as the world transitions to a low-carbon economy by reducing fossil fuel combustion. In choosing this method of evaluation it was possible to focus uniquely on reducing carbon emissions to the recommended levels by outlining the most carbon-effective approach to climate change mitigation. The results of using dynamic life-cycle analysis provide policy makers with standardized information that will drive the optimization of electricity generation for effective climate change mitigation.

  17. Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation

    NARCIS (Netherlands)

    Weelden, van S.W.H.; Fast, B.; Vogt, A.; Meer, van der P.; Saas, J.; Hellemond, van J.J.; Tielens, A.G.M.; Boshart, M.

    2003-01-01

    The importance of a functional Krebs cycle for energy generation in the procyclic stage of Trypanosoma brucei was investigated under physiological conditions during logarithmic phase growth of a pleomorphic parasite strain. Wild type procyclic cells and mutants with targeted deletion of the gene

  18. Effective energy management by combining gas turbine cycles and forward osmosis desalination process

    International Nuclear Information System (INIS)

    Park, Min Young; Shin, Serin; Kim, Eung Soo

    2015-01-01

    Highlights: • Innovative gas turbine system and FO integrated system was proposed. • The feasibility of the integrated system was analyzed thermodynamically. • GOR of the FO–gas turbine system is 17% higher than those of MED and MSF. • Waste heat utilization of the suggested system is 85.7%. • Water production capacity of the suggested system is 3.5 times higher than the MSF–gas turbine system. - Abstract: In the recent years, attempts to improve the thermal efficiency of the gas turbine cycles have been made. In order to enhance the energy management of the gas turbine cycle, a new integration concept has been proposed; integration of gas turbine cycle and forward osmosis desalination process. The combination of the gas turbine cycle and the forward osmosis (FO) desalination process basically implies the coupling of the waste heat from the gas turbine cycle to the draw solute recovery system in the FO process which is the most energy consuming part of the whole FO process. By doing this, a strong system that is capable of producing water and electricity with very little waste heat can be achieved. The feasibility of this newly proposed system was analyzed using UNISIM program and the OLI property package. For the analysis, the thermolytic draw solutes which has been suggested by other research groups have been selected and studied. Sensitivity analysis was conducted on the integration system in order to understand and identify the key parameters of the integrated system. And the integrated system was further evaluated by comparing the gain output ratio (GOR) values with the conventional desalination technologies such as multi stage flash (MSF) and multi effect distillation (MED). The suggested integrated system was calculated to have a GOR of 14.8, while the MSF and MED when integrated to the gas turbine cycle showed GOR value of 12. It should also be noted that the energy utilization of the suggested integrated system is significantly higher by 27

  19. Operating cycle optimization for a Magnus effect-based airborne wind energy system

    International Nuclear Information System (INIS)

    Milutinović, Milan; Čorić, Mirko; Deur, Joško

    2015-01-01

    Highlights: • Operating cycle of a Magnus effect-based AWE system has been optimized. • The cycle trajectory should be vertical and far from the ground based generator. • Vertical trajectory provides high pulling force that drives the generator. • Large distance from the generator is required for the feasibility of the cycle. - Abstract: The paper presents a control variables optimization study for an airborne wind energy production system. The system comprises an airborne module in the form of a buoyant, rotating cylinder, whose rotation in a wind stream induces the Magnus effect-based aerodynamic lift. Through a tether, the airborne module first drives the generator fixed on the ground, and then the generator becomes a motor that lowers the airborne module. The optimization is aimed at maximizing the average power produced at the generator during a continuously repeatable operating cycle. The control variables are the generator-side rope force and the cylinder rotation speed. The optimization is based on a multi-phase problem formulation, where operation is divided into ascending and descending phases, with free boundary conditions and free cycle duration. The presented simulation results show that significant power increase can be achieved by using the obtained optimal operating cycle instead of the initial, empirically based operation control strategy. A brief analysis is also given to provide a physical interpretation of the optimal cycle results

  20. Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems.

    Science.gov (United States)

    Zhai, Pei; Williams, Eric D

    2010-10-15

    This paper advances the life cycle assessment (LCA) of photovoltaic systems by expanding the boundary of the included processes using hybrid LCA and accounting for the technology-driven dynamics of embodied energy and carbon emissions. Hybrid LCA is an extended method that combines bottom-up process-sum and top-down economic input-output (EIO) methods. In 2007, the embodied energy was 4354 MJ/m(2) and the energy payback time (EPBT) was 2.2 years for a multicrystalline silicon PV system under 1700 kWh/m(2)/yr of solar radiation. These results are higher than those of process-sum LCA by approximately 60%, indicating that processes excluded in process-sum LCA, such as transportation, are significant. Even though PV is a low-carbon technology, the difference between hybrid and process-sum results for 10% penetration of PV in the U.S. electrical grid is 0.13% of total current grid emissions. Extending LCA from the process-sum to hybrid analysis makes a significant difference. Dynamics are characterized through a retrospective analysis and future outlook for PV manufacturing from 2001 to 2011. During this decade, the embodied carbon fell substantially, from 60 g CO(2)/kWh in 2001 to 21 g/kWh in 2011, indicating that technological progress is realizing reductions in embodied environmental impacts as well as lower module price.

  1. 6,7Li + 28Si total reaction cross sections at near barrier energies

    International Nuclear Information System (INIS)

    Pakou, A.; Musumarra, A.; Pierroutsakou, D.; Alamanos, N.; Assimakopoulos, P.A.; Divis, N.; Doukelis, G.; Gillibert, A.; Harissopulos, S.; Kalyva, G.; Kokkoris, M.; Lagoyannis, A.; Mertzimekis, T.J.; Nicolis, N.G.; Papachristodoulou, C.; Perdikakis, G.; Roubos, D.; Rusek, K.; Spyrou, S.; Zarkadas, Ch.

    2007-01-01

    Total reaction cross section measurements for the 6,7 Li + 28 Si systems have been performed at near-barrier energies. The results indicate that, with respect to the potential anomaly at barrier, 6 Li and 7 Li on light targets exhibit similar energy dependence on the imaginary potential. Comparisons are made with 6,7 Li cross sections on light and heavy targets, extracted via previous elastic scattering measurements and also with CDCC calculations. Energy dependent parametrisations are also obtained for total reaction cross sections of 6,7 Li on Si, as well as on any target, at near barrier energies

  2. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon

    2015-01-01

    The energy, water and environment nexus is a crucial factor when considering the future development of desalination plants or industry in the water-stressed economies. New generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increase around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available thermally-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent of MED with AD cycles, or simply called the MEDAD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-steam at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60 and 80. °C. In this paper, the authors have reported their pioneered research on aspects of AD and related hybrid MEDAD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concept, the authors examined the cost apportionment of fuel cost by the quality or exergy of working steam for such cogeneration configurations.

  3. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon; Thu, Kyaw; Oh, Seungjin; Ang, Li; Shahzad, Muhammad Wakil; Ismail, Azhar Bin

    2015-01-01

    -driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent

  4. Energy consumption and total factor productivity growth in Iranian agriculture

    Directory of Open Access Journals (Sweden)

    Reza Moghaddasi

    2016-11-01

    Full Text Available In this study we investigated the relation between energy consumption and growth of total factor productivity (TFP of agriculture in Iran from 1974 to 2012 using Solow residual method. The results from estimated aggregate Cobb–Douglas production function showed that one percent change in the value of labor, capital and energy will lead to 4.07, 0.09 and 0.49 percent change in agriculture value added, respectively. Also in a long term, based on the Johansen cointegration test, there is a negative relation between TFP growth and energy consumption in Iranian agriculture which might be due to cheap and inefficient energy use in this sector. Gradual liberalization of energy price and use of so called green box support policies is recommended.

  5. 77 FR 18272 - Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC...

    Science.gov (United States)

    2012-03-27

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC, National Enrichment Facility, Eunice... Louisiana Energy Services (LES), LLC, National enrichment Facility in Eunice, New Mexico, and has verified...

  6. Coupling of copper-chloride hybrid thermochemical water splitting cycle with a desalination plant for hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Orhan, Mehmet F.; Dincer, Ibrahim; Naterer, Greg F.; Rosen, Marc A.

    2010-01-01

    Energy and environmental concerns have motivated research on clean energy resources. Nuclear energy has the potential to provide a significant share of energy supply without contributing to environmental emissions and climate change. Nuclear energy has been used mainly for electric power generation, but hydrogen production via thermochemical water decomposition provides another pathway for the utilization of nuclear thermal energy. One option for nuclear-based hydrogen production via thermochemical water decomposition uses a copper-chloride (Cu-Cl) cycle. Another societal concern relates to supplies of fresh water. Thus, to avoid causing one problem while solving another, hydrogen could be produced from seawater rather than limited fresh water sources. In this study we analyze a coupling of the Cu-Cl cycle with a desalination plant for hydrogen production from nuclear energy and seawater. Desalination technologies are reviewed comprehensively to determine the most appropriate option for the Cu-Cl cycle and a thermodynamic analysis and several parametric studies of this coupled system are presented for various configurations. (author)

  7. Achievement report for fiscal 1981 on Sunshine Program-entrusted research and development. Research on hydrogen energy total system; 1981 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    In this research, studies are conducted relative to the time point, form, and magnitude of the introduction of hydrogen into Japan's total energy system. The research aims to construct a hydrogen energy total system consisting of hydrogen energy subsystems to be available in the future and to clearly define the stage at which transfer to the target system will be carried out. In the research for fiscal 1981, studies continue about the feasibility of hydrogen as automobile and aviation fuels and as a material for use in chemical engineering, about conversion into each other of hydrogen and various synthetic fuels and electric power with which hydrogen will have to compete in the domain into which it will be supplied, and about technologies of their utilization for comparison between such energies in the search for their interchangeability. Surveys are conducted on technical data about local energies. The Yakushima island is chosen, for instance, and a conceptual hydrogen energy base is constructed there and the cost for the construction is estimated. At the last part, the feasibility of the introduction of hydrogen into Japan's energy system in the future is discussed for assessment. (NEDO)

  8. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 1: Bottoming cycles and materials of construction

    Science.gov (United States)

    Shah, R. P.; Solomon, H. D.

    1976-01-01

    Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed.

  9. Relativistic total energy and chemical potential of heavy atoms and positive ions

    International Nuclear Information System (INIS)

    Hill, S.H.; Grout, P.J.; March, N.H.

    1984-01-01

    The relativistic Thomas-Fermi theory, with a finite nucleus, is used to study the variation of the chemical potential μ with atomic number Z and number of electrons N (N <= Z). The difference between the total energy of positive ions and that of the corresponding neutral atom has been obtained. The scaling predictions are confirmed by numerical calculations. The first principles calculation of the relativistic Thomas-Fermi total energy of neutral atoms is also studied. (author)

  10. Modeling and Analysis of Energy Conservation Scheme Based on Duty Cycling in Wireless Ad Hoc Sensor Network

    Science.gov (United States)

    Chung, Yun Won; Hwang, Ho Young

    2010-01-01

    In sensor network, energy conservation is one of the most critical issues since sensor nodes should perform a sensing task for a long time (e.g., lasting a few years) but the battery of them cannot be replaced in most practical situations. For this purpose, numerous energy conservation schemes have been proposed and duty cycling scheme is considered the most suitable power conservation technique, where sensor nodes alternate between states having different levels of power consumption. In order to analyze the energy consumption of energy conservation scheme based on duty cycling, it is essential to obtain the probability of each state. In this paper, we analytically derive steady state probability of sensor node states, i.e., sleep, listen, and active states, based on traffic characteristics and timer values, i.e., sleep timer, listen timer, and active timer. The effect of traffic characteristics and timer values on the steady state probability and energy consumption is analyzed in detail. Our work can provide sensor network operators guideline for selecting appropriate timer values for efficient energy conservation. The analytical methodology developed in this paper can be extended to other energy conservation schemes based on duty cycling with different sensor node states, without much difficulty. PMID:22219676

  11. Modeling and Analysis of Energy Conservation Scheme Based on Duty Cycling in Wireless Ad Hoc Sensor Network

    Directory of Open Access Journals (Sweden)

    Yun Won Chung

    2010-06-01

    Full Text Available In sensor network, energy conservation is one of the most critical issues since sensor nodes should perform a sensing task for a long time (e.g., lasting a few years but the battery of them cannot be replaced in most practical situations. For this purpose, numerous energy conservation schemes have been proposed and duty cycling scheme is considered the most suitable power conservation technique, where sensor nodes alternate between states having different levels of power consumption. In order to analyze the energy consumption of energy conservation scheme based on duty cycling, it is essential to obtain the probability of each state. In this paper, we analytically derive steady state probability of sensor node states, i.e., sleep, listen, and active states, based on traffic characteristics and timer values, i.e., sleep timer, listen timer, and active timer. The effect of traffic characteristics and timer values on the steady state probability and energy consumption is analyzed in detail. Our work can provide sensor network operators guideline for selecting appropriate timer values for efficient energy conservation. The analytical methodology developed in this paper can be extended to other energy conservation schemes based on duty cycling with different sensor node states, without much difficulty.

  12. A novel Carnot-based cycle for ocean thermal energy conversion

    International Nuclear Information System (INIS)

    Semmari, Hamza; Stitou, Driss; Mauran, Sylvain

    2012-01-01

    A thermodynamic engine cycle can be implemented by exploiting the temperature difference existing between the warm surface seawater and cold deep seawater. It employs a working fluid that evaporates by warm seawater, produces work in an expander device, such as a gas turbine and finally condenses by cold deep seawater. A new Carnot-based cycle for OTEC applications, called CAPILI cycle is presented. In this new engine cycle, work is produced by the movement of an inert liquid through a hydraulic turbine. This inert liquid characterized by a very low saturation pressure and immiscibility with the working fluid, acts as a liquid piston that moves alternately between two insulated cylinders. The insulated cylinders are connected alternately to an evaporator and a condenser, each of them operates at different pressure and temperature levels. A performance study which consists in a steady state energy balance is realised first to select the most suitable working fluid for this specific application. It was found that the best fluid is the HFC refrigerant R134a. A dynamic modelling based on the concept of equivalent Gibbs system is carried out to appreciate the dynamic behaviour and the performances of this new thermal conversion process. -- Highlights: ► A novel Carnot-based cycle operating with a liquid piston is investigated for OTEC application. ► The most suitable working fluid giving the best performances is found to be the HFC R134a. ► The performances of this new thermal process are evaluated using a dynamic modelling. ► A thermal efficiency of 1.9% can be obtained by exploiting seawater temperature difference of 20 °C. ► A net cycle efficiency of 1.2% is achieved considering a net to gross power production ratio of 61%.

  13. Thermodynamic performance analysis and optimization of DMC (Dual Miller Cycle) cogeneration system by considering exergetic performance coefficient and total exergy output criteria

    International Nuclear Information System (INIS)

    Ust, Yasin; Arslan, Feyyaz; Ozsari, Ibrahim; Cakir, Mehmet

    2015-01-01

    Miller cycle engines are one of the popular engine concepts that are available for improving performance, reducing fuel consumption and NO x emissions. There are many research studies that investigated the modification of existing conventional engines for operation on a Miller cycle. In this context, a comparative performance analysis and optimization based on exergetic performance criterion, total exergy output and exergy efficiency has been carried out for an irreversible Dual–Miller Cycle cogeneration system having finite-rate of heat transfer, heat leak and internal irreversibilities. The EPC (Exergetic Performance Coefficient) criterion defined as the ratio of total exergy output to the loss rate of availability. Performance analysis has been also extended to the Otto–Miller and Diesel-Miller cogeneration cycles which may be considered as two special cases of the Dual–Miller cycle. The effect of the design parameters such as compression ratio, pressure ratio, cut-off ratio, Miller cycle ratio, heat consumer temperature ratio, allocation ratio and the ratio of power to heat consumed have also been investigated. The results obtained from this paper will provide guidance for the design of Dual–Miller Cycle cogeneration system and can be used for selection of optimal design parameters. - Highlights: • A thermodynamic performance estimation tool for DM cogeneration cycle is presented. • Using the model two special cases OM and dM cogeneration cycles can be analyzed. • The effects of r M , ψ, χ 2 and R have been investigated. • The results evaluate exergy output and environmental aspects together.

  14. Novel combined cycle configurations for propane pre-cooled mixed refrigerant (APCI) natural gas liquefaction cycle

    International Nuclear Information System (INIS)

    Mortazavi, Amir; Alabdulkarem, Abdullah; Hwang, Yunho; Radermacher, Reinhard

    2014-01-01

    Highlights: • 10 New LNG plants driver cycle enhancement configurations were developed. • All the 14 enhancement options design variables were optimized to demonstrate their energy saving potentials. • The best driver cycle enhancement option improved the driver cycle energy efficiency by 38%. • The effects of technological advancements on the performances of the enhancement options were studied. - Abstract: A significant amount of energy is required for natural gas liquefaction. Due to the production scale of LNG plants, they consume an intensive amount of energy. Consequently, any enhancement to the energy efficiency of LNG plants will result in a considerable reduction in natural gas consumption and CO 2 emission. Compressor drivers are the main energy consumer in the LNG plants. In this paper, 14 different driver cycle enhancement options were considered. A number of these options have not been proposed for the LNG plants. The new driver cycle development was performed by analyzing and optimizing the design variables of four conventional driver cycle enhancement options. The optimization results were used to develop more efficient cycles through mitigating the active constrains and driver cycle innovations. Based on the current available technologies five of our newly developed driver cycle configurations have higher efficiency than the most efficient existing conventional driver cycle. The best developed driver cycle enhancement option improved the base driver cycle energy efficiency by 38%. The effects of technological advancement on the performances of the all driver cycle enhancement options were also considered

  15. Energy Performance and Economic Evaluation of Heat Pump/Organic Rankine Cycle System with Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, C.; Dumont, O.; Nielsen, M. P.

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical...... power.This paper combines a dynamic model based on empirical data of the HP/ORC system with lessons learned from 140 heat pump installations operating in real-life conditions in a cold climate. These installations were monitored for a period up to 5 years.Based on the aforementioned model and real......-life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water...

  16. Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria

    International Nuclear Information System (INIS)

    Adom, Philip Kofi

    2015-01-01

    Despite the prevalence of voluntary and involuntary energy conservation policies, developing countries in Africa continue to struggle to achieve energy efficiency targets. Consequently, energy intensity levels have risen threatening the security of the energy system. This raises the important question: is there an economic state that induces agents to be energy conscious? In this study, we study the case of Algeria's energy intensity from 1971 to 2010. First, the paper argues that there is a certain economic state that economic agents find investing in energy conservation a viable option. Any state different from that would mean not investing in energy conservation. Second, the paper argues that the economy can do better even with an infinitesimal reduction in fuel subsidy, and that the gains in revenue from the policy can compensate for the negative socio-economic and equity impacts associated with such a policy. Third, the paper argues that, so long as, industrial expansion in the country move parallel with investment in technological innovation, long-term sustainable growth and energy conservation targets are jointly feasible. Fourth, the paper shows that income elasticity evolves with the business cycle, and the absorptive capability of the host country affects how FDI (foreign direct inflows) impact energy intensity. - Highlights: • Low income states inhibit fuel substitution and investment in energy conservation. • Income elasticity evolves as we pass through boom and recessionary periods. • The goals of sustainable growth and energy conservation are not mutually exclusive. • Absorptive capability affects the impact of FDI on energy intensity

  17. Total Site Integration and paper machine technologies; Total site integration ja paperikoneteknologia - PMST 02

    Energy Technology Data Exchange (ETDEWEB)

    Puumalainen, T.; Kaijaluoto, S.; Tervonen, P.; Edelmann, K. [VTT Energy, Jyvaeskylae (Finland)

    1998-12-31

    During the last 30 years the production capacity of a paper machine has tripled. The fastest machines of today run over about 1600 m/min, the web width being around 10 m. The desire to further increase the production capacity is leading to more expensive paper machines and to larger buildings, if current pressing and drying techniques are used. New pressing and drying techniques will decrease the need of thermal energy. Closed water cycles reduce the need of secondary heat abundantly available from the dryer section based on cylinder drying. Total Site Integration studies are required when the effect of new process concepts are to be evaluated against energy efficiency and environmental impacts. A proto type tool has been developed and the effect of new paper machine concepts on energy consumption have been analysed. The utilisation possibilities of the surplus energy will be studied later in the course of this project. (orig.)

  18. Total Site Integration and paper machine technologies; Total site integration ja paperikoneteknologia - PMST 02

    Energy Technology Data Exchange (ETDEWEB)

    Puumalainen, T; Kaijaluoto, S; Tervonen, P; Edelmann, K [VTT Energy, Jyvaeskylae (Finland)

    1999-12-31

    During the last 30 years the production capacity of a paper machine has tripled. The fastest machines of today run over about 1600 m/min, the web width being around 10 m. The desire to further increase the production capacity is leading to more expensive paper machines and to larger buildings, if current pressing and drying techniques are used. New pressing and drying techniques will decrease the need of thermal energy. Closed water cycles reduce the need of secondary heat abundantly available from the dryer section based on cylinder drying. Total Site Integration studies are required when the effect of new process concepts are to be evaluated against energy efficiency and environmental impacts. A proto type tool has been developed and the effect of new paper machine concepts on energy consumption have been analysed. The utilisation possibilities of the surplus energy will be studied later in the course of this project. (orig.)

  19. Elastic scattering and total cross section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.; Sanguinetti, G.

    1985-01-01

    The aim of this review is to summarize the recent progress in the field of elastic scattering and total cross section in this new energy domain. In Section 2 a survey of the experimental situation is outlined. The most significant data are presented, with emphasis on the interpretation, not the specific details or technicalities. This section is therefore intended to give a self-contained look at the field, especially for the nonspecialist. In Section 3, hadron scattering at high energy is described in an impact parameter picture, which provides a model-independent intuitive geometrical representation. The diffractive character of elastic scattering, seen as the shadow of inelastic absorption, is presented as a consequence of unitarity in the s-channel. Spins are neglected throughout this review, inasmuch as the asymptotic behavior in the very high-energy limit is the main concern here. In Section 4 some relevant theorems are recalled on the limiting behavior of hadron-scattering amplitudes at infinite energy. There is also a brief discussion on how asymptotically rising total cross sections imply scaling properties in the elastic differential cross sections. A quick survey of eikonal models is presented and their predictions are compared with ISR and SPS Collider data

  20. Managing total corporate electricity/energy market risks

    International Nuclear Information System (INIS)

    Henney, A.; Keers, G.

    1998-01-01

    The banking industry has developed a tool kit of very useful value at risk techniques for hedging risk, but these techniques must be adapted to the special complexities of the electricity market. This paper starts with a short history of the use of value-at-risk (VAR) techniques in banking risk management and then examines the specific and, in many instances, complex risk management challenges faced by electric companies from the behavior of prices in electricity markets and from the character of generation and electric retailing risks. The third section describes the main methods for making VAR calculations along with an analysis of their suitability for analyzing the risks of electricity portfolios and the case for using profit at risk and downside risk as measures of risk. The final section draws the threads together and explains how to look at managing total corporate electricity market risk, which is a big step toward managing total corporate energy market risk

  1. Study of DD versus DT fusion fuel cycles for different fusion-fission hybrid energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.; Baker, C.C.

    1981-01-01

    A study was performed to investigate the characteristics of an energy system to produce fissile fuel for fission reactors. DD and DT fusion reactors were examined in this study with either a thorium or uranium blanket for each fusion reactor. Various fuel cycles were examined for light-water reactors including the denatured fuel cycles (which may offer proliferation resistance compared to other fuel cycles); these fuel cycles include a uranium fuel cycle with 239 Pu makeup, a thorium fuel cycle with 239 Pu makeup, a denatured uranium fuel cycle with 233 U makeup, and a denatured thorium fuel cycle with 233 U makeup. Four different blankets were considered for this study. The first two blankets have a tritium breeding capability for DT reactors. Lithium oxide (Li 2 O) was used for tritium breeding due to its high lithium density and high temperature capability; however, the use of Li 2 O may result in higher tritium inventories compared to other solid breeders

  2. Measurements of effective total macroscopic cross sections and effective energy of continuum beam

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hisao [Rikkyo Univ., Yokosuka, Kanagawa (Japan). Inst. for Atomic Energy

    1998-03-01

    Two practically useful quantities are introduced in this study to characterize a continuum neutron beam and to describe transmission phenomena of the beam in field of quantitative neutron radiography: an effective energy instead of a peak energy or a mean energy of the spectrum and an effective total macroscopic (ETM) cross section instead of a total macroscopic (TM) cross section defined at the monochromatic energy. The effective energy was evaluated by means of energy dependence of ETM cross section. To realize the method a beam quality indicator (BQI) has been proposed recently. Several effective energies were measured for non-filtered, filtered neutron beams, and outputs of neutron guide tubes in world by the BQI. A thermal neutron beam and three beams modulated by Pb filters with different thicknesses are studied to measure ETM cross sections for various materials and summarized in a table. Validity of the effective energy determined by the BQI is discussed relating with ETM cross sections of materials. (author)

  3. A Life-Cycle Assessment of Biofuels: Tracing Energy and Carbon through a Fuel-Production System

    Science.gov (United States)

    Krauskopf, Sara

    2010-01-01

    A life-cycle assessment (LCA) is a tool used by engineers to make measurements of net energy, greenhouse gas production, water consumption, and other items of concern. This article describes an activity designed to walk students through the qualitative part of an LCA. It asks them to consider the life-cycle costs of ethanol production, in terms of…

  4. Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico

    International Nuclear Information System (INIS)

    Garcia, Carlos A.; Fuentes, Alfredo; Hennecke, Anna; Riegelhaupt, Enrique; Manzini, Fabio; Masera, Omar

    2011-01-01

    The purpose of this work was to estimate GHG emissions and energy balances for the future expansion of sugarcane ethanol fuel production in Mexico with one current and four possible future modalities. We used the life cycle methodology that is recommended by the European Renewable Energy Directive (RED), which distinguished the following five system phases: direct Land Use Change (LUC); crop production; biomass transport to industry; industrial processing; and ethanol transport to admixture plants. Key variables affecting total GHG emissions and fossil energy used in ethanol production were LUC emissions, crop fertilization rates, the proportion of sugarcane areas that are burned to facilitate harvest, fossil fuels used in the industrial phase, and the method for allocation of emissions to co-products. The lower emissions and higher energy ratios that were observed in the present Brazilian case were mainly due to the lesser amount of fertilizers applied, also were due to the shorter distance of sugarcane transport, and to the smaller proportion of sugarcane areas that were burned to facilitate manual harvest. The resulting modality with the lowest emissions of equivalent carbon dioxide (CO 2e ) was ethanol produced from direct juice and generating surplus electricity with 36.8 kgCO 2e /GJ ethanol . This was achieved using bagasse as the only fuel source to satisfy industrial phase needs for electricity and steam. Mexican emissions were higher than those calculated for Brazil (27.5 kgCO 2e /GJ ethanol ) among all modalities. The Mexican modality with the highest ratio of renewable/fossil energy was also ethanol from sugarcane juice generating surplus electricity with 4.8 GJ ethanol /GJ fossil .

  5. Globalization of the nuclear fuel cycle impact of developments on fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Durpel, L.; Bertel, E. [OCDE-NEA, Nuclear Development Div., 92 - Issy-les-Moulineaux (France)

    1999-07-01

    Nuclear energy will have to cope more and more with a rapid changing environment due to economic competitive pressure and the de-regulatory progress. In current economic environment, utilities will have to focus strongly on the reduction of their total generation costs, covering the fuel cycle costs, which are only partly under their control. Developments in the fuel cycle will be in the short-term rather evolutionary addressing the current needs of utilities. However, within the context of sustainable development and more and more inclusion of externalities in energy generation costs, more performing developments in the fuel cycle could become important and feasible. A life-cycle design approach of the fuel cycle will be requested in order to cover all factors in order to decrease significantly the nuclear energy generation cost to compete with other alternative fuels in the long-term. This paper will report on some of the trends one could distinguish in the fuel cycle with emphasis on cost reduction. OECD/NEA is currently conducting a study on the fuel cycle aiming to assess current and future nuclear fuel cycles according the potential for further improvement of the full added-value chain of these cycles from a mainly technological and economical perspective including environmental and social considerations. (authors)

  6. Globalisation of the nuclear fuel cycle - impact of developments on fuel management

    International Nuclear Information System (INIS)

    Durpel, L. van den; Bertel, E.

    2000-01-01

    Nuclear energy will have to cope more and more with a rapid changing environment due to economic competitive pressure and the deregulatory progress. In current economic environment, utilities will have to focus strongly on the reduction of their total generation costs, covering the fuel cycle costs, which are only partly under their control. Developments in the fuel cycle will be in the short-term rather evolutionary addressing the current needs of utilities. However, within the context of sustainable development and more and more inclusion of externalities in energy generation costs, more performing developments in the fuel cycle could become important and feasible. A life-cycle design approach of the fuel cycle will be requested in order to cover all factors in order to decrease significantly the nuclear energy generation cost to complete with other alternative fuels in the long-term. This paper will report on some of the trends one could distinguish in the fuel cycle with emphasis on cost reduction. OECD/NEA is currently conducting a study on the fuel cycle aiming to assess current and future nuclear fuel cycles according to the potential for further improvement of the full added-value chain of these cycles from a mainly technological and economic perspective including environmental and social considerations. (orig.) [de

  7. Understanding the influence of climate change on the embodied energy of water supply.

    Science.gov (United States)

    Mo, Weiwei; Wang, Haiying; Jacobs, Jennifer M

    2016-05-15

    The current study aims to advance understandings on how and to what degree climate change will affect the life cycle chemical and energy uses of drinking water supply. A dynamic life cycle assessment was performed to quantify historical monthly operational embodied energy of a selected water supply system located in northeast US. Comprehensive multivariate and regression analyses were then performed to understand the statistical correlation among monthly life cycle energy consumptions, three water quality indicators (UV254, pH, and water temperature), and five climate indicators (monthly mean temperature, monthly mean maximum/minimum temperatures, total precipitation, and total snow fall). Thirdly, a calculation was performed to understand how volumetric and total life cycle energy consumptions will change under two selected IPCC emission scenarios (A2 and B1). It was found that volumetric life cycle energy consumptions are highest in winter months mainly due to the higher uses of natural gas in the case study system, but total monthly life cycle energy consumptions peak in both July and January because of the increasing water demand in summer months. Most of the variations in chemical and energy uses can be interpreted by water quality and climate variations except for the use of soda ash. It was also found that climate change might lead to an average decrease of 3-6% in the volumetric energy use of the case study system by the end of the century. This result combined with conclusions reached by previous climate versus water supply studies indicates that effects of climate change on drinking water supply might be highly dependent on the geographical location and treatment process of individual water supply systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Why is solar cycle 24 an inefficient producer of high-energy particle events?

    Science.gov (United States)

    Vainio, Rami; Raukunen, Osku; Tylka, Allan J.; Dietrich, William F.; Afanasiev, Alexandr

    2017-08-01

    Aims: The aim of the study is to investigate the reason for the low productivity of high-energy SEPs in the present solar cycle. Methods: We employ scaling laws derived from diffusive shock acceleration theory and simulation studies including proton-generated upstream Alfvén waves to find out how the changes observed in the long-term average properties of the erupting and ambient coronal and/or solar wind plasma would affect the ability of shocks to accelerate particles to the highest energies. Results: Provided that self-generated turbulence dominates particle transport around coronal shocks, it is found that the most crucial factors controlling the diffusive shock acceleration process are the number density of seed particles and the plasma density of the ambient medium. Assuming that suprathermal populations provide a fraction of the particles injected to shock acceleration in the corona, we show that the lack of most energetic particle events as well as the lack of low charge-to-mass ratio ion species in the present cycle can be understood as a result of the reduction of average coronal plasma and suprathermal densities in the present cycle over the previous one.

  9. Preliminary results of total kinetic energy modelling for neutron-induced fission

    International Nuclear Information System (INIS)

    Visan, I.; Giubega, G.; Tudora, A.

    2015-01-01

    The total kinetic energy as a function of fission fragments mass TKE(A) is an important quantity entering in prompt emission calculations. The experimentally distributions of TKE(A) are referring to a limited number of fission systems and incident energies. In the present paper, a preliminary model for TKE calculation in neutron induced fission system is presented. The range of fission fragments is chosen as in the Point by Point treatment. The model needs as input only mass excesses and deformation parameters taken from available nuclear databases being based on the following approximations: total excitation energy of fully accelerated fission fragments TXE is calculated from energy balance of neutron-induced fission systems as sum of the total excitation energy at scission E*sciss and deformation energy Edef. The deformation energy at scission is given by minimizing the potential energy at the scission configuration. At the scission point, the fission system is described by two spheroidal fragments nearly touching by a pre-scission distance or neck caused by the nuclear forces between fragments. Therefore, the Columbian repulsion depending on neck and, consequently, on the fragments deformation at scission, is essentially in TKE determination. An approximation is made based on the fission modes. For the very symmetric fission, the dominant super long channel is characterized by long distance between fragments leading to low TKE values. Due to magic and double-magic shells closure, the dominant S1 fission mode for pairs with heavy fragment mass AH around 130-134 is characterized by spherical heavy fragment shape and easily deformed light fragment. The nearly spherical shape of the complementary fragments are characterized by minimum distance, and consequently to maximum TKE values. The results obtained for TKE(A) are in good agreement with existing experimental data for many neutron induced fission systems, e.g. ''2''3''3&apos

  10. Life cycle cost-based risk model for energy performance contracting retrofits

    Science.gov (United States)

    Berghorn, George H.

    Buildings account for 41% of the primary energy consumption in the United States, nearly half of which is accounted for by commercial buildings. Among the greatest energy users are those in the municipalities, universities, schools, and hospitals (MUSH) market. Correctional facilities are in the upper half of all commercial building types for energy intensity. Public agencies have experienced reduced capital budgets to fund retrofits; this has led to the increased use of energy performance contracts (EPC), which are implemented by energy services companies (ESCOs). These companies guarantee a minimum amount of energy savings resulting from the retrofit activities, which in essence transfers performance risk from the owner to the contractor. Building retrofits in the MUSH market, especially correctional facilities, are well-suited to EPC, yet despite this potential and their high energy intensities, efficiency improvements lag behind that of other public building types. Complexities in project execution, lack of support for data requests and sub-metering, and conflicting project objectives have been cited as reasons for this lag effect. As a result, project-level risks must be understood in order to support wider adoption of retrofits in the public market, in particular the correctional facility sub-market. The goal of this research is to understand risks related to the execution of energy efficiency retrofits delivered via EPC in the MUSH market. To achieve this goal, in-depth analysis and improved understanding was sought with regard to ESCO risks that are unique to EPC in this market. The proposed work contributes to this understanding by developing a life cycle cost-based risk model to improve project decision making with regard to risk control and reduction. The specific objectives of the research are: (1) to perform an exploratory analysis of the EPC retrofit process and identify key areas of performance risk requiring in-depth analysis; (2) to construct a

  11. Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles

    Directory of Open Access Journals (Sweden)

    Zach C. Winfield

    2012-03-01

    Full Text Available Many advanced vehicle technologies, including electric vehicles (EVs, hybrid electric vehicles (HEVs, and fuel cell vehicles (FCVs, are gaining attention throughout the World due to their capability to improve fuel efficiencies and emissions. When evaluating the operational successes of these new fuel-efficient vehicles, it is essential to consider energy usage and greenhouse gas (GHG emissions throughout the entire lifetimes of the vehicles, which are comprised of two independent cycles: a fuel cycle and a vehicle cycle. This paper intends to contribute to the assessment of the environmental impacts from the alternative technologies throughout the lifetimes of various advanced vehicles through objective comparisons. The methodology was applied to six commercial vehicles that are available in the U.S. and that have similar dimensions and performances. We also investigated the shifts in energy consumption and emissions through the use of electricity and drivers’ behavior regarding the frequencies of battery recharging for EVs and plug-in hybrid electric vehicles (PHEVs. This study thus gives insight into the impacts of the electricity grid on the total energy cycle of a vehicle lifetime. In addition, the total ownership costs of the selected vehicles were examined, including considerations of the fluctuating gasoline prices. The cost analysis provides a resource for drivers to identify optimal choices for their driving circumstances.

  12. Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program. Volume 1. The analysis and its results

    International Nuclear Information System (INIS)

    1986-04-01

    The total-system life-cycle cost (TSLCC) analysis for the Department of Energy's (DOE) Civilian Radioactive Waste Management Program is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 is sufficient to cover the cost of the program. This report provides cost estimates for the fourth evaluation of the adequacy of the fee. The total-system cost for the reference authorized-system program is estimated to be 24 to 32 billion (1985) dollars. The total-system cost for the reference improved-performance system is estimated to be 26 to 34 billion dollars. A number of sensitivity cases were analyzed. For the authorized system, the costs for the sensitivity cases studied range from 21 to 39 billion dollars. For the improved-performance system, which includes a facility for monitored retrievable storage, the total-system cost in the sensitivity cases is estimated to be as high as 41 billion dollars. The factors that affect costs more than any other single factor for both the authorized and the improved-performance systems are delays in repository startup. A preliminary analysis of the impact of extending the burnup of nuclear fuel in the reactor was also performed; its results indicate that the impact is insignificant: the total-system cost is essentially unchanged from the comparable constant-burnup cases. The current estimate of the the total-system cost for the reference authorized system is zero to 3 billion dollars (9%) higher than the estimate for the reference system in the January 1985 TSLCC analysis

  13. Assessment and Decomposition of Total Factor Energy Efficiency: An Evidence Based on Energy Shadow Price in China

    Directory of Open Access Journals (Sweden)

    Peihao Lai

    2016-04-01

    Full Text Available By adopting an energy-input based directional distance function, we calculated the shadow price of four types of energy (i.e., coal, oil, gas and electricity among 30 areas in China from 1998 to 2012. Moreover, a macro-energy efficiency index in China was estimated and divided into intra-provincial technical efficiency, allocation efficiency of energy input structure and inter-provincial energy allocation efficiency. It shows that total energy efficiency has decreased in recent years, where intra-provincial energy technical efficiency drops markedly and extensive mode of energy consumption rises. However, energy structure and allocation improves slowly. Meanwhile, lacking an integrated energy market leads to the loss of energy efficiency. Further improvement of market allocation and structure adjustment play a pivotal role in the increase of energy efficiency.

  14. Waste-to-energy advanced cycles and new design concepts for efficient power plants

    CERN Document Server

    Branchini, Lisa

    2015-01-01

    This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanc

  15. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment.

    Science.gov (United States)

    Liu, Changqi; Huang, Yaji; Wang, Xinye; Tai, Yang; Liu, Lingqin; Liu, Hao

    2018-01-01

    Studies on the environmental analysis of biofuels by fast pyrolysis and hydroprocessing (BFPH) have so far focused only on the environmental impacts from direct emissions and have included few indirect emissions. The influence of ignoring some indirect emissions on the environmental performance of BFPH has not been well investigated and hence is not really understood. In addition, in order to avoid shifting environmental problems from one medium to another, a comprehensive assessment of environmental impacts caused by the processes must quantify the environmental emissions to all media (air, water, and land) in relation to each life cycle stage. A well-to-wheels assessment of the total environmental impacts resulting from direct emissions and indirect emissions of a BFPH system with corn stover is conducted using a hybrid life cycle assessment (LCA) model combining the economic input-output LCA and the process LCA. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) has been used to estimate the environmental impacts in terms of acidification, eutrophication, global climate change, ozone depletion, human health criteria, photochemical smog formation, ecotoxicity, human health cancer, and human health noncancer caused by 1 MJ biofuel production. Taking account of all the indirect greenhouse gas (GHG) emissions, the net GHG emissions (81.8 g CO 2 eq/MJ) of the biofuels are still less than those of petroleum-based fuels (94 g CO 2 eq/MJ). Maize production and pyrolysis and hydroprocessing make major contributions to all impact categories except the human health criteria. All impact categories resulting from indirect emissions except eutrophication and smog air make more than 24% contribution to the total environmental impacts. Therefore, the indirect emissions are important and cannot be ignored. Sensitivity analysis has shown that corn stover yield and bio-oil yield affect the total environmental impacts of the biofuels

  16. Thermoeconomic analysis of a solar enhanced energy storage concept based on thermodynamic cycles

    International Nuclear Information System (INIS)

    Henchoz, Samuel; Buchter, Florian; Favrat, Daniel; Morandin, Matteo; Mercangöz, Mehmet

    2012-01-01

    Large scale energy storage may play an increasingly important role in the power generation and distribution sector, especially when large shares of renewable energies will have to be integrated into the electrical grid. Pumped-hydro is the only large scale storage technology that has been widely used. However the spread of this technology is limited by geographic constraints. In the present work, a particular implementation of a storage concept based on thermodynamic cycles, invented by ABB Switzerland ltd. Corporate Research, has been analysed thermoeconomically. A variant using solar thermal collectors is presented. It benefits from the synergy between daily variations in solar irradiance and in electricity demand. This results in an effective increase of the electric energy storage efficiency. A steady state multi-objective optimization of a 50 MW plant was done; minimizing the investment costs and maximizing the energy storage efficiency. Several types of cold storage substances have been implemented in the formulation and two different types of solar collector were investigated. A storage efficiency of 57% at a cost of 1200 USD/kW was calculated for an optimized plant using solar energy. Finally, a computation of the behaviour of the plant along the year showed a yearly availability of 84.4%. -- Highlights: ► A variant of electric energy storage based on thermodynamic cycles is presented. ► It uses solar collectors to improve the energy storage efficiency. ► An optimization minimizing capital cost and maximizing energy storage efficiency, was carried out. ► Capital costs lie between 982 and 3192 USD/kW and efficiency between 43.8% and 84.4%.

  17. Large-scale fuel cycle centres

    International Nuclear Information System (INIS)

    Smiley, S.H.; Black, K.M.

    1977-01-01

    The US Nuclear Regulatory Commission (NRC) has considered the nuclear energy centre concept for fuel cycle plants in the Nuclear Energy Centre Site Survey 1975 (NECSS-75) Rep. No. NUREG-0001, an important study mandated by the US Congress in the Energy Reorganization Act of 1974 which created the NRC. For this study, the NRC defined fuel cycle centres as consisting of fuel reprocessing and mixed-oxide fuel fabrication plants, and optional high-level waste and transuranic waste management facilities. A range of fuel cycle centre sizes corresponded to the fuel throughput of power plants with a total capacity of 50,000-300,000MW(e). The types of fuel cycle facilities located at the fuel cycle centre permit the assessment of the role of fuel cycle centres in enhancing the safeguard of strategic special nuclear materials - plutonium and mixed oxides. Siting fuel cycle centres presents a smaller problem than siting reactors. A single reprocessing plant of the scale projected for use in the USA (1500-2000t/a) can reprocess fuel from reactors producing 50,000-65,000MW(e). Only two or three fuel cycle centres of the upper limit size considered in the NECSS-75 would be required in the USA by the year 2000. The NECSS-75 fuel cycle centre evaluation showed that large-scale fuel cycle centres present no real technical siting difficulties from a radiological effluent and safety standpoint. Some construction economies may be achievable with fuel cycle centres, which offer opportunities to improve waste-management systems. Combined centres consisting of reactors and fuel reprocessing and mixed-oxide fuel fabrication plants were also studied in the NECSS. Such centres can eliminate shipment not only of Pu but also mixed-oxide fuel. Increased fuel cycle costs result from implementation of combined centres unless the fuel reprocessing plants are commercial-sized. Development of Pu-burning reactors could reduce any economic penalties of combined centres. The need for effective fissile

  18. Thermal energy storage for organic Rankine cycle solar dynamic space power systems

    Science.gov (United States)

    Heidenreich, G. R.; Parekh, M. B.

    An organic Rankine cycle-solar dynamic power system (ORC-SDPS) comprises a concentrator, a radiator, a power conversion unit, and a receiver with a thermal energy storage (TES) subsystem which charges and discharges energy to meet power demands during orbital insolation and eclipse periods. Attention is presently given to the criteria used in designing and evaluating an ORC-SDPS TES, as well as the automated test facility employed. It is found that a substantial data base exists for the design of an ORC-SDPS TES subsystem.

  19. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions; TOPICAL

    International Nuclear Information System (INIS)

    C. Saricks; D. Santini; M. Wang

    1999-01-01

    We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O)

  20. Effect of Numbers of Load Cycling on the Micro Tensile Bond Strength of Total Etch Adhesives to Dentin

    Directory of Open Access Journals (Sweden)

    AR Daneshkazemi

    2013-06-01

    Full Text Available Introduction: Today load cycling is used for similarity of invitro and invivo studies, though different results were reported in different studies. Therefore, this study aimed to investigate the effect of load cycling on micro tensile bond strength of two total etch adhesives to dentin. Methods: Enamel of 48 molar teeth were removed to expose the superficial dentin. The teeth were randomly divided into two equal groups, and were restored with Single bond (SB, ExciTE and Synergy composite. Then the teeth of each group were divided to 4 equal sub groups. Moreover, load cycling of 0, 50, 100, 200 k load cycle with 50 newton load was used. In each sub group, 12 hour glass slabs with 1mm2 thickness were made. Then the samples were loaded by Dartec testing machine (Model HC/10 with 1 mm/min cross head speed to make the fracture occur. Data were analyzed by ANOVA, t-test, Bonferroni tests. Results: The most micro tensile bond strength belonged to ExciTE without load cycling and lowest refered to SB with 200 k. There was a significant difference between the groups (p ExciTE= 0.0001, p SB = 0.001. Micro tensile bond strength in SB group was significantly lower than ExciTE (p= 0.001. Moreover, load cycling had negative effect on micro tensile bond strength. Conclusion: By increasing load cycling, micro tensile bond strength of both bondings decreased significantly

  1. DWBA differential and total pair production cross sections for intermediate energy photons

    International Nuclear Information System (INIS)

    Selvaraju, C.; Bhullar, A.S.; Sud, K.K.

    2001-01-01

    We present in this communication the theoretical differential and total cross section for electron-positron pair creation by intermediate energy photons (5.0-10.0 MeV) on different targets (Z=1, 30, 50, 68, 82 and 92). The computed cross sections are in distorted wave Born approximation (DWBA) in point Coulomb potential. The database of the differential and total pair production cross sections is presented in tabulated as well as in graphical form and the interpolation of differential cross sections for different atomic numbers, positron and photon energies is discussed

  2. Tangible and fungible energy: Hybrid energy market and currency system for total energy management. A Masdar City case study

    International Nuclear Information System (INIS)

    Sgouridis, Sgouris; Kennedy, Scott

    2010-01-01

    We propose the introduction of an energy-based parallel currency as a means to ease the transition to energy-conscious living. Abundant fossil energy resources mask the internal and external energy costs for casual energy consumers. This situation is challenging communities that draw a significant fraction of their primary energy consumption from renewable energy sources. The Masdar Energy Credit (MEC) system is a way of translating the fundamental aspects behind energy generation and usage into a tangible reality for all users with built-in fungibility to incentivize collectively sustainable behavior. The energy credit currency (ergo) corresponds with a chosen unit of energy so that the total amount of ergos issued equals the energy supply of the community. Ergos are distributed to users (residents, commercial entities, employees, and visitors) on a subscription basis and can be surrendered in exchange for the energy content of a service. A spot market pricing mechanism is introduced to relate ergos to 'fiat' currency using a continuously variable exchange rate to prevent depletion of the sustainable energy resource. The MEC system is intended to: (i) meet the sustainable energy balance targets of a community (ii) support peak shaving or load shifting goals, and (iii) raise energy awareness.

  3. Towards prospective life cycle sustainability analysis: exploring complementarities between social and environmental life cycle assessments for the case of Luxembourg's energy system

    International Nuclear Information System (INIS)

    Rugani, B.; Benetto, E.; Igos, E.; Quinti, G.; Declich, A.; Feudo, F.

    2014-01-01

    Sustainability typically relies on the durable interaction between humans and the environment. Historically, modelling tools such as environmental-life cycle assessment (E-LCA) have been developed to address the mitigation of environmental impacts generated by human activities. More recently, social-life cycle assessment (S-LCA) methods have been proposed to investigate the social sustainability sphere, looking at the life cycle effects generated by positive or negative pressures on social endpoints (i.e. well-being of stakeholders). Despite this promising added value, however, S-LCA methods still show limitations and challenges to be faced, e.g. regarding the lack of high quality datasets and the implementation of consensual social impact assessment indicators. This paper discusses on the complementarity between S-LCA and E-LCA towards the definition of prospective life cycle sustainability analysis (LCSA) approaches. To this aim, a case study is presented comparing (i) E-LCA results of business-as-usual (BAU) scenarios of energy supply and demand technology changes in Luxembourg, up to 2025, based on economic equilibrium modeling and hybrid life cycle inventories, with (ii) a monetary-based input-output estimation of the related changes in the societal sphere. The results show that environmental and social issues do not follow the same impact trends. While E-LCA outputs highlight contrasting patterns, they do generally underlie a relatively low decrease in the aggregated environmental burdens curve (around 20% of decrease over the single-score impact trend over time). In contrast, social hotspots (identified in S-LCA by specific risk indicators of human rights, worker treatment, poverty, etc.) are typically increasing over time according to the growth of the final energy demand. Overall, the case study allowed identifying possible synergies and tradeoffs related to the impact of projected energy demands in Luxembourg. Despite the studied approach does not fully

  4. Economics of nuclear energy production systems: reactors and fuel cycle

    International Nuclear Information System (INIS)

    Bouchard, J.; Proust, E.; Gautrot, J.J.; Tinturier, B.

    2003-01-01

    The present paper relies on the main European economic studies on the comparative costs of electricity generation, published over the last six years, to show that nuclear power meets the challenge and is an economically competitive choice in the European electricity market. Indeed, although these studies were made for different purposes, by different actors and based on different methods, they all converge to show that the total base-load generation cost for new nuclear plants build in Europe is projected to be in the range of 22 to 32 euros/MWh, a total generation cost that may be 20% cheaper than the cost for combined cycle gas turbine (CCGT) units. Moreover, the prospects of internalization of the greenhouse gas emission cost in the total generation cost will boost even further the competitiveness of nuclear against gas-fired plants in Europe. All this is confirmed by the most recent French detailed study (DIDEME 2003), essentially performed from an investor standpoint, which concludes, for base-load generation units starting operation around 2015, that nuclear power, with a levelled generation cost of 28,4 euros/MWh, is more competitive than CCGTs (35 euros/MWh). This study also shows an overnight investment cost for nuclear power, based on the considered scenario (a series of 10 EPR units including a ''demonstrator''), of less than 1300 euros/kWe. The other major challenge, waste management obviously also includes an economic dimension. This issue is addressed in the present paper which provides a synthesis of relevant detailed French and OECD economic studies on the cost assessment of the fuel cycle back-end. (author)

  5. Thermodynamic analysis and comparison between CO_2 transcritical power cycles and R245fa organic Rankine cycles for low grade heat to power energy conversion

    International Nuclear Information System (INIS)

    Li, L.; Ge, Y.T.; Luo, X.; Tassou, S.A.

    2016-01-01

    Highlights: • CO_2 is a promising working fluid to be applied in low-grade power generation systems. • Thermodynamic models of CO_2 transcritical power cycles (T-CO_2) and R245fa ORC were developed. • Energy and exergy analyses were carried out for T-CO_2 and R245fa ORC systems. • Optimal system designs are existed for both T-CO_2 and R245fa ORC systems. - Abstract: In this paper, a theoretical study is conducted to investigate and compare the performance of CO_2 transcritical power cycles (T-CO_2) and R245fa organic Rankine cycles (ORCs) using low-grade thermal energy to produce useful shaft or electrical power. Each power cycle consists of typical Rankine cycle components, such as a working fluid pump, gas generator or evaporator, turbine with electricity generator, air cooled condenser and recuperator (internal heat exchanger). The thermodynamic models of both cycles have been developed and are applied to calculate and compare the cycle thermal and exergy efficiencies at different operating conditions and control strategies. The simulation results show that the system performances for both cycles vary with different operating conditions. When the heat source (waste heat) temperature increases from 120 °C to 260 °C and heat sink (cooling air) temperature is reduced from 20 °C to 0 °C, both thermal efficiencies of R245fa ORC and T-CO_2 with recuperator can significantly increase. On the other hand, R245fa ORC and T-CO_2 exergy efficiencies increase with lower heat sink temperatures and generally decrease with higher heat source temperatures. In addition, with the same operating conditions and heat transfer assumptions, the thermal and exergy efficiencies of R245fa ORCs are both slightly higher than those of T-CO_2. However, the efficiencies of both cycles can be enhanced by installing a recuperator in each system at specified operating conditions. Ultimately, optimal operating states can be predicted, with particular focus on the working fluid expander

  6. Potential efficiencies of open- and closed-cycle CO, supersonic, electric-discharge lasers

    Science.gov (United States)

    Monson, D. J.

    1976-01-01

    Computed open- and closed-cycle system efficiencies (laser power output divided by electrical power input) are presented for a CW carbon monoxide, supersonic, electric-discharge laser. Closed-system results include the compressor power required to overcome stagnation pressure losses due to supersonic heat addition and a supersonic diffuser. The paper shows the effect on the system efficiencies of varying several important parameters. These parameters include: gas mixture, gas temperature, gas total temperature, gas density, total discharge energy loading, discharge efficiency, saturated gain coefficient, optical cavity size and location with respect to the discharge, and supersonic diffuser efficiency. Maximum open-cycle efficiency of 80-90% is predicted; the best closed-cycle result is 60-70%.

  7. The total pregnancy potential per oocyte aspiration after assisted reproduction-in how many cycles are biologically competent oocytes available?

    DEFF Research Database (Denmark)

    Lemmen, J G; Rodríguez, N M; Andreasen, L D

    2016-01-01

    PURPOSE: While stimulation of women prior to assisted reproduction is associated with increased success rates, the total biological pregnancy potential per stimulation cycle is rarely assessed. METHODS: Retrospective sequential cohort study of the cumulative live birth rate in 1148 first IVF/ICSI...

  8. Total-factor energy efficiency of regions in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Honma, Satoshi [Faculty of Economics, Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503 (Japan); Hu, Jin-Li [Institute of Business and Management, National Chiao Tung University (China)

    2008-02-15

    This study computes the regional total-factor energy efficiency (TFEE) in Japan by employing the data envelopment analysis (DEA). A dataset of 47 prefectures in Japan for the period 1993-2003 is constructed. There are 14 inputs, including three production factors (labor employment, private, and public capital stocks) and 11 energy sources (electric power for commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke). GDP is the sole output. Following Fukao and Yue [2000. Regional factor inputs and convergence in Japan - how much can we apply closed economy neoclassical growth models? Economic Review 51, 136-151 (in Japanese)], data on private and public capital stocks are extended. All the nominal variables are transformed into real variables, taking into consideration the 1995 price level. For kerosene, gas oil, heavy oil, butane gas, coal, and coke, there are a few prefectures with TFEEs less than 0.7. The five most inefficient prefectures are Niigata, Wakayama, Hyogo, Chiba, and Yamaguchi. Inland regions and most regions along the Sea of Japan are efficient in energy use. Most of the inefficient prefectures that are developing mainly upon energy-intensive industries are located along the Pacific Belt Zone. A U-shaped relation similar to the environmental Kuznets curve (EKC) is discovered between energy efficiency and per capita income for the regions in Japan. (author)

  9. Total-factor energy efficiency of regions in Japan

    International Nuclear Information System (INIS)

    Honma, Satoshi; Hu, Jin-Li

    2008-01-01

    This study computes the regional total-factor energy efficiency (TFEE) in Japan by employing the data envelopment analysis (DEA). A dataset of 47 prefectures in Japan for the period 1993-2003 is constructed. There are 14 inputs, including three production factors (labor employment, private, and public capital stocks) and 11 energy sources (electric power for commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke). GDP is the sole output. Following Fukao and Yue [2000. Regional factor inputs and convergence in Japan-how much can we apply closed economy neoclassical growth models? Economic Review 51, 136-151 (in Japanese)], data on private and public capital stocks are extended. All the nominal variables are transformed into real variables, taking into consideration the 1995 price level. For kerosene, gas oil, heavy oil, butane gas, coal, and coke, there are a few prefectures with TFEEs less than 0.7. The five most inefficient prefectures are Niigata, Wakayama, Hyogo, Chiba, and Yamaguchi. Inland regions and most regions along the Sea of Japan are efficient in energy use. Most of the inefficient prefectures that are developing mainly upon energy-intensive industries are located along the Pacific Belt Zone. A U-shaped relation similar to the environmental Kuznets curve (EKC) is discovered between energy efficiency and per capita income for the regions in Japan

  10. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles.

    Science.gov (United States)

    Song, Mengmeng; Cheng, Mengjiao; Ju, Guannan; Zhang, Yajun; Shi, Feng

    2014-11-05

    A smart device that can dive or surface in aqueous medium has been developed by combining a pH-responsive surface with acid-responsive magnesium. The diving-surfacing cycles can be used to convert chemical energy into electricity. During the diving-surfacing motion, the smart device cuts magnetic flux lines and produces a current, demonstrating that motional energy can be realized by consuming chemical energy of magnesium, thus producing electricity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The total energy-momentum tensor for electromagnetic fields in a dielectric

    Science.gov (United States)

    Crenshaw, Michael E.

    2017-08-01

    mv. Newtonian fluids can behave very much like dust with the same energy-momentum tensor. The energy and momentum conservation properties of light propagating in the vacuum were long-ago cast in the energy-momentum tensor formalism in terms of the electromagnetic energy density and electromagnetic momentum density. However, extrapolating the tensor theory of energy-momentum conservation for propagation of light in the vacuum to propagation of light in a simple linear dielectric medium has proven to be problematic and controversial. A dielectric medium is not "otherwise empty" and it is typically assumed that optically induced forces accelerate and decelerate nanoscopic material constituents of the dielectric. The corresponding material energy-momentum tensor is added to the electromagnetic energy-momentum tensor to form the total energy-momentum tensor, thereby ensuring that the total energy and the total momentum of the thermodynamically closed system remain constant in time.

  12. Cycle-to-cycle variation analysis of in-cylinder flow in a gasoline engine with variable valve lift

    Science.gov (United States)

    Liu, Daming; Wang, Tianyou; Jia, Ming; Wang, Gangde

    2012-09-01

    In spark ignition engines, cycle-to-cycle variation (CCV) limits the expansion of the operating range because it induces the load variations and the occurrence of misfire and/or knock. Variable valve actuation (VVA) or variable valve lift (VVL) has been widely used in SI engines to improve the volumetric efficiency or to reduce the pumping losses. It is necessary to investigate the CCV of in-cylinder gas motion and mixing processes in SI engines with VVA/VVL system. This study is aimed to analyze the CCV of the tumble flow in a gasoline direct injection (GDI) engine when VVL is employed. Cycle-resolved digital particle image velocimetry (CRD-PIV) data were acquired for the in-cylinder flow field of a motored four-stroke multi-valve GDI optical engine. The CCV of in-cylinder gas motion with a series of valve profiles and different maximum valve lift (MVL) was analyzed, including cyclic variation characteristics of bulk flow (tumble centre and tumble ratio), large- and small-scale fluctuation, total kinetic energy, and circulation. The results show that the CCV of the in-cylinder flow is increased with reduced MVL. With lower MVLs, stable tumble flow cannot be formed in the cylinder, and the ensemble-averaged tumble ratio decreases to zero before the end of the compression stroke due to violent variation. In addition, the evolution of the circulation shows larger variation with lower MVLs that indicates the `spin' of the small-scale eddy in the flow field presents violent fluctuation from one cycle to another, especially at the end of the compression stroke. Moreover, the analyze of the kinetic energy indicates the total energy of the flow field with lower MVLs increases significantly comparing with higher MVL conditions due to the intake flow jet at the intake valve seat in the intake stroke. However, the CCV of the in-cylinder flow becomes more violent under lower MVL conditions, especially for the low-frequency fluctuation kinetic energy. Thus, present strong

  13. Technical Feasibility Study of Thermal Energy Storage Integration into the Conventional Power Plant Cycle

    Directory of Open Access Journals (Sweden)

    Jacek D. Wojcik

    2017-02-01

    Full Text Available The current load balance in the grid is managed mainly through peaking fossil-fuelled power plants that respond passively to the load changes. Intermittency, which comes from renewable energy sources, imposes additional requirements for even more flexible and faster responses from conventional power plants. A major challenge is to keep conventional generation running closest to the design condition with higher load factors and to avoid switching off periods if possible. Thermal energy storage (TES integration into the power plant process cycle is considered as a possible solution for this issue. In this article, a technical feasibility study of TES integration into a 375-MW subcritical oil-fired conventional power plant is presented. Retrofitting is considered in order to avoid major changes in the power plant process cycle. The concept is tested based on the complete power plant model implemented in the ProTRAX software environment. Steam and water parameters are assessed for different TES integration scenarios as a function of the plant load level. The best candidate points for heat extraction in the TES charging and discharging processes are evaluated. The results demonstrate that the integration of TES with power plant cycle is feasible and provide a provisional guidance for the design of the TES system that will result in the minimal influence on the power plant cycle.

  14. Embodied energy of construction materials: integrating human and capital energy into an IO-based hybrid model.

    Science.gov (United States)

    Dixit, Manish K; Culp, Charles H; Fernandez-Solis, Jose L

    2015-02-03

    Buildings alone consume approximately 40% of the annual global energy and contribute indirectly to the increasing concentration of atmospheric carbon. The total life cycle energy use of a building is composed of embodied and operating energy. Embodied energy includes all energy required to manufacture and transport building materials, and construct, maintain, and demolish a building. For a systemic energy and carbon assessment of buildings, it is critical to use a whole life cycle approach, which takes into account the embodied as well as operating energy. Whereas the calculation of a building's operating energy is straightforward, there is a lack of a complete embodied energy calculation method. Although an input-output-based (IO-based) hybrid method could provide a complete and consistent embodied energy calculation, there are unresolved issues, such as an overdependence on price data and exclusion of the energy of human labor and capital inputs. This paper proposes a method for calculating and integrating the energy of labor and capital input into an IO-based hybrid method. The results demonstrate that the IO-based hybrid method can provide relatively complete results. Also, to avoid errors, the total amount of human and capital energy should not be excluded from the calculation.

  15. Exergy and exergoeconomic analyses of a supercritical CO_2 cycle for a cogeneration application

    International Nuclear Information System (INIS)

    Wang, Xurong; Yang, Yi; Zheng, Ya; Dai, Yiping

    2017-01-01

    Detailed exergy and exergoeconomic analyses are performed for a combined cogeneration cycle in which the waste heat from a recompression supercritical CO_2 Brayton cycle (sCO_2) is recovered by a transcritical CO_2 cycle (tCO_2) for generating electricity. Thermodynamic and exergoeconomic models are developed on the basis of mass and energy conservations, exergy balance and exergy cost equations. Parametric investigations are then conducted to evaluate the influence of key decision variables on the sCO_2/tCO_2 performance. Finally, the combined cycle is optimized from the viewpoint of exergoeconomics. It is found that, combining the sCO_2 with a tCO_2 cycle not only enhances the energy and exergy efficiencies of the sCO_2, but also improves the cycle exergoeconomic performance. The results show that the most exergy destruction rate takes place in the reactor, and the components of the tCO_2 bottoming cycle have less exergy destruction. When the optimization is conducted based on the exergoeconomics, the overall exergoeconomic factor, the total cost rate and the exergy destruction cost rate are 53.52%, 11243.15 $/h and 5225.17 $/h, respectively. The optimization study reveals that an increase in reactor outlet temperature leads to a decrease in total cost rate and total exergy destruction cost rate of the system. - Highlights: • Exergy and exergoeconomic analyses of a combined sCO_2/tCO_2 cycle were performed. • Exergoeconomic optimization of the sCO_2/tCO_2 cycle was presented. • The reactor had the highest exergy loss among sCO_2/tCO_2 cycle components. • The overall exergoeconomic factor was up to 53.5% for the optimum case.

  16. High-energy few-cycle pulse compression through self-channeling in gases

    International Nuclear Information System (INIS)

    Hauri, C.; Merano, M.; Trisorio, A.; Canova, F.; Canova, L.; Lopez-Martens, R.; Ruchon, T.; Engquist, A.; Varju, K.; Gustafsson, E.

    2006-01-01

    Complete test of publication follows. Nonlinear spectral broadening of femtosecond optical pulses by intense propagation in a Kerr medium followed by temporal compression constitutes the Holy Grail for ultrafast science since it allows the generation of intense few-cycle optical transients from longer pulses provided by now commercially available femtosecond lasers. Tremendous progress in high-field and attosecond physics achieved in recent years has triggered the need for efficient pulse compression schemes producing few-cycle pulses beyond the mJ level. We studied a novel pulse compression scheme based on self-channeling in gases, which promises to overcome the energy constraints of hollow-core fiber compression techniques. Fundamentally, self-channeling at high laser powers in gases occurs when the self-focusing effect in the gas is balanced through the dispersion induced by the inhomogeneous refractive index resulting from optically-induced ionization. The high nonlinearity of the ionization process poses great technical challenges when trying to scale this pulse compression scheme to higher energies input energies. Light channels are known to be unstable under small fluctuations of the trapped field that can lead to temporal and spatial beam breakup, usually resulting in the generation of spectrally broad but uncompressible pulses. Here we present experimental results on high-energy pulse compression of self-channeled 40-fs pulses in pressure-gas cells. In the first experiment, performed at the Lund Laser Center in Sweden, we identified a particular self-channeling regime at lower pulse energies (0.8 mJ), in which the ultrashort pulses are generated with negative group delay dispersion (GDD) such that they can be readily compressed down to near 10-fs through simple material dispersion. Pulse compression is efficient (70%) and exhibits exceptional spatial and temporal beam stability. In a second experiment, performed at the LOA-Palaiseau in France, we

  17. Total, accessible and reserve wind energy resources in Bulgaria

    International Nuclear Information System (INIS)

    Ivanov, P.; Trifonova, L.

    1996-01-01

    The article is a part of the international project 'Bulgaria Country Study to Address Climate Change Inventory of the Greenhouse Gases Emission and Sinks Alternative Energy Balance and Technology Programs' sponsored by the Department of Energy, US. The 'total' average annual wind resources in Bulgaria determined on the basis wind velocity density for more than 100 meteorological stations are estimated on 125 000 TWh. For the whole territory the theoretical wind power potential is about 14200 GW. The 'accessible' wind resources are estimated on about 62000 TWh. The 'reserve' (or usable) wind resources are determined using 8 velocity intervals for WECS (Wind Energy Conversion Systems) operation, number and disposition of turbines, and the usable (3%) part of the territory. The annual reserve resources are estimated at about 21 - 33 TWh. The 'economically beneficial' wind resources (EBWR) are those part of the reserve resources which could be included in the country energy balance using specific technologies in specific time period. It is foreseen that at year 2010 the EBWR could reach 0.028 TWh. 7 refs., 2 tabs., 1 fig

  18. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  19. Life-cycle energy optimisation : A proposed methodology for integrating environmental considerations early in the vehicle engineering design process

    OpenAIRE

    O'Reilly, Ciarán J.; Göransson, Peter; Funazaki, Atsushi; Suzuki, Tetsuya; Edlund, Stefan; Gunnarsson, Cecilia; Lundow, Jan-Olov; Cerin, Pontus; Cameron, Christopher J.; Wennhage, Per; Potting, José

    2016-01-01

    To enable the consideration of life cycle environmental impacts in the early stages of vehicle design, a methodology using the proxy of life cycle energy is proposed in this paper. The trade-offs in energy between vehicle production, operational performance and end-of-life are formulated as a mathematical problem, and simultaneously balanced with other transport-related functionalities, and may be optimised. The methodology is illustrated through an example design study, which is deliberately...

  20. Commercial applications of solar total energy systems. Volume 3. Conceptual designs and market analyses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

    1978-07-01

    The overall objective of this program was to assess the feasibility of using solar energy to provide a significant fraction of the energy needs of commercial buildings that have energy demands greater than 200 kWe. The STES concept trade studies, sensitivity parameters, performance characteristics, and selected concepts are discussed. Market penetration rate estimates are provided, and technology advancements and utilization plans are discussed. Photovoltaic STES configurations and Rankine cycle thermal STES systems are considered. (WHK)

  1. Technology for Bayton-cycle powerplants using solar and nuclear energy

    Science.gov (United States)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  2. Assessment of energy performance in the life-cycle of biogas production

    International Nuclear Information System (INIS)

    Berglund, Maria; Boerjesson, Pal

    2006-01-01

    Energy balances are analysed from a life-cycle perspective for biogas systems based on 8 different raw materials. The analysis is based on published data and relates to Swedish conditions. The results show that the energy input into biogas systems (i.e. large-scale biogas plants) overall corresponds to 20-40% (on average approximately 30%) of the energy content in the biogas produced. The net energy output turns negative when transport distances exceed approximately 200 km (manure), or up to 700 km (slaughterhouse waste). Large variations exist in energy efficiency among the biogas systems studied. These variations depend both on the properties of the raw materials studied and on the system design and allocation methods chosen. The net energy output from biogas systems based on raw materials that have high water content and low biogas yield (e.g. manure) is relatively low. When energy-demanding handling of the raw materials is required, the energy input increases significantly. For instance, in a ley crop-based biogas system, the ley cropping alone corresponds to approximately 40% of the energy input. Overall, operation of the biogas plant is the most energy-demanding process, corresponding to 40-80% of the energy input into the systems. Thus, the results are substantially affected by the assumptions made about the allocation of a plant's entire energy demand among raw materials, e.g. regarding biogas yield or need of additional water for dilution

  3. Energy dissipation in multifrequency atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Valentina Pukhova

    2014-04-01

    Full Text Available The instantaneous displacement, velocity and acceleration of a cantilever tip impacting onto a graphite surface are reconstructed. The total dissipated energy and the dissipated energy per cycle of each excited flexural mode during the tip interaction is retrieved. The tip dynamics evolution is studied by wavelet analysis techniques that have general relevance for multi-mode atomic force microscopy, in a regime where few cantilever oscillation cycles characterize the tip–sample interaction.

  4. Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Kim, Kyung Chun

    2014-01-01

    Thermodynamic analysis of a combined cycle using a low grade heat source and LNG cold energy was carried out. The combined cycle consisted of an ammonia–water Rankine cycle with and without regeneration and a LNG Rankine cycle. A parametric study was conducted to examine the effects of the key parameters, such as ammonia mass fraction, turbine inlet pressure, condensation temperature. The effects of the ammonia mass fraction on the temperature distributions of the hot and cold streams in heat exchangers were also investigated. The characteristic diagram of the exergy efficiency and heat transfer capability was proposed to consider the system performance and expenditure of the heat exchangers simultaneously. The simulation showed that the system performance is influenced significantly by the parameters with the ammonia mass fraction having largest effect. The net work output of the ammonia–water cycle may have a peak value or increase monotonically with increasing ammonia mass fraction, which depends on turbine inlet pressure or condensation temperature. The exergy efficiency may decrease or increase or have a peak value with turbine inlet pressure depending on the ammonia mass fraction. - Highlights: • Thermodynamic analysis was performed for a combined cycle utilizing LNG cold energy. • Ammonia–water Rankine cycle and LNG Rankine cycle was combined. • A parametric study was conducted to examine the effects of the key parameters. • Characteristics of the exergy efficiency and heat transfer capability were proposed. • The system performance was influenced significantly by the ammonia mass fraction

  5. Comparative thermodynamic performance of some Rankine/Brayton cycle configurations for a low-temperature energy application

    Science.gov (United States)

    Lansing, F. L.

    1977-01-01

    Various configurations combining solar-Rankine and fuel-Brayton cycles were analyzed in order to find the arrangement which has the highest thermal efficiency and the smallest fuel share. A numerical example is given to evaluate both the thermodynamic performance and the economic feasibility of each configuration. The solar-assisted regenerative Rankine cycle was found to be leading the candidates from both points of energy utilization and fuel conservation.

  6. Nuclear energy data

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of basic statistics on electricity generation and nuclear power in OECD countries. The reader will find quick and easy reference to the present status of and projected trends in total electricity generating capacity, nuclear generating capacity, and actual electricity production as well as on supply and demand for nuclear fuel cycle services [fr

  7. Achievement report on research and development in the Sunshine Project in fiscal 1978. Studies on a hydrogen energy total system; 1978 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    Analysis was made on timing, patterns and scales of introducing hydrogen energy into the Japan's total energy system, and case studies were made on transfer of the comprehensive systems that can be realized in the years of 1985, 2000 and 2025. The basic conception for the analytic method employed a method to analyze and present theoretically the conditions in which prerequisites or results of the estimation can be established, rather than intending elucidation of the estimation itself. An energy model was used for the theoretical means thereof. The objective function to be optimized was assumed to maximize (estimate over the planned period of time) the total effectiveness of the hydrogen energy system converted into the present value being given appropriate discount. The economic performance measures for different secondary energies working as the comparison measures are the limiting production cost of each energy. A consideration was given to the point that the electrolytic hydrogen cannot compete with that made by using the thermo-chemical method (if developed successfully) using heat from high-temperature gas reactor if the fossil fuel price rises sharply. Considerations are also required in replaceability of hydrogen energy with other energies, and hydrogen utilization in petroleum refining. (NEDO)

  8. Energy and exergy analyses of a bi-evaporator compression/ejection refrigeration cycle

    International Nuclear Information System (INIS)

    Geng, Lihong; Liu, Huadong; Wei, Xinli; Hou, Zhonglan; Wang, Zhenzhen

    2016-01-01

    Highlights: • A bi-evaporator compression/ejection refrigeration cycle was studied experimentally. • Experiments were operated at the same external conditions and cooling capacities. • COP improvement was 16.94–30.59% higher than that of the conventional system. • The exergy efficiency of the R134a cycle was improved by 7.57–28.29%. - Abstract: Aiming to reduce the throttling loss in the vapor compression refrigeration cycle, a bi-evaporator compression/ejection refrigeration cycle (BCERC) using an ejector as the expansion device was experimentally investigated with R134a refrigerant. The effects of the compressor frequency and the operating conditions on the coefficient of performance (COP) and the amount of exergy destruction of each component were studied. The results were compared with that of the conventional vapor compression refrigeration cycle under the same external operating conditions and cooling capacities. Results showed that the refrigeration cycle with an ejector as the expansion device exhibited lower irreversibility for each component and total system in comparison with the conventional vapor compression refrigeration cycle. The COP and the exergy efficiency of the BCERC were higher than that of the conventional system. The COP and exergy efficiency improvements became more significant as the condenser water temperature increased, the evaporator water temperature decreased and the compressor frequency increased. In the BCERC with a constant frequency compressor, the COP and the exergy efficiency could be improved by 16.94–30.59%, 7.57–28.29%, respectively. The COP and the exergy efficiency of the BCERC with a variable frequency compressor could increase by around 32.64% and 23.32%, respectively.

  9. Total Energy of Charged Black Holes in Einstein-Maxwell-Dilaton-Axion Theory

    Directory of Open Access Journals (Sweden)

    Murat Korunur

    2012-01-01

    Full Text Available We focus on the energy content (including matter and fields of the Møller energy-momentum complex in the framework of Einstein-Maxwell-Dilaton-Axion (EMDA theory using teleparallel gravity. We perform the required calculations for some specific charged black hole models, and we find that total energy distributions associated with asymptotically flat black holes are proportional to the gravitational mass. On the other hand, we see that the energy of the asymptotically nonflat black holes diverge in a limiting case.

  10. Energy use and environmental impact of new residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Adalberth, Karin

    2000-01-01

    The objective of this thesis is to investigate the energy use and environmental impact of residential buildings. Seven authentic buildings built in the 1990s in Sweden are investigated. They are analysed according to energy use and environmental impact during their life cycle: manufacture of building materials, transport of building materials and components to the building site, erection to a building, occupancy, maintenance and renovation, and finally demolition and removal of debris. Results show that approx. 85 % of the total estimated energy use during the life cycle is used during the occupation phase. The energy used to manufacture building and installation materials constitutes approx. 15 % of the total energy use. 70-90 % of the total environmental impact arises during the occupation phase, while the manufacture of construction and installation materials constitutes 10-20 %. In conclusion, the energy use and environmental impact during the occupation phase make up a majority of the total. At the end of the thesis, a tool is presented which helps designers and clients predict the energy use during the occupation phase for a future multi-family building before any constructional or installation drawings are made. In this way, different thermal properties may be elaborated in order to receive an energy-efficient and environmentally adapted dwelling.

  11. Scope for energy improvement for hospital imaging services in the USA.

    Science.gov (United States)

    Esmaeili, Amin; Twomey, Janet M; Overcash, Michael R; Soltani, Seyed A; McGuire, Charles; Ali, Kamran

    2015-04-01

    To aid radiologists by measuring the carbon footprint of CT scans by quantifying in-hospital and out-of-hospital energy use and to assess public health impacts. The study followed a standard life cycle assessment protocol to measure energy from a CT scan then expanding to all hospital electrical energy related to CT usage. In addition, all the fuel energy used to generate electricity and to manufacture the CT consumables was measured. The study was conducted at two hospitals. The entire life cycle energy for a CT scan was 24-34 kWh of natural resource energy per scan. The actual active patient scan energy that produces the images is only about 1.6% of this total life cycle energy. This large multiplier to get total CT energy is a previously undocumented environmental response to the direct radiology order for a patient CT scan. The CT in-hospital energy related to idle periods, where the machine is on but no patients are being scanned and is 14-30-fold higher than the energy used for the CT image. The in-hospital electrical energy of a CT scan makes up only about 25% of the total energy footprint. The rest is generated outside the hospital: 54-62% for generation and transmission of the electricity, while 13-22% is for all the energy to make the consumables. Different CT scanners have some influences on the results and could help guide purchase of CT equipment. The transparent, detailed life cycle approach allows the data from this study to be used by radiologists to examine details of both direct and of unseen energy impacts of CT scans. The public health (outside-the-hospital) impact (including the patients receiving a CT) needs to be measured and included. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Maternal protein-energy malnutrition during early pregnancy in sheep impacts the fetal ornithine cycle to reduce fetal kidney microvascular development.

    Science.gov (United States)

    Dunford, Louise J; Sinclair, Kevin D; Kwong, Wing Y; Sturrock, Craig; Clifford, Bethan L; Giles, Tom C; Gardner, David S

    2014-11-01

    This paper identifies a common nutritional pathway relating maternal through to fetal protein-energy malnutrition (PEM) and compromised fetal kidney development. Thirty-one twin-bearing sheep were fed either a control (n=15) or low-protein diet (n=16, 17 vs. 8.7 g crude protein/MJ metabolizable energy) from d 0 to 65 gestation (term, ∼ 145 d). Effects on the maternal and fetal nutritional environment were characterized by sampling blood and amniotic fluid. Kidney development was characterized by histology, immunohistochemistry, vascular corrosion casts, and molecular biology. PEM had little measureable effect on maternal and fetal macronutrient balance (glucose, total protein, total amino acids, and lactate were unaffected) or on fetal growth. PEM decreased maternal and fetal urea concentration, which blunted fetal ornithine availability and affected fetal hepatic polyamine production. For the first time in a large animal model, we associated these nutritional effects with reduced micro- but not macrovascular development in the fetal kidney. Maternal PEM specifically impacts the fetal ornithine cycle, affecting cellular polyamine metabolism and microvascular development of the fetal kidney, effects that likely underpin programming of kidney development and function by a maternal low protein diet. © FASEB.

  13. Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities

    International Nuclear Information System (INIS)

    Wang, M.Q.; Marr, W.W.

    1994-01-01

    Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations

  14. Relation between total shock energy and mortality in patients with implantable cardioverter-defibrillator.

    Science.gov (United States)

    Tenma, Taro; Yokoshiki, Hisashi; Mitsuyama, Hirofumi; Watanabe, Masaya; Mizukami, Kazuya; Kamada, Rui; Takahashi, Masayuki; Sasaki, Ryo; Maeno, Motoki; Okamoto, Kaori; Chiba, Yuki; Anzai, Toshihisa

    2018-05-15

    Implantable Cardioverter-Defibrillator (ICD) shocks have been associated with mortality. However, no study has examined the relation between total shock energy and mortality. The aim of this study is to assess the association of total shock energy with mortality, and to determine the patients who are at risk of this association. Data from 316 consecutive patients who underwent initial ICD implantation in our hospital between 2000 and 2011 were retrospectively studied. We collected shock energy for 3 years from the ICD implantation, and determined the relation of shock energy on mortality after adjusting confounding factors. Eighty-seven ICD recipients experienced shock(s) within 3 years from ICD implantation and 43 patients had died during the follow-up. The amount of shock energy was significantly associated with all-cause death [adjusted hazard ratio (HR) 1.26 (per 100 joule increase), p energy accumulation (≥182 joule) was lower (p energy accumulation (energy accumulation and all-cause death was remarkable in the patients with low left ventricular ejection fraction (LVEF ≤40%) or atrial fibrillation (AF). Increase of shock energy was related to mortality in ICD recipients. This relation was evident in patients with low LVEF or AF. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Large-scale fuel cycle centers

    International Nuclear Information System (INIS)

    Smiley, S.H.; Black, K.M.

    1977-01-01

    The United States Nuclear Regulatory Commission (NRC) has considered the nuclear energy center concept for fuel cycle plants in the Nuclear Energy Center Site Survey - 1975 (NECSS-75) -- an important study mandated by the U.S. Congress in the Energy Reorganization Act of 1974 which created the NRC. For the study, NRC defined fuel cycle centers to consist of fuel reprocessing and mixed oxide fuel fabrication plants, and optional high-level waste and transuranic waste management facilities. A range of fuel cycle center sizes corresponded to the fuel throughput of power plants with a total capacity of 50,000 - 300,000 MWe. The types of fuel cycle facilities located at the fuel cycle center permit the assessment of the role of fuel cycle centers in enhancing safeguarding of strategic special nuclear materials -- plutonium and mixed oxides. Siting of fuel cycle centers presents a considerably smaller problem than the siting of reactors. A single reprocessing plant of the scale projected for use in the United States (1500-2000 MT/yr) can reprocess the fuel from reactors producing 50,000-65,000 MWe. Only two or three fuel cycle centers of the upper limit size considered in the NECSS-75 would be required in the United States by the year 2000 . The NECSS-75 fuel cycle center evaluations showed that large scale fuel cycle centers present no real technical difficulties in siting from a radiological effluent and safety standpoint. Some construction economies may be attainable with fuel cycle centers; such centers offer opportunities for improved waste management systems. Combined centers consisting of reactors and fuel reprocessing and mixed oxide fuel fabrication plants were also studied in the NECSS. Such centers can eliminate not only shipment of plutonium, but also mixed oxide fuel. Increased fuel cycle costs result from implementation of combined centers unless the fuel reprocessing plants are commercial-sized. Development of plutonium-burning reactors could reduce any

  16. A multisite interaction expansion of the total energy in metals

    International Nuclear Information System (INIS)

    Sowa, E.C.; Gonis, A.

    1994-01-01

    The local-density approximation provides a proper setting for the decomposition of total energy into many-body (many-atom) contributions. Multiple scattering theory in turn provides a convenient framework for carrying out this process. We illustrate this concept with calculations on a linear chain of atoms in bulk copper

  17. Determining the Life Cycle Energy Efficiency of Six Biofuel Systems in China: A Data Envelopment Analysis

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Tan, Shiyu; Dong, Lichun

    2014-01-01

    This aim of this study was to use Data Envelopment Analysis (DEA) to assess the life cycle energy efficiency of six biofuels in China. DEA can differentiate efficient and non-efficient scenarios, and it can identify wasteful energy losses in biofuel production. More specifically, the study has...

  18. Seaweed as innovative feedstock for energy and feed – Evaluating the impacts through a Life Cycle Assessment

    DEFF Research Database (Denmark)

    Seghetta, Michele; Romeo, Daina; D'Este, Martina

    2017-01-01

    a comparative Life Cycle Assessment of five scenarios identifying the critical features affecting resource efficiency and environmental performance of the systems with the aim of providing decision support for the design of future industrial scale production processes. The results show that all scenarios......Offshore cultivation of seaweed provides an innovative feedstock for biobased products supporting blue growth in northern Europe. This paper analyzes two alternative exploitation pathways: energy and protein production. The first pathway is based on anaerobic digestion of seaweed which is converted...... into biogas, for production of electricity and heat, and digestate, used as fertilizer; the second pathway uses seaweed hydrolysate as a substrate for cultivation of heterotrophic microalgae. As a result the seaweed sugars are consumed while new proteins are produced enhancing the total output. We performed...

  19. The total flow concept for geothermal energy conversion

    Science.gov (United States)

    Austin, A. L.

    1974-01-01

    A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.

  20. Life cycle energy, environment and economic assessment of soybean-based biodiesel as an alternative automotive fuel in China

    International Nuclear Information System (INIS)

    Hu, Zhiyuan; Tan, Piqiang; Lou, Diming; Yan, Xiaoyu

    2008-01-01

    Life cycle energy, environment and economic assessment for conventional diesel (CD) and soybean-based biodiesel (SB) in China was carried out in this paper. The results of the assessment have shown that compared with CD, SB has similar source-to-tank (StT) total energy consumption, 76% lower StT fossil energy consumption, 79% higher source-to-wheel (StW) nitrogen oxides (NO X ) emissions, 31%, 44%, 36%, 29%, and 67% lower StW hydrocarbon (HC), carbon monoxide (CO), particulate matter (PM), sulfur oxides (SO X ), and carbon dioxide (CO 2 ) emissions, respectively. SB is thus considered to be much more renewable and cleaner than CD. However, the retail price of SB at gas stations would be about 86% higher than that of CD without government subsidy according to the cost assessment and China had to import large amount of soybean to meet the demand in recent years. Therefore, although SB is one of the most promising clean and alternative fuels, currently it is not a good choice for China. It is strategically important for China to diversify the feedstock for biodiesel and to consider other kinds of alternative fuels to substitute CD. (author)

  1. Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis

    International Nuclear Information System (INIS)

    Honma, Satoshi; Hu, Jin-Li

    2014-01-01

    Highlights: • This study compares Japan with other developed countries for energy efficiency at the industry level. • We compute the total-factor energy efficiency (TFEE) for industries in 14 developed countries in 1995–2005. • Energy conservation can be further optimized in Japan’s industry sector. • Japan experienced a slight decrease in the weighted TFEE from 0.986 in 1995 to 0.927 in 2005. • Japan should adapt energy conservation technologies from the primary benchmark countries: Germany, UK, and USA. - Abstract: Japan’s energy security is more vulnerable today than it was before the Fukushima Daiichi nuclear power plant accident in March 2011. To alleviate its energy vulnerability, Japan has no choice but to improve energy efficiency. To aid in this improvement, this study compares Japan’s energy efficiency at the industry level with that of other developed countries. We compute the total-factor energy efficiency (TFEE) of industries in 14 developed countries for 1995–2005 using data envelopment analysis. We use four inputs: labor, capital stock, energy, and non-energy intermediate inputs. Value added is the only relevant output. Results indicate that Japan can further optimize energy conservation because it experienced only a marginal decrease in the weighted TFEE, from 0.986 in 1995 to 0.927 in 2005. To improve inefficient industries, Japan should adapt energy conservation technologies from benchmark countries such as Germany, the United Kingdom, and the United States

  2. Proceeding of the Fourth Scientific Presentation on Nuclear Fuel Cycle: Technology of Nuclear Fuel Cycle facing the Challenge of Energy Need on the 21-st Century

    International Nuclear Information System (INIS)

    Suripto, A.; Sajuti, D.; Aiman, S.; Yuwono, I.; Fathurrachman; Suwarno, H.; Suwardi; Amini, S.; Widjaksana

    1999-03-01

    The proceeding contains papers presented in the Fourth Scientific Presentation on Nuclear Fuel Element Cycle with theme of Technology of Nuclear Fuel Cycle facing the Challenge of Energy Need on the 21 s t Century, held on 1-2 December in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and management of nuclear fuel cycle. There are 36 papers indexed individually. (ID)

  3. Risk informed life cycle plant design

    International Nuclear Information System (INIS)

    Hill, Ralph S. III; Nutt, Mark M.

    2003-01-01

    Many facility life cycle activities including design, construction, fabrication, inspection and maintenance are evolving from a deterministic to a risk-informed basis. The risk informed approach uses probabilistic methods to evaluate the contribution of individual system components to total system performance. Total system performance considers both safety and cost considerations including system failure, reliability, and availability. By necessity, a risk-informed approach considers both the component's life cycle and the life cycle of the system. In the nuclear industry, risk-informed approaches, namely probabilistic risk assessment (PRA) or probabilistic safety assessment (PSA), have become a standard tool used to evaluate the safety of nuclear power plants. Recent studies pertaining to advanced reactor development have indicated that these new power plants must provide enhanced safety over existing nuclear facilities and be cost-competitive with other energy sources. Risk-informed approaches, beyond traditional PRA, offer the opportunity to optimize design while considering the total life cycle of the plant in order to realize these goals. The use of risk-informed design approaches in the nuclear industry is only beginning, with recent promulgation of risk-informed regulations and proposals for risk-informed codes. This paper briefly summarizes the current state of affairs regarding the use of risk-informed approaches in design. Key points to fully realize the benefit of applying a risk-informed approach to nuclear power plant design are then presented. These points are equally applicable to non-nuclear facilities where optimization for cost competitiveness and/or safety is desired. (author)

  4. Comparing the Life Cycle Energy Consumption, Global Warming and Eutrophication Potentials of Several Water and Waste Service Options

    Science.gov (United States)

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG...

  5. An Overview of the NASA Energy and Water cycle Study (NEWS) and the North American Water Program (NAWP)

    Science.gov (United States)

    Houser, P. R.

    2014-12-01

    NEWS: 10 years ago, NASA established the NASA Energy and Water-cycle Study (NEWS), whose long-term grand challenge is to document and enable improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. The NEWS program builds upon existing NASA-supported basic research in atmospheric physics and dynamics, radiation, climate modeling, and terrestrial hydrology. While these NASA programs fund research activities that address individual aspects of the global energy and water cycles, they are not specifically designed to generate a coordinated result. NEWS developed the first coordinated attempt to describe the complete global energy and water cycle using existing and forthcoming satellite and ground based observations, and laying the foundation for essential NEWS developments in model representations of atmospheric energy and water exchange processes. This comprehensive energy and water data analysis program exploited crucial datasets, some requiring complete re-processing, and new satellite measurements. NAWP: Dramatically changing climates has had an indelible impact on North America's water crisis. To decisively address these challenges, we recommend that NAWP coalesce an interdisciplinary, international and interagency effort to make significant contributions to continental- to decision-scale hydroclimate science and solutions. By entraining, integrating and coordinating the vast array of interdisciplinary observational and prediction resources available, NAWP will significantly advance skill in predicting, assessing and managing variability and changes in North American water resources. We adopt three challenges to organize NAWP efforts. The first deals with developing a scientific basis and tools for mitigating and adapting to changes in the water supply-demand balance. The second challenge is benchmarking; to use incomplete and uncertain observations to assess water storage and quality dynamics, and

  6. Resonance capture reactions with a total energy detector

    International Nuclear Information System (INIS)

    Macklin, R.L.

    1978-01-01

    The determination of nuclear reaction rates is considered; the Moxon--Rae detector and pulse height weighting are reviewed. This method has been especially useful in measuring (n,γ) cross sections. Strength functions and level spacing can be derived from (n,γ) yields. The relevance of neutron capture data to astrophysical nucleosynthesis is pointed out. The total gamma energy detection method has been applied successfully to radiative neutron capture cross section measurements. A bibliography of most of the published papers reporting neutron capture cross sections measured by the pulse height weighting technique is included. 55 references

  7. An Improved Multi-Evaporator Adsorption Desalination Cycle for GCC Countries

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-03-29

    In Gulf Cooperation Council (GCC) countries, cogeneration based desalination processes consume almost 25% of the total annual energy and it is increasing at 2.2% annually. The high fresh water demand is attributed to high gross domestic product (GDP) growth rate, 24%, and the high water languishes, more than 10%. Over the past two decades, GCC countries have spent tens of billion dollars to expand their present and planned desalination capacities. It is foreseeable that with business-as-usual scenario, the domestic oil consumption of Saudi Arabia may exceed its production capacity by 2040. Innovative and sustainable water production solutions are needed urgently for future water supplies without environment impact. In this paper, a hybrid desalination cycle is proposed by integrating multi cascaded-evaporators (CE) with an adsorption cycle (AD). In this new innovative cycle, AD desorbed vapors are supplied to the CE to exploit the latent condensation energy within the evaporators arranged in both pressures-temperatures cascaded manner to improves the performance ratio (PR) of the cycle. Hybrid cycle shows more than 10 folds water production improvement as compared to conventional AD cycle due to synergetic effect. This concept is demonstrated in a laboratory pilot plant using a 3 cascaded evaporators pilot and simulation of 8 evaporators hybrid cycle.

  8. Thermodynamic analysis of a binary power cycle for different EGS geofluid temperatures

    International Nuclear Information System (INIS)

    Zhang Fuzen; Jiang Peixe

    2012-01-01

    Enhanced Geothermal Systems show promise for meeting growing energy demands. The Organic Rankine Cycle (ORC) can be used to convert low and medium-temperature geothermal energy to electricity, but the working fluid must be carefully selected for the ORC system design. This paper compares the system performance using R134a, isobutane, R245fa and isopentane for four typical geofluid temperatures below 200 °C. Three type (subcritical, superheated and transcritical) power generation cycles and two heat transfer control models (total heat control model and vaporization control model) are used for different EGS source temperatures and working fluids. This paper presents a basic analysis method to select the most suitable working fluid and to optimize the operating and design parameters for a given EGS resource based on the thermodynamics. - Highlights: ► We present a method to selecting working fluids for EGS resources. ► Working fluids with critical temperatures near geofluid temperature is priority. ► Operating conditions requiring use of total heat control model give good behave. ► Transcritical cycle is good choice.

  9. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  10. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  11. 78 FR 23312 - Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National...

    Science.gov (United States)

    2013-04-18

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National Enrichment Facility, Eunice, New Mexico..., National Enrichment Facility in Eunice, New Mexico, and has authorized the introduction of uranium...

  12. A review of the use of organic Rankine cycle power systems for maritime applications

    DEFF Research Database (Denmark)

    Mondejar, M. E.; Andreasen, J. G.; Pierobon, L.

    2018-01-01

    Diesel engines are by far the most common means of propulsion aboard ships. It is estimated that around half of their fuel energy consumption is dissipated as low-grade heat. The organic Rankine cycle technology is a well-established solution for the energy conversion of thermal power from biomass...... combustion, geothermal reservoirs, and waste heat from industrial processes. However, its economic feasibility has not yet been demonstrated for marine applications. This paper aims at evaluating the potential of using organic Rankine cycle systems for waste heat recovery aboard ships. The suitable vessels...... and engine heat sources are identified by estimating the total recoverable energy. Different cycle architectures, working fluids, components, and control strategies are analyzed. The economic feasibility and integration on board are also evaluated. A number of research and development areas are identified...

  13. Life cycle evaluation of an intercooled gas turbine plant used in conjunction with renewable energy

    Directory of Open Access Journals (Sweden)

    Thank-God Isaiah

    2016-09-01

    Full Text Available The life cycle estimation of power plants is important for gas turbine operators. With the introduction of wind energy into the grid, gas turbine operators now operate their plants in Load–Following modes as back-ups to the renewable energy sources which include wind, solar, etc. The motive behind this study is to look at how much life is consumed when an intercooled power plant with 100 MW power output is used in conjunction with wind energy. This operation causes fluctuations because the wind energy is unpredictable and overtime causes adverse effects on the life of the plant – The High Pressure Turbine Blades. Such fluctuations give rise to low cycle fatigue and creep failure of the blades depending on the operating regime used. A performance based model that is capable of estimating the life consumed of an intercooled power plant has been developed. The model has the capability of estimating the life consumed based on seasonal power demands and operations. An in-depth comparison was undertaken on the life consumed during the seasons of operation and arrives at the conclusion that during summer, the creep and low cycle life is consumed higher than the rest periods. A comparison was also made to determine the life consumed between Load–Following and stop/start operating scenarios. It was also observed that daily creep life consumption in summer was higher than the winter period in-spite of having lower average daily operating hours in a Start–Stop operating scenario.

  14. Technology cycles and technology revolutions

    Energy Technology Data Exchange (ETDEWEB)

    Paganetto, Luigi; Scandizzo, Pasquale Lucio

    2010-09-15

    Technological cycles have been characterized as the basis of long and continuous periods economic growth through sustained changes in total factor productivity. While this hypothesis is in part consistent with several theories of growth, the sheer magnitude and length of the economic revolutions experienced by humankind seems to indicate surmise that more attention should be given to the origin of major technological and economic changes, with reference to one crucial question: role of production and use of energy in economic development.

  15. Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle

    International Nuclear Information System (INIS)

    Al-Sulaiman, Fahad A.; Dincer, Ibrahim; Hamdullahpur, Feridun

    2012-01-01

    In this study, energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle (ORC) are presented. Four cases are considered for analysis: electrical-power, cooling-cogeneration, heating-cogeneration and trigeneration cases. The results obtained reveal that the best performance of the trigeneration system considered can be obtained with the lowest ORC evaporator pinch temperature considered, T pp = 20 K, and the lowest ORC minimum temperature, T 9 = 345 K. In addition, this study reveals that there is a significant improvement when trigeneration is used as compared to only electrical power production. This study demonstrates that the fuel utilization efficiency increases, in average, from 12% for electrical power to 88% for trigeneration. Moreover, the maximum exergy efficiency of the ORC is 13% and, when trigeneration is used, it increases to 28%. Furthermore, this study reveals that the electrical to cooling ratio can be controlled through changing the ORC evaporator pinch point temperature and/or the pump inlet temperature. In addition, the study reveals that the biomass burner and the ORC evaporator are the main two sources of exergy destruction. The biomass burner contributes to 55% of the total destructed exergy whereas the ORC evaporator contributes to 38% of the total destructed exergy. -- Highlights: ► The best performance can be obtained with the lowest ORC evaporator pinch temperature and the lowest ORC minimum temperature. ► There is, on average, 75 % gain in energy efficiency for trigeneration compared to electrical system. ► There is, on average, 17% gain in exergy efficiency when trigeneration is used as compared to electrical system. ► The electrical to cooling ratio is sensitive to the variation of the pinch point temperature and pump inlet temperature. ► The two main sources of the exergy destruction are the biomass burner with 55% and the ORC evaporator with 38%.

  16. Scenario comparisons of gasification technology using energy life cycle assessment for bioenergy recovery from rice straw in Taiwan

    International Nuclear Information System (INIS)

    Shie, J.L.; Lee, C.H.; Chen, C.S.; Lin, K.L.; Chang, C.Y.

    2014-01-01

    Highlights: • The energy balances of potential gasification technology and limitation boundary are evaluated. • The transportation and pre-treatment are the greatest parts of energy use. • Every technology process has positive energy benefits at all on-site pre-treatment cases. • The optimal ranges of transportation distance and treatment capacity are suggested. • The optimal technology from the tendency model is addressed. - Abstract: This study uses different scenarios to evaluate, by means of energy life-cycle assessments (ELCAs), the energy balance of potential gasification technology and limitation boundaries in Taiwan. Rice straw is chosen as the target material in this study because it is the most significant agriculture waste in Taiwan. Energy products include syngas (CO + H 2 ), methane, carbon dioxide and carbon black residue. The scenarios simulate capacities of 50,000–200,000 tons/year. The distances of collection and transportation are calculated by a circular area 50–100 km in diameter. Also, the on-site and off-site pretreatments of rice straw are evaluated. For this optimum scenario case, the average of the total input energy for the assessed systems is about 15.9% of the average output energy; the value of the net energy balance (NEB) is 0.841. Every technological process has positive energy benefits at all on-site scenario cases. As the capacity is increased, the energy consumption required for transportation increases and the values of the energy indicators decrease. According to the limitation boundaries from the tendency model at on-site cases, the suggested transportation distance and treatment capacity are below 114.72 km and 251,533 tons/year, respectively, while the energy return on investment (EROI) value is greater than 1

  17. High electrochemical energy storage in self-assembled nest-like CoO nanofibers with long cycle life

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Atin; Maiti, Sandipan [CSIR-Central Glass & Ceramic Research Institute, Fuel Cell & Battery Division (India); Sreemany, Monjoy [CSIR-Central Glass & Ceramic Research Institute, Advanced Mechanical and Materials Characterization Division (India); Mahanty, Sourindra, E-mail: mahanty@cgcri.res.in [CSIR-Central Glass & Ceramic Research Institute, Fuel Cell & Battery Division (India)

    2016-04-15

    Developing efficient electrode material is essential to keep pace with the demand for high energy density together with high power density and long cycle life in next generation energy storage devices. Herein, we report the electrochemical properties of hydrothermally synthesized CoO nanofibers of diameter 30–80 nm assembled in a nest-like morphology which showed a very high reversible lithium storage capacity of 2000 mA h g{sup −1} after 600 cycles at 0.1 mA cm{sup −2} as lithium-ion battery anode. Systematic investigation by ex situ transmission electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, and impedance spectroscopy at different cycling stages indicated that the extraordinary performance could be related to an enhancement in the Co{sup 2+}↔Co{sup x+} (2 < x ≤ 3) redox process in addition to the commonly believed structural and morphological evolution during cycling favoring generation of large number of accessible active sites for lithium insertion. Further, when examined as a supercapacitor electrode in 1.0 M KOH, a capacitance of 1167 F g{sup −1} is achieved from these 1D CoO nanofibers after 10,000 charge discharge cycles at a high current density of 5 A g{sup −1} demonstrating good application potential.Graphical AbstractNest-like CoO nanofibers showed a reversible lithium storage capacity of 2000 mA h g{sup −1} after 600 cycles as LIB anode and a capacitance of 1167 F g{sup −1} after 10,000 cycles as electrochemical supercapacitor.

  18. Forward elastic scattering and total cross-section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.

    1985-01-01

    The successful cooling technique of antiproton beams at CERN has recently allowed the acceleration of proton and antiproton bunches simultaneously circulating in opposite directions in the SPS. Hadron-hadron collisions could so be produced at a centre-of-mass energy one order of magnitude higher than previously available, thus opening a new wide range of energies to experimentation. This technique also made it possible to replace one of the two proton beams in the ISR by a beam of antiprotons, allowing a direct precise comparison, by the same detectors, of pp and anti pp processes at the same energies. The recent results are summarized of the forward elastic scattering and total cross-section in this new energy domain. (Mori, K.)

  19. Activities Contributing to Total Energy Expenditure in the United States: Results from the NHAPS Study

    Directory of Open Access Journals (Sweden)

    Block Gladys

    2004-02-01

    Full Text Available Abstract Background Physical activity is increasingly recognized as an important factor influencing health and disease status. Total energy expenditure, both low-intensity and high-intensity, contributes to maintenance of healthy body weight. This paper presents the results of a quantitative approach to determining the activities that contribute to total energy expenditure in the United States. Methods Data from the National Human Activity Pattern Survey (NHAPS were used. In 1992–1994 the NHAPS sampled 4,185 females and 3,330 males, aged 18 years and over, weighted to be representative of the 48 contiguous United States. A detailed report of each activity performed in the previous 24 hours was obtained. A score was created for each activity, by multiplying duration and intensity for each individual and summing across individuals. This score was then used to rank each activity according to its contribution to total population energy expenditure, for the total sample and separately for each gender, race, age, region, and season. Results This analysis reveals our society to be primarily sedentary; leisure time physical activity contributed only approximately 5% of the population's total energy expenditure. Not counting sleeping, the largest contributor to energy expenditure was "Driving a car", followed by "Office work" and "Watching TV". Household activities accounted for 20.1% and 33.3% of energy expenditure for males and females respectively. Conclusion The information presented in this paper may be useful in identifying common activities that could be appropriate targets for behavioral interventions to increase physical activity.

  20. Factors influencing the life cycle burdens of the recovery of energy from residual municipal waste.

    Science.gov (United States)

    Burnley, Stephen; Coleman, Terry; Peirce, Adam

    2015-05-01

    A life cycle assessment was carried out to assess a selection of the factors influencing the environmental impacts and benefits of incinerating the fraction of municipal waste remaining after source-separation for reuse, recycling, composting or anaerobic digestion. The factors investigated were the extent of any metal and aggregate recovery from the bottom ash, the thermal efficiency of the process, and the conventional fuel for electricity generation displaced by the power generated. The results demonstrate that incineration has significant advantages over landfill with lower impacts from climate change, resource depletion, acidification, eutrophication human toxicity and aquatic ecotoxicity. To maximise the benefits of energy recovery, metals, particularly aluminium, should be reclaimed from the residual bottom ash and the energy recovery stage of the process should be as efficient as possible. The overall environmental benefits/burdens of energy from waste also strongly depend on the source of the power displaced by the energy from waste, with coal giving the greatest benefits and combined cycle turbines fuelled by natural gas the lowest of those considered. Regardless of the conventional power displaced incineration presents a lower environmental burden than landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Total Corporate social responsibility report 2004. Sharing our energy

    International Nuclear Information System (INIS)

    2005-05-01

    This document presents the social and environmental activities of the group Total for the year 2004. It provides information on the ethical aspects of the governance, the industrial security, the environmental policy, the public health and the occupational safety, the social liability and the economical and social impact of the group activities in the local development, the contribution to the climatic change fight and the development of other energy sources. (A.L.B.)

  2. Mechanical properties of carbynes investigated by ab initio total-energy calculations

    DEFF Research Database (Denmark)

    Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola

    2012-01-01

    As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...

  3. Fuel cycle comparison of distributed power generation technologies

    International Nuclear Information System (INIS)

    Elgowainy, A.; Wang, M.Q.

    2008-01-01

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions

  4. Changes in Energy Cost and Total External Work of Muscles in Elite Race Walkers Walking at Different Speeds

    Directory of Open Access Journals (Sweden)

    Chwała Wiesław

    2014-12-01

    Full Text Available The aim of the study was to assess energy cost and total external work (total energy depending on the speed of race walking. Another objective was to determine the contribution of external work to total energy cost of walking at technical, threshold and racing speed in elite competitive race walkers.

  5. Open cycle ocean thermal energy conversion system structure

    Science.gov (United States)

    Wittig, J. Michael

    1980-01-01

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating

  6. Achievement report for fiscal 1982 on Sunshine Program-entrusted research and development. Research on hydrogen energy total system; 1982 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    In this research on a hydrogen energy total system, studies are conducted on the plan of a hydrogen energy proving pilot base and on hydrogen as fuel for automobiles. It is estimated that the construction of a hydrogen energy proving pilot base will cost 7.125-billion yen in total. The sum includes 6.410-billion yen for the construction of a system on an island named Island A, 500-million yen for structures on an island named Island B, and 215-million yen for the construction of a marine transportation system between the two islands. Large shares will go to a hydroelectric power plant and a hydrogen liquefaction system, the two occupying approximately half of the total sum. In the study of hydrogen as fuel for automobiles, it is concluded that hydrogen is advantageously employed as fuel for automobiles. When comparison is made in terms of heat value, it is found that even a hydrogen engine which is a mere modification of a currently used engine is comparable to the currently used engine in terms of performance. As for abnormal combustion, a hydrogen/air 2-system injection method is contrived, and this solves the problem almost completely. Cryogenic hydrogen is advantageous in both NOx emission and heat efficiency though within certain limitations. From the viewpoint of safety, the recommended automobile fuel structural formula is GH{sub 2}(MH). (NEDO)

  7. Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation

    International Nuclear Information System (INIS)

    Yu Suiran; Tao Jing

    2009-01-01

    This paper summarizes the research of Monte Carlo simulation-based Economic, Energy and Environmental (3E) Life Cycle Assessment (LCA) of the three Biomass-based Fuel Ethanol (BFE) projects in China. Our research includes both theoretical study and case study. In the theoretical study part, 3E LCA models are structured, 3E Index Functions are defined and the Monte Carlo simulation is introduced to address uncertainties in BFE life cycle analysis. In the case study part, projects of Wheat-based Fuel Ethanol (WFE) in Central China, Corn-based Fuel Ethanol (CFE) in Northeast China, and Cassava-based Fuel Ethanol (CFE) in Southwest China are evaluated from the aspects of economic viability and investment risks, energy efficiency and airborne emissions. The life cycle economy assessment shows that KFE project in Guangxi is viable, while CFE and WFE projects are not without government's subsidies. Energy efficiency assessment results show that WFE, CFE and KFE projects all have positive Net Energy Values. Emissions results show that the corn-based E10 (a blend of 10% gasoline and 90% ethanol by volume), wheat-based E10 and cassava-base E10 have less CO 2 and VOC life cycle emissions than conventional gasoline, but wheat-based E10 and cassava-based E10 can generate more emissions of CO, CH 4 , N 2 O, NO x , SO 2 , PM 10 and corn-based E10 can has more emissions of CH 4 , N 2 O, NO x , SO, PM 10 .

  8. Energy-efficiency-oriented cascade control for vapor compression refrigeration cycle systems

    International Nuclear Information System (INIS)

    Yin, Xiaohong; Wang, Xinli; Li, Shaoyuan; Cai, Wenjian

    2016-01-01

    The vapor compression refrigeration cycle (VCC) system plays an important role and accounts for a large proportion of energy consumption from the heating, ventilating, and air-conditioning (HVAC) system. The traditional control approaches, for example PID control method, however, cannot meet the cooling demands with the satisfactory energy efficiency as well. This paper presents a novel energy-efficiency-oriented cascade control strategy for the VCC systems to improve the energy efficiency and fulfill the cooling requirements of indoor occupants simultaneously. In outer loop, a mathematic model is developed to determine the set point of superheat by a PI controller based on the nonlinear correlation between cooling demands and superheat degree. In inner loop, the pressure difference and superheat degree of evaporator are controlled by a model predictive control (MPC) strategy to track the values which are determined in the outer loop, simultaneously to enhance system efficiency of the VCC systems. Simulation and experiments studies are carried out to show the effectiveness of this proposed cascade control strategy and the results indicate significant tracking performance and energy efficiency improvements on VCC system. Compared to other schemes, the proposed cascade control strategy can improve energy efficiency by up to 5.8%. - Highlights: • Energy-efficiency-oriented cascade control strategy for VCC system is presented. • The correlation between cooling requirements and superheat is analyzed. • A MPC-based controller is developed to maximize system energy efficiency. • Experimental results confirm the effectiveness of the proposed control strategy.

  9. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model

    Science.gov (United States)

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu

    2017-09-01

    Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model—GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.

  10. Fluorometric determination of free and total isocitrate in bovine milk

    DEFF Research Database (Denmark)

    Larsen, Torben

    2014-01-01

    Isocitrate is an intermediate metabolite in the citric acid cycle found both inside the mitochondria as well as outside in the cytosolic shunt. Oxidation of isocitrate is believed to deliver large fractions of energy [i.e., reducing equivalents (NADPH) in the bovine udder] used for fatty acid...... and cholesterol synthesis. This study describes a new analytical method for determination of free and total isocitrate in bovine milk where time-consuming pretreatment of the sample is not necessary. Methods for estimation of both total isocitrate and free isocitrate are described, the difference being...

  11. A comment on the calculation of the total-factor energy efficiency (TFEE) index

    International Nuclear Information System (INIS)

    Chang, Ming-Chung

    2013-01-01

    This study provides a no-output growth model to conveniently calculate the total-factor energy efficiency (TFEE) index originally proposed by Hu and Wang (2006). The TFEE index serves as a very well-known and popular means of estimating overall energy efficiency. While many previous studies have used the indicator of energy inefficiency, including the indicator of energy intensity (i.e., Energy input/Gross Domestic Product (GDP)) to measure energy efficiency, Hu and Kao (2007) point out that the indicator of energy intensity is not only a partial-factor energy efficiency indicator, but that this partial-factor ratio is also quite inappropriate for analyzing the impact of changing energy use over time. The TFEE index overcomes the disadvantage of the indicator of energy intensity as mentioned above, but five steps are needed to calculate the TFEE score. In this study, we provide a no-output growth model to conveniently calculate the TFEE score. Furthermore, we extend this no-output growth model to an output growth model. This study concludes that the output growth model not only makes it easier to calculate the TFEE index than the model proposed by Hu and Wang (2006) and Hu and Kao (2007), but that it can also obtain better TFEE scores. - Highlights: ► The comment is on the total-factor energy efficiency (TFEE) index. ► Two extension models are no-output growth model and output growth model. ► The model in this study makes it easier to calculate the TFEE index.

  12. An RF energy harvesting power management circuit for appropriate duty-cycled operation

    Science.gov (United States)

    Shirane, Atsushi; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya

    2015-04-01

    In this study, we present an RF energy harvesting power management unit (PMU) for battery-less wireless sensor devices (WSDs). The proposed PMU realizes a duty-cycled operation that is divided into the energy charging time and discharging time. The proposed PMU detects two types of timing, thus, the appropriate timing for the activation can be recognized. The activation of WSDs at the proper timing leads to energy efficient operation and stable wireless communication. The proposed PMU includes a hysteresis comparator (H-CMP) and an RF signal detector (RF-SD) to detect the timings. The proposed RF-SD can operate without the degradation of charge efficiency by reusing the RF energy harvester (RF-EH) and H-CMP. The PMU fabricated in a 180 nm Si CMOS demonstrated the charge operation using the RF signal at 915 MHz and the two types of timing detection with less than 124 nW in the charge phase. Furthermore, in the active phase, the PMU generates a 0.5 V regulated power supply from the charged energy.

  13. Sizewell B cycle 5 core design with Framatome ANP's CASCADE-3D and British Energy's PANTHER

    International Nuclear Information System (INIS)

    Attale, F.; Koegl, J.; Knight, M.; Bryce, P.

    2001-01-01

    Sizewell B Cycle 5 is the first cycle, after 4 cycles with BNFL fuel, with a reload consisting of Framatome ANP HTP (high thermal performance) fuel assemblies. The impact of this fuel vendor change on the Nuclear Design area is that, according to British energy's (BE) practice, the Framatome ANP's nuclear design code system CASCADE-3D is used for the majority of the cycle specific safety case calculations. However, other parts of the safety submission (e.g. 3D transient analyses) are made by using the BE code PANTHER. Before using in parallel two different code systems for reload core licensing extensive comparisons of applied methodologies and obtained results were required to ensure an acceptable level of agreement. (orig.)

  14. Optimal household refrigerator replacement policy for life cycle energy, greenhouse gas emissions, and cost

    International Nuclear Information System (INIS)

    Kim, Hyung Chul; Keoleian, Gregory A.; Horie, Yuhta A.

    2006-01-01

    Although the last decade witnessed dramatic progress in refrigerator efficiencies, inefficient, outdated refrigerators are still in operation, sometimes consuming more than twice as much electricity per year compared with modern, efficient models. Replacing old refrigerators before their designed lifetime could be a useful policy to conserve electric energy and greenhouse gas emissions. However, from a life cycle perspective, product replacement decisions also induce additional economic and environmental burdens associated with disposal of old models and production of new models. This paper discusses optimal lifetimes of mid-sized refrigerator models in the US, using a life cycle optimization model based on dynamic programming. Model runs were conducted to find optimal lifetimes that minimize energy, global warming potential (GWP), and cost objectives over a time horizon between 1985 and 2020. The baseline results show that depending on model years, optimal lifetimes range 2-7 years for the energy objective, and 2-11 years for the GWP objective. On the other hand, an 18-year of lifetime minimizes the economic cost incurred during the time horizon. Model runs with a time horizon between 2004 and 2020 show that current owners should replace refrigerators that consume more than 1000 kWh/year of electricity (typical mid-sized 1994 models and older) as an efficient strategy from both cost and energy perspectives

  15. Cycle-to-cycle variation analysis of in-cylinder flow in a gasoline engine with variable valve lift

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Daming; Wang, Tianyou; Wang, Gangde [Tianjin University, State Key Laboratory of Engines, Tianjin (China); Jia, Ming [Dalian University of Technology, School of Energy and Power Engineering, Dalian (China)

    2012-09-15

    In spark ignition engines, cycle-to-cycle variation (CCV) limits the expansion of the operating range because it induces the load variations and the occurrence of misfire and/or knock. Variable valve actuation (VVA) or variable valve lift (VVL) has been widely used in SI engines to improve the volumetric efficiency or to reduce the pumping losses. It is necessary to investigate the CCV of in-cylinder gas motion and mixing processes in SI engines with VVA/VVL system. This study is aimed to analyze the CCV of the tumble flow in a gasoline direct injection (GDI) engine when VVL is employed. Cycle-resolved digital particle image velocimetry (CRD-PIV) data were acquired for the in-cylinder flow field of a motored four-stroke multi-valve GDI optical engine. The CCV of in-cylinder gas motion with a series of valve profiles and different maximum valve lift (MVL) was analyzed, including cyclic variation characteristics of bulk flow (tumble centre and tumble ratio), large- and small-scale fluctuation, total kinetic energy, and circulation. The results show that the CCV of the in-cylinder flow is increased with reduced MVL. With lower MVLs, stable tumble flow cannot be formed in the cylinder, and the ensemble-averaged tumble ratio decreases to zero before the end of the compression stroke due to violent variation. In addition, the evolution of the circulation shows larger variation with lower MVLs that indicates the 'spin' of the small-scale eddy in the flow field presents violent fluctuation from one cycle to another, especially at the end of the compression stroke. Moreover, the analyze of the kinetic energy indicates the total energy of the flow field with lower MVLs increases significantly comparing with higher MVL conditions due to the intake flow jet at the intake valve seat in the intake stroke. However, the CCV of the in-cylinder flow becomes more violent under lower MVL conditions, especially for the low-frequency fluctuation kinetic energy. Thus, present

  16. BioEnergy transport systems. Life cycle assessment of selected bioenergy systems

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Goeran

    1999-07-01

    Biomass for energy conversion is usually considered as a local resource. With appropriate logistic systems, access to biomass can be improved over a large geographical area. In this study, life cycle assessment (LCA) has been used as method to investigate the environmental impacts of selected bioenergy transport chains. As a case study, chains starting in Sweden and ending in Holland have been investigated. Biomass originates from tree sections or forest residues, the latter upgraded to bales or pellets. The study is concentrated on production of electricity, hot cooling water is considered as a loss. Electricity is, as the main case, produced from solid biomass in the importing country. Electricity can also be produced in the country of origin and exported via the trans-national grid as transportation media. As an alternative, a comparison is made with a coal cycle. The results show that contribution of emissions from long-range transportation is of minor importance. The use of fuels and electricity for operating machines and transportation carriers requires a net energy input in bioenergy systems which amounts to typically 7-9% of delivered electrical energy from the system. Emissions of key substances such as NO{sub x}, CO, S, hydrocarbons, and particles are low. Emissions of CO{sub 2} from biocombustion are considered to be zero since there is approximately no net contribution of carbon to the biosphere in an energy system based on biomass. A method to quantify non-renewability is presented. For coal, the non-renewability factor is calculated to be 110%. For most of the cases with bioenergy, the non-renewability factor is calculated to be between 6 and 11%. Reclamation of biomass results in certain losses of nutrients such as nitrogen, phosphorus and base cations such as K, Ca and Mg. These are balanced by weathering, vitalisation or ash recirculation procedures. Withdrawal of N from the ecological system is approximately 10 times the load from the technical

  17. Improving the Energy Performance in Existing Non-residential Buildings in Denmark Using the Total Concept Method

    DEFF Research Database (Denmark)

    Krawczyk, Pawel; Afshari, Alireza; Simonsen, Graves K.

    2016-01-01

    This project is a part of a joint European research project, “Total Concept”, which is a method for improving the energy performance in existing non-Residential buildings. The method focuses on achieving maximum energy savings in a Building within the profitability frames set by a building owner...... was to form a package of measures for an energy performance improvement in the building based on the Total Concept method. This paper presents results from recently analyzed data on two renovated Danish buildings according to the rules of “Total Concept” method. According to the estimation done based...

  18. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage.

    Science.gov (United States)

    Hu, Bo; DeBruler, Camden; Rhodes, Zayn; Liu, T Leo

    2017-01-25

    Redox flow batteries (RFBs) are a viable technology to store renewable energy in the form of electricity that can be supplied to electricity grids. However, widespread implementation of traditional RFBs, such as vanadium and Zn-Br 2 RFBs, is limited due to a number of challenges related to materials, including low abundance and high costs of redox-active metals, expensive separators, active material crossover, and corrosive and hazardous electrolytes. To address these challenges, we demonstrate a neutral aqueous organic redox flow battery (AORFB) technology utilizing a newly designed cathode electrolyte containing a highly water-soluble ferrocene molecule. Specifically, water-soluble (ferrocenylmethyl)trimethylammonium chloride (FcNCl, 4.0 M in H 2 O, 107.2 Ah/L, and 3.0 M in 2.0 NaCl, 80.4 Ah/L) and N 1 -ferrocenylmethyl-N 1 ,N 1 ,N 2 ,N 2 ,N 2 -pentamethylpropane-1,2-diaminium dibromide, (FcN 2 Br 2 , 3.1 M in H 2 O, 83.1 Ah/L, and 2.0 M in 2.0 M NaCl, 53.5 Ah/L) were synthesized through structural decoration of hydrophobic ferrocene with synergetic hydrophilic functionalities including an ammonium cation group and a halide anion. When paired with methyl viologen (MV) as an anolyte, resulting FcNCl/MV and FcN 2 Br 2 /MV AORFBs were operated in noncorrosive neutral NaCl supporting electrolytes using a low-cost anion-exchange membrane. These ferrocene/MV AORFBs are characterized as having high theoretical energy density (45.5 Wh/L) and excellent cycling performance from 40 to 100 mA/cm 2 . Notably, the FcNCl/MV AORFBs (demonstrated at 7.0 and 9.9 Wh/L) exhibited unprecedented long cycling performance, 700 cycles at 60 mA/cm 2 with 99.99% capacity retention per cycle, and delivered power density up to 125 mW/cm 2 . These AORFBs are built from earth-abundant elements and are environmentally benign, thus representing a promising choice for sustainable and safe energy storage.

  19. Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO)

    International Nuclear Information System (INIS)

    Talens Peiro, L.; Lombardi, L.; Villalba Mendez, G.; Gabarrell i Durany, X.

    2010-01-01

    The paper assesses the life cycle of biodiesel from used cooking oil (UCO). Such life cycle involves 4 stages: 1) collection, 2) pre-treatment, 3) delivery and 4) transesterification of UCO. Generally, UCO is collected from restaurants, food industries and recycling centres by authorised companies. Then, UCO is pre-treated to remove solid particles and water to increase its quality. After that, it is charged in cistern trucks and delivered to the biodiesel facility to be then transesterified with methanol to biodiesel. The production of 1 ton of biodiesel is evaluated by a Life Cycle Assessment (LCA) to assess the environmental impact and by an Exergetic Life Cycle Assessment (ELCA) to account for the exergy input to the system. A detailed list of material and energy inputs is done using data from local companies and completed using Ecoinvent 1.2 database. The results show that the transesterification stage causes 68% of the total environmental impact. The major exergy inputs are uranium and natural gas. If targets set by the Spanish Renewable Energy Plan are achieved, the exergy input for producing biodiesel would be reduced by 8% in the present system and consequently environmental impacts and exergy input reduced up to 36% in 2010.

  20. Dual-objective optimization of organic Rankine cycle (ORC) systems using genetic algorithm: a comparison between basic and recuperative cycles

    Science.gov (United States)

    Hayat, Nasir; Ameen, Muhammad Tahir; Tariq, Muhammad Kashif; Shah, Syed Nadeem Abbas; Naveed, Ahmad

    2017-08-01

    Exploitation of low potential waste thermal energy for useful net power output can be done by manipulating organic Rankine cycle systems. In the current article dual-objectives (η_{th} and SIC) optimization of ORC systems [basic organic Rankine cycle (BORC) and recuperative organic Rankine cycle (RORC)] has been done using non-dominated sorting genetic algorithm (II). Seven organic compounds (R-123, R-1234ze, R-152a, R-21, R-236ea, R-245ca and R-601) have been employed in basic cycle and four dry compounds (R-123, R-236ea, R-245ca and R-601) have been employed in recuperative cycle to investigate the behaviour of two systems and compare their performance. Sensitivity analyses show that recuperation boosts the thermodynamic behaviour of systems but it also raises specific investment cost significantly. R-21, R-245ca and R-601 show attractive performance in BORC whereas R-601 and R-236ea in RORC. RORC, due to higher total investment cost and operation & maintenance costs, has longer payback periods as compared to BORC.

  1. The total kinetic energy release in the fast neutron-induced fission of {sup 232}Th

    Energy Technology Data Exchange (ETDEWEB)

    King, Jonathan; Yanez, Ricardo; Loveland, Walter; Barrett, J. Spencer; Oscar, Breland [Oregon State University, Dept. of Chemistry, Corvallis, OR (United States); Fotiades, Nikolaos; Tovesson, Fredrik; Young Lee, Hye [Los Alamos National Laboratory, Physics Division, Los Alamos, NM (United States)

    2017-12-15

    The post-emission total kinetic energy release (TKE) in the neutron-induced fission of {sup 232}Th was measured (using white spectrum neutrons from LANSCE) for neutron energies from E{sub n} = 3 to 91 MeV. In this energy range the average post-neutron total kinetic energy release decreases from 162.3 ± 0.3 at E{sub n} = 3 MeV to 154.9 ± 0.3 MeV at E{sub n} = 91 MeV. Analysis of the fission mass distributions indicates that the decrease in TKE with increasing neutron energy is a combination of increasing yields of symmetric fission (which has a lower associated TKE) and a decrease in the TKE release in asymmetric fission. (orig.)

  2. Changes in Intakes of Total and Added Sugar and their Contribution to Energy Intake in the U.S.

    Directory of Open Access Journals (Sweden)

    Won O. Song

    2010-08-01

    Full Text Available This study was designed to document changes in total sugar intake and intake of added sugars, in the context of total energy intake and intake of nutrient categories, between the 1970s and the 1990s, and to identify major food sources contributing to those changes in intake. Data from the NHANES I and III were analyzed to obtain nationally representative information on food consumption for the civilian, non-institutionalized population of the U.S. from 1971 to 1994. In the past three decades, in addition to the increase in mean intakes of total energy, total sugar, added sugars, significant increases in the total intake of carbohydrates and the proportion of carbohydrates to the total energy intake were observed. The contribution of sugars to total carbohydrate intake decreased in both 1–18 y and 19+ y age subgroups, and the contribution of added sugars to the total energy intake did not change. Soft drinks/fluid milk/sugars and cakes, pastries, and pies remained the major food sources for intake of total sugar, total carbohydrates, and total energy during the past three decades. Carbonated soft drinks were the most significant sugar source across the entire three decades. Changes in sugar consumption over the past three decades may be a useful specific area of investigation in examining the effect of dietary patterns on chronic diseases.

  3. New long-term plan of nuclear development and perspectives of nuclear fuel cycle policy

    International Nuclear Information System (INIS)

    Uchiyama, Yohji

    2005-01-01

    Japan's nuclear fuel cycle policy, recently issued as an interim report of the Council to Formulate the New Long-Term Nuclear Program of the Atomic Energy Commission, is summarized and briefly explained together with the concluding remarks from the sub-committee for discussing technical and economical problems on the spent nuclear fuels with the present state of the Rokkasho reprocessing plant in mind. As for the nuclear fuel treatment, the panel considered four scenarios: (1) total reprocessing (the reprocessing for spent fuel after an appropriate period of storage); (2) partial reprocessing (spent fuel is reprocessed, with direct disposal of any spent fuel in excess of reprocessing capacity); (3) total direct disposal (direct disposal of all spent fuel); and (4) temporary storage (spent fuel is temporarily stored, and in about 2060 a choice will be made about whether to reprocess it or directly dispose of it). These four scenarios were studied from various perspectives, namely: (1) ensuring safety; (2) energy security; (3) environmental compatibility; (4) economic efficiency; (5) nuclear nonproliferation; (6) technical feasibility; (7) social acceptance; (8) securing choices; (9) issues concerning change in policy; and (10) overseas trends. Regarding economic efficiency, the council in particular conducted detailed studies and reassessment of nuclear fuel cycle costs. Scenario 1 (total reprocessing) is about 0.5-0.7 yen/kWh higher than scenario 3 (total direct disposal). However, looking at the situation from the perspectives of energy security, that is the stable supply and moderate use of resources, and environmental compatibility, scenario 1 (total reprocessing) can be evaluated as superior to the other scenarios. And more importantly, if the fast-breeder reactor cycle is commercialized, this superiority increases considerably. (S. Ohno)

  4. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    Science.gov (United States)

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  5. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...

  6. Determination of Duty Cycle for Energy Storage Systems in a Renewables (Solar) Firming Application

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwald, David A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electric Power Systems Research Dept.; Ellison, James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electric Power Systems Research Dept.

    2016-04-01

    This report supplements the document, “Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems,” issued in a revised version in April 2016, which will include the renewables (solar) firming application for an energy storage system (ESS). This report provides the background and documentation associated with the determination of a duty cycle for an ESS operated in a renewables (solar) firming application for the purpose of measuring and expressing ESS performance in accordance with the ESS performance protocol.

  7. Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances

    International Nuclear Information System (INIS)

    Murphy, Fionnuala; Devlin, Ger; McDonnell, Kevin

    2014-01-01

    Highlights: • Wood energy supply chains are analysed for energy requirements and GHG emissions. • Use of residues and stumps for energy is evaluated for Irish conditions. • Results highlight transportation as the most energy and GHG emission intensive step. • Wood energy compares favourably with other biomass sources and fossil fuels. - Abstract: The demand for wood for energy production in Ireland is predicted to double from 1.5 million m 3 over bark (OB) in 2011 to 3 million m 3 OB by 2020. There is a large potential for additional biomass recovery for energetic purposes from both thinning forest stands and by harvesting of tops and branches, and stumps. This study builds on research within the wood-for-energy concept in Ireland by analysing the energy requirements and greenhouse gas emissions associated with thinning, residue bundling and stump removal for energy purposes. To date there have been no studies on harvesting of residues and stumps in terms of energy balances and greenhouse gas emissions across the life cycle in Ireland. The results of the analysis on wood energy supply chains highlights transport as the most energy and greenhouse gas emissions intensive step in the life cycle. This finding illustrates importance of localised production and use of forest biomass. Production of wood chip, and shredded bundles and stumps, compares favourably with both other sources of biomass in Ireland and fossil fuels

  8. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case

    International Nuclear Information System (INIS)

    Morandin, Matteo; Maréchal, François; Mercangöz, Mehmet; Buchter, Florian

    2012-01-01

    The interest in large scale electricity storage (ES) with discharging time longer than 1 h and nominal power greater than 1 MW, is increasing worldwide as the increasing share of renewable energy, typically solar and wind energy, imposes severe load management issues. Thermo-electrical energy storage (TEES) based on thermodynamic cycles is currently under investigation at ABB corporate research as an alternative solution to pump hydro and compressed air energy storage. TEES is based on the conversion of electricity into thermal energy during charge by means of a heat pump and on the conversion of thermal energy into electricity during discharge by means of a thermal engine. The synthesis and the thermodynamic optimization of a TEES system based on hot water, ice storage and transcritical CO 2 cycles, is discussed in two papers. In this first paper a methodology for the conceptual design of a TEES system based on the analysis of the thermal integration between charging and discharging cycles through Pinch Analysis tools is introduced. According to such methodology, the heat exchanger network and temperatures and volumes of storage tanks are not defined a priori but are determined after the cycle parameters are optimized. For this purpose a heuristic procedure based on the interpretation of the composite curves obtained by optimizing the thermal integration between the cycles was developed. Such heuristic rules were implemented in a code that allows finding automatically the complete system design for given values of the intensive parameters of the charging and discharging cycles only. A base case system configuration is introduced and the results of its thermodynamic optimization are discussed here. A maximum roundtrip efficiency of 60% was obtained for the base case configuration assuming turbomachinery and heat exchanger performances in line with indications from manufacturers. -- Highlights: ► Energy storage based on water, ice, and transcritical CO 2 cycles is

  9. Energy metabolism and glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective.

    Science.gov (United States)

    Massucci, Francesco A; DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Castillo, Isaac Perez; Marinari, Enzo; De Martino, Andrea

    2013-10-10

    The energetics of cerebral activity critically relies on the functional and metabolic interactions between neurons and astrocytes. Important open questions include the relation between neuronal versus astrocytic energy demand, glucose uptake and intercellular lactate transfer, as well as their dependence on the level of activity. We have developed a large-scale, constraint-based network model of the metabolic partnership between astrocytes and glutamatergic neurons that allows for a quantitative appraisal of the extent to which stoichiometry alone drives the energetics of the system. We find that the velocity of the glutamate-glutamine cycle (Vcyc) explains part of the uncoupling between glucose and oxygen utilization at increasing Vcyc levels. Thus, we are able to characterize different activation states in terms of the tissue oxygen-glucose index (OGI). Calculations show that glucose is taken up and metabolized according to cellular energy requirements, and that partitioning of the sugar between different cell types is not significantly affected by Vcyc. Furthermore, both the direction and magnitude of the lactate shuttle between neurons and astrocytes turn out to depend on the relative cell glucose uptake while being roughly independent of Vcyc. These findings suggest that, in absence of ad hoc activity-related constraints on neuronal and astrocytic metabolism, the glutamate-glutamine cycle does not control the relative energy demand of neurons and astrocytes, and hence their glucose uptake and lactate exchange.

  10. Energy metabolism and glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective

    Science.gov (United States)

    2013-01-01

    Background The energetics of cerebral activity critically relies on the functional and metabolic interactions between neurons and astrocytes. Important open questions include the relation between neuronal versus astrocytic energy demand, glucose uptake and intercellular lactate transfer, as well as their dependence on the level of activity. Results We have developed a large-scale, constraint-based network model of the metabolic partnership between astrocytes and glutamatergic neurons that allows for a quantitative appraisal of the extent to which stoichiometry alone drives the energetics of the system. We find that the velocity of the glutamate-glutamine cycle (Vcyc) explains part of the uncoupling between glucose and oxygen utilization at increasing Vcyc levels. Thus, we are able to characterize different activation states in terms of the tissue oxygen-glucose index (OGI). Calculations show that glucose is taken up and metabolized according to cellular energy requirements, and that partitioning of the sugar between different cell types is not significantly affected by Vcyc. Furthermore, both the direction and magnitude of the lactate shuttle between neurons and astrocytes turn out to depend on the relative cell glucose uptake while being roughly independent of Vcyc. Conclusions These findings suggest that, in absence of ad hoc activity-related constraints on neuronal and astrocytic metabolism, the glutamate-glutamine cycle does not control the relative energy demand of neurons and astrocytes, and hence their glucose uptake and lactate exchange. PMID:24112710

  11. Nuclear Energy Data - 2017

    International Nuclear Information System (INIS)

    2017-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on total electricity produced by all sources and by nuclear power, fuel cycle capacities and requirements, and projections to 2035, where available. Country reports summarise energy policies, updates of the status in nuclear energy programs and fuel cycle developments. In 2016, nuclear power continued to supply significant amounts of low-carbon baseload electricity, despite strong competition from low-cost fossil fuels and subsidised renewable energy sources. Three new units were connected to the grid in 2016, in Korea, Russia and the United States. In Japan, an additional three reactors returned to operation in 2016, bringing the total to five under the new regulatory regime. Three reactors were officially shut down in 2016 - one in Japan, one in Russia and one in the United States. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects making progress in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports

  12. Solar energy system economic evaluation: Contemporary Newman, Georgia

    Science.gov (United States)

    1980-01-01

    An economic evaluation of performance of the solar energy system (based on life cycle costs versus energy savings) for five cities considered to be representative of a broad range of environmental and economic conditions in the United States is discussed. The considered life cycle costs are: hardware, installation, maintenance, and operating costs for the solar unique components of the total system. The total system takes into consideration long term average environmental conditions, loads, fuel costs, and other economic factors applicable in each of five cities. Selection criteria are based on availability of long term weather data, heating degree days, cold water supply temperature, solar insolation, utility rates, market potential, and type of solar system.

  13. Total reflection coefficients of low-energy photons presented as universal functions

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan

    2010-01-01

    Full Text Available The possibility of expressing the total particle and energy reflection coefficients of low-energy photons in the form of universal functions valid for different shielding materials is investigated in this paper. The analysis is based on the results of Monte Carlo simulations of photon reflection by using MCNP, FOTELP, and PENELOPE codes. The normal incidence of the narrow monoenergetic photon beam of the unit intensity and of initial energies from 20 keV up to 100 keV is considered, and particle and energy reflection coefficients from the plane homogenous targets of water, aluminum, and iron are determined and compared. The representations of albedo coefficients on the initial photon energy, on the probability of large-angle photon scattering, and on the mean number of photon scatterings are examined. It is found out that only the rescaled albedo coefficients dependent on the mean number of photon scatterings have the form of universal functions and these functions are determined by applying the least square method.

  14. High-energy asymmetric supercapacitors based on free-standing hierarchical Co-Mo-S nanosheets with enhanced cycling stability.

    Science.gov (United States)

    Balamurugan, Jayaraman; Li, Chao; Peera, Shaik Gouse; Kim, Nam Hoon; Lee, Joong Hee

    2017-09-21

    Layered transition metal sulfides (TMS) are emerging as advanced materials for energy storage and conversion applications. In this work, we report a facile and cost-effective anion exchange technique to fabricate a layered, multifaceted, free standing, ultra-thin ternary cobalt molybdenum sulfide nanosheet (Co-Mo-S NS) architecture grown on a 3D porous Ni foam substrate. The unique Co-Mo layered double hydroxides are first synthesized as precursors and consequently transformed into ultra-thin Co-Mo-S NS. When employed as an electrode for supercapacitors, the Co-Mo-S NS delivered an ultra-high specific capacitance of 2343 F g -1 at a current density of 1 mA cm -2 with tremendous rate capability and extraordinary cycling performance (96.6% capacitance retention after 20 000 cycles). Furthermore, assembled Co-Mo-S/nitrogen doped graphene nanosheets (NGNS) in an asymmetric supercapacitor (ASC) device delivered an excellent energy density of 89.6 Wh kg -1 , an amazing power density of 20.07 kW kg -1 , and superior cycling performance (86.8% capacitance retention after 50 000 cycles). Such exceptional electrochemical performance of Co-Mo-S NS is ascribed to the good electrical contact with the 3D Ni foam, ultra-high contact area with the electrolyte, and enhanced architectural softening during the charging/discharging process. It is expected that the fabricated, unique, ultra-thin Co-Mo-S NS have great potential for future energy storage devices.

  15. Daily cycle of the surface energy balance in Antarctica and the influence of clouds

    NARCIS (Netherlands)

    van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; Reijmer, C.H.|info:eu-repo/dai/nl/229345956; van As, D.; Boot, W.

    2006-01-01

    We present the summertime daily cycle of the Antarctic surface energy balance (SEB) and its sensitivity to cloud cover. We use data of automatic weather stations (AWS) located in four major Antarctic climate zones: the coastal ice shelf, the coastal and interior katabatic wind zone and the interior

  16. Activities of the research committee on thorium cycle in atomic energy society of Japan

    International Nuclear Information System (INIS)

    Hohki, Shiro

    1985-01-01

    In 1978 the Research Committee on Thorium Cycle was established as one of committees of the Atomic Energy Society of Japan, and the Committee published a report titled 'The Thorium Cycle - Present Status and Future Prospect' in October 1980 as a result of investigations on the status of the thoirum cycle in Japan as well as that in overseas. Based on this investigation, the Committee is intending to evaluate synthetically the thorium utilization in Japan under the prospect for the middle and long term by intensifying the activities of the Committee. Furthermore, from this viewpoint, the author supplements comments on following three points: (1) Reasons why the thorium utilization has not received positive evaluation in Japan; (2) Reasons why Japan has to pay attention to thorium; (3) How the technology on thorium should be developed in Japan. (author)

  17. Fission fragment mass and total kinetic energy distributions of spontaneously fissioning plutonium isotopes

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with A = 236-246. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energy distributions are found in good agreement with the data.

  18. Improvement to the gas cycle energy generating installations with heat recuperation

    International Nuclear Information System (INIS)

    Tilliette, Zephyr.

    1977-01-01

    Improvement to the gas cycle energy generating installations with heat recuperation, comprising a heat source, supplying a fluid at high temperature and pressure, an expansion turbine, at least one recuperator fitted to the turbine outlet, a cooler and compressor in series, the compressor returning the high pressure fluid to the source after heat exchange in the recuperator with the low pressure fluid from the turbine. It is characterised in that at least one steam generator is connected to the low pressure end of the recuperator [fr

  19. Comparison of stress and total energy methods for calculation of elastic properties of semiconductors.

    Science.gov (United States)

    Caro, M A; Schulz, S; O'Reilly, E P

    2013-01-16

    We explore the calculation of the elastic properties of zinc-blende and wurtzite semiconductors using two different approaches: one based on stress and the other on total energy as a function of strain. The calculations are carried out within the framework of density functional theory in the local density approximation, with the plane wave-based package VASP. We use AlN as a test system, with some results also shown for selected other materials (C, Si, GaAs and GaN). Differences are found in convergence rate between the two methods, especially in low symmetry cases, where there is a much slower convergence for total energy calculations with respect to the number of plane waves and k points used. The stress method is observed to be more robust than the total energy method with respect to the residual error in the elastic constants calculated for different strain branches in the systems studied.

  20. The effect of post-wash total progressive motile sperm count and semen volume on pregnancy outcomes in intrauterine insemination cycles: a retrospective study.

    Science.gov (United States)

    Ok, Elvan Koyun; Doğan, Omer Erbil; Okyay, Recep Emre; Gülekli, Bülent

    2013-01-01

    The purpose of this study was to determine the impact of post-wash total progressive motile sperm count (TPMSC) and semen volume on pregnancy outcomes in intrauterine insemination (IUI) cycles. The retrospective study included a total of 156 cycles (141 couples) and was performed in our center over a 24-month period. The semen parameters were recorded for each man and each insemination. The semen samples were re-evaluated after the preparation process. Post-wash TPMSC values were divided into four groups; Group 1: 10×10(6). Post-wash inseminated semen volume was divided into three groups; Group 1: 0.3 mL; Group 2: 0.4 mL; Group 3: 0.5 mL. The effect of post-wash total progressive motile sperm and semen volume on pregnancy outcomes was evaluated. The pregnancy rates per cycle and per couple were 27.56% and 30.49%, respectively. There was not a significant relationship between the inseminated semen volume and pregnancy rate (p>0.05). However, a significant linear-by-linear association was documented between the TPMSC and pregnancy rate (p=0.042). Our findings suggest that the post-wash inseminated semen volume should be between 0.3-0.5 mL. An average post-wash total motile sperm count of 10×10(6) may be a useful threshold value for IUI success, but more studies are needed to determine a cut-off value for TPMSC.

  1. Hybrid nuclear cycles for nuclear fission sustainability

    International Nuclear Information System (INIS)

    Piera, M.; Martinez-Val, M. M.

    2007-01-01

    resources could be exploited with such a cycle, using very safe reactors. This percentage is much higher than the actual value for the once-through cycle (0.5 %) and the value for multiple Pu recycling in the MOX scheme (1 %). Moreover, thorium could also be exploited through fertile conversion into U-233 in the subcritical breeders. The separation between energy production (to be done in LWR) and nuclear breeding (to be done in subcritical hybrids) presents a scenario with very appealing safety features and a high potential for an efficient utilization of all natural resources of uranium and thorium, that account for 10 2 4 J, i.e., 25 Gtoe, which is 35,000 times as large as the annual production of Nuclear Energy nowadays, and about 2,500 times as large as the total annual energy consumption all over the globe

  2. Measuring the distribution of equity in terms of energy, environmental, and economic costs in the fuel cycles of alternative fuel vehicles with hydrogen pathway scenarios

    Science.gov (United States)

    Meyer, Patrick E.

    Numerous analyses exist which examine the energy, environmental, and economic tradeoffs between conventional gasoline vehicles and hydrogen fuel cell vehicles powered by hydrogen produced from a variety of sources. These analyses are commonly referred to as "E3" analyses because of their inclusion of Energy, Environmental, and Economic indicators. Recent research as sought a means to incorporate social Equity into E3 analyses, thus producing an "E4" analysis. However, E4 analyses in the realm of energy policy are uncommon, and in the realm of alternative transportation fuels, E4 analyses are extremely rare. This dissertation discusses the creation of a novel E4 simulation tool usable to weigh energy, environmental, economic, and equity trade-offs between conventional gasoline vehicles and alternative fuel vehicles, with specific application to hydrogen fuel cell vehicles. The model, dubbed the F uel Life-cycle Analysis of Solar Hydrogen -- Energy, Environment, Economic & Equity model, or FLASH-E4, is a total fuel-cycle model that combines energy, environmental, and economic analysis methodologies with the addition of an equity analysis component. The model is capable of providing results regarding total fuel-cycle energy consumption, emissions production, energy and environmental cost, and level of social equity within a population in which low-income drivers use CGV technology and high-income drivers use a number of advanced hydrogen FCV technologies. Using theories of equity and social indicators conceptually embodied in the Lorenz Curve and Gini Index, the equity of the distribution of societal energy and environmental costs are measured for a population in which some drivers use CGVs and other drivers use FCVs. It is found, based on baseline input data representative of the United States (US), that the distribution of energy and environmental costs in a population in which some drivers use CGVs and other drivers use natural gas-based hydrogen FCVs can be

  3. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.

    Science.gov (United States)

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H

    2010-07-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas

  4. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration

    International Nuclear Information System (INIS)

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H.

    2010-01-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.

  5. Projection potentials and angular momentum convergence of total energies in the full-potential Korringa–Kohn–Rostoker method

    International Nuclear Information System (INIS)

    Zeller, Rudolf

    2013-01-01

    Although the full-potential Korringa–Kohn–Rostoker Green function method yields accurate results for many physical properties, the convergence of calculated total energies with respect to the angular momentum cutoff is usually considered to be less satisfactory. This is surprising because accurate single-particle energies are expected if they are calculated by Lloyd’s formula and because accurate densities and hence accurate double-counting energies should result from the total energy variational principle. It is shown how the concept of projection potentials can be used as a tool to analyse the convergence behaviour. The key factor blocking fast convergence is identified and it is illustrated how total energies can be improved with only a modest increase of computing time. (paper)

  6. Short term economic emission power scheduling of hydrothermal energy systems using improved water cycle algorithm

    International Nuclear Information System (INIS)

    Haroon, S.S.; Malik, T.N.

    2017-01-01

    Due to the increasing environmental concerns, the demand of clean and green energy and concern of atmospheric pollution is increasing. Hence, the power utilities are forced to limit their emissions within the prescribed limits. Therefore, the minimization of fuel cost as well as exhaust gas emissions is becoming an important and challenging task in the short-term scheduling of hydro-thermal energy systems. This paper proposes a novel algorithm known as WCA-ER (Water Cycle Algorithm with Evaporation Rate) to inspect the short term EEPSHES (Economic Emission Power Scheduling of Hydrothermal Energy Systems). WCA has its ancestries from the natural hydrologic cycle i.e. the raining process forms streams and these streams start flowing towards the rivers which finally flow towards the sea. The worth of WCA-ER has been tested on the standard economic emission power scheduling of hydrothermal energy test system consisting of four hydropower and three thermal plants. The problem has been investigated for the three case studies (i) ECS (Economic Cost Scheduling), (ii) ES (Economic Emission Scheduling) and (iii) ECES (Economic Cost and Emission Scheduling). The results obtained show that WCA-ER is superior to many other methods in the literature in bringing lower fuel cost and emissions. (author)

  7. Computation techniques and computer programs to analyze Stirling cycle engines using characteristic dynamic energy equations

    Science.gov (United States)

    Larson, V. H.

    1982-01-01

    The basic equations that are used to describe the physical phenomena in a Stirling cycle engine are the general energy equations and equations for the conservation of mass and conversion of momentum. These equations, together with the equation of state, an analytical expression for the gas velocity, and an equation for mesh temperature are used in this computer study of Stirling cycle characteristics. The partial differential equations describing the physical phenomena that occurs in a Stirling cycle engine are of the hyperbolic type. The hyperbolic equations have real characteristic lines. By utilizing appropriate points along these curved lines the partial differential equations can be reduced to ordinary differential equations. These equations are solved numerically using a fourth-fifth order Runge-Kutta integration technique.

  8. Regional total factor energy efficiency: An empirical analysis of industrial sector in China

    International Nuclear Information System (INIS)

    Wang, Zhao-Hua; Zeng, Hua-Lin; Wei, Yi-Ming; Zhang, Yi-Xiang

    2012-01-01

    Highlights: ► We evaluate energy efficiency under framework of total factor energy efficiency. ► We focus on industry sector of China. ► We use statistical data of industrial enterprises above designated size. ► Energy efficiencies among regions in China are obvious because of technological differences. ► Large scale of investment should be stopped especially in central and western regions. -- Abstract: The rapid growth of the Chinese economy has resulted in great pressure on energy consumption, especially the energy intensive sector – the industrial sector. To achieve sustainable development, China has to consider how to promote energy efficiency to meet the demand of Chinese rapid economic growth, as the energy efficiency of China is relatively low. Meanwhile, the appeal of energy saving and emission reduction has been made by the Chinese central government. Therefore, it is important to evaluate the energy efficiency of industrial sector in China and to assess efficiency development probabilities. The framework of total factor energy efficiency index is adopted to determine the discrepancy of energy efficiency in Chinese industrial sector based on the provincial statistical data of industrial enterprises above designated size in 30 provinces from 2005 to 2009, with gross industrial output as the output value and energy consumption, average remaining balance of capital assets and average amount of working force as the input values. Besides, in considerate of the regional divide of China, namely eastern, central, and western, and economic development differences in each region, energy efficiency of each region is also analysed in this paper. The results show that there is room for China to improve its energy efficiency, especially western provinces which have large amount of energy input excess. Generally speaking, insufficient technological investment and fail of reaching best scale of manufacture are two factors preventing China from energy

  9. 77 FR 65729 - Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC...

    Science.gov (United States)

    2012-10-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC, National Enrichment Facility, Eunice... Services (LES), LLC, National Enrichment Facility in Eunice, New Mexico, and has verified that cascades...

  10. Effect of chewing speed on energy expenditure in healthy subjects.

    Science.gov (United States)

    Paphangkorakit, Jarin; Leelayuwat, Naruemon; Boonyawat, Nattawat; Parniangtong, Auddamar; Sripratoom, Jindamanee

    2014-08-01

    The aim of the study was to investigate the effect of rate of chewing on energy expenditure in human subjects. Fourteen healthy subjects (aged 18-24 years) within the normal range of BMI participated in a cross-over experiment consisting of two 6-min sessions of gum chewing, slow (∼60 cycles/min) and fast (∼120 cycles/min) chewing. The resting energy expenditure (REE) and during gum chewing was measured using a ventilated hood connected to a gas analyzer system. The normality of data was explored using the Shapiro-Wilk test. The energy expenditure rate during chewing and the energy expenditure per chewing cycle were compared between the two chewing speeds using Wilcoxon signed ranks tests. The energy expenditure per chewing cycle during slow chewing (median 1.4, range 5.2 cal; mean 2.1±1.6 cal) was significantly higher than that during fast chewing (median 0.9, range 2.2 cal; mean 1.0±0.7 cal) (p chewing speeds (p > 0.05). The results of this study suggest that chewing at a slower speed could increase the energy expenditure per cycle and might affect the total daily energy expenditure.

  11. The tropical water and energy cycles in a cumulus ensemble model. Part 1: Equilibrium climate

    Science.gov (United States)

    Sui, C. H.; Lau, K. M.; Tao, W. K.; Simpson, J.

    1994-01-01

    A cumulus ensemble model is used to study the tropical water and energy cycles and their role in the climate system. The model includes cloud dynamics, radiative processes, and microphysics that incorporate all important production and conversion processes among water vapor and five species of hydrometeors. Radiative transfer in clouds is parameterized based on cloud contents and size distributions of each bulk hydrometeor. Several model integrations have been carried out under a variety of imposed boundary and large-scale conditions. In Part 1 of this paper, the primary focus is on the water and heat budgets of the control experiment, which is designed to simulate the convective - radiative equilibrium response of the model to an imposed vertical velocity and a fixed sea surface temperature at 28 C. The simulated atmosphere is conditionally unstable below the freezing level and close to neutral above the freezing level. The equilibrium water budget shows that the total moisture source, M(sub s), which is contributed by surface evaporation (0.24 M(sub s)) and the large-scale advection (0.76 M(sub s)), all converts to mean surface precipitation bar-P(sub s). Most of M(sub s) is transported verticaly in convective regions where much of the condensate is generated and falls to surface (0.68 bar-P(sub s)). The remaining condensate detrains at a rate of 0.48 bar-P(sub s) and constitutes 65% of the source for stratiform clouds above the melting level. The upper-level stratiform cloud dissipates into clear environment at a rate of 0.14 bar-P(sub s), which is a significant moisture source comparable to the detrained water vapor (0.15 bar-P(sub s)) to the upper troposphere from convective clouds. In the lower troposphere, stratiform clouds evaporate at a rate of 0.41 bar-P(sub s), which is a more dominant moisture source than surface evaporation (0.22 bar-P(sub s)). The precipitation falling to the surface in the stratiform region is about 0.32 bar-P(sub s). The associated

  12. Life cycle integrated thermoeconomic assessment method for energy conversion systems

    International Nuclear Information System (INIS)

    Kanbur, Baris Burak; Xiang, Liming; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei

    2017-01-01

    Highlights: • A new LCA integrated thermoeconomic approach is presented. • The new unit fuel cost is found 4.8 times higher than the classic method. • The new defined parameter increased the sustainability index by 67.1%. • The case studies are performed for countries with different CO 2 prices. - Abstract: Life cycle assessment (LCA) based thermoeconomic modelling has been applied for the evaluation of energy conversion systems since it provided more comprehensive and applicable assessment criteria. This study proposes an improved thermoeconomic method, named as life cycle integrated thermoeconomic assessment (LCiTA), which combines the LCA based enviroeconomic parameters in the production steps of the system components and fuel with the conventional thermoeconomic method for the energy conversion systems. A micro-cogeneration system is investigated and analyzed with the LCiTA method, the comparative studies show that the unit cost of fuel by using the LCiTA method is 3.8 times higher than the conventional thermoeconomic model. It is also realized that the enviroeconomic parameters during the operation of the system components do not have significant impacts on the system streams since the exergetic parameters are dominant in the thermoeconomic calculations. Moreover, the improved sustainability index is found roundly 67.2% higher than the previously defined sustainability index, suggesting that the enviroeconomic and thermoeconomic parameters decrease the impact of the exergy destruction in the sustainability index definition. To find the feasible operation conditions for the micro-cogeneration system, different assessment strategies are presented. Furthermore, a case study for Singapore is conducted to see the impact of the forecasted carbon dioxide prices on the thermoeconomic performance of the micro-cogeneration system.

  13. Simplified life cycle assessment models: methodological framework and applications to energy pathways

    International Nuclear Information System (INIS)

    Padey, Pierryves

    2013-01-01

    The energy transition debate is a key issue for today and the coming years. One of the challenges is to limit the environmental impacts of electricity production. Decision support tools, sufficiently accurate, simple to use, accounting for environmental aspects and favoring future energetic choices, must be implemented. However, the environmental assessment of the energy pathways is complex, and it means considering a two levels characterization. The 'energy pathway' is the first level and corresponds to its environmental distribution, to compare overall pathways. The 'system pathway' is the 2. level and compares environmental impacts of systems within each pathway. We have devised a generic methodology covering both necessary characterization levels by estimating the energy pathways environmental profiles while allowing a simple comparison of its systems environmental impacts. This methodology is based on the definition of a parameterized Life Cycle Assessment model and considers, through a Global Sensitivity Analysis, the environmental impacts of a large sample of systems representative of an energy pathway. As a second step, this methodology defines simplified models based on few key parameters identified as inducing the largest variability in the energy pathway environmental impacts. These models assess in a simple way the systems environmental impacts, avoiding any complex LCAs. This reduction methodology has been applied to the onshore wind power energy pathway in Europe and the photovoltaic energy pathway in France. (author)

  14. Framework for Evaluating the Total Value Proposition of Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Pater, J. E.

    2006-02-01

    Conventional valuation techniques fail to include many of the financial advantages of clean energy technologies. By omitting benefits associated with risk management, emissions reductions, policy incentives, resource use, corporate social responsibility, and societal economic benefits, investors and firms sacrifice opportunities for new revenue streams and avoided costs. In an effort to identify some of these externalities, this analysis develops a total value proposition for clean energy technologies. It incorporates a series of values under each of the above categories, describing the opportunities for recapturing investments throughout the value chain. The framework may be used to create comparable value propositions for clean energy technologies supporting investment decisions, project siting, and marketing strategies. It can also be useful in policy-making decisions.

  15. On the coherence between high-energy total cross-section data when compared with general principles

    International Nuclear Information System (INIS)

    Gauron, P.; Nicolescu, B.; Paris-6 Univ., 75

    1993-12-01

    An essential model is performed - an independent study of the internal coherence between high-energy total cross-section data by using classes of functions satisfying general principles. The study is practically independent of the ρ-parameter values. This general analysis, made without any fit, reveals certain inconsistencies in the existing set of high-energy data. Some of these inconsistencies are eliminated by giving up arbitrary assumptions sometimes made in 'fitology'. It is shown that the ln 2 s increase of total cross-sections at high energies is clearly favoured when compared with other possible behaviours. (authors). 16 refs., 3 figs

  16. Nuclear power. Nuclear fuel cycle and waste management. 1990-2002. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2002-02-01

    This document lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Power, Nuclear Fuel Cycle and Waste Management, issued during the period 1990-2002. It gives a short abstract of these publications along with contents and their costs

  17. Life cycle assessment of energy products: environmental impact assessment of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  18. High Energy, Long Cycle Life Lithium-ion Batteries for PHEV Application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Donghai [Pennsylvania State Univ., University Park, PA (United States); Manthiram, Arumugam [Univ. of Texas, Austin, TX (United States); Wang, Chao-Yang [EC Power LLC, State College, PA (United States); Liu, Gao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Zhengcheng [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-05-15

    cell fabrication and test, full pouch cells with high capacity of 2.2 Ah and 1.2 Ah have been fabricated and delivered. The cells show great uniformity and good cycling performance. The prelithiation method effectively compensate the loss in the first cycle. The cell with high energy density and long-cycle life has been achieved.

  19. Changes in total and differential white cell counts, total lymphocyte ...

    African Journals Online (AJOL)

    Background: Published reports on the possible changes in the various immune cell populations, especially the total lymphocyte and CD4 cell counts, during the menstrual cycle in Nigerian female subjects are relatively scarce. Aim: To determine possible changes in the total and differential white blood cell [WBC] counts, ...

  20. Holistic energy system modeling combining multi-objective optimization and life cycle assessment

    Science.gov (United States)

    Rauner, Sebastian; Budzinski, Maik

    2017-12-01

    Making the global energy system more sustainable has emerged as a major societal concern and policy objective. This transition comes with various challenges and opportunities for a sustainable evolution affecting most of the UN’s Sustainable Development Goals. We therefore propose broadening the current metrics for sustainability in the energy system modeling field by using industrial ecology techniques to account for a conclusive set of indicators. This is pursued by including a life cycle based sustainability assessment into an energy system model considering all relevant products and processes of the global supply chain. We identify three pronounced features: (i) the low-hanging fruit of impact mitigation requiring manageable economic effort; (ii) embodied emissions of renewables cause increasing spatial redistribution of impact from direct emissions, the place of burning fuel, to indirect emissions, the location of the energy infrastructure production; (iii) certain impact categories, in which more overall sustainable systems perform worse than the cost minimal system, require a closer look. In essence, this study makes the case for future energy system modeling to include the increasingly important global supply chain and broaden the metrics of sustainability further than cost and climate change relevant emissions.

  1. Thermal–economic–environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling

    International Nuclear Information System (INIS)

    Shirazi, Ali; Najafi, Behzad; Aminyavari, Mehdi; Rinaldi, Fabio; Taylor, Robert A.

    2014-01-01

    In this study, a mathematical model of an ice thermal energy storage (ITES) system for gas turbine cycle inlet air cooling is developed and thermal, economic, and environmental (emissions cost) analyses have been applied to the model. While taking into account conflicting thermodynamic and economic objective functions, a multi-objective genetic algorithm is employed to obtain the optimal design parameters of the plant. Exergetic efficiency is chosen as the thermodynamic objective while the total cost rate of the system including the capital and operational costs of the plant and the social cost of emissions, is considered as the economic objective. Performing the optimization procedure, a set of optimal solutions, called a Pareto front, is obtained. The final optimal design point is determined using TOPSIS decision-making method. This optimum solution results in the exergetic efficiency of 34.06% and the total cost of 28.7 million US$ y −1 . Furthermore, the results demonstrate that inlet air cooling using an ITES system leads to 11.63% and 3.59% improvement in the output power and exergetic efficiency of the plant, respectively. The extra cost associated with using the ITES system is paid back in 4.72 years with the income received from selling the augmented power. - Highlights: • Mathematical model of an ITES system for a GT cycle inlet air cooling is developed. • Exergetic, economic and environmental analyses were performed on the developed model. • Exergy efficiency and total cost rate were considered as the objective functions. • The total cost rate involves the capital, maintenance, operational and emissions costs. • Multi-objective optimization was applied to obtain the Pareto front

  2. LCA-ship. Design tool for energy efficient ships. A Life Cycle Analysis Program for Ships. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jiven, Karl; Sjoebris, Anders [MariTerm AB, Goeteborg (Sweden); Nilsson, Maria [Lund Univ. (Sweden). Stiftelsen TEM; Ellis, Joanne; Traegaardh, Peter; Nordstroem, Malin [SSPA Sweden AB, Goeteborg (Sweden)

    2004-05-01

    In order to make it easier to include aspects during ship design that will improve environmental performance, general methods for life cycle calculations and a prototype tool for LCA calculations of ships and marine transportation have been developed. The base of the life cycle analyses is a comprehensive set of life cycle data that was collected for the materials and consumables used in ship construction and vessel operations. The computer tool developed makes it possible to quickly and simply specify (and calculate) the use of consumables over the vessel's life time cycle. Special effort has been made to allow the tool to be used for different types of vessels and sea transport. The main result from the project is the computer tool LCA ship, which incorporates collected and developed life cycle data for some of the most important materials and consumables used in ships and their operation. The computer application also contains a module for propulsion power calculations and a module for defining and optimising the energy system onboard the vessel. The tool itself is described in more detail in the Computer application manual. The input to the application should, as much as possible, be the kind of information that is normally found in a shipping company concerning vessel data and vessel movements. It all starts with defining the ship to be analysed and continues with defining how the ship is used over the lifetime. The tool contains compiled and processed background information about specific materials and processes (LCA data) connected to shipping operations. The LCA data is included in the tool in a processed form. LCA data for steel will for example include the environmental load from the steel production, the process to build the steel structure of the ship, the scrapping and the recycling phase. To be able to calculate the environmental load from the use of steel the total amount of steel used over the life cycle of the ship is also needed. The

  3. Perspective on the French closed fuel cycle: Open towards energy future and sustainability

    International Nuclear Information System (INIS)

    Tinturier, Bernard; Debes, Michel; Delbecq, Jean-Michel

    2006-01-01

    Energy sustainability and nuclear energy nowadays are far reaching issues with many implications and as a consequence, any long term sustainable strategy needs to be flexible. In France, nuclear energy (427 TWh in 2004, 80% of national electricity production) is a major asset for clean electricity production and for meeting Kyoto protocol objective in France. The decision to build a future EPR reactor in France has been taken. Regarding back end and fuel cycle, the current reprocessing and recycling strategy, with the existing industrial system (Cogema La Hague and Melox), has proven to be reliable and efficient. It enables to meet sustainability requirements, now and in the long run: ensuring a good management of high level waste through vitrification, reducing the amount of nuclear spent fuel in interim storage, recycling valuable nuclear material (Pu), keeping the possibility to use Pu concentrated in MOX spent fuel to start FBR in the future. To maintain this possibility for the far future, EDF considers that the Generation IV program is of major importance in order to develop future fast reactors able to use plutonium and to ensure a full utilization of uranium resource, while optimizing high level waste management. EDF strategy is to keep the nuclear option open in the future, with a two-steps approach for the renewal of the current nuclear fleet: first, around 2020, with the launching of generation III reactors like EPR, and second, depending on the energy demand, launching of Generation IV systems, around 2040 or beyond. To meet this energy prospect, R and D efforts must be devoted to fast breeder reactors (sodium cooled, which benefits already from industrial experience, and gas cooled, under consideration for R and D). Globally, this strategy is open to future progress and optimisation as needed to meet long term energy sustainability. It appears the necessity of a good consistency between all the components of the nuclear system: reactors, fuel cycle

  4. A prospective study of spine fractures diagnosed by total spine computed tomography in high energy trauma patients

    International Nuclear Information System (INIS)

    Takami, Masanari; Nohda, Kazuhiro; Sakanaka, Junya; Nakamura, Masamichi; Yoshida, Munehito

    2011-01-01

    Since it is known to be impossible to identify spinal fractures in high-energy trauma patients the primary trauma evaluation, we have been performing total spine computed tomography (CT) in high-energy trauma cases. We investigated the spinal fractures that it was possible to detect by total spine CT in 179 cases and evaluated the usefulness of total spine CT prospectively. There were 54 (30.2%) spinal fractures among the 179 cases. Six (37.5%) of the 16 cervical spine fractures that were not detected on plain X-ray films were identified by total spine CT. Six (14.0%) of 43 thoracolumbar spine fractures were considered difficult to diagnose based on the clinical findings if total spine CT had not been performed. We therefore concluded that total spine CT is very useful and should be performed during the primary trauma evaluation in high-energy trauma cases. (author)

  5. Soil Carbon and Nitrogen Cycle Modeling

    Science.gov (United States)

    Woo, D.; Chaoka, S.; Kumar, P.; Quijano, J. C.

    2012-12-01

    Second generation bioenergy crops, such as miscanthus (Miscantus × giganteus) and switchgrass (Panicum virgatum), are regarded as clean energy sources, and are an attractive option to mitigate the human-induced climate change. However, the global climate change and the expansion of perennial grass bioenergy crops have the power to alter the biogeochemical cycles in soil, especially, soil carbon storages, over long time scales. In order to develop a predictive understanding, this study develops a coupled hydrological-soil nutrient model to simulate soil carbon responses under different climate scenarios such as: (i) current weather condition, (ii) decreased precipitation by -15%, and (iii) increased temperature up to +3C for four different crops, namely miscanthus, switchgrass, maize, and natural prairie. We use Precision Agricultural Landscape Modeling System (PALMS), version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and ¬nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained using available data recorded in Bondville Ameriflux Site. The model simulations are validated with observations of drainage and nitrate and ammonium concentrations recorded in drain tiles during 2011. The results of this study show (1) total soil carbon storage of miscanthus accumulates most noticeably due to the significant amount of aboveground plant carbon, and a relatively high carbon to nitrogen ratio and lignin content, which reduce the litter decomposition rate. Also, (2) the decreased precipitation contributes to the enhancement of total soil carbon storage and soil nitrogen concentration because of the reduced microbial biomass pool. However, (3) an opposite effect on the cycle is introduced by the increased

  6. Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach

    Energy Technology Data Exchange (ETDEWEB)

    Shanley, James B. [US Geological Survey, PO Box 628, Montpelier, VT 05601 (United States)], E-mail: jshanley@usgs.gov; Alisa Mast, M. [US Geological Survey, MS 415 Denver Federal Center, Denver, CO 80225 (United States)], E-mail: mamast@usgs.gov; Campbell, Donald H. [US Geological Survey, MS 415 Denver Federal Center, Denver, CO 80225 (United States)], E-mail: dhcampbe@usgs.gov; Aiken, George R. [US Geological Survey, 3215 Marine Street, Suite E-127, Boulder, CO 80303 (United States)], E-mail: graiken@usgs.gov; Krabbenhoft, David P. [US Geological Survey, 8505 Research Way, Middleton, WI 53562 (United States)], E-mail: dpkrabbe@usgs.gov; Hunt, Randall J. [US Geological Survey, 8505 Research Way, Middleton, WI 53562 (United States)], E-mail: rjhunt@usgs.gov; Walker, John F. [US Geological Survey, 8505 Research Way, Middleton, WI 53562 (United States)], E-mail: jfwalker@usgs.gov; Schuster, Paul F. [US Geological Survey, 3215 Marine Street, Suite E-127, Boulder, CO 80303 (United States)], E-mail: pschuste@usgs.gov; Chalmers, Ann [US Geological Survey, PO Box 628, Montpelier, VT 05601 (United States)], E-mail: chalmers@usgs.gov; Aulenbach, Brent T. [US Geological Survey, 3039 Amwiler Road, Suite 130, Atlanta, GA 30360 (United States)], E-mail: btaulenb@usgs.gov; Peters, Norman E. [US Geological Survey, 3039 Amwiler Road, Suite 130, Atlanta, GA 30360 (United States)], E-mail: nepeters@usgs.gov; Marvin-DiPasquale, Mark [US Geological Survey, 345 Middlefield Rd., MS 480, Menlo Park, CA 94025 (United States)], E-mail: mmarvin@usgs.gov; Clow, David W. [US Geological Survey, MS 415 Denver Federal Center, Denver, CO 80225 (United States)], E-mail: dwclow@usgs.gov; Shafer, Martin M. [Environmental Chemistry and Technology and Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI 53706 (United States)], E-mail: mmshafer@wisc.edu

    2008-07-15

    The small watershed approach is well-suited but underutilized in mercury research. We applied the small watershed approach to investigate total mercury (THg) and methylmercury (MeHg) dynamics in streamwater at the five diverse forested headwater catchments of the US Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) program. At all sites, baseflow THg was generally less than 1 ng L{sup -1} and MeHg was less than 0.2 ng L{sup -1}. THg and MeHg concentrations increased with streamflow, so export was primarily episodic. At three sites, THg and MeHg concentration and export were dominated by the particulate fraction in association with POC at high flows, with maximum THg (MeHg) concentrations of 94 (2.56) ng L{sup -1} at Sleepers River, Vermont; 112 (0.75) ng L{sup -1} at Rio Icacos, Puerto Rico; and 55 (0.80) ng L{sup -1} at Panola Mt., Georgia. Filtered (<0.7 {mu}m) THg increased more modestly with flow in association with the hydrophobic acid fraction (HPOA) of DOC, with maximum filtered THg concentrations near 5 ng L{sup -1} at both Sleepers and Icacos. At Andrews Creek, Colorado, THg export was also episodic but was dominated by filtered THg, as POC concentrations were low. MeHg typically tracked THg so that each site had a fairly constant MeHg/THg ratio, which ranged from near zero at Andrews to 15% at the low-relief, groundwater-dominated Allequash Creek, Wisconsin. Allequash was the only site with filtered MeHg consistently above detection, and the filtered fraction dominated both THg and MeHg. Relative to inputs in wet deposition, watershed retention of THg (minus any subsequent volatilization) was 96.6% at Allequash, 60% at Sleepers, and 83% at Andrews. Icacos had a net export of THg, possibly due to historic gold mining or frequent disturbance from landslides. Quantification and interpretation of Hg dynamics was facilitated by the small watershed approach with emphasis on event sampling. - High-flow sampling reveals strong contrasts in total

  7. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    Science.gov (United States)

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications.

  8. Life Cycle Multi-Criteria Analysis Of Alternative Energy Supply Systems For A Residential Building

    Directory of Open Access Journals (Sweden)

    Artur Rogoža

    2013-12-01

    Full Text Available The article analyses energy supply alternatives for a partially renovated residential building. In addition to the existing district heating (base case alternative systems, gas boilers, heat pumps (air-water and ground-water, solar collectors, solar cells, and combinations of these systems have been examined. Actual heat consumption of the building and electricity demand determined by the statistical method are used for simulating the systems. The process of simulation is performed using EnergyPro software. In order to select an optimal energy supply option, the life cycle analysis of all systems has been carried out throughout a life span of the building, and the estimated results of energy, environmental and economic evaluation have been converted into non-dimensional variables (3E using multi–criteria analysis.Article in Lithuanian

  9. Total electron scattering cross sections for methanol and ethanol at intermediate energies

    International Nuclear Information System (INIS)

    Silva, D G M; Tejo, T; Lopes, M C A; Muse, J; Romero, D; Khakoo, M A

    2010-01-01

    Absolute total cross section (TCS) measurements of electron scattering from gaseous methanol and ethanol molecules are reported for impact energies from 60 to 500 eV, using the linear transmission method. The attenuation of intensity of a collimated electron beam through the target volume is used to determine the absolute TCS for a given impact energy, using the Beer-Lambert law to first approximation. Besides these experimental measurements, we have also determined TCS using the additivity rule.

  10. Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)

    International Nuclear Information System (INIS)

    Hackl, Roman; Andersson, Eva; Harvey, Simon

    2011-01-01

    Rising fuel prices, increasing costs associated with emissions of green house gases and the threat of global warming make efficient use of energy more and more important. Industrial clusters have the potential to significantly increase energy efficiency by energy collaboration. In this paper Sweden's largest chemical cluster is analysed using the total site analysis (TSA) method. TSA delivers targets for the amount of utility consumed and generated through excess energy recovery by the different processes. The method enables investigation of opportunities to deliver waste heat from one process to another using a common utility system. The cluster consists of 5 chemical companies producing a variety of products, including polyethylene (PE), polyvinyl chloride (PVC), amines, ethylene, oxygen/nitrogen and plasticisers. The companies already work together by exchanging material streams. In this study the potential for energy collaboration is analysed in order to reach an industrial symbiosis. The overall heating and cooling demands of the site are around 442 MW and 953 MW, respectively. 122 MW of heat is produced in boilers and delivered to the processes. TSA is used to stepwise design a site-wide utility system which improves energy efficiency. It is shown that heat recovery in the cluster can be increased by 129 MW, i.e. the current utility demand could be completely eliminated and further 7 MW excess steam can be made available. The proposed retrofitted utility system involves the introduction of a site-wide hot water circuit, increased recovery of low pressure steam and shifting of heating steam pressure to lower levels in a number heat exchangers when possible. Qualitative evaluation of the suggested measures shows that 60 MW of the savings potential could to be achieved with moderate changes to the process utility system corresponding to 50% of the heat produced from purchased fuel in the boilers of the cluster. Further analysis showed that after implementation

  11. Influence of accelerated thermal charging and discharging cycles on thermo-physical properties of organic phase change materials for solar thermal energy storage applications

    International Nuclear Information System (INIS)

    Raam Dheep, G.; Sreekumar, A.

    2015-01-01

    Highlights: • Identification of organic phase change materials namely benzamide and sebacic acid. • Thermal reliability studies on identified phase change materials. • Measurement of phase transition temperature and latent heat of fusion. • Analysis of relative percentage difference (RPD%) in heat of fusion and melting temperature of benzamide and sebacic acid. - Abstract: Integration of appropriate thermal energy storage system plays a predominant role in upgrading the efficiency of solar thermal energy devices by reducing the incongruity between energy supply and demand. Latent heat thermal energy storage based on phase change materials (PCM) is found to be the most efficient and prospective method for storage of solar thermal energy. Ensuring the thermal reliability of PCM through large number of charging (melting) and discharging (solidification) cycles is a primary prerequisite to determine the suitability of PCM for a specific thermal energy storage applications. The present study explains the experimental analysis carried out on two PCM’s namely benzamide and sebacic acid to check the compatibility of the material in solar thermal energy storage applications. The selected materials were subjected to one thousand accelerated melting and solidification cycles in order to investigate the percentage of variation at different stages on latent heat of fusion, phase transition temperature, onset and peak melting temperature. Differential Scanning Calorimeter (DSC) was used to determine the phase transition temperature and heat of fusion upon completion of every 100 thermal cycles and continued up to 1000 cycles. Relative Percentage Difference (RPD%) is calculated to find out the absolute deviation of melting temperature and latent heat of fusion with respect to zeroth cycle. The experimental study recorded a melting temperatures of benzamide and sebacic acid as 125.09 °C and 135.92 °C with latent heat of fusion of 285.1 (J/g) and 374.4 (J/g). The

  12. Development and evaluation of totally implantable ventricular assist system using a vibrating flow pump and transcutaneous energy transmission system with amorphous fibers.

    Science.gov (United States)

    Yambe, T; Hashimoto, H; Kobayashi, S; Sonobe, T; Naganuma, S; Nanka, S S; Matsuki, H; Yoshizawa, M; Tabayashi, K; Takayasu, H; Takeda, H; Nitta, S

    1997-01-01

    We have developed a vibrating flow pump (VFP) that can generate oscillated blood flow with a relatively high frequency (10-50 Hz) for a totally implantable ventricular assist system (VAS). To evaluate the newly developed VAS, left heart bypasses, using the VFP, were performed in chronic animal experiments. Hemodynamic parameters were recorded in a data recorder in healthy adult goats during an awake condition and analyzed in a personal computer system through an alternating-direct current converter. Basic performance of the total system with a transcutaneous energy transmission system were satisfactory. During left ventricular assistance with the VFP, Mayer wave fluctuations of hemodynamics were decreased in the power spectrum, the fractal dimensions of the hemodynamics were significantly decreased, and peripheral vascular resistance was significantly decreased. These results suggest that cardiovascular regulatory nonlinear dynamics, which mediate the hemodynamics, may be affected by left ventricular bypass with oscillated flow. The decreased power of the Mayer wave in the spectrum caused the limit cycle attractor of the hemodynamics and decreased peripheral resistance. These results suggest that this newly developed VAS is useful for the totally implantable system with unique characteristics that can control hemodynamic properties.

  13. Ketogenesis in isolated rat liver mitochondria I. Relationships with the citric acid cycle and with the mitochondrial energy state

    NARCIS (Netherlands)

    Lopes-Cardozo, M.; Bergh, S.G. van den

    1972-01-01

    1. A method is described to calculate the distribution of acetyl-CoA over the citric acid cycle and ketogenesis during the oxidation of fatty acids in the presence of added malate. 2. Increasing concentrations of added Krebs cycle intermediates lower the rate of ketogenesis both in the low-energy

  14. Life cycle assessment of energy consumption and GHG emissions of olefins production from alternative resources in China

    International Nuclear Information System (INIS)

    Xiang, Dong; Yang, Siyu; Li, Xiuxi; Qian, Yu

    2015-01-01

    Highlights: • Conduct a life cycle energy use and GHG emissions of olefins production processes. • Analyse effects of carbon capture and efficiency on alternative olefins production. • Analyse life cycle performance of Chinese olefins industry in three key periods. • Present the advantages and challenges of alternative olefins routes. - Abstract: Olefins are important platform chemicals widely used in industry. In terms of the short supply of oil resources, natural gas and coal are two significant alternative feedstocks. In this paper, energy consumption and GHG emissions of olefins production are analysed with life cycle assessment methods. Results showed the energy consumption and GHG emissions of natural gas-to-olefins are roughly equivalent to those of oil-to-olefins, while coal-to-olefins suffers from higher energy consumption and serious GHG emissions, including 5793 kg eq. CO 2 /t olefins of direct emissions and 5714 kg eq. CO 2 /t olefins of indirect emissions. To address the problem, the effect of carbon capture on coal-to-olefins is investigated. In comprehensive consideration of energy utilization, environmental impact, and economic benefit, the coal-to-olefins with 80% CO 2 capture of the direct emissions is found to be an appropriate choice. With this carbon capture configuration, the direct emissions of the coal-to-olefins are reduced to 1161 kg eq. CO 2 /t olefins. However, the indirect emissions are still not captured, which should be strictly monitored and significantly reduced. Finally, a scenario analysis is conducted to estimate resource utilization and GHG emissions of olefins production of China in 2020. Several suggestions are also proposed for policy making on the sustainable development of olefins industry

  15. Life Cycle Greenhouse Gas Emissions from Electricity Generation: A Comparative Analysis of Australian Energy Sources

    Directory of Open Access Journals (Sweden)

    Robert G. Hynes

    2012-03-01

    Full Text Available Electricity generation is one of the major contributors to global greenhouse gas emissions. Transitioning the World’s energy economy to a lower carbon future will require significant investment in a variety of cleaner technologies, including renewables and nuclear power. In the short term, improving the efficiency of fossil fuel combustion in energy generation can provide an important contribution. Availability of life cycle GHG intensity data will allow decision-makers to move away from overly simplistic assertions about the relative merits of certain fuels, and focus on the complete picture, especially the critical roles of technology selection and application of best practice. This analysis compares the life-cycle greenhouse gas (GHG intensities per megawatt-hour (MWh of electricity produced for a range of Australian and other energy sources, including coal, conventional liquefied natural gas (LNG, coal seam gas LNG, nuclear and renewables, for the Australian export market. When Australian fossil fuels are exported to China, life cycle greenhouse gas emission intensity in electricity production depends to a significant degree on the technology used in combustion. LNG in general is less GHG intensive than black coal, but the gap is smaller for gas combusted in open cycle gas turbine plant (OCGT and for LNG derived from coal seam gas (CSG. On average, conventional LNG burned in a conventional OCGT plant is approximately 38% less GHG intensive over its life cycle than black coal burned in a sub-critical plant, per MWh of electricity produced. However, if OCGT LNG combustion is compared to the most efficient new ultra-supercritical coal power, the GHG intensity gap narrows considerably. Coal seam gas LNG is approximately 13–20% more GHG intensive across its life cycle, on a like-for like basis, than conventional LNG. Upstream fugitive emissions from CSG (assuming best practice gas extraction techniques do not materially alter the life cycle

  16. The conditions for total reflection of low-energy atoms from crystal surfaces

    International Nuclear Information System (INIS)

    Hou, M.; Robinson, M.T.

    1978-01-01

    The critical angles for the total reflection of low-energy particles from Cu rows and (001) planes have been investigated, using the binary collision approximation computer simulation code MARLOWE Breakthrough angles were evaluated for H, N, Ne, Ar, Cu, Xe, and Au in the energy range from 0.1 to 7.5 keV. In both the axial and the planar cases, recoiling of the target atoms lowers the energy barrier which the target surface presents to the heavy projectiles. Consequently, the breakthrough angles are reduced for heavy projectiles below the values expected either from observations on light projectiles or from analytical channeling theory. (orig.) [de

  17. Plutonium in an enduring fuel cycle

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1998-05-01

    Nuclear fuel cycles evolved over the past five decades have allowed many nations of the world to enjoy the benefits of nuclear energy, while contributing to the sustainable consumption of the world's energy resources. The nuclear fuel cycle for energy production suffered many traumas since the 1970s because of perceived risks of proliferation of nuclear weapons. However, the experience of the past five decades has shown that the world community is committed to safeguarding all fissile materials and continuing the use of nuclear energy resources. Decisions of a few nations to discard spent nuclear fuels in geologic formations are contrary to the goals of an enduring nuclear fuel cycle and sustainable development being pursued by the world community. The maintenance of an enduring nuclear fuel cycle is dependent on sensible management of all the resources of the fuel cycle, including spent fuels

  18. Life cycle assessment and the agri-food chain

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Nguyen, T Lan T

    2012-01-01

    Our food consumption is responsible for a major part of the environmental impact related to our total consumption. Life cycle assessment (LCA) is a product-oriented tool that can be used efficiently to identify improvement options within the food chain covering a product’s life cycle from cradle...... to grave, which is very complex for many foods, and to support choices of consumption. The LCA methodology is supported by public standards and public policy measures and has proved its value in business development for more environmentally friendly products. It is an essential feature that the effects...... of resource use and emissions associated with a product’s life cycle can be aggregated into impact categories (e.g., nonrenewable energy use, land occupation, global warming, acidification, etc.) and further aggregated into overall damage impacts (e.g., impacts on biodiversity, human health, and resource...

  19. Intake and total apparent digestibility in lambs fed six maize varieties in the Brazilian Semiarid

    Directory of Open Access Journals (Sweden)

    Rafael Dantas dos Santos

    2011-12-01

    Full Text Available The objective of this study was to evaluate the daily intake and total apparent digestibility of dry matter, organic matter, crude protein, gross energy, ether extract, neutral detergent fiber, acid detergent fiber, total and non-fibrous carbohydrates, total digestible nutrients, energy intake and nitrogen balance of silages of six maize varieties with early or super early cycles recommended to Northeast Brazil. Twenty-four male castrated lambs were lodged in metabolic cages. A completely randomized design with six treatments and four replications was used, with means compared by Tukey test at 5%. There were no differences among varieties for any of the evaluated variables regarding intake and apparent digestibility. Concerning the intake of digestible energy, metabolizable energy and the ratio content of digestible and metabolizable energy, significant differences were observed between varieties and BRS Assum Preto showed highest values of metabolizable energy (2.650,8 kcal/day. All of the treatments presented positive nitrogen balance and did not differ among themselves. The varieties asessed can be an additional option to the semiarid regions in Brazil.

  20. Physics characteristics of CANDU cores with advanced fuel cycles

    International Nuclear Information System (INIS)

    Garvey, P.M.

    1985-01-01

    The current generation of CANDU reactors, of which some 20 GWE are either in operations or under construction worldwide, have been designed specifically for the natural uranium fuel cycle. The CANDU concept, due to its D 2 O coolant and moderator, on-power refuelling and low absorption structural materials, makes the most effective utilization of mined uranium of all currently commercialized reactors. An economic fuel cycle cost is also achieved through the use of natural uranium and a simple fuel bundle design. Total unit energy costs are achieved that allow this reactor concept to effectively compete with other reactor types and other forms of energy production. There are, however, other fuel cycles that could be introduced into this reactor type. These include the slightly enriched uranium fuel cycle, fuel cycles in which plutonium is recycled with uranium, and the thorium cycle in which U-233 is recycled. There is also a special range of fuel cycles that could utilize the spent fuel from LWR's. Two specific variants are a fuel cycle that only utilizes the spent uranium, and a fuel cycle in which both the uranium and plutonium are recycled into a CANDU. For the main part these fuel cycles are characterized by a higher initial enrichment, and hence discharge burnup, than the natural uranium cycle. For these fuel cycles the main design features of both the reactor and fuel bundle would be retained. Recently a detailed study of the use in a CANDU of mixed plutonium and uranium oxide fuel from an LWR has been undertaken by AECL. This study illustrates many of the generic technical issues associated with the use of Advanced Fuel Cycles. This paper will report the main findings of this evaluation, including the power distribution in the reactor and fuel bundle, the choice of fuel management scheme, and the impact on the control and safety characteristics of the reactor. These studies have not identified any aspects that significantly impact upon the introduction of

  1. Nuclear energy. Economical aspects

    International Nuclear Information System (INIS)

    Legee, F.

    2010-01-01

    This document present 43 slides of a power point presentation containing detailed data on economical and cost data for nuclear energy and nuclear power plants: evolution from 1971 to 2007 of world total primary energy supply, development of nuclear energy in the world, nuclear power plants in the world in 2009, service life of nuclear power plants and its extension; nuclear energy market and perspectives at 2030, the EPR concept (generation III) and its perspectives at 2030 in the world; cost assessment (power generation cost, nuclear power generation cost, costs due to nuclear safety, comparison of investment costs for gas, coal and nuclear power generation, costs for building a nuclear reactor and general cost; cost for the entire fuel cycle, the case of the closed cycle with recycling (MOX); costs for radioactive waste storage; financial costs and other costs such as environmental impacts, strategic stocks, comparative evaluation of the competitiveness of nuclear versus coal and gas

  2. Spatio-temporal structure and cycle to cycle variations of an in-cylinder tumbling flow

    Science.gov (United States)

    Voisine, M.; Thomas, L.; Borée, J.; Rey, P.

    2011-05-01

    The aim of this paper is to make use of PIV and high-speed PIV in a research engine of moderate tumbling ratio in order to analyze both the spatial structure of the flow and its temporal evolution during series of consecutive cycles. Appropriate analyzing tools are introduced, and four different points are addressed: (1) the chain of events driving the generation of the three-dimensional mean tumbling motion is investigated; (2) a Lagrangian analysis of the roll-up of the tumbling jet in individual cycles demonstrates a strong cycle to cycle variation during the compression phase (the rms of the position of the jet front being approximately 10% of the piston stroke); (3) focussing on the "breakdown" phase, phase invariant proper orthogonal decomposition enables us to distinguish cycles according to their structure near top dead center (TDC). We show that when the coherent energy of the flow is conserved, there is no increase in the fluctuating kinetic energy; (4) finally, the phase-averaged Reynolds stresses is decomposed into a contribution of the in-cycle coherence and the turbulence carried by the flow states. Approximately 30% of the fluctuating kinetic energy is due to cycle to cycle fluctuations in this chamber near TDC.

  3. Optimization of stand-alone photovoltaic systems with hydrogen storage for total energy self-sufficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P D [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics

    1991-01-01

    A new method for optimization of stand-alone photovoltaic-hydrogen energy systems is presented. The methodology gives the optimum values for the solar array and hydrogen storage size for any given system configuration and geographical site. Sensitivity analyses have been performed to study the effect of subsystem efficiencies on the total system performance and sizing, and also to identify possibilities for further improvements. Optimum system configurations have also been derived. The results indicate that a solar-hydrogen energy system is a very promising potential alternative for low power applications requiring a total electricity self-sufficiency. (Author).

  4. Interactive video game cycling leads to higher energy expenditure and is more enjoyable than conventional exercise in adults.

    Directory of Open Access Journals (Sweden)

    Javier Monedero

    Full Text Available Despite the widely accepted health benefits of regular physical activity, only a small percentage of the population meets the current recommendations. The reasons include a wide use of technology and a lack of enjoyment while exercising. The purpose of this study was to compare the physiological, perceptual and enjoyment responses between a single bout of (I conventional cycling and (II interactive cycling video game at a matched workload.A cross-sectional study in 34 healthy participants was performed. Initially, participants completed an incremental maximal cycling test to measure peak oxygen uptake and to determine ventilatory threshold. In random order, participants carried out a 30 min interactive cycling trial and a 30 min conventional cycling trial at 55% of peak power output. During the trials, oxygen uptake and energy expenditure were measured by open-circuit spirometry and heart rate was measured by radiotelemetry. RPE and enjoyment were measured every 10 minutes with Borg scale and a modified PACES scale.Interactive cycling resulted in a significantly greater %V̇O2Reserve (68.2% ± 9.2% vs 64.7% ± 8.1%, rate of energy expenditure (505.8±75.2 vs 487.4±81.2 j·kg-1·min-1, and enjoyment (63.4% ± 17 vs 42% ± 13.6, P<0.05. Participants were working at a higher intensity in relation to the individual's ventilatory threshold during the interactive cycling video game trial (M = 11.86, SE = 3.08 than during the Conventional cycling trial (M = 7.55, SE = 3.16, t(33 = -2.69, P<0.05, r = .42. No significant differences were found for heart rate reserve (72.5 ± 10.4 vs 71.4±10.1% and RPE (13.1 ± 1.8 vs 13.2 ± 1.7.Interactive cycling games can be a valid alternative to conventional exercise as they result in a higher exercise intensity than conventional cycling and a distraction from aversive cognitive and physiological states at and above the ventilatory threshold.

  5. Denatured fuel cycles

    International Nuclear Information System (INIS)

    Till, C.E.

    1979-01-01

    This paper traces the history of the denatured fuel concept and discusses the characteristics of fuel cycles based on the concept. The proliferation resistance of denatured fuel cycles, the reactor types they involve, and the limitations they place on energy generation potential are discussed. The paper concludes with some remarks on the outlook for such cycles

  6. Measurement of the total solar energy transmittance (g-value) for conventional glazings

    DEFF Research Database (Denmark)

    Duer, Karsten

    1998-01-01

    Three different glazings have been investigated in the Danish experimental setup METSET. (A device for calorimetric measurement of total solar energy transmittance - g-value).The purpose of the measurements is to increase the confidence in the calorimetric measurements. This is done by comparison...

  7. Hadronic multiplicity and total cross-section: a new scaling in wide energy range

    International Nuclear Information System (INIS)

    Kobylinsky, N.A.; Martynov, E.S.; Shelest, V.P.

    1983-01-01

    The ratio of mean multiplicity to total cross-section is shown to be the same for all the Regge models and to rise with energy as lns which is confirmed by experimental data. Hence, a power of multiplicity growth is unambiguously connected with that of total cross-section. As regards the observed growth, approximately ln 2 s, it tells about a dipole character of pomeron singularity

  8. Advanced fuel cycles in CANDU reactors

    International Nuclear Information System (INIS)

    Green, R.E.; Boczar, P.G.

    1990-04-01

    This paper re-examines the rationale for advanced nuclear fuel cycles in general, and for CANDU advanced fuel cycles in particular. The traditional resource-related arguments for more uranium nuclear fuel cycles are currently clouded by record-low prices for uranium. However, the total known conventional uranium resources can support projected uranium requirements for only another 50 years or so, less if a major revival of the nuclear option occurs as part of the solution to the world's environmental problems. While the extent of the uranium resource in the earth's crust and oceans is very large, uncertainty in the availability and price of uranium is the prime resource-related motivation for advanced fuel cycles. There are other important reasons for pursuing advanced fuel cycles. The three R's of the environmental movement, reduce, recycle, reuse, can be achieved in nuclear energy production through the employment of advanced fuel cycles. The adoption of more uranium-conserving fuel cycles would reduce the amount of uranium which needs to be mined, and the environmental impact of that mining. Environmental concerns over the back end of the fuel cycle can be mitigated as well. Higher fuel burnup reduces the volume of spent fuels which needs to be disposed of. The transmutation of actinides and long-lived fission products into short-lived fission products would reduce the radiological hazard of the waste from thousands to hundreds of years. Recycling of uranium and/or plutonium in spent fuel reuses valuable fissile material, leaving only true waste to be disposed of. Advanced fuel cycles have an economical benefit as well, enabling a ceiling to be put on fuel cycle costs, which are

  9. Thermoeconomic Analysis and Optimization of a New Combined Supercritical Carbon Dioxide Recompression Brayton/Kalina Cycle

    Directory of Open Access Journals (Sweden)

    S. Mohammad S. Mahmoudi

    2016-10-01

    Full Text Available A new combined supercritical CO2 recompression Brayton/Kalina cycle (SCRB/KC is proposed. In the proposed system, waste heat from a supercritical CO2 recompression Brayton cycle (SCRBC is recovered by a Kalina cycle (KC to generate additional electrical power. The performances of the two cycles are simulated and compared using mass, energy and exergy balances of the overall systems and their components. Using the SPECO (Specific Exergy Costing approach and employing selected cost balance equations for the components of each system, the total product unit costs of the cycles are obtained. Parametric studies are performed to investigate the effects on the SCRB/KC and SCRBC thermodynamic and thermoeconomic performances of key decision parameters. In addition, considering the exergy efficiency and total product unit cost as criteria, optimization is performed for the SCRBC and SCRB/KC using Engineering Equation Solver software. The results indicate that the maximum exergy efficiency of the SCRB/KC is higher than that of the SCRBC by up to 10%, and that the minimum total product unit cost of the SCRB/KC is lower than that of the SCRBC by up to 4.9%.

  10. Nuclear energy data 2011

    CERN Document Server

    2011-01-01

     . Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of statistics and country reports on nuclear energy, contains official information provided by OECD member country governments on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035. For the first time, it includes data for Chile, Estonia, Israel and Slovenia, which recently became OECD members. Key elements of this edition show a 2% increase in nuclear and total electricity production and a 0.5% increase in nuclear generating ca

  11. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    Directory of Open Access Journals (Sweden)

    A. Alessandri

    2012-11-01

    Full Text Available Future climate scenarios experiencing global warming are expected to strengthen the hydrological cycle during the 21st century (21C. We analyze the strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. By combining energy and water equations for the whole atmosphere, we obtain constraints for the changes in surface fluxes and partitioning at the surface between sensible and latent components. We investigate the differences in the strengthening of the hydrological cycle in two centennial simulations performed with an Earth system model forced with specified atmospheric concentration pathways. Alongside the Special Report on Emissions Scenario (SRES A1B, which is a medium-high non-mitigation scenario, we consider a new aggressive-mitigation scenario (E1 with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K.

    Our results show that the mitigation scenario effectively constrains the global warming with a stabilization below 2 K with respect to the 1950–2000 historical period. On the other hand, the E1 precipitation does not follow the temperature field toward a stabilization path but continues to increase over the mitigation period. Quite unexpectedly, the mitigation scenario is shown to strengthen the hydrological cycle even more than SRES A1B till around 2070. We show that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to decreased sulfate aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B.

    The last decades of the 21C show a marked increase in global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost the same overall increase of radiative imbalance with respect to the 20th century. Our

  12. Energy consumption during the building life cycle – influence of investment activities and operations

    Directory of Open Access Journals (Sweden)

    Vytlačil Dalibor

    2018-01-01

    Full Text Available The paper describes the dynamic model of maintenance and investments of a building structure and HVAC systems. The aim of the research is finding the time dependent curve for energy consumption and also the cash flow that depends on the investments to energy saving arrangements and operations. The solution is based on the system dynamics method. The method makes possible to interconnect technical and economic parts of the problem. The main parameter in the model is the energy consumption in the building per floor square meter and year. This parameter is influenced by a deterioration of the building structure and the components of the active elements. The investments realized with the aim to decrease the energy consumption is another influence. The example of the computer simulation of the building parameters during the life cycle is presented in the paper.

  13. Nuclear-fuel-cycle education: Module 1. Nuclear fuel cycle overview

    International Nuclear Information System (INIS)

    Eckhoff, N.D.

    1981-07-01

    This educational module is an overview of the nuclear-fule-cycle. The overview covers nuclear energy resources, the present and future US nuclear industry, the industry view of nuclear power, the International Nuclear Fuel Cycle Evaluation program, the Union of Concerned Scientists view of the nuclear-fuel-cycle, an analysis of this viewpoint, resource requirements for a model light water reactor, and world nuclear power considerations

  14. Total cross section for hadron production by e+e- annihilation at PETRA energies

    International Nuclear Information System (INIS)

    Bartel, W.; Canzler, T.; Cords, D.; Dittmann, P.; Eichler, R.; Felst, R.; Godermann, E.; Haidt, D.; Kawabata, S.; Krehbiel, H.

    1979-10-01

    The cross section for the process e + e - → multihadrons has been measured at the highest PETRA energies. We measure R (the total cross-section in units of the point-like e + e - → μ + μ - cross-section) to be 2.9 +- 0.7, 4.0 +- 0.5, 4.6 +- 0.4 and 4.2 +- 0.6 at √s of 22, 27.7, 30 and 31.6 GeV respectively. The observed average multiplicity, together with existing low energy data, indicate a rapid increase in multiplicity with increasing energy. (orig.)

  15. Total cross sections for electron scattering by CO2 molecules in the energy range 400 endash 5000 eV

    International Nuclear Information System (INIS)

    Garcia, G.; Manero, F.

    1996-01-01

    Total cross sections for electron scattering by CO 2 molecules in the energy range 400 endash 5000 eV have been measured with experimental errors of ∼3%. The present results have been compared with available experimental and theoretical data. The dependence of the total cross sections on electron energy shows an asymptotic behavior with increasing energies, in agreement with the Born-Bethe approximation. In addition, an analytical formula is provided to extrapolate total cross sections to higher energies. copyright 1996 The American Physical Society

  16. 10 CFR 436.19 - Life cycle costs.

    Science.gov (United States)

    2010-01-01

    ... operation and maintenance costs: (c) Replacement costs less salvage costs of replaced building systems; and... 10 Energy 3 2010-01-01 2010-01-01 false Life cycle costs. 436.19 Section 436.19 Energy DEPARTMENT... Procedures for Life Cycle Cost Analyses § 436.19 Life cycle costs. Life cycle costs are the sum of the...

  17. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    Science.gov (United States)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and

  18. The Baltic Sea Experiment (BALTEX): A European contribution to the investigation of the energy and water cycle over a large drainage basin

    DEFF Research Database (Denmark)

    Raschke, E.; Meywerk, J.; Warrach, K.

    2001-01-01

    The Baltic Sea Experiment (BALTEX) is one of the five continental-scale experiments of the Global Energy and Water Cycle Experiment (GEWEX). More than 50 research groups from 14 European countries are participating in this project to measure and model the energy and water cycle over the large...... drainage basin of the Baltic Sea in northern Europe. BALTEX aims to provide a better understanding of the processes of the climate system and to improve and to validate the water cycle in regional numerical models for weather forecasting and climate studies. A major effort is undertaken to couple...

  19. Energy-Saving Optimization of Water Supply Pumping Station Life Cycle Based on BIM Technology

    Science.gov (United States)

    Qun, Miao; Wang, Jiayuan; Liu, Chao

    2017-12-01

    In the urban water supply system, pump station is the main unit of energy consumption. In the background of pushing forward the informatization in China, using BIM technology in design, construction and operations of water supply pumping station, can break through the limitations of the traditional model and effectively achieve the goal of energy conservation and emissions reduction. This work researches the way to solve energy-saving optimization problems in the process of whole life cycle of water supply pumping station based on BIM technology, and put forward the feasible strategies of BIM application in order to realize the healthy and sustainable development goals by establishing the BIM model of water supply pumping station of Qingdao Guzhenkou water supply project.

  20. Life Cycle Energy Consumption and Greenhouse Gas Emissions Analysis of Natural Gas-Based Distributed Generation Projects in China

    Directory of Open Access Journals (Sweden)

    Hansi Liu

    2017-10-01

    Full Text Available In this paper, we used the life-cycle analysis (LCA method to evaluate the energy consumption and greenhouse gas (GHG emissions of natural gas (NG distributed generation (DG projects in China. We took the China Resources Snow Breweries (CRSB NG DG project in Sichuan province of China as a base scenario and compared its life cycle energy consumption and GHG emissions performance against five further scenarios. We found the CRSB DG project (all energy input is NG can reduce GHG emissions by 22%, but increase energy consumption by 12% relative to the scenario, using coal combined with grid electricity as an energy input. The LCA also indicated that the CRSB project can save 24% of energy and reduce GHG emissions by 48% relative to the all-coal scenario. The studied NG-based DG project presents major GHG emissions reduction advantages over the traditional centralized energy system. Moreover, this reduction of energy consumption and GHG emissions can be expanded if the extra electricity from the DG project can be supplied to the public grid. The action of combining renewable energy into the NG DG system can also strengthen the dual merit of energy conservation and GHG emissions reduction. The marginal CO2 abatement cost of the studied project is about 51 USD/ton CO2 equivalent, which is relatively low. Policymakers are recommended to support NG DG technology development and application in China and globally to boost NG utilization and control GHG emissions.